WO2017051450A1 - 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 - Google Patents
排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 Download PDFInfo
- Publication number
- WO2017051450A1 WO2017051450A1 PCT/JP2015/076893 JP2015076893W WO2017051450A1 WO 2017051450 A1 WO2017051450 A1 WO 2017051450A1 JP 2015076893 W JP2015076893 W JP 2015076893W WO 2017051450 A1 WO2017051450 A1 WO 2017051450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steam
- organic fluid
- turbine
- exhaust gas
- heat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
- F02G5/04—Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust heat recovery apparatus, an internal combustion engine system, a ship, and an exhaust heat recovery method.
- Patent Document 1 discloses an organic Rankin Cycle (ORC) in which waste heat is recovered by an organic fluid having a boiling point lower than water from jacket cooling water that cools a jacket of a diesel engine.
- Patent Document 2 combines a steam turbine driven by heat recovery from exhaust gas of an internal combustion engine and a steam turbine driven by heat recovery from jacket cooling water by a low boiling point medium such as pentane, etc. Configuration is disclosed.
- Patent Document 2 mentions a control method in which either the steam turbine side or the organic fluid turbine side is to be controlled, and the rotational drive is stable against load fluctuation of the internal combustion engine, particularly at low load of the internal combustion engine.
- the exhaust gas economizer alone can not obtain the steam necessary for sole operation of the steam turbine, so control is performed to stop the operation of the steam turbine.
- the operation of the steam turbine is stopped, when the steam turbine is controlled as a master, the organic fluid turbine subordinate to the steam turbine also has to be stopped. In this case, the organic fluid turbine can not be driven alone to perform power generation, and the heat energy of the exhaust gas may not be effectively recovered.
- the present invention has been made in view of such circumstances, and the operation of the steam turbine is continued to continue the operation of the organic fluid turbine even when the load on the internal combustion engine is small and the sole operation of the steam turbine is difficult. It is an object of the present invention to provide an exhaust heat recovery apparatus, an internal combustion engine system, a ship, and an exhaust heat recovery method capable of generating electric power.
- an exhaust heat recovery apparatus includes an exhaust gas economizer that generates main steam by recovering heat from exhaust gas discharged from an internal combustion engine main body, and the main steam mainly derived from the exhaust gas economizer.
- An organic fluid heat exchanger that generates organic solvent vapor by recovering heat from a low temperature heat source that is lower in temperature than the temperature recovered by the exhaust gas economizer; and the organic fluid heat exchanger
- An organic fluid turbine driven by the steam of the organic fluid generated by the generator, a generator generating electricity by the output from at least one of the steam turbine and the organic fluid turbine, auxiliary steam by combustion heat of fuel And the organic fluid turbine is operated at a speed dependent on the speed regulation of the steam turbine. It is rolling, wherein, when the pressure of the main steam generated by the exhaust gas economizer is equal to or less than the threshold value, the auxiliary steam generated in the auxiliary boiler is characterized in that it is supplied to the steam turbine.
- a low-temperature heat source (for example, jacket cooling water) which is lower in temperature than the temperature at which heat is recovered by the exhaust gas economizer can not be said to be a stable heat source because the influence of load fluctuation of the internal combustion engine is large. Therefore, an organic fluid turbine utilizing such a low temperature heat source is operated at a speed dependent on the speed regulation of the steam turbine which is excellent in stability. That is, operation is performed with the steam turbine as a master and the organic fluid turbine as a slave. Therefore, when the operation of the master steam turbine is stopped, the control of the slave organic fluid turbine is also stopped. On the other hand, when the load on the internal combustion engine decreases, the main steam generated by the exhaust gas economizer decreases, and the steam pressure supplied to the steam turbine decreases.
- jacket cooling water for example, jacket cooling water
- the auxiliary steam generated by the auxiliary boiler is supplied to the steam turbine to continue the operation of the steam turbine.
- the auxiliary steam generated by the auxiliary boiler is supplied to the steam turbine to continue the operation of the steam turbine.
- the steam turbine is defined on the basis of the minimum pressure which can be operated alone by the main steam supplied from exhaust gas economizer.
- a pressure of the main steam generated by the exhaust gas economizer preferably, a drum pressure of a steam separator that constitutes the exhaust gas economizer is used.
- a low temperature heat source for example, engine cooling water adjusted to 80 ° C. to 90 ° C. can be mentioned.
- the steam turbine and the organic fluid turbine are connected to a common generator
- the steam turbine and the organic fluid turbine may be connected by a common rotating shaft, and each has a separate rotating shaft, and power generation via gears It may be connected to the machine.
- the rotating shaft of the organic fluid turbine may be connected to the rotating shaft of the steam turbine via the rotating shafts of the reduction gear and the generator so as to depend on the speed of the steam turbine.
- the auxiliary boiler may be a fuel heating boiler that generates steam for heating the fuel oil supplied to the internal combustion engine.
- the fuel oil is heated by steam in order to properly adjust the viscosity of the fuel oil (for example, C heavy oil) supplied to the internal combustion engine.
- a fuel heating boiler is generally provided in a facility of an internal combustion engine.
- this fuel heating boiler is used as an auxiliary boiler for supplying steam to a steam turbine.
- the exhaust heat recovery apparatus of the present invention can be configured without the need to newly add a dedicated boiler.
- An internal combustion engine system includes an internal combustion engine main body and the above-described exhaust heat recovery device.
- a ship according to one aspect of the present invention includes the internal combustion engine system described above.
- the ship Since the ship is provided with the above-mentioned internal combustion engine system, it is possible to meet the demand power on board without operating a diesel generator, and to provide a ship capable of navigation with reduced fuel oil consumption. be able to.
- a main steam generation step of generating main steam by recovering heat from exhaust gas discharged from an internal combustion engine main body, and the main steam obtained in the main steam generation step A steam turbine driving step of driving a steam turbine by steam, and an organic fluid steam generating step of generating organic fluid vapor by recovering heat from a low temperature heat source which is lower than a temperature recovered by heat in the main steam generating step.
- Power generation process for generating electric power by generated power, and auxiliary steam generation process for generating auxiliary steam by combustion heat of fuel The body turbine is operated at a speed dependent on the speed adjustment of the steam turbine, and the pressure generated by the auxiliary steam generation step when the pressure of the main steam generated in the main steam generation step falls below a threshold.
- the auxiliary steam is supplied to the steam turbine.
- FIG. 1 is a schematic configuration view showing an embodiment of an internal combustion engine system of the present invention. It is the graph which showed the control method of the internal combustion engine system of FIG.
- a diesel engine system 1 installed in a ship includes a diesel main engine (internal combustion engine) 3 and an exhaust heat recovery device 4 for recovering heat emitted from the diesel main engine 3 There is.
- the exhaust heat recovery device 4 mainly uses the exhaust gas economizer 5 that generates steam from the high temperature exhaust gas discharged by the diesel engine 3 and the steam generated by the exhaust gas economizer 5 (hereinafter, the steam generated by the exhaust gas economizer 5 And a steam turbine 7 driven by the steam. Furthermore, the exhaust heat recovery device 4 is an organic fluid driven by the vapor of the superheated organic fluid by heat exchange between the jacket cooling water (low temperature heat source) flowing through the jacket cooler of the diesel engine 3 and the organic fluid heat exchanger 75. A turbine 9 is provided. The steam turbine 7 and the organic fluid turbine 9 each drive a common generator 11.
- the diesel main engine 3 is, for example, a low-speed two-stroke one-cycle uniflow scavenging system operated at a rated speed of 200 rpm or less, and drives a propeller 13 for ship propulsion.
- the compressed air (scavenging air) supplied to the diesel main engine 3 is derived from a turbocharger 15 driven by the exhaust gas of the diesel main engine 3.
- the supercharger 15 has an exhaust turbine 17 and a compressor 19 coaxially provided.
- the exhaust turbine 17 is rotationally driven by the exhaust gas discharged from the main diesel engine 3.
- the coaxially mounted compressor 19 rotates to compress air.
- the air compressed by the compressor 19 is cooled by the air cooler 20 and then led to a scavenging trunk (not shown) of the diesel engine 3.
- the downstream side of the exhaust turbine 17 is connected to an exhaust gas economizer 5 via an exhaust gas pipe 21.
- An exhaust gas bypass pipe 23 is provided so that a part of the exhaust gas of the diesel engine 3 is extracted to bypass the turbocharger 15.
- the upstream end of the exhaust gas bypass pipe 23 is connected to the upstream side of the exhaust turbine 17, and the downstream end is connected to the exhaust gas pipe 21 of the turbocharger 2.
- An exhaust gas bypass valve 25 is provided in the exhaust gas bypass pipe 23. The degree of opening of the exhaust gas bypass valve 25 is controlled by a control unit (not shown).
- the control unit is configured of, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like. Then, a series of processes for realizing various functions are stored in the form of a program, for example, in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing and arithmetic processing. Thus, various functions are realized.
- the program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, or may be distributed via a wired or wireless communication means. Etc. may be applied.
- the computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like.
- the exhaust gas economizer 5 has a superheater 27, a first evaporator 29 and a second evaporator 31 in the flue.
- the superheater 27, the first evaporator 29, and the second evaporator 31 are heat transfer tube groups sequentially installed from the bottom to the top (from the upstream side to the downstream side of the exhaust gas flow) in the flue of the exhaust gas economizer 5 and It is done.
- the high temperature exhaust gas led from the turbocharger 15 flows into the flue of the exhaust gas economizer 5, and after flowing through the flue, the flue gas is sent to a chimney (not shown) connected downstream. ) To the atmosphere.
- Saturated steam is introduced to the superheater 27 from the upper gas phase of the high pressure steam water separator 33.
- Water is introduced to the first evaporator 29 from the lower liquid phase portion of the high pressure steam water separator 33.
- Water is introduced to the second evaporator 31 from the lower liquid phase portion of the low pressure steam separator 35.
- Water introduced from the air cooler 20 is supplied to the high pressure steam separator 33 via the high pressure level control valve 37 for adjusting the water level in the high pressure steam separator 33.
