WO2017049747A1 - 线性振动马达 - Google Patents

线性振动马达 Download PDF

Info

Publication number
WO2017049747A1
WO2017049747A1 PCT/CN2015/094520 CN2015094520W WO2017049747A1 WO 2017049747 A1 WO2017049747 A1 WO 2017049747A1 CN 2015094520 W CN2015094520 W CN 2015094520W WO 2017049747 A1 WO2017049747 A1 WO 2017049747A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
vibration motor
permanent magnets
linear vibration
weight
Prior art date
Application number
PCT/CN2015/094520
Other languages
English (en)
French (fr)
Inventor
祖峰磊
王斌
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US15/749,834 priority Critical patent/US10574126B2/en
Publication of WO2017049747A1 publication Critical patent/WO2017049747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the present invention relates to the field of electroacoustics, and in particular to a linear vibration motor.
  • micro-vibration motors are generally used for system feedback.
  • the mobile phone is in some important occasions such as conference rooms and classrooms, the user hopes to receive information or call immediately.
  • Information feedback does not open the sound reminding function because of the seriousness of the occasion, and the vibration of the micro vibration motor can be used to make the information feedback to easily meet the above two requirements.
  • the existing micro-vibration motor is usually a linear vibration motor. After the coil is energized, the stator is subjected to the Lorentz force for driving the stator, and the vibrator receives the opposite force by the relationship between the force and the reaction force. Under the influence of the force, the vibrator makes linear vibration.
  • the magnetic lines generated by the permanent magnets in the vibrators are relatively scattered, and they are not fully utilized, and the relative magnetic flux passing through the coils is relatively small, and the generated force is relatively small, thereby affecting
  • the electromagnet in the process of trying to use the electromagnet to interact with the permanent magnet to drive the vibration of the motor, for some structures using more than two permanent magnets, if the horizontal magnetization is still used, and the permanent magnet is not If the shape is changed anyway, the effective magnetic field strength between the slit between the permanent magnet and the magnetic core in the electromagnet is relatively weak. Therefore, it is necessary to have a weak effective magnetic field and insufficient driving force for the existing linear vibration motor. The problem is improved.
  • the technical problem to be solved by the present invention is to provide a novel linear vibration motor structure,
  • the magnetic field strength is increased by the interaction of the electromagnet and the permanent magnet, and the driving force is increased; on the other hand, the permanent magnet is set to a deformed structure, and Inclined magnetization, increase the effective magnetic field strength as much as possible, and further improve the driving force.
  • a linear vibration motor including a vibrator and a stator disposed in parallel with the vibrator; the vibrator including a weight and a vibration embedded in the weight a block, wherein the vibration block includes at least two permanent magnets; the stator includes a coil; the coil portion is provided with a magnetic core; at least adjacent end faces of the adjacent permanent magnets form mutually parallel slopes, The slope forms an acute angle with the axis of the magnetic core; the oblique surface extends obliquely adjacent to the direction of the corresponding magnetic core.
  • the permanent magnet is magnetized in a direction perpendicular to the slope.
  • the magnetic poles of the adjacent ends of the adjacent permanent magnets are the same; a guiding yoke is disposed between the adjacent permanent magnets, and the inclined angle of the guiding yoke and the corresponding inclined surface The angle of inclination is the same.
  • the yoke between adjacent permanent magnets is misaligned with the magnetic core in the coil; the yoke of the yoke is directed to the corresponding magnetic core.
  • the permanent magnets fixed to the weights are three pieces, and together form a first magnet portion, which are respectively a first permanent magnet, a second permanent magnet, and a third permanent magnet;
  • the magnet and the third permanent magnet are in a parallelogram structure, and the second permanent magnet has a trapezoidal structure.
  • the first permanent magnet, the second permanent magnet, and the third permanent magnet respectively include a slope; the adjacent slopes collectively correspond to one of the magnetic cores, and each of the The slopes are all inclined to the direction of the corresponding magnetic core.
  • the coil forms an electromagnet with a magnetic core accommodated in the coil; the electromagnet generates a varying magnetic field after being energized, and drives the vibrator along the direction by changing the direction of magnetic field lines of the magnetic field.
  • the stator is reciprocated in parallel directions.
  • the end region of the weight is combined with a vibration support structure;
  • the support structure is a vibration guiding shaft; one end of the vibration guiding shaft is inserted into the receiving hole at the end of the weight, and the other end is fixed to the outer casing of the linear vibration motor;
  • the sleeve is provided with a limit spring for providing elastic restoring force.
  • the corner portion of the weight is provided with a second magnet portion including four elongated permanent magnets respectively embedded in the four corners of the weight; in the vibration direction of the vibrator
  • the vibrators are further provided with a secondary magnet at a certain distance; the ends of the secondary magnets and the elongated permanent magnets are opposite in polarity.
  • the center of the weight is provided with a recessed hole; the permanent magnet and the yoke between the permanent magnets are accommodated in the recess; the permanent magnet and the The magnetic yoke is integrally bonded to the weight, and the weight is fixed to the weight; the weight is disposed at a position corresponding to the stator to avoid the structure of the stator; the coil is connected and fixed to the flexible circuit board; The flexible circuit board communicates with an external circuit of the linear vibration motor.
  • the linear vibration motor of the present invention is provided with a magnetic conductive core in the coil to form an electromagnet structure. After energization, the electromagnet generates a changing magnetic field, changing the direction of the magnetic field lines of the magnetic field, so that the magnetic lines of force are more concentrated.
  • the magnetic core of the present invention is diverged to the outside;
  • the linear vibration motor of the present invention also has an improved positional relationship between the vibrator and the stator, which jumps out of the existing design idea of placing the permanent magnet and the coil vertically, and horizontally placing the permanent magnet of the vibrator Parallel to the stator, the adjacent ends of the adjacent permanent magnets have the same polarity, so that the magnetic lines of the permanent magnets are concentrated by the force of the same-repulsive force, so that the stator can obtain the largest possible magnetic flux and improve the driving force; more importantly,
  • the permanent magnet is provided with a sloped surface, that is, the special-shaped structure can be used to increase the effective magnetic field strength of the obliquely magnetized permanent magnet, and the effective magnetic field can be maximized when the magnetization direction is perpendicular to the inclined plane.
