WO2017049871A1 - 4位取代的香豆素衍生物及其制备方法和用途 - Google Patents

4位取代的香豆素衍生物及其制备方法和用途 Download PDF

Info

Publication number
WO2017049871A1
WO2017049871A1 PCT/CN2016/074796 CN2016074796W WO2017049871A1 WO 2017049871 A1 WO2017049871 A1 WO 2017049871A1 CN 2016074796 W CN2016074796 W CN 2016074796W WO 2017049871 A1 WO2017049871 A1 WO 2017049871A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
halogen
group
substituted
independently
Prior art date
Application number
PCT/CN2016/074796
Other languages
English (en)
French (fr)
Inventor
陈俐娟
魏于全
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to CN201680052801.XA priority Critical patent/CN108349959B/zh
Priority to AU2016327715A priority patent/AU2016327715B2/en
Priority to US15/761,885 priority patent/US10544134B2/en
Priority to EA201890748A priority patent/EA036984B1/ru
Priority to EP16847758.6A priority patent/EP3354648B1/en
Priority to KR1020187009483A priority patent/KR102130783B1/ko
Priority to JP2018515595A priority patent/JP6612975B2/ja
Priority to CA2999200A priority patent/CA2999200C/en
Publication of WO2017049871A1 publication Critical patent/WO2017049871A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • A61K31/37Coumarins, e.g. psoralen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • the invention belongs to the field of chemical medicine, and particularly relates to a 4-substituted coumarin derivative, a preparation method thereof and use thereof.
  • Microtubules are the main components of the cytoskeleton. Microtubules have the kinetics of polymerization and depolymerization, and play an important role in maintaining cell morphology, cell division and proliferation, organelle composition and transport, and signal transduction.
  • the anti-tumor drug targeting microtubules utilizes its kinetic properties, or promotes its polymerization or inhibits its polymerization, thereby directly affecting cell mitosis and stopping cell division in the G2/M phase. Studies have shown that there are at least three different drug binding sites in the microtubules: the paclitaxel site, the vincristine site, and the colchicine site. Paclitaxel inhibits the depolymerization of tubulin and stabilizes the microtubule structure; while vinblastine and colchicine inhibit the polymerization of tubulin through their respective sites of action.
  • the drug that inhibits the depolymerization of microtubules represented by taxol (Taxol)
  • Taxol has been widely used in the treatment of breast cancer, ovarian cancer, lung cancer and non-small cell lung cancer.
  • Drugs that inhibit microtubule polymerization have two distinct binding sites: the colchicine site and the vinblastine site.
  • the drug which acts on the vinblastine site is represented by vinblastine, vincristin, etc., and is currently used clinically for the treatment of leukemia, lymphoma, non-small cell lung cancer and the like.
  • the drug acting on colchicine is represented by colchicine, podophyllotoxin and comprilidine (CA-4).
  • CA-4 comprilidine
  • any chemotherapy drug that targets the colchicine site can not only inhibit the polymerization of tubulin, but also generally inhibit the activity of tumor angiogenesis. Therefore, these drugs can inhibit the angiogenesis of solid tumors, cause insufficient blood supply to tumor tissues, and can play an obvious therapeutic role in tumor suppression. In recent years, it has been increasingly recognized by various scholars. More importantly, anti-angiogenic effects are not affected by multi-drug resistance and can be effective and long-term anti-tumor activity.
  • paclitaxel resistance mechanisms involve overexpression of MDR-1 gene, point mutation of ⁇ , ⁇ microtubule gene, and expression of ⁇ -III tubulin monomer.
  • the US FDA recently approved the market launch of epothilone and has been shown to overcome the mechanism of beta-III tubulin monomer resistance.
  • Clinical drugs have confirmed that the main drug resistance mechanisms of paclitaxel and vinblastine drugs due to drug resistance are P-glycoprotein overexpression and ⁇ -III tubulin monomer expression changes.
  • the coumarin compound can be regarded as a lactone compound formed by dehydration of cis-o-hydroxycinnamic acid, and is a general term for a natural product having a phenylhydrazine-pyrone nucleus. Since 1812, Vauquelin has first obtained the coumarin compound daphnin from the plant Daphnealpina. So far, hundreds of coumarin compounds have been studied. Such compounds are widely distributed in the plant kingdom, especially in plants such as Umbelliferae, Rutaceae, Compositae, Leguminosae, Solanaceae, and the like.
  • Such Chinese medicines as Cnidium, Duhuo, Baiqi, Clam Shell, Qianhu, Qinpi, Yinchen, Buguzhi, and Susuizi contain such ingredients.
  • the coumarin compounds have significant biological activities such as antiviral, antitumor, antimicrobial, anticancer and anti-inflammatory, and have been highly valued by scholars at home and abroad. According to the difference of the substituents on the mother nucleus and their positions, they are divided into four types: simple coumarin, furocoumarin, pyranocoumarin and other coumarins.
  • the coumarin has a fragrant aroma, and the representative compounds mainly include: angelica lactone, chalk lactone, valerolactone, and leucovorin.
  • coumarin has been shown to be less or less toxic. Therefore, many pharmaceutical workers have a strong interest in the mechanism of action of coumarin. At present, coumarin has been reported to have enzyme inhibitory activity, cell cycle arrest, antiangiogenic activity, heat shock protein (HSP90) inhibitory activity, telomerase inhibitory activity, antimitotic activity, carbonic anhydrase in antitumor activity. Inhibitory activity, transporter inhibitory activity, aromatase inhibitory activity, and sulfatase inhibitory activity. Further, scholars have in-depth exploration of the structure-activity relationship of coumarin derivatives.
  • HSP90 heat shock protein
  • Tsyganov et al. studied the anti-mitotic activity of coumarin compounds. They semi-synthesized polyalkoxy-substituted 3-(4-methoxyphenyl)coumarins and demonstrated their anti-mitotic activity by phenotypic sea urchin embryo assays. Among them, Compound A was reported, and they indicated in the study that the source of anti-mitotic activity of Compound A is related to the methoxy group at the 5, 6, and 7 carbons of the coumarin core. The structure of trimethoxy does occur in many microtubule inhibitors, such as colchicine and CA4. At the same time, their research suggests that the substituted aromatic group at the 3-position of coumarin is characteristic of coumarin anti-mitotic drugs.
  • Compound D (MPC-6827, Azixa) has been reported in J. Med. Chem. 2009, 52, 2341 to 2351, and its IC50 value is between 1 and 10 nM for various tumor cells.
  • Compound D is in the treatment of multiple neuroglia. The quality of the tumor has achieved the second phase of clinical treatment, and the treatment of melanoma has achieved a clinical phase.
  • the mechanism of action of compound D is to inhibit the polymerization of tubulin by targeting the colchicine site, thereby blocking the process of mitosis and inducing cell withering. Die.
  • the 1-position aromatic nitrogen atom and the 3-position aromatic nitrogen atom of the quinazoline play different roles in maintaining the microtubule active species, wherein the aromatic nitrogen atom forms a hydrogen bond with the hydrogen bond donor in the tubulin, It is beneficial to inhibit the activity of tubulin, and the 3-aromatic nitrogen atom has no such function.
  • the substituent methyl group on the nitrogen atom at the 4-position of the quinazoline also plays an important role in inhibiting the activity of the microtubule. For example, when the methyl group is substituted by other groups such as hydrogen, the anti-microtubule activity will be lost.
  • Compound D showed good antitumor activity, the results of Phase I and Phase II clinical trials showed that it was highly toxic and limited its efficacy.
  • the present invention provides a 4-substituted coumarin derivative having the structural formula shown in Formula I:
  • R 1 is a substituted saturated or unsaturated 5 to 12 membered heterocyclic ring or
  • the hetero atom of the heterocyclic ring is N, O or S;
  • the substituent on the heterocyclic ring is a C1-C8 alkoxy group, a C1-C8 alkyl group, a halogen or a C3-C8 cycloalkyl group;
  • R 2 is a C1-C8 alkoxy group, -H, a C1-C8 alkyl group, a halogen or a C3-C8 cycloalkyl group;
  • R 3 to R 5 are independently -H, C1 to C8 alkoxy, C1 to C8 alkyl, halogen, C3 to C8 cycloalkyl, C2-C8 alkenyl, C1-C8 halogen-substituted alkyl, -NH 2 or And not at the same time -H;
  • R 6 to R 9 are independently -H, C1 to C8 alkoxy, halogen, C1 to C8 alkyl, Or a C1-C8 halogen-substituted alkyl group;
  • R 12 is a C1 to C10 alkyl group, Halogen, C2-C8 alkenyl, C1-C8 halogen-substituted alkyl, C3-C8 cycloalkyl,
  • R 13 is a C1-C8 alkyl group, a C1-C8 alkyl-substituted phenyl group or a halogen-substituted phenyl group;
  • R 14 to R 16 are independently C 1 -C 8 alkyl, halogen, -H, C 1 -C 8 alkoxy or -NH 2 , and are not -H at the same time;
  • R 17 is a C1-C8 alkyl group, a halogen, -H or
  • R 18 is C1-C8 alkyl, halogen or -H
  • R 19 and R 20 are independently a C1-C8 alkyl group, a halogen or -H.
  • R 1 is a substituted saturated or unsaturated 5- to 12-membered heterocyclic ring or The hetero atom of the heterocyclic ring is N, O or S; the substituent on the heterocyclic ring is Or a C1-C4 alkoxy group;
  • R 2 is a C1-C4 alkoxy group, -H, C1 ⁇ C4 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group;
  • R 3 ⁇ R 5 is independently -H, C1 ⁇ C4 alkoxy, C1 ⁇ C4 alkyl, halo, C3 ⁇ C8 cycloalkyl group, C2-C4 alkenyl, C1-C4 halogen-substituted alkyl, -NH 2 or And not simultaneously -H;
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl, Or halo-substitute
  • R 17 is a C1-C4 alkyl group, a halogen, -H or R 18 is a C1 to C4 alkyl group, a halogen or -H; and R 19 and R 20 are independently a C1 to C4 alkyl group, a halogen or -H.
  • R 1 is R 21 to R 23 are independently Or a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H, C1 ⁇ C4 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group
  • R 3 ⁇ R 5 is independently -H, C1 ⁇ C4 alkoxy, C1 ⁇ C4 alkyl, halo, C3 ⁇ C8 cycloalkyl group, C2-C4 alkenyl, C1-C4 halogen-substituted alkyl, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl, Or a C1-C4 halogen-substituted alkyl group
  • R 11 is C1-C10 alkyl, C2-C8 alken
  • R 1 is R 21 and R 22 are independently or R 23 is a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H, C1 ⁇ C4 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group
  • R 3 ⁇ R 5 is independently -H, C1 ⁇ C4 alkoxy, C1 ⁇ C4 alkyl, halo, C3 ⁇ C8 cycloalkyl group, C2-C4 alkenyl, C1-C4 halogen-substituted alkyl, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl, Or a C1-C4 halogen-substituted alkyl group
  • R 11 is C1-C10 alkyl, C2-C
  • R 1 is R 21 to R 23 are independently Or a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H, Or a C1-C4 alkyl group
  • R 3 to R 5 are independently -H, a C1 to C4 alkoxy group, a C1 to C4 alkyl group, a halogen, a C3 to C8 cycloalkyl group, C2-C4 alkenyl, C1-C4 halogen-substituted alkyl, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl, Or a C1-C4 halogen-substituted alkyl group
  • R 11 is C1-C10 alkyl, C2-C8 alkenyl group, C1-C4
  • R 1 is R 21 to R 23 are independently Or a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H or R 3 to R 5 are independently -H, C1 to C4 alkoxy, C1 to C4 alkyl, halogen, C3 to C8 cycloalkyl, C2-C4 alkenyl, C1-C4 halogen-substituted alkyl, -NH 2 or And not at the same time -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl, Or a C1-C4 halogen-substituted alkyl group
  • R 11 is C1-C10 alkyl, C2-C8 alkenyl group, C1-C4 halogen-substituted alkyl group, C3-C8 cycloal
  • R 1 is R 21 to R 23 are independently Or a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H or R 3 to R 5 are independently -H, C1 to C4 alkoxy, C1 to C4 alkyl, halogen, C3 to C8 cycloalkyl, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl, Or a C1-C4 halogen-substituted alkyl group
  • R 11 is C1-C10 alkyl, C2-C8 alkenyl group, C1-C4 halogen-substituted alkyl group, C3-C8 cycloalkyl group, Or -NH 2
  • z 1 to 10
  • R 12 is a C1 to C10 al
  • R 1 is R 21 to R 23 are independently Or a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H or R 3 to R 5 are independently -H, C1 to C4 alkoxy groups, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl, Or a C1-C4 halogen-substituted alkyl group
  • R 11 is C1-C10 alkyl, C2-C8 alkenyl group, C1-C4 halogen-substituted alkyl group, C3-C8 cycloalkyl group, Or -NH 2
  • z 1 to 10
  • R 12 is a C1 to C10 alkyl group, Halogen, C2-C8 alkenyl, C1-C4 halogen-
  • R 1 is R 21 to R 23 are independently Or a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H or R 3 to R 5 are independently -H, C1 to C4 alkoxy groups, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl
  • R 11 is C1-C10 alkyl, C2-C8 alkenyl group, C1-C4 halogen-substituted alkyl group, C3-C8 cycloalkyl group, Or -NH 2
  • z 1 to 10
  • R 12 is a C1 to C10 alkyl group, Halogen, C2-C8 alkenyl, C1-C4 halogen-substituted alkyl, C3-C8 cycloalkyl, R
  • R 1 is R 21 to R 23 are independently Or a C1-C4 alkoxy group
  • R 2 is a C1-C4 alkoxy group, -H or R 3 to R 5 are independently -H, C1 to C4 alkoxy groups, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl
  • R 12 is a C1 to C10 alkyl group, Halogen, C2-C8 alkenyl, C1-C4 halogen-substituted alkyl, C3-C8 cycloalkyl
  • R 13 is C1 ⁇ C4
  • R 18 is a C1 to C4 alkyl group or -H; and R 19 and R 20 are independently a C1 to C4 alkyl group or -H.
  • R 1 is R 21 and R 22 are independently R 23 is C1 ⁇ C4 alkoxy group
  • R 2 is a C1 ⁇ C4 alkoxy, -H or R 3 to R 5 are independently -H, C1 to C4 alkoxy groups, -NH 2 or And not simultaneously -H
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl
  • R 12 is a C1 to C10 alkyl group, Halogen, C2-C8 alkenyl, C1-C4 halogen-substituted alkyl, C3-C8 cycloalkyl
  • R 13 is C1 ⁇ C4 alkyl, C1 ⁇ C4
  • R 1 is a substituted unsaturated 5-membered heterocyclic ring
  • the structural formula of the above 4-substituted coumarin derivative is as shown in Formula II:
  • A is O or S
  • R 2 is a C1-C8 alkoxy group, -H, a C1-C8 alkyl group, a halogen or a C3-C8 cycloalkyl group;
  • R 6 to R 9 are independently -H, C1 to C8 alkoxy, halogen, C1 to C8 alkyl, Or a C1-C8 halogen-substituted alkyl group;
  • R 19 and R 20 are independently a C1-C8 alkyl group, a halogen or -H.
  • A is O or S;
  • R 2 is a C1-C4 alkoxy group, -H, C1 ⁇ C4 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group;
  • R 6 ⁇ R 9 is independently -H, C1 ⁇ C4 alkoxy, halo, C1 ⁇ C4 alkyl, Or halo-substituted C1 ⁇ C4 alkyl group;
  • R 19, R 20 is independently a C1 ⁇ C4 alkyl, halogen, or -H.
  • A is O or S;
  • R 2 is C1-C4 alkoxy, -H, Or C1 ⁇ C4 alkyl group;
  • R 6 ⁇ R 9 is independently -H, C1 ⁇ C4 alkoxy, halo, C1 ⁇ C4 alkyl, Or halo-substituted C1 ⁇ C4 alkyl group;
  • R 19, R 20 is independently a C1 ⁇ C4 alkyl, halogen, or -H.
  • A is O or S;
  • R 2 is a C1 to C4 alkoxy group or -H; and
  • R 6 to R 9 are independently -H, a C1 to C4 alkoxy group, a halogen, a C1 to C4 alkyl group, Or halo-substituted C1 ⁇ C4 alkyl group;
  • R 19, R 20 is independently a C1 ⁇ C4 alkyl, halogen, or -H.
  • A is O or S;
  • R 2 is a C1 to C4 alkoxy group or -H; and
  • R 6 to R 9 are independently -H, a C1 to C4 alkoxy group, a halogen, a C1 to C4 alkyl group,
  • R 19 and R 20 are independently a C1 to C4 alkyl group, a halogen or -H.
  • A is O or S;
  • R 2 is C1 to C4 alkoxy or -H; and
  • R 6 to R 9 are independently -H, C1 to C4 alkoxy, halogen, C1 to C4 alkyl,
  • R 19 and R 20 are independently a C1 to C4 alkyl group or -H.
  • R1 is R3 is -H
  • R4 is methoxy
  • R5 is The structural formula of the above 4-substituted coumarin derivative as shown in Formula III:
  • R 2 is a C1-C8 alkoxy group, -H, a C1-C8 alkyl group, a halogen or a C3-C8 cycloalkyl group;
  • R 12 is a C1 to C10 alkyl group, Halogen, C2-C8 alkenyl, C1-C8 halogen-substituted alkyl, C3-C8 cycloalkyl,
  • R 13 is a C1-C8 alkyl group, a C1-C8 alkyl-substituted phenyl group or a halogen-substituted phenyl group;
  • R 14 to R 16 are independently C 1 -C 8 alkyl, halogen, -H, C 1 -C 8 alkoxy or -NH 2 , and are not -H at the same time;
  • R 17 is a C1-C8 alkyl group, a halogen, -H or
  • R 2 is a C1-C4 alkoxy group, -H, C1-C4 alkyl, halogen or C3-C8 cycloalkyl
  • R 12 is C1-C10 alkyl, Halogen, C2-C8 alkenyl, C1-C4 halogen-substituted alkyl, C3-C8 cycloalkyl
  • R 13 is C1 ⁇ C4 alkyl, C1 ⁇ C4 alkyl substituted phenyl or halo substituted phenyl group
  • R 14 ⁇ R 16 is independently a C1 ⁇ C4 alkyl, halogen, -H, C1 ⁇ C4 alkoxy Or -NH 2 , and not simultaneously -H
  • R 17 is C1-C4 alkyl, halogen, -H or
  • R 12 is C1-C10 alkyl, Halogen, C2-C8 alkenyl, C1-C4 halogen-substituted alkyl, C3-C8 cycloalkyl,
  • R 13 is C1 ⁇ C4 alkyl, C1 ⁇ C4 alkyl-substituted phenyl or phenyl substituted by halogen;
  • R 14 ⁇ R 16 is independently a C1 ⁇ C4 alkyl, halogen, -H, C1 ⁇ C4 alkoxy Or -NH 2 , and not simultaneously -H;
  • R 17 is C1-C4 alkyl, halogen, -H or
  • R 12 is C1-C10 alkyl, Halogen, C2-C8 alkenyl, C1-C4 halogen-substituted alkyl, C3-C8 cycloalkyl,
  • R 13 is C1 ⁇ C4 alkyl, C1 ⁇ C4 alkyl-substituted phenyl or phenyl substituted by halogen;
  • R 14 ⁇ R 16 is independently a C1 ⁇ C4 alkyl, halogen, -H, or C1 ⁇ C4 alkoxy And not at the same time -H;
  • R 17 is C1 ⁇ C4 alkyl, -H or
  • R 18 is a C1-C4 alkyl group, a halogen or -H.
  • R 18 is C1-C4 alkyl, halogen or -H;
  • R 18 is a C1 to C4 alkyl group or -H.
  • the present invention also provides a process for the preparation of the above 4-substituted coumarin derivative.
  • A is O or S;
  • R 2 is a C1 to C8 alkoxy group, -H, C1 ⁇ C8 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group;
  • R 6 ⁇ R 9 is independently -H, C1 ⁇ C8 alkoxy, halogen, C1 ⁇ C8 alkyl group, Or halo-substituted C1 ⁇ C8 alkyl group;
  • R 19, R 20 is independently a C1 ⁇ C8 alkyl, halo or -H.
  • intermediate 4 1) 1 equivalent of intermediate 3, 1-2 equivalents And refluxing with 3 to 5 equivalents of a base in an organic solvent for 6 to 12 hours to obtain an intermediate 4;
  • the base is triethylamine, diisopropylethylamine (DIPEA), pyridine, potassium carbonate, sodium carbonate, Any one of potassium hydroxide, sodium hydroxide or sodium hydride;
  • the organic solvent is N,N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane or Any of carbon tetrachloride;
  • intermediate 5 1 equivalent of intermediate 5 and 1 equivalent Dissolved in an organic solvent, adding 2 to 5 equivalents of a base and 0.3% to 0.8% equivalent of a catalyst, and refluxing to obtain an intermediate 6;
  • the base is triethylamine, diisopropylethylamine (DIPEA), pyridine Any one of potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide or sodium hydride;
  • the organic solvent is N,N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine Any one of tetrahydrofuran, dichloromethane or carbon tetrachloride;
  • the catalyst is any one of palladium acetate, palladium dichloride, 10% palladium carbon, and tetrakis(triphenyl)phosphorus palladium;
  • R 2 is a C1-C8 alkoxy group, -H, C1 ⁇ C8 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group;
  • R 19, R 20 is independently a C1 ⁇ C8 alkyl, halo or -H;
  • R 23 is C1 ⁇ C4 alkoxy.
  • R 2 is a C1-C8 alkoxy group, -H, C1-C8 alkyl, halogen or C3-C8 cycloalkyl
  • R 12 is C1-C10 alkyl, Halogen, C2-C8 alkenyl, C1-C8 halogen-substituted alkyl, C3-C8 cycloalkyl
  • R 13 is a C1-C8 alkyl group, a C1-C8 alkyl-substituted phenyl group or a halogen-substituted phenyl group
  • R 14 to R 16 are independently a C1-C8 alkyl group, a halogen, a -H, a C1-C8 alkoxy group.
  • R 17 is a C1 to C8 alkyl group, a halogen, -H or
  • the intermediate 11 Dissolving 1 equivalent of the intermediate 11 in an organic solvent, adding 1% to 2% equivalent of a palladium carbon catalyst, and reducing by 5 to 20 equivalents of hydrogen to obtain the intermediate 12;
  • the palladium catalyst is 10% content of palladium carbon;
  • the organic solvent is N,N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine, four Any one of hydrogen furan, dichloromethane or carbon tetrachloride; the reaction temperature is 0 ° C ⁇ 40 ° C; the reaction time is 2 ⁇ 12 hours;
  • an intermediate 14 1 equivalent of 13 and 1 equivalent of the intermediate 10 is dissolved in an organic solvent, 2 to 3 equivalents of a base are added, and refluxing to obtain an intermediate 14;
  • the base is selected from the group consisting of triethylamine and diisopropyl Any one of methyl ethylamine (DIPEA), pyridine, potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide or sodium hydride;
  • the organic solvent is selected from the group consisting of N,N-dimethylformamide (DMF), Any one of methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane, carbon tetrachloride; the reaction time is 2 to 24 hours;
  • Q is a halogen
  • R 11 is a C1 to C10 alkyl group, C2-C8 alkenyl group, C1-C4 halogen-substituted alkyl group, C3-C8 cycloalkyl group, Or -NH 2
  • z 1 to 10
  • R 18 is a C1 to C4 alkyl group, a halogen or -H.
  • the intermediate 16 Dissolve 1 equivalent of the intermediate 16 in an organic solvent, add 3 to 5 equivalents of sodium methoxide, and react under reflux to obtain the intermediate 17;
  • the organic solvent is N,N-dimethylformamide (DMF) , any one of methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane, carbon tetrachloride; the reaction time is 2 to 24 hours;
  • DMF N,N-dimethylformamide
  • the intermediate 17 is dissolved in an organic solvent, 1% to 2% equivalent of palladium carbon is added, and 5 to 20 equivalents of hydrogen are introduced for reduction to obtain the intermediate 18;
  • the organic solvent is N. , N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane, carbon tetrachloride;
  • the reaction temperature can be 20 ° C ⁇ 100 ° C; the reaction time is 2 to 24 hours;
  • reaction temperature may be 0 ° C ⁇ 60 ° C; reaction time is 1 ⁇ 12 hours.
  • the present invention also provides a pharmaceutically acceptable salt of the above 4-substituted coumarin derivative.
  • the pharmaceutical composition is composed of a coumarin derivative substituted at the 4-position of the formulae I to IV and a salt thereof, and a pharmaceutically acceptable carrier is added.
  • the present invention also provides the use of the above 4-substituted coumarin derivative and a salt thereof for the preparation of an antitumor drug.
  • the anti-tumor drug is a drug that antagonizes lung cancer, colon cancer, prostate cancer, ovarian cancer, and breast cancer.
  • the target of the anti-tumor drug is human lung cancer large cell carcinoma NCI-H460, human small cell lung cancer cell NCI-H446, human liver cancer cell line HepG2, human colon cancer cell line HCT116, human prostate cancer PC-3, human melanoma A375. .
  • the present invention also provides the use of the above 4-substituted coumarin derivative and a salt thereof for the preparation of a medicament for anti-sensitive and drug-resistant tumor cells.
  • the present invention also provides the use of the above 4-substituted coumarin derivative and a salt thereof for the preparation of a medicament for treating inflammation.
  • the present invention also provides the above 4-substituted coumarin derivatives and salts thereof, which are in the form of pharmaceutically acceptable preparations, including: tablets, oral preparations, suppositories, pills, large infusions, small needles, lyophilized Powder needles, capsules, aerosols, dispersible tablets, ointments, including various sustained release, controlled release dosage forms or nano preparations.
  • the above 4-substituted coumarin derivatives and salts thereof are administered in unit dosage form, and the injection includes intravenous, intramuscular, subcutaneous and intraperitoneal injection.
  • the above tablets and capsules may include: a binder (such as gum arabic, corn starch or gelatin), an excipient (such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid, etc.), Lubricants (such as magnesium stearate), sweeteners (such as sucrose, fructose, lactose, etc.) or flavoring agents (such as mint).
  • a binder such as gum arabic, corn starch or gelatin
  • an excipient such as dicalcium phosphate
  • a disintegrating agent such as corn starch, potato starch, alginic acid, etc.
  • Lubricants such as magnesium stearate
  • sweeteners such as sucrose, fructose, lactose, etc.
  • flavoring agents such as mint
  • a liquid carrier such as vegetable oil or polyethylene glycol.
  • the active compound mainly composed of the 4-substituted coumarin derivative and the salt thereof provided by the present invention can be incorporated into a sustained release preparation and a sustained release device.
  • the active compound based on the 4-substituted coumarin derivative and its salt provided by the present invention can also be administered intravenously or intraperitoneally by infusion or injection.
  • the active compound mainly composed of the 4-substituted coumarin derivative and the salt thereof provided by the present invention can be prepared by using an aqueous solution or mixing a non-toxic surfactant, and can also be prepared in glycerin, liquid polyethylene glycol, glycerin.
  • a dispersing agent for at least one of the triesters can be prepared.
  • the above formulations also contain a preservative to prevent the growth of microorganisms.
  • the pharmaceutical dosage form for injection or infusion may comprise a sterile aqueous solution, dispersion or sterile powder of the active ingredient of the 4-substituted coumarin derivative and its salts provided by the present invention.
  • the liquid carrier of the dispersing agent may be a solvent or a liquid dispersion medium including at least one of water, ethanol, polyol (such as glycerin, propylene glycol, liquid polyethylene glycol, etc.), vegetable oil or non-toxic glyceride.
  • liposomes such as liposomes, fat emulsions, microspheres and nanospheres
  • microparticle dispersion systems including polymeric micelles, nanoemulsions, submicroemuls ), microcapsules, microspheres, liposomes, and vesicles (niosomes).
  • the compound provided by the invention has strong antitumor activity, and has an IC50 value of 0.01 to 5 nM in various tumor cell lines, and has a better effect of inhibiting microtubule polymerization, and has various biological activities and is small.
  • the toxicity provides a new choice for the preparation of anti-sensitive and drug-resistant tumor cells.
  • Figure 1 Depolymerization of microtubules by some compounds.
  • Figure 3 is a graph showing tumor growth curves of each compound on a colon cancer C26 model.
  • Figure 4 is a graph showing tumor growth curves of each compound in a lung cancer H460 model.
  • Figure 5 In vitro microtubule polymerization curve. The degree of microtubule polymerization was reflected by monitoring the absorbance at 340 nm wavelength of 37 ° C with a microplate reader.
  • Figure 6 Scratch and tube formation experiments.
  • the compounds of the present invention were shown to have anti-angiogenic activity using scratch and tube-forming experiments performed on HUVEC cells.
  • A is O or S;
  • R 2 is a C1 to C8 alkoxy group, -H, C1 ⁇ C8 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group;
  • R 6 ⁇ R 9 is independently -H, C1 ⁇ C8 alkoxy, halogen, C1 ⁇ C8 alkyl group, Or halo-substituted C1 ⁇ C8 alkyl group;
  • R 19, R 20 is independently a C1 ⁇ C8 alkyl, halo or -H.
  • intermediate 4 1) 1 equivalent of intermediate 3, 1-2 equivalents And refluxing with 3 to 5 equivalents of a base in an organic solvent for 6 to 12 hours to obtain an intermediate 4;
  • the base is triethylamine, diisopropylethylamine (DIPEA), pyridine, potassium carbonate, sodium carbonate, Any one of potassium hydroxide, sodium hydroxide or sodium hydride;
  • the organic solvent is N,N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane or Any of carbon tetrachloride;
  • intermediate 5 1 equivalent of intermediate 5 and 1 equivalent Dissolved in an organic solvent, adding 2 to 5 equivalents of a base and 0.3% to 0.8% equivalent of a catalyst, and refluxing to obtain an intermediate 6;
  • the base is triethylamine, diisopropylethylamine (DIPEA), pyridine Any one of potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide or sodium hydride;
  • the organic solvent is N,N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine Any one of tetrahydrofuran, dichloromethane or carbon tetrachloride;
  • the catalyst is any one of palladium acetate, palladium dichloride, 10% palladium carbon, and tetrakis(triphenyl)phosphorus palladium;
  • R 2 is a C1-C8 alkoxy group, -H, C1 ⁇ C8 alkyl, halogen, or C3 ⁇ C8 cycloalkyl group;
  • R 19, R 20 is independently a C1 ⁇ C8 alkyl, halo or -H;
  • R 23 is C1 ⁇ C4 alkoxy.
  • R 2 is a C1-C8 alkoxy group, -H, C1-C8 alkyl, halogen or C3-C8 cycloalkyl
  • R 12 is C1-C10 alkyl, Halogen, C2-C8 alkenyl, C1-C8 halogen-substituted alkyl, C3-C8 cycloalkyl
  • R 13 is a C1-C8 alkyl group, a C1-C8 alkyl-substituted phenyl group or a halogen-substituted phenyl group
  • R 14 to R 16 are independently a C1-C8 alkyl group, a halogen, a -H, a C1-C8 alkoxy group.
  • R 17 is a C1 to C8 alkyl group, a halogen, -H or
  • the intermediate 11 Dissolving 1 equivalent of the intermediate 11 in an organic solvent, adding 1% to 2% equivalent of a palladium carbon catalyst, and reducing by 5 to 20 equivalents of hydrogen to obtain the intermediate 12;
  • the palladium catalyst is 10% palladium carbon;
  • the organic solvent is N,N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane or carbon tetrachloride Any one of the above; the reaction temperature is 0 ° C ⁇ 40 ° C; the reaction time is 2 ⁇ 12 hours;
  • an intermediate 14 1 equivalent of 13 and 1 equivalent of the intermediate 10 is dissolved in an organic solvent, 2 to 3 equivalents of a base are added, and refluxing to obtain an intermediate 14;
  • the base is selected from the group consisting of triethylamine and diisopropyl Any one of methyl ethylamine (DIPEA), pyridine, potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide or sodium hydride;
  • the organic solvent is selected from the group consisting of N,N-dimethylformamide (DMF), Any one of methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane, carbon tetrachloride; the reaction time is 2 to 24 hours;
  • Q is a halogen
  • R 11 is a C1 to C10 alkyl group, C2-C8 alkenyl group, C1-C4 halogen-substituted alkyl group, C3-C8 cycloalkyl group, Or -NH 2
  • z 1 to 10
  • R 18 is a C1 to C4 alkyl group, a halogen or -H.
  • the intermediate 16 Dissolve 1 equivalent of the intermediate 16 in an organic solvent, add 3 to 5 equivalents of sodium methoxide, and react under reflux to obtain the intermediate 17;
  • the organic solvent is N,N-dimethylformamide (DMF) , any one of methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane, carbon tetrachloride; the reaction time is 2 to 24 hours;
  • DMF N,N-dimethylformamide
  • the intermediate 17 is dissolved in an organic solvent, 1% to 2% equivalent of palladium carbon is added, and 5 to 20 equivalents of hydrogen are introduced for reduction to obtain the intermediate 18;
  • the organic solvent is N. , N-dimethylformamide (DMF), methanol, ethanol, toluene, ethyl acetate, pyridine, tetrahydrofuran, dichloromethane, carbon tetrachloride;
  • the reaction temperature can be 20 ° C ⁇ 100 ° C; the reaction time is 2 to 24 hours;
  • reaction temperature may be 0 ° C ⁇ 60 ° C; reaction time is 1 ⁇ 12 hours.
  • the coumarin derivatives of the present invention have significant pharmacological activities, such as anti-tumor and anti-vascular diseases. To confirm the above characteristics, the compounds of the present invention were tested for tumor cell proliferation inhibitory activity in vitro.
  • ATCC American Type Culture Collection
  • pH meter METTLER TOLEDO company product DELTA320.
  • Weight scale Longteng Electronics Co., Ltd., LD5102.
  • Temperature and hygrometer Wuqiang Wenshui Table Manufacturing Center, Hengshui City, Hebei province, GJWS-A5.
  • Liquid nitrogen tank American company, CY50985-70.
  • the cells cultured in vitro were digested with 0.25% trypsin, gently blasted, collected, centrifuged, 1200 g * 3 min, resuspended in fresh medium, and the cells were diluted to a suitable density. After mixing, a small amount of suspended droplets were pipetted onto the hemocytometer and counted under an inverted microscope. Make a note of the total number of cells in the four large cells, take the average and multiply by 10 4 , multiply by the dilution factor to obtain the cell density, multiply the total volume to obtain the total number of cells.
  • the cells were digested with 0.25% trypsin, centrifuged, added to complete medium suspension, and the cells were counted using a hemocytometer.
  • the 96-well plate was added to the diluted cell suspension at 1000-10000 cells per well. Incubate overnight in a CO 2 incubator.
  • Tumor cells in logarithmic growth phase were selected and digested with 0.25% trypsin.
  • the cell suspension concentration was adjusted with complete medium, and 1000-10000 cells per well were seeded into 96-well plates at 200 ⁇ L per well, at 37 °C.
  • the cells were cultured for 24 h in the %CO2 incubator.
  • the experimental group was replaced with a new medium containing different concentrations of the test compound, and the control group was replaced with an equal volume of fresh medium. Each group was set with 5 parallel holes, 5% at 37 °C. Culture in CO2 incubator.
  • IC 50 median lethal concentration
  • Table 1 The range of the median lethal concentration ⁇ M (IC 50 ) of each compound against liver cancer cells HEPG2 and colon cancer cells HCT116 is shown in Table 1, where "+” indicates an IC 50 > 5 uM or more, and “++” indicates 100 nM ⁇ IC 50 ⁇ 5 ⁇ M, “+++” means 10 nM ⁇ IC 50 ⁇ 100 nM, and "++++” means 0.01 ⁇ IC 50 ⁇ 10 nM.
  • a plurality of compounds in Table 1 exhibited good anti-tumor cell proliferation activity.
  • Some of the compounds provided by the present invention have exceeded the positive drugs such as MPC6827, paclitaxel, vincristine and colchicine.
  • multiple compounds not only have strong anti-increasing activity against tumor cell ovarian cancer A2780S, colon cancer cell HCT-8 and breast cancer cell MCF-7, but also paclitaxel-resistant ovarian cancer cells A2780/T and paclitaxel resistance.
  • the colon cancer cells HCT-8/T and the adriamycin-resistant breast cancer cells MCF-7/ADR also have good anti-value-adding activities.
  • the compounds COUM-71, COUM-80, COUM-87, and COUM-81 all showed stronger activity than paclitaxel, vincristine, and colchicine.
  • Example 101 Immunofluorescence shows the depolymerization of some compounds on microtubules
  • SPF BALB/c nude mice (Balb/C nu/nu) and mice, female, 4-6 weeks old, 18-22 grams, purchased from Beijing Huakang Biotechnology Co., Ltd., production license number: SCXK (Beijing) 2009-0004 and SCXX (Beijing) 2014-0004, serving in the SPF animal laboratory.
  • the modified RPMI 1640 medium is supplied by HyClone, batch number NWE 0416, specification: 500 mL, valid until May 31, 2012.
  • DMEM medium is supplied by HyClone, batch number NZB1077, specification: 500mL, valid until February 28, 2015, and stored at 2-8 °C.
  • Human lung cancer H460 and murine colon cancer C26 cells were cultured in RPMI 1640 medium (HyClone) containing 10% fetal bovine serum (Huhhot Prairie Green Wildlife Engineering Materials Co., Ltd.) and 100 U/mL penicillin and chain. Mycin.
  • the logarithmic growth phase cells were digested and counted with 0.25% trypsin, and the single cell suspension was diluted to 1 ⁇ 10 7 or 6 ⁇ 10 7 cells/mL in a medium containing no fetal bovine serum.
  • the tumor cells were collected under aseptic conditions, and the cell density was adjusted to 5 ⁇ 10 7 cells/mL with sterile physiological saline. 0.2 mL was inoculated into the back of the nude mice, and the tumor was grown to a diameter of 1 cm, and taken out under aseptic conditions. The tumor pieces were cut into 1 mm ⁇ 1 mm size and uniformly inoculated into the back of the nude mice for subculture. After passage for 2 times, the tumor was grown to a diameter of 1 cm, taken out under aseptic conditions, and cut into tumor pieces of 1 mm ⁇ 1 mm size, and uniformly inoculated into the back of the nude mice. After the tumor was grown to 100-300 mm 3 after 7 days, the animals were randomly divided into groups and started to be injected into the tail vein (iv) once a day. The dosage and administration methods are shown in Tables 3 and 4.
  • Tumor volume (TV), relative tumor volume (RTV) and relative tumor proliferation rate The long and short diameters of the tumor were measured with a 1/50 mm precision vernier caliper or scale every 2 days, and the test drug was antitumor. effect.
  • RTV relative tumor volume
  • the evaluation index of anti-tumor activity is the relative tumor growth rate T/C (%), and the calculation formula is as follows:
  • TRTV relative tumor volume of the treatment group
  • CRTV negative control group relative to tumor volume
  • T / C (%) > 60 is invalid; T / C (%) ⁇ 60, and statistically treated P ⁇ 0.05 is effective.
  • the animals were sacrificed at the end of the treatment, the tumor pieces were dissected, the tumor weight was weighed, and photographed. Calculate the tumor inhibition rate (%) as follows:
  • tumor inhibition rate ie, tumor growth inhibition rate
  • Figures 4 and 6 show the anti-tumor activity of a number of representative compounds on a human lung cancer H460 model. As can be seen from Fig. 4 and Table 6, the experimental results show that the compounds COUM-87, COUM-92, COUM-95, COUM-71, COUM-76, COUM-79, COUM-81, COUM- are compared with the blank control group.
  • Example 103 Pharmacodynamics of a human ovarian cancer cell line A2780S and a paclitaxel-resistant cell A2780/Taxol tumor-bearing nude mouse model
  • the modified RPMI 1640 medium is supplied by HyClone, batch number NWE 0416, specification: 500 mL, valid until May 31, 2012.
  • DMEM medium is supplied by HyClone, batch number NZB1077, specification: 500mL, valid until February 28, 2015, and stored at 2-8 °C.
  • Human ovarian cancer cell line A2780S and paclitaxel-resistant ovarian cancer A2780/Taxol cells were cultured in RPMI 1640 medium (HyClone) containing 10% fetal bovine serum (Hohhot Prairie Green Wildlife Engineering Materials Co., Ltd.) and 100 U/mL penicillin and streptomycin.
  • the logarithmic growth phase cells were digested and counted with 0.25% trypsin, and the single cell suspension was diluted to 1 ⁇ 10 7 or 6 ⁇ 10 7 cells/mL in a medium containing no fetal bovine serum.
  • human ovarian cancer cell A2780S and paclitaxel-resistant ovarian cancer A2780/Taxol tumor cells were collected under aseptic conditions, and the cell density was adjusted to 5 ⁇ 10 7 cells/mL with sterile physiological saline, and 0.1 was taken. mL was inoculated into the back of the nude mice, and the tumor was grown to a diameter of 1 cm. The cells were removed under sterile conditions and cut into tumor pieces of 1 mm ⁇ 1 mm size, and evenly inoculated into the back of the nude mice for subculture. After the tumor was grown to 100-300 mm 3 after 12 days, the animals were randomly divided into groups to start administration.
  • the blank control group received normal saline, 0.2 mL/mouse, tail vein injection, once every 2 days; MPC6827 group 5 mg/kg, tail vein injection, 7 times once; paclitaxel group 10 mg/kg, intraperitoneal administration, once every 2 days, 30mg/kg intraperitoneal administration, once every 7 days; COUM-87 citrate, COUM-92 were 2.5, 5, 10mg/kg, tail vein injection, 2 days, 20mg/kg, tail vein injection, 7th 1 time.
  • the body weight was weighed every 2 days and the length and width of the tumor were measured with a vernier caliper. After 20 days of administration, the nude mice were dislocated and sacrificed, the tumor tissues were removed, weighed and photographed. Finally, the tumor inhibition rate (%) was calculated, and the antitumor effect intensity was evaluated by the tumor inhibition rate.
  • Table 7 lists the therapeutic effects of each compound on ovarian cancer A2780s and A2780T.
  • the compound COUM-87 citrate and compound COUM-92 can inhibit tumor growth in a dose-dependent manner, and the antitumor activity is superior to paclitaxel, and the body weight does not change significantly during the treatment, while the paclitaxel body weight decreases by about 2 g on average. , indicating that the compound COUM-87 citrate and the compound COUM-92 are less toxic than paclitaxel.
  • Tubulin was purchased from cytoskeleton, stored at -80 ° C, placed on ice using a pre-cooled microtubule polymerization buffer (Genaral Tubulin Buffer, 80 mM piperazine-1,4-diethanesulfonic acid, 2 mM) Magnesium chloride, 0.5 mM ethylene glycol bis(2-aminoethyl ether) tetraacetic acid, pH 6.9) Dissolve tubulin, mix on ice, place for 30 min-1 h, fully depolymerize tubulin; Use 96-well plate to preheat in the microplate reader, adjust the temperature to 37 °C, and adjust the microplate reader setting: dynamic reading (kinetic mode), measure the absorbance at 340 nm wavelength, and set the test time to 30-60 min. Read the value every 1 min; then take a portion of the General Tubulin Buffer to equilibrate to room temperature.
  • Genearal Tubulin Buffer 80 mM piperazine-1,4
  • Tubulin was transferred to a pre-cooled EP tube, centrifuged at 13,000 rpm for 20 min at 4 ° C, and the supernatant was placed on ice. Protein quantification was performed by the Bradford method, and the tubulin concentration was adjusted to 2 mg/mL by microtubule polymerization buffer according to the quantitative result.
  • test compound was added to 100 ⁇ L of general tubulin buffer preheated to room temperature at 10 times the experimental concentration, which is the 10 ⁇ solution of the test compound.
  • the control group was prepared in an equal volume ratio of DMSO. Observe that the compound is well dissolved. After the precipitation has not occurred, remove the pre-heated 96-well plate from the microplate reader. Add 10 ⁇ L of the corresponding 10 ⁇ solution to each experimental group as soon as possible, and then return the 96-well plate to the microplate reader. Incubate at 37 °C.
  • a 96-well plate was taken from the microplate reader, and 90 ⁇ L of tubulin was quickly added to each well (bubble prevention was prevented during the addition).
  • the compounds COUM-87 and COUM-92 inhibited the polymerization of tubulin in a dose-dependent manner in the same manner as the positive drug.
  • the inhibitory effect was comparable to that of MPC6827, indicating that the compound COUM -87, COUM-92 has strong inhibition of microtubule polymerization activity.
  • Microtubule inhibitors with colchicine binding sites often have the ability to destroy tumor-associated blood vessels. Because such compounds are considered to have a dual mechanism of killing tumor cells and tumor-associated vascular endothelial cells.
  • the effect of the compound on the microtubule system causes morphological changes in endothelial cells.
  • the newborn umbilical cord is obtained from the clinic, stored in a sterile PBS solution, and the ice pack is kept at a low temperature, and returned to the aseptic console for operation.
  • the lower end of the umbilical cord was clamped with a surgical forceps, and collagenase (purchased from Roche) at a concentration of 1 mg/mL was added for 15 to 20 minutes at room temperature, and the umbilical cord was shaken up and down from time to time.
  • the lower surgical forceps are loosened, the digestive juice is allowed to flow into a 50 mL sterile centrifuge tube, and the umbilical cord is rinsed 2 to 3 times with a sterile PBS solution.
  • the collection solution was centrifuged at 1500 rpm for 3 minutes. The supernatant was discarded, and the cells were resuspended in EBM-2 medium (purchased from lonza) containing various growth factors, and cultured at 37 ° C in an incubator of 5% CO 2 .
  • HUVEC cells passaged between passages 3 to 7 were collected and plated in 6-well plates. When the cells grew to near the monolayer, they were replaced with serum-free medium for 6 h. The cells were scratched with a sterile medium pipette tip. The sterilized PBS was washed twice, and the EBM-2 medium containing various growth factors was exchanged for further cultivation, and the compounds were added at different concentrations. At this time, immediately take a photo under the microscope as a 0h group. The cell migration time was 24 h. After the treatment time, 4% paraformaldehyde was fixed and photographed under a microscope. Three different fields of view were randomly selected from each group, and the number of migrated cells was counted.
  • Matrigel ( Matrigel, purchased from Becton Dickinson (BD)) was placed at 4 ° C to make it liquid; the tip of the experiment, the 96-well plate, and the EP tube were also pre-cooled.
  • Matrigel was added to the 96-well plate in an amount of 50 ⁇ L/well, and it was incubated in a CO 2 incubator at 37 ° C for 45 min to allow it to coagulate. HUVEC cells passaged between the third and seventh generations were collected, counted, and plated into Matrigel 96-well plates at 10,000 cells/well while adding the compounds at different concentrations. After 8 h, 4% paraformaldehyde was fixed and photographed under a microscope. Three different fields of view were randomly selected from each group, and the formed cavity structures were counted.
  • the present invention has an IC50 value of 0.01 to 5 nM in various tumor cell lines, and has a good effect of inhibiting microtubule polymerization, and has various biological activities and less toxicity. It may also have good solubility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