- the water in the high pressure steam water separator 33 is led to the first evaporator 29 by the high pressure circulating water pump 39.
- the wet steam containing water from the first evaporator 29 is introduced to the high pressure steam separator 33 and separated into water and steam.
- the separated saturated steam is led to the superheater 27 to be superheated steam.
- the superheated steam generated by the superheater 27 is led to the steam turbine 7 via the superheated steam supply pipe 41.
- the high pressure steam water separator 33 is provided with a pressure sensor 26 for detecting the drum pressure in the high pressure steam water separator 33.
- a high pressure steam extraction pipe 43 is provided between the gas phase portion of the high pressure steam water separator 33 and the superheater 27 for extracting and extracting saturated steam directed to the superheater 27 via the high pressure steam extraction valve 44.
- the high pressure steam extracted through the high pressure steam extraction pipe 43 is used as a shipboard miscellaneous steam.
- a high pressure steam dump piping 36 for taking out the saturated steam going to the superheater 27 and leading it to the condenser 34 is provided.
- the high pressure steam dump piping 36 is provided with a high pressure dump valve 38 controlled by the control unit.
- the high pressure dump valve 38 By opening the high pressure dump valve 38, the excess steam to be supplied to the steam turbine 7 bypasses the steam turbine 7 and is discarded to the condenser 34.
- the timing at which the high pressure dump valve 38 opens is considered to be when the drum pressure obtained by the pressure sensor 26 described above exceeds a predetermined threshold.
- the high pressure steam water separator 33 is provided with a burner 45 for burning fuel.
- the burner 45 is for heating the water in the high pressure steam water separator 33 to generate steam.
- the steam generated by the burner 45 is supplied to a fuel heater which is heated to adjust the viscosity of the fuel oil (for example, C heavy oil) supplied to the diesel engine 3.
- the auxiliary boiler 47 is configured by the burner 45 and the high pressure steam water separator 33.
- the auxiliary boiler 47 is also referred to as a composite boiler or a donkey boiler, and is mounted on the diesel engine system 1 as a standard.
- the auxiliary boiler 47 can also supply steam for heating of the residential area.
- the auxiliary steam generated by the burner 45 of the auxiliary boiler 47 can be guided to the steam turbine 7.
- the ignition timing of the burner 45 at the time of introducing the auxiliary steam to the steam turbine 7 is determined by the control unit based on the output of the pressure sensor 26 provided in the high pressure steam separator 33.
- the low pressure steam separator 35 is supplied with the water led from the air cooler 20 via a low pressure level control valve 49 for adjusting the water level in the low pressure steam separator 35.
- the water in the low pressure steam separator 35 is led to the second evaporator 31 by the low pressure circulating water pump 51.
- Wet steam containing water from the second evaporator 31 is introduced to the low pressure steam separator 35 and separated into water and steam.
- the separated saturated steam is led to the intermediate stage of the steam turbine 7 via the low pressure steam supply pipe 53.
- the low pressure steam supply pipe 53 is provided with a low pressure steam extraction pipe 55 for extracting and extracting saturated steam.
- the low pressure steam extraction pipe 55 is provided with a low pressure steam extraction valve 56.
- the low pressure steam extracted via the low pressure steam extraction pipe 55 is used as a shipboard miscellaneous steam.
- the low pressure steam supply pipe 53 is provided with a low pressure steam dump piping 57 for extracting saturated steam toward the intermediate stage of the steam turbine 7 and guiding the saturated steam to the condenser 34.
- the low pressure steam dump piping 57 is provided with a low pressure dump valve 59 controlled by the control unit.
- the low pressure steam dump piping 57 allows the excess steam to be supplied to the intermediate stage of the steam turbine 7 to be discarded to the condenser 34, bypassing the steam turbine 7.
- a high pressure steam stop valve 61 and a speed control valve 63 are provided in the superheated steam supply pipe 41 for leading the superheated steam to the upstream side (high pressure side) of the steam turbine 7.
- the high pressure steam stop valve 61 and the speed adjustment valve 63 are controlled by the control unit.
- the high pressure steam stop valve 61 serving as the on-off valve is fully opened, and when the steam turbine 7 is not operated, the high pressure steam stop valve 61 is fully closed.
- the speed adjusting valve 63 is adjusted in opening degree to correspond to the frequency of the inboard system and the power generation amount request based on the instruction of the control unit.
- a low pressure steam stop valve 65 and a low pressure steam control valve 67 are provided in the low pressure steam supply pipe 53 for guiding the low pressure steam to the intermediate stage of the steam turbine 7.
- the low pressure steam stop valve 65 and the low pressure steam control valve 67 are controlled by the control unit.
- the low pressure steam stop valve 65 serving as the on-off valve is fully opened, and when the steam turbine 7 is not operated, the low pressure steam stop valve 65 is fully closed.
- the low pressure steam control valve 67 has its opening adjusted on the basis of an instruction from the control unit.
- the steam turbine 7 is rotationally driven by the superheated steam led via the high pressure steam stop valve 61 and the speed control valve 63, and the low pressure steam led via the low pressure steam stop valve 65 and the low pressure steam control valve 67, The rotational output is transmitted to the generator 11 via the steam turbine side reducer 69.
- the steam that has finished its work in the steam turbine 7 is led to a condenser 34, cooled by seawater and fresh water, and condensed and liquefied.
- the condensed condensate is guided by the condensate pump 71 to the atmospheric pressure drain tank 73 to separate gas and liquid.
- the water degassed in the atmospheric pressure drain tank 73 is led to the air cooler 20 by the feed water pump 76. In the air cooler 20, the water introduced by the feed water pump 76 cools the compressed air which is compressed by the compressor 19 of the supercharger 15 and is heated.
- the diesel engine 3 is provided with an organic fluid heat exchanger 75 which exchanges heat with jacket cooling water flowing in a jacket cooler for cooling each cylinder.
- the temperature of the jacket cooling water is set to 80.degree. C. to 90.degree.
- the organic fluid heat exchanger 75 is provided in the organic fluid passage 77 through which the organic fluid and the vapor of the organic fluid circulate.
- a low boiling point medium that evaporates with a heat source of jacket cooling water is desirable, and low molecular weight hydrocarbons such as isopentane, butane, propane and the like, R134a used as a refrigerant, R245fa and the like can be used.
- the organic fluid path 77 is a closed circuit, and an organic fluid pump 79 for circulating the organic fluid is provided.
- the organic fluid is circulated while repeating phase change so as to pass through the organic fluid heat exchanger 75, the organic fluid inlet valve 80, the organic fluid turbine 9, and the condenser 81.
- the organic fluid inlet valve 80 is controlled by the control unit and is fully open when the organic fluid turbine 9 is operated, and fully closed when the organic fluid turbine 9 is not operated.
- the organic fluid turbine 9 is rotationally driven by the vapor of the organic fluid generated by the organic fluid heat exchanger 75.
- the rotational power of the organic fluid turbine 9 is transmitted to the generator 11 through the automatic fitting and disengaging clutch 84 after being decelerated by the organic fluid side reduction gear 83.
- the automatic insertion and removal clutch 84 is also referred to as a synchro self shifting clutch or a SSS (three S) clutch, and the rotation speed of the output shaft on the organic fluid turbine 9 side has reached the rotation speed of the input shaft of the automatic insertion removal clutch 84 In this case, the claws are engaged and engaged to transmit the rotational force.
- the vapor of the organic fluid that has finished its work in the organic fluid turbine 9 is cooled by seawater and fresh water in the condenser 81 to condense and liquefy.
- the condensed and liquefied organic fluid is sent to the organic fluid heat exchanger 75 by the organic fluid pump 79.
- the organic fluid turbine 9 does not have the speed control valve 63 like the steam turbine 7 and is not adapted to perform speed control. This is because the amount of heat from the jacket cooling water recovered by the organic fluid heat exchanger 75 largely depends on the load fluctuation of the diesel engine, and the heat recovery amount is not stable, so the speed adjustment with controlled flow rate of the organic fluid vapor is It is difficult. Therefore, in the present embodiment, after the organic fluid turbine 9 is connected to the generator 11 common to the steam turbine 7, the organic fluid turbine 9 is subordinated to the speed control of the steam turbine 7. That is, control is performed using the steam turbine 7 as a master and the organic fluid turbine 9 as a slave.
- the organic fluid turbine 9 can also be operated, and power generation using both the steam turbine 7 and the organic fluid turbine 9 can be performed by the generator 11.
- the total driving force obtained by combining the driving force of the organic fluid turbine 9 with the driving force of the steam turbine 7 is transmitted to the generator 11.
- the total driving force is stably controlled by the speed adjustment valve 63.
- the electrical output obtained by the generator 11 is led to the onboard power system 90 via the output wire 87 and the breaker 89.
- the compressed air compressed by the turbocharger 15 is cooled by the air cooler 20 and then supplied to the main diesel engine 3.
- combustion is performed by the supplied compressed air and fuel oil.
- the fuel oil one whose viscosity is adjusted by the fuel oil heating device by the steam generated by the auxiliary boiler 47 is used.
- the exhaust gas after combustion in the diesel main engine 3 passes through the exhaust turbine 17 of the turbocharger 15 and is led to the exhaust gas economizer 5 through the exhaust pipe 21.
- the exhaust gas exchanges heat with the superheater 27, the first evaporator 29 and the second evaporator 31 when passing through the exhaust gas ecomizer 5.
- the water in the first evaporator 27 becomes moist steam by heat exchange with the exhaust gas.
- the moist steam is led to the high pressure steam water separator 33 to separate moisture, and then led to the superheater 27.
- the steam in the superheater 27 becomes superheated steam by heat exchange with the exhaust gas.
- the superheated steam thus generated passes through the superheated steam supply pipe 41 and is supplied to the steam turbine 7 through the steam stop valve 61 and the speed adjustment valve 63.
- the water in the second evaporator 31 becomes moist steam by heat exchange with the exhaust gas.
