WO2017050228A1 - 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管 - Google Patents

一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管 Download PDF

Info

Publication number
WO2017050228A1
WO2017050228A1 PCT/CN2016/099562 CN2016099562W WO2017050228A1 WO 2017050228 A1 WO2017050228 A1 WO 2017050228A1 CN 2016099562 W CN2016099562 W CN 2016099562W WO 2017050228 A1 WO2017050228 A1 WO 2017050228A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless steel
steel pipe
strength seamless
cooling
strength
Prior art date
Application number
PCT/CN2016/099562
Other languages
English (en)
French (fr)
Inventor
刘耀恒
张忠铧
王笑波
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510615737.9A external-priority patent/CN105154765A/zh
Priority claimed from CN201610265674.3A external-priority patent/CN105907937A/zh
Priority claimed from CN201610772365.5A external-priority patent/CN106555107B/zh
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2018515862A priority Critical patent/JP2018532885A/ja
Priority to US15/762,810 priority patent/US11203794B2/en
Priority to EP16848109.1A priority patent/EP3354755B1/en
Publication of WO2017050228A1 publication Critical patent/WO2017050228A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the invention relates to a steel pipe and a manufacturing method thereof, in particular to a seamless steel pipe and a manufacturing method thereof.
  • seamless steel pipe can only rely on the addition of alloying elements and off-line heat treatment after rolling to improve product performance.
  • steel pipes of 555MPa (80Ksi) or higher need to be added.
  • Multi-alloy elements (such as N80-1) or off-line heat treatment (such as N80-Q and P110) can be produced, which significantly increases manufacturing costs.
  • the usual production process of hot-rolled steel pipes is air-cooling on a cold bed after rolling, and then reheating according to demand, and performing offline heat treatment (normalizing, quenching and tempering, etc.), which not only causes waste of waste heat after rolling of the steel pipe (usually After rolling, the temperature of the steel pipe is above 900 °C), and it is basically impossible to regulate the rolled matrix structure, and the performance cannot be improved by controlling the matrix structure.
  • the cooling is poor, it is easy to form a bad matrix structure such as coarse crystal grains, mixed crystals, or even Wei's structure.
  • the publication number is CN103740896A, and the publication date is April 23, 2014.
  • the Chinese patent document entitled "In-line quenching method for steel pipes” discloses an in-line quenching method for steel pipes, which comprises the following steps: 1) rolling, sizing The high temperature steel pipe of 970-980 °C is directly transferred to the quenching tank; 2) the rotating high temperature steel pipe is sprayed along the extending direction of the high temperature steel pipe to the inner wall of the high temperature steel pipe, and the water spraying speed of the inner wall is 6500-7000 cubic meters per hour, which is tangent along the outer wall of the high temperature steel pipe and Spraying water to the outer wall of the high-temperature steel pipe in the opposite direction to the rotation of the steel pipe.
  • the water spray speed of the outer wall is 4500-5000 cubic meters per hour, and the total spray time is 10-12 minutes, so that the high temperature steel pipe is submerged within 10-12 seconds; 3)
  • the water in the quenching tank is discharged, and quenching is completed to obtain a quenched steel pipe.
  • the above patent provides a process for quenching a steel pipe by using waste heat
  • the seamless steel pipe has a special cross-sectional shape
  • the internal stress state is more complicated than that of the plate material, so if an in-line quenching process is employed.
  • it is difficult to control its performance stably Cracking so it is difficult to apply on-line quenching to seamless steel pipes. Therefore, the above patent does not mention the influence of on-line quenching parameter control on the performance of steel pipes.
  • the purpose of the above patent quenching is to obtain martensite. The matrix structure, therefore, the need to increase the tempering process after on-line quenching.
  • One of the objects of the present invention is to provide a method for manufacturing a bainitic high-strength seamless steel pipe, which realizes control of phase transformation by on-line controlled cooling, so that no additional alloying elements are added, and subsequent offline heat treatment is not required.
  • a high-strength seamless steel pipe with high toughness yield strength ⁇ 555 MPa, 0°C full-scale impact work > 50 J
  • yield strength ⁇ 555 MPa, 0°C full-scale impact work > 50 J which is stable and does not crack. The need for low cost production.
  • the inventors studied the manufacturing process of the bainitic steel pipe, and found that after the thermal deformation of the steel pipe, due to the induced effect of the deformation on the phase transformation, a more rapid matrix structure can be obtained after on-line rapid cooling. Thereby achieving better strength and toughness; and by controlling the parameters of the cooling process including the cooling temperature, the cooling rate, and the final cooling temperature, the microstructure and final properties of the steel pipe can be effectively adjusted.
  • the present invention has been completed based on the above findings.
  • the present invention provides a method for manufacturing a bainitic high-strength seamless steel pipe, which comprises the steps of: smelting, manufacturing a tube blank, heating, perforating, continuous rolling, tension reduction or sizing to obtain a waste pipe. Cooling; the cooling step is:
  • T1 and T2 are all °C, where C and Mn represent the mass percentage of C and Mn in the steel, respectively, the content of C is 0.06-0.2%, the content of Mn is 1-2.5%, and the cooling rate is 15-80 °C/s.
  • the bainite high-strength seamless steel pipe is directly obtained.
  • the molten steel can be directly poured into a round billet, or the cast billet can be forged or rolled into a billet after being poured.
  • the cooling temperature should be maintained at the Ar3 temperature (austenite cooling phase transition temperature) of the steel species +20 ° C or higher, the Ar3 temperature of the steel species for the field Those skilled in the art are known or can be obtained from prior art conditions, including reviewing the manual or using thermal simulation experiments.
  • the increase of cooling rate is beneficial to the bainite transformation, and it is also beneficial to increase the austenite subcooling, increase the number of nucleation, refine the bainite matrix structure, and thus need to control the cooling rate to enhance the deformation.
  • the degree of subcooling of austenite According to the technical solution of the present invention, the average cooling rate from the cold-cooling temperature to the final cooling temperature needs to be ⁇ 15 ° C / s, and the average cooling rate needs to be controlled below 80 ° C / s due to the stress concentration problem of the circular section of the steel pipe.
  • the technical solution proposes that the final cooling temperature control Between T1 and T2, the desired bainite matrix structure and properties can be obtained.
  • T1 519-423C-30.4Mn
  • T2 780-270C-90Mn
  • the units of T1 and T2 are °C, where C and Mn represent the mass percentage of C and Mn in the steel, respectively If the C element content is controlled at 0.06%, the value substituted in the formula is 0.06 instead of 0.0006 (ie 0.06%).
  • the cooling step is performed by water cooling.
  • the waste pipe is placed in a water tank for cooling.
  • the cooling method may be a water cooling method according to the requirements of the production line, and the water may be sprayed to the outer wall of the waste pipe for cooling, or the waste pipe may be placed. Cool in the sink.
  • the tube blank in the heating step, is heated to 1150 to 1300 ° C and kept for 1-4 hours.
  • the heating temperature is usually not lower than 1150 ° C to ensure sufficient deformation ability of the tube blank, and the heating temperature is not exceeded. 1300 ° C to prevent over-burning of the tube blank.
  • the chemical element mass percentage of the bainitic high-strength seamless steel pipe obtained is:
  • C is an important element for ensuring strength and hardenability. According to the present invention, when the C content is less than 0.06%, the strength of the steel pipe is difficult to ensure, and the low C content is difficult to avoid precipitation of the pro-eutectoid ferrite and affect the toughness of the steel pipe. Since the on-line cooling material is affected by the deformation stress and the phase transformation stress, the crack is more likely to occur than the offline heat treatment. The test shows that the C control of 0.2% or less can significantly reduce the occurrence of quench crack; therefore, the bainite type according to the present invention The C content of the high-strength seamless steel pipe is controlled to be 0.06 to 0.2%.
  • Si:Si is an element brought into the steel by a deoxidizer.
  • the Si content should be limited to 0.6% or less.
  • it is necessary to maintain Si. It is 0.1% or more; therefore, the Si content of the bainite type high-strength seamless steel pipe according to the present invention is controlled to be 0.1 to 0.6%.
  • Mn has the beneficial effects of expanding the austenite phase region, increasing the hardenability and refining the grains, but Mn is prone to segregation during solidification, resulting in a distinct band-like matrix structure in the final product, the band-like matrix structure and the matrix.
  • Mn content is controlled to be 1 to 2.5%.
  • Al is an essential element for deoxidation of steel. However, if the Al content exceeds 0.1%, the casting process or the like is adversely affected. Therefore, it is necessary to limit the Al content to 0.1% or less and preferably 0.05% or less.
  • S is a harmful element in steel, and its presence adversely affects the hot workability and toughness of steel. Therefore, the content of S in the bainite type high-strength seamless steel pipe according to the present invention needs to be limited to 0.005% or less.
  • P is a harmful element in steel, and its presence has an adverse effect on the corrosion resistance, toughness, and the like of steel. Therefore, the content of P in the bainite type high-strength seamless steel pipe according to the present invention needs to be limited to 0.02% or less.
  • O is an element that reduces toughness, in order to ensure that the product has sufficient toughness. Therefore, the Ba-site high-strength seamless steel pipe according to the present invention has a content of O of 0.01% or less.
  • the mass percentage of the C element and the Mn element satisfies C + Mn / 6 ⁇ 0.38.
  • the main principle of the invention is to use the cooling path control to obtain the bainite structure, so as to obtain sufficient toughness, but if the alloying elements in the steel are lower than a certain degree, the solid solution strengthening effect is limited on the one hand, and the Bayes obtained on the other hand. The strength of the body tissue is also lowered, resulting in difficulty in obtaining high strength of 555 MPa or more. According to the study of the present invention, the main alloying elements C and Mn need to satisfy C + Mn / 6 ⁇ 0.38.
  • the yield strength of the bainitic high-strength seamless steel pipe obtained by the manufacturing method of the present invention is >555 MPa, and the full-scale impact work of 0 °C is >50 J.
  • Another object of the present invention is to provide a bainitic high-strength seamless steel pipe which is produced by the manufacturing method of the present invention and which has a yield strength ⁇ 555 MPa without adding a precious alloying element.
  • the bainite type high-strength seamless steel pipe in the above examples and comparative examples was obtained by the following steps:
  • the units of 90Mn%, T1 and T2 are °C, and C and Mn in the formula respectively represent the mass fraction of C element and Mn element in the steel species, the content of C element is 0.06-0.2%, and the content of Mn element is 1-2.5%;
  • the cooling rate was controlled to be 15-80 ° C / s; after the cooling step, the bainite high-strength seamless steel tube was directly obtained (see Table 2 for specific process data of each example and comparative examples).
  • Table 1 lists the mass ratios of the chemical elements of Examples A1 to A8 and Comparative Examples B1 to B7.
  • Table 2 lists the specific parameters of the manufacturing methods of Examples A1 to A8 and Comparative Examples B1 to B7.
  • Table 3 is the mechanical properties of the seamless steel tubes of Examples A1 to A8 and Comparative Examples B1 to B7 which were placed on a cold bed and air-cooled to room temperature.
  • the yield strength of the seamless steel pipes of Examples A1 to A8 is higher than 550 MPa, and the full-scale impact energy of 0 °C is higher than 50 J, which is superior to the corresponding performance of Comparative Examples B1-B7, and has high strength and high toughness.
  • Significant advantages can be used in oil and gas mining, mechanical structure and other fields, and meet the corresponding mechanical performance indicators in this field, while making full use of the waste heat of seamless steel pipe manufacturing, the manufacturing process is convenient, basically no alloying elements are added, and the cost can be controlled. In the lower range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种贝氏体型高强度无缝钢管的制造方法,其包括步骤:冶炼,制造管坯,加热,穿孔,连轧,张力减径或定径以得到荒管,冷却;所述冷却步骤为:控制开冷温度至少为钢种的Ar3温度+20℃;控制终冷温度在T1和T2之间,其中T1=519 - 423C - 30.4Mn,T2=780 - 270C - 90Mn,T1和T2的单位均为℃,式中的C、Mn分别表示钢种中C元素和Mn元素的质量分数,C元素含量为0.06-0.2%,Mn元素含量为1-2.5%;控制冷却速度为15-80℃/s;冷却步骤后直接得到贝氏体型高强度无缝钢管成品。采用该方法制得贝氏体型高强度无缝钢管,不需要添加贵合金元素,不需要后续热处理,因此生产成本低。

