WO2017049771A1 - 一种基于伺服的主从位置同步控制系统及方法 - Google Patents

一种基于伺服的主从位置同步控制系统及方法 Download PDF

Info

Publication number
WO2017049771A1
WO2017049771A1 PCT/CN2015/096607 CN2015096607W WO2017049771A1 WO 2017049771 A1 WO2017049771 A1 WO 2017049771A1 CN 2015096607 W CN2015096607 W CN 2015096607W WO 2017049771 A1 WO2017049771 A1 WO 2017049771A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse signal
machine
signal
plc
servo
Prior art date
Application number
PCT/CN2015/096607
Other languages
English (en)
French (fr)
Inventor
李君�
Original Assignee
李君�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李君� filed Critical 李君�
Publication of WO2017049771A1 publication Critical patent/WO2017049771A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of automatic production line synchronization technology, in particular to a servo-based master-slave position synchronization control system and method.
  • the automated production line is a production system in which a set of automatic machine tools and auxiliary equipment are connected in a process sequence by a workpiece transfer system and a control system to automatically complete all or part of the manufacturing process of the product. Therefore, the automated production line has become one of the main trends in the development of modern production. It is of great significance for accelerating the development of social productivity and reducing the physical labor of workers. It is suitable for mass production, which can shorten the production cycle and reduce costs.
  • the main methods include: 1.
  • the synchronization of the front and rear machines is driven by the inverter, and the analog signals are separately controlled by proportional adjustment to keep the front and rear machines in synchronization.
  • the synchronization of the front and rear machines are driven by the inverter, controlled by the synchronous controller, a pulse encoder is provided in the front machine to provide the feedforward signal and a main detection switch is provided to provide the spindle position reference signal, and The rear machine adds a slave detection switch to provide the slave axis position reference signal to keep the front and rear machine positions in sync. 3.
  • the front machine uses an encoder (if the front machine is driven by a servo controller, the simulation code is used.
  • the virtual spindle is used to input the signal into a position controller, and then the position controller controls the slave servo controller of the rear machine to keep the position of the rear machine and the front machine in synchronization.
  • the technical problem to be solved by the embodiments of the present invention is to provide a servo-based master-slave position synchronization control system and method, which is simple in implementation, small in investment, and good in synchronization performance.
  • an embodiment of the present invention provides a servo-based master-slave position synchronization control system for matching a front machine and a rear machine, including an encoder, a PLC, a servo controller, and a servo. a motor, a first signal distributor, a second signal distributor, a first detection switch, and a second detection switch; wherein
  • the encoder is connected to one end of the first signal distributor for virtualizing the front machine spindle, and generates a virtual pulse signal corresponding to the position of the front machine spindle in real time;
  • the other end of the first signal distributor is connected to the first end of the PLC and the first end of the servo controller, and is configured to acquire a virtual pulse signal output by the encoder, and obtain the obtained After the virtual pulse signals are amplified, they are respectively allocated to the PLC and the servo controller;
  • the first detecting switch is connected to the second end of the PLC, and is configured to output a first reset signal when detecting that the front machine spindle reaches a preset reference position;
  • the second detecting switch is connected to the third end of the PLC, and is configured to output a second reset signal when detecting that the rear machine reaches the preset reference position from the axis;
  • the second end of the servo controller is connected to the fourth end of the PLC, the third end is connected to the servo motor, and the fourth end is connected to one end of the second signal distributor for obtaining according to the obtained
  • the amplified virtual pulse signal output by the first signal distributor controls the servo motor to drive the operation of the rear machine, and further simulates the servo motor encoder, and outputs the real-time slave axis position in real time. Corresponding simulated pulse signal into the second signal distributor;
  • the other end of the second signal distributor is connected to the fifth end of the PLC, and is used for amplifying the post-stage outputted by the servo controller from the simulated pulse signal of the shaft position, and outputting to the PLC;
  • the PLC includes a first high speed counter and a second high speed counter, configured to take a certain time and simultaneously from the first high speed counter and the second high speed counter before receiving the corresponding reset signal for resetting Reading, by the first high-speed counter, a first count value corresponding to the amplified virtual pulse signal and reading a second count value corresponding to the amplified simulated pulse signal from the second high-speed counter, and further determining Whether the absolute value of the difference between the first count value and the second count value read at the same time is less than a preset threshold; if yes, determining that the back machine is synchronized with the front machine; No, an alarm signal alarm is output, and a corresponding command is further output to the servo controller to control the servo motor to stop, so that the rear machine stops.