本发明提供了一种4位取代的香豆素衍生物,其结构式如式1所示,还提供了上述4位取代的香豆素衍生物的制备方法和用途。所述化合物具有较强的抗肿瘤活性,还具有较好的抑制微管聚合的效果,可用来制备抗敏感和耐药肿瘤细胞药物。

Description

4位取代的香豆素衍生物及其制备方法和用途 技术领域
本发明属于化学医药领域,具体涉及4位取代的香豆素衍生物及其制备方法和用途。
背景技术
微管是构成细胞骨架的主要成分,微管有聚合和解聚的动力学特性,在保持细胞形态、细胞的分裂增殖、细胞器的组成与运输及信号物质的传导方面发挥重要作用。以微管为靶点的抗肿瘤药物就是利用其动力学特性,或促进其聚合或抑制其聚合,从而达到直接影响细胞的有丝分裂,使细胞分裂停止于G2/M期。研究表明微管至少存在3个不同的药物结合位点:紫杉醇位点、长春新碱位点和秋水仙碱位点。紫杉醇能够抑制微管蛋白的解聚,使微管结构稳定;而长春碱和秋水仙碱则通过各自的作用位点,抑制微管蛋白的聚合。
抑制微管解聚的药物,以紫杉醇(Taxol)为代表,现已广泛应用于乳腺癌、卵巢癌、肺癌和非小细胞肺癌等的治疗。抑制微管聚合的药物,有两个不同的结合位点:秋水仙碱(colchicine)位点和长春碱(vinblastine)位点。作用长春碱位点的药物,以长春碱(vinblastine),长春新碱(vincristin)等为代表,目前在临床上用于治疗白血病,淋巴癌,非小细胞肺癌等的治疗。作用于秋水仙碱的药物,以秋水仙碱,鬼臼毒素,康普瑞丁(CA-4)为代表,秋水仙碱位点空腔体积较小且相应抑制剂的结构较为简单,因而近年来关于其抑制剂的研究也备受关注,其中有部分衍生物治疗肿瘤已经进入临床研究,如E7010
Figure PCTCN2016074796-appb-000001
ZD6126
Figure PCTCN2016074796-appb-000002
等,展现了较好的应用前景。在炎性疾病的治疗中,秋水仙碱已在临床上用于急性痛风和痛风性关节炎的治疗。由于紫杉醇类和长春碱类化合物,在肿瘤治疗取得的成功,使得科学家们对开发出靶向秋水酰碱位点的微管抑制剂充满了信心。
相对于紫杉醇位点和长春碱位点,以秋水酰碱位点为靶点开发肿瘤药物,主要具备两个重要的优点。其一,但凡靶向秋水酰碱位点的化疗药物,不仅可以抑制微管蛋白的聚合,还普遍具有抑制肿瘤新生血管生成的活性。因此,这类药物可以抑制实体肿瘤的血管生成,造成肿瘤组织的供血不足,能对肿瘤的抑制起到明显的治疗作用,近年来,也是越来越得到各学者的认可。更为重要的是,抗血管作用不受多重耐药性的影响,能有效且长期起到抗肿瘤活性。
另一个优点,就是靶向秋水酰碱位点的化疗药物能有效地抵抗耐药性。尽管以微管为靶点的抗肿瘤药物在单独给药和联合给药中,均显示出了强大的活性,但在治疗肿瘤的化疗中其多药耐药限制了其疗效的发挥。目前,紫杉醇耐药机制涉及过度表达MDR-1基因,α、β微管基因的点突变,β-III微管蛋白单体表达三方面。美国FDA最近批准埃坡霉素上市,被证实需要克服β-III微管蛋白单体耐药机制。临床用药证实,紫杉醇类和长春碱类药物因耐药造成治疗失败的主要耐药机制就是P-糖蛋白过度表达和β-III微管蛋白单体表达改变。
香豆素(Coumarin)类化合物在结构上可以看成是顺式邻羟基桂皮酸脱水而形成的内酯类化合物,是一类具有苯骈--吡喃酮母核天然产物的总称。自1812年Vauquelin从植物Daphnealpina中首次得到香豆素类化合物瑞香苷(daphnin),至今已研究数百种香豆素类化合物。此类化合物广泛存在于植物界,特别是在伞形科、芸香科、菊科、豆科、茄科等植物中分布广泛。如蛇床子、独活、白芷、枳壳、前胡、秦皮、茵陈、补骨脂、续随子等中药均含有这类成分。香豆素类化合物具有显著地抗病毒、抗肿瘤、抗微生物、抗癌、抗炎等多方面的生物活性,为国内外学者研究一直所重视。根据其母核上取代基及其位置的差异,分为简单香豆素、呋喃香豆素、吡喃香豆素和其他香豆素四类。香豆素气味芳香,代表性化合物主要有:当归内酯、白芷内酯、美花椒内酯、亮菌甲素等。
在众多被报道的化疗药物中,香豆素被实验证实具有较小或者没有毒性。因此,众多药学工作者对香豆素的作用机制产生了浓厚兴趣。目前,香豆素在抗肿瘤中已经被报道了具有酶抑制活性,细胞周期阻滞,抗血管生成活性,热休克蛋白(HSP90)抑制活性,端粒酶抑制活性,抗有丝分裂活性,碳酸酐酶抑制活性,转运蛋白抑制活性,芳香酶抑制活性以及硫酸酯酶抑制活性。进一步地,学者们对香豆素类衍生物的构效关系,深入地进行了探索。
Tsyganov等人研究了香豆素类化合物抗有丝分裂活性。他们半合成出了多烷氧基取代的3-(4-甲氧基苯基)香豆素,通过表型海胆胚胎试验证明了这些化合物具有抗有丝分裂活性。其中,报道了化合物A,他们在研究中指出,化合物A的抗有丝分裂活性来源与香豆素母核的5,6,7位碳上的甲氧基有关。三甲氧基的结构确实在很多微管抑制剂中出现,比如,秋水酰碱和CA4。同时,他们的研究认为,香豆素3位有取代的芳香基团,是香豆素抗有丝分裂药物的特征。
文献Biochemical Pharmacology,2009,77,1773–1779中,报道了香豆素化合物B。文献中发现,化合物B具有微管解聚作用,并明显地引起细胞在G2/M期阻滞,这个现象是符合秋水仙碱位点的化疗药物的。同时,对肿瘤细胞抑制的IC50在44.8-475.2nM之间,对正常细胞的抑制大于5微摩尔。对耐药肿瘤细胞株,化合物B仍然显示明显的抑制作用。化合物B的结构,在7位碳上有一个二乙氨基,替代了甲氧基。此外,同化合物A一样,化合物B的3位碳上也是有一个芳香取代结构。在3位碳上的取代衍生 物,被认为是微管抑制类药物的特征。
文献J.Med.Chem.2011,54,3153–3162中,报道了香豆素衍生化合物C。文献中发现,化合物C具有较强的抗肿瘤活性,IC50值在几十个纳摩尔范围。同时发现,化合物C具有微管解聚作用,类似于秋水仙碱和CA4。更重要的是,对于P-糖蛋白过表达的耐药株,化合物C仍然显示明显的抑制作用。化合物C的报道引起了大家对香豆素4位碳芳香取代的重视,扩展了香豆素衍生物可修饰的范围。
文献J.Med.Chem.2009,52,2341~2351中报道了化合物D(MPC-6827,Azixa),对多种肿瘤细胞其IC50值在1~10nM之间,目前化合物D在治疗多元神经胶质瘤做到了临床二期,治疗黑色素瘤做到了临床一期。文献Cancer Res.2007,Jun 15,67(12):5865~71中,报道化合物D作用机制是通过靶向秋水酰碱位点,抑制微管蛋白的聚合,从而阻断有丝分裂过程,诱导细胞凋亡。文献中通过计算机模拟结果显示化合物D的2位取代的官能团,占据了秋水仙碱位点一个重要的口袋,且2位取代的基团越大,抗微管活性越低,其中以甲基或卤素原子如氯原子取代对维持化合物D的抗微管活性具有重要贡献。化合物D的2位无取代,将会导致抗微管活性完全失去。此外,喹唑啉的1位芳香氮原子和3位芳香氮原子在维持微管活性种扮演不同的角色,其中,1位芳香氮原子与微管蛋白中的氢键供体形成氢键,有利于抑制微管蛋白的活性,而3位芳香氮原子无此功能。同时,喹唑啉的4位上氮原子上的取代基甲基对发挥抑制微管活性也具有重要作用,如甲基被其它集团如氢取代也将失去抗微管活性。尽管化合物D显示良好的抗肿瘤活性,但I期和II期临床试验结果表明其毒性大,限制其药效的发挥。
上述化合物A、B、C、D的结构式如下所示:
Figure PCTCN2016074796-appb-000003
目前,开发出能够有效地抵抗耐药性,且安全、低毒的化合物是非常迫切的。
发明内容
本发明为了解决上述问题,提供了一种4位取代的香豆素衍生物,其结构式如式Ⅰ所示:
Figure PCTCN2016074796-appb-000004
其中,R1为取代的饱和或不饱和5~12元杂环或
Figure PCTCN2016074796-appb-000005
所述杂环的杂原子为N、O或S;所述杂环上的取代基为
Figure PCTCN2016074796-appb-000006
C1~C8烷氧基、C1~C8烷基、卤素或C3~C8环烷基;
R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000007
C1~C8烷基、卤素或C3~C8环烷基;
R3~R5独立地为-H、C1~C8烷氧基、C1~C8烷基、卤素、C3~C8环烷基、
Figure PCTCN2016074796-appb-000008
C2~C8烯基、C1~C8卤素取代的烷基、-NH2
Figure PCTCN2016074796-appb-000009
且不同时为-H;
R6~R9独立地为-H、C1~C8烷氧基、卤素、C1~C8烷基、
Figure PCTCN2016074796-appb-000010
或C1~C8卤素取代的烷基;
R10
Figure PCTCN2016074796-appb-000011
x=1~4,y=1~4;
R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000012
C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000013
或-NH2;z=1~10;
R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000014
卤素、C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000015
R13为C1~C8烷基、C1~C8烷基取代的苯基或卤素取代的苯基;
R14~R16独立地为C1~C8烷基、卤素、-H、C1~C8烷氧基或-NH2,且不同时为-H;
R17为C1~C8烷基、卤素、-H或
Figure PCTCN2016074796-appb-000016
R18为C1~C8烷基、卤素或-H;
R19、R20独立地为C1~C8烷基、卤素或-H。
作为本发明优选的方案,R1为取代的饱和或不饱和5~12元杂环或
Figure PCTCN2016074796-appb-000017
所述 杂环的杂原子为N、O或S;所述杂环上的取代基为
Figure PCTCN2016074796-appb-000018
或C1~C4烷氧基;R2为C1~C4烷氧基、-H、
Figure PCTCN2016074796-appb-000019
C1~C4烷基、卤素或C3~C8环烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
Figure PCTCN2016074796-appb-000020
C2~C4烯基、C1~C4卤素取代的烷基、-NH2
Figure PCTCN2016074796-appb-000021
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000022
或C1~C4卤素取代的烷基;R10
Figure PCTCN2016074796-appb-000023
Figure PCTCN2016074796-appb-000024
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000025
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000026
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000027
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000028
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;
R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000029
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
优选的,R1
Figure PCTCN2016074796-appb-000030
R21~R23独立地为
Figure PCTCN2016074796-appb-000031
Figure PCTCN2016074796-appb-000032
或C1~C4烷氧基;R2为C1~C4烷氧基、-H、
Figure PCTCN2016074796-appb-000033
C1~C4烷基、卤素或C3~C8环烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
Figure PCTCN2016074796-appb-000034
C2~C4烯基、C1~C4卤素取代的烷基、-NH2
Figure PCTCN2016074796-appb-000035
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000036
或C1~C4卤素取代的烷基; R10
Figure PCTCN2016074796-appb-000037
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000038
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000039
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000040
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000041
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000042
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
进一步优选的,R1
Figure PCTCN2016074796-appb-000043
R21、R22独立地为
Figure PCTCN2016074796-appb-000044
Figure PCTCN2016074796-appb-000045
R23为C1~C4烷氧基;R2为C1~C4烷氧基、-H、
Figure PCTCN2016074796-appb-000046
C1~C4烷基、卤素或C3~C8环烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
Figure PCTCN2016074796-appb-000047
C2~C4烯基、C1~C4卤素取代的烷基、-NH2
Figure PCTCN2016074796-appb-000048
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000049
或C1~C4卤素取代的烷基;R10
Figure PCTCN2016074796-appb-000050
Figure PCTCN2016074796-appb-000051
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000052
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000053
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000054
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000055
Figure PCTCN2016074796-appb-000056
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4 烷基、卤素、-H或
Figure PCTCN2016074796-appb-000057
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
优选的,R1
Figure PCTCN2016074796-appb-000058
R21~R23独立地为
Figure PCTCN2016074796-appb-000059
Figure PCTCN2016074796-appb-000060
或C1~C4烷氧基;R2为C1~C4烷氧基、-H、
Figure PCTCN2016074796-appb-000061
或C1~C4烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
Figure PCTCN2016074796-appb-000062
C2~C4烯基、C1~C4卤素取代的烷基、-NH2
Figure PCTCN2016074796-appb-000063
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000064
或C1~C4卤素取代的烷基;R10
Figure PCTCN2016074796-appb-000065
Figure PCTCN2016074796-appb-000066
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000067
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000068
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000069
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000070
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000071
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
进一步优选的,R1
Figure PCTCN2016074796-appb-000072
R21~R23独立地为
Figure PCTCN2016074796-appb-000073
或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000074
R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
Figure PCTCN2016074796-appb-000075
C2~C4烯基、C1~C4卤素取代的烷基、-NH2
Figure PCTCN2016074796-appb-000076
且不同时为-H;R6~R9独立地为-H、C1~C4 烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000077
或C1~C4卤素取代的烷基;R10
Figure PCTCN2016074796-appb-000078
Figure PCTCN2016074796-appb-000079
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000080
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000081
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000082
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000083
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000084
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
优选的,R1
Figure PCTCN2016074796-appb-000085
R21~R23独立地为
Figure PCTCN2016074796-appb-000086
Figure PCTCN2016074796-appb-000087
或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000088
R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
Figure PCTCN2016074796-appb-000089
-NH2
Figure PCTCN2016074796-appb-000090
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000091
或C1~C4卤素取代的烷基;R10
Figure PCTCN2016074796-appb-000092
Figure PCTCN2016074796-appb-000093
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000094
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000095
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000096
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000097
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000098
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
进一步优选的,R1
Figure PCTCN2016074796-appb-000099
R21~R23独立地为
Figure PCTCN2016074796-appb-000100
或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000101
R3~R5独立地为-H、C1~C4烷氧基、
Figure PCTCN2016074796-appb-000102
-NH2
Figure PCTCN2016074796-appb-000103
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000104
或C1~C4卤素取代的烷基;R10
Figure PCTCN2016074796-appb-000105
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000106
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000107
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000108
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000109
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000110
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
优选的,R1
Figure PCTCN2016074796-appb-000111
R21~R23独立地为
Figure PCTCN2016074796-appb-000112
Figure PCTCN2016074796-appb-000113
或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000114
R3~R5独立地为-H、C1~C4烷氧基、
Figure PCTCN2016074796-appb-000115
-NH2
Figure PCTCN2016074796-appb-000116
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、 卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000117
R10
Figure PCTCN2016074796-appb-000118
Figure PCTCN2016074796-appb-000119
x=1~4,y=1~4;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000120
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000121
或-NH2;z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000122
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000123
Figure PCTCN2016074796-appb-000124
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000125
R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
优选的,R1
Figure PCTCN2016074796-appb-000126
R21~R23独立地为
Figure PCTCN2016074796-appb-000127
Figure PCTCN2016074796-appb-000128
或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000129
R3~R5独立地为-H、C1~C4烷氧基、
Figure PCTCN2016074796-appb-000130
-NH2
Figure PCTCN2016074796-appb-000131
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000132
R10
Figure PCTCN2016074796-appb-000133
Figure PCTCN2016074796-appb-000134
x=1~2,y=1~2;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000135
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
Figure PCTCN2016074796-appb-000136
z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000137
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000138
Figure PCTCN2016074796-appb-000139
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、 -H或
Figure PCTCN2016074796-appb-000140
R18为C1~C4烷基或-H;R19、R20独立地为C1~C4烷基或-H。
最优的,R1
Figure PCTCN2016074796-appb-000141
R21、R22独立地为
Figure PCTCN2016074796-appb-000142
Figure PCTCN2016074796-appb-000143
R23为C1~C4烷氧基;R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000144
R3~R5独立地为-H、C1~C4烷氧基、
Figure PCTCN2016074796-appb-000145
-NH2
Figure PCTCN2016074796-appb-000146
且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000147
R10
Figure PCTCN2016074796-appb-000148
Figure PCTCN2016074796-appb-000149
R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000150
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
Figure PCTCN2016074796-appb-000151
z=1~10;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000152
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000153
Figure PCTCN2016074796-appb-000154
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、-H或
Figure PCTCN2016074796-appb-000155
R18为C1~C4烷基或-H;R19、R20独立地为C1~C4烷基或-H。
当R1为取代的不饱和5元杂环时,上述4位取代的香豆素衍生物的结构式如式Ⅱ所示:
Figure PCTCN2016074796-appb-000156
其中,A为O或S;
R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000157
C1~C8烷基、卤素或C3~C8环烷基;
R6~R9独立地为-H、C1~C8烷氧基、卤素、C1~C8烷基、
Figure PCTCN2016074796-appb-000158
或C1~C8卤素取代的烷基;
R19、R20独立地为C1~C8烷基、卤素或-H。
作为本发明优选的方案,A为O或S;R2为C1~C4烷氧基、-H、
Figure PCTCN2016074796-appb-000159
C1~C4烷基、卤素或C3~C8环烷基;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000160
或C1~C4卤素取代的烷基;R19、R20独立地为C1~C4烷基、卤素或-H。
优选的,A为O或S;R2为C1~C4烷氧基、-H、
Figure PCTCN2016074796-appb-000161
或C1~C4烷基;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000162
或C1~C4卤素取代的烷基;R19、R20独立地为C1~C4烷基、卤素或-H。
进一步优选的,A为O或S;R2为C1~C4烷氧基或-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000163
或C1~C4卤素取代的烷基;R19、R20独立地为C1~C4烷基、卤素或-H。
更进一步优选的,A为O或S;R2为C1~C4烷氧基或-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000164
R19、R20独立地为C1~C4烷基、卤素或-H。
最优的,A为O或S;R2为C1~C4烷氧基或-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
Figure PCTCN2016074796-appb-000165
R19、R20独立地为C1~C4烷基或-H。
当R1为
Figure PCTCN2016074796-appb-000166
R3为-H,R4为甲氧基,R5为
Figure PCTCN2016074796-appb-000167
时,上述4位取代的香豆素衍生物的结构式如式Ⅲ所示:
Figure PCTCN2016074796-appb-000168
其中,R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000169
C1~C8烷基、卤素或C3~C8环烷基;
R10
Figure PCTCN2016074796-appb-000170
x=1~4,y=1~4;
R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000171
卤素、C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000172
R13为C1~C8烷基、C1~C8烷基取代的苯基或卤素取代的苯基;
R14~R16独立地为C1~C8烷基、卤素、-H、C1~C8烷氧基或-NH2,且不同时为-H;
R17为C1~C8烷基、卤素、-H或
Figure PCTCN2016074796-appb-000173
作为本发明优选的方案,R2为C1~C4烷氧基、-H、
Figure PCTCN2016074796-appb-000174
C1~C4烷基、卤素或C3~C8环烷基;R10
Figure PCTCN2016074796-appb-000175
Figure PCTCN2016074796-appb-000176
x=1~4,y=1~4;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000177
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000178
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000179
优选的,R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000180
R10
Figure PCTCN2016074796-appb-000181
Figure PCTCN2016074796-appb-000182
x=1~4,y=1~4;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000183
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000184
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
Figure PCTCN2016074796-appb-000185
进一步优选的,R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000186
R10
Figure PCTCN2016074796-appb-000187
Figure PCTCN2016074796-appb-000188
x=1~2,y=1~2;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000189
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000190
Figure PCTCN2016074796-appb-000191
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、-H或
Figure PCTCN2016074796-appb-000192
最优的,R2为C1~C4烷氧基、-H或
Figure PCTCN2016074796-appb-000193
R10
Figure PCTCN2016074796-appb-000194
Figure PCTCN2016074796-appb-000195
R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000196
卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000197
R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、-H或
Figure PCTCN2016074796-appb-000198
当R1为
Figure PCTCN2016074796-appb-000199
R3为-H,R4为甲氧基,R5为
Figure PCTCN2016074796-appb-000200
时,上述4位取代的香豆素衍生物的结构式如式Ⅳ所示:
Figure PCTCN2016074796-appb-000201
其中,R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000202
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000203
或-NH2;z=1~10;
R18为C1~C4烷基、卤素或-H。
作为本发明优选的方案,R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000204
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
Figure PCTCN2016074796-appb-000205
z=1~10;R18为C1~C4烷基、卤素或-H;
优选的,R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000206
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
Figure PCTCN2016074796-appb-000207
z=1~10;R18为C1~C4烷基或-H。
上述4位取代的香豆素衍生物,其结构式为:
Figure PCTCN2016074796-appb-000208
Figure PCTCN2016074796-appb-000209
Figure PCTCN2016074796-appb-000210
本发明还提供了上述4位取代的香豆素衍生物的制备方法。
反应路线一:
Figure PCTCN2016074796-appb-000211
其中,A为O或S;R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000212
C1~C8烷基、卤素或C3~C8环烷基;R6~R9独立地为-H、C1~C8烷氧基、卤素、C1~C8烷基、
Figure PCTCN2016074796-appb-000213
或C1~C8卤素取代的烷基;R19、R20独立地为C1~C8烷基、卤素或-H。
上述反应路线一的具体步骤为:
1)先将10~20个当量的三氯氧磷和1当量的原料1(丙二酸)在80~100℃反应2小时,除去未反应的三氯氧磷后,在有机溶剂中,与2~3当量的原料2(苯酚)在25~50℃反应6~8小时,得到中间体3;所述有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种。
2)1当量的中间体3、1~2当量的
Figure PCTCN2016074796-appb-000214
和3~5当量的碱在有机溶剂中回流反应6~12小时,得到中间体4;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;
3)1当量的中间体4和2~4当量的三氟甲磺酸酐,溶于有机溶剂中,在0℃~50℃反应2~8小时,得到中间体5;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;
4)将1当量的中间体5和1当量的
Figure PCTCN2016074796-appb-000215
溶于有机溶剂中,加入2~5当量的碱和0.3%~0.8%当量的催化剂,回流反应得到中间体6;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的催化剂为醋酸钯、二氯化钯、10%钯碳、四(三苯基)磷钯中的任意一种;
5)将1当量的中间体6溶于有机溶剂中与1~2当量的NBS(N-溴代丁二酰亚胺)反应,得到中间体7;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述反应的温度为0℃~50℃;所述反应的时间为2~8小时;
6)将1当量的中间体7和1当量的
Figure PCTCN2016074796-appb-000216
溶于有机溶剂中,加入2~5当量的碱碱和0.3%~0.8%的催化剂,回流反应得到式Ⅱ化合物;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的催化剂为醋酸钯、二氯化钯、10%钯碳、四(三苯基)磷钯中的任意一种;所述反应的时间为2~24小时。
反应路线二:
Figure PCTCN2016074796-appb-000217
其中,R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000218
C1~C8烷基、卤素或C3~C8环烷基;R19、R20独立地为C1~C8烷基、卤素或-H;R23为C1~C4烷氧基。
上述反应路线二的具体步骤为:
1)1当量的中间体4在有机溶剂中与2~3当量的四叔丁基溴化胺回流反应,得到中间体10;所述有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述反应的时间为2~8小时;
2)将1当量的中间体10溶于有机溶剂中,2~5当量加入碱,与1当量的
Figure PCTCN2016074796-appb-000219
回流反应得到式Ⅴ化合物;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述反应的时间为2~24小时。
反应路线三:
Figure PCTCN2016074796-appb-000220
其中,R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000221
C1~C8烷基、卤素或C3~C8环烷基;R10
Figure PCTCN2016074796-appb-000222
x=1~4,y=1~4;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000223
卤素、C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000224
R13为C1~C8烷基、C1~C8烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C8烷基、卤素、-H、C1~C8烷氧基或-NH2,且不同时为-H;R17为C1~C8烷基、卤素、-H或
Figure PCTCN2016074796-appb-000225
上述反应路线三的具体步骤为:
1)将1当量的原料4溶于有机溶剂中,滴加3~5当量的氯甲基甲醚(MOMCl),反应得到中间体11;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的反应温度是0℃~80℃;所述的反应时间是2~12小时;
2)将1当量的中间体11溶于有机溶剂中,加入1%~2%当量的钯碳催化剂,通入5~20个当量的氢气还原,反应得到中间体12;所述的钯催化剂是10%含量的钯碳;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四 氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的反应温度是0℃~40℃;所述的反应时间是2~12小时;
3)将1个当量的中间体12溶于有机溶剂中,加入3~5当量的甲醇钠,加入1~3当量的多聚甲醛,搅拌反应过夜后,在反应底物中加入1~2当量的硼氢化钠,回流反应得到化合物13;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的回流反应温度是0℃~80℃;所述的回流反应时间是2~12小时;
4)将1个当量的13和1个当量的中间体10溶于有机溶剂中,加入2~3当量的碱,回流反应得到中间体14;所述的碱选自三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠的任意一种;所述的有机溶剂选自N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳的任意一种;所述的反应时间是2~24小时;
5)将1个当量的中间体14溶于有机溶剂中,加入2~3当量的酸,反应得到中间体15;所述的酸为浓盐酸、氯化氢乙酸乙酯溶液、三氟乙酸、甲磺酸或硫酸中的任意一种;有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度是40℃~100℃;所述的反应时间是2~24小时;
6)将1个当量的中间体15溶于有机溶剂中,加入2~3当量的碱,加入1~3当量的卤素-R10,反应得到式III化合物;所述反应中用的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度是0℃~60℃;所述的反应时间是1~12小时。
反应路线四:
Figure PCTCN2016074796-appb-000226
其中,Q为卤素;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000227
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000228
或-NH2;z=1~10;R18为C1~C4烷基、卤素或-H。
上述反应路线四的具体步骤为:
1)将1当量的原料5溶于有机溶剂中,加入2~3当量的碱,滴加2~3当量的碘甲烷,反应得到中间体16;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度是0℃~60℃;所述的反应时间是1~12小时;
2)将1当量的中间体16溶于有机溶剂中,加入3~5当量的甲醇钠,回流下反应得到中间体17;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应时间是2~24小时;
3)将1当量的中间体17溶于有机溶剂中,加入1%~2%当量的钯碳,通入5~20个当量的氢气还原,反应得到中间体18;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度可以是20℃~100℃;所述的反应时间是2~24小时;
4)将1当量的中间体18和1当量的中间体10溶于有机溶剂中,加入2~5当量的碱,回流下反应得到中间体19;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应时间是2~24小时;
5)将中间体19溶于有机溶剂中,加入2~5当量的碱,加入1~3当量的
Figure PCTCN2016074796-appb-000229
反应得到式IV化合物;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;反应温度可以是0℃~60℃;反应时间是1~12小时。
本发明还提供了上述4位取代的香豆素衍生物在药学上可接受的盐。
药物组合物,是以式Ⅰ~Ⅳ所示的4位取代的香豆素衍生物及其盐为活性成分,添加药学上可接受的载体组成。
本发明还提供了上述4位取代的香豆素衍生物及其盐在制备抗肿瘤药物中的用途。
优选的,所述抗肿瘤药物为拮抗肺癌,结肠癌,前列腺癌,卵巢癌,乳腺癌的药物。
所述抗肿瘤药物的靶点为人肺癌大细胞癌NCI-H460,人小细胞肺癌细胞NCI-H446,人肝癌细胞株HepG2,人结肠癌细胞株HCT116、人前列腺癌PC-3、人黑色素瘤A375。
本发明还提供了上述4位取代的香豆素衍生物及其盐在制备抗敏感和耐药肿瘤细胞药物中的用途。
本发明还提供了上述4位取代的香豆素衍生物及其盐在制备治疗炎症药物中的用途。
本发明还提供了上述4位取代的香豆素衍生物及其盐,以药学上可接受的制剂形式存在,包括:片剂、口服剂、栓剂、滴丸剂、大输液、小针、冻干粉针、胶囊剂、气雾剂、分散片、软膏,包括各种缓释、控释剂型或纳米制剂。上述4位取代的香豆素衍生物及其盐以单位剂量形式给药,注射包括静脉注射、肌肉注射、皮下注射和腹腔注射。
上述片剂、胶囊剂中可以包含:粘合剂(如阿拉伯胶、玉米淀粉或明胶)、赋形剂(如磷酸氢二钙;崩解剂,如玉米淀粉、马铃薯淀粉、海藻酸等)、润滑剂(如硬脂酸镁)、甜味剂(如蔗糖、果糖、乳糖等)或调味剂(如薄荷等)。当剂型是胶囊时,还可以包含液体载体(如植物油或聚乙二醇)。
此外,以本发明提供的4位取代的香豆素衍生物及其盐为主的活性化合物可以掺入缓释制剂和缓释装置中。
以本发明提供的4位取代的香豆素衍生物及其盐为主的活性化合物也可以通过输注或注射来静脉内或腹膜内给药。
以本发明提供的4位取代的香豆素衍生物及其盐为主的活性化合物,可以制备其水溶液,或混合无毒的表面活性剂,也可以制备在甘油、液体聚乙二醇、甘油三酯中至少一种的分散剂。上述制剂还包含防腐剂以阻止微生物生长。
用于注射或输注的药物剂型,可以包含以本发明提供的4位取代的香豆素衍生物及其盐为主的活性成分的无菌水溶液、分散剂或无菌粉末。所述分散剂的液体载体可以是溶剂或液体分散介质,包括水、乙醇、多元醇(如甘油、丙二醇、液体聚乙二醇等)、植物油或无毒甘油酯中的至少一种。
此外,还包括各种药物新剂型如脂质体、脂肪乳、微球和纳米球的应用,如使用微粒分散体系包括聚合物胶束(polymericmicelles)、纳米乳(nanoemulsion)、亚微乳(submicroemuls)、微囊(microcapsule)、微球(microsphere)、脂质体(liposome)和类脂囊泡(niosomes)等制备的药剂。
本发明提供的化合物具有较强的抗肿瘤活性,在多种肿瘤细胞株的IC50值在0.01~5nM之间,还具有较好的抑制微管聚合的效果,且具有多样的生物活性和较小的毒性,为制备抗敏感和耐药肿瘤细胞药物提供了新的选择。
附图说明
图1部分化合物对微管的解聚作用。
图2部分化合物对微管的解聚作用。
图3各化合物在结肠癌C26模型上肿瘤生长曲线图。
图4各化合物在肺癌H460模型上肿瘤生长曲线图。
图5体外微管聚合曲线。通过用酶标仪监测37℃ 340nm波长吸光值反映微管聚合程度。
图6划痕和成管实验。利用HUVEC细胞进行的划痕和成管实验,证明本发明化合物具有抗血管活性。
具体实施方式
4位取代的香豆素衍生物的制备方法。
反应路线一:
Figure PCTCN2016074796-appb-000230
其中,A为O或S;R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000231
C1~C8烷基、卤素或C3~C8环烷基;R6~R9独立地为-H、C1~C8烷氧基、卤素、C1~C8烷基、
Figure PCTCN2016074796-appb-000232
或C1~C8卤素取代的烷基;R19、R20独立地为C1~C8烷基、卤素或-H。
上述反应路线一的具体步骤为:
1)先将10~20个当量的三氯氧磷和1当量的原料1(丙二酸)在80~100℃反应2小时,除去未反应的三氯氧磷后,在有机溶剂中,与2~3当量的原料2(苯酚)在25~50℃反应6~8小时,得到中间体3;所述有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种。
2)1当量的中间体3、1~2当量的
Figure PCTCN2016074796-appb-000233
和3~5当量的碱在有机溶剂中回流反应6~12小时,得到中间体4;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;有机溶剂为N,N-二甲基甲酰 胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;
3)1当量的中间体4和2~4当量的三氟甲磺酸酐,溶于有机溶剂中,在0℃~50℃反应2~8小时,得到中间体5;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;
4)将1当量的中间体5和1当量的
Figure PCTCN2016074796-appb-000234
溶于有机溶剂中,加入2~5当量的碱和0.3%~0.8%当量的催化剂,回流反应得到中间体6;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的催化剂为醋酸钯、二氯化钯、10%钯碳、四(三苯基)磷钯中的任意一种;
5)将1当量的中间体6溶于有机溶剂中与1~2当量的NBS(N-溴代丁二酰亚胺)反应,得到中间体7;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述反应的温度为0℃~50℃;所述反应的时间为2~8小时;
6)将1当量的中间体7和1当量的
Figure PCTCN2016074796-appb-000235
溶于有机溶剂中,加入2~5当量的碱碱和0.3%~0.8%的催化剂,回流反应得到式Ⅱ化合物;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的催化剂为醋酸钯、二氯化钯、10%钯碳、四(三苯基)磷钯中的任意一种;所述反应的时间为2~24小时。
反应路线二:
Figure PCTCN2016074796-appb-000236
其中,R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000237
C1~C8烷基、卤素或C3~C8环烷基;R19、R20独立地为C1~C8烷基、卤素或-H;R23为C1~C4烷氧基。
上述反应路线二的具体步骤为:
1)1当量的中间体4在有机溶剂中与2~3当量的四叔丁基溴化胺回流反应,得到中间体10;所述有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述反应的时间为2~8小时;
2)将1当量的中间体10溶于有机溶剂中,2~5当量加入碱,与1当量的
Figure PCTCN2016074796-appb-000238
回流反应得到式Ⅴ化合物;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠或氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述反应的时间为2~24小时。
反应路线三:
Figure PCTCN2016074796-appb-000239
其中,R2为C1~C8烷氧基、-H、
Figure PCTCN2016074796-appb-000240
C1~C8烷基、卤素或C3~C8环烷基;R10
Figure PCTCN2016074796-appb-000241
x=1~4,y=1~4;R12为C1~C10烷基、
Figure PCTCN2016074796-appb-000242
卤素、C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000243
R13为C1~C8烷基、C1~C8烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C8烷基、卤素、-H、C1~C8烷氧基或-NH2,且不同时为-H;R17为C1~C8烷基、卤素、-H或
Figure PCTCN2016074796-appb-000244
上述反应路线三的具体步骤为:
1)将1当量的原料4溶于有机溶剂中,滴加3~5当量的氯甲基甲醚(MOMCl),反应得到中间体11;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的反应温度是0℃~80℃;所述的反应时间是2~12小时;
2)将1当量的中间体11溶于有机溶剂中,加入1%~2%当量的钯碳催化剂,通入5~20个当量的氢气还原,反应得到中间体12;所述的钯催化剂是10%含量的钯碳;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的反应温度是0℃~40℃;所述的反应时间是2~12小时;
3)将1个当量的中间体12溶于有机溶剂中,加入3~5当量的甲醇钠,加入1~3当量的多聚甲醛,搅拌反应过夜后,在反应底物中加入1~2当量的硼氢化钠,回流反应得到化合物13;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷或四氯化碳中的任意一种;所述的回流反应温度是0℃~80℃;所述的回流反应时间是2~12小时;
4)将1个当量的13和1个当量的中间体10溶于有机溶剂中,加入2~3当量的碱,回流反应得到中间体14;所述的碱选自三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠的任意一种;所述的有机溶剂选自N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳的任意一种;所述的反应时间是2~24小时;
5)将1个当量的中间体14溶于有机溶剂中,加入2~3当量的酸,反应得到中间体15;所述的酸为浓盐酸、氯化氢乙酸乙酯溶液、三氟乙酸、甲磺酸或硫酸中的任意一种;有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度是40℃~100℃;所述的反应时间是2~24小时;
6)将1个当量的中间体15溶于有机溶剂中,加入2~3当量的碱,加入1~3当量的卤素-R10,反应得到式III化合物;所述反应中用的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度是0℃~60℃;所述的反应时间是1~12小时。
反应路线四:
Figure PCTCN2016074796-appb-000245
其中,Q为卤素;R11为C1~C10烷基、
Figure PCTCN2016074796-appb-000246
C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
Figure PCTCN2016074796-appb-000247
或-NH2;z=1~10;R18为C1~C4烷基、卤素或-H。
上述反应路线四的具体步骤为:
1)将1当量的原料5溶于有机溶剂中,加入2~3当量的碱,滴加2~3当量的碘甲烷,反应得到中间体16;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度是0℃~60℃;所述的反应时间是1~12小时;
2)将1当量的中间体16溶于有机溶剂中,加入3~5当量的甲醇钠,回流下反应得到中间体17;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应时间是2~24小时;
3)将1当量的中间体17溶于有机溶剂中,加入1%~2%当量的钯碳,通入5~20个当量的氢气还原,反应得到中间体18;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应温度可以是20℃~100℃;所述的反应时间是2~24小时;
4)将1当量的中间体18和1当量的中间体10溶于有机溶剂中,加入2~5当量的碱,回流下反应得到中间体19;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;所述的反应时间是2~24小时;
5)将中间体19溶于有机溶剂中,加入2~5当量的碱,加入1~3当量的
Figure PCTCN2016074796-appb-000248
反应得到式IV化合物;所述的碱为三乙胺、二异丙基乙胺(DIPEA)、吡啶、碳酸钾、碳 酸钠、氢氧化钾、氢氧化钠、氢化钠中的任意一种;所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、甲醇、乙醇、甲苯、乙酸乙酯、吡啶、四氢呋喃、二氯甲烷、四氯化碳中的任意一种;反应温度可以是0℃~60℃;反应时间是1~12小时。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明,说明但不限制本发明。
实施实例1:4-(5-(4-甲氧基苯基)噻吩-2-基)-香豆素的制备(COUM-1)
Figure PCTCN2016074796-appb-000249
在氮气保护下,将相应的中间体7a(4-(5-溴噻吩-2-基)-香豆素)、4-甲氧基苯硼酸、四(三苯基)磷靶和无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤,无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品,收率58%。
1H NMR(400MHz,DMSO)δ7.65(dd,J=11.0,3.9Hz,2H),7.51(d,J=8.0Hz,1H),7.36(dt,J=14.3,6.8Hz,2H),7.18~7.08(m,4H),6.81(d,J=8.7Hz,2H),3.72(s,3H)。MS(ESI,m/z):357.1[M+Na]+
实施实例2:4-(5-(4-甲磺酰基苯基)噻吩-2-基)-香豆素的制备(COUM-2)
Figure PCTCN2016074796-appb-000250
在氮气保护下,将相应的中间体7a(4-(5-溴噻吩-2-基)-香豆素)、4-甲磺酰基苯硼酸、四(三苯基)磷靶和无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品,收率56%。
1H NMR(400MHz,CDCl3)δ7.84(d,J=8.4Hz,2H),7.61(t,J=7.8Hz,1H),7.59~7.54(m,1H),7.50~7.39(m,4H),7.29(t,J=7.7Hz,1H),7.03(dd,J=5.0,3.7Hz,1H),6.99~6.95(m,1H),3.04(s,3H)。MS(ESI,m/z):405.0[M+Na]+
实施实例3:4-(5-(4-甲基苯基)噻吩-2-基)-香豆素的制备(COUM-3)
Figure PCTCN2016074796-appb-000251
在氮气保护下,将相应的中间体7a、4-甲基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品,收率59%。
1H NMR(400MHz,CDCl3)δ7.58~7.50(m,2H),7.42(d,J=8.2Hz,1H),7.37(dd,J=5.0,1.0Hz,1H),7.23(d,J=7.1Hz,1H),7.08(q,J=8.3Hz,4H),7.05~7.01(m,1H),7.01~6.97(m,1H),2.30(s,3H)。MS(ESI,m/z):341.1[M+Na]+
实施实例4:4-(5-(2-甲氧基苯基)噻吩-2-基)-香豆素的制备(COUM-4)
Figure PCTCN2016074796-appb-000252
在氮气保护下,将相应的中间体7a、2-甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.73~7.65(m,1H),7.63(dd,J=4.9,1.2Hz,1H),7.52(d,J=8.3Hz,1H),7.44~7.33(m,2H),7.29~7.23(m,1H),7.11~7.01(m,3H),6.96(d,J=8.3Hz,1H),6.83(t,J=7.4Hz,1H),3.68(s,3H)。MS(ESI,m/z):357.1[M+Na]+
实施实例5:4-(5-苯基噻吩-2-基)-香豆素的制备(COUM-5)
Figure PCTCN2016074796-appb-000253
在氮气保护下,将相应的中间体7a、苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率62%。
1H NMR(400MHz,DMSO)δ7.68(d,J=7.0Hz,1H),7.65(dd,J=5.0,1.0Hz,1H),7.52(d,J=8.2Hz,1H),7.43~7.39(m,1H),7.35(t,J=7.5Hz,1H),7.29~7.19(m,5H),7.15~7.12(m,1H),7.08(dd,J=4.9,3.6Hz,1H)。MS(ESI,m/z):327.1[M+Na]+
实施实例6:4-(5-(3,4,5-三甲氧基苯基)噻吩-2-基)-香豆素的制备(COUM-6)
Figure PCTCN2016074796-appb-000254
在氮气保护下,将相应的中间体7a、3,4,5-三甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率48%。
1H NMR(400MHz,DMSO)δ7.70(d,J=4.9Hz,1H),7.68~7.64(m,1H),7.52(d,J=7.9Hz,1H),7.42(d,J=6.8Hz,1H),7.36(t,J=7.3Hz,1H),7.17(d,J=2.4Hz,1H),7.15~7.11(m,1H),6.55(s,2H),6.05(s,1H),3.64(s,3H),3.61(s,5H)。MS(ESI,m/z):417.1[M+Na]+
实施实例7:4-(5-(4-氯苯)噻吩-2-基)-香豆素的制备(COUM-7)
Figure PCTCN2016074796-appb-000255
在氮气保护下,将相应的中间体7a、4-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.72~7.64(m,2H),7.53(d,J=8.2Hz,1H),7.40(dd,J=8.7,7.4Hz,2H),7.37~7.30(m,3H),7.25(d,J=8.5Hz,2H),7.17~7.14(m,1H),7.13~7.09(m,1H)。MS(ESI,m/z):361.1[M+Na]+
实施实例8:4-(5-(3-氯苯)噻吩-2-基)-香豆素的制备(COUM-8)
Figure PCTCN2016074796-appb-000256
在氮气保护下,将相应的中间体7a、3-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率53%。
1H NMR(400MHz,DMSO)δ7.72~7.64(m,2H),7.56~7.50(m,1H),7.45~7.39(m,1H),7.37(d,J=7.8Hz,1H),7.36~7.26(m,3H),7.18(dd,J=12.5,5.1Hz,2H),7.12(dd,J =4.9,3.6Hz,1H)。MS(ESI,m/z):361.1[M+Na]+
实施实例9:4-(5-(3,4,5-三甲氧基苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-9)
Figure PCTCN2016074796-appb-000257
在氮气保护下,将相应的中间体7b(4-(5-溴噻吩-2-基)-7-甲氧基-香豆素)、3,4,5-三甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率51%。
1H NMR(400MHz,DMSO)δ7.71~7.66(m,1H),7.32(d,J=8.9Hz,1H),7.17~7.09(m,3H),6.96(dd,J=8.9,2.4Hz,1H),6.51(s,2H),3.89(s,3H),3.63(s,3H),3.60(s,5H)。MS(ESI,m/z):447.1[M+Na]+
实施实例10:4-(5-(4-甲基苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-10)
Figure PCTCN2016074796-appb-000258
在氮气保护下,将相应的中间体7b、4-甲基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率59%。
1H NMR(400MHz,CDCl3)δ7.64(d,J=4.4Hz,1H),7.28(d,J=8.9Hz,1H),7.15~7.01(m,7H),6.95(dd,J=8.9,2.0Hz,1H),3.88(s,3H),2.50(s,2H)。MS(ESI,m/z):371.1[M+Na]+
实施实例11:4-(5-(3,4-(亚甲二氧基)苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-11)
Figure PCTCN2016074796-appb-000259
在氮气保护下,将相应的中间体7b、3,4-(亚甲二氧基)苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后, 冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率50%。
1H NMR(400MHz,DMSO)δ7.72~7.65(m,1H),7.29(d,J=8.9Hz,1H),7.17~7.13(m,1H),7.11(d,J=4.8Hz,2H),6.95(dd,J=8.9,2.3Hz,1H),6.81~6.74(m,2H),6.62(dd,J=8.0,1.3Hz,1H),5.99(s,2H),3.88(s,3H)。MS(ESI,m/z):401.1[M+Na]+
实施实例12:4-(5-(2-甲氧基苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-12)
Figure PCTCN2016074796-appb-000260
在氮气保护下,将相应的中间体7b、2-甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率55%。
1H NMR(400MHz,CDCl3)δ7.61(dd,J=3.7,2.3Hz,1H),7.31(d,J=8.9Hz,1H),7.25(t,J=7.8Hz,1H),7.12(d,J=2.1Hz,1H),7.05(d,J=2.3Hz,2H),7.01(d,J=7.4Hz,1H),6.95(dd,J=8.3,3.3Hz,2H),6.81(t,J=7.4Hz,1H),3.89(s,3H),3.67(s,3H)。MS(ESI,m/z):387.1[M+Na]+
实施实例13:4-(5-(3-乙氧羰基苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-13)
Figure PCTCN2016074796-appb-000261
在氮气保护下,将相应的中间体7b、3-乙氧羰基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.82(d,J=7.1Hz,2H),7.65(d,J=4.5Hz,1H),7.45(d,J=7.7Hz,1H),7.40(d,J=7.8Hz,1H),7.32(d,J=9.0Hz,1H),7.13(dd,J=6.4,2.5Hz,2H),7.10~7.05(m,1H),6.97(dd,J=8.9,2.3Hz,1H),4.28(q,J=7.1Hz,2H),3.90(s,3H),1.30(t,J=7.1Hz,3H)。MS(ESI,m/z):429.1[M+Na]+
实施实例14:4-(5-(4-氯苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-14)
Figure PCTCN2016074796-appb-000262
在氮气保护下,将相应的中间体7b、4-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率55%。
1H NMR(400MHz,DMSO)δ3.93(s,3H),7.72~7.64(m,2H),7.53(d,J=8.2Hz,1H),7.40(dd,J=8.7,7.4Hz,2H),7.37~7.30(m,2H),7.25(d,J=8.5Hz,2H),7.17~7.14(m,1H),7.13~7.09(m,1H)。MS(ESI,m/z):391.1[M+Na]+
实施实例15:4-(5-(4-甲氧基苯基)呋喃-2-基)-香豆素的制备(COUM-15)
Figure PCTCN2016074796-appb-000263
在氮气保护下,将相应的中间体7c(4-(5-溴呋喃-2-基)-香豆素)、4-甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率58%。
1H NMR(400MHz,DMSO)δ7.65(dd,J=11.0,3.9Hz,2H),7.51(d,J=8.0Hz,1H),7.36(dt,J=14.3,6.8Hz,2H),7.18~7.08(m,4H),6.81(d,J=8.7Hz,2H),3.72(s,3H)。MS(ESI,m/z):341.1[M+Na]+
实施实例16:4-(5-(4-甲磺酰基苯基)呋喃-2-基)-香豆素的制备(COUM-16)
Figure PCTCN2016074796-appb-000264
在氮气保护下,将相应的中间体7c、4-甲磺酰基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率56%。
1H NMR(400MHz,CDCl3)δ7.84(d,J=8.4Hz,2H),7.61(t,J=7.8Hz,1H),7.59~7.54(m,1H),7.50~7.39(m,4H),7.29(t,J=7.7Hz,1H),7.03(dd,J=5.0,3.7Hz,1H), 6.99~6.95(m,1H),3.04(s,3H)。MS(ESI,m/z):489.0[M+Na]+
实施实例17:4-(5-(4-甲基苯基)呋喃-2-基)-香豆素的制备(COUM-17)
Figure PCTCN2016074796-appb-000265
在氮气保护下,将相应的中间体7c、4-甲基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率59%。
1H NMR(400MHz,CDCl3)δ7.58~7.50(m,2H),7.42(d,J=8.2Hz,1H),7.37(dd,J=5.0,1.0Hz,1H),7.23(d,J=7.1Hz,1H),7.08(q,J=8.3Hz,4H),7.05~7.01(m,1H),7.01~6.97(m,1H),2.30(s,3H)。MS(ESI,m/z):325.1[M+Na]+
实施实例18:4-(5-(2-甲氧基苯基)呋喃-2-基)-香豆素的制备(COUM-18)
Figure PCTCN2016074796-appb-000266
在氮气保护下,将相应的中间体7c、2-甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.73~7.65(m,1H),7.63(dd,J=4.9,1.2Hz,1H),7.52(d,J=8.3Hz,1H),7.44~7.33(m,2H),7.29~7.23(m,1H),7.11~7.01(m,3H),6.96(d,J=8.3Hz,1H),6.83(t,J=7.4Hz,1H),3.68(s,3H)。MS(ESI,m/z):341.1[M+Na]+
实施实例19:4-(5-苯基呋喃-2-基)-香豆素的制备(COUM-19)
Figure PCTCN2016074796-appb-000267
在氮气保护下,将相应的中间体7c、苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率62%。
1H NMR(400MHz,DMSO)δ7.68(d,J=7.0Hz,1H),7.65(dd,J=5.0,1.0Hz,1H), 7.52(d,J=8.2Hz,1H),7.43~7.39(m,1H),7.35(t,J=7.5Hz,1H),7.29~7.19(m,5H),7.15~7.12(m,1H),7.08(dd,J=4.9,3.6Hz,1H)。MS(ESI,m/z):311.1[M+Na]+
实施实例20:4-(5-(3,4,5-三甲氧基苯基)呋喃-2-基)-香豆素的制备(COUM-20)
Figure PCTCN2016074796-appb-000268
在氮气保护下,将相应的中间体7c、3,4,5-三甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率48%。
1H NMR(400MHz,DMSO)δ7.70(d,J=4.9Hz,1H),7.68~7.64(m,1H),7.52(d,J=7.9Hz,1H),7.42(d,J=6.8Hz,1H),7.36(t,J=7.3Hz,1H),7.17(d,J=2.4Hz,1H),7.15~7.11(m,1H),6.55(s,2H),6.05(s,1H),3.64(s,3H),3.61(s,5H)。MS(ESI,m/z):401.1[M+Na]+
实施实例21:4-(5-(4-氯苯)呋喃-2-基)-香豆素的制备(COUM-21)
Figure PCTCN2016074796-appb-000269
在氮气保护下,将中间体7c、4-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.72~7.64(m,2H),7.53(d,J=8.2Hz,1H),7.40(dd,J=8.7,7.4Hz,2H),7.37–7.30(m,3H),7.25(d,J=8.5Hz,2H),7.17~7.14(m,1H),7.13~7.09(m,1H)。MS(ESI,m/z):345.1[M+Na]+
实施实例22:4-(5-(3-氯苯)呋喃-2-基)-香豆素的制备(COUM-22)
Figure PCTCN2016074796-appb-000270
在氮气保护下,将中间体7c、3-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱 层析分离,得到淡黄色固体产品。收率53%。
1H NMR(400MHz,DMSO)δ7.72~7.64(m,2H),7.56~7.50(m,1H),7.45~7.39(m,1H),7.37(d,J=7.8Hz,1H),7.36~7.26(m,3H),7.18(dd,J=12.5,5.1Hz,2H),7.12(dd,J=4.9,3.6Hz,1H)。MS(ESI,m/z):345.1[M+Na]+
实施实例23:4-(5-(3,4,5-三甲氧基苯)呋喃-2-基)-7-甲氧基-香豆素的制备(COUM-23)
Figure PCTCN2016074796-appb-000271
在氮气保护下,将中间体7d(4-(5-溴呋喃-2-基)-7-甲氧基-香豆素)、3,4,5-三甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率51%。
1H NMR(400MHz,DMSO)δ7.71~7.66(m,1H),7.32(d,J=8.9Hz,1H),7.17~7.09(m,3H),6.96(dd,J=8.9,2.4Hz,1H),6.51(s,2H),3.89(s,3H),3.63(s,3H),3.60(s,5H)。MS(ESI,m/z):431.1[M+Na]+
实施实例24:4-(5-(4-甲基苯)呋喃-2-基)-7-甲氧基-香豆素的制备(COUM-24)
Figure PCTCN2016074796-appb-000272
在氮气保护下,将中间体7d、4-甲基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率59%。
H NMR(400MHz,CDCl3)δ7.64(d,J=4.4Hz,1H),7.28(d,J=8.9Hz,1H),7.15~7.01(m,7H),6.95(dd,J=8.9,2.0Hz,1H),3.88(s,3H),2.50(s,2H)。MS(ESI,m/z):355.1[M+Na]+
实施实例25:4-(5-(3,4-(亚甲二氧基)苯)呋喃-2-基)-7-甲氧基-香豆素的制备(COUM-25)
Figure PCTCN2016074796-appb-000273
在氮气保护下,将中间体7d、3,4-(亚甲二氧基)苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率50%。
1H NMR(400MHz,DMSO)δ7.72~7.65(m,1H),7.29(d,J=8.9Hz,1H),7.17~7.13(m,1H),7.11(d,J=4.8Hz,2H),6.95(dd,J=8.9,2.3Hz,1H),6.81~6.74(m,2H),6.62(dd,J=8.0,1.3Hz,1H),5.99(s,2H),3.88(s,3H)。MS(ESI,m/z):485.1[M+Na]+
实施实例26:4-(5-(2-甲氧基苯)呋喃-2-基)-7-甲氧基-香豆素的制备(COUM-26)
Figure PCTCN2016074796-appb-000274
在氮气保护下,将中间体7d、2-甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率55%。
1H NMR(400MHz,CDCl3)δ7.61(dd,J=3.7,2.3Hz,1H),7.31(d,J=8.9Hz,1H),7.25(t,J=7.8Hz,1H),7.12(d,J=2.1Hz,1H),7.05(d,J=2.3Hz,2H),7.01(d,J=7.4Hz,1H),6.95(dd,J=8.3,3.3Hz,2H),6.81(t,J=7.4Hz,1H),3.89(s,3H),3.67(s,3H)。MS(ESI,m/z):371.1[M+Na]+
实施实例27:4-(5-(3-乙氧羰基苯)呋喃-2-基)-7-甲氧基-香豆素的制备(COUM-27)
Figure PCTCN2016074796-appb-000275
在氮气保护下,将中间体7d、3-乙氧羰基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.82(d,J=7.1Hz,2H),7.65(d,J=4.5Hz,1H),7.45(d,J=7.7Hz,1H),7.40(d,J=7.8Hz,1H),7.32(d,J=9.0Hz,1H),7.13(dd,J=6.4,2.5Hz,2H),7.10~7.05(m,1H),6.97(dd,J=8.9,2.3Hz,1H),4.28(q,J=7.1Hz,2H),3.90(s,3H), 1.30(t,J=7.1Hz,3H)。MS(ESI,m/z):413.1[M+Na]+
实施实例28:4-(5-(4-氯苯)呋喃-2-基)-7-甲氧基-香豆素的制备(COUM-28)
Figure PCTCN2016074796-appb-000276
在氮气保护下,将中间体7d、4-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率55%。
1H NMR(400MHz,DMSO)δ3.93(s,3H),7.72~7.64(m,2H),7.53(d,J=8.2Hz,1H),7.40(dd,J=8.7,7.4Hz,2H),7.37–7.30(m,2H),7.25(d,J=8.5Hz,2H),7.17~7.14(m,1H),7.13~7.09(m,1H)。MS(ESI,m/z):375.1[M+Na]+
实施实例29:4-(5-(3-甲氧基苯基)噻吩-2-基)-香豆素的制备(COUM-29)
Figure PCTCN2016074796-appb-000277
在氮气保护下,将相应的中间体7a、3-甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.73~7.65(m,1H),7.63(dd,J=4.9,1.2Hz,1H),7.52(d,J=8.3Hz,1H),7.44~7.33(m,2H),7.29–7.23(m,1H),7.11~7.01(m,3H),6.96(d,J=8.3Hz,1H),6.83(t,J=7.4Hz,1H),3.68(s,3H)。MS(ESI,m/z):357.1[M+Na]+
实施实例30:4-(5-(2-氯苯)噻吩-2-基)-香豆素的制备(COUM-30)
Figure PCTCN2016074796-appb-000278
在氮气保护下,将相应的中间体7a、2-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.72~7.64(m,2H),7.53(d,J=8.2Hz,1H),7.40(dd,J=8.7,7.4Hz,2H),7.37~7.30(m,3H),7.25(d,J=8.5Hz,2H),7.17~7.14(m,1H),7.13~7.09(m,1H)。MS(ESI,m/z):361.1[M+Na]+
实施实例31:4-(5-(3,4-(亚甲二氧基)苯)噻吩-2-基)-香豆素的制备(COUM-31)
Figure PCTCN2016074796-appb-000279
在氮气保护下,将相应的中间体7a、3,4-(亚甲二氧基)苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率50%。
1H NMR(400MHz,DMSO)δ7.72–7.65(m,1H),7.29(d,J=8.9Hz,1H),7.17~7.13(m,1H),7.11(d,J=4.8Hz,2H),6.95(dd,J=8.9,2.3Hz,1H),6.81~6.74(m,2H),6.62(dd,J=8.0,1.3Hz,1H),5.99(s,2H)。MS(ESI,m/z):371.1[M+Na]+
实施实例32:4-(5-(3-乙氧羰基苯)呋喃-2-基)-香豆素的制备(COUM-32)
Figure PCTCN2016074796-appb-000280
在氮气保护下,将中间体7a、3-乙氧羰基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率52%。
1H NMR(400MHz,DMSO)δ7.82(d,J=7.1Hz,2H),7.65(d,J=4.5Hz,1H),7.45(d,J=7.7Hz,1H),7.40(d,J=7.8Hz,1H),7.32(d,J=9.0Hz,1H),7.13(dd,J=6.4,2.5Hz,2H),7.10~7.05(m,1H),6.97(dd,J=8.9,2.3Hz,1H),4.28(q,J=7.1Hz,2H),1.30(t,J=7.1Hz,3H)。MS(ESI,m/z):399.1[M+Na]+
实施实例33:4-(5-(3-甲氧基苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-33)
Figure PCTCN2016074796-appb-000281
在氮气保护下,将相应的中间体7b、3-甲氧基苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至 室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率55%。
1H NMR(400MHz,CDCl3)δ7.61(dd,J=3.7,2.3Hz,1H),7.31(d,J=8.9Hz,1H),7.25(t,J=7.8Hz,1H),7.12(d,J=2.1Hz,1H),7.05(d,J=2.3Hz,2H),7.01(d,J=7.4Hz,1H),6.95(dd,J=8.3,3.3Hz,2H),6.81(t,J=7.4Hz,1H),3.89(s,3H),3.67(s,3H)。MS(ESI,m/z):387.1[M+Na]+
实施实例34:4-(5-(2-氯苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-34)
Figure PCTCN2016074796-appb-000282
在氮气保护下,将相应的中间体7b、2-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率55%。
1H NMR(400MHz,DMSO)δ3.93(s,3H),7.72~7.64(m,2H),7.53(d,J=8.2Hz,1H),7.40(dd,J=8.7,7.4Hz,2H),7.37~7.30(m,2H),7.25(d,J=8.5Hz,2H),7.17~7.14(m,1H),7.13~7.09(m,1H)。MS(ESI,m/z):391.1[M+Na]+
实施实例35:4-(5-(3-氯苯)噻吩-2-基)-7-甲氧基-香豆素的制备(COUM-35)
Figure PCTCN2016074796-appb-000283
在氮气保护下,将相应的中间体7b、3-氯苯硼酸、四(三苯基)磷靶、无水碳酸铯溶于除水的DMF溶液中。在无水无氧条件下,回流12小时。反应完全后,冷却至室温,加入大量水稀释,加入乙酸乙酯萃取,萃取三次。合并有机相,先后用水,饱和食盐水洗涤。无水硫酸钠干燥30min,除去有机溶剂得到粗品。用乙酸乙酯︰石油醚=1︰10快速柱层析分离,得到淡黄色固体产品。收率55%。
1H NMR(400MHz,DMSO)δ3.93(s,3H),7.72~7.64(m,2H),7.53(d,J=8.2Hz,1H),7.40(dd,J=8.7,7.4Hz,2H),7.37–7.30(m,2H),7.25(d,J=8.5Hz,2H),7.17~7.14(m,1H),7.13~7.09(m,1H)。MS(ESI,m/z):391.1[M+Na]+
实施实例36:4-(6-甲氧基-3,4-二氢喹啉-1(2H)-基)香豆素的制备(COUM-36)
Figure PCTCN2016074796-appb-000284
在氮气保护下,将中间体10a(4-溴-香豆素)、6-甲氧基-1,2,3,4-四氢喹啉、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率70%。
1H NMR(400MHz,CDCl3)δ7.73(d,J=7.5Hz,1H),7.57(d,J=7.2Hz,1H),7.35(d,J=7.8Hz,1H),7.28(d,J=7.8Hz,1H),7.15(d,J=8.2Hz,1H),6.81(d,J=2.3Hz,1H),6.77(dd,J=8.2,2.5Hz,1H),5.59(s,1H),4.03(q,J=7.1Hz,2H),3.75(s,3H),3.70(t,J=5.6Hz,2H),2.99~2.85(m,2H),1.99(s,4H),1.17(t,J=7.1Hz,3H)。
实施实例37:4-(8-甲氧基-1,3,4,5-四氢-2H-苯并氮杂卓-2-基)香豆素的制备(COUM-37)
Figure PCTCN2016074796-appb-000285
在氮气保护下,将中间体10a、中间体15、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率70%。
1H NMR(400MHz,CDCl3)δ7.73(d,J=7.5Hz,1H),7.57(d,J=7.2Hz,1H),7.35(d,J=7.8Hz,1H),7.28(d,J=7.8Hz,1H),7.15(d,J=8.2Hz,1H),6.81(d,J=2.3Hz,1H),6.77(dd,J=8.2,2.5Hz,1H),5.59(s,1H),4.55(s,2H),4.03(q,J=7.1Hz,2H),3.75(s,3H),3.70(t,J=5.6Hz,2H),2.99~2.85(m,2H),1.99(s,4H),1.17(t,J=7.1Hz,3H)。
实施实例38:4-(6-甲氧基-3,4-二氢喹啉-1(2H)-基)-7甲氧基香豆素的制备(COUM-38)
Figure PCTCN2016074796-appb-000286
在氮气保护下,将中间体10b(4-溴-7-甲氧基香豆素),6-甲氧基-1,2,3,4-四氢喹啉,N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃8取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率70%。
1H NMR(400MHz,CDCl3)δ7.73(d,J=7.5Hz,1H),7.57(d,J=7.2Hz,1H),7.35(d,J=7.8Hz,1H),7.28(d,J=7.8Hz,1H),7.15(d,J=8.2Hz,1H),6.81(d,J=2.3Hz,1H),6.77(dd,J=8.2,2.5Hz,1H),5.59(s,1H),4.03(q,J=7.1Hz,2H),3.85(s,3H),3.75(s,3H), 3.70(t,J=5.6Hz,2H),2.99~2.85(m,2H),1.99(s,4H),1.17(t,J=7.1Hz,3H)。
实施实例39:4-(8-甲氧基-1,3,4,5-四氢-2H-苯并氮杂卓-2-基)-7-甲氧基香豆素的制备(COUM-39)
Figure PCTCN2016074796-appb-000287
在氮气保护下,将中间体10b、中间体15、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率70%。
1H NMR(400MHz,CDCl3)δ7.73(d,J=7.5Hz,1H),7.57(d,J=7.2Hz,1H),7.35(d,J=7.8Hz,1H),7.28(d,J=7.8Hz,1H),7.15(d,J=8.2Hz,1H),6.81(d,J=2.3Hz,1H),6.77(dd,J=8.2,2.5Hz,1H),5.59(s,1H),4.55(s,2H),4.03(q,J=7.1Hz,2H),3.85(s,3H),3.75(s,3H),3.70(t,J=5.6Hz,2H),2.99~2.85(m,2H),1.99(s,4H),1.17(t,J=7.1Hz,3H)。
实施实例40:4-(N-甲基-N-(4-甲氧基苯)-氨基)-7-甲氧基香豆素的制备(COUM-40)
Figure PCTCN2016074796-appb-000288
在氮气保护下,将中间体10b、N-甲基-4-甲氧基苯胺、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率72%。
1H NMR(400MHz,DMSO)δ7.42(dd,J=10.5,4.1Hz,1H),7.32(d,J=8.1Hz,1H),7.15(d,J=8.7Hz,2H),6.94(t,J=10.4Hz,4H),5.83(s,1H),3.85(s,3H),3.75(s,3H),3.32(s,3H)。
实施实例41:4-(N-甲基-N-(4-甲氧基苯)-氨基)-7-二乙胺基香豆素的制备(COUM-41)
Figure PCTCN2016074796-appb-000289
在氮气保护下,将中间体10c(4-溴-7-二乙胺基香豆素)、N-甲基-4-甲氧基苯胺、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂, 残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率72%。
1H NMR(400MHz,DMSO)δ7.42(dd,J=10.5,4.1Hz,1H),7.32(d,J=8.1Hz,1H),7.15(d,J=8.7Hz,2H),6.94(t,J=10.4Hz,4H),5.83(s,1H),3.75(s,3H),3.38(m,4H),3.32(s,3H),1.20(m,6H)。
实施实例42:4-(N-甲基-N-(3,4,5-三甲氧基苯)-氨基)香豆素的制备(COUM-42)
Figure PCTCN2016074796-appb-000290
在氮气保护下,将中间体10a、N-甲基-3,4,5-甲氧基苯胺、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率72%。
1H NMR(400MHz,DMSO)δ7.42(dd,J=10.5,4.1Hz,1H),7.32(d,J=8.1Hz,1H),7.15(d,J=8.7Hz,2H),6.94(t,J=10.4Hz,4H),5.83(s,1H),3.75(s,3H),3.72(s,6H),3.32(s,3H)。
实施实例43:4-(N-甲基-N-(4-甲氧基苯)-氨基)香豆素的制备(COUM--43)
Figure PCTCN2016074796-appb-000291
在氮气保护下,将中间体10a、N-甲基-4-甲氧基苯胺、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率72%。
1H NMR(400MHz,DMSO)δ7.42(dd,J=10.5,4.1Hz,1H),7.32(d,J=8.1Hz,1H),7.15(d,J=8.7Hz,2H),6.94(t,J=10.4Hz,4H),5.83(s,1H),3.75(s,3H),3.32(s,3H)。MS(ESI,m/z):304.1[M+Na]+
实施实例44:4-(N-甲基-N-(3,4,5-三甲氧基苯)-氨基)香豆素的制备(COUM--44)
Figure PCTCN2016074796-appb-000292
在氮气保护下,将中间体10b、N-甲基-3,4,5-甲氧基苯胺、N,N-二异丙基乙胺溶于除水的DMF中,回流24小时。反应完全后,冷却至室温,加入大量水稀释,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油 醚︰乙酸乙酯=4︰1快速柱层析分离。得到白色固体。收率72%。
1H NMR(400MHz,DMSO)δ7.42(dd,J=10.5,4.1Hz,1H),7.32(d,J=8.1Hz,1H),7.15(d,J=8.7Hz,2H),6.94(t,J=10.4Hz,4H),5.83(s,1H),3.85(s,3H),3.75(s,3H),3.72(s,6H),3.32(s,3H)。
实施实例45:4-(N-甲基-N-(4-甲氧基-3-(2-乙氧基-2-羰基乙氧基)-苯)-氨基)香豆素的制备(COUM-45)
Figure PCTCN2016074796-appb-000293
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加溴乙酸乙酯。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚︰乙酸乙酯=6︰1快速柱层析分离。得到淡黄色固体,收率76%。
1H NMR(400MHz,CDCl3)δ7.39~7.32(m,1H),7.29(s,1H),6.96(dd,J=8.2,1.1Hz,1H),6.90~6.85(m,1H),6.83(d,J=8.6Hz,1H),6.70(dd,J=8.6,2.5Hz,1H),6.65(d,J=2.5Hz,1H),5.83(s,1H),4.63(s,2H),4.17(q,J=7.1Hz,2H),3.89(s,3H),3.34(s,3H),1.25(t,J=7.1Hz,3H)。
实施实例46:4-(N-甲基-N-(4-甲氧基-3羟基-苯)-氨基)香豆素的制备(COUM-46)
Figure PCTCN2016074796-appb-000294
在氮气保护下,将中间体14a(4-(N-甲基-N-(3-甲氧甲氧基-4-甲氧基苯)-氨基)香豆素),溶于除水的乙酸乙酯中,通入氯化氢气体,室温搅拌24小时。反应完全后,加入大量饱和碳酸氢钠溶液中和,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到黄色固体。收率82%。
1H NMR(400MHz,CDCl3)δ7.34(m,1H),7.29(m,1H),7.05(d,J=8.2Hz,1H),6.88(t,J=7.6Hz,1H),6.81(d,J=2.5Hz,1H),6.75(d,J=8.5Hz,1H),6.51(dd,J=8.5,2.5Hz,1H),5.83(s,1H),3.90(s,3H),3.34(s,3H)。MS(ESI,m/z):298.3[M+H]+
实施实例47:4-(N-甲基-N-(4-甲氧基-3-羟基苯)-氨基)-7-甲氧基香豆素的制备(COUM-47)
Figure PCTCN2016074796-appb-000295
在氮气保护下,将中间体14b(4-(N-甲基-N-(3-甲氧甲氧基-4-甲氧基苯)-氨基)-7-甲氧基香豆素),溶于除水的乙酸乙酯中,通入氯化氢气体,室温搅拌24小时。反应完全后,加入大量饱和碳酸氢钠溶液中和,用乙酸乙酯萃取,萃取三次。合并有机相,无水硫酸钠干燥。除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到黄色固体。收率85%。
1H NMR(400MHz,CDCl3)δ6.91(d,J=9.1Hz,1H),6.77(d,J=18.8Hz,3H),6.52(d,J=7.3Hz,1H),6.45(d,J=8.2Hz,1H),5.71(s,1H),3.90(s,3H),3.79(s,3H),3.32(s,3H)。MS(ESI,m/z):328.1156[M+H]+
实施实例48:4-(N-甲基-N-(4-甲氧基-3-乙酰氧基-苯)-氨基)香豆素的制备(COUM-48)
Figure PCTCN2016074796-appb-000296
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加乙酰氯。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率83%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.6Hz,1H),7.28(d,J=8.5Hz,1H),7.01(d,J=8.2Hz,1H),6.95–6.86(m,4H),5.86(s,1H),3.84(s,3H),3.36(s,3H),2.30(s,3H)。MS(ESI,m/z):340.1156[M+H]+
实施实例49:4-(N-甲基-N-(4-甲氧基-3-(2-吗啉乙氧基)-苯)-氨基)香豆素的制备(COUM-49)
Figure PCTCN2016074796-appb-000297
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,分批加入氯乙基吗啉盐酸盐。加入完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率53%。
1H NMR(400MHz,CDCl3)δ7.35(t,J=7.6Hz,1H),7.29(m,1H),6.98(d,J=8.2Hz,1H),6.87(t,J=7.7Hz,1H),6.81(d,J=8.5Hz,1H),6.74–6.64(m,2H),5.83(s,1H),4.11(m,2H),3.86(s,3H),3.76(m,4H),3.35(s,3H),2.73(m,6H)。MS(ESI,m/z):411.1912[M+H]+
实施实例50:4-(N-甲基-N-(4-甲氧基-3-(2-硫代吗啉乙氧基)-苯)-氨基)香豆素的制备(COUM-50)
Figure PCTCN2016074796-appb-000298
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,分批加入氯乙基硫代吗啉盐酸盐。加入完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率53%。
1H NMR(400MHz,CDCl3)δ7.35(t,J=7.6Hz,1H),7.29(m,1H),6.98(d,J=8.2Hz,1H),6.87(t,J=7.7Hz,1H),6.81(d,J=8.5Hz,1H),6.74~6.64(m,2H),5.83(s,1H),4.11(m,2H),3.86(s,3H),3.76(m,4H),3.35(s,3H),2.73(m,6H)。
实施实例51:4-(N-甲基-N-(4-甲氧基-3-(2-哌啶乙氧基)-苯)-氨基)香豆素的制备(COUM-51)
Figure PCTCN2016074796-appb-000299
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,分批加入氯乙基哌啶盐酸盐。加入完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率53%。
实施实例52:4-(N-甲基-N-(4-甲氧基-3-(2-吡咯乙氧基)-苯)-氨基)香豆素的制备(COUM-52)
Figure PCTCN2016074796-appb-000300
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,分批加入氯乙基吡咯盐酸盐。加入完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率53%。
实施实例53:4-(N-甲基-N-(4-甲氧基-3-((4-乙基苯)甲羰氧基)-苯)-氨基)香豆素的制备(COUM-53)
Figure PCTCN2016074796-appb-000301