Description

一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管 技术领域
本发明涉及一种钢管及其制造方法,尤其涉及一种无缝钢管及其制造方法。
背景技术
无缝钢管由于产品形态和制造方法的限制,长期以来仅能依靠添加合金元素和轧制后的离线热处理来提升产品性能,以油井管为例,555MPa(80Ksi)以上级别的钢管需要依靠添加较多合金元素(如N80-1)或离线热处理(如N80-Q和P110)方可生产,明显增加了制造成本。
目前热轧钢管通常的生产工艺为轧制后在冷床上进行空冷,随后再根据需求重新加热,进行离线的热处理(正火、调质等),这不仅造成了钢管轧后余热的浪费(通常轧后钢管温度在900℃以上),同时也基本无法对轧态基体组织进行调控,无法通过控制基体组织的方法来提升性能。此外,在冷却不良时容易形成粗大晶粒、混晶乃至魏氏组织等不良基体组织,这些问题在离线热处理时会有部分遗传现象,难以得到完全解决。
公开号为CN103740896A,公开日为2014年4月23日,名称为“钢管在线淬火方法”的中国专利文献公开了一种钢管的在线淬火方法,包括如下步骤:1)将经过轧制、定径的970-980℃高温钢管直接转至淬火槽;2)旋转高温钢管,沿高温钢管延伸方向向高温钢管内壁喷水,内壁喷水速度为6500-7000立方米/小时,沿高温钢管外壁切线且与钢管旋转相反的方向向高温钢管外壁喷水,外壁喷水速度为4500-5000立方米/小时,喷水总时间为10-12分钟,使高温钢管在10-12秒内被淹没;3)高温钢管降温至250-260℃时,将淬火槽内的水排出,完成淬火,得到淬火钢管。
虽然,上述专利提供了一种利用余热对钢管进行淬火的工艺方法,但是由于无缝钢管由于其特殊的断面形状,相较于板材,其内应力状态更为复杂,因此若采用在线淬火工艺,一方面很难稳定控制其性能,另一方面容易造成钢管 开裂,因此将在线淬火应用于无缝钢管是很难实施的,因此上述专利并没有提及在线淬火的参数控制对钢管性能的影响,此外上述专利淬火的目的是以得到马氏体为主的基体组织,因此在线淬火后还需要增加回火工序。
发明内容
本发明的目的之一在于提供一种贝氏体型高强度无缝钢管的制造方法,其通过在线控冷的方法,实现对相变的控制,从而在不添加贵合金元素、不需要后续离线热处理的情况下,得到一种具备高的强韧性(屈服强度≥555MPa,0℃全尺寸冲击功>50J)的性能稳定且不发生开裂的贝氏体型无缝钢管,从而实现高性能无缝钢管产品的低成本生产的需求。
为达到上述发明目的,发明人对贝氏体型钢管的制造工艺进行研究,发现钢管在热变形后,由于形变对相变的诱导效应,进行在线快速冷却后,可获得更为细小的基体组织,从而取得更佳的强度和韧性;并且通过控制冷却工艺中的包括开冷温度、冷却速度、终冷温度的参数,可以有效调节钢管基体组织和最终性能。
本发明是基于上述认识而完成的。为了实现上述目的,本发明提出了一种贝氏体型高强度无缝钢管的制造方法,其包括步骤:冶炼,制造管坯,加热,穿孔,连轧,张力减径或定径以得到荒管,冷却;所述冷却步骤为:
控制开冷温度≥钢种的Ar3温度+20℃;控制终冷温度在T1和T2之间,其中T1=519-423C-30.4Mn,T2=780-270C-90Mn,T1和T2的单位均为℃,式中的C、Mn分别表示钢种中C元素和Mn元素的质量百分比,C元素含量为0.06-0.2%,Mn元素含量为1-2.5%;控制冷却速度为15-80℃/s;冷却步骤后直接得到贝氏体型高强度无缝钢管成品。
本发明所述的一种贝氏体型高强度无缝钢管的制造方法中,冶炼的钢水可以直接浇注成圆管坯,也可以是先浇注后再将其铸坯锻造或轧制成管坯。
为了获得足够的强度,保证尽可能完全的贝氏体相变,开冷温度应该保持在钢种的Ar3温度(奥氏体冷却相变温度)+20℃以上,钢种的Ar3温度对于本领域内技术人员是已知的或可以由现有技术条件获得,包括查阅手册或是用热模拟实验测得。
为获得足够的强度和韧性,需要保证足够完全的贝氏体相变和晶粒组织的 尽可能细化,冷却速度的提高有利于贝氏体相变,并且也有利于增加奥氏体过冷度,提高形核数量,细化贝氏体基体组织,因而需要控制冷却速度来提升变形奥氏体的过冷度。根据本发明技术方案,从开冷温度到终冷温度的平均冷却速度需要≥15℃/s,同时由于钢管圆形截面的应力集中问题,需要将平均冷却速度控制在80℃/s以下,以防止钢管开裂;终冷温度过低,会产生马氏体基体组织以影响韧性,而终冷温度过高则会无法得到需要的贝氏体基体组织,因此本技术方案研究提出,终冷温度控制在T1~T2之间,可获得需要的贝氏体基体组织和性能。其中T1=519-423C-30.4Mn,T2=780-270C-90Mn;T1和T2的单位均为℃,式中的C、Mn分别表示钢种中C元素和Mn元素的质量百分比,也就是说,如果C元素含量控制在0.06%,该式中代入的值则为0.06,而不是0.0006(即0.06%)。
进一步地,所述的贝氏体型高强度无缝钢管的制造方法,在所述冷却步骤采用水冷的方式。
更进一步地,所述的贝氏体型高强度无缝钢管的制造方法,在所述冷却步骤中,向荒管外壁喷水以进行冷却。
进一步地,所述的贝氏体型高强度无缝钢管的制造方法,在所述冷却步骤中,将荒管置于水槽中进行冷却。
在本发明所述的贝氏体型高强度无缝钢管的制造方法中,可以根据生产线要求,冷却方式可以是水冷方式,包括可以向荒管外壁喷水以进行冷却,也可以是将荒管置于水槽中进行冷却。
进一步地,所述的贝氏体型高强度无缝钢管的制造方法在所述加热步骤,将管坯加热到1150-1300℃,保温1-4h。
在本发明所述的贝氏体型高强度无缝钢管的制造方法中,根据不同热轧机组的条件,通常加热温度不低于1150℃以保证管坯足够的变形能力,同时加热温度也不超过1300℃以防止管坯过烧。
更进一步地,在本发明所述的贝氏体型高强度无缝钢管的制造方法中,制得的所述贝氏体型高强度无缝钢管的化学元素质量百分含量为:
C:0.06~0.2%,Si:0.1~0.6%,Mn:1~2.5%,Al:0.01~0.1%,S≤0.005%,P≤0.02%,O≤0.01%;余量为Fe和其他不可避免的杂质。
所述贝氏体型高强度无缝钢管中的各化学元素的主要设计原理为:
C:C是保证强度及淬透性的重要元素,根据本发明研究,C含量小于0.06%时,钢管强度难以保证,并且C含量低难以避免先共析铁素体的析出,影响钢管韧性。由于在线冷却材料受变形应力及相变应力的双重影响,较离线热处理更容易出现裂纹,试验表明,C控制在0.2%以下可以明显减少淬火裂纹的产生;因此,本发明所述的贝氏体型高强度无缝钢管的C含量控制在0.06~0.2%。
Si:Si是钢中由脱氧剂而带入的元素,其含量超过0.6%时,会显著增加钢的冷脆倾向,因此应限制Si含量在0.6%以下,此外为了保证脱氧效果,需要保持Si在0.1%以上;因此,本发明所述的贝氏体型高强度无缝钢管的Si含量控制在0.1~0.6%。
Mn:Mn具有扩大奥氏体相区,增加淬透性,细化晶粒等有益效果,但Mn在凝固时易发生偏析,造成最终产品中的明显带状基体组织,带状基体组织与基体间的硬度、析出相有明显差异,会影响钢管的韧性。因此需要限制Mn含量在2.5%以下,此外为了保证钢冷却后的基体组织均匀性和淬透性,需要保持Mn在1%以上;因此,本发明所述的贝氏体型高强度无缝钢管的Mn含量控制在1~2.5%。
Al是钢脱氧所必须的元素,但Al含量超过0.1%后,对浇铸过程等有不利影响,因此需要限制Al含量在0.1%以下,以0.05%以下为更佳。
S:S是钢中的有害元素,其存在对于钢的热加工性、韧性等都有不利影响。因此,本发明所述的贝氏体型高强度无缝钢管的S的含量需要限制在0.005%以下。
P:P是钢中的有害元素,其存在对于钢的耐腐蚀性、韧性等都有不利影响。因此,本发明所述的贝氏体型高强度无缝钢管的P的含量需要限制在0.02%以下。
O:O是降低韧性的元素,为保证产品具备足够的韧性。因此,本发明所述的贝氏体型高强度无缝钢管的O的含量在0.01%以下。
更进一步地,在制得的贝氏体型高强度无缝钢管中,C元素和Mn元素的质量百分比满足C+Mn/6≥0.38。
本发明主要原理是利用冷却路径控制来得到贝氏体组织,从而获得足够的强韧性,但钢中的合金元素若低于一定程度,一方面固溶强化效果有限,另一方面得到的贝氏体组织其强度也会降低,导致难以获得555MPa以上的高强度。 根据本发明研究,主要合金元素C、Mn需要满足C+Mn/6≥0.38。