- the wet steam is led to the low pressure steam water separator 35 to separate the water, and the low pressure steam thus separated passes through the low pressure steam supply pipe 53 and passes through the low pressure steam stop valve 65 and the low pressure steam control valve 67. It is supplied to the middle stage of the turbine 7.
- the steam turbine 7 is rotationally driven by the superheated steam and low pressure steam introduced as described above, and the rotational output is transmitted to the generator 11.
- the jacket cooling water whose cylinder is cooled by the jacket cooler of the diesel engine 3 is led to the organic fluid heat exchanger 75 and exchanges heat with the organic fluid circulating in the organic fluid passage 77.
- the organic fluid is heated and evaporated by the sensible heat of the jacket cooling water in the organic fluid heat exchanger 75.
- the vapor of the organic fluid vaporized and vaporized to high enthalpy is led to the organic fluid turbine 9, and the heat flow causes the organic fluid turbine 9 to rotate.
- the rotation output of the organic fluid turbine 9 is transmitted to the generator 11 with the automatic fitting and disengaging clutch 84 connected when the number of revolutions of the organic fluid turbine 9 becomes equal to or more than a predetermined value.
- the rotational speed of the organic fluid turbine 9 thereafter depends on the speed adjustment of the steam turbine 7 as the master.
- the vapor of the organic fluid finished work in the organic fluid turbine 9 is led to the condenser 81, and condensed and liquefied by being cooled by seawater and fresh water.
- the condensed and liquefied organic fluid is led to the organic fluid heat exchanger 75 again by the organic fluid pump 79.
- the generator 11 generates electric power by the rotational output obtained from the steam turbine 7 and the organic fluid turbine 9, and supplies the generated output to the inboard power system 90 through the output wire 87 and the circuit breaker 89.
- the following control is performed.
- the load of the diesel engine 3 decreases, the exhaust gas energy decreases, so the pressure of high-pressure steam generated by the exhaust gas economizer 5 decreases.
- the pressure of the high pressure steam is detected by a pressure sensor 26 provided in the high pressure steam water separator 33 and sent to the control unit.
- an ignition command is sent to the burner 45 of the auxiliary boiler 47 to ignite the burner 45.
- the threshold of the pressure at which the burner 45 is ignited is determined on the basis of the minimum pressure at which the steam turbine 7 can operate independently by the steam supplied from the exhaust gas economizer 5.
- the load on the main diesel engine 3 increases, the pressure of the steam obtained from the exhaust gas economizer 5 recovers, and when the pressure exceeds a predetermined value, sole operation of the steam turbine is possible with only the steam from the exhaust gas economizer 5 It becomes.
- the ignition of the burner 45 of the auxiliary boiler 47 may be stopped by a command from the control unit, or the ignition of the burner 45 may be continued in relation to the onboard power demand.
- the pressure in the high pressure steam water separator 33 may be increased until it becomes a pressure at which the high pressure dump valve 38 is opened.
- the steam from the auxiliary boiler 47 can compensate for the inboard demand power that is insufficient with the steam from the exhaust gas economizer 5 alone.
- FIG. 2 The control method of the exhaust heat recovery apparatus 4 of this embodiment is shown by FIG. 2 with the comparative example.
- each numerical value in the same figure is the illustration mentioned in order to make an invention easy to understand, Comprising: It does not limit invention.
- the horizontal axis represents diesel engine power (%), and the vertical axis represents power (kW). 100% diesel main engine output means the rated output of the diesel main engine, and Q (kW) means onboard power demand.
- Line A is Case 1 as a comparative example, and shows the amount of power generation of the steam turbine (STG) 7 driven only by the steam obtained from the exhaust gas economizer 5.
- STG steam turbine
- the diesel engine output is 100%, the in-house demand power can be obtained, but when the diesel engine output, which is considered to be a regular operation load, is 85%, the electric power is insufficient by a (kW) It will be.
- the diesel main engine output decreases to 30%, the sole operation by the steam turbine 7 can not be performed only with the steam from the exhaust gas economizer 5, and the power generation amount becomes zero.
- a line B is Case 2 as a comparative example, and shows the amount of power generation in the case where power generation by the organic Rankine cycle (ORC) using the organic fluid turbine 9 in addition to the steam turbine 7 of Case 1 is combined. Similar to Case 1, Case 2 also operates the steam turbine 7 only with the steam from the exhaust gas economizer 5. As can be seen from the figure, when the diesel main engine output, which is considered to be a normal operation load, is 85%, the inboard demand power can be obtained by assistance from the organic fluid turbine 9. However, if the diesel main engine output falls below 75%, the steam turbine 7 and the organic fluid turbine 9 alone can not obtain the onboard power demand. Furthermore, when the diesel main engine power decreases to 30%, it becomes impossible to operate alone in the steam turbine 7 and the organic fluid turbine 9 controlled subordinate to the steam turbine 7 is also stopped at the same time, and the amount of power generation becomes zero.