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加4-乙基苯甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。 次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率80%。
1H NMR(400MHz,CDCl3)δ8.10(d,J=7.9Hz,2H),7.34(ddd,J=23.4,15.4,8.0Hz,4H),7.08(d,J=8.2Hz,1H),7.03(s,1H),6.99–6.90(m,3H),5.87(s,1H),3.81(s,3H),3.38(s,3H),2.74(q,J=7.6Hz,2H),1.28(t,J=7.6Hz,3H)。MS(ESI,m/z):430.2367[M+H]+
实施实例54:4-(N-甲基-N-(4-甲氧基-3-甲磺酸酯基-苯)-氨基)香豆素的制备(COUM-54)
Figure PCTCN2016074796-appb-000302
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加甲磺酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率86%。
1H NMR(400MHz,CDCl3)δ7.37(t,J=7.3Hz,1H),7.30(d,J=8.2Hz,1H),7.16(d,J=2.1Hz,1H),7.02–6.88(m,4H),5.90(s,1H),3.90(s,3H),3.37(s,3H),3.19(s,3H)。MS(ESI,m/z):376.1383[M+H]+
实施实例55:4-(N-甲基-N-(4-甲氧基-3-(4-甲基苯)甲磺酸酯基-苯)-氨基)香豆素的制备(COUM-55)
Figure PCTCN2016074796-appb-000303
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加4-甲基苯磺酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率82%。
1H NMR(400MHz,CDCl3)δ7.79(dd,J=8.7,5.0Hz,2H),7.41(t,J=7.4Hz,1H),7.33(d,J=8.2Hz,1H),7.16(t,J=8.4Hz,2H),7.01~6.90(m,4H),6.81(d,J=8.6Hz,1H),5.87(s,1H),3.62(s,3H),3.34(s,3H),2.65(s,3H)。
实施实例56:4-(N-甲基-N-(4-甲氧基-3-(4-氟苯)甲磺酸酯基-苯)-氨基)香豆素的制备(COUM-56)
Figure PCTCN2016074796-appb-000304
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加4-氟苯磺酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率82%。
1H NMR(400MHz,CDCl3)δ7.79(dd,J=8.7,5.0Hz,2H),7.41(t,J=7.4Hz,1H),7.33(d,J=8.2Hz,1H),7.16(t,J=8.4Hz,2H),7.01~6.90(m,4H),6.81(d,J=8.6Hz,1H),5.87(s,1H),3.62(s,3H),3.34(s,3H)。MS(ESI,m/z):456.1704[M+H]+
实施实例57:4-(N-甲基-N-(4-甲氧基-3-烯丙酸酯基-苯)-氨基)香豆素的制备(COUM-57)
Figure PCTCN2016074796-appb-000305
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加丙烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.6Hz,1H),7.29(d,J=8.2Hz,1H),7.02(t,J=8.8Hz,1H),6.93(d,J=10.8Hz,4H),6.61(d,J=17.3Hz,1H),6.32(dd,J=17.3,10.5Hz,1H),6.03(d,J=10.5Hz,1H),5.86(s,1H),3.83(s,3H),3.37(s,3H)。MS(ESI,m/z):352.1173[M+H]+
实施实例58:4-(N-甲基-N-(4-甲氧基-3-乙氧基-苯)-氨基)香豆素的制备(COUM-58)
Figure PCTCN2016074796-appb-000306
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加碘乙烷的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.6Hz,1H),7.29(d,J=8.7Hz,1H),7.03(d, J=8.0Hz,1H),6.95~6.88(m,2H),6.85(s,2H),5.85(s,1H),4.13(m,2H),3.81(s,3H),3.35(s,3H),1.41(m,3H)。MS(ESI,m/z):326.4[M+H]+
实施实例59:4-(N-甲基-N-(4-甲氧基-3-特戊酸酯基-苯)-氨基)香豆素的制备(COUM-59)
Figure PCTCN2016074796-appb-000307
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加叔丁基酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.6Hz,1H),7.29(d,J=8.7Hz,1H),7.03(d,J=8.0Hz,1H),6.95~6.88(m,2H),6.85(s,2H),5.85(s,1H),3.81(s,3H),3.35(s,3H),1.36(s,9H)。MS(ESI,m/z):382.4[M+H]+
实施实例60:4-(N-甲基-N-(4-甲氧基-3-(2-氯乙羰氧基)-苯)-氨基)香豆素的制备(COUM-60)
Figure PCTCN2016074796-appb-000308
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加氯乙酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ7.36(d,J=8.0Hz,1H),7.29(d,J=8.2Hz,1H),7.03~6.88(m,5H),5.88(s,1H),4.32(s,2H),3.84(s,3H),3.36(s,3H)。MS(ESI,m/z):396.6[M+Na]+
实施实例61:4-(N-甲基-N-(4-甲氧基-3-(呋喃-2-基-甲羰氧基)-苯)-氨基)香豆素的制备(COUM-61)
Figure PCTCN2016074796-appb-000309
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆 素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加呋喃-2-酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ7.68(m,1H),7.38(m,2H),7.29(d,J=8.4Hz,1H),7.07~7.01(m,2H),6.93(m,3H),6.60(d,J=1.7Hz,1H),5.87(s,1H),3.83(s,3H),3.38(s,3H)。MS(ESI,m/z):414.2[M+Na]+
实施实例62:4-(N-甲基-N-(4-甲氧基-3-(3-氯苯基-甲羰氧基)-苯)-氨基)香豆素的制备(COUM-62)
Figure PCTCN2016074796-appb-000310
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加3-氯苯甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率83%。
1H NMR(400MHz,CDCl3)δ8.17(s,1H),8.07(d,J=7.6Hz,1H),7.61(d,J=8.2Hz,1H),7.46(t,J=7.9Hz,1H),7.38(t,J=7.5Hz,1H),7.30(d,J=8.4Hz,1H),7.07(d,J=8.2Hz,1H),7.01(s,1H),6.99~6.92(m,3H),5.88(s,1H),3.83(s,3H),3.39(s,3H)。MS(ESI,m/z):458.5[M+Na]+
实施实例63:4-(N-甲基-N-(4-甲氧基-3-(2-甲基苯基-甲羰氧基)-苯)-氨基)香豆素的制备(COUM-63)
Figure PCTCN2016074796-appb-000311
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加2-甲基苯甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ8.14(d,J=7.8Hz,1H),7.48(t,J=7.5Hz,1H),7.37(t,J=7.7Hz,1H),7.30(t,J=8.1Hz,3H),7.08(d,J=8.1Hz,1H),7.02(s,1H),6.98–6.91(m,3H),5.88(s,1H),3.84(s,3H),3.39(s,3H),2.66(s,3H)。
实施实例64:4-(N-甲基-N-(4-甲氧基-3-(噻吩-2基-甲羰氧基)-苯)-氨基)香豆素的制备(COUM-64)
Figure PCTCN2016074796-appb-000312
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加噻吩-2-甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ7.68(d,J=4.9Hz,1H),7.47~7.37(m,2H),7.32(d,J=8.2Hz,1H),7.08~7.01(m,1H),6.97(m,3H),6.85(m,2H),5.85(s,1H),3.70(s,3H),3.32(s,3H)。
实施实例65:4-(N-甲基-N-(4-甲氧基-3-(4-(甲氧基苯基)-甲羰氧基)-苯)-氨基)香豆素的制备(COUM-65)
Figure PCTCN2016074796-appb-000313
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加4-甲氧基苯甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ8.14(d,J=8.8Hz,2H),7.37(t,J=7.6Hz,1H),7.29(d,J=8.2Hz,1H),7.11~6.89(m,8H),5.87(s,1H),3.90(s,3H),3.82(s,3H),3.38(s,3H)。MS(ESI,m/z):454.4[M+Na]+
实施实例66:4-(N-甲基-N-(4-甲氧基-3-戊羰基氧基-苯)-氨基)香豆素的制备(COUM-66)
Figure PCTCN2016074796-appb-000314
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加正戊酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率87%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.6Hz,1H),7.28(d,J=9.3Hz,1H),7.01(d, J=8.2Hz,1H),6.94~6.86(m,4H),5.85(s,1H),3.83(d,J=7.2Hz,3H),3.36(s,3H),2.56(t,J=7.5Hz,2H),1.78~1.70(m,2H),1.45(dd,J=15.0,7.4Hz,2H),0.96(t,J=7.3Hz,3H)。MS(ESI,m/z):404.6[M+Na]+
实施实例67:4-(N-甲基-N-(4-甲氧基-3-丙羰基氧基-苯)-氨基)香豆素的制备(COUM-67)
Figure PCTCN2016074796-appb-000315
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加丙酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率87%。
1H NMR(400MHz,DMSO)δ7.48~7.42(m,1H),7.33(d,J=8.2Hz,1H),7.12~7.04(m,3H),7.02~6.94(m,2H),5.87(s,1H),3.76(s,3H),3.32(s,3H),2.54(dd,J=14.1,6.6Hz,2H),1.10(t,J=7.5Hz,3H)。MS(ESI,m/z):376.2[M+Na]+
实施实例68:4-(N-甲基-N-(4-甲氧基-3-(2-溴乙基羰基氧基)苯)-氨基)香豆素的制备(COUM-68)
Figure PCTCN2016074796-appb-000316
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加溴乙酰溴二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率86%。
1H NMR(400MHz,DMSO)δ7.50~7.42(m,1H),7.33(d,J=8.3Hz,1H),7.08(s,1H),6.98(d,J=8.4Hz,2H),5.89(s,1H),4.41(s,2H),3.78(s,3H)。MS(ESI,m/z):440.3,442.3[M+Na]+
实施实例69:4-(N-甲基-N-(4-甲氧基-3-(2-甲基-烯丙羰基氧基)苯)-氨基)香豆素的制备(COUM-69)
Figure PCTCN2016074796-appb-000317
在氮气保护下,将中间体15a(4-(N-甲基-N-(3-羟基-4-甲氧基苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加2甲基丙烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率85%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.7Hz,1H),7.28(d,J=10.5Hz,1H),7.09~6.85(m,5H),6.35(s,1H),5.86(s,1H),5.77(s,1H),3.81(d,J=9.2Hz,3H),3.36(s,3H),2.06(s,3H)。MS(ESI,m/z):388.5[M+Na]+,753.3[2M+Na]+
实施实例70:4-(N-甲基-N-(4-甲氧基-3-(3-甲基丁-2-烯)羰基氧基)苯)-氨基)香豆素的制备(COUM-70)
Figure PCTCN2016074796-appb-000318
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加3-甲基丁-2-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ7.35(t,J=7.7Hz,1H),7.28(d,J=8.0Hz,1H),7.02(t,J=8.9Hz,1H),6.90(d,J=14.3Hz,4H),5.93(s,1H),5.85(s,1H),3.83(s,3H),3.36(s,3H),2.22(s,3H),1.99(s,3H)。MS(ESI,m/z):402.8[M+Na]+
实施实例71:4-(N-甲基-N-(4-甲氧基-3-(丁-2-烯-羰基氧基-)苯)-氨基)香豆素的制备(COUM-71)
Figure PCTCN2016074796-appb-000319
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加丁-2-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率91%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.2Hz,1H),7.28(d,J=9.3Hz,1H),7.19(dq,J=13.9,6.9Hz,1H),7.03(d,J=8.2Hz,1H),6.92(dd,J=7.2,6.1Hz,4H),6.05(dd,J=15.5,1.4Hz,1H),5.85(s,1H),3.82(s,3H),3.36(s,3H),1.97(dd,J=6.9,1.2Hz,3H)。MS(ESI,m/z):388.5[M+Na]+
实施实例72:4-(N-甲基-N-(4-甲氧基-3-(环丙基-羰氧基)苯)-氨基)香豆素的制 备(COUM-72)
Figure PCTCN2016074796-appb-000320
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加环丙基甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率89%。
1H NMR(400MHz,CDCl3)δ7.38~7.27(m,2H),7.01(d,J=8.1Hz,1H),6.89(d,J=12.3Hz,4H),5.85(s,1H),3.83(s,3H),3.35(s,3H),1.90~1.78(m,1H),1.22–1.14(m,2H),1.09~0.98(m,2H)。MS(ESI,m/z):388.5[M+Na]+
实施实例73:4-(N-甲基-N-(4-甲氧基-3-(环戊基-羰氧基)苯)-氨基)香豆素的制备(COUM-73)
Figure PCTCN2016074796-appb-000321
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加环丙基甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率89%。
实施实例74:4-(N-甲基-N-(4-甲氧基-3-(3-乙氧羰基-羰氧基)苯)-氨基)香豆素的制备(COUM-74)
Figure PCTCN2016074796-appb-000322
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加3-乙氧羰基丙酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率85%。
1H NMR(400MHz,DMSO)δ7.44(dd,J=10.4,4.2Hz,1H),7.33(d,J=8.3Hz,1H),7.16~7.05(m,2H),6.98(dd,J=14.1,7.7Hz,3H),5.87(s,1H),4.13~3.96(m,3H),3.75(s,3H),3.33(s,3H),2.79(t,J=6.5Hz,2H),2.61(t,J=6.5Hz,2H),1.17(q,J=7.2Hz,2H)。 MS(ESI,m/z):448.5[M+Na]+
实施实例75:4-(N-甲基-N-(4-甲氧基-3-(己烷羰氧基)苯)-氨基)香豆素的制备(COUM-75)
Figure PCTCN2016074796-appb-000323
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加正己酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ7.38~7.33(m,1H),7.28(d,J=9.3Hz,1H),7.04~6.99(m,1H),6.95~6.85(m,4H),5.85(s,1H),3.82(s,3H),3.36(s,3H),2.55(t,J=7.5Hz,2H),1.80~1.70(m,2H),1.44~1.33(m,4H),0.92(t,J=7.0Hz,3H)。
实施实例76:4-(N-甲基-N-(4-甲氧基-3-(癸烷羰氧基)苯)-氨基)香豆素的制备(COUM-76)
Figure PCTCN2016074796-appb-000324
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加正癸酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率64%。
1H NMR(400MHz,CDCl3)δ7.35(t,J=7.4Hz,1H),7.28(d,J=7.8Hz,1H),7.01(d,J=8.1Hz,1H),6.95~6.85(m,4H),5.85(s,1H),3.82(s,3H),3.36(s,3H),2.55(t,J=7.4Hz,2H),1.80~1.68(m,2H),1.25(dd,J=15.7,8.4Hz,12H),0.88(t,J=6.5Hz,3H)。
实施实例77:4-(N-甲基-N-(4-甲氧基-3-((4-甲氧羰基)-羰氧基)苯)-氨基)香豆素的制备(COUM-77)
Figure PCTCN2016074796-appb-000325
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加4-甲氧羰基丁酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡 黄色固体,收率82%。
1H NMR(400MHz,CDCl3)δ7.36(t,J=7.6Hz,1H),7.28(d,J=8.8Hz,1H),7.01(d,J=8.1Hz,1H),6.96~6.85(m,4H),5.86(s,1H),3.82(s,3H),3.69(s,3H),3.36(s,3H),2.64(t,J=7.2Hz,2H),2.47(q,J=7.2Hz,2H),2.11~2.03(m,2H)。MS(ESI,m/z):448.7[M+Na]+
实施实例78:4-(N-甲基-N-(4-甲氧基-3-(5-氯-正戊烷羰氧基)苯)-氨基)香豆素的制备(COUM-78)
Figure PCTCN2016074796-appb-000326
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加5-氯戊酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ7.39~7.33(m,1H),7.28(dd,J=8.3,1.1Hz,1H),7.01(dd,J=8.2,1.3Hz,1H),6.95~6.85(m,4H),5.86(s,1H),3.83(s,3H),3.64~3.53(m,2H),3.36(s,3H),2.61(dd,J=8.5,5.1Hz,2H),1.98~1.84(m,4H)。MS(ESI,m/z):438.3[M+Na]+
实施实例79:4-(N-甲基-N-(4-甲氧基-3-(3,3-二甲基-丁羰氧基)苯)-氨基)香豆素的制备(COUM-79)
Figure PCTCN2016074796-appb-000327
在氮气保护下,将中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加特戊酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ7.40~7.32(m,1H),7.28(dd,J=9.1,1.8Hz,1H),7.02(dd,J=8.3,1.3Hz,1H),6.95~6.85(m,4H),5.85(s,1H),3.82(s,3H),3.36(s,3H),2.44(s,2H),1.13(s,9H)。
实施实例80:4-(N-甲基-N-(4-甲氧基-3-(戊-1-烯-羰氧基)苯)-氨基)香豆素的制备(COUM-80)
Figure PCTCN2016074796-appb-000328
在氮气保护下,中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加戊-1-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率76%。
1H NMR(400MHz,CDCl3)δ7.41~7.32(m,1H),7.28(d,J=7.9Hz,1H),7.01(d,J=8.2Hz,1H),6.90(dd,J=12.9,7.2Hz,3H),5.90(ddd,J=17.4,8.7,4.5Hz,1H),5.85(d,J=3.9Hz,1H),5.19~5.08(m,1H),5.06(d,J=10.2Hz,1H),3.82(s,3H),3.35(s,3H),2.67(t,J=7.4Hz,2H),2.50(dd,J=13.8,6.7Hz,2H)。MS(ESI,m/z):380.2[M+H]+
实施实例81:4-(N-甲基-N-(4-甲氧基-3-(4-甲基--戊-3-烯-羰氧基)苯)-氨基)香豆素的制备(COUM-81)
Figure PCTCN2016074796-appb-000329
在氮气保护下,中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加4-甲基--戊-3-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率76%。
1H NMR(400MHz,CDCl3)δ7.39~7.33(m,1H),7.30~7.27(m,1H),7.05(dd,J=8.2,1.2Hz,1H),7.00(dd,J=8.0,6.7Hz,1H),6.96~6.86(m,4H),5.85(s,1H),3.82(s,3H),3.36(s,3H),2.27(p,J=7.4Hz,2H),1.94(s,3H),1.10(t,J=7.6Hz,3H)。MS(ESI,m/z):394.2[M+H]+
实施实例82:4-(N-甲基-N-(4-甲氧基-3-(反-己-4-烯-羰氧基)苯)-氨基)香豆素的制备(COUM-82)
Figure PCTCN2016074796-appb-000330
在氮气保护下,中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加反-己-4-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=6:1快速柱层析分离。得到淡黄色固体,收率79%。
1H NMR(400MHz,CDCl3)δ7.39~7.32(m,1H),7.28(dd,J=8.3,0.9Hz,1H),7.18(dt,J=15.6,6.9Hz,1H),7.03(dd,J=8.2,1.2Hz,1H),6.91(dd,J=9.7,4.1Hz,4H),6.02(dt,J=15.6,1.5Hz,1H),5.85(s,1H),3.83(s,3H),3.36(s,3H),2.33~2.19(m,2H),1.53(dt,J=14.7,7.4Hz,2H),0.97(t,J=7.4Hz,3H)。
实施实例83:4-(N-甲基-N-(4-甲氧基-3-(Boc-甘氨酸酯)苯)-氨基)香豆素的制备(COUM-83)
Figure PCTCN2016074796-appb-000331
在氮气保护下,将中间体15a、EDCi(1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐)、DMAP(4-二甲氨基吡啶)溶于无水的二氯甲烷中,冰浴下滴加Boc-甘氨酸的二氯甲烷溶液。滴加完毕后,升至室温反应,过夜。次日,旋去二氯甲烷溶液,加入大量水稀释,再加入乙酸乙酯萃取。萃取三次,合并有机相。有机相用无水硫酸钠干燥,除去有机溶剂。残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到白色固体。收率59%。
1H NMR(400MHz,CDCl3)δ7.40~7.33(m,1H),7.29(dd,J=8.3,1.1Hz,1H),7.01(dd,J=8.3,1.4Hz,1H),6.95–6.86(m,4H),5.85(d,J=14.1Hz,1H),5.19(s,1H),3.97(d,J=3.9Hz,2H),3.87(d,J=6.2Hz,3H),3.35(d,J=6.6Hz,3H),1.51(d,J=11.0Hz,9H)。实施实例84:4-(N-甲基-N-(4-甲氧基-3-(Boc-亮氨酸)苯)氨基)香豆素的制备(COUM-84)
Figure PCTCN2016074796-appb-000332
在氮气保护下,中间体15a、EDCi,DMAP溶于无水的二氯甲烷中,冰浴下滴加Boc-亮氨酸的二氯甲烷溶液。滴加完毕后,升至室温反应,过夜。次日,旋去二氯甲烷溶液,加入大量水稀释,再加入乙酸乙酯萃取。萃取三次,合并有机相。有机相用无水硫酸钠干燥,除去有机溶剂。残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到白色固体。收率58%。
1H NMR(400MHz,CDCl3)δ7.39~7.32(m,1H),7.31~7.27(m,1H),7.01(dd,J=8.3,1.3Hz,1H),6.97~6.83(m,4H),5.86(s,1H),4.92(d,J=8.6Hz,1H),4.54(s,1H),3.80(s,3H),3.35(s,3H),1.90~1.76(m,1H),1.71~1.56(m,2H),1.44(s,9H),1.00(d,J=6.3Hz,6H)。
实施实例85:4-(N-甲基-N-(4-甲氧基-3-(Boc-α-丙氨酸)苯)氨基)香豆素的制备 (COUM-85)
Figure PCTCN2016074796-appb-000333
在氮气保护下,中间体15a、EDCi,DMAP溶于无水的二氯甲烷中,冰浴下滴加Boc-α-丙氨酸的二氯甲烷溶液。滴加完毕后,升至室温反应,过夜。次日,旋去二氯甲烷溶液,加入大量水稀释,再加入乙酸乙酯萃取。萃取三次,合并有机相。有机相用无水硫酸钠干燥,除去有机溶剂。残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到白色固体。收率59%。
1H NMR(400MHz,CDCl3)δ7.40~7.33(m,1H),7.29(dd,J=8.3,1.1Hz,1H),7.01(dd,J=8.3,1.4Hz,1H),6.95~6.86(m,4H),5.85(d,J=14.1Hz,1H),5.19(d,J=27.0Hz,1H),3.87(d,J=9.8Hz,3H),3.53(d,J=5.5Hz,1H),3.35(d,J=11.0Hz,3H),1.58(s,3H),1.45(s,9H)。
实施实例86:4-(N-甲基-N-(4-甲氧基-3-(Boc-蛋氨基酸)苯)氨基)香豆素的制备(COUM-86)
Figure PCTCN2016074796-appb-000334
在氮气保护下,中间体15a、EDCi,DMAP溶于无水的二氯甲烷中,冰浴下滴加Boc-α-丙氨酸的二氯甲烷溶液。滴加完毕后,升至室温反应,过夜。次日,旋去二氯甲烷溶液,加入大量水稀释,再加入乙酸乙酯萃取。萃取三次,合并有机相。有机相用无水硫酸钠干燥,除去有机溶剂。残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到白色固体。收率59%。
1H NMR(400MHz,CDCl3)δ7.40~7.33(m,1H),7.29(dd,J=8.3,1.1Hz,1H),7.01(dd,J=8.3,1.4Hz,1H),6.95~6.86(m,4H),5.85(d,J=14.1Hz,1H),5.19(d,J=27.0Hz,1H),3.87(d,J=9.8Hz,3H),3.53(d,J=5.5Hz,1H),3.35(d,J=11.0Hz,3H),2.60(m,2H),2.18(m,2H),2.07(s,3H),1.45(s,9H)。
实施实例87:4-(N-甲基-N-(4-甲氧基-3-氨基-苯)-氨基)香豆素的制备(COUM-87)
Figure PCTCN2016074796-appb-000335
在氮气保护下,将中间体18(4-甲氧基-N1-甲基-1,3-二胺苯)和中间体10(4-溴 香豆素)溶于N,N-二甲基甲酰胺(DMF)中,滴加2个当量的二异丙基乙胺,100摄氏度下反应过夜。反应底物加入大量水稀释,用乙酸乙酯萃取。旋去有机溶剂后,底物过快速柱(流动相为石油醚:乙酸乙酯=4:1)。得到浅黄色固体,收率78%。
1H NMR(400MHz,DMSO)δ7.47~7.39(m,1H),7.30(dd,J=8.2,0.8Hz,1H),7.10(dd,J=8.2,1.3Hz,1H),7.01~6.95(m,1H),6.77(d,J=8.5Hz,1H),6.45(d,J=2.6Hz,1H),6.37(dd,J=8.4,2.6Hz,1H),5.75(s,1H),4.90(s,2H),3.76(s,3H),3.28(s,3H)。MS(ESI,m/z):297.2[M+H]+
实施实例88:4-(N-甲基-N-(4-甲氧基-3-(3-乙氧羰基-羰氨基)苯)-氨基)香豆素的制备(COUM-88)
Figure PCTCN2016074796-appb-000336
在氮气保护下,中间体19a(4-(N-甲基-N-(4-甲氧基-3-氨基-苯)-氨基)香豆素)、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加3-乙氧羰基丙酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ8.46(d,J=2.3Hz,1H),8.02(s,1H),7.36~7.30(m,1H),7.27(d,J=2.3Hz,1H),7.03(dd,J=8.2,1.1Hz,1H),6.92–6.82(m,1H),6.71(d,J=8.6Hz,1H),6.56(dd,J=8.6,2.6Hz,1H),5.83(s,1H),4.17(p,J=7.3Hz,2H),3.88(s,3H),3.35(s,3H),2.74(s,4H),1.28(t,J=7.1Hz,3H)。MS(ESI,m/z):447.1[M+Na]+
实施实例89:4-(N-甲基-N-(4-甲氧基-3-((4-甲氧羰基)-羰氨基)苯基)-氨基)香豆素的制备(COUM-89)
Figure PCTCN2016074796-appb-000337
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加4-甲氧羰基丁酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率82%。
1H NMR(400MHz,CDCl3)δ8.48(s,1H),7.87(s,1H),7.38~7.29(m,1H),7.27(d,J=4.3Hz,1H),7.03(t,J=10.1Hz,1H),6.86(t,J=7.5Hz,1H),6.71(d,J=8.7Hz,1H),6.56(dd,J=8.6,2.6Hz,1H),5.83(s,1H),3.88(s,3H),3.70(s,3H),3.36(s,3H),2.49(dt,J=14.5,7.2Hz,4H),2.11~2.03(m,2H)。MS(ESI,m/z):447.1[M+Na]+
实施实例90:4-(N-甲基-N-(4-甲氧基-3-(己烷羰氨基)苯基)-氨基)香豆素的制备 (COUM-90)
Figure PCTCN2016074796-appb-000338
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加己酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率86%。
1H NMR(400MHz,CDCl3)δ8.51(d,J=2.3Hz,1H),7.83(s,1H),7.33(t,J=7.6Hz,1H),7.27(d,J=4.9Hz,1H),7.05(d,J=7.4Hz,1H),6.86(t,J=7.1Hz,1H),6.71(d,J=8.6Hz,1H),6.55(dd,J=8.6,2.5Hz,1H),5.83(s,1H),3.88(s,3H),3.38(m,2H),2.40(m,2H),1.80~1.69(m,2H),1.42~1.33(m,4H),0.93(t,J=6.9Hz,3H)。MS(ESI,m/z):417.1[M+Na]+
实施实例91:4-(N-甲基-N-(4-甲氧基-3-(癸烷羰氨基)苯基)-氨基)香豆素的制备(COUM-91)
Figure PCTCN2016074796-appb-000339
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加癸酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率84%。
1H NMR(400MHz,CDCl3)δ8.51(d,J=2.5Hz,1H),7.83(s,1H),7.36~7.30(m,1H),7.29~7.27(m,1H),7.05(dd,J=8.2,1.1Hz,1H),6.91~6.81(m,1H),6.71(d,J=8.6Hz,1H),6.55(dd,J=8.6,2.6Hz,1H),5.83(s,1H),3.88(s,3H),3.36(s,3H),2.42(t,J=7.6Hz,2H),1.75(dd,J=14.6,7.4Hz,2H),1.64~1.00(m,24H),0.88(t,J=6.8Hz,3H)。MS(ESI,m/z):473.4[M+Na]+
实施实例92:4-(N-甲基-N-(4-甲氧基-3-(5-氯-正戊烷羰氨基)苯基)-氨基)香豆素的制备(COUM-92)
Figure PCTCN2016074796-appb-000340
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加5-氯戊酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日, 除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率83%。
1H NMR(400MHz,CDCl3)δ8.48(d,J=2.5Hz,1H),7.83(s,1H),7.33(dd,J=11.1,4.1Hz,1H),7.28(s,1H),7.07~7.01(m,1H),6.91~6.81(m,1H),6.72(d,J=8.6Hz,1H),6.57(dd,J=8.6,2.6Hz,1H),5.83(s,1H),3.88(s,3H),3.64~3.55(m,2H),3.36(s,3H),2.46(d,J=6.6Hz,2H),1.95~1.83(m,4H)。MS(ESI,m/z):437.5[M+Na]+
实施实例93:4-(N-甲基-N-(4-甲氧基-3-(丁-2-烯-羰氨基-)苯基)-氨基)香豆素的制备(COUM-93)
Figure PCTCN2016074796-appb-000341
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加丁-2-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率78%。
1H NMR(400MHz,CDCl3)δ8.58(s,1H),7.83(s,1H),7.36~7.29(m,1H),7.27(d,J=2.7Hz,1H),7.08~6.95(m,2H),6.85(t,J=7.0Hz,1H),6.72(d,J=8.6Hz,1H),6.57(dd,J=8.6,2.5Hz,1H),6.01(d,J=14.9Hz,1H),5.84(s,1H),3.88(s,3H),3.37(s,3H),1.94(d,J=6.8Hz,3H)。MS(ESI,m/z):387.5[M+Na]+
实施实例94:4-(N-甲基-N-(4-甲氧基-3-(1-甲酯-葵烷-氧基)苯基)-氨基)香豆素的制备(COUM-94)
Figure PCTCN2016074796-appb-000342
在氮气保护下,中间体15a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加11-溴-十一酸加酯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=8:1快速柱层析分离。得到淡黄色固体,收率83%。
1H NMR(400MHz,CDCl3)δ7.33(dd,J=11.2,4.1Hz,1H),7.28(d,J=5.2Hz,1H),6.98(d,J=8.3Hz,1H),6.85(dd,J=11.2,4.2Hz,1H),6.79(d,J=8.4Hz,1H),6.66~6.60(m,2H),5.82(s,1H),3.89(dd,J=12.2,5.3Hz,2H),3.86(s,3H),3.67(s,3H),3.36(s,3H),2.30(t,J=7.5Hz,2H),1.82~1.69(m,2H),1.60(d,J=7.2Hz,2H),1.40(m,2H),1.28(s,10H)。
实施实例95:4-(N-甲基-N-(4-甲氧基-3-(戊-1-烯-羰氨基)苯基)-氨基)香豆素的制备(COUM-95)
Figure PCTCN2016074796-appb-000343
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加戊-1-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率83%。
1H NMR(400MHz,CDCl3)δ8.50(d,J=2.1Hz,1H),7.86(s,1H),7.32(dd,J=14.2,7.2Hz,1H),7.27(d,J=5.1Hz,1H),7.05(d,J=8.3Hz,1H),6.86(t,J=7.6Hz,1H),6.71(d,J=8.6Hz,1H),6.56(dd,J=8.6,2.4Hz,1H),5.91(ddd,J=16.9,10.4,6.1Hz,1H),5.84(s,1H),5.14(d,J=16.6Hz,1H),5.07(d,J=10.3Hz,1H),3.88(s,3H),3.36(s,3H),2.53(d,J=10.9Hz,4H)。
实施实例96:4-(N-甲基-N-(4-甲氧基-3-(4-甲基-戊-2-烯-羰氨基)苯基)-氨基)香豆素的制备(COUM-96)
Figure PCTCN2016074796-appb-000344
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加戊-1-烯酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ8.51(d,J=2.3Hz,1H),7.83(s,1H),7.33(t,J=7.6Hz,1H),7.27(d,J=4.9Hz,1H),7.05(d,J=7.4Hz,1H),6.86(t,J=7.1Hz,1H),6.71(d,J=8.6Hz,1H),6.55(dd,J=8.6,2.5Hz,1H),6.34(m,1H),5.83(s,1H),3.88(s,3H),2.34(s,3H),2.02(m,2H),1.01(m,3H)。
实施实例97:4-(N-甲基-N-(4-甲氧基-3-(环戊基羰氨基)苯基)-氨基)香豆素的制备(COUM-97)
Figure PCTCN2016074796-appb-000345
在氮气保护下,中间体19a、N,N-二异丙基乙胺溶于无水的二氯甲烷中,冰浴搅拌下,缓慢滴加环戊基甲酰氯的二氯甲烷溶液。滴加完毕后,可升至室温,搅拌过夜。次日,除去有机溶剂,残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到淡黄色固体,收率81%。
1H NMR(400MHz,CDCl3)δ8.51(d,J=2.3Hz,1H),7.83(s,1H),7.33(t,J=7.6Hz,1H),7.27(d,J=4.9Hz,1H),7.05(d,J=7.4Hz,1H),6.86(t,J=7.1Hz,1H),6.71(d,J=8.6Hz,1H),6.55(dd,J=8.6,2.5Hz,1H),5.83(s,1H),3.88(s,3H),2.61(m,1H),1.76~1.68(m,8H)。
实施实例98:4-(N-甲基-N-(4-甲氧基-3-(1-羧酸-丙烷羰氨基-)苯基)-氨基)香豆素的制备(COUM-98)
Figure PCTCN2016074796-appb-000346
在氮气保护下,中间体化合物19a、EDCi,DMAP溶于无水的二氯甲烷中,冰浴下滴加丁二酸酐的二氯甲烷溶液。滴加完毕后,升至室温反应,过夜。次日,旋去二氯甲烷溶液,加入大量水稀释,再加入乙酸乙酯萃取。萃取三次,合并有机相。有机相用无水硫酸钠干燥,除去有机溶剂。残留底物用石油醚:乙酸乙酯=1:1快速柱层析分离。得到白色固体。收率58%。
1H NMR(400MHz,CDCl3)δ8.43(s,1H),8.02(s,1H),7.36~7.30(m,1H),7.27(d,J=4.1Hz,1H),7.03(d,J=8.1Hz,1H),6.86(t,J=7.6Hz,1H),6.72(d,J=8.6Hz,1H),6.58(d,J=8.3Hz,1H),5.85(s,1H),3.88(s,3H),3.35(s,3H),2.81(d,J=5.3Hz,2H),2.77(d,J=5.2Hz,2H)。
实施实例99:4-(N-甲基-N-(4-甲氧基-3-(Boc-β-丙氨酸酰胺)苯基)-氨基)香豆素的制备(COUM-99)
Figure PCTCN2016074796-appb-000347
在氮气保护下,中间体化合物19a、EDCi、DMAP溶于无水的二氯甲烷中,冰浴下滴加Boc-β-丙氨酸的二氯甲烷溶液。滴加完毕后,升至室温反应,过夜。次日,旋去二氯甲烷溶液,加入大量水稀释,再加入乙酸乙酯萃取。萃取三次,合并有机相。有机相用无水硫酸钠干燥,除去有机溶剂。残留底物用石油醚:乙酸乙酯=3:1快速柱层析分离。得到白色固体。收率58%。
1H NMR(400MHz,CDCl3)δ8.43(d,J=2.3Hz,1H),7.86(s,1H),7.33(dd,J=11.1, 4.1Hz,1H),7.30~7.27(m,1H),7.03(t,J=11.6Hz,1H),6.87(dd,J=11.1,4.1Hz,1H),6.73(d,J=8.7Hz,1H),6.59(dd,J=8.6,2.5Hz,1H),5.84(s,1H),5.13(s,1H),3.87(s,3H),3.53~3.46(m,2H),3.36(s,3H),2.65(t,J=5.8Hz,2H),1.45(s,9H)。
药效学试验部分
实施例100体外肿瘤细胞增值抑制活性测试试验
本发明所述的香豆素衍生物具有显著的药理活性,如抗肿瘤、抗血管疾病,为证实上述特点,对本发明实施例中的化合物进行了体外肿瘤细胞增值抑制活性测试。
1)细胞系和细胞培养
人大细胞肺癌细胞株NCI-H460,人小细胞肺癌细胞株NCI-H446,人肝癌细胞株HepG2,人结肠癌细胞株HCT116、人前列腺癌PC-3、人黑色素瘤A375、结肠癌细胞HCT-8、乳腺癌细胞MCF-7、卵巢癌细胞A2780s、卵巢癌耐药细胞A2780/T、结肠癌耐药的细胞HCT-8/T、阿霉素耐药乳腺癌细胞MCF-7/ADR来自美国典型培养物中心(American Type Culture Collection,ATCC),由四川大学生物治疗国家重点实验室细胞库培养保种。以上肿瘤细胞常规培养于含10%胎牛血清、100U.mL-1青霉素和100mg.L-1链霉素的DMEM培养液中,置饱和湿度、37℃的5%CO2孵箱中培养。
2)仪器设备
CO2培养箱:新加坡ESCO CCL-170B-8。数码倒置显微镜:Olympus CKX31。正置研究级显微镜:Olympus BX51TRF。酶标仪:美国Molecular Device公司M5。常温离心机:Thermosicentific公司产品,thermo SOROALLST16。纯水仪:美国Millipore产品,FTPNO9748。立式高压灭菌锅:日本SANYO产品,MLS-3780。恒温水浴箱:巩义市予华仪器有限责任公司DF-101S。超净工作台:新加坡ESCO产品,ESCO Bilogical safety Cabinet,AC2-L1S1Class II。旋涡混匀器:海门市其林贝尔仪器制造有限公司cel-866。pH计:METTLER TOLEDO公司产品DELTA320。体重秤:龙腾电子有限公司,LD5102。温湿度计:河北衡水市武强温湿表制造中心,GJWS-A5。液氮罐:美国Thermo公司产品,CY50985-70。
3)细胞计数
体外培养的细胞经0.25%胰蛋白酶消化,轻轻吹落,收集,离心,1200g*3min,用新鲜培养基重悬,将细胞稀释到合适的密度。混匀后吸取少量悬液滴加到血球计数板上,在倒置显微镜下计数。记下4个大格的细胞总数,取平均数后乘以104,再乘以稀释倍数得到细胞密度,乘以总体积即得到细胞总数。
4)体外培养细胞接种96孔板
细胞用0.25%的胰酶消化后离心,加完全培养基悬浮,用血球计数板对细胞进行计数。96孔板按每孔1000-10000个细胞加入稀释好的细胞悬液。置于CO2孵箱中培养过夜。
5)MTT试验
选用对数生长期的肿瘤细胞,用0.25%的胰酶消化后,用完全培养基调整细胞悬液浓度,以每孔1000~10000个细胞接种到96孔板,每孔200μL,37℃的5%CO2孵箱中培养24h,实验组更换新的含有不同浓度的待测化合物的培养基,对照组则换成含有等体积的新鲜培养基,每组设置5个平行孔,37℃的5%CO2孵箱中培养。
在药物作用72小时后弃去上清,每孔加入200uL新鲜配制的含有0.2mg/mL的MTT的无血清的培养基,37℃继续培养1~4小时,终止培养,小心吸弃孔内培养上清液,并加入200uL DMSO(二甲基亚砜),用微型超声振荡器振荡15~20分钟,使结晶物充分溶解混匀后,在酶标仪上检测570nm,参比波长为450nm,测定光密度值。
6)数据处理
按公式计算药物浓度梯度下对肿瘤细胞的生长抑制率:肿瘤细胞生长相对抑制率%=(1-OD实验组/OD对照组)×100%。
以同一样品的不同浓度对肿瘤细胞生长抑制率作图,可得到剂量反应曲线,从中求出半数抑制浓度IC50。每个实验均重复3次,测出每个化合物在不同肿瘤细胞中的半数致死浓度微摩尔(μM)(IC50)或纳摩尔浓度(nM)。
7)实验结果
表1中列出各化合物对肝癌细胞HEPG2和结肠癌细胞HCT116的半数致死浓度μM(IC50)范围,其中"+"表示IC50>5uM以上,"++"表示100nM<IC50<5μM,"+++"表示10nM<IC50<100nM,"++++"表示0.01<IC50<10nM。
表1中MPC-6827的结构式为
Figure PCTCN2016074796-appb-000348
表1各化合物对肿瘤细胞的半数抑制活性(IC50)
Figure PCTCN2016074796-appb-000349
Figure PCTCN2016074796-appb-000350
Figure PCTCN2016074796-appb-000351
Figure PCTCN2016074796-appb-000352
Figure PCTCN2016074796-appb-000353
Figure PCTCN2016074796-appb-000354
由表1可见,表1中多个化合物展示良好的抗肿瘤细胞增殖活性。其中化合物COUM-46、COUM-48、COUM-57、COUM-68、COUM-69、COUM-70、COUM-71、COUM-72、COUM-73、COUM-74、COUM-75、COUM-76、COUM-77、COUM-78、COUM-79、COUM-80、COUM-81、COUM-87、COUM-88、COUM-89、COUM-90、COUM-91、COUM-92、COUM-93、COUM-96等,是抗肿瘤活性最好的,它们的IC50值在0.01~10nM之间。本发明提供的部分化合物,其活性已经超过了MPC6827、紫杉醇、长春新碱和秋水仙碱等阳性药物。
表2各化合物对敏感和耐药肿瘤细胞的半数抑制活性(IC50,nM)
Figure PCTCN2016074796-appb-000355
Figure PCTCN2016074796-appb-000356
由表2可见,多个化合物不但对肿瘤细胞卵巢癌A2780S、结肠癌细胞HCT-8以及乳腺癌细胞MCF-7抗增活性强,且对紫杉醇耐药的卵巢癌细胞A2780/T、紫杉醇耐药的结肠癌细胞HCT-8/T以及阿霉素耐药乳腺癌细胞MCF-7/ADR也具有良好的抗增值活性。其中化合物COUM-71、COUM-80、COUM-87、COUM-81均显示比紫杉醇、长春新碱以及秋水仙碱更强的活性。
实施例101免疫荧光显示部分化合物对微管的解聚作用
1)实验方法
往6孔板中放置细胞爬片,将肝癌细胞HepG2细胞铺板于6孔板中,使细胞贴壁在爬片上。用200nM秋水仙碱,300nM紫杉醇作阳性对照药物,待测化合物MPC-6827、COUM-87、COUM-92、COUM-95、COUM-71、COUM-76、COUM-79、COUM-81、COUM-83分别设定三个浓度或等体积DMSO处理细胞16h;吸掉细胞培养液,PBS(磷酸盐缓冲液)洗一次后4%多聚甲醛室温固定15min;冷PBS洗一次;用含0.5%tritonX-100(聚乙二醇辛基苯基醚)的PBS室温打孔10min;用封闭液室温封闭30min;在保湿条件下孵育抗β-tubulin一抗,室温孵育1h,PBS洗3次;在保湿、避光条件下孵育488标记山羊抗小鼠二抗(购自于北京中杉金桥生物公司)45min;DAPI(4',6-二脒基-2-苯基吲哚)工作液室温染色5min,避光;PBS洗3次;将爬片置于载玻片上,用抗淬灭剂封片后,采用Zeiss公司Axiovert200倒置荧光显微镜观察化合物对微管的抑制作用。
2)实验结果
由图1、图2可看到,DMSO对照组中,微管结构自然有序,而阳性药物MPC-6827组中,微管因为聚合受到抑制,无法装配成有序的丝状结构,表观上呈现为零散而均匀地分布在细胞轮廓内,而本专利所述的化合物COUM-79、COUM-81、COUM-87、COUM-92、COUM-95均表现出了随浓度增大而抑制微管聚合的能力。尤其是COUM-79、 COUM-81、COUM-87,在1nM浓度下,仅能部分观察到丝状结构,浓度增大至3nM后,微管结构全部被破坏,表现出比MPC-6827更强的解聚作用,说明以上这些化合物具有抑制微管聚合的能力。
实施例102体内荷瘤小鼠肿瘤模型上的药效学
1)化合物:9种化合物COUM-87、COUM-89、COUM-92、COUM-95、COUM-71、COUM-76、COUM-77、COUM-80、COUM-83。
2)实验动物、培养基
SPF级BALB/c裸鼠(Balb/C nu/nu)和小白鼠,雌性,4-6周龄,18-22克,购自北京华阜康生物科技股份有限公司,生产许可证号:SCXK(京)2009-0004和SCXX(京)2014-0004,侍养于SPF级动物实验室。
改良型RPMI 1640培养基为HyClone公司提供,批号NWE 0416,规格:500mL,有效期至2012年5月31日。批号NYG0920,规格:500mL,有效期至2014年7月31日。批号NZG1176,规格:500mL,有效期至2015年7月31日。批号NZG1177,规格:500mL,有效期至2015年7月31日,2-8℃保存。
DMEM培养基为HyClone公司提供,批号NZB1077,规格:500mL,有效期至2015年2月28日,2~8℃保存。
3)细胞培养
人肺癌H460和鼠源结肠癌C26细胞在RPMI 1640培养基(HyClone)中培养,培养基中含有10%胎牛血清(呼和浩特市草原绿野生物工程材料有限公司)和100U/mL的青霉素和链霉素。取对数生长期细胞,用0.25%胰蛋白酶消化、计数,将单细胞悬液用不含胎牛血清的培养基稀释至1×107或6×107个细胞/mL备用。
4)接种、分组和治疗
无菌条件下收集肿瘤细胞,用灭菌生理盐水调整细胞密度至5×107个/mL,取0.2mL接种于裸鼠腋背部皮下,待肿瘤生长至直径1cm大小,无菌条件下取出,切成1mm×1mm大小的瘤块,均匀接种于裸鼠腋背部皮下进行传代。传代2次后,待肿瘤生长至直径1cm大小,无菌条件下取出,切成1mm×1mm大小的瘤块,均匀接种于裸鼠腋背部皮下。7日后待肿瘤生长至100~300mm3后,将动物随机分组,开始尾静脉注射(i.v.),2日1次,剂量及给药方式见表3和表4。
表3对结肠癌C26治疗的实验分组表
对应化合物 剂量(mg/kg) 给药途径 给药频率
生理盐水组 - - -
MPC-6827 5 i.v. 2天一次
COUM-87 5 i.v. 2天一次
COUM-89 5 i.v. 2天一次
COUM-92 5 i.v. 2天一次
COUM-95 5 i.v. 2天一次
COUM-71 5 i.v. 2天一次
COUM-76 5 i.v. 2天一次
COUM-77 5 i.v. 2天一次
COUM-80 5 i.v. 2天一次
COUM-83 5 i.v. 2天一次
表4对肺癌H460治疗的实验分组表
对应化合物 剂量(mg/kg) 给药途径 给药频率
生理盐水组 - - -
MPC6827 2.5 i.v.. 2天一次
COUM-87 10 i.v. 2天一次
COUM-92 10 i.v. 2天一次
COUM-95 10 i.v. 2天一次
COUM-87盐酸盐 10 i.v. 2天一次
COUM-71 10 i.v. 2天一次
COUM-76 10 i.v. 2天一次
COUM-79 10 i.v. 2天一次
COUM-81 10 i.v. 2天一次
COUM-83 10 i.v. 2天一次
5)观察指标和有效判定标准
(1)肿瘤体积(TV)、相对肿瘤体积(RTV)和相对肿瘤增殖率:每2天用1/50 mm精度游标卡尺或标尺测肿瘤的长径和短径,动态观察受试药抗肿瘤的效应。肿瘤体积(tumor volume,TV)的计算公式为:TV(mm3)=a×b2×π/6;其中a、b分别表示长径和短径。
根据测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为:RTV=Vt/V0,其中V0为每一组在分笼给药时(即d0)测量所得TV,Vt为该组每一次测量时的TV。
抗肿瘤活性的评价指标为相对肿瘤增值率T/C(%),计算公式如下:
Figure PCTCN2016074796-appb-000357
TRTV:治疗组相对肿瘤体积;CRTV:阴性对照组相对肿瘤体积。
疗效评价标准:T/C(%)>60为无效;T/C(%)≤60,并经统计学处理P<0.05为有效。
(2)肿瘤重量测定及抑瘤率(%)的计算:
于治疗终点时处死动物,解剖剥离瘤块,称瘤重,并照相。按下式计算抑瘤率(%):
Figure PCTCN2016074796-appb-000358
有效判定标准:抑瘤率(即肿瘤生长抑制率)<40%为无效;抑瘤率≥40%并经统计学处理P<0.05为有效。
6)实验结果
表5化合物对小鼠结肠癌C26皮下移植瘤肿瘤瘤重的影响及抑瘤率
  肿瘤重量平均值(g) 抑瘤率(%) P值 t检验
生理盐水组 2.46     0.83
MPC-6827 0.525 78.66 <0.001 0.27
COUM-87 0.45 81.70 <0.001 0.15
COUM-89 1.99 19.12 0.05 0.84
COUM-92 0.98 60.26 <0.001 0.35
COUM-95 0.68 72.26 <0.001 0.26
COUM-71 1.58 35.77 ns 0.68
COUM-76 1.64 33.18 ns 0.40
COUM-77 1.82 26.12 ns 0.91
COUM-80 2.00 18.60 ns 0.56
COUM-83 1.74 29.12 ns 0.95
由图3和表5可见,代表性化合物如COUM-87,COUM-92,COUM-95及阳性药物MPC-6827在鼠源结肠癌模型上显示良好的抗肿瘤活性。其对结肠癌C26模型上,抑制率分别达到81.70%、60.26%、72.66%,且在治疗过程中老鼠体重无明显变化,而阳性药物MPC-6827尽管抑制率达到78.66%,但治疗过程中老鼠体重显著下降,且出现老鼠死亡,表明专利所述化合物毒性较阳性药物MPC-6827低,且抗肿瘤效果强。
表6化合物对人肺癌H460细胞裸鼠皮下肿瘤瘤重的影响及抑瘤率
  肿瘤重量平均值(g) 抑瘤率(%) 标准偏差 t检验
生理盐水组 2.01   0.56  
COUM-87 0.61 69.88 0.28 0.14
COUM-92 0.42 79.12 0.10 0.64
COUM-95 0.47 76.64 0.13 0.39
COUM-87盐酸盐 0.60 70.37 0.13 0.05
COUM-71 0.98 51.53 0.41 0.01
COUM-76 1.00 50.12 0.28 0.16
COUM-79 0.93 53.74 0.33 0.04
COUM-81 0.79 60.70 0.24 0.05
COUM-83 1.05 48.05 0.39 0.01
图4和表6为在人源肺癌H460模型上考察多个代表性化合物的抗肿瘤活性。由图4和表6可知,实验结果表明,与空白对照组相比,化合物COUM-87、COUM-92、COUM-95、COUM-71、COUM-76、COUM-79、COUM-81、COUM-83以及COUM-87盐酸盐在静脉给于10mg/kg剂量,对人肺癌H460细胞肿瘤模型的抑瘤率均大于40%,显示良好的治疗效果,其中,COUM-87、COUM-92、COUM-95三个化合物对肿瘤抑制率分别为69.88%、79.12%、76.64%,抗肿瘤效果较好。与空白对照组相比,以上各化合物治疗过程中体重均无明显变化,表明其毒性也较小。
实施例103人卵巢癌细胞A2780S和紫杉醇耐药的细胞A2780/Taxol荷瘤裸鼠模型上的药效学
1)化合物:化合物COUM-87柠檬酸盐,化合物COUM-92
2)实验动物、培养基
SPF级BALB/c裸鼠(Balb/C nu/nu)和小白鼠,雌性,4-6周龄,18-22克,购自北京华阜康生物科技股份有限公司,生产许可证号:SCXK(京)2014-0012。实验条件:SPF级动物房,实验动物使用许可证号:SYXK(京)2015-0023
改良型RPMI 1640培养基为HyClone公司提供,批号NWE 0416,规格:500mL,有效期至2012年5月31日。批号NYG0920,规格:500mL,有效期至2014年7月31日。批号NZG1176,规格:500mL,有效期至2015年7月31日。批号NZG1177,规格:500 mL,有效期至2015年7月31日,2-8℃保存。
DMEM培养基为HyClone公司提供,批号NZB1077,规格:500mL,有效期至2015年2月28日,2~8℃保存。
3)细胞培养
人卵巢癌细胞A2780S和紫杉醇耐药的卵巢癌A2780/Taxol细胞,在RPMI 1640培养基(HyClone)中培养,培养基中含有10%胎牛血清(呼和浩特市草原绿野生物工程材料有限公司)和100U/mL的青霉素和链霉素。取对数生长期细胞,用0.25%胰蛋白酶消化、计数,将单细胞悬液用不含胎牛血清的培养基稀释至1×107或6×107个细胞/mL备用。
4)接种、分组和治疗:无菌条件下收集人卵巢癌细胞A2780S和紫杉醇耐药的卵巢癌A2780/Taxol肿瘤细胞,用灭菌生理盐水调整细胞密度至5×107个/mL,取0.1mL接种于裸鼠腋背部皮下,待肿瘤生长至直径1cm大小,无菌条件下取出,切成1mm×1mm大小的瘤块,均匀接种于裸鼠腋背部皮下进行传代。12日后待肿瘤生长至100~300mm3后,将动物随机分组,开始给药。空白对照组生理盐水,0.2mL/鼠,尾静脉注射,2日1次;MPC6827组5mg/kg,尾静脉注射,7日1次;紫杉醇组10mg/kg,腹腔给药,2日1次、30mg/kg腹腔给药,7日1次;COUM-87柠檬酸盐、COUM-92分别为2.5、5、10mg/kg,尾静脉注射,2日一次、20mg/kg,尾静脉注射,7日1次。每2天称量体重 并用游标卡尺测量肿瘤的长度和宽度,给药20天后将裸鼠脱臼处死,剥离肿瘤组织,称重并拍照。最后计算肿瘤抑制率(%),以肿瘤抑制率评价抗肿瘤作用强度。表7列出了各化合物对卵巢癌A2780s和A2780T治疗效果。
表7对卵巢癌A2780s和A2780T治疗效果总结表
Figure PCTCN2016074796-appb-000359
Figure PCTCN2016074796-appb-000360
由表7可见,化合物COUM-87柠檬酸盐、化合物COUM-92能剂量依赖地抑制肿瘤的生长,抗肿瘤活性优于紫杉醇,且治疗过程中体重无明显变化,而紫杉醇体重平均下降2克左右,表明化合物COUM-87柠檬酸盐和化合物COUM-92的毒性比紫杉醇低。
实施例104化合物抑制微管蛋白聚合活性
实验方法:
实验当天用灭菌水配制100×GTP液(100mM浓度,GTP粉末购自大连美仑生物技术有限公司)。
微管蛋白购买自cytoskeleton公司,-80℃保存,使用时置于冰上,用预冷的微管聚合缓冲液(Genaral Tubulin Buffer,成分为80mM哌嗪-1,4-二乙磺酸、2mM氯化镁、0.5mM乙二醇双(2-氨基乙基醚)四乙酸,pH值为6.9)溶解微管蛋白,冰上混匀,放置30min-1h,使微管蛋白充分解聚;同时将实验用的96孔板放酶标仪中预热,调温至全程37℃,并调好酶标仪设置:动态读数(kinetic模式),测340nm波长吸光值,测试时间设定为30-60min,每1min读值一次;再取部分General Tubulin Buffer平衡至室温。
将微管蛋白转移至预冷的EP管中,13000rpm,4℃离心20min,取上清放冰上。用Bradford法进行蛋白定量,按定量结果加微管聚合缓冲液将微管蛋白浓度调至2mg/mL。
将待测化合物按实验浓度的10倍配至100μL预热至室温的general tubulin buffer中,即为待测化合物10×液。对照组配制等体积比例的DMSO。观察化合物溶解良好,未发生析出后,从酶标仪中取出预热的96孔板,尽快按每个实验组加10μL相应10×液加入化合物,然后再将96孔板放回酶标仪中37℃孵育。
往微管蛋白液中加100×GTP液至终浓度1mM,快速混匀。
从酶标仪中取出96孔板,快速往每个孔中加入90μL微管蛋白(加样过程中防止气泡产生)。
快速将96孔板放入酶标仪,开始读值。
由图5可以看出,化合物COUM-87、COUM-92与阳性药物一样,可剂量依存性地在体外抑制微管蛋白的聚合,在同样5μM浓度下,其抑制效果与MPC6827相当,说明化合物COUM-87、COUM-92具有较强的抑制微管聚合活性。
实施例105各化合物体外的抗血管活性
具有秋水仙碱结合位点的微管抑制剂往往具有破坏肿瘤相关血管的能力。因为这类化合物被视为具有杀伤肿瘤细胞和肿瘤相关血管内皮细胞的双重机制。化合物对微管体系的影响会造成内皮细胞的形态变化。我们利用培养的人脐静脉内皮细胞(HUVEC)考察8a体外的抗血管活性。
HUVEC细胞分离培养方法:
经相关部门审核批准后,从临床获取新生儿脐带,放入无菌的PBS溶液中储存,外加冰袋保持低温,回到无菌操作台进行操作。用一个钝头的针头扎入脐带静脉管中,用无菌的PBS溶液冲洗数次次,直到将污血冲洗干净为止。用手术钳夹紧脐带下端,加入1mg/mL浓度的胶原酶(购自Roche公司)室温下消化15~20分钟,并不时上下摇动脐带。消化完后,将下端手术钳松开,让消化液流入一个50mL无菌离心管中,再用无菌的PBS溶液冲洗脐带2~3次。将收集液1500rpm离心3分钟。弃上清,用含各类生长因子的EBM-2培养基(购自lonza公司)重悬细胞,置5%CO2的培养箱中37℃恒温培养。
(1)实验方法:HUVEC细胞划痕试验
收集传代至第三至七代之间的HUVEC细胞,铺板于6孔板中。待细胞长至接近单层长满时,换成无血清培养基饥饿细胞6h。用一根灭菌的中号移液器吸头对细胞进行划痕。灭菌PBS洗两次,换回含有各类生长因子的EBM-2培养基继续培养,同时按不同浓度加入化合物。此时立即置于显微镜下拍照,作为0h组。细胞迁移时间为24h。处理时间到后,4%多聚甲醛固定后显微镜下拍照。每组随机选取3个不同视野,数迁移细胞数。
(2)HUVEC细胞成管实验
将Matrigel(基质胶,购自Becton Dickinson(BD)公司)放在4℃,令其呈液态;实验所用枪尖、96孔板、EP管也提前预冷。
按50μL/孔的量往96孔板中加入Matrigel,置于CO2培养箱中37℃孵育45min让其凝固。收集传代至第三至七代之间的HUVEC细胞,计数后,按照10000个细胞/孔的数量铺板至预铺Matrigel的96孔板中,同时以不同浓度加入化合物。8h后,4%多聚甲醛固定,显微镜下照相。每组随机选取3个不同视野,对形成的腔状结构计数。
利用HUVEC细胞进行了划痕和成管实验。结果如图6所示,在划痕实验中,让划痕后的HUVEC细胞迁移24h后,溶剂对照组相比初始划痕时,表现出了很强的迁移活性。而化合物COUM-92、COUM-95、COUM-87、COUM-79与MPC-6827一样剂量依存地抑制了HUVEC细胞的迁移。COUM-92、COUM-95、COU-M87在最高的实验浓度 10nM完全抑制了HUVEC的迁移。在成管实验中,经过8h的处理,溶剂对照组细胞很好地组装成了管状结构。而COUM-92、COUM-95、COUM-87、COUM-79与MPC-6827一样可剂量依存性地阻碍了HUVEC细胞的成管。在较高浓度,HUVEC细胞呈现接近完全零散的形态。这一系列血管方面实验说明,以上化合物具有抗血管活性。
本发明除了具有较强的抗肿瘤活性,在多种肿瘤细胞株的IC50值在0.01~5nM之间,还具有较好的抑制微管聚合的效果,且具有多样的生物活性和较小的毒性,同时也可能具有良好的溶解性。