  • the oblique direction is inclined close to the direction of the corresponding magnetic core to ensure the maximum volume of the permanent magnet, and To ensure that the magnetic field extends in a direction toward the magnetic core of the electromagnet, the maximum magnetic field strength is increased between the core and the guide slit between the adjacent permanent magnets.
  • Figure 1 is an exploded view of the structure of the linear vibration motor of the present invention
  • FIG. 2 is a schematic cross-sectional view showing the structure of a linear vibration motor of the present invention
  • 3-1 is a schematic view showing the distribution of magnetic lines of force when the linear vibration motor coil of the present invention is not energized;
  • 3-2 is a schematic view showing the working principle of the linear vibration motor coil of the present invention after being energized
  • FIG. 4 is a schematic view showing the principle of magnetic balance of the linear vibration motor of the present invention.
  • the reference numerals include: 1, upper shell, 2, rear cover, 3, weight, 31, elongated slot, 32, receiving hole, 4, first magnet portion, 41, first permanent magnet, 411 , bevel, 412, bevel, 42, second permanent magnet, 421, bevel, 422, bevel, 43, third permanent magnet, 431, bevel, 432, bevel, 5, first electromagnet, 51, coil, 52, Magnetic core, 6, long permanent magnet, 7, secondary magnet, 8, second electromagnet, 81, secondary coil, 82, secondary magnetic core, 9, baffle, 10, vibration guide shaft, 11, limit Spring, 12, flexible circuit board (FPCB), 13, yoke.
  • FPCB flexible circuit board
  • weights used in the description of the embodiments of the present invention may also be referred to as “mass masses”, both of which refer to high quality, high density metal blocks that are fixed to the vibrating permanent magnets to enhance vibration balance.
  • the linear vibration motor of the present invention uses the interaction of the electromagnet and the permanent magnet to drive the motor vibration.
  • the linear vibration motor of the present invention comprises an outer casing, the outer casing specifically comprising an upper casing 1 and a rear cover 2 joined together, the upper casing 1 and the rear cover 2 cooperating to form a receiving space
  • the cavity houses a vibrator and a stator in the cavity.
  • the stator is disposed parallel to the vibrator, and the stator and the vibrator are arranged in a vertical direction.
  • the vibrator includes a weight 3 and a vibration block embedded in the weight 3.
  • the vibration block includes at least two permanent magnets (three in the embodiment), and the three permanent magnets form a first
  • the central portion of the weight 3 is provided with a recessed hole structure, and the first magnet portion 4 is accommodated in the recessed hole, and is fixed to the weight 3 by means of glue coating;
  • a yoke 13 is disposed between the magnets. In practice, the yoke 13 and the permanent magnet are bonded and fixed, and then the assembly of the first magnet portion 4 and the yoke 13 is integrally fixed with the weight 3. .
  • the stator system includes a coil 51 that is wound, and the weight 3 is correspondingly provided with an escape structure for the escape coil 51;
  • the coil 51 houses the magnetic core 52, the coil 51 and the FPCB (flexible line)
  • the board 12 is fixed, and the FPCB 12 is connected to an external circuit, thereby enabling the external current signal to be introduced into the coil 51.
  • the magnetic core 52 is housed in the coil 51, the magnetic core 52 is magnetized when a current signal passes.
  • the coil 51 and the magnetic core 51 interact as an electromagnet structure with the first magnet portion 4 to push the motor to vibrate.
  • the first magnet portion 4 shown in this embodiment specifically includes three permanent magnets, which are a first permanent magnet 41, a second permanent magnet 42, and a third permanent magnet 43, respectively, in order to increase the adjacent setting.
  • the adjacent end faces of the adjacent permanent magnets form parallel slopes, the slope and the axis of the magnetic core (the guide defined herein)
  • the axis of the magnetic core is an acute angle passing through a central axis of the magnetic core, which is perpendicular to the mounting plane where the magnetic core is located; the oblique surface extends obliquely in a direction close to the corresponding magnetic core.
  • the three permanent magnets in the first magnet portion 4 are all irregular structures, wherein the first permanent magnet 41 and the third permanent magnet 43 are both parallelograms, respectively including slopes (411, 412, and 431, 432), the second permanent magnet 42 has a trapezoidal structure and includes inclined faces 421 and 422.
  • the inclined faces 412 and 421 are adjacent end faces of the first permanent magnet 41 and the second permanent magnet 42, and 422 and 431 are The adjacent end faces of the two permanent magnets 42 and the third permanent magnets 43, and the inclined faces 412 and the inclined faces 421 collectively correspond to one of the magnetic conductive cores 52 (on the left side in FIG.
  • the inclined faces 422 and the inclined faces 431 collectively correspond to the magnetically conductive
  • the other of the cores 52 (in Figure 2 Located on the right side).
  • the three permanent magnets are all obliquely magnetized, and the specific magnetization direction is perpendicular to the corresponding slope direction, so that the effective magnetic field strength is easily maximized, and each slope corresponds to the same.
  • the direction of the magnetic core 52 is inclined to ensure that the magnetic field guides the direction of the core 52 while maximizing the volume of the permanent magnet.
  • adjacent permanent magnets first permanent magnet 41 and second permanent magnet 42, second permanent magnet 42, and third permanent magnet 43
  • the magnetic poles of the adjacent end faces are the same (same as the N pole or the S pole); and the inclination angles of the two yokes 13 are the same as the inclination angles of the corresponding inclined faces, that is, the first permanent magnet 41 and
  • the yoke between the second permanent magnets 42 has the same inclination angle as that of the inclined surface 412 and the inclined surface 421, and the inclination angle of the yoke between the second permanent magnet 42 and the third permanent magnet 43 is
  • the slopes of the slope 422 and the slope 431 are the same. It is easily understood that the yoke 13 is arranged in a dislocation with the core 54 in the coil 51, and the direction of inclination of the yoke 13 should be directed to the corresponding core 52.
  • the structure shown in FIG. 2 is only one embodiment of the present invention.
  • the technical solution can be applied to a structure in which only two permanent magnets or two other permanent magnets are simultaneously applied;
  • the shape of the permanent magnet shown in the embodiment includes a parallelogram and a trapezoidal structure.
  • the permanent magnet may be other irregular structures, and is not limited by the above-described schematic shape.
  • the specific driving principle of the linear vibration motor of the present invention is as follows:
  • the adjacent ends of the two adjacent permanent magnets in the first magnet portion 4 have the same polarity (horizontal magnetized pair of magnets), that is, SN, NS.
  • the SNs are sequentially arranged.