- ORC organic Rankine cycle
- a line C is Case 3 showing the present embodiment, and shows the amount of power generation when the auxiliary boiler 47 is used in addition to the combination of the steam turbine 7 and the organic fluid turbine 9 of Case 2.
- the steam turbine 7 is assisted by the steam from the auxiliary boiler 47, it is possible to obtain the in-house demand power until the diesel main engine output falls below 50%.
- the steam from the auxiliary boiler 47 continues the operation of the steam turbine 7
- the operation of the organic fluid turbine 9 is also continued, and it is possible to generate power until the diesel engine output is 10%.
- the following effects can be obtained.
- the steam generated by the auxiliary boiler 47 is supplied to the steam turbine 7 and the operation of the steam turbine 7 is continued.
- the load on the main diesel engine 3 is reduced, it is possible to avoid stopping the steam turbine 7, so that the operation of the organic fluid turbine 9 which operates subordinate to the steam turbine is also continued.
- Power generation by 9 becomes possible. Therefore, since it is not necessary to start the diesel generator, the fuel cost for operating the diesel generator can be saved, and in some cases, the initial cost can be reduced without installing the diesel generator. .
- the exhaust heat recovery device 4 of this embodiment does not need to be newly added with a dedicated boiler. It can be configured.
- the internal combustion engine system applied to a ship is described as a premise, but the present invention is not limited to this, and can be applied to an internal combustion engine system installed on land.
- the jacket cooling water was described as an example as a low temperature heat source, even if it is a low temperature heat source having a temperature lower than the temperature recovered by the exhaust gas economizer, and further 100 ° C. If the turbine can be operated, low temperature heat sources other than the jacket cooling water can also be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
ディーゼル主機本体から排出された排ガスから熱回収することによって主蒸気を生成する排ガスエコノマイザと、主蒸気によって駆動される蒸気タービンと、排ガスエコノマイザの熱回収温度よりも低温とされた低温熱源から熱回収することによって有機媒体の蒸気を生成する有機流体熱交換器と、有機流体熱交換器で生成された有機流体の蒸気によって駆動される有機流体タービンと、蒸気タービン及び有機流体タービンからの出力によって発電する発電機とを備え、有機流体タービンは、蒸気タービンの速度調整に従属した速度で運転され、排ガスエコノマイザで生成される蒸気の圧力が閾値以下となった場合に、補助ボイラで生成された補助蒸気が蒸気タービンに供給される。
Description
本発明は、排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法に関するものである。
従来より、船舶の推進用に大型ディーゼルエンジン(内燃機関)を用いたシステムでは、ディーゼルエンジンから排出される排ガスの熱エネルギーを排ガスエコノマイザで熱回収して蒸気を生成し、蒸気タービンを駆動させて発電を行う排熱回収システムが知られている。
また、排ガスエコノマイザで熱回収する温度よりも低い排熱温度でも熱回収し、さらに有効に排熱エネルギーを回収しようとする試みがなされている。例えば、特許文献1では、ディーゼルエンジンのジャケットを冷却するジャケット冷却水から、水よりも低沸点である有機流体によって排熱を回収する有機ランキンサイクル(ORC;Organic Rankin Cycle)が開示されている。
また、特許文献2には、内燃機関の排ガスから熱回収して駆動される水蒸気タービンと、ジャケット冷却水からペンタン等の低沸点媒体によって熱回収して駆動される蒸気タービンとをコンバインドさせて発電させる構成が開示されている。
また、排ガスエコノマイザで熱回収する温度よりも低い排熱温度でも熱回収し、さらに有効に排熱エネルギーを回収しようとする試みがなされている。例えば、特許文献1では、ディーゼルエンジンのジャケットを冷却するジャケット冷却水から、水よりも低沸点である有機流体によって排熱を回収する有機ランキンサイクル(ORC;Organic Rankin Cycle)が開示されている。
また、特許文献2には、内燃機関の排ガスから熱回収して駆動される水蒸気タービンと、ジャケット冷却水からペンタン等の低沸点媒体によって熱回収して駆動される蒸気タービンとをコンバインドさせて発電させる構成が開示されている。
しかし、低沸点媒体である有機流体を用いる有機ランキンサイクルでは、利用するジャケット冷却水等の低温熱源が内燃機関の負荷変動等の影響を受けて安定しないという問題がある。このため、有機ランキンサイクルで用いる有機流体タービンと蒸気タービンを同軸に接続する運用が考えられる。しかしながら、特許文献2では、蒸気タービン側と有機流体タービン側のいずれかを制御対象とし、内燃機関の負荷変動、特に内燃機関の低負荷時に対して安定した回転駆動とする制御方法については言及されていない。
一方、ディーゼルエンジンの熱効率は年々改善されているため、排ガスエコノマイザで排ガスから熱回収できる熱量が減少してきている。このため、船内需要電力を蒸気タービン発電機単独で賄うだけの蒸気量が排ガスエコノマイザにて十分に確保できなくなってきている。
さらに、近年では、船舶の航行における燃料費削減の観点から、減速運航が主流となっているので、さらに排ガスエコノマイザにて生成できる蒸気量が不足するという事情がある。
さらに、近年では、船舶の航行における燃料費削減の観点から、減速運航が主流となっているので、さらに排ガスエコノマイザにて生成できる蒸気量が不足するという事情がある。
ディーゼルエンジンの負荷が小さくなり所定値を下回ると、排ガスエコノマイザだけでは蒸気タービンの単独運転に必要な蒸気が得られないため、蒸気タービンの運転を停止する制御が行われる。蒸気タービンの運転が停止されてしまうと、蒸気タービンをマスタとして制御している場合には、蒸気タービンに従属する有機流体タービンも停止せざるを得なくなってしまう。これでは、有機流体タービンを単独に駆動させて発電を行うことができず、排ガスの熱エネルギーを有効に回収できない場合がある。
これに対して、蒸気タービンや有機流体タービンによって船内需要電力を得ることができない場合には、別に設けた発電用ディーゼルエンジンによって発電するディーゼル発電機を起動することが考えられる。しかし、ディーゼル発電機の運転は燃料費が嵩むため、コスト低減の観点からは好ましくない。また、蒸気タービンおよびディーゼル発電機の双方を運転すると、ディーゼル発電機の最低負荷が優先的に管理されることにより、蒸気タービンで余剰の蒸気が発生する可能性がある。余剰蒸気は復水器にダンプされてしまうので熱的な損失を招いてしまう。したがって、ディーゼルエンジンの負荷が小さくなっても、なるべくディーゼル発電機を起動せずに船内需要電力を得ることが求められる。
本発明は、このような事情に鑑みてなされたものであって、内燃機関の負荷が小さくなり蒸気タービンの単独運転が困難な場合であっても、蒸気タービンの運転を継続させて有機流体タービンとともに発電を行うことができる排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法を提供することを目的とする。
上記課題を解決するために、本発明の排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法は以下の手段を採用する。
すなわち、本発明の一態様にかかる排熱回収装置は、内燃機関本体から排出された排ガスから熱回収することによって主蒸気を生成する排ガスエコノマイザと、主に該排ガスエコノマイザから導かれた前記主蒸気によって駆動される蒸気タービンと、前記排ガスエコノマイザにて熱回収する温度よりも低温とされた低温熱源から熱回収することによって有機媒体の蒸気を生成する有機流体熱交換器と、前記有機流体熱交換器で生成された前記有機流体の蒸気によって駆動される有機流体タービンと、前記蒸気タービン及び前記有機流体タービンのうち少なくも一つからの出力によって発電する発電機と、燃料の燃焼熱によって補助蒸気を生成する補助ボイラとを備え、前記有機流体タービンは、前記蒸気タービンの速度調整に従属した速度で運転され、前記排ガスエコノマイザで生成された前記主蒸気の圧力が閾値以下となった場合に、前記補助ボイラで生成された前記補助蒸気が前記蒸気タービンに供給されることを特徴とする。
すなわち、本発明の一態様にかかる排熱回収装置は、内燃機関本体から排出された排ガスから熱回収することによって主蒸気を生成する排ガスエコノマイザと、主に該排ガスエコノマイザから導かれた前記主蒸気によって駆動される蒸気タービンと、前記排ガスエコノマイザにて熱回収する温度よりも低温とされた低温熱源から熱回収することによって有機媒体の蒸気を生成する有機流体熱交換器と、前記有機流体熱交換器で生成された前記有機流体の蒸気によって駆動される有機流体タービンと、前記蒸気タービン及び前記有機流体タービンのうち少なくも一つからの出力によって発電する発電機と、燃料の燃焼熱によって補助蒸気を生成する補助ボイラとを備え、前記有機流体タービンは、前記蒸気タービンの速度調整に従属した速度で運転され、前記排ガスエコノマイザで生成された前記主蒸気の圧力が閾値以下となった場合に、前記補助ボイラで生成された前記補助蒸気が前記蒸気タービンに供給されることを特徴とする。