Claims (32)

  1. 4位取代的香豆素衍生物,其结构式如式Ⅰ所示:
    Figure PCTCN2016074796-appb-100001
    其中,R1为取代的饱和或不饱和5~12元杂环或
    Figure PCTCN2016074796-appb-100002
    所述杂环的杂原子为N、O或S;所述杂环上的取代基为
    Figure PCTCN2016074796-appb-100003
    C1~C8烷氧基、C1~C8烷基、卤素或C3~C8环烷基;
    R2为C1~C8烷氧基、-H、
    Figure PCTCN2016074796-appb-100004
    C1~C8烷基、卤素或C3~C8环烷基;
    R3~R5独立地为-H、C1~C8烷氧基、C1~C8烷基、卤素、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100005
    C2~C8烯基、C1~C8卤素取代的烷基、-NH2
    Figure PCTCN2016074796-appb-100006
    且不同时为-H;
    R6~R9独立地为-H、C1~C8烷氧基、卤素、C1~C8烷基、
    Figure PCTCN2016074796-appb-100007
    或C1~C8卤素取代的烷基;
    R10
    Figure PCTCN2016074796-appb-100008
    x=1~4,y=1~4;
    R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100009
    C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100010
    或-NH2;z=1~10;
    R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100011
    卤素、C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100012
    R13为C1~C8烷基、C1~C8烷基取代的苯基或卤素取代的苯基;
    R14~R16独立地为C1~C8烷基、卤素、-H、C1~C8烷氧基或-NH2,且不同时为-H;
    R17为C1~C8烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100013
    R18为C1~C8烷基、卤素或-H;R19、R20独立地为C1~C8烷基、卤素或-H。
  2. 根据权利要求1所述的4位取代的香豆素衍生物,其特征在于:R1为取代的饱和或不饱和5~12元杂环或
    Figure PCTCN2016074796-appb-100014
    所述杂环的杂原子为N、O或S;所述杂环上的取代基为
    Figure PCTCN2016074796-appb-100015
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H、
    Figure PCTCN2016074796-appb-100016
    C1~C4烷基、卤素或C3~C8环烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100017
    C2~C4烯基、C1~C4卤素取代的烷基、-NH2
    Figure PCTCN2016074796-appb-100018
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100019
    或C1~C4卤素取代的烷基;R10
    Figure PCTCN2016074796-appb-100020
    Figure PCTCN2016074796-appb-100021
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100022
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100023
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100024
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100025
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100026
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
  3. 根据权利要求2所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100027
    R21~R23独立地为
    Figure PCTCN2016074796-appb-100028
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H、
    Figure PCTCN2016074796-appb-100029
    C1~C4烷基、卤素或C3~C8环烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100030
    C2~C4烯基、C1~C4卤素取代的烷基、-NH2
    Figure PCTCN2016074796-appb-100031
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100032
    或C1~C4卤素取代的烷基;R10
    Figure PCTCN2016074796-appb-100033
    Figure PCTCN2016074796-appb-100034
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100035
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100036
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100037
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100038
    Figure PCTCN2016074796-appb-100039
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100040
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
  4. 根据权利要求3所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100041
    R21、R22独立地为
    Figure PCTCN2016074796-appb-100042
    R23为C1~C4烷氧基;R2为C1~C4烷氧基、-H、
    Figure PCTCN2016074796-appb-100043
    C1~C4烷基、卤素或C3~C8环烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100044
    C2~C4烯基、C1~C4卤素取代的烷基、-NH2
    Figure PCTCN2016074796-appb-100045
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100046
    或C1~C4卤素取代的烷基;R10
    Figure PCTCN2016074796-appb-100047
    Figure PCTCN2016074796-appb-100048
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100049
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100050
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100051
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100052
    Figure PCTCN2016074796-appb-100053
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100054
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
  5. 根据权利要求2所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100055
    R21~R23独立地为
    Figure PCTCN2016074796-appb-100056
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H、
    Figure PCTCN2016074796-appb-100057
    或C1~C4烷基;R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100058
    C2~C4烯基、C1~C4卤素取代的烷基、-NH2
    Figure PCTCN2016074796-appb-100059
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100060
    或C1~C4卤素取代的烷基;R10
    Figure PCTCN2016074796-appb-100061
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100062
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100063
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100064
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100065
    Figure PCTCN2016074796-appb-100066
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100067
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
  6. 根据权利要求5所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100068
    R21~R23独立地为
    Figure PCTCN2016074796-appb-100069
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100070
    R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100071
    C2~C4烯基、C1~C4卤素取代的烷基、-NH2
    Figure PCTCN2016074796-appb-100072
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100073
    或C1~C4卤素取代的烷基;R10
    Figure PCTCN2016074796-appb-100074
    Figure PCTCN2016074796-appb-100075
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100076
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100077
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100078
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100079
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100080
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
  7. 根据权利要求2所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100081
    R21~R23独立地为
    Figure PCTCN2016074796-appb-100082
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100083
    R3~R5独立地为-H、C1~C4烷氧基、C1~C4烷基、卤素、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100084
    -NH2
    Figure PCTCN2016074796-appb-100085
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100086
    或C1~C4卤素取代的烷基;R10
    Figure PCTCN2016074796-appb-100087
    Figure PCTCN2016074796-appb-100088
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100089
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100090
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100091
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100092
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100093
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
  8. 根据权利要求7所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100094
    R21~R23独立地为
    Figure PCTCN2016074796-appb-100095
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100096
    R3~R5独立地为-H、C1~C4烷氧基、
    Figure PCTCN2016074796-appb-100097
    -NH2
    Figure PCTCN2016074796-appb-100098
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100099
    或C1~C4卤素取代的烷基;R10
    Figure PCTCN2016074796-appb-100100
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100101
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100102
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100103
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100104
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100105
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4 烷基、卤素或-H。
  9. 根据权利要求2所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100106
    R21~R23独立地为
    Figure PCTCN2016074796-appb-100107
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100108
    R3~R5独立地为-H、C1~C4烷氧基、
    Figure PCTCN2016074796-appb-100109
    -NH2
    Figure PCTCN2016074796-appb-100110
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100111
    R10
    Figure PCTCN2016074796-appb-100112
    Figure PCTCN2016074796-appb-100113
    x=1~4,y=1~4;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100114
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100115
    或-NH2;z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100116
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100117
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100118
    R18为C1~C4烷基、卤素或-H;R19、R20独立地为C1~C4烷基、卤素或-H。
  10. 根据权利要求2所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100119
    R21~R23独立地为
    Figure PCTCN2016074796-appb-100120
    或C1~C4烷氧基;R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100121
    R3~R5独立地为-H、C1~C4烷氧基、
    Figure PCTCN2016074796-appb-100122
    -NH2
    Figure PCTCN2016074796-appb-100123
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100124
    R10
    Figure PCTCN2016074796-appb-100125
    Figure PCTCN2016074796-appb-100126
    x=1~2,y=1~2;R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100127
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
    Figure PCTCN2016074796-appb-100128
    z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100129
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100130
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、-H或
    Figure PCTCN2016074796-appb-100131
    R18为C1~C4烷基或-H;R19、R20独立地为C1~C4烷基或-H。
  11. 根据权利要求10所述的4位取代的香豆素衍生物,其特征在于:R1
    Figure PCTCN2016074796-appb-100132
    R21、R22独立地为
    Figure PCTCN2016074796-appb-100133
    Figure PCTCN2016074796-appb-100134
    R23为C1~C4烷氧基;R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100135
    R3~R5独立地为-H、C1~C4烷氧基、
    Figure PCTCN2016074796-appb-100136
    -NH2
    Figure PCTCN2016074796-appb-100137
    且不同时为-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100138
    R10
    Figure PCTCN2016074796-appb-100139
    Figure PCTCN2016074796-appb-100140
    R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100141
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
    Figure PCTCN2016074796-appb-100142
    z=1~10;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100143
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100144
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、-H或
    Figure PCTCN2016074796-appb-100145
    R18为C1~C4 烷基或-H;R19、R20独立地为C1~C4烷基或-H。
  12. 根据权利要求1所述的4位取代的香豆素衍生物,其特征在于:当R1为取代的不饱和5元杂环时,其结构式如式Ⅱ所示:
    Figure PCTCN2016074796-appb-100146
    其中,A为O或S;R2为C1~C8烷氧基、-H、
    Figure PCTCN2016074796-appb-100147
    C1~C8烷基、卤素或C3~C8环烷基;R6~R9独立地为-H、C1~C8烷氧基、卤素、C1~C8烷基、
    Figure PCTCN2016074796-appb-100148
    或C1~C8卤素取代的烷基;R19、R20独立地为C1~C8烷基、卤素或-H。
  13. 根据权利要求12所述的4位取代的香豆素衍生物,其特征在于:A为O或S;R2为C1~C4烷氧基、-H、
    Figure PCTCN2016074796-appb-100149
    C1~C4烷基、卤素或C3~C8环烷基;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100150
    或C1~C4卤素取代的烷基;R19、R20独立地为C1~C4烷基、卤素或-H。
  14. 根据权利要求13所述的4位取代的香豆素衍生物,其特征在于:A为O或S;R2为C1~C4烷氧基、-H、
    Figure PCTCN2016074796-appb-100151
    或C1~C4烷基;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100152
    或C1~C4卤素取代的烷基;R19、R20独立地为C1~C4烷基、卤素或-H。
  15. 根据权利要求14所述的4位取代的香豆素衍生物,其特征在于:A为O或S;R2为C1~C4烷氧基或-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100153
    或C1~C4卤素取代的烷基;R19、R20独立地为C1~C4烷基、卤素或-H。
  16. 根据权利要求15所述的4位取代的香豆素衍生物,其特征在于:A为O或S;R2为C1~C4烷氧基或-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100154
    R19、R20独立地为C1~C4烷基、卤素或-H。
  17. 根据权利要求16所述的4位取代的香豆素衍生物,其特征在于:A为O或S;R2为C1~C4烷氧基或-H;R6~R9独立地为-H、C1~C4烷氧基、卤素、C1~C4烷基、
    Figure PCTCN2016074796-appb-100155
    R19、R20独立地为C1~C4烷基或-H。
  18. 根据权利要求1所述的4位取代的香豆素衍生物,其特征在于:当R1为
    Figure PCTCN2016074796-appb-100156
    R3为-H,R4为甲氧基,R5为
    Figure PCTCN2016074796-appb-100157
    时,其结构式如式Ⅲ所示:
    Figure PCTCN2016074796-appb-100158
    其中,R2为C1~C8烷氧基、-H、
    Figure PCTCN2016074796-appb-100159
    C1~C8烷基、卤素或C3~C8环烷基;R10
    Figure PCTCN2016074796-appb-100160
    x=1~4,y=1~4;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100161
    卤素、C2~C8烯基、C1~C8卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100162
    R13为C1~C8烷基、C1~C8烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C8烷基、卤素、-H、C1~C8烷氧基或-NH2,且不同时为-H;R17为C1~C8烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100163
  19. 根据权利要求18所述的4位取代的香豆素衍生物,其特征在于:R2为C1~C4烷氧基、-H、
    Figure PCTCN2016074796-appb-100164
    C1~C4烷基、卤素或C3~C8环烷基;R10
    Figure PCTCN2016074796-appb-100165
    Figure PCTCN2016074796-appb-100166
    x=1~4,y=1~4;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100167
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100168
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或 -NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100169
  20. 根据权利要求19所述的4位取代的香豆素衍生物,其特征在于:R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100170
    R10
    Figure PCTCN2016074796-appb-100171
    Figure PCTCN2016074796-appb-100172
    x=1~4,y=1~4;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100173
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100174
    Figure PCTCN2016074796-appb-100175
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H、C1~C4烷氧基或-NH2,且不同时为-H;R17为C1~C4烷基、卤素、-H或
    Figure PCTCN2016074796-appb-100176
  21. 根据权利要求20所述的4位取代的香豆素衍生物,其特征在于:R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100177
    R10
    Figure PCTCN2016074796-appb-100178
    Figure PCTCN2016074796-appb-100179
    x=1~2,y=1~2;R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100180
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100181
    Figure PCTCN2016074796-appb-100182
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、-H或
    Figure PCTCN2016074796-appb-100183
  22. 根据权利要求21所述的4位取代的香豆素衍生物,其特征在于:R2为C1~C4烷氧基、-H或
    Figure PCTCN2016074796-appb-100184
    R10
    Figure PCTCN2016074796-appb-100185
    Figure PCTCN2016074796-appb-100186
    R12为C1~C10烷基、
    Figure PCTCN2016074796-appb-100187
    卤素、C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100188
    R13为C1~C4烷基、C1~C4烷基取代的苯基或卤素取代的苯基;R14~R16独立地为C1~C4烷基、卤素、-H或C1~C4烷氧基,且不同时为-H;R17为C1~C4烷基、-H或
    Figure PCTCN2016074796-appb-100189
  23. 根据权利要求1所述的4位取代的香豆素衍生物,其特征在于:当R1为
    Figure PCTCN2016074796-appb-100190
    R3为-H,R4为甲氧基,R5为
    Figure PCTCN2016074796-appb-100191
    时,其结构式如式Ⅳ所示:
    Figure PCTCN2016074796-appb-100192
    其中,R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100193
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基、
    Figure PCTCN2016074796-appb-100194
    或-NH2;z=1~10;R18为C1~C4烷基、卤素或-H。
  24. 根据权利要求23所述的4位取代的香豆素衍生物,其特征在于:R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100195
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
    Figure PCTCN2016074796-appb-100196
    z=1~10;R18为C1~C4烷基、卤素或-H。
  25. 根据权利要求24所述的4位取代的香豆素衍生物,其特征在于:R11为C1~C10烷基、
    Figure PCTCN2016074796-appb-100197
    C2~C8烯基、C1~C4卤素取代的烷基、C3~C8环烷基或
    Figure PCTCN2016074796-appb-100198
    z=1~10;R18为C1~C4烷基或-H。
  26. 4位取代的香豆素衍生物,其结构式为:
    Figure PCTCN2016074796-appb-100199
    Figure PCTCN2016074796-appb-100200
    Figure PCTCN2016074796-appb-100201
  27. 权利要求1~26任一项所述的4位取代的香豆素衍生物在药学上可接受的盐。
  28. 药物组合物,是以权利要求1~26任一项所述的4位取代的香豆素衍生物或权利要求10所述的盐为活性成分,添加药学上可接受的载体组成。
  29. 权利要求1~26任一项所述的4位取代的香豆素衍生物或权利要求27所述的盐,以药学上可接受的制剂形式存在,包括:片剂、口服剂、栓剂、滴丸剂、大输液、小针、冻干粉针、胶囊剂、气雾剂、分散片、软膏,包括各种缓释、控释剂型或纳米制剂。
  30. 权利要求1~26任一项所述的4位取代的香豆素衍生物或权利要求27所述的盐在制备治疗肿瘤药物中的用途;所述肿瘤为血液癌、卵巢癌、前列腺癌、睾丸癌、黑色素瘤、胰腺癌、淋巴瘤、乳腺癌、胃癌、脑癌、肺癌、肝癌或结肠癌中的任意一种。
  31. 权利要求1~26任一项所述的4位取代的香豆素衍生物或权利要求27所述的盐在制备治疗敏感和耐药肿瘤细胞药物中的用途。
  32. 权利要求1~26任一项所述的4位取代的香豆素衍生物或权利要求27所述的盐在制备治疗炎症药物中的用途。
PCT/CN2016/074796 2015-09-24 2016-02-29 4位取代的香豆素衍生物及其制备方法和用途 WO2017049871A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201680052801.XA CN108349959B (zh) 2015-09-24 2016-02-29 4位取代的香豆素衍生物及其制备方法和用途
AU2016327715A AU2016327715B2 (en) 2015-09-24 2016-02-29 4-substituted coumarin derivatives and preparation methods and uses thereof
US15/761,885 US10544134B2 (en) 2015-09-24 2016-02-29 4-substituted coumarin derivatives and preparation methods and uses thereof
EA201890748A EA036984B1 (ru) 2015-09-24 2016-02-29 4-замещенные производные кумарина, способы их получения и их применения
EP16847758.6A EP3354648B1 (en) 2015-09-24 2016-02-29 4-substitued coumarin derivative, and preparation method and use thereof
KR1020187009483A KR102130783B1 (ko) 2015-09-24 2016-02-29 4-치환된 쿠마린 유도체 및 이의 제조 방법 및 용도
JP2018515595A JP6612975B2 (ja) 2015-09-24 2016-02-29 4−置換クマリン誘導体ならびにその調製法および使用
CA2999200A CA2999200C (en) 2015-09-24 2016-02-29 4-substituted coumarin derivatives and preparation methods and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510618234.7 2015-09-24
CN201510618234 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017049871A1 true WO2017049871A1 (zh) 2017-03-30