  • the first detecting switch and the second detecting switch are both proximity switches or photoelectric switches.
  • the first signal distributor and the second signal distributor are both photocouplers.
  • the photocoupler can amplify a pulse signal with a level value of 5V to a pulse signal with a level value of 24V.
  • the embodiment of the present invention further provides a servo-based master-slave position synchronization control method, which is implemented on the foregoing synchronization control system, and the method includes:
  • the virtual front machine spindle generates a virtual pulse signal corresponding to the position of the front machine spindle in real time
  • the virtual pulse signal corresponding to the position of the spindle of the front machine and the simulated pulse signal corresponding to the real time of the rear machine from the axis position are respectively counted, and the first count value corresponding to the virtual pulse signal is obtained.
  • a second count value corresponding to the simulated pulse signal and further calculating an absolute value of the difference between the obtained first count value and the second count value; wherein the first count value and the first The two count values are not equal to 0;
  • the method further comprises:
  • the pulse signal adjusts the operation of the rear machine to realize synchronization between the rear machine and the front machine.
  • the front machine is The driver of the station does not require it, which makes it simple to implement and has good synchronization performance.
  • the virtual pulse signal corresponding to the real-time position of the spindle of the front machine and the simulated pulse signal corresponding to the real-time position of the rear machine from the axis of the machine are simply counted and compared. To determine the synchronization status of the front and rear machines, and further adjust the unsynchronized rear machine to synchronize, thereby saving the position controller or the position control dedicated PLC, so the price is cheap, and the investment cost is reduced.
  • FIG. 1 is a schematic structural diagram of a servo-based master-slave position synchronization control system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of circuit connection of a servo-based master-slave position synchronization control system application scenario according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the circuit structure of the PLC in FIG. 2;
  • FIG. 4 is a flowchart of a method for servo-based master-slave position synchronization control according to an embodiment of the present invention.
  • a servo-based master-slave position synchronization control system is used for a matching front machine (not shown) and a rear machine (not shown).
  • the encoder 1, the PLC 2, the servo controller 3, the servo motor 4, the first signal distributor 5, the second signal distributor 6, the first detection switch 7, and the second detection switch 8 are included;
  • the encoder 1 is connected to one end of the first signal distributor 5 for virtualizing the front machine spindle to generate a virtual pulse signal corresponding to the position of the front machine spindle in real time;
  • the other end of the first signal distributor 5 is connected to the first end P1 of the PLC 2 and the first end S1 of the servo controller 3 for acquiring the virtual pulse signal output by the encoder 1 and amplifying the acquired virtual pulse signal. After that, they are respectively assigned to PLC2 and servo controller 3;
  • the first detecting switch 7 is connected to the second end P2 of the PLC 2, and is configured to output a first reset signal when detecting that the front machine spindle reaches a preset reference position;
  • the second detecting switch 8 is connected to the third end P3 of the PLC 2, and is configured to output a second reset signal when detecting that the rear machine reaches the preset reference position from the axis;
  • the second end S2 of the servo controller 3 is connected to the fourth end P4 of the PLC 2, the third end S3 is connected to the servo motor 4, and the fourth end S4 is connected to one end of the second signal distributor 6 for obtaining according to the obtained
  • An amplified virtual pulse signal outputted by a signal distributor 5 controls the servo motor 4 to drive the rear machine to operate, and further simulates the servo motor 4 encoder to output a simulated pulse signal corresponding to the real time of the rear machine from the axis position to the second In the signal distributor 6;
  • the other end of the second signal distributor 6 is connected to the fifth end P5 of the PLC2, for amplifying the post-stage outputted by the servo controller 3 from the simulated pulse signal of the shaft position, and outputting to the PLC2;
  • the PLC 2 includes a first high speed counter and a second high speed counter, which are used to take a certain time and simultaneously before the first high speed counter and the second high speed counter have not received the corresponding reset signal for resetting. Reading a first count value corresponding to the amplified virtual pulse signal and reading a second count value corresponding to the amplified simulated pulse signal from the second high speed counter in the first high speed counter, and further determining the first read at the same time Whether the absolute value of the difference between the count value and the second count value is less than a preset threshold; if yes, determining that the rear machine is synchronized with the front machine; if not, outputting an alarm signal alarm, and further outputting the corresponding command