排ガスエコノマイザにて熱回収する温度よりも低温とされた低温熱源(例えばジャケット冷却水)は、内燃機関の負荷変動等の影響が大きいため安定した熱源とは言えない。そのため、このような低温熱源を利用する有機流体タービンは、安定性に優れる蒸気タービンの速度調整に従属した速度で運転される。すなわち、蒸気タービンをマスタとし、有機流体タービンをスレーブとする運転を行う。したがって、マスタである蒸気タービンの運転が停止されると、スレーブである有機流体タービンの運転も停止される制御となる。
一方、内燃機関の負荷が小さくなると排ガスエコノマイザにて生成される主蒸気が減少し、蒸気タービンに供給される蒸気圧力が減少する。そして、排ガスエコノマイザで生成される主蒸気の圧力が閾値以下となった場合、本発明では、補助ボイラで生成された補助蒸気を蒸気タービンに供給し、蒸気タービンの運転を継続することとした。これにより、蒸気タービンの停止を回避することができるので、蒸気タービンに従属して動作する有機流体タービンの運転も継続することになり、内燃機関が低負荷であっても有機流体タービンによる発電が可能となる。したがって、ディーゼル発電機を起動させる必要がなくなるので、ディーゼル発電機を運転するための燃料費を節約することができ、また場合によってはディーゼル発電機を設置せずにイニシャルコストを低減することができる。なお、本発明の一態様にかかる排熱回収装置では補助ボイラの運転に燃料を用いることになるが、この補助ボイラの燃料費はディーゼル発電機で消費する燃料費に比べればはるかに安いので、十分にコストメリットがある。
なお、補助ボイラから補助蒸気を供給するタイミングを決める閾値としては、蒸気タービンが排ガスエコノマイザから供給される主蒸気によって単独運転できる最小圧力を基準に定められる。
排ガスエコノマイザで生成される主蒸気の圧力としては、好ましくは、排ガスエコノマイザを構成する汽水分離器のドラム圧力が用いられる。
低温熱源としては、例えば80℃~90℃とされたエンジン冷却水が挙げられる。
蒸気タービン及び有機流体タービンは共通の発電機に接続されるが、蒸気タービンと有機流体タービンとは共通の回転軸で接続されてもよいし、それぞれ別の回転軸を備え、ギアを介して発電機に接続されてもよい。要するに、蒸気タービンの速度に依存するように、減速機や発電機の回転軸を介して有機流体タービンの回転軸が蒸気タービンの回転軸に接続されていればよい。
一方、内燃機関の負荷が小さくなると排ガスエコノマイザにて生成される主蒸気が減少し、蒸気タービンに供給される蒸気圧力が減少する。そして、排ガスエコノマイザで生成される主蒸気の圧力が閾値以下となった場合、本発明では、補助ボイラで生成された補助蒸気を蒸気タービンに供給し、蒸気タービンの運転を継続することとした。これにより、蒸気タービンの停止を回避することができるので、蒸気タービンに従属して動作する有機流体タービンの運転も継続することになり、内燃機関が低負荷であっても有機流体タービンによる発電が可能となる。したがって、ディーゼル発電機を起動させる必要がなくなるので、ディーゼル発電機を運転するための燃料費を節約することができ、また場合によってはディーゼル発電機を設置せずにイニシャルコストを低減することができる。なお、本発明の一態様にかかる排熱回収装置では補助ボイラの運転に燃料を用いることになるが、この補助ボイラの燃料費はディーゼル発電機で消費する燃料費に比べればはるかに安いので、十分にコストメリットがある。
なお、補助ボイラから補助蒸気を供給するタイミングを決める閾値としては、蒸気タービンが排ガスエコノマイザから供給される主蒸気によって単独運転できる最小圧力を基準に定められる。
排ガスエコノマイザで生成される主蒸気の圧力としては、好ましくは、排ガスエコノマイザを構成する汽水分離器のドラム圧力が用いられる。
低温熱源としては、例えば80℃~90℃とされたエンジン冷却水が挙げられる。
蒸気タービン及び有機流体タービンは共通の発電機に接続されるが、蒸気タービンと有機流体タービンとは共通の回転軸で接続されてもよいし、それぞれ別の回転軸を備え、ギアを介して発電機に接続されてもよい。要するに、蒸気タービンの速度に依存するように、減速機や発電機の回転軸を介して有機流体タービンの回転軸が蒸気タービンの回転軸に接続されていればよい。
さらに、本発明の一態様にかかる排熱回収装置においては、前記補助ボイラは、前記内燃機関に供給される燃料油を加熱する蒸気を生成する燃料加熱用ボイラとされていてもよい。
内燃機関に供給される燃料油(例えばC重油)の粘度を適正に調整するため、燃料油を蒸気によって加熱する。この燃料加熱用蒸気を生成するために燃料加熱用ボイラは、内燃機関の設備には一般的に設けられている。本発明では、この燃料加熱ボイラを、蒸気タービンに蒸気を供給する補助ボイラとして用いることとした。これにより、新たに専用のボイラを追加する必要なく本発明の排熱回収装置を構成することができる。
また、本発明の一態様にかかる内燃機関システムは、内燃機関本体と、上述の排熱回収装置とを備えていることを特徴とする。
上記のいずれかの排熱回収装置を備えているので、内燃機関が低負荷であってもディーゼル発電機を運転させることなく需要電力を供給することができる内燃機関システムを提供することができる。
また、本発明の一態様にかかる船舶は、上記の内燃機関システムを備えていることを特徴とする。
上述の内燃機関システムを備えている船舶とされているので、ディーゼル発電機の運転をさせることなく船内需要電力を賄うことができ、燃料油の消費量を削減した航行が可能な船舶を提供することができる。
また、本発明の一態様にかかる排熱回収方法は、内燃機関本体から排出された排ガスから熱回収することによって主蒸気を生成する主蒸気生成工程と、該主蒸気生成工程で得られた主蒸気によって蒸気タービンを駆動する蒸気タービン駆動工程と、前記主蒸気生成工程にて熱回収する温度よりも低温とされた低温熱源から熱回収することによって有機流体の蒸気を生成する有機流体蒸気生成工程と、該有機流体蒸気生成工程で得られた前記有機流体の蒸気によって有機流体タービンを駆動する有機流体タービン駆動工程と、前記蒸気タービン駆動工程及び前記有機流体タービン駆動工程の少なくとも一つの工程で得られた出力によって発電を行う発電工程と、燃料の燃焼熱によって補助蒸気を生成する補助蒸気生成工程とを有し、前記有機流体タービンを、前記蒸気タービンの速度調整に従属した速度で運転し、前記主蒸気生成工程で生成される主蒸気の圧力が閾値以下となった場合に、前記補助蒸気生成工程で生成された前記補助蒸気を前記蒸気タービンに供給することを特徴とする。
本発明によれば、内燃機関の負荷が小さくなり排ガスエコノマイザによる蒸気タービンの単独運転が困難な場合であっても有機流体タービンとともに発電を行うことができる。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
図1に示されているように、船舶に設置されたディーゼル機関システム1は、ディーゼル主機(内燃機関)3と、ディーゼル主機3から排出される熱を回収する排熱回収装置4とを備えている。
図1に示されているように、船舶に設置されたディーゼル機関システム1は、ディーゼル主機(内燃機関)3と、ディーゼル主機3から排出される熱を回収する排熱回収装置4とを備えている。
排熱回収装置4は、ディーゼル主機3が排出する高温の排ガスによって蒸気を生成する排ガスエコノマイザ5と、主に排ガスエコノマイザ5にて発生した蒸気(以下、排ガスエコノマイザ5にて発生した蒸気を「主蒸気」という。)によって駆動される蒸気タービン7とを備えている。さらに、排熱回収装置4は、ディーゼル主機3のジャケット冷却器を流れるジャケット冷却水(低温熱源)と有機流体熱交換器75で熱交換して過熱された有機流体の蒸気によって駆動される有機流体タービン9を備えている。蒸気タービン7と有機流体タービン9とは、それぞれ、共通の発電機11を駆動するようになっている。
ディーゼル主機3は、例えば定格にて200rpm以下で運転される低速2ストローク1サイクルのユニフロー掃気方式とされ、船舶推進用のプロペラ13を駆動する。ディーゼル主機3へ供給される圧縮空気(掃気)は、ディーゼル主機3の排ガスによって駆動される過給機15から導かれる。
過給機15は、同軸上に設けられた排気タービン17とコンプレッサ19とを有している。
排気タービン17は、ディーゼル主機3から排出された排ガスによって回転駆動されるようになっている。排気タービン17が駆動されると、同軸上に設けられたコンプレッサ19が回転して空気を圧縮する。コンプレッサ19によって圧縮された空気は、空気冷却器20にて冷却された後に、ディーゼル主機3の掃気トランク(図示せず)へと導かれる。
排気タービン17の下流側は、排ガス管21を介して排ガスエコノマイザ5に接続されている。
排気タービン17は、ディーゼル主機3から排出された排ガスによって回転駆動されるようになっている。排気タービン17が駆動されると、同軸上に設けられたコンプレッサ19が回転して空気を圧縮する。コンプレッサ19によって圧縮された空気は、空気冷却器20にて冷却された後に、ディーゼル主機3の掃気トランク(図示せず)へと導かれる。
排気タービン17の下流側は、排ガス管21を介して排ガスエコノマイザ5に接続されている。
ディーゼル主機3の排ガスの一部が抽気されて過給機15をバイパスするように、排ガスバイパス管23が設けられている。排ガスバイパス管23は、その上流端が排気タービン17の上流側に接続され、その下流端が過給機2の排ガス管21に接続されている。排ガスバイパス管23には、排ガスバイパス弁25が設けられている。排ガスバイパス弁25は、図示しない制御部によってその開度が制御されるようになっている。
制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
排ガスエコノマイザ5は、その煙道内に過熱器27と第1蒸発器29と第2蒸発器31とを有している。これら過熱器27、第1蒸発器29及び第2蒸発器31は、排ガスエコノマイザ5の煙道内を下から上(排ガス流れの上流側から下流側)に向かって順番に据え付けられた伝熱管群とされている。排ガスエコノマイザ5の煙道内には、過給機15側から導かれた高温の排ガスが流れるようになっており、煙道内を流れた後、排ガスは、下流側に接続された煙突(図示せず)を経て大気に放出される。
過熱器27には、高圧汽水分離器33の上方の気相部から飽和蒸気が導かれる。第1蒸発器29には、高圧汽水分離器33の下方の液相部から水が導かれる。第2蒸発器31には、低圧汽水分離器35の下方の液相部から水が導かれる。
高圧汽水分離器33には、高圧汽水分離器33内の水位を調整する高圧レベル調整弁37を介して空気冷却器20から導かれた水が供給される。高圧汽水分離器33内の水は、高圧循環水ポンプ39によって第1蒸発器29に導かれる。高圧汽水分離器33には、第1蒸発器29からの水分を含んだ湿り蒸気が導かれ、水と蒸気とに分離される。分離された飽和蒸気は、過熱器27に導かれ過熱蒸気とされる。過熱器27にて生成された過熱蒸気は、過熱蒸気供給管41を介して蒸気タービン7へと導かれる。
高圧汽水分離器33には、高圧汽水分離器33内のドラム圧力を検出する圧力センサ26が設けられている。圧力センサ26の検出出力は、制御部へと送信される。
高圧汽水分離器33の気相部と過熱器27との間には、高圧蒸気抽気弁44を介して過熱器27へ向かう飽和蒸気を抽気して取り出す高圧蒸気抽気配管43が設けられている。高圧蒸気抽気配管43を介して取り出された高圧蒸気は、船内雑用蒸気として用いられる。
また、高圧汽水分離器33の気相部と過熱器27との間には、過熱器27へ向かう飽和蒸気を取り出して復水器34へと導く高圧蒸気ダンプ配管36が設けられている。高圧蒸気ダンプ配管36には、制御部によって制御される高圧ダンプ弁38が設けられている。高圧ダンプ弁38が開くことによって、蒸気タービン7に供給するには過剰とされる蒸気が蒸気タービン7をバイパスして復水器34へと廃棄される。高圧ダンプ弁38が開くタイミングは、上述した圧力センサ26によって得られるドラム圧力が所定の閾値を超えた場合とされる。
高圧汽水分離器33には、高圧汽水分離器33内のドラム圧力を検出する圧力センサ26が設けられている。圧力センサ26の検出出力は、制御部へと送信される。
高圧汽水分離器33の気相部と過熱器27との間には、高圧蒸気抽気弁44を介して過熱器27へ向かう飽和蒸気を抽気して取り出す高圧蒸気抽気配管43が設けられている。高圧蒸気抽気配管43を介して取り出された高圧蒸気は、船内雑用蒸気として用いられる。