  • NS, SN, and NS may be sequentially arranged, and the yoke 13 is disposed between adjacent permanent magnets.
  • the coil 51 when the coil 51 is not energized, the first magnet portion 4 generates a static magnetic field, and a repulsive force is generated between the two opposite ends of the two adjacent permanent magnets, thereby generating a very concentrated magnetic field line. distributed.
  • the coil 51 and the magnetic core 52 act as an electromagnet to generate a changing magnetic field, which can change the direction of the magnetic lines in the magnetic field and make the magnetic lines more concentrated.
  • the over-conducting magnetic core 52 is outwardly diverged, and the inclined surface extends toward the direction of the corresponding magnetic conductive core 52, so that the effective magnetic field strength between the slit between the adjacent permanent magnets and the magnetic conductive core 52 is increased, and the magnetic field lines are more distributed. For concentration.
  • the magnetic core 52 and the yoke 13 are disposed at a certain distance in the horizontal direction, so that when the coil 51 is energized, the electromagnet generates a force of attracting or repelling the permanent magnet, and the magnetic flux can be more concentrated through the magnetic core 52. External delivery.
  • the left-hand rule for determining the direction of the force of the energized conductor in the magnetic field, extend the left hand so that the thumb is perpendicular to the other four fingers, and both are in the same plane as the palm; let the magnetic line enter from the palm, And point the four fingers in the direction of the current, where the direction of the thumb is the direction of the ampere force of the energized wire in the magnetic field.
  • the direction of current in coil 51 is assumed Expressed as a vertical image facing the inside, marked as The current direction is the vertical view facing outward, since the coil shown in this embodiment includes two, assuming that the first coil is " with "The second coil must also be” with At this time, according to Ampere's rule, it is determined that the coil 51 receives the rightward force F, and since the coil 51 is fixed to the FPCB, the first magnet portion 4 is subjected to the reverse force based on the relationship between the force and the reaction force. F' (horizontal to the left). Thus, the first magnet portion 4, which is urged to the left, drives the weight 3 to move leftward.
  • the coil 51 The direction of the magnetic field force F received is to the left, and the first magnet portion 4 receives the force F' which is opposite to the F direction and has the same magnitude, and drives the weights to move to the right together, and the above motion alternates to make the first magnet
  • the vibrating block composed of the portion 4 and the yoke 13 forms a linear reciprocating motion with the counterweight 3 parallel to the stator.
  • the electromagnet for driving ie, the coil 51 and the magnetic core 52 in the stator
  • the electromagnet, and the electromagnet located at both end regions of the motor is named the second electromagnet.
  • the vibration motor of the present invention further includes a vibration supporting structure, which is a vibration guiding shaft 10, and an end portion of the weight 3 is provided with a receiving hole 32 for accommodating the vibration guiding shaft, and one end of the vibration guiding shaft 10 is inserted into the
  • the accommodating hole 32 is provided with a limiting spring 11 on the vibration guiding shaft 10. If the vibrator moves to the left, the limiting spring on the left side of the weighting block 3 is pressed, and the limiting spring on the right side is stretched. On the contrary, the limit spring on the right side is squeezed, and the limit spring on the left side is stretched, and the limit spring 11 is the vibration of the vibrator. Provides elastic recovery.
  • linear vibration motor of the present invention is further provided with a magnetic balance structure, which is specifically described as follows:
  • the four corner regions of the weight 3 are respectively provided with elongated slots 31, and the four elongated slots 31 respectively accommodate the elongated permanent magnets 6, and the four elongated permanent magnets 6 together constitute the second magnet portion.
  • the long permanent magnet 6 is disposed at the corner portion, mainly for maintaining balance as much as possible, and at the same time, it is necessary to ensure that the long permanent magnet 6 has a large magnetic energy product to ensure the balance force; and the secondary magnet 7 is on both sides of the vibration block.
  • the distance between the long permanent magnets 6 and the long permanent magnets 6 should be as small as possible to ensure sufficient balance, but at the same time, the vibration space must be avoided.
  • the linear vibration motor of the present invention is further provided with a structure of a second electromagnet 8 on both end sides of the long axis, and includes a secondary coil 81 and an iron core 82 housed in the secondary coil 81, and the second electromagnet 8 is adjacent to the vibrator.
  • a baffle 9 is coupled to one end, and the baffle 9 separates the vibrating area of the vibrator from the sub-coil 81 to prevent the vibrator amplitude from colliding with the sub-coil 81 and causing damage.
  • the baffle 9 described herein is preferably a magnetically permeable material.
  • a horizontal grip force is generated on the vibrating block by the adsorption force between the elongated permanent magnet 6 and the sub-magnet 7, and when the vibrating block is deflected, the grip force is converted to be opposite to the deflecting direction. The force is restored to achieve the balance of the vibrating block.
  • it is necessary to satisfy the opposite polarity of the adjacent end of the sub-magnet 7 and the adjacent elongated permanent magnet 6, as shown in the figure, the elongated shape on the left side
  • the polarities of the permanent magnets 6 are arranged in NS.
  • the polarity order of the secondary magnets 7 can only be NS, so that the S poles of the secondary magnets and the N poles of the elongated permanent magnets 6 attract each other, resulting in a pulling force to the left.
  • the magnetic balance structure and principle on the right side are referred to the above description on the left side, and will not be described again.
  • the magnetic conductive core 52 and the secondary magnetic core 82 are preferably iron cores.
  • the sub-magnet 7 is provided with a cushion on a side close to the vibrator, and the cushion is preferably an elastic material to prevent mechanical collision with the sub-magnet 7 when the vibrator vibrates.
  • one end of the vibration guiding shaft 10 is inserted into the receiving hole 32 of the weight 3, and the other end is fixed to the upper casing 1 through the baffle 9, that is, the weight 3 is actually vibrated through both ends.
  • the guide shaft 10 is fixed to the outer casing.
  • the edge of the FPCB 12 is provided with a plurality of grooves, and the position of the back cover 2 corresponding to the groove is provided with a matching snap structure, and the FPCB 12 is firmly fixed to the back cover 2 by the groove and the buckle structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种线性振动马达,包括振子和与振子平行设置的定子,振子包括配重块(3)和嵌设固定在配重块(3)中的振动块,振动块包括至少两块永磁铁,定子包括线圈(51),线圈(51)内容置有导磁芯(52),至少相邻永磁铁的相邻端面形成相互平行的斜面(411,412,421,422,431,432),斜面(411,412,421,422,431,432)与导磁芯(52)的轴线形成一个锐角,斜面(411,412,421,422,431,432)向靠近相对应的导磁芯(52)的方向倾斜延伸。该马达既可以保证永磁铁体积的最大化,又可以增大相邻永磁铁间的狭缝与导磁芯之间的有效磁场强度,提高驱动振子振动的驱动力。