采用本发明所述的制造方法制得的贝氏体型高强度无缝钢管的屈服强度>555MPa,0℃全尺寸冲击功>50J。
本发明的另一目的在于提供一种贝氏体型高强度无缝钢管,该无缝钢管采用本发明所述的制造方法制得,其在不添加贵合金元素的情况下,具有屈服强度≥555MPa的高强度以及0℃全尺寸冲击功>50J的高韧性。
具体实施方式
下面将结合具体的实施例对本发明所述的贝氏体型高强度无缝钢管的制造方法及采用该方法制得的贝氏体型高强度无缝钢管做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A1-A8和对比例B1-B7
上述实施例和对比例中的贝氏体型高强度无缝钢管采用以下步骤制得:
(1)冶炼,控制钢种成分如表1所示(需要说明的是,该冶炼步骤的钢种成分与贝氏体型高强度无缝钢管成品的成分是一样的);
(2)制造管坯:将钢水直接浇铸成圆管坯;或者浇铸后再将铸坯锻造或轧制成圆管坯;
(3)加热:将圆管坯加热到1150-1300℃,保温1-4h;
(4)穿孔;
(5)连轧;
(6)张力减径或定径制成荒管;
(7)冷却:控制开冷温度至少为钢种的Ar3温度+20℃;控制终冷温度在T1和T2之间,其中T1=519-423C%-30.4Mn%,T2=780-270C%-90Mn%,T1和T2的单位均为℃,式中的C、Mn分别表示钢种中C元素和Mn元素的质量分数,C元素含量为0.06-0.2%,Mn元素含量为1-2.5%;控制冷却速度为15-80℃/s;冷却步骤后直接得到贝氏体型高强度无缝钢管成品(各实施例和对比例的具体工艺数据参见表2)。
表1列出了实施例A1-A8和对比例B1-B7的化学元素的质量百分配比。
表1.(wt%,余量为Fe和除了O、P和S之外的其他杂质元素)
Figure PCTCN2016099562-appb-000001
由表1可以看出,对比例B1的P、S含量高出本发明优选的范围;对比例B2的C含量高出本发明的优选范围;对比例B3的C+Mn/6的数值不符合本发明优选的范围。
表2列出了实施例A1-A8以及对比例B1-B7的制造方法的具体参数。
表2
Figure PCTCN2016099562-appb-000002
Figure PCTCN2016099562-appb-000003
由表2可以进一步看出,对比例B4的开冷温度低于本发明限定的范围,对比例B5的冷却速度低于本发明限定的范围,对比例B6的终冷温度高于本发明限定的范围,对比例B7的终冷温度低于了本发明限定的范围。
表3是实施例A1-A8和对比例B1-B7的无缝钢管放置在冷床上进行空冷至室温所测得的力学性能参数。
表3
Figure PCTCN2016099562-appb-000004
上表3中,性能测试结果来自于下述测试:
(1)强度测试:将制成的无缝钢管加工成API弧形试样,按API标准检验后取平均数得出,得到屈服强度。
(2)冲击韧性测试:将制成的无缝钢管加工成10*10*55尺寸、V型缺口的标准冲击试样,在0℃下检验得出。
由表3可知,实施例A1-A8的无缝钢管屈服强度都高于550MPa,0℃全尺寸冲击功都高于50J,优于对比例B1-B7的相应性能,具有高强度、高韧性的显著优点,可用于油气开采,机械结构等领域,并在该领域下满足相应的力学性能指标,同时充分利用无缝钢管制造时的余热,制造工艺流程方便,基本不添加合金元素,成本可控制在较低的范围内。
由表3还可知,对比例B1的P和S杂质元素超出优化范围降低了无缝钢管的冲击韧性;对比例B2的C含量过高使得无缝钢管在冷却时变形应力及相变应力的双重影响,容易出现裂纹,降低冲击韧性;B3的C+Mn/6<0.38影响淬透性,变形量不足,影响形变诱导相变效果,降低屈服强度;对比例B4的开冷温度不足导致基体组织内产生先共析铁素体,降低了屈服强度;对比例B5的冷却速度过低导致了基体组织内马氏体比例不足,降低了屈服强度;对比例B6的终冷温度过高导致无法得到需要的贝氏体,降低了屈服强度;对比例B7的终冷温度过低导致产生过多马氏体,降低了冲击韧性。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (10)

  1. 一种贝氏体型高强度无缝钢管的制造方法,其包括步骤:冶炼,制造管坯,加热,穿孔,连轧,张力减径或定径以得到荒管,冷却;其特征在于,所述冷却步骤为:
    控制开冷温度≥钢种的Ar3温度+20℃;控制终冷温度在T1和T2之间,其中T1=519-423C-30.4Mn,T2=780-270C-90Mn,T1和T2的单位均为℃,式中的C、Mn分别表示钢种中C元素和Mn元素的质量百分比,其中C元素含量为0.06-0.2%,Mn元素含量为1-2.5%;控制冷却速度为15-80℃/s;冷却步骤后直接得到贝氏体型高强度无缝钢管成品。
  2. 如权利要求1所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,所述冷却步骤采用水冷的方式。
  3. 如权利要求2所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,在所述冷却步骤中,向荒管外壁喷水以进行冷却。
  4. 如权利要求2所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,在所述冷却步骤中,将荒管置于水槽中进行冷却。
  5. 如权利要求1所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,在所述加热步骤,将管坯加热到1150-1300℃,保温1-4h。
  6. 如权利要求1所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,采用该制造方法制得的贝氏体型高强度无缝钢管的屈服强度>555MPa,0℃全尺寸冲击功>50J。
  7. 如权利要求1-6中任意一项所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,C元素和Mn元素的质量分数满足C+Mn/6≥0.38。
  8. 如权利要求1-6中任意一项所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,制得的贝氏体型高强度无缝钢管的化学元素质量百分含量为:
    C:0.06~0.2%,Si:0.1~0.6%,Mn:1~2.5%,Al:0.01~0.1%,S≤0.005%,P≤0.02%,O≤0.01%;余量为Fe和其他不可避免的杂质。
  9. 如权利要求8所述的贝氏体型高强度无缝钢管的制造方法,其特征在于,C元素和Mn元素的质量百分比满足C+Mn/6≥0.38。
  10. 一种贝氏体型高强度无缝钢管,其采用如权利要求1-9中任意一项所述的制 造方法制得。
PCT/CN2016/099562 2015-09-24 2016-09-21 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管 WO2017050228A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018515862A JP2018532885A (ja) 2015-09-24 2016-09-21 ベイナイト型高強度継目無鋼管の製造方法およびベイナイト型高強度継目無鋼管
US15/762,810 US11203794B2 (en) 2015-09-24 2016-09-21 Method for manufacturing bainite high-strength seamless steel tube, and bainite high-strength seamless steel tube
EP16848109.1A EP3354755B1 (en) 2015-09-24 2016-09-21 Method for manufacturing bainite high-strength seamless steel tube, and bainite high-strength seamless steel tube