  • the servo controller 3 is controlled to stop the servo motor 4, so that the rear machine is stopped.
  • first detecting switch 7 and the second detecting switch 8 are both proximity switches or photoelectric switches.
  • the first signal distributor 5 and the second signal distributor 6 are both photocouplers, wherein the photocoupler can amplify a pulse signal having a level value of 5V to a pulse signal having a level value of 24V.
  • the servo-based master-slave position synchronization control system in the embodiment of the present invention should be turned on in an environment in which the front machine is already running.
  • the preset reference position is the relative reference position taken by the front machine main shaft and the rear machine main shaft, and the gears driven by the main and the subordinate axes are all after the nth tooth is rotated.
  • a corresponding reset signal is generated, which can be set according to actual conditions, instead of referring to a specific coordinate position.
  • the encoder 1 adopts the HES-1024-2MD incremental encoder manufactured by NEMICON
  • the PLC2 adopts the DVP40ES2 model produced by Delta
  • the servo controller 3 adopts the ASD-A2 produced by Delta.
  • servo motor 4 adopts ECMA-E11315R8 model produced by Delta.
  • the first signal distributor 5 and the second signal distributor 6 adopt XF-GB5- produced by Beijing Zhiyi Technology Co., Ltd. 04 model
  • the first detection switch 7 and the second detection switch 8 are proximity switches, using the 3RG4012-3CD00-PF model produced by Pepperl+Fuchs, the specific circuit connection relationship, please refer to Figure 2 and Figure 3.
  • the working principle of the servo-based master-slave position synchronization control system in the embodiment of the present invention is: using the encoder 1 to virtualize a main shaft, and generating a virtual pulse signal corresponding to the position of the front machine spindle in real time, the virtual pulse signal passes through the first
  • the signal distributor 5 is enlarged and distributed into two paths: one is input as a pulse signal corresponding to the position of the spindle of the front machine, and is input to the servo controller 3, thereby controlling the servo motor 4 to drive the machine to operate, so that the slave axis (ie, the rear machine) follows.
  • the spindle ie, the front machine
  • the servo controller 3 proportionally simulates the servo motor 4 encoder output and the simulated pulse signal corresponding to the rear station from the axis position in real time, and is amplified by the second signal distributor 6 and then output to the high-speed pulse input port of the second high-speed counter of the PLC 2,
  • the second detecting switch 8 collects a second reset signal generated when the machine reaches the preset reference position from the axis, and when the PLC 2 receives the signal output by the second detecting switch 8, resets the corresponding high-speed counter to make it work cyclically. .
  • PLC2 compares the two high-speed counters. If the difference between the two high-speed counters exceeds the set value, it means that the rear station is out of sync, PLC2 issues an alarm signal alarm, and outputs the corresponding command through the servo controller 3.
  • the servo motor 4 is stopped to rotate, and the servo motor 4 can be operated again after the front and rear stages are adjusted and synchronized.
  • a servo-based master-slave position synchronization control method is implemented on a production line including the foregoing synchronous control system and a back machine.
  • the method includes:
  • Step S101 The virtual front machine spindle generates a virtual pulse signal corresponding to the position of the front machine spindle in real time;
  • Step S102 controlling the operation of the rear machine according to the generated virtual pulse signal, and proportionally simulating a simulation pulse signal corresponding to the slave machine position in real time from the rear position;
  • Step S103 At the same time, the virtual pulse signal corresponding to the spindle position of the front machine and the simulation pulse signal corresponding to the real time corresponding to the position of the rear machine are respectively counted, and the first corresponding to the virtual pulse signal is obtained. Counting a second count value corresponding to the simulated pulse signal, and further calculating an absolute value of the difference between the obtained first count value and the second count value; wherein the first count value is The second count value is not equal to 0;
  • Step S104 When it is detected that the absolute value of the calculated difference is less than a preset threshold, determining that the rear machine is synchronized with the front machine, and continuing to operate the rear machine.
  • the method further comprises:
  • the front machine is The driver of the station does not require it, which makes it simple to implement and has good synchronization performance.
  • the virtual pulse signal corresponding to the real-time position of the spindle of the front machine and the simulated pulse signal corresponding to the real-time position of the rear machine from the axis of the machine are simply counted and compared. To determine the synchronization status of the front and rear machines, and further adjust the unsynchronized rear machine to synchronize, thereby saving the position controller or the position control dedicated PLC, so the price is cheap, and the investment cost is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Multiple Motors (AREA)
  • Numerical Control (AREA)