また、高圧汽水分離器33の気相部と過熱器27との間には、過熱器27へ向かう飽和蒸気を取り出して復水器34へと導く高圧蒸気ダンプ配管36が設けられている。高圧蒸気ダンプ配管36には、制御部によって制御される高圧ダンプ弁38が設けられている。高圧ダンプ弁38が開くことによって、蒸気タービン7に供給するには過剰とされる蒸気が蒸気タービン7をバイパスして復水器34へと廃棄される。高圧ダンプ弁38が開くタイミングは、上述した圧力センサ26によって得られるドラム圧力が所定の閾値を超えた場合とされる。
高圧汽水分離器33には、燃料を燃焼させるバーナ45が設けられている。このバーナ45は、高圧汽水分離器33内の水を加熱して蒸気を生成するためのものである。このバーナ45によって生成された蒸気は、ディーゼル主機3に供給する燃料油(例えばC重油)の粘度調整を行うために加熱する燃料加熱器へと供給される。このように、バーナ45と高圧汽水分離器33によって補助ボイラ47が構成されている。この補助ボイラ47は、コンポジットボイラ(composite boiler)やドンキーボイラ(donkey boiler)とも称され、ディーゼル機関システム1に標準的に搭載されるものである。また、補助ボイラ47は、居住区の暖房用としての蒸気を供給することもできる。
さらに、本実施形態では、補助ボイラ47のバーナ45によって生成された補助蒸気を蒸気タービン7へと導くことができるようになっている。蒸気タービン7へ補助蒸気を導く際のバーナ45の点火タイミングは、高圧汽水分離器33に設けられた圧力センサ26の出力に基づいて制御部によって決定される。
さらに、本実施形態では、補助ボイラ47のバーナ45によって生成された補助蒸気を蒸気タービン7へと導くことができるようになっている。蒸気タービン7へ補助蒸気を導く際のバーナ45の点火タイミングは、高圧汽水分離器33に設けられた圧力センサ26の出力に基づいて制御部によって決定される。
低圧汽水分離器35には、低圧汽水分離器35内の水位を調整する低圧レベル調整弁49を介して空気冷却器20から導かれた水が供給される。低圧汽水分離器35内の水は、低圧循環水ポンプ51によって第2蒸発器31に導かれる。
低圧汽水分離器35には、第2蒸発器31からの水分を含んだ湿り蒸気が導かれ水と蒸気とに分離される。分離された飽和蒸気は、低圧蒸気供給管53を介して蒸気タービン7の中間段へと導かれる。
低圧汽水分離器35には、第2蒸発器31からの水分を含んだ湿り蒸気が導かれ水と蒸気とに分離される。分離された飽和蒸気は、低圧蒸気供給管53を介して蒸気タービン7の中間段へと導かれる。
低圧蒸気供給管53には、飽和蒸気を抽気して取り出す低圧蒸気抽気配管55が設けられている。低圧蒸気抽気配管55には低圧蒸気抽気弁56が設けられている。低圧蒸気抽気配管55を介して取り出された低圧蒸気は、船内雑用蒸気として用いられる。
また、低圧蒸気供給管53には、蒸気タービン7の中間段へ向かう飽和蒸気を取り出して復水器34へと導く低圧蒸気ダンプ配管57が設けられている。低圧蒸気ダンプ配管57には、制御部によって制御される低圧ダンプ弁59が設けられている。この低圧蒸気ダンプ配管57によって、蒸気タービン7の中間段に供給するには過剰とされる蒸気が蒸気タービン7をバイパスして復水器34へと廃棄される。
また、低圧蒸気供給管53には、蒸気タービン7の中間段へ向かう飽和蒸気を取り出して復水器34へと導く低圧蒸気ダンプ配管57が設けられている。低圧蒸気ダンプ配管57には、制御部によって制御される低圧ダンプ弁59が設けられている。この低圧蒸気ダンプ配管57によって、蒸気タービン7の中間段に供給するには過剰とされる蒸気が蒸気タービン7をバイパスして復水器34へと廃棄される。
蒸気タービン7の上流側(高圧側)に過熱蒸気を導く過熱蒸気供給管41には、高圧蒸気止め弁61と速度調整弁63が設けられている。高圧蒸気止め弁61と速度調整弁63は、制御部によって制御される。蒸気タービン7を運用する場合には、開閉弁とされた高圧蒸気止め弁61が全開とされ、蒸気タービン7を運用しない場合には高圧蒸気止め弁61が全閉とされる。速度調整弁63は、制御部の指示に基づき、船内系統の周波数と発電量要求に対応するように開度が調整される。
蒸気タービン7の中間段に低圧蒸気を導く低圧蒸気供給管53には、低圧蒸気止め弁65と低圧蒸気制御弁67が設けられている。低圧蒸気止め弁65と低圧蒸気制御弁67は、制御部によって制御される。蒸気タービン7を運用する場合には、開閉弁とされた低圧蒸気止め弁65が全開とされ、蒸気タービン7を運用しない場合には低圧蒸気止め弁65が全閉とされる。低圧蒸気制御弁67は、制御部の指示に基づき開度が調整される。
蒸気タービン7は、高圧蒸気止め弁61及び速度調整弁63を介して導かれた過熱蒸気と、低圧蒸気止め弁65及び低圧蒸気制御弁67を介して導かれた低圧蒸気とによって回転駆動され、この回転出力が蒸気タービン側減速機69を介して発電機11へと伝達される。
蒸気タービン7にて仕事を終えた蒸気は、復水器34へと導かれ、海水や清水によって冷却されて凝縮液化される。液化された復水は、復水ポンプ71によって大気圧ドレンタンク73へと導かれ、気液が分離される。大気圧ドレンタンク73にて脱気された水が給水ポンプ76によって空気冷却器20へと導かれる。空気冷却器20では、給水ポンプ76によって導かれた水によって、過給機15のコンプレッサ19にて圧縮されて温度上昇した圧縮空気が冷却される。
蒸気タービン7にて仕事を終えた蒸気は、復水器34へと導かれ、海水や清水によって冷却されて凝縮液化される。液化された復水は、復水ポンプ71によって大気圧ドレンタンク73へと導かれ、気液が分離される。大気圧ドレンタンク73にて脱気された水が給水ポンプ76によって空気冷却器20へと導かれる。空気冷却器20では、給水ポンプ76によって導かれた水によって、過給機15のコンプレッサ19にて圧縮されて温度上昇した圧縮空気が冷却される。
ディーゼル主機3には、各シリンダを冷却するジャケット冷却器を流れるジャケット冷却水と熱交換する有機流体熱交換器75が設けられている。ジャケット冷却水の温度は、80℃~90℃とされている。有機流体熱交換器75は、有機流体および有機流体の蒸気が循環する有機流体経路77内に設けられている。有機流体としては、ジャケット冷却水の熱源で蒸発する低沸点媒体が望ましく、イソペンタン、ブタン、プロパン等の低分子炭化水素や、冷媒として用いられるR134a、R245fa等を用いることができる。
有機流体経路77は閉回路とされており、有機流体を循環させるための有機流体ポンプ79が設けられている。有機流体は、有機流体熱交換器75、有機流体入口弁80、有機流体タービン9、凝縮器81を通過するように相変化を繰り返しながら循環する。
有機流体入口弁80は、制御部によって制御され、有機流体タービン9を運用する場合には全開とされ、有機流体タービン9を運用しない場合には全閉とされる。
有機流体タービン9は、有機流体熱交換器75によって生成された有機流体の蒸気によって回転駆動される。有機流体タービン9の回転動力は、有機流体側減速機83にて減速された後に、自動嵌脱クラッチ84を介して発電機11に伝達されるようになっている。自動嵌脱クラッチ84は、シンクロ・セルフシフティング・クラッチ又はSSS(スリーエス)クラッチとも称され、有機流体タービン9側の出力軸の回転数が自動嵌脱クラッチ84の入力軸の回転数に達した際に爪が噛み合い嵌合して回転力を伝達するものである。
有機流体タービン9にて仕事を終えた有機流体の蒸気は、凝縮器81にて海水や清水によって冷却されて凝縮液化する。凝縮液化した有機流体は、有機流体ポンプ79によって有機流体熱交換器75へと送られる。
このように、有機流体経路77は、有機流体熱交換器75、有機流体タービン9、凝縮器81及び有機流体ポンプ79とともに有機ランキンサイクル(ORC;Organic Rankine Cycle)を構成する。
このように、有機流体経路77は、有機流体熱交換器75、有機流体タービン9、凝縮器81及び有機流体ポンプ79とともに有機ランキンサイクル(ORC;Organic Rankine Cycle)を構成する。
有機流体タービン9は、蒸気タービン7のような速度調整弁63を有しておらず、速度調整を行うようになっていない。これは、有機流体熱交換器75にて熱回収するジャケット冷却水からの熱量がディーゼル主機の負荷変動に大きく依存し、熱回収量が安定しないため有機流体の蒸気の流量を制御した速度調整が困難だからである。そこで、本実施形態では、蒸気タービン7と共通の発電機11に有機流体タービン9を接続することとした上で、蒸気タービン7の速度制御に有機流体タービン9を従属させることとした。すなわち、蒸気タービン7をマスタとし、有機流体タービン9をスレーブとする制御を行う。これにより、蒸気タービン7が運転されている間は、有機流体タービン9も運転可能となり、蒸気タービン7及び有機流体タービン9の両方を用いた発電が発電機11にて可能となる。蒸気タービン7の駆動力に有機流体タービン9の駆動力を合わせた合計駆動力が発電機11に伝達される。この合計駆動力は、速度調整弁63により安定して制御されることになる。発電機11で得られた電気出力は、出力電線87及び遮断機89を介して船内電力系統90へと導かれる。
次に、上述したディーゼル機関システム1の運転方法について説明する。
ディーゼル主機3が運転を開始すると、過給機15にて圧縮された圧縮空気が空気冷却器20で冷却された後にディーゼル主機3へと供給される。ディーゼル主機3の筒内では、供給された圧縮空気と燃料油とによって燃焼が行われる。燃料油は、補助ボイラ47によって生成された蒸気によって燃料油加熱装置にて粘度調整されたものが用いられる。
ディーゼル主機3が運転を開始すると、過給機15にて圧縮された圧縮空気が空気冷却器20で冷却された後にディーゼル主機3へと供給される。ディーゼル主機3の筒内では、供給された圧縮空気と燃料油とによって燃焼が行われる。燃料油は、補助ボイラ47によって生成された蒸気によって燃料油加熱装置にて粘度調整されたものが用いられる。
ディーゼル主機3にて燃焼が行われた後の排ガスは、過給機15の排気タービン17を経て排ガス管21を通り排ガスエコノマイザ5へと導かれる。排ガスは、排ガスエコマイザ5内を通過する際に過熱器27、第1蒸発器29及び第2蒸発器31と熱交換をする。
第1蒸発器27内の水は、排ガスと熱交換することによって湿り蒸気となる。この湿り蒸気は、高圧汽水分離器33に導かれて水分が分離された後、過熱器27に導かれる。過熱器27内の蒸気は、排ガスと熱交換することによって過熱蒸気となる。このように生成された過熱蒸気は、過熱蒸気供給管41を通り、蒸気止め弁61及び速度調整弁63を経て蒸気タービン7に供給される。
第1蒸発器27内の水は、排ガスと熱交換することによって湿り蒸気となる。この湿り蒸気は、高圧汽水分離器33に導かれて水分が分離された後、過熱器27に導かれる。過熱器27内の蒸気は、排ガスと熱交換することによって過熱蒸気となる。このように生成された過熱蒸気は、過熱蒸気供給管41を通り、蒸気止め弁61及び速度調整弁63を経て蒸気タービン7に供給される。
第2蒸発器31内の水は、排ガスと熱交換することによって湿り蒸気となる。この湿り蒸気は、低圧汽水分離器35に導かれて水分が分離された後、分離された低圧蒸気は、低圧蒸気供給管53を通り、低圧蒸気止め弁65及び低圧蒸気制御弁67を経て蒸気タービン7の中段に供給される。
蒸気タービン7は、上述のように導かれた過熱蒸気及び低圧蒸気によって回転駆動され、この回転出力が発電機11へと伝達される。
一方、ディーゼル主機3のジャケット冷却器にてシリンダを冷却したジャケット冷却水は、有機流体熱交換器75へと導かれ、有機流体経路77を循環する有機流体と熱交換する。有機流体は、有機流体熱交換器75にてジャケット冷却水の顕熱によって加熱され蒸発気化する。蒸発気化して高エンタルピとなった有機流体の蒸気は、有機流体タービン9へと導かれ、その熱落差によって有機流体タービン9を回転駆動させる。有機流体タービン9の回転出力は、有機流体タービン9の回転数が所定値以上となった場合に自動嵌脱クラッチ84が連結され、発電機11へと伝達される。その後の有機流体タービン9の回転数は、マスタである蒸気タービン7の速度調整に依存したものとなる。
有機流体タービン9にて仕事を終えた有機流体の蒸気は、凝縮器81へと導かれ、海水や清水によって冷却されることにより凝縮液化する。凝縮液化した有機流体は、有機流体ポンプ79によって再び有機流体熱交換器75へと導かれる。
発電機11では、蒸気タービン7及び有機流体タービン9から得られた回転出力によって発電し、その発電出力を出力電線87及び遮断機89を介して船内電力系統90へと供給する。