Description

线性振动马达 技术领域
本发明涉及电声领域,具体的涉及一种线性振动马达。
背景技术
随着通信技术的发展,便携式电子产品,如手机、掌上游戏机或者掌上多媒体娱乐设备等逐渐走近人们的生活。在这些便携式电子产品中,一般会用微型振动马达来做系统反馈,以手机举例而言,如果身处会议室、课堂等一些重要的场合内,用户一方面希望能够即时接收到信息或者来电的信息反馈,一方面又因为所处场合的严肃性而不会开启声音提醒功能,而利用微型振动马达的振动来做信息反馈便可以轻松的满足上述两点要求。
现有的微型振动马达,通常为线性振动马达,线圈通电后,定子会受到驱动定子运动的洛伦兹力,而振子则借助作用力与反作用力的关系,受到方向相反的作用力,在该作用力的影响下,振子做线性振动。然而,传统的线性振动马达,振子中的永磁铁本身所产生的磁力线比较分散,得不到充分地利用,相对的穿过线圈的磁通量也会比较小,产生的作用力会比较小,从而影响振感;另一方面,在尝试利用电磁铁与永磁铁相互作用驱动马达振动的过程中,对于一些采用两个以上永磁铁的结构而言,如果仍然采用水平充磁的方式,并且不对永磁铁的形状做任何改变的话,永磁铁之间的狭缝与电磁铁中导磁芯之间的有效磁场强度相对较弱,因此,需要针对现有的线性振动马达有效磁场较弱以及驱动力不足的问题加以改善。
发明内容
本发明所要解决的技术问题是:提供一种新型的线性振动马达结构,一 方面通过设置对磁铁,并在线圈内增加设置导磁芯,从而借助电磁铁和永磁铁的相互作用,增大磁场强度,提高驱动力;另一方面通过将永磁铁设置为异形结构,并且采用斜向充磁,尽可能的增大有效磁场强度,进一步提高驱动力。
为了实现上述目的,本发明采用以下技术方案:一种线性振动马达,包括振子和与所述振子平行设置的定子;所述振子包括配重块和嵌设固定在所述配重块中的振动块,其中,所述振动块包括至少两块永磁铁;所述定子包括线圈;所述线圈内容置有导磁芯;至少所述相邻永磁铁的相邻端面形成相互平行的斜面,所述斜面与所述导磁芯的轴线形成一个锐角;所述斜面向靠近相对应的所述导磁芯的方向倾斜延伸。
作为一种改进,所述永磁铁沿垂直于所述斜面的方向充磁。
作为一种改进,相邻的所述永磁铁的相邻端的磁极相同;相邻的所述永磁铁之间设置有导磁轭,并且,所述导磁轭的倾斜角度与对应的所述斜面的倾斜角度相同。
作为一种改进,相邻所述永磁铁之间的导磁轭与所述线圈内的导磁芯错位排布;所述导磁轭的倾斜方向指向相对应的所述导磁芯。
作为一种改进,固定于所述配重块的所述永磁铁为三块,共同形成第一磁体部,分别为第一永磁铁、第二永磁铁和第三永磁铁;所述第一永磁铁和所述第三永磁铁为平行四边形结构,所述第二永磁铁为梯形结构。
作为一种改进,所述第一永磁铁、所述第二永磁铁和所述第三永磁铁分别包括有斜面;相邻的所述斜面共同对应一个所述导磁芯,并且,每个所述斜面均向相对应的所述导磁芯的方向倾斜。
作为一种改进,所述线圈与容置于所述线圈内的导磁芯形成电磁铁;所述电磁铁通电后产生变化的磁场,通过改变磁场磁力线的走向来驱动所述振子沿与所述定子平行的方向做往复运动。
作为一种改进,所述配重块的端部区域结合有振动支撑结构;所述振动支 撑结构为振动导向轴;所述振动导向轴的一端插入位于所述配重块端部的容置孔中,另一端固定于所述线性振动马达的外部壳体上;所述振动导向轴上套设有用以提供弹性回复力的限位弹簧。
作为一种改进,所述配重块的角部设置有第二磁体部,包括分别嵌入所述配重块的四个角部的四个长形永磁铁;在所述振子的振动方向上与所述振子间隔一定距离还设置有副磁体;所述副磁体与所述长形永磁铁相互靠近的端部的极性相反。
作为一种改进,所述配重块的中央位置设置有凹孔;所述永磁铁及位于所述永磁铁之间的导磁轭均容纳于所述凹孔中;所述永磁铁与所述导磁轭粘结为一体,与所述配重块涂胶固定;所述配重块对应所述定子的位置设置有避让所述定子的避让结构;所述线圈与柔性线路板连接固定;所述柔性线路板连通所述线性振动马达的外部电路。
相较于现有技术而言,本发明的线性振动马达在线圈内设置导磁芯,形成电磁铁结构,通电后,电磁铁产生变化的磁场,改变磁场磁力线的方向,使得磁力线更为集中的通过该导磁芯向外界发散;本发明的线性振动马达在振子与定子的位置关系上也有所改进,其跳出了现有的垂直放置永磁铁和线圈的设计思路,将振子的永磁铁水平放置,并且与定子平行,相邻的永磁铁的邻接端极性相同,从而借助同性相斥的力量集中永磁铁的磁力线,使得定子能够获得尽可能大的磁通量,提高驱动力;更为重要的是,本发明中,永磁铁设置有斜面,即采用异形结构,可以使得斜向充磁的永磁铁的有效磁场强度增大,当充磁方向为沿垂直于斜面的方向时,可达到有效磁场最大化;另外,斜面向靠近与其相对应的导磁芯的方向倾斜既可以保证永磁铁体积的最大化,又可以保证磁场朝向电磁铁中导磁芯的方向延伸,最大限度的增大相邻永磁铁间的狭缝与导磁芯之间的磁场强度。
附图说明
图1为本发明线性振动马达结构的爆炸图;
图2为本发明线性振动马达结构的剖面示意图;
图3-1为本发明线性振动马达线圈未通电时的磁力线分布示意图;
图3-2为本发明线性振动马达线圈通电后的工作原理示意图;
图4为本发明线性振动马达的磁平衡原理示意图;
其中的附图标记包括:1、上壳,2、后盖,3、配重块,31、长形槽,32、容置孔,4、第一磁体部,41、第一永磁铁,411、斜面,412、斜面,42、第二永磁铁,421、斜面,422、斜面,43、第三永磁铁,431、斜面,432、斜面,5、第一电磁铁,51、线圈,52、导磁芯,6、长形永磁铁,7、副磁体,8、第二电磁铁,81、副线圈,82、副导磁芯,9、挡板,10、振动导向轴,11、限位弹簧,12、柔性线路板(FPCB),13、导磁轭。
具体实施方式
下面结合附图,详细说明本发明内容:
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。
本发明在对具体实施方式进行表述时所用到的“配重块”也可以称作“质量块”,均指与产生振动的永磁铁固定以加强振动平衡的高质量、高密度金属块。以下将结合附图对本发明的具体实施例进行详细描述:
针对现有的线性振动马达驱动力不足的问题,本发明的线性振动马达利用电磁铁与永磁铁的相互作用,驱动电机振动。参阅图1和图2所示,本发明的线性振动马达包括外部壳体,外部壳体具体包括结合在一起的上壳1和后盖2,上壳1和后盖2相互配合形成具有容纳空间的腔体,在该腔体内收容有振子和定子,实施时,定子平行于振子设置,并且定子与振子均在竖直方向进行排布。 其中,振子包括配重块3和嵌设固定在配重块3中的振动块,振动块包括至少两块永磁铁(本实施方式中示意为三块),该三块永磁铁共同形成第一磁体部4,实施时,配重块3的中部位置设置有凹孔结构,第一磁体部4便容纳于上述凹孔内,通过涂胶的方式与配重块3固定;相邻设置的永磁铁之间设置有导磁轭13,实施时,可先将导磁轭13与永磁铁粘结固定,然后将第一磁体部4与导磁轭13结合后的组件与配重块3一体固定。
本发明中,定子系统包括绕制而成的的线圈51,而配重块3则相应的设置有避让线圈51的避让结构;线圈51内容纳有导磁芯52,线圈51与FPCB(柔性线路板)12固定,而FPCB12又与外部电路连接,由此可实现外部电流信号导入线圈51,由于导磁芯52容置于线圈51内,当有电流信号通过时,导磁芯52被磁化,线圈51与导磁芯51作为电磁铁结构与上述第一磁体部4之间相互作用,进而推动马达振动。
参阅图2所示,本实施方式示出的第一磁体部4具体包括三块永磁铁,分别为第一永磁铁41、第二永磁铁42以及第三永磁铁43,为了增大相邻设置的永磁铁之间的狭缝与导磁芯52间的有效磁场强度,本发明中,相邻永磁铁的相邻端面形成相互平行的斜面,斜面与导磁芯的轴线(此处定义的导磁芯的轴线为穿过导磁芯的中心轴线,其垂直于导磁芯所在的安装平面)形成一个锐角;斜面向靠近相对应的导磁芯的方向倾斜延伸。具体到本实施方式而言,第一磁体部4中的三块永磁铁均为异形结构,其中,第一永磁铁41和第三永磁铁43均为平行四边形,分别包括斜面(411、412以及431、432),第二永磁铁42为梯形结构,包括斜面421和422,在上述斜面中,412与421为第一永磁铁41和第二永磁铁42的相邻端面,422与431为第二永磁铁42和第三永磁铁43的相邻端面,并且,斜面412和斜面421共同对应导磁芯52中的其中一个(图2中位于左侧),斜面422和斜面431共同对应导磁芯52中的另外一个(图2中 位于右侧)。优选的,上述三个永磁铁均采用斜向充磁的方式,具体充磁方向为垂直于所对应的斜面的方向,这样容易达到有效磁场强度最大化,同时,每个斜面均向与其相对应的导磁芯52的方向倾斜,在保证永磁铁体积最大化的同时保证磁场向导磁芯52的方向延伸。
参阅图3-1和图3-2共同所示,在本实施方式中,相邻的永磁铁(第一永磁铁41和第二永磁铁42、第二永磁铁42和第三永磁铁43)的相邻的端面的磁极相同(同为N极或者S极);并且,两个导磁轭13的倾斜角度与其分别对应的斜面的倾斜角度相同,也就是说,位于第一永磁铁41和第二永磁铁42之间的导磁轭,其倾斜角度与斜面412和斜面421的倾斜角度相同,而位于第二永磁铁42和第三永磁铁43之间的导磁轭的倾斜角度则与斜面422和斜面431的倾斜角度相同。很容易理解的是,导磁轭13与线圈51内的导磁芯52呈错位排布,而导磁轭13的倾斜方向应当指向与其相对应的导磁芯52。
需要说明的是,图2中示出的结构仅为本发明的一个实施例而已,事实上,本技术方案可以同时适用于只有两块永磁铁或者其他两块以上永磁铁的结构;另外,本实施方式示出的永磁铁的形状包括了平行四边形和梯形结构,具体实施时,永磁铁可以为其他异形结构,具体不受上述示意形状的限制。
本发明的线性振动马达,其具体的驱动原理如下:
