WO2017050228A1 - Procédé de fabrication de tube sans soudure en acier bainitique de haute résistance et tube sans soudure en acier bainitique de haute résistance - Google Patents

Procédé de fabrication de tube sans soudure en acier bainitique de haute résistance et tube sans soudure en acier bainitique de haute résistance Download PDF

Info

Publication number
WO2017050228A1
WO2017050228A1 PCT/CN2016/099562 CN2016099562W WO2017050228A1 WO 2017050228 A1 WO2017050228 A1 WO 2017050228A1 CN 2016099562 W CN2016099562 W CN 2016099562W WO 2017050228 A1 WO2017050228 A1 WO 2017050228A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless steel
steel pipe
strength seamless
cooling
strength
Prior art date
Application number
PCT/CN2016/099562
Other languages
English (en)
Chinese (zh)
Inventor
刘耀恒
张忠铧
王笑波
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510615737.9A external-priority patent/CN105154765A/zh
Priority claimed from CN201610265674.3A external-priority patent/CN105907937A/zh
Priority claimed from CN201610772365.5A external-priority patent/CN106555107B/zh
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP16848109.1A priority Critical patent/EP3354755B1/fr
Priority to US15/762,810 priority patent/US11203794B2/en
Priority to JP2018515862A priority patent/JP2018532885A/ja
Publication of WO2017050228A1 publication Critical patent/WO2017050228A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the invention relates to a steel pipe and a manufacturing method thereof, in particular to a seamless steel pipe and a manufacturing method thereof.
  • seamless steel pipe can only rely on the addition of alloying elements and off-line heat treatment after rolling to improve product performance.
  • steel pipes of 555MPa (80Ksi) or higher need to be added.
  • Multi-alloy elements (such as N80-1) or off-line heat treatment (such as N80-Q and P110) can be produced, which significantly increases manufacturing costs.
  • the usual production process of hot-rolled steel pipes is air-cooling on a cold bed after rolling, and then reheating according to demand, and performing offline heat treatment (normalizing, quenching and tempering, etc.), which not only causes waste of waste heat after rolling of the steel pipe (usually After rolling, the temperature of the steel pipe is above 900 °C), and it is basically impossible to regulate the rolled matrix structure, and the performance cannot be improved by controlling the matrix structure.
  • the cooling is poor, it is easy to form a bad matrix structure such as coarse crystal grains, mixed crystals, or even Wei's structure.
  • the publication number is CN103740896A, and the publication date is April 23, 2014.
  • the Chinese patent document entitled "In-line quenching method for steel pipes” discloses an in-line quenching method for steel pipes, which comprises the following steps: 1) rolling, sizing The high temperature steel pipe of 970-980 °C is directly transferred to the quenching tank; 2) the rotating high temperature steel pipe is sprayed along the extending direction of the high temperature steel pipe to the inner wall of the high temperature steel pipe, and the water spraying speed of the inner wall is 6500-7000 cubic meters per hour, which is tangent along the outer wall of the high temperature steel pipe and Spraying water to the outer wall of the high-temperature steel pipe in the opposite direction to the rotation of the steel pipe.
  • the water spray speed of the outer wall is 4500-5000 cubic meters per hour, and the total spray time is 10-12 minutes, so that the high temperature steel pipe is submerged within 10-12 seconds; 3)
  • the water in the quenching tank is discharged, and quenching is completed to obtain a quenched steel pipe.
  • the above patent provides a process for quenching a steel pipe by using waste heat
  • the seamless steel pipe has a special cross-sectional shape
  • the internal stress state is more complicated than that of the plate material, so if an in-line quenching process is employed.
  • it is difficult to control its performance stably Cracking so it is difficult to apply on-line quenching to seamless steel pipes. Therefore, the above patent does not mention the influence of on-line quenching parameter control on the performance of steel pipes.
  • the purpose of the above patent quenching is to obtain martensite. The matrix structure, therefore, the need to increase the tempering process after on-line quenching.
  • One of the objects of the present invention is to provide a method for manufacturing a bainitic high-strength seamless steel pipe, which realizes control of phase transformation by on-line controlled cooling, so that no additional alloying elements are added, and subsequent offline heat treatment is not required.
  • a high-strength seamless steel pipe with high toughness yield strength ⁇ 555 MPa, 0°C full-scale impact work > 50 J
  • yield strength ⁇ 555 MPa, 0°C full-scale impact work > 50 J which is stable and does not crack. The need for low cost production.
  • the inventors studied the manufacturing process of the bainitic steel pipe, and found that after the thermal deformation of the steel pipe, due to the induced effect of the deformation on the phase transformation, a more rapid matrix structure can be obtained after on-line rapid cooling. Thereby achieving better strength and toughness; and by controlling the parameters of the cooling process including the cooling temperature, the cooling rate, and the final cooling temperature, the microstructure and final properties of the steel pipe can be effectively adjusted.
  • the present invention has been completed based on the above findings.
  • the present invention provides a method for manufacturing a bainitic high-strength seamless steel pipe, which comprises the steps of: smelting, manufacturing a tube blank, heating, perforating, continuous rolling, tension reduction or sizing to obtain a waste pipe. Cooling; the cooling step is:
  • T1 and T2 are all °C, where C and Mn represent the mass percentage of C and Mn in the steel, respectively, the content of C is 0.06-0.2%, the content of Mn is 1-2.5%, and the cooling rate is 15-80 °C/s.
  • the bainite high-strength seamless steel pipe is directly obtained.
  • the molten steel can be directly poured into a round billet, or the cast billet can be forged or rolled into a billet after being poured.
  • the cooling temperature should be maintained at the Ar3 temperature (austenite cooling phase transition temperature) of the steel species +20 ° C or higher, the Ar3 temperature of the steel species for the field Those skilled in the art are known or can be obtained from prior art conditions, including reviewing the manual or using thermal simulation experiments.
  • the increase of cooling rate is beneficial to the bainite transformation, and it is also beneficial to increase the austenite subcooling, increase the number of nucleation, refine the bainite matrix structure, and thus need to control the cooling rate to enhance the deformation.
  • the degree of subcooling of austenite According to the technical solution of the present invention, the average cooling rate from the cold-cooling temperature to the final cooling temperature needs to be ⁇ 15 ° C / s, and the average cooling rate needs to be controlled below 80 ° C / s due to the stress concentration problem of the circular section of the steel pipe.
  • the technical solution proposes that the final cooling temperature control Between T1 and T2, the desired bainite matrix structure and properties can be obtained.
  • T1 519-423C-30.4Mn
  • T2 780-270C-90Mn
  • the units of T1 and T2 are °C, where C and Mn represent the mass percentage of C and Mn in the steel, respectively If the C element content is controlled at 0.06%, the value substituted in the formula is 0.06 instead of 0.0006 (ie 0.06%).
  • the cooling step is performed by water cooling.
  • the waste pipe is placed in a water tank for cooling.
  • the cooling method may be a water cooling method according to the requirements of the production line, and the water may be sprayed to the outer wall of the waste pipe for cooling, or the waste pipe may be placed. Cool in the sink.
  • the tube blank in the heating step, is heated to 1150 to 1300 ° C and kept for 1-4 hours.
  • the heating temperature is usually not lower than 1150 ° C to ensure sufficient deformation ability of the tube blank, and the heating temperature is not exceeded. 1300 ° C to prevent over-burning of the tube blank.
  • the chemical element mass percentage of the bainitic high-strength seamless steel pipe obtained is:
  • C is an important element for ensuring strength and hardenability. According to the present invention, when the C content is less than 0.06%, the strength of the steel pipe is difficult to ensure, and the low C content is difficult to avoid precipitation of the pro-eutectoid ferrite and affect the toughness of the steel pipe. Since the on-line cooling material is affected by the deformation stress and the phase transformation stress, the crack is more likely to occur than the offline heat treatment. The test shows that the C control of 0.2% or less can significantly reduce the occurrence of quench crack; therefore, the bainite type according to the present invention The C content of the high-strength seamless steel pipe is controlled to be 0.06 to 0.2%.
  • Si:Si is an element brought into the steel by a deoxidizer.
  • the Si content should be limited to 0.6% or less.
  • it is necessary to maintain Si. It is 0.1% or more; therefore, the Si content of the bainite type high-strength seamless steel pipe according to the present invention is controlled to be 0.1 to 0.6%.
  • Mn has the beneficial effects of expanding the austenite phase region, increasing the hardenability and refining the grains, but Mn is prone to segregation during solidification, resulting in a distinct band-like matrix structure in the final product, the band-like matrix structure and the matrix.
  • Mn content is controlled to be 1 to 2.5%.
  • Al is an essential element for deoxidation of steel. However, if the Al content exceeds 0.1%, the casting process or the like is adversely affected. Therefore, it is necessary to limit the Al content to 0.1% or less and preferably 0.05% or less.
  • S is a harmful element in steel, and its presence adversely affects the hot workability and toughness of steel. Therefore, the content of S in the bainite type high-strength seamless steel pipe according to the present invention needs to be limited to 0.005% or less.
  • P is a harmful element in steel, and its presence has an adverse effect on the corrosion resistance, toughness, and the like of steel. Therefore, the content of P in the bainite type high-strength seamless steel pipe according to the present invention needs to be limited to 0.02% or less.
  • O is an element that reduces toughness, in order to ensure that the product has sufficient toughness. Therefore, the Ba-site high-strength seamless steel pipe according to the present invention has a content of O of 0.01% or less.
  • the mass percentage of the C element and the Mn element satisfies C + Mn / 6 ⁇ 0.38.
  • the main principle of the invention is to use the cooling path control to obtain the bainite structure, so as to obtain sufficient toughness, but if the alloying elements in the steel are lower than a certain degree, the solid solution strengthening effect is limited on the one hand, and the Bayes obtained on the other hand. The strength of the body tissue is also lowered, resulting in difficulty in obtaining high strength of 555 MPa or more. According to the study of the present invention, the main alloying elements C and Mn need to satisfy C + Mn / 6 ⁇ 0.38.
  • the yield strength of the bainitic high-strength seamless steel pipe obtained by the manufacturing method of the present invention is >555 MPa, and the full-scale impact work of 0 °C is >50 J.
  • Another object of the present invention is to provide a bainitic high-strength seamless steel pipe which is produced by the manufacturing method of the present invention and which has a yield strength ⁇ 555 MPa without adding a precious alloying element.
  • the bainite type high-strength seamless steel pipe in the above examples and comparative examples was obtained by the following steps:
  • the units of 90Mn%, T1 and T2 are °C, and C and Mn in the formula respectively represent the mass fraction of C element and Mn element in the steel species, the content of C element is 0.06-0.2%, and the content of Mn element is 1-2.5%;
  • the cooling rate was controlled to be 15-80 ° C / s; after the cooling step, the bainite high-strength seamless steel tube was directly obtained (see Table 2 for specific process data of each example and comparative examples).
  • Table 1 lists the mass ratios of the chemical elements of Examples A1 to A8 and Comparative Examples B1 to B7.
  • Table 2 lists the specific parameters of the manufacturing methods of Examples A1 to A8 and Comparative Examples B1 to B7.
  • Table 3 is the mechanical properties of the seamless steel tubes of Examples A1 to A8 and Comparative Examples B1 to B7 which were placed on a cold bed and air-cooled to room temperature.
  • the yield strength of the seamless steel pipes of Examples A1 to A8 is higher than 550 MPa, and the full-scale impact energy of 0 °C is higher than 50 J, which is superior to the corresponding performance of Comparative Examples B1-B7, and has high strength and high toughness.
  • Significant advantages can be used in oil and gas mining, mechanical structure and other fields, and meet the corresponding mechanical performance indicators in this field, while making full use of the waste heat of seamless steel pipe manufacturing, the manufacturing process is convenient, basically no alloying elements are added, and the cost can be controlled. In the lower range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

La présente invention concerne un procédé de fabrication de tube sans soudure, en acier bainitique de haute résistance, comprenant les étapes suivantes : la fusion, la fabrication d'une ébauche de tube, le chauffage, la perforation, le laminage en continu, la réduction des tensions et le calibrage afin d'obtenir un tube brut, et le refroidissement. Dans l'étape de refroidissement, la température de début de refroidissement est régulée pour être d'au moins 20 °C supérieure à la température Ar3 de la nuance d'acier; la température de fin de refroidissement est régulée pour être dans une plage comprise entre T1 et T2, où T1 = 519 - 423C - 30,4Mn, T2 = 780 - 270C - 90Mn, les unités de T1 et T2 étant le °C; dans les formules, C et Mn représentent respectivement les pourcentages en masse de l'élément C et de l'élément Mn de la nuance d'acier. La teneur en élément C est de 0,06 à 0,2 % et la teneur en élément Mn est de 1 à 2,5 %; la vitesse de refroidissement est régulée pour être dans la plage de 15 à 80 °C/s; le produit fini de tube sans soudure, en acier bainitique de haute résistance, est obtenu directement après l'étape de refroidissement. La fabrication d'un tube sans soudure, en acier bainitique de haute résistance, par le présent procédé ne requiert pas l'ajout d'éléments d'alliage précieux, ni de traitement thermique ultérieur. Les coûts de production sont donc faibles.
PCT/CN2016/099562 2015-09-24 2016-09-21 Procédé de fabrication de tube sans soudure en acier bainitique de haute résistance et tube sans soudure en acier bainitique de haute résistance WO2017050228A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16848109.1A EP3354755B1 (fr) 2015-09-24 2016-09-21 Procédé de fabrication de tube sans soudure en acier bainitique de haute résistance et tube sans soudure en acier bainitique de haute résistance
US15/762,810 US11203794B2 (en) 2015-09-24 2016-09-21 Method for manufacturing bainite high-strength seamless steel tube, and bainite high-strength seamless steel tube
JP2018515862A JP2018532885A (ja) 2015-09-24 2016-09-21 ベイナイト型高強度継目無鋼管の製造方法およびベイナイト型高強度継目無鋼管