そして、本実施形態では、ディーゼル主機3の負荷が減少し、排ガスエコノマイザ5で発生する蒸気の圧力が減少し、閾値以下となった場合に、以下のような制御を行う。
ディーゼル主機3の負荷が減少すると、排ガスエネルギーが減少するので、排ガスエコノマイザ5にて生成される高圧蒸気の圧力が減少する。この高圧蒸気の圧力は、高圧汽水分離器33に設けた圧力センサ26によって検出され、制御部へと送られる。制御部では、圧力センサ26から得られた圧力が閾値以下となった場合、補助ボイラ47のバーナ45に点火指令を送信し、バーナ45を点火させる。なお、バーナ45の点火を行う圧力の閾値は、蒸気タービン7が排ガスエコノマイザ5から供給される蒸気によって単独で運転できる最小圧力を基準に定められる。
ディーゼル主機3の負荷が減少すると、排ガスエネルギーが減少するので、排ガスエコノマイザ5にて生成される高圧蒸気の圧力が減少する。この高圧蒸気の圧力は、高圧汽水分離器33に設けた圧力センサ26によって検出され、制御部へと送られる。制御部では、圧力センサ26から得られた圧力が閾値以下となった場合、補助ボイラ47のバーナ45に点火指令を送信し、バーナ45を点火させる。なお、バーナ45の点火を行う圧力の閾値は、蒸気タービン7が排ガスエコノマイザ5から供給される蒸気によって単独で運転できる最小圧力を基準に定められる。
補助ボイラ47のバーナ45が点火されると、バーナ45の燃焼熱によって高圧汽水分離器33にて蒸気が生成され、生成された蒸気が速度調整弁63を介して蒸気タービン7へと導かれる。これにより、蒸気タービン7の運転が継続され、同時に蒸気タービン7に従属する有機流体タービン9の運転も継続される。
その後、ディーゼル主機3の負荷が上昇して、排ガスエコノマイザ5から得られる蒸気の圧力が回復し、所定値以上となった場合には、排ガスエコノマイザ5からの蒸気のみによって蒸気タービンの単独運転が可能となる。この場合には、制御部からの指令によって補助ボイラ47のバーナ45の点火を停止してもよいし、船内需要電力との関係でバーナ45の点火を継続してもよい。バーナ45の点火を継続する場合には、例えば、高圧汽水分離器33内の圧力が上昇して高圧ダンプ弁38が開く圧力となるまで継続させてもよい。これにより、補助ボイラ47からの蒸気によって、排ガスエコノマイザ5からの蒸気だけでは不足する船内需要電力を補うことができる。
図2には、本実施形態の排熱回収装置4の制御方法が比較例とともに示されている。なお、同図における各数値は発明を理解しやすくするために挙げた例示であって、発明を限定するものではない。
同図において、横軸はディーゼル主機出力(%)、縦軸は電力(kW)を示す。ディーゼル主機出力100%はディーゼル主機の定格出力を意味し、Q(kW)は船内需要電力を意味する。
同図において、横軸はディーゼル主機出力(%)、縦軸は電力(kW)を示す。ディーゼル主機出力100%はディーゼル主機の定格出力を意味し、Q(kW)は船内需要電力を意味する。
線Aは、比較例としてのCase1であり、排ガスエコノマイザ5から得られた蒸気のみによって駆動される蒸気タービン(STG)7の発電量を示す。同図から分かるように、ディーゼル主機出力が100%の場合には船内需要電力を得ることができるが、常用運転負荷とされるディーゼル主機出力が85%では、a(kW)だけ電力が足りないことになる。また、ディーゼル主機出力が30%まで減少すると、排ガスエコノマイザ5からの蒸気だけでは蒸気タービン7による単独運転が不可能となり発電量はゼロとなる。
線Bは、比較例としてのCase2であり、Case1の蒸気タービン7に加えて有機流体タービン9を用いた有機ランキンサイクル(ORC)による発電を組み合わせた場合の発電量を示す。このCase2もCase1と同様に、蒸気タービン7は排ガスエコノマイザ5からの蒸気のみによって運転される。同図から分かるように、常用運転負荷とされるディーゼル主機出力が85%では、有機流体タービン9によるアシストによって船内需要電力を得ることができる。しかし、ディーゼル主機出力が75%を下回ると、蒸気タービン7及び有機流体タービン9だけでは船内需要電力を得ることができない。さらに、ディーゼル主機出力が30%まで減少すると、蒸気タービン7での単独運転が不可能となり、蒸気タービン7に従属して制御される有機流体タービン9も同時に停止するため発電量はゼロとなる。
線Cは、本実施形態を示すCase3であり、Case2の蒸気タービン7と有機流体タービン9との組合せに加えて、補助ボイラ47を用いた場合の発電量を示す。同図から分かるように、補助ボイラ47からの蒸気によって蒸気タービン7がアシストされているので、ディーゼル主機出力が50%を下回るまでは、船内需要電力を得ることができる。また、ディーゼル主機出力が30%を下回り、排ガスエコノマイザ5からの蒸気のみによる蒸気タービン7の単独運転が不可能となっても、補助ボイラ47からの蒸気によって蒸気タービン7の運転が継続されるため、有機流体タービン9の運転も継続され、ディーゼル主機出力が10%とされるまで発電をすることが可能となる。
以上の通り、本実施形態によれば、以下の作用効果を奏する。
補助ボイラ47で生成された蒸気を蒸気タービン7に供給し、蒸気タービン7の運転を継続することとした。これにより、ディーゼル主機3の負荷が低下しても蒸気タービン7の停止を回避することができるので、蒸気タービンに従属して動作する有機流体タービン9の運転も継続することになり、有機流体タービン9による発電が可能となる。したがって、ディーゼル発電機を起動させる必要がなくなるので、ディーゼル発電機を運転するための燃料費を節約することができ、また場合によってはディーゼル発電機を設置せずにイニシャルコストを低減することができる。
補助ボイラ47で生成された蒸気を蒸気タービン7に供給し、蒸気タービン7の運転を継続することとした。これにより、ディーゼル主機3の負荷が低下しても蒸気タービン7の停止を回避することができるので、蒸気タービンに従属して動作する有機流体タービン9の運転も継続することになり、有機流体タービン9による発電が可能となる。したがって、ディーゼル発電機を起動させる必要がなくなるので、ディーゼル発電機を運転するための燃料費を節約することができ、また場合によってはディーゼル発電機を設置せずにイニシャルコストを低減することができる。
ディーゼル主機3の燃料油を加熱する補助ボイラ47を蒸気タービン7に蒸気を供給するボイラとして兼用させることとしたので、新たに専用のボイラを追加する必要なく本実施形態の排熱回収装置4を構成することができる。
なお、上述した実施形態では、船舶に適用する内燃機関システムを前提として説明したが、本発明はこれに限定されるものではなく、陸上に設置される内燃機関システムにも適用できるものである。
また、低温熱源としてジャケット冷却水を一例として説明したが、排ガスエコノマイザで熱回収する温度よりも低く、さらには100℃以下の温度の低温熱源であっても、有機流体によって熱回収して有機流体タービンが運転できるのであれば、ジャケット冷却水以外の低温熱源を利用することもできる。
また、低温熱源としてジャケット冷却水を一例として説明したが、排ガスエコノマイザで熱回収する温度よりも低く、さらには100℃以下の温度の低温熱源であっても、有機流体によって熱回収して有機流体タービンが運転できるのであれば、ジャケット冷却水以外の低温熱源を利用することもできる。
1 ディーゼル機関システム(内燃機関システム)
3 ディーゼル主機(内燃機関)
4 排熱回収装置
5 排ガスエコノマイザ
7 蒸気タービン
9 有機流体タービン
11 発電機
15 過給機
20 空気冷却器
26 圧力センサ
27 過熱器
29 第1蒸発器
31 第2蒸発器
33 高圧汽水分離器
35 低圧汽水分離器
45 バーナ
47 補助ボイラ
63 速度調整弁
75 有機流体熱交換器(低温熱源)
77 有機流体経路
79 有機流体ポンプ
80 有機流体入口弁
81 凝縮器
90 船内電力系統
3 ディーゼル主機(内燃機関)
4 排熱回収装置
5 排ガスエコノマイザ
7 蒸気タービン
9 有機流体タービン
11 発電機
15 過給機
20 空気冷却器
26 圧力センサ
27 過熱器
29 第1蒸発器
31 第2蒸発器
33 高圧汽水分離器
35 低圧汽水分離器
45 バーナ
47 補助ボイラ
63 速度調整弁
75 有機流体熱交換器(低温熱源)
77 有機流体経路
79 有機流体ポンプ
80 有機流体入口弁
81 凝縮器
90 船内電力系統
Claims (5)
- 内燃機関本体から排出された排ガスから熱回収することによって主蒸気を生成する排ガスエコノマイザと、
主に該排ガスエコノマイザから導かれた前記主蒸気によって駆動される蒸気タービンと、
前記排ガスエコノマイザにて熱回収する温度よりも低温とされた低温熱源から熱回収することによって有機媒体の蒸気を生成する有機流体熱交換器と、
前記有機流体熱交換器で生成された前記有機流体の蒸気によって駆動される有機流体タービンと、
前記蒸気タービン及び前記有機流体タービンのうち少なくも一つからの出力によって発電する発電機と、
燃料の燃焼熱によって補助蒸気を生成する補助ボイラと、
を備え、
前記有機流体タービンは、前記蒸気タービンの速度調整に従属した速度で運転され、
前記排ガスエコノマイザで生成された前記主蒸気の圧力が閾値以下となった場合に、前記補助ボイラで生成された前記補助蒸気が前記蒸気タービンに供給されることを特徴とする排熱回収装置。 - 前記補助ボイラは、前記内燃機関に供給される燃料油を加熱する蒸気を生成する燃料加熱用ボイラとされていることを特徴とする請求項1に記載の排熱回収装置。
- 内燃機関本体と、
請求項1又は2に記載された排熱回収装置と、
を備えていることを特徴とする内燃機関システム。 - 請求項3に記載された内燃機関システムを備えていることを特徴とする船舶。
- 内燃機関本体から排出された排ガスから熱回収することによって主蒸気を生成する主蒸気生成工程と、
該主蒸気生成工程で得られた主蒸気によって蒸気タービンを駆動する蒸気タービン駆動工程と、
前記主蒸気生成工程にて熱回収する温度よりも低温とされた低温熱源から熱回収することによって有機流体の蒸気を生成する有機流体蒸気生成工程と、
該有機流体蒸気生成工程で得られた前記有機流体の蒸気によって有機流体タービンを駆動する有機流体タービン駆動工程と、
前記蒸気タービン駆動工程及び前記有機流体タービン駆動工程の少なくとも一つの工程で得られた出力によって発電を行う発電工程と、
燃料の燃焼熱によって補助蒸気を生成する補助蒸気生成工程と、
を有し、
前記有機流体タービンを、前記蒸気タービンの速度調整に従属した速度で運転し、
前記主蒸気生成工程で生成される主蒸気の圧力が閾値以下となった場合に、前記補助蒸気生成工程で生成された前記補助蒸気を前記蒸気タービンに供給することを特徴とする排熱回収方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580081819.8A CN108026790A (zh) | 2015-09-24 | 2015-09-24 | 废热回收装置、内燃机系统及船舶、以及废热回收方法 |
KR1020187002120A KR102149133B1 (ko) | 2015-09-24 | 2015-09-24 | 배열 회수 장치, 내연 기관 시스템과 선박 및 배열 회수 방법 |
PCT/JP2015/076893 WO2017051450A1 (ja) | 2015-09-24 | 2015-09-24 | 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 |
EP15904707.5A EP3354869B1 (en) | 2015-09-24 | 2015-09-24 | Waste heat recovery equipment, internal combustion engine system, ship, and waste heat recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/076893 WO2017051450A1 (ja) | 2015-09-24 | 2015-09-24 | 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017051450A1 true WO2017051450A1 (ja) | 2017-03-30 |
Family