参照图3-1所示,本发明的线性振动马达,其第一磁体部4中相邻的两块永磁铁的相邻端的极性相同(水平充磁的对磁体),即呈S-N、N-S、S-N顺序排列,当然,也可以是N-S、S-N、N-S顺序排列,导磁轭13设置在相邻接的永磁铁之间。如图所示,当线圈51未通电时,第一磁体部4产生静磁场,因两个相邻的永磁铁极性相同的两端之间会产生相斥的力量,因而产生非常集中的磁力线分布。参照图3-2所示,当线圈51通电后,线圈51与导磁芯52作为电磁铁产生变化的磁场,能够改变磁场中磁力线的走向,使磁力线更为集中的通 过导磁芯52向外发散,加之斜面朝向与其对应的导磁芯52的方向延伸,因而使得相邻永磁铁间的狭缝与导磁芯52之间的有效磁场强度增大,磁力线分布更为集中。导磁芯52与导磁轭13在水平方向上间隔一定的距离设置,这样当线圈51通电时电磁铁会对永磁铁产生吸引或者排斥的力,磁力线可更为集中的通过导磁芯52向外部传递。
根据判定通电导体在磁场中受力方向的左手定则(安培定则),伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。某一时刻,线圈51内的电流方向,假定
Figure PCTCN2015094520-appb-000001
表示为垂直图面向里,标示为
Figure PCTCN2015094520-appb-000002
电流方向为垂直图面向外,由于本实施方式示出的线圈包括有两个,假设第一个线圈是“
Figure PCTCN2015094520-appb-000003
Figure PCTCN2015094520-appb-000004
”,第二个线圈必须也是“
Figure PCTCN2015094520-appb-000005
Figure PCTCN2015094520-appb-000006
”,此时,根据安培定则,判定线圈51受到向右的作用力F,由于线圈51固定于FPCB上,基于作用力与反作用力的关系,则第一磁体部4受到反向的作用力F’(水平向左)。如此,受到向左推动力的第一磁体部4就带动配重块3一起做向左的运动。同理,当电流方向改变时,按照左手定则,线圈51受到的磁场力F的方向为向左,而第一磁体部4受到与F方向相反且大小相同的作用力F’,带动配重块一起做向右运动,上述运动交替进行,使第一磁体部4和导磁轭13组成的振动块与配重块3形成平行于定子的线性往复运动。
需要说明的是,由于本实施方式中设置有作用不同的两部分电磁铁结构,为了便于区分,将上述用于驱动的电磁铁(即定子中的线圈51及导磁芯52)命名为第一电磁铁,而位于电机两个端部区域的电磁铁命名为第二电磁铁。
本发明的振动电机还包括振动支撑结构,该振动支撑结构为振动导向轴10,配重块3的端部区域开设有容置振动导向轴的容置孔32,振动导向轴10的一端插入该容置孔32中;振动导向轴10上套设有限位弹簧11,如果振子向左运动,那么便挤压配重块3左侧的限位弹簧,而拉伸右侧的限位弹簧,若相反,则挤压右侧的限位弹簧,而拉伸左侧的限位弹簧,限位弹簧11则为振子的振动 提供弹性回复力。
另外,本发明的线性振动马达还设置有磁平衡结构,具体说明如下:
配重块3的四个角部区域分别设置有长形槽31,四个长形槽31内分别容置有长形永磁铁6,四个长形永磁铁6共同组成第二磁体部,将长形永磁铁6设置于角部,主要是为了尽量保持平衡,同时必须保证长形永磁铁6具有较大的磁能积,以保证平衡力的大小;而副磁体7则在振动块的两侧安装,其与长形永磁铁6之间的间距应尽量小,以保证足够的平衡力,但同时必须考虑到对振动空间作出避让。本发明的线性振动马达,其长轴的两端侧还分别设置有第二电磁铁8结构,包括副线圈81以及容置于副线圈81内的铁芯82,第二电磁铁8靠近振子的一端结合有挡板9,挡板9将振子的振动区域与副线圈81分隔开来,以免振子振幅过大碰撞到副线圈81,造成损伤。需要说明的是,此处所述的挡板9优选为可导磁的材质。
参照图4所示,利用长形永磁铁6与副磁体7之间的吸附力,对振动块产生一个水平的抓力,当振动块发生偏转时,该抓力会转变成与偏转方向相反的回复力,从而达到振动块的平衡,在这一过程中,必须满足副磁体7与相邻的长形永磁铁6的相邻端的极性相反,如图中所示,位于左侧的长形永磁铁6的极性呈N-S排列,那么,副磁体7的极性顺序只能为N-S,这样副磁体的S极与长形永磁铁6的N极之间相互吸引,产生向左的抓力,同样,对于右侧的磁平衡结构及原理以上述左侧的说明为参照,不再赘述。
优选的,导磁芯52以及副导磁芯82优选为铁芯。
优选的,副磁体7靠近振子的一侧设置有缓冲垫,该缓冲垫优选为弹性材料,可以避免振子振动时与副磁体7发生机械碰撞。
优选的,振动导向轴10的一端插入配重块3的容置孔32内,另一端穿过挡板9固定于上壳1上,也就是说,配重块3实际上是通过两端的振动导向轴10固定于外部壳体上。
优选的,FPCB12的边缘设置有若干凹槽,而后盖2上对应上述凹槽的位置设置有相匹配的卡扣结构,FPCB12通过凹槽与卡扣结构与后盖2牢固固定。
以上仅为本发明实施案例而已,并不用于限制本发明,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (10)

  1. 一种线性振动马达,包括振子和与所述振子平行设置的定子;所述振子包括配重块和嵌设固定在所述配重块中的振动块,其特征在于:所述振动块包括至少两块永磁铁;所述定子包括线圈;所述线圈内容置有导磁芯;至少所述相邻永磁铁的相邻端面形成相互平行的斜面,所述斜面与所述导磁芯的轴线形成一个锐角;所述斜面向靠近相对应的所述导磁芯的方向倾斜延伸。
  2. 根据权利要求1所述的线性振动马达,其特征在于:所述永磁铁沿垂直于所述斜面的方向充磁。
  3. 如权利要求2所述的线性振动马达,其特征在于:相邻的所述永磁铁的相邻端的磁极相同;相邻的所述永磁铁之间设置有导磁轭,并且,导磁轭的倾斜角度与对应的所述斜面的倾斜角度相同。
  4. 如权利要求1所述的线性振动马达,其特征在于:相邻所述永磁铁之间的导磁轭与所述线圈内的导磁芯错位排布;所述导磁轭的倾斜方向指向相对应的所述导磁芯。
  5. 根据权利要求1所述的线性振动马达,其特征在于:固定于所述配重块的所述永磁铁为三块,共同形成第一磁体部,分别为第一永磁铁、第二永磁铁和第三永磁铁;所述第一永磁铁和所述第三永磁铁为平行四边形结构,所述第二永磁铁为梯形结构。
  6. 根据权利要求5所述的线性振动马达,其特征在于:所述第一永磁铁、 所述第二永磁铁和所述第三永磁铁分别包括有斜面;相邻的所述斜面共同对应一个导磁芯,并且,每个所述斜面均向相对应的所述导磁芯的方向倾斜。
  7. 根据权利要求1所述的线性振动马达,其特征在于:所述线圈与容置于所述线圈内的导磁芯形成电磁铁;所述电磁铁通电后产生变化的磁场,通过改变磁场磁力线的走向来驱动所述振子沿与所述定子平行的方向做往复运动。
  8. 根据权利要求1所述的线性振动马达,其特征在于:所述配重块的端部区域结合有振动支撑结构;所述振动支撑结构为振动导向轴;所述振动导向轴的一端插入位于所述配重块端部的容置孔中,另一端固定于所述线性振动马达的外部壳体上;所述振动导向轴上套设有用以提供弹性回复力的限位弹簧。
  9. 根据权利要求1所述的线性振动马达,其特征在于:所述配重块的角部设置有第二磁体部,包括分别嵌入所述配重块的四个角部的四个长形永磁铁;在所述振子的振动方向上与所述振子间隔一定距离还设置有副磁体;所述副磁体与所述长形永磁铁相互靠近的端部的极性相反。
  10. 根据权利要求1所述的线性振动马达,其特征在于:所述配重块的中央位置设置有凹孔;所述永磁铁及位于所述永磁铁之间的导磁轭均容纳于所述凹孔中;所述永磁铁与所述导磁轭粘结为一体,与所述配重块涂胶固定;所述配重块对应所述定子的位置设置有避让所述定子的避让结构;所述线圈与柔性线路板连接固定;所述柔性线路板连通所述线性振动马达的外部电路。
PCT/CN2015/094520 2015-09-23 2015-11-13 线性振动马达 WO2017049747A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/749,834 US10574126B2 (en) 2015-09-23 2015-11-13 Linear vibration motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510613333.6A CN105703593B (zh) 2015-09-23 2015-09-23 线性振动马达
CN201510613333.6 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017049747A1 true WO2017049747A1 (zh) 2017-03-30