Family

ID=58385788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074796 WO2017049871A1 (zh) 2015-09-24 2016-02-29 4位取代的香豆素衍生物及其制备方法和用途

Country Status (9)

Country Link
US (1) US10544134B2 (zh)
EP (1) EP3354648B1 (zh)
JP (1) JP6612975B2 (zh)
KR (1) KR102130783B1 (zh)
CN (1) CN108349959B (zh)
AU (1) AU2016327715B2 (zh)
CA (1) CA2999200C (zh)
EA (1) EA036984B1 (zh)
WO (1) WO2017049871A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053661A (zh) * 2018-08-28 2018-12-21 青岛科技大学 一种可见光促进c-3位芳硒基取代香豆素的合成方法
CN110078699A (zh) * 2019-04-24 2019-08-02 青岛科技大学 一种可见光促进的c-3位硫氰酸根取代4-胺基香豆素类衍生物的合成方法
CN115703755A (zh) * 2021-08-13 2023-02-17 成都赜灵生物医药科技有限公司 2h-苯并吡喃-2-酮衍生物及其用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357847B (zh) * 2019-07-22 2022-05-13 四川大学 一种异黄烷类化合物及其制备方法和用途
CN116375672B (zh) * 2023-02-21 2024-06-25 广州医科大学 香豆素丙烯醛衍生物及其制备方法和在制备抗肿瘤药物中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2331438A1 (de) * 1972-06-21 1974-01-10 Lleurquin Lab Neue derivate der cumarine
US5527827A (en) * 1994-10-27 1996-06-18 Merck Frosst Canada, Inc. Bisarylcarbinol cinnamic acids as inhibitors of leukotriene biosynthesis
WO2005103705A2 (en) * 2004-04-16 2005-11-03 University Of South Carolina Chemoselective fluorogenic molecular linkers and methods of their preparation and use
CN101657443A (zh) * 2007-02-05 2010-02-24 默克弗罗斯特加拿大有限公司 作为白三烯生物合成抑制剂的[1,2,3]三唑取代的喹啉和香豆素
CN102627638A (zh) * 2005-03-23 2012-08-08 默克弗罗斯特加拿大有限公司 噻二唑取代的香豆素衍生物及其作为白三烯生物合成抑制剂的用途
WO2012136910A1 (fr) * 2011-04-08 2012-10-11 Université De Marseille Dérives de 4- arylcoumarine et de 4 arylquinoléine, leurs utilisations thérapeutiques et leur procédé de synthèse
CN102746281A (zh) * 2011-04-22 2012-10-24 四川大学 4-1,2,3-三氮唑-香豆素衍生物及其制备方法和用途
WO2014153533A1 (en) * 2013-03-21 2014-09-25 The Curators Of The University Of Missouri A fluorescent chemical sensor for biological amines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006611A1 (en) * 1994-08-31 1996-03-07 Smithkline Beecham Corporation Anti-inflammatory compounds
WO2012106522A2 (en) * 2011-02-04 2012-08-09 Duquesne University Of The Holy Spirit Bicyclic and tricyclic pyrimidine tyrosine kinase inhibitors with antitubulin activity and methods of treating a patient
CN103265517B (zh) * 2013-05-11 2016-01-13 浙江大学 3-取代香豆素类衍生物及其用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2331438A1 (de) * 1972-06-21 1974-01-10 Lleurquin Lab Neue derivate der cumarine
US5527827A (en) * 1994-10-27 1996-06-18 Merck Frosst Canada, Inc. Bisarylcarbinol cinnamic acids as inhibitors of leukotriene biosynthesis
WO2005103705A2 (en) * 2004-04-16 2005-11-03 University Of South Carolina Chemoselective fluorogenic molecular linkers and methods of their preparation and use
CN102627638A (zh) * 2005-03-23 2012-08-08 默克弗罗斯特加拿大有限公司 噻二唑取代的香豆素衍生物及其作为白三烯生物合成抑制剂的用途
CN101657443A (zh) * 2007-02-05 2010-02-24 默克弗罗斯特加拿大有限公司 作为白三烯生物合成抑制剂的[1,2,3]三唑取代的喹啉和香豆素
WO2012136910A1 (fr) * 2011-04-08 2012-10-11 Université De Marseille Dérives de 4- arylcoumarine et de 4 arylquinoléine, leurs utilisations thérapeutiques et leur procédé de synthèse
CN102746281A (zh) * 2011-04-22 2012-10-24 四川大学 4-1,2,3-三氮唑-香豆素衍生物及其制备方法和用途
WO2014153533A1 (en) * 2013-03-21 2014-09-25 The Curators Of The University Of Missouri A fluorescent chemical sensor for biological amines

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DEBORAH D. SOTO-ORTEGA ET AL.: "Inhibition of amyloid-b aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 19, 12 March 2011 (2011-03-12), pages 2596 - 2602, XP055373308 *
DEMETRIOS N. NICOLAIDES ET AL.: "Synthesis and biological evaluation of several coumarin-4-carboxamidoxime and 3-(coumarin-4-yl)-1, 2, 4-oxadiazole derivatives", J. MED. CHEM., vol. 33, 31 December 1998 (1998-12-31), pages 715 - 724, XP004140826 *
DEMETRIS VRAKAS ET AL.: "Retention of substituted coumarins using immobilized artificial membrane (IAM) chromatography: A comparative study with n-octanol partitioning and reversed-phase HPLC and TLC", JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 11 July 2005 (2005-07-11), pages 908 - 913, XP027718792 *
JIE SHENG ET AL.: "Generation of 4-substituted coumarins via CeH bond activation under palladium bromideecopper(I) bromide cooperative catalysis", TETRAHEDRON, vol. 69, 21 October 2013 (2013-10-21), pages 10230 - 10234, XP028761498 *
KOTA SASANO ET AL.: "Palladium(II)-Catalyzed Direct Carboxylation of Alkenyl C H Bonds with C02", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, 18 July 2013 (2013-07-18), pages 10954 - 10957, XP055373311 *
KRISHNAMOORTHY SIVAKUMAR ET AL.: "A Fluorogenic 1, 3-Dipolar Cycloaddition Reaction of 3-Azidocoumarins and Acetylenes", ORGANIC LETTERS, 4 November 2004 (2004-11-04), pages 4603 - 4606, XP002995168 *
MANJUNATH GHATE ET AL.: "Synthesis of vanillin ethers from 4-(bromomethyl) coumarins as anti inflammatory agents", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 31 December 2003 (2003-12-31), pages 297 - 302, XP004416740 *
O LGA G. GANINA ET AL.: "Synthesis and biological evaluation of polymethoxylated 4-heteroarylcoumarins as tubulin assembly inhibitor", BIOORGANIC & MEDICINAL CHEMISTRY, 5 September 2008 (2008-09-05), pages 8806 - 8812, XP025468935 *
See also references of EP3354648A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053661A (zh) * 2018-08-28 2018-12-21 青岛科技大学 一种可见光促进c-3位芳硒基取代香豆素的合成方法
CN109053661B (zh) * 2018-08-28 2022-02-25 青岛科技大学 一种可见光促进c-3位芳硒基取代香豆素的合成方法
CN110078699A (zh) * 2019-04-24 2019-08-02 青岛科技大学 一种可见光促进的c-3位硫氰酸根取代4-胺基香豆素类衍生物的合成方法
CN115703755A (zh) * 2021-08-13 2023-02-17 成都赜灵生物医药科技有限公司 2h-苯并吡喃-2-酮衍生物及其用途
CN115703755B (zh) * 2021-08-13 2024-07-02 成都赜灵生物医药科技有限公司 2h-苯并吡喃-2-酮衍生物及其用途

Also Published As

Publication number Publication date
EP3354648B1 (en) 2022-04-06
JP6612975B2 (ja) 2019-11-27
CA2999200A1 (en) 2017-03-30
KR102130783B1 (ko) 2020-07-08
AU2016327715A1 (en) 2018-04-26
EA201890748A1 (ru) 2018-11-30
AU2016327715B2 (en) 2019-05-16
CN108349959A (zh) 2018-07-31
EP3354648A1 (en) 2018-08-01
EP3354648A4 (en) 2019-03-20
US20180282315A1 (en) 2018-10-04
CN108349959B (zh) 2021-11-16
US10544134B2 (en) 2020-01-28
KR20180057642A (ko) 2018-05-30
EA036984B1 (ru) 2021-01-22
JP2018528240A (ja) 2018-09-27
CA2999200C (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2017049871A1 (zh) 4位取代的香豆素衍生物及其制备方法和用途
CN102311434B (zh) 吴茱萸碱类化合物及其制备方法与应用
JP2020143135A (ja) Stat3経路阻害剤および癌幹細胞経路阻害剤の新規のグループ
CN1988934B (zh) 四氢吡啶并噻吩化合物
Shao et al. Synthesis and biological evaluation of novel shikonin-benzo [b] furan derivatives as tubulin polymerization inhibitors targeting the colchicine binding site
WO2009019656A1 (en) Pyridyl derivatives, their preparation and use
CN106831725B (zh) 含二氢吲哚啉及类似结构的喹唑啉类化合物及其应用
CN107266461B (zh) 一种烷氧基二苯并吖庚因类化合物、其制备方法及医药用途
JP2008501668A (ja) 癌の治療に使用するためのテトラヒドロピリドチオフェン
Zeng et al. Selective stabilization of multiple promoter G-quadruplex DNA by using 2-phenyl-1H-imidazole-based tanshinone IIA derivatives and their potential suppressing function in the metastatic breast cancer
CN106831812B (zh) 含联芳基酰胺结构的杂环并嘧啶或吡嗪类化合物及其应用
Yan et al. Design, synthesis, and biological evaluation of novel diphenylamine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site
Lin et al. Novel artemisinin derivatives with potent anticancer activities and the anti-colorectal cancer effect by the mitochondria-mediated pathway
CN106565685A (zh) 微管蛋白抑制剂
Sakthivel et al. Natural product-inspired rational design, synthesis and biological evaluation of 2, 3-dihydropyrano [2, 3-f] chromen-4 (8H)-one based hybrids as potential mitochondrial apoptosis inducers
JP2020519568A (ja) 抗癌化合物
CN101899051B (zh) 1-氮杂呫吨酮-3-甲酰胺类化合物及制备方法和抗肿瘤用途
CN104364232A (zh) 用于癌症治疗的激酶抑制剂
CN106866642B (zh) 含芳基酰腙结构的喹唑啉类化合物及其应用
CN106892907B (zh) 含酰腙结构的喹唑啉类化合物及其应用
CN108456165B (zh) 磺酰脲类化合物及其制备方法和应用
Wan et al. New Seco-DSP derivatives as potent chemosensitizers
CN104000817B (zh) 一类含1,3,4-噁二唑啉的吡唑衍生物在制备治疗、防肿瘤疾病药物中的用途
CN108864080A (zh) 作为选择性雌激素受体下调剂的四环类化合物及其应用
CN105949117A (zh) 含查尔酮类似结构的索拉非尼衍生物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2999200

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15761885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515595

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009483

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201890748

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2016847758

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016327715

Country of ref document: AU

Date of ref document: 20160229

Kind code of ref document: A