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510615737.9 2015-09-24
CN201510615737.9A CN105154765A (zh) 2015-09-24 2015-09-24 一种高强韧性无缝钢管及其制造方法
CN201610265674.3 2016-04-26
CN201610265674.3A CN105907937A (zh) 2016-04-26 2016-04-26 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN201610772365.5A CN106555107B (zh) 2015-09-24 2016-08-30 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN201610772365.5 2016-08-30

Publications (1)

Publication Number Publication Date
WO2017050228A1 true WO2017050228A1 (fr) 2017-03-30

Family

ID=58385629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099562 WO2017050228A1 (fr) 2015-09-24 2016-09-21 Procédé de fabrication de tube sans soudure en acier bainitique de haute résistance et tube sans soudure en acier bainitique de haute résistance

Country Status (1)

Country Link
WO (1) WO2017050228A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031756A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
CN102618791A (zh) * 2012-04-23 2012-08-01 天津商业大学 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
CN105154765A (zh) * 2015-09-24 2015-12-16 宝山钢铁股份有限公司 一种高强韧性无缝钢管及其制造方法
CN105907937A (zh) * 2016-04-26 2016-08-31 宝山钢铁股份有限公司 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031756A (ja) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd 継目無鋼管の製造方法
CN102618791A (zh) * 2012-04-23 2012-08-01 天津商业大学 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
CN105154765A (zh) * 2015-09-24 2015-12-16 宝山钢铁股份有限公司 一种高强韧性无缝钢管及其制造方法
CN105907937A (zh) * 2016-04-26 2016-08-31 宝山钢铁股份有限公司 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管

Similar Documents

Publication Publication Date Title
US11203794B2 (en) Method for manufacturing bainite high-strength seamless steel tube, and bainite high-strength seamless steel tube
CA2962472C (fr) Acier haute resistance lamine a chaud a rugosite elevee dote d'une limite d'elasticite de calibre 800 et methode de preparation associee
TWI601833B (zh) Pickling property, the bolt wire excellent in delayed fracture resistance after quenching and tempering, and a bolt
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
CA2960903C (fr) Acier pour pipeline resistant aux hautes temperatures a 550 mpa et son procede de fabrication
WO2016038809A1 (fr) Tuyau sans soudure en acier hautement résistant pour puits de pétrole, et procédé de fabrication de celui-ci
WO2015012357A1 (fr) Matériau d'acier à grande résistance mécanique pour utilisation dans les puits de pétrole, et tube pour puits de pétrole
WO2017162160A1 (fr) Acier inoxydable martensitique résistant à la fissuration provoquée par la corrosion sous contrainte par le sulfure d'hydrogène destiné à un tube de cuvelage pétrolier, tube de cuvelage pétrolier et procédé de fabrication associé
CN111826587A (zh) 一种大规格风电螺栓用冷镦钢热轧盘条及其制备方法
WO2022152158A1 (fr) Acier rond de décolletage non trempé et revenu, à résistance et ténacité élevées, et procédé de fabrication associé
JP6135697B2 (ja) 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐摩耗鋼板およびその製造方法
WO2019242448A1 (fr) Tuyau de puits de pétrole résistant au soufre et ayant une nuance d'acier de 125 ksi et son procédé de fabrication
WO2017050227A1 (fr) Tube en acier sans soudure à haute résistance et haute ténacité et son procédé de fabrication
TWI595101B (zh) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
CN105695869A (zh) 屈服强度450MPa级桥梁用热轧钢板及其制造方法
WO2015045951A1 (fr) Acier pour boulons à haute résistance qui a d'excellentes résistance à la rupture différée et aptitude au moulage de boulons et boulon
WO2017050230A1 (fr) Procédé de refroidissement de tube en acier sans soudure réglé en ligne et procédé de fabrication de tube en acier sans soudure à affinage efficace des grains
CN107779744B (zh) 一种贝氏体型x100级无缝管线管及其制造方法
TW201604292A (zh) 高強度熱軋鋼材
WO2017050228A1 (fr) Procédé de fabrication de tube sans soudure en acier bainitique de haute résistance et tube sans soudure en acier bainitique de haute résistance
CN110643895B (zh) 一种马氏体不锈钢油套管及其制造方法
WO2017050229A1 (fr) Procédé de trempe en ligne de tube en acier sans soudure utilisant la chaleur perdue, et procédé de fabrication
WO2023231981A1 (fr) Boîtier de tuyau de pétrole à haute résistance et son procédé de fabrication
CN116657050A (zh) 一种高韧性薄规格低屈强比管线卷板钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762810

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515862

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848109

Country of ref document: EP