Abstract

一种基于伺服的主从位置同步控制系统,其用于相配合的前机台和后机台上,包括编码器(1)、PLC(2)、伺服控制器(3)、伺服马达(4)、第一信号分配器(5)、第二信号分配器(6)、第一检测开关(7)以及第二检测开关(8);其中,编码器(1)虚拟前机台主轴位置,得出虚拟脉冲信号,并将该虚拟脉冲信号放大后通过第一信号分配器(5)分配给PLC(2)和伺服控制器(3),伺服控制器(3)根据放大后的虚拟脉冲信号控制伺服马达(4)驱动后机台运转,并将比例仿真出的后机台从轴位置的仿真脉冲信号通过第二信号分配器(6)输出给PLC(2),PLC(2)对分别接收到的虚拟及仿真脉冲信号进行计数和差值运算,得到差的绝对值如果小于预设阈值,则前后机台同步,否则报警,控制伺服马达(4)停机,使后机台停止运转。该系统实现简单,投资小且同步性能好。

Description

一种基于伺服的主从位置同步控制系统及方法 技术领域
本发明涉及自动化生产线同步技术领域,尤其涉及一种基于伺服的主从位置同步控制系统及方法。
背景技术
自动化生产线为由工件传送系统和控制系统将一组自动机床和辅助设备,按照工艺顺序联接起来,自动完成产品全部或部分制造过程的生产系统。因此,自动化生产线成为现代生产发展的主要趋势之一,对于加速社会生产力发展及减轻工人体力劳动具有重大意义,其适用于大批量生产,能缩短生产周期和降低成本。
目前,国内大部分自动化生产线都采用前后机台同步连接的方法,主要方法包括:一、前后机台的同步都使用变频器驱动,利用模拟信号通过比例调节分别控制,使前后机台保持速度同步;二、前后机台的同步都使用变频器驱动,通过同步控制器来进行控制,在前机台加一个脉冲编码器来提供前馈信号以及一个主检测开关来提供主轴位置参考信号,并在后机台加一个从检测开关来提供从轴位置参考信号,使前后机台保持位置同步;三、在前机台用一个编码器(如果前面机台采用伺服控制器驱动,则利用其仿真编码器)虚拟一个主轴,将信号输入一个位置控制器,再通过位置控制器来控制后机台的从轴伺服控制器,使后机台与前机台保持位置同步。
但是,上述方法均存在不足之处,其不足之处在于:在第一种方法中,虽然实现简单且价格便宜,但同步性能差;在第二种方法中,虽然实现简单且同步性能较好,但价格昂贵;在第三种方法中,虽然同步性能很好,但价格昂贵且实现复杂。
发明内容
本发明实施例所要解决的技术问题在于,提供一种基于伺服的主从位置同步控制系统及方法,实现简单,投资小且同步性能好。
为了解决上述技术问题,本发明实施例提供了一种基于伺服的主从位置同步控制系统,其用于相配合的前机台和后机台上,包括编码器、PLC、伺服控制器、伺服马达、第一信号分配器、第二信号分配器、第一检测开关和第二检测开关;其中,
所述编码器与所述第一信号分配器的一端相连,用于虚拟所述前机台主轴,产生出一与所述前机台主轴位置实时对应的虚拟脉冲信号;
所述第一信号分配器的另一端与所述PLC的第一端及所述伺服控制器的第一端相连,用于获取所述编码器输出的虚拟脉冲信号,并将所述获取到的虚拟脉冲信号进行放大后,分别分配给所述PLC及所述伺服控制器;
所述第一检测开关与所述PLC的第二端相连,用于当检测到所述前机台主轴到达预设的参考位置时,输出第一复位信号;
所述第二检测开关与所述PLC的第三端相连,用于当检测到所述后机台从轴到达所述预设的参考位置时,输出第二复位信号;
所述伺服控制器的第二端与所述PLC的第四端相连,第三端与所述伺服马达相连,第四端与所述第二信号分配器的一端相连,用于根据获取到的所述第一信号分配器输出的放大后虚拟脉冲信号,控制所述伺服马达驱动所述后机台运转,并进一步比例仿真所述伺服马达编码器,输出与所述后机台从轴位置实时对应的仿真脉冲信号至所述第二信号分配器中;
所述第二信号分配器的另一端与所述PLC的第五端相连,用于将所述伺服控制器输出的后机台从轴位置的仿真脉冲信号进行放大后,输出至所述PLC;
所述PLC包括第一高速计数器和第二高速计数器,用于在所述第一高速计数器及所述第二高速计数器均未接收到相对应的复位信号进行复位前,取某一时刻,同时从所述第一高速计数器中读取所述放大后虚拟脉冲信号对应的第一计数值及从所述第二高速计数器中读取所述放大后仿真脉冲信号对应的第二计数值,并进一步判断所述同一时刻读取到的第一计数值与第二计数值之间差的绝对值是否小于预设的阈值;如果是,则确定所述后机台与所述前机台实现同步;如果否,则输出报警信号报警,且进一步输出相应的指令给所述伺服控制器控制所述伺服马达停机,使得所述后机台停止运转。
其中,所述第一检测开关和所述第二检测开关均为接近开关或光电开关。
其中,所述第一信号分配器和所述第二信号分配器均为光电耦合器。
其中,所述光电耦合器可将电平值为5V的脉冲信号放大至电平值为24V的脉冲信号。
本发明实施例还提供了一种基于伺服的主从位置同步控制方法,其在前述的同步控制系统上实现,所述方法包括:
虚拟前机台主轴,产生出一与所述前机台主轴位置实时对应的虚拟脉冲信号;
根据所述产生的虚拟脉冲信号,控制后机台运转,并比例仿真出与所述后机台从轴位置实时对应的仿真脉冲信号;
在同一时刻,对所述前机台主轴位置实时对应的虚拟脉冲信号及所述后机台从轴位置实时对应的仿真脉冲信号分别进行计数,得到所述虚拟脉冲信号对应的第一计数值和所述仿真脉冲信号对应的第二计数值,并进一步计算出所述得到的第一计数值与所述第二计数值之间差的绝对值;其中,所述第一计数值与所述第二计数值均不等于0;
当检测到所述计算出的差的绝对值小于预设的阈值时,则确定所述后机台与所述前机台实现同步,继续保持所述后机台运转。
其中,所述方法进一步包括:
当检测到所述计算出的差的绝对值大于或等于预设的阈值时,则输出报警信号报警,且进一步输出相应的指令控制所述后机台停止运转,并再次根据所述产生的虚拟脉冲信号,调整所述后机台运转,实现所述后机台与所述前机台实现同步。
实施本发明实施例,具有如下有益效果:
在本发明实施例中,由于采用编码器虚拟前机台主轴位置,并提供与前机台主轴位置实时对应的虚拟脉冲信号给伺服控制器进行后机台与前机台同步,因此对前机台的驱动不做要求,使得其实现简单,同步性能好;同时由于采用PLC对前机台主轴位置实时对应的虚拟脉冲信号与后机台从轴位置实时对应的仿真脉冲信号进行简单计数及对比,来确定前后机台的同步状态,并进一步调控不同步的后机台进行同步,从而节省了位置控制器或位置控制专用PLC,因此价格便宜,降低了投资成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1为本发明实施例提供的基于伺服的主从位置同步控制系统的结构示意图;
图2为本发明实施例提供的基于伺服的主从位置同步控制系统应用场景的电路连接示意图;
图3为图2中PLC的电路结构示意图;
图4为本发明实施例提供的基于伺服的主从位置同步控制的方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
如图1所示,为本发明实施例提供的一种基于伺服的主从位置同步控制系统,其用于相配合的前机台(未图示)和后机台(未图示)上,包括编码器1、PLC2、伺服控制器3、伺服马达4、第一信号分配器5、第二信号分配器6、第一检测开关7和第二检测开关8;其中,
编码器1与第一信号分配器5的一端相连,用于虚拟前机台主轴,产生出一与前机台主轴位置实时对应的虚拟脉冲信号;
第一信号分配器5的另一端与PLC2的第一端P1及伺服控制器3的第一端S1相连,用于获取编码器1输出的虚拟脉冲信号,并将获取到的虚拟脉冲信号进行放大后,分别分配给PLC2及伺服控制器3;
第一检测开关7与PLC2的第二端P2相连,用于当检测到前机台主轴到达预设的参考位置时,输出第一复位信号;
第二检测开关8与PLC2的第三端P3相连,用于当检测到后机台从轴到达上述预设的参考位置时,输出第二复位信号;
伺服控制器3的第二端S2与PLC2的第四端P4相连,第三端S3与伺服马达4相连,第四端S4与第二信号分配器6的一端相连,用于根据获取到的第一信号分配器5输出的放大后虚拟脉冲信号,控制伺服马达4驱动后机台运转,并进一步比例仿真伺服马达4编码器,输出与后机台从轴位置实时对应的仿真脉冲信号至第二信号分配器6中;
第二信号分配器6的另一端与PLC2的第五端P5相连,用于将伺服控制器3输出的后机台从轴位置的仿真脉冲信号进行放大后,输出至PLC2;
PLC2包括第一高速计数器和第二高速计数器,用于在第一高速计数器及第二高速计数器均未接收到相对应的复位信号进行复位前,取某一时刻,同时从 第一高速计数器中读取放大后虚拟脉冲信号对应的第一计数值及从第二高速计数器中读取放大后仿真脉冲信号对应的第二计数值,并进一步判断同一时刻读取到的第一计数值与第二计数值之间差的绝对值是否小于预设的阈值;如果是,则确定后机台与前机台实现同步;如果否,则输出报警信号报警,且进一步输出相应的指令给伺服控制器3控制伺服马达4停机,使得后机台停止运转。
应当说明的是,第一检测开关7和第二检测开关8均为接近开关或光电开关。第一信号分配器5和第二信号分配器6均为光电耦合器,其中,该光电耦合器可将电平值为5V的脉冲信号放大至电平值为24V的脉冲信号。本发明实施例中的基于伺服的主从位置同步控制系统应该在前机台已经运行的环境中开启。
应当说明的是,预设的参考位置为前机台主轴和后机台从轴各自所取的相对参考位置,如主从轴带动的齿轮一样,都在第n个齿转完一圈后,产生相应的复位信号,具体可根据实际情况进行设定,而不是指具体的坐标位置。
在一个实施例中,编码器1采用内密控NEMICON生产的HES-1024-2MD型号的增量型编码器,PLC2采用台达生产的DVP40ES2型号,伺服控制器3采用采用台达生产的ASD-A2-1521-M型号,伺服马达4采用采用台达生产的ECMA-E11315R8型号,第一信号分配器5和第二信号分配器6均采用由北京智仪恳创科技有限公司生产的XF-GB5-04型号,第一检测开关7和第二检测开关8均为接近开关,采用倍加福生产的3RG4012-3CD00-PF型号,具体电路连接关系,请参见图2和图3所示。
本发明实施例中的基于伺服的主从位置同步控制系统的工作原理为:使用编码器1虚拟一个主轴,产生一与前机台主轴位置实时对应的虚拟脉冲信号,该虚拟脉冲信号经过第一信号分配器5放大分配成两路:一路作为与前机台主轴位置同步对应的脉冲信号输入伺服控制器3,从而控制伺服马达4驱动后机台运转,使得从轴(即后机台)跟随主轴(即前机台)同步运行;另一路输入到PLC2中第一高速计数器的高速脉冲输入端口,第一检测开关7采集前机台主轴到达预设的参考位置时产生的第一复位信号,当PLC2接收到第一检测开关7输 出的第一复位信号时,复位第一高速计数器,使其循环工作。
伺服控制器3比例仿真伺服马达4编码器输出与后机台从轴位置实时对应的仿真脉冲信号,通过第二信号分配器6放大后再输出到PLC2的第二高速计数器的高速脉冲输入端口,第二检测开关8采集后机台从轴到达前述预设的参考位置时产生的第二复位信号,当PLC2接收到第二检测开关8输出的信号时,复位相应的高速计数器,使其循环工作。
此时,PLC2对两个高速计数器进行比较,如果两个高速计数器的差值超过设定值,则表示后机台已不同步,PLC2发出报警信号报警,并输出相应的指令通过伺服控制器3停止伺服马达4转动,待前后机台调整同步后才能再运行伺服马达4。
如图4所示,为本发明实施例提供的一种基于伺服的主从位置同步控制方法,其在包括前述的同步控制系统与后机台相配合的生产线上实现,所述方法包括:
步骤S101、虚拟前机台主轴,产生出一与所述前机台主轴位置实时对应的虚拟脉冲信号;
步骤S102、根据所述产生的虚拟脉冲信号,控制后机台运转,并比例仿真出与所述后机台从轴位置实时对应的仿真脉冲信号;
步骤S103、在同一时刻,对所述前机台主轴位置实时对应的虚拟脉冲信号及所述后机台从轴位置实时对应的仿真脉冲信号分别进行计数,得到所述虚拟脉冲信号对应的第一计数值和所述仿真脉冲信号对应的第二计数值,并进一步计算出所述得到的第一计数值与所述第二计数值之间差的绝对值;其中,所述第一计数值与所述第二计数值均不等于0;
步骤S104、当检测到所述计算出的差的绝对值小于预设的阈值时,则确定所述后机台与所述前机台实现同步,继续保持所述后机台运转。
其中,所述方法进一步包括:
当检测到所述计算出的差的绝对值大于或等于预设的阈值时,则输出报警信号报警,且进一步输出相应的指令控制所述后机台停止运转,并再次根据所 述产生的虚拟脉冲信号,调整所述后机台运转,实现所述后机台与所述前机台实现同步。
实施本发明实施例,具有如下有益效果:
在本发明实施例中,由于采用编码器虚拟前机台主轴位置,并提供与前机台主轴位置实时对应的虚拟脉冲信号给伺服控制器进行后机台与前机台同步,因此对前机台的驱动不做要求,使得其实现简单,同步性能好;同时由于采用PLC对前机台主轴位置实时对应的虚拟脉冲信号与后机台从轴位置实时对应的仿真脉冲信号进行简单计数及对比,来确定前后机台的同步状态,并进一步调控不同步的后机台进行同步,从而节省了位置控制器或位置控制专用PLC,因此价格便宜,降低了投资成本。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (6)