ID=58386388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076893 WO2017051450A1 (ja) | 2015-09-24 | 2015-09-24 | 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3354869B1 (ja) |
KR (1) | KR102149133B1 (ja) |
CN (1) | CN108026790A (ja) |
WO (1) | WO2017051450A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109252910A (zh) * | 2018-10-30 | 2019-01-22 | 中船动力研究院有限公司 | 一种废气余热利用系统 |
JP2019214973A (ja) * | 2018-06-13 | 2019-12-19 | 三菱造船株式会社 | 排熱回収システム、船舶 |
WO2022150806A3 (en) * | 2021-01-07 | 2022-08-25 | General Electric Company | System and method for improving startup time in a fossil-fueled power generation system |
JP2022553374A (ja) * | 2019-10-21 | 2022-12-22 | イヴァノヴィッチ コトルバッハ,イヴァン | ディーゼル蒸気発電所 |
WO2023106159A1 (ja) * | 2021-12-10 | 2023-06-15 | 三菱重工マリンマシナリ株式会社 | 排熱回収システム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO347043B1 (en) * | 2021-01-12 | 2023-04-24 | Karbon Ccs Ltd | Vessel with a Carbon dioxide Capture System |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226304A (ja) * | 1985-07-29 | 1987-02-04 | Mitsubishi Heavy Ind Ltd | 蒸気−バイナリ−複合地熱発電システム |
JP2006057597A (ja) * | 2004-08-24 | 2006-03-02 | Osaka Gas Co Ltd | 排熱回収システム |
JP2012149541A (ja) * | 2011-01-17 | 2012-08-09 | Mitsubishi Heavy Ind Ltd | 排熱回収発電装置および船舶 |
JP2015113084A (ja) * | 2013-12-13 | 2015-06-22 | 三井造船株式会社 | 舶用蒸気システム及びその制御方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101663376B (zh) * | 2007-02-12 | 2013-06-12 | 沙索技术有限公司 | 联合进行发电和产生烃 |
WO2009045196A1 (en) * | 2007-10-04 | 2009-04-09 | Utc Power Corporation | Cascaded organic rankine cycle (orc) system using waste heat from a reciprocating engine |
US8850814B2 (en) * | 2009-06-11 | 2014-10-07 | Ormat Technologies, Inc. | Waste heat recovery system |
JP5578907B2 (ja) * | 2010-03-29 | 2014-08-27 | 三菱重工業株式会社 | 石炭ガス化複合発電プラント |
JP2011231636A (ja) * | 2010-04-26 | 2011-11-17 | Mitsubishi Heavy Ind Ltd | 排熱回収発電装置およびこれを備えた船舶 |
JP2012082750A (ja) * | 2010-10-12 | 2012-04-26 | Mitsubishi Heavy Ind Ltd | 排熱回収発電装置およびこれを備えた船舶 |
JP5167326B2 (ja) * | 2010-11-05 | 2013-03-21 | 三菱重工業株式会社 | エンジン排気エネルギー回収装置 |
JP5829814B2 (ja) * | 2011-02-09 | 2015-12-09 | 川崎重工業株式会社 | 舶用発電システム |
JP2013160132A (ja) | 2012-02-03 | 2013-08-19 | Mitsubishi Heavy Ind Ltd | 排熱回収利用システム |
WO2013144006A2 (en) * | 2012-03-28 | 2013-10-03 | Alstom Technology Ltd | Combined cycle power plant and method for operating such a combined cycle power plant |
JP6076977B2 (ja) * | 2012-07-02 | 2017-02-08 | 川崎重工業株式会社 | 焼結設備用廃熱回収発電プラント |
CN103161607A (zh) * | 2013-03-04 | 2013-06-19 | 西安交通大学 | 一种基于内燃机余热利用的联合发电系统 |
CN103967648B (zh) * | 2014-05-21 | 2015-10-28 | 哈尔滨工程大学 | 一种船舶低速柴油机余热综合回收系统 |
-
2015
- 2015-09-24 KR KR1020187002120A patent/KR102149133B1/ko active IP Right Grant
- 2015-09-24 CN CN201580081819.8A patent/CN108026790A/zh active Pending
- 2015-09-24 EP EP15904707.5A patent/EP3354869B1/en active Active
- 2015-09-24 WO PCT/JP2015/076893 patent/WO2017051450A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6226304A (ja) * | 1985-07-29 | 1987-02-04 | Mitsubishi Heavy Ind Ltd | 蒸気−バイナリ−複合地熱発電システム |
JP2006057597A (ja) * | 2004-08-24 | 2006-03-02 | Osaka Gas Co Ltd | 排熱回収システム |
JP2012149541A (ja) * | 2011-01-17 | 2012-08-09 | Mitsubishi Heavy Ind Ltd | 排熱回収発電装置および船舶 |
JP2015113084A (ja) * | 2013-12-13 | 2015-06-22 | 三井造船株式会社 | 舶用蒸気システム及びその制御方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019214973A (ja) * | 2018-06-13 | 2019-12-19 | 三菱造船株式会社 | 排熱回収システム、船舶 |
CN109252910A (zh) * | 2018-10-30 | 2019-01-22 | 中船动力研究院有限公司 | 一种废气余热利用系统 |
JP2022553374A (ja) * | 2019-10-21 | 2022-12-22 | イヴァノヴィッチ コトルバッハ,イヴァン | ディーゼル蒸気発電所 |
WO2022150806A3 (en) * | 2021-01-07 | 2022-08-25 | General Electric Company | System and method for improving startup time in a fossil-fueled power generation system |
CN116583658A (zh) * | 2021-01-07 | 2023-08-11 | 通用电气公司 | 用于改进化石燃料发电系统中的启动时间的系统和方法 |
WO2023106159A1 (ja) * | 2021-12-10 | 2023-06-15 | 三菱重工マリンマシナリ株式会社 | 排熱回収システム |
Also Published As
Publication number | Publication date |
---|---|
KR20180018816A (ko) | 2018-02-21 |
EP3354869A1 (en) | 2018-08-01 |
KR102149133B1 (ko) | 2020-08-28 |
EP3354869B1 (en) | 2019-11-06 |
CN108026790A (zh) | 2018-05-11 |
EP3354869A4 (en) | 2018-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017051450A1 (ja) | 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 | |
JP6532652B2 (ja) | 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 | |
US9790815B2 (en) | Method for operating a thermodynamic cycle, and thermodynamic cycle | |
CA2796831C (en) | Organic motive fluid based waste heat recovery system | |
US8850814B2 (en) | Waste heat recovery system | |
WO2011136118A1 (ja) | 排熱回収発電装置およびこれを備えた船舶 | |
JP6195299B2 (ja) | 排熱回収システム、船舶及び排熱回収方法 | |
WO2011089997A1 (ja) | 排熱回収発電装置およびこれを備えた船舶 | |
EP2569516B1 (en) | Improved high temperature orc system | |
KR102220071B1 (ko) | 보일러 시스템 | |
JP2013160132A (ja) | 排熱回収利用システム | |
EP3405657B1 (en) | A heat recovery system and a method using a heat recovery system to convert heat into electrical energy | |
JP5527513B2 (ja) | 流体機械駆動システム | |
JP2019082180A (ja) | 排熱回収装置、内燃機関システムおよび船舶、並びに排熱回収方法 | |
JP2014218922A (ja) | 原動機システム | |
KR102511198B1 (ko) | 액화 가스 기화 장치 및 이것을 구비한 부체 설비 | |
JP2023093169A (ja) | 船舶用発電システム | |
JP2024143496A (ja) | 船舶用発電システム | |
JP2024143498A (ja) | 船舶用発電システム | |
JP2023093168A (ja) | 船舶用発電システム | |
JP2024143497A (ja) | 船舶用発電システム | |
JP2024143499A (ja) | 船舶用発電システム | |
JP2014001675A (ja) | 原動機システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15904707 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187002120 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |