WO2017047762A1 - 低分子化合物による癌と線維化の抑制と再生促進の効果 - Google Patents

低分子化合物による癌と線維化の抑制と再生促進の効果 Download PDF

Info

Publication number
WO2017047762A1
WO2017047762A1 PCT/JP2016/077475 JP2016077475W WO2017047762A1 WO 2017047762 A1 WO2017047762 A1 WO 2017047762A1 JP 2016077475 W JP2016077475 W JP 2016077475W WO 2017047762 A1 WO2017047762 A1 WO 2017047762A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
cells
salt
solvate
Prior art date
Application number
PCT/JP2016/077475
Other languages
English (en)
French (fr)
Inventor
汐田 剛史
則子 板場
稔 森本
岡 博之
健一郎 阿部
寛基 清水
洋平 河野
智 横木
Original Assignee
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人鳥取大学 filed Critical 国立大学法人鳥取大学
Priority to CN201680054131.5A priority Critical patent/CN108026104B/zh
Priority to US15/760,374 priority patent/US10597398B2/en
Priority to EP16846633.2A priority patent/EP3366687B1/en
Priority to JP2017540011A priority patent/JP6785487B2/ja
Publication of WO2017047762A1 publication Critical patent/WO2017047762A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/695Silicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Definitions

  • the present invention relates to a therapeutic agent for malignant tumor or fibrosis.
  • malignant tumors The most common causes of human death are malignant tumors, heart diseases, and cerebrovascular diseases. Among these, malignant tumors are particularly difficult to prevent and treat because of their complicated mechanisms of development.
  • Non-Patent Document 1 describes the results of a clinical trial of pirfenidone as related to fibrosis treatment.
  • Non-patent Documents 2 and 3 describe low molecular weight compounds exhibiting a hepatoma cell growth inhibitory effect and a Wnt / ⁇ -catenin signal inhibitory effect. Documents 2 and 3 do not describe what kind of structure and function the compound exhibits a growth inhibitory effect on hepatoma cells.
  • PN-1-2, PN-3-4, PN-3-13, HC-1, and IC-2 suppress the Wnt / ⁇ -catenin signal of mesenchymal stem cells. It is described that leaf stem cells are induced to differentiate into hepatocytes. This document does not describe cancer cell growth suppression.
  • Malignant tumors are positioned above human causes of death, and conventional treatment strategies alone have not been sufficient.
  • the pharmacological action of low-molecular compounds to be administered varies greatly depending on the characteristics of individual skeletons.
  • this field is a field with high uncertainty, and it can be said that it is difficult to predict whether a desired pharmacological action can be obtained when developing a new treatment method. Therefore, it was not easy to newly identify a low molecular weight compound having a therapeutic effect on malignant tumors.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel therapeutic agent for malignant tumors or fibrosis.
  • a low molecular compound represented by the following formula (1) has an anti-malignant tumor effect. Moreover, it discovered that the low molecular compound shown to following formula (1) also has the suppression effect of fibrosis. And based on these knowledge, it came to complete this invention.
  • substituents R1 and R2 mean the following (a) or (b).
  • R1 is an optionally substituted phenyl;
  • R2 is H, -C (O) NHR3, optionally substituted phenyl; and
  • R3 is H, C1-C6 alkyl, optionally substituted benzyl; or
  • R1 is substituted Optionally naphthyl, or optionally substituted phenyl;
  • R2 is —C (O) NHR4, optionally substituted phenyl; and
  • R4 is H, C1-C6 alkyl, optionally substituted siloxybenzyl.
  • This compound, salt thereof, or solvate thereof can treat malignant tumors or fibrosis.
  • a therapeutic agent for malignant tumor or fibrosis comprising a compound represented by the formula (1), a salt thereof, or a solvate thereof.
  • a compound represented by the following formula (2), a salt thereof, or a solvate thereof including a compound represented by the following formula (2), a salt thereof, or a solvate thereof:
  • Malignant tumor treatments used in combination therapy with 5-FU are provided: (Where R7 and R8 are the same or different and are optionally substituted C1-C6 alkyl or optionally substituted C2-C6 alkenyl. )
  • a therapeutic agent for malignant tumor used in combination therapy with 5-FU and a compound represented by formula (2), a salt thereof, or a solvate thereof, including 5-FU.
  • a compound represented by formula (2), a salt thereof, or a solvate thereof, including 5-FU provided.
  • malignant tumors or fibrosis can be treated.
  • FIGS. 1 to 9 are diagrams showing a synthesis scheme of the low molecular compound of Example 1.
  • FIG. 10 to 14 show the structural formula and spectrum data of the low molecular weight compound of Example 1.
  • FIG. FIGS. 15 to 31 are diagrams showing the results of examining the antitumor effect of low molecular weight compounds.
  • FIG. 32 is a diagram showing the results of examining the cancer stem cell inhibitory effect of low molecular weight compounds.
  • FIGS. 33 to 34 are diagrams showing the results of examining the anti-fibrotic effect of low molecular weight compounds.
  • FIGS. 35 to 39 are graphs showing the results of examining the effect of low molecular weight compounds on inducing hepatocyte differentiation.
  • FIG. 40 to 42 are graphs showing the results of examining the Wnt / ⁇ -catenin signal inhibitory effect of low molecular weight compounds.
  • FIG. 43 is a diagram showing the results of examining the antitumor effect of low molecular weight compounds.
  • FIG. 44 is a diagram showing the results of examining cancer stem cell inhibitory effects of low molecular weight compounds.
  • FIG. 45 is a diagram showing the results of examining changes in body weight of liver cancer model mice after administration of a low molecular weight compound.
  • 46 to 48 are diagrams showing the results of examining the antitumor effect of low molecular weight compounds.
  • FIG. 49 shows the results of examining the cancer stem cell inhibitory effect of low molecular weight compounds.
  • FIG. 50 to 51 are diagrams showing the results of examining the anti-fibrotic effect of low molecular weight compounds.
  • FIG. 52 is a diagram showing the results of examining the antitumor effect of low molecular weight compounds.
  • 53 to 55 are diagrams showing the results of examining the antitumor effect when HC-1 and 5-FU are used in combination.
  • One embodiment of the present invention is a compound represented by the formula (1), a salt thereof, or a solvate thereof.
  • a malignant tumor or fibrosis can be treated.
  • a salt thereof, or a solvate thereof differentiation of mesenchymal stem cells into hepatocytes can be induced.
  • One embodiment of the present invention is a therapeutic agent for malignant tumors comprising a compound represented by formula (1), a salt thereof, or a solvate thereof. With this therapeutic agent, malignant tumors can be treated.
  • One embodiment of the present invention is a therapeutic agent for cancer stem cells, comprising a compound represented by formula (1), a salt thereof, or a solvate thereof. If this therapeutic agent is used, cancer stem cells can be treated.
  • One embodiment of the present invention is a growth inhibitor of malignant tumor cells or cancer stem cells, comprising a compound represented by formula (1), a salt thereof, or a solvate thereof. If this therapeutic agent is used, the proliferation of malignant tumor cells or cancer stem cells can be suppressed.
  • One embodiment of the present invention is a malignant tumor recurrence inhibitor comprising a compound represented by the formula (1), a salt thereof, or a solvate thereof. If this inhibitor is used, recurrence of the malignant tumor can be suppressed.
  • One embodiment of the present invention is a therapeutic agent for fibrosis comprising a compound represented by the formula (1), a salt thereof, or a solvate thereof. With this therapeutic agent, fibrosis can be treated.
  • One embodiment of the present invention is a therapeutic agent for diseases associated with fibrosis, comprising a compound represented by the formula (1), a salt thereof, or a solvate thereof. If this therapeutic agent is used, a disease associated with fibrosis can be treated.
  • One embodiment of the present invention is an agent for inducing differentiation of mesenchymal stem cells into hepatocytes, comprising a compound represented by the formula (1), a salt thereof, or a solvate thereof.
  • a compound represented by the formula (1) By using this inducer, it is possible to efficiently induce differentiation of mesenchymal stem cells into hepatocytes.
  • One embodiment of the present invention is a method for producing hepatocytes, which comprises a step of bringing a compound represented by formula (1), a salt thereof, or a solvate thereof into contact with a cell. If this method is used, hepatocytes can be produced efficiently. This method may further include a step of collecting hepatocytes or a step of detecting a hepatocyte marker.
  • the substituents R1 and R2 in the formula (1) mean the following (a) or (b).
  • R1 is an optionally substituted phenyl
  • R2 is H, —C (O) NHR3, optionally substituted phenyl
  • R3 is H, C1-C6 alkyl, optionally substituted benzyl
  • R1 is substituted Optionally naphthyl, or optionally substituted phenyl
  • R2 is —C (O) NHR4, optionally substituted phenyl
  • R4 is H, C1-C6 alkyl, optionally substituted siloxybenzyl.
  • R1 in the above (a) is phenyl having a substituent R5, R5 is H, halogen, nitro, amino, cyano, OH, C1-C6 alkyl, halogeno C1-C6 alkyl, hydroxy C1-C6 alkyl, C1-C6 alkylamino, C1-C6 alkoxy, halogeno C1-C6 alkoxy,
  • R2 in the above (a) is H, -C (O) NHR3, or phenyl having a substituent R5, R3 is benzyl having a substituent R6, R6 is H, halogen, nitro,
  • R1 and R2 are preferably as follows.