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510615737.9 2015-09-24
CN201510615737.9A CN105154765A (zh) 2015-09-24 2015-09-24 一种高强韧性无缝钢管及其制造方法
CN201610265674.3A CN105907937A (zh) 2016-04-26 2016-04-26 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN201610265674.3 2016-04-26
CN201610772365.5 2016-08-30
CN201610772365.5A CN106555107B (zh) 2015-09-24 2016-08-30 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管

Publications (1)

Publication Number Publication Date
WO2017050228A1 true WO2017050228A1 (zh) 2017-03-30

Family

ID=58385629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099562 WO2017050228A1 (zh) 2015-09-24 2016-09-21 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管

Country Status (1)

Country Link
WO (1) WO2017050228A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031756A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
CN102618791A (zh) * 2012-04-23 2012-08-01 天津商业大学 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
CN105154765A (zh) * 2015-09-24 2015-12-16 宝山钢铁股份有限公司 一种高强韧性无缝钢管及其制造方法
CN105907937A (zh) * 2016-04-26 2016-08-31 宝山钢铁股份有限公司 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031756A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
CN102618791A (zh) * 2012-04-23 2012-08-01 天津商业大学 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
CN105154765A (zh) * 2015-09-24 2015-12-16 宝山钢铁股份有限公司 一种高强韧性无缝钢管及其制造方法
CN105907937A (zh) * 2016-04-26 2016-08-31 宝山钢铁股份有限公司 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管

Similar Documents

Publication Publication Date Title
US11203794B2 (en) Method for manufacturing bainite high-strength seamless steel tube, and bainite high-strength seamless steel tube
CA2962472C (en) High-toughness hot-rolled high-strength steel with yield strength of grade 800 mpa and preparation method thereof
TWI601833B (zh) Pickling property, the bolt wire excellent in delayed fracture resistance after quenching and tempering, and a bolt
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
CA2960903C (en) Grade 550mpa high-temperature resistant pipeline steel and method of manufacturing same
WO2016038809A1 (ja) 油井用高強度継目無鋼管およびその製造方法
WO2015012357A1 (ja) 高強度油井用鋼材および油井管
WO2017162160A1 (zh) 耐硫化氢应力腐蚀开裂的马氏体不锈钢油套管用钢、油套管及其制造方法
CN111826587A (zh) 一种大规格风电螺栓用冷镦钢热轧盘条及其制备方法
WO2022152158A1 (zh) 一种高强韧易切削非调质圆钢及其制造方法
JP6135697B2 (ja) 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐摩耗鋼板およびその製造方法
WO2019242448A1 (zh) 一种125ksi钢级抗硫油井管及其制造方法
WO2017050227A1 (zh) 一种高强韧性无缝钢管及其制造方法
TWI595101B (zh) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
CN105695869A (zh) 屈服强度450MPa级桥梁用热轧钢板及其制造方法
WO2015045951A1 (ja) 耐遅れ破壊性およびボルト成形性に優れた高強度ボルト用鋼およびボルト
WO2017050230A1 (zh) 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法
CN107779744B (zh) 一种贝氏体型x100级无缝管线管及其制造方法
TW201604292A (zh) 高強度熱軋鋼材
WO2017050228A1 (zh) 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN110643895B (zh) 一种马氏体不锈钢油套管及其制造方法
WO2017050229A1 (zh) 一种利用余热的无缝钢管在线淬火冷却工艺及制造方法
WO2023231981A1 (zh) 一种高强度石油套管及其制造方法
CN116657050A (zh) 一种高韧性薄规格低屈强比管线卷板钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762810

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515862

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848109

Country of ref document: EP