Family

ID=56228062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094520 WO2017049747A1 (zh) 2015-09-23 2015-11-13 线性振动马达

Country Status (3)

Country Link
US (1) US10574126B2 (zh)
CN (1) CN105703593B (zh)
WO (1) WO2017049747A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230221B (zh) * 2016-08-16 2018-11-30 歌尔股份有限公司 一种线性振动马达
TWI686048B (zh) * 2019-04-30 2020-02-21 台睿精工股份有限公司 線性振動致動馬達
CN112243188B (zh) * 2019-07-19 2023-04-14 歌尔股份有限公司 换能器磁路结构、换能器及其电子设备
CN110379583A (zh) * 2019-08-12 2019-10-25 江苏睿昕联合汽车科技集团有限公司 一种永磁铁和铜线圈配合增加磁性的结构及其方法
CN214626752U (zh) * 2021-03-01 2021-11-05 瑞声光电科技(常州)有限公司 一种多螺线管式新型线性振动马达
CN113556018A (zh) * 2021-08-27 2021-10-26 中国船舶重工集团公司第七一一研究所 电磁式执行机构及电磁式振动控制装置
CN117118183B (zh) * 2023-10-19 2024-03-15 瑞声光电科技(常州)有限公司 一种振动马达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100046600A (ko) * 2008-10-27 2010-05-07 이인호 선형 진동기
CN103683793A (zh) * 2012-09-06 2014-03-26 三星电机株式会社 振动产生装置
CN204205909U (zh) * 2014-09-28 2015-03-11 浙江理工大学 一种磁悬浮多自由度永磁同步平面电机
CN204334277U (zh) * 2014-12-23 2015-05-13 瑞声光电科技(常州)有限公司 振动电机

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434549A (en) * 1992-07-20 1995-07-18 Tdk Corporation Moving magnet-type actuator
CN100459378C (zh) * 2002-10-16 2009-02-04 松下冷机株式会社 线性电动机和采用它的线性压缩机
JP4155101B2 (ja) * 2003-05-16 2008-09-24 松下電工株式会社 振動型リニアアクチュエータ及びそれを用いた電動歯ブラシ
JP2007282475A (ja) * 2006-03-13 2007-10-25 Iai:Kk リニアモータとアクチュエータ
JP4803252B2 (ja) * 2006-07-26 2011-10-26 株式会社安川電機 円筒形リニアモータおよび搬送装置
KR101018214B1 (ko) * 2009-03-16 2011-02-28 삼성전기주식회사 리니어 진동 모터
GB2471913B (en) * 2009-07-17 2012-02-01 Samsung Electro Mech Horizontal linear vibrator
JP4875133B2 (ja) * 2009-10-29 2012-02-15 日本電産コパル株式会社 振動アクチュエータ
CN101795048B (zh) * 2010-03-04 2011-08-24 哈尔滨工业大学 高推力密度圆筒形永磁直线电机
JP5464115B2 (ja) * 2010-10-06 2014-04-09 住友電装株式会社 ハイブリッド自動車におけるワイヤハーネス・システム
US8878401B2 (en) * 2010-11-10 2014-11-04 Lg Innotek Co., Ltd. Linear vibrator having a trembler with a magnet and a weight
KR101210876B1 (ko) * 2010-11-25 2012-12-11 (주)디엠테크놀러지 영구자석형 선형 동기전동기 및 회전형 동기전동기
KR101255914B1 (ko) * 2010-12-31 2013-04-23 삼성전기주식회사 선형 진동모터
CN102684445B (zh) * 2011-03-07 2016-08-10 德昌电机(深圳)有限公司 电动剪切工具及其驱动器
KR20140112648A (ko) * 2013-03-13 2014-09-24 삼성전기주식회사 수평 진동 발생 장치
DE102015209639A1 (de) * 2014-06-03 2015-12-03 Apple Inc. Linearer Aktuator
CN205356110U (zh) * 2015-09-23 2016-06-29 歌尔声学股份有限公司 线性振动马达

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100046600A (ko) * 2008-10-27 2010-05-07 이인호 선형 진동기
CN103683793A (zh) * 2012-09-06 2014-03-26 三星电机株式会社 振动产生装置
CN204205909U (zh) * 2014-09-28 2015-03-11 浙江理工大学 一种磁悬浮多自由度永磁同步平面电机
CN204334277U (zh) * 2014-12-23 2015-05-13 瑞声光电科技(常州)有限公司 振动电机

Also Published As

Publication number Publication date
US20180226869A1 (en) 2018-08-09
CN105703593A (zh) 2016-06-22
US10574126B2 (en) 2020-02-25
CN105703593B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2017049747A1 (zh) 线性振动马达
US10079531B2 (en) Linear vibration motor
US10097073B2 (en) Linear vibration motor
KR101259683B1 (ko) 수평 진동 모터
WO2017049779A1 (zh) 磁平衡导向线性振动马达
WO2017088359A1 (zh) 线性振动马达
WO2017088366A1 (zh) 线性振动马达
US10110106B2 (en) Vibration motor with coil and two sets of magnets for improving vibration intensity
WO2017088367A1 (zh) 线性振动马达
US11515773B2 (en) Linear vibration motor and electronic device
US20230015265A1 (en) Vibration apparatus
JP2016073941A (ja) リニア振動モータ
US10931185B2 (en) Linear vibration motor
CN106655695B (zh) 一种线性振动马达
US10384232B2 (en) Linear vibration motor
US11133735B2 (en) Linear vibration motor
WO2017049777A1 (zh) 线性振动马达
US20200044533A1 (en) Vibration motor
CN204967588U (zh) 线性振动马达
WO2018171060A1 (zh) 线性振动马达
CN111313647B (zh) 线性马达
WO2017049778A1 (zh) 线性振动马达
US20160211735A1 (en) Vibration motor
CN114421730B (zh) 一种线性振动马达
CN205356110U (zh) 线性振动马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15749834

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904622

Country of ref document: EP

Kind code of ref document: A1