  1. 一种基于伺服的主从位置同步控制系统,其用于相配合的前机台和后机台上,其特征在于,包括编码器、PLC、伺服控制器、伺服马达、第一信号分配器、第二信号分配器、第一检测开关和第二检测开关;其中,
    所述编码器与所述第一信号分配器的一端相连,用于虚拟所述前机台主轴,产生出一与所述前机台主轴位置实时对应的虚拟脉冲信号;
    所述第一信号分配器的另一端与所述PLC的第一端及所述伺服控制器的第一端相连,用于获取所述编码器输出的虚拟脉冲信号,并将所述获取到的虚拟脉冲信号进行放大后,分别分配给所述PLC及所述伺服控制器;
    所述第一检测开关与所述PLC的第二端相连,用于当检测到所述前机台主轴到达预设的参考位置时,输出第一复位信号;
    所述第二检测开关与所述PLC的第三端相连,用于当检测到所述后机台从轴到达所述预设的参考位置时,输出第二复位信号;
    所述伺服控制器的第二端与所述PLC的第四端相连,第三端与所述伺服马达相连,第四端与所述第二信号分配器的一端相连,用于根据获取到的所述第一信号分配器输出的放大后虚拟脉冲信号,控制所述伺服马达驱动所述后机台运转,并进一步比例仿真所述伺服马达编码器,输出与所述后机台从轴位置实时对应的仿真脉冲信号至所述第二信号分配器中;
    所述第二信号分配器的另一端与所述PLC的第五端相连,用于将所述伺服控制器输出的后机台从轴位置的仿真脉冲信号进行放大后,输出至所述PLC;
    所述PLC包括第一高速计数器和第二高速计数器,用于在所述第一高速计数器及所述第二高速计数器均未接收到相对应的复位信号进行复位前,取某一时刻,同时从所述第一高速计数器中读取所述放大后虚拟脉冲信号对应的第一计数值及从所述第二高速计数器中读取所述放大后仿真脉冲信号对应的第二计数值,并进一步判断所述同一时刻读取到的第一计数值与第二计数值之间差的绝对值是否小于预设的 阈值;如果是,则确定所述后机台与所述前机台实现同步;如果否,则输出报警信号报警,且进一步输出相应的指令给所述伺服控制器控制所述伺服马达停机,使得所述后机台停止运转。
  2. 如权利要求1所述的同步控制系统,其特征在于,所述第一检测开关和所述第二检测开关均为接近开关或光电开关。
  3. 如权利要求1所述的同步控制系统,其特征在于,所述第一信号分配器和所述第二信号分配器均为光电耦合器。
  4. 如权利要求3所述的同步控制系统,其特征在于,所述光电耦合器可将电平值为5V的脉冲信号放大至电平值为24V的脉冲信号。
  5. 一种基于伺服的主从位置同步控制方法,其特征在于,其在如权利要求1至4中任一项所述的同步控制系统上实现,所述方法包括:
    虚拟前机台主轴,产生出一与所述前机台主轴位置实时对应的虚拟脉冲信号;
    根据所述产生的虚拟脉冲信号,控制后机台运转,并比例仿真出与所述后机台从轴位置实时对应的仿真脉冲信号;
    在同一时刻,对所述前机台主轴位置实时对应的虚拟脉冲信号及所述后机台从轴位置实时对应的仿真脉冲信号分别进行计数,得到所述虚拟脉冲信号对应的第一计数值和所述仿真脉冲信号对应的第二计数值,并进一步计算出所述得到的第一计数值与所述第二计数值之间差的绝对值;其中,所述第一计数值与所述第二计数值均不等于0;
    当检测到所述计算出的差的绝对值小于预设的阈值时,则确定所述后机台与所述前机台实现同步,继续保持所述后机台运转。
  6. 如权利要求5所述的同步控制方法,其特征在于,所述方法进一步包括:
    当检测到所述计算出的差的绝对值大于或等于预设的阈值时,则输出报警信号报警,且进一步输出相应的指令控制所述后机台停止运转,并再次根据所述产生的虚拟脉冲信号,调整所述后机台运转,实现所述后机台与所述前机台实现同步。
PCT/CN2015/096607 2015-09-25 2015-12-08 一种基于伺服的主从位置同步控制系统及方法 WO2017049771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510619466.4A CN105182942B (zh) 2015-09-25 2015-09-25 一种基于伺服的主从位置同步控制系统及方法
CN201510619466.4 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017049771A1 true WO2017049771A1 (zh) 2017-03-30

Family

ID=54905083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096607 WO2017049771A1 (zh) 2015-09-25 2015-12-08 一种基于伺服的主从位置同步控制系统及方法

Country Status (2)

Country Link
CN (1) CN105182942B (zh)
WO (1) WO2017049771A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115570568A (zh) * 2022-10-11 2023-01-06 江苏高倍智能装备有限公司 一种多机械手协同控制方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102537B (zh) * 2017-05-04 2021-08-06 武汉滨湖电子有限责任公司 一种基于虚拟主轴的双丝杆同步控制方法
CN108856307A (zh) * 2018-05-23 2018-11-23 山信软件股份有限公司 一种机械设备位置检测装置及检测方法
CN109520745B (zh) * 2018-11-28 2021-03-23 北京新能源汽车股份有限公司 一种车辆上下车方便性的验证装置
CN109520746A (zh) * 2018-11-28 2019-03-26 北京新能源汽车股份有限公司 一种车辆行李箱取放方便性的验证装置
CN110464592A (zh) * 2019-08-05 2019-11-19 上海医疗器械股份有限公司 腰板的控制装置及其控制方法、手术台及其腰板机构
CN113495054B (zh) * 2021-09-09 2021-11-19 广州永士达医疗科技有限责任公司 一种oct导丝传输同步性检测方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442307A (ja) * 1990-06-07 1992-02-12 Fanuc Ltd 数値制御装置システム
JP2010178510A (ja) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp モータ同期制御装置
CN201726352U (zh) * 2010-07-08 2011-01-26 西华大学 双丝杆机床同步驱动装置
CN102166880A (zh) * 2010-12-29 2011-08-31 上海紫光机械有限公司 卷筒纸柔性印刷机辅机无轴跟踪驱动方法
CN102540965A (zh) * 2010-12-09 2012-07-04 沈阳高精数控技术有限公司 总线式伺服双轴同步控制方法
CN102854901A (zh) * 2011-06-28 2013-01-02 欧姆龙株式会社 同步控制装置、同步控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2893762Y (zh) * 2006-01-27 2007-04-25 湖北三环锻压机床有限公司 基于can总线技术的剪板机多轴同步控制系统
JP4807475B1 (ja) * 2011-03-15 2011-11-02 オムロン株式会社 演算ユニット、出力制御方法、およびプログラム
EP2887165A1 (en) * 2013-12-20 2015-06-24 Omron Corporation Computation unit, output control method, and program
CN104238447B (zh) * 2014-09-19 2017-04-05 上海电器科学研究院 一种实现双轴同步控制的方法
CN104698978B (zh) * 2015-03-17 2016-06-01 华中科技大学 一种基于虚拟化技术的数控系统远程监控及调试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442307A (ja) * 1990-06-07 1992-02-12 Fanuc Ltd 数値制御装置システム
JP2010178510A (ja) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp モータ同期制御装置
CN201726352U (zh) * 2010-07-08 2011-01-26 西华大学 双丝杆机床同步驱动装置
CN102540965A (zh) * 2010-12-09 2012-07-04 沈阳高精数控技术有限公司 总线式伺服双轴同步控制方法
CN102166880A (zh) * 2010-12-29 2011-08-31 上海紫光机械有限公司 卷筒纸柔性印刷机辅机无轴跟踪驱动方法
CN102854901A (zh) * 2011-06-28 2013-01-02 欧姆龙株式会社 同步控制装置、同步控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115570568A (zh) * 2022-10-11 2023-01-06 江苏高倍智能装备有限公司 一种多机械手协同控制方法及系统
CN115570568B (zh) * 2022-10-11 2024-01-30 江苏高倍智能装备有限公司 一种多机械手协同控制方法及系统

Also Published As

Publication number Publication date
CN105182942A (zh) 2015-12-23
CN105182942B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017049771A1 (zh) 一种基于伺服的主从位置同步控制系统及方法
CN100595707C (zh) 一种数控机床双轴同步控制装置
CN102016733B (zh) 数控方法及其装置
CN103659257A (zh) 一种基于计算机视觉的自动锁螺钉装置
CN102866665A (zh) 用于全电动折弯机的多轴同步控制系统及控制方法
CN102075125B (zh) 数控机床多轴联动伺服控制系统的控制方法
WO2016201870A1 (zh) 一种扭力同步智能数控折弯机数控系统
CN104753406A (zh) 一种多电机协同控制方法
CN105929791B (zh) 平面直角坐标运动系统的直接轮廓控制方法
CN105892412A (zh) 基于自定义总线的多轴运动控制系统硬件架构
CN202803847U (zh) 用于全电动折弯机的多轴同步控制系统
CN103853094A (zh) 数控机床cnc控制系统
CN104874893A (zh) 基于zynq7000soc的坡口切割机及其控制系统
CN104898474A (zh) 一种基于mcu的多通道均匀伺服脉冲生成方法
CN105988416A (zh) Cnc工具机的热变位补正系统及方法
CN203562983U (zh) 多电机同步控制系统
TWI556075B (zh) The system and method of thermal deformation correction for CNC machine
CN202037991U (zh) 圆网印花机的印花同步控制装置
CN204613702U (zh) 基于总线模式的伺服压力机控制系统
CN202779582U (zh) 搓齿机
CN203696237U (zh) 一种激光金属切割电容传感运动叠加调高器
CN205928661U (zh) 一种焊接机器人控制系统
CN110580005B (zh) 一种适用于极端应用条件的运动控制系统
CN103089750B (zh) 用可编程控制器进行多组油缸控制的控制器及其控制方法
CN204515478U (zh) 一种基于fpga的嵌入式数字控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904646

Country of ref document: EP

Kind code of ref document: A1