  • R1 in the above (a) is phenyl having a substituent R5, R5 is H, halogen, nitro, amino, cyano, OH, C1-C6 alkyl, halogeno C1-C6 alkyl, hydroxy C1-C6 alkyl, C1-C6 alkylamino, C1-C6 alkoxy, halogeno C1-C6 alkoxy,
  • R2 in (a) above is -C (O) NH (CH2C6H5)
  • R1 in the above (b) is naphthyl
  • R2 in the above (b) is —C (O) NHR4 or
  • the substituents R1 and R2 are preferably as follows.
  • R1 in the above (a) is phenyl having one or more substituents selected from the group consisting of F, Cl, nitro, OH, and methoxy
  • R2 in (a) above is -C (O) NH (CH2C6H5)
  • R1 in (b) is naphthyl
  • R2 in (b) is —C (O) NH2, nitrophenyl, or tert-butyldimethylsiloxybenzyl.
  • R1 is phenyl having Cl at the 2,3 position
  • the R2 is -C (O) NH (CH2C6H5), or
  • the R1 is naphthyl, and the R2 is -C (O) NHR4, and the R4 is in the 4-position.
  • IC-2-506-1, IC-2-OTBS, and IC-2-Cl exhibit a stronger antitumor effect at a lower concentration than IC-2.
  • R1 is phenyl having Cl at the 2,3 position, phenyl having Cl at the 2,4 position, or 3,4 Or phenyl having Cl at the position and R2 is -C (O) NH (CH2C6H5) or (ii) R1 is naphthyl and R2 is -C (O) NHR4.
  • R4 is preferably benzyl having tert-butyldimethylsiloxy at the 4-position, benzyl having F at the 4-position, benzyl having Cl at the 4-position, or benzyl having methoxymethoxy at the 4-position.
  • IC-2-506-1, IC-2-506-2, IC-2-506-3, IC-2-OTBS, IC-2-F, IC-2-Cl, and IC -2-OMOM IC50 is lower than IC-2 IC50.
  • the R1 is naphthyl
  • the R2 is benzyl having NO 2 at the 4-position
  • the 4-position Preferred is benzyl having (4-methoxyphenyl) methoxy or benzyl having F at the 4-position.
  • IC-2-NO2, IC-2-OPMB, and IC-2-F exert stronger cancer stem cell inhibitory effects than IC-2.
  • the R1 is naphthyl and the R2 is -C (O) NHR4
  • R4 is preferably benzyl having tert-butyldimethylsiloxy at the 4-position.
  • R1 is phenyl having Cl at positions 3 and 4
  • R2 is -C (O) NH (CH2C6H5), or
  • R1 is naphthyl, and R2 is -C (O) NHR4, and
  • R4 is 4
  • IC-2-506-3, IC-2-OTBS, and IC-2-F in Examples described later have a stronger antifibrotic effect at a lower concentration than IC-2. It is confirmed that it has been demonstrated.
  • the R1 is naphthyl
  • the R2 is -C (O) NHR4
  • R4 is preferably benzyl having Cl at the 4-position.
  • R1 is phenyl having Cl at the 4-position, Phenyl having Cl at the 2,3 position, or phenyl having Cl at the 3,4 position, and R2 is --C (O) NH (CH2C6H5), or (ii) R1 is It is preferably naphthyl, the R2 is —C (O) NHR4, and the R4 is benzyl having OH at the 4-position.
  • IC-2-Ar-Cl, IC-2-506-1, IC-2-506-2, and IC-2-OH in Examples described later are the same as those in IC-2. It has been confirmed that a stronger antifibrotic effect was exerted at a concentration or at a high concentration.
  • the R1 is naphthyl
  • the R2 is -C (O) NHR4
  • the R4 is 4 Preferred is benzyl having tert-butyldimethylsiloxy at the position, benzyl having Cl at the 4 position, benzyl having F at the 4 position, or benzyl having (4-methoxyphenyl) methoxy at the 4 position.
  • the inventors of the present application confirmed that IC-2-OTBS, IC-2-Cl, IC-2-F, and IC-2-OPMB in Examples described later exhibited a hepatocyte-inducing effect at a low concentration. is doing.
  • R1 is phenyl having Cl at positions 2, 4 and R2 Is preferably —C (O) NH (CH 2 C 6 H 5).
  • the inventors of the present application have confirmed that IC-2-506-2 in Examples described later exerted a stronger hepatocyte induction effect at a higher concentration than IC-2.
  • R1 is Cl at the 4-position.
  • R2 is -C (O) NH (CH2C6H5), or (ii) R1 is naphthyl and R2 Is -C (O) NHR4, and the above R4 is benzyl having Cl at position 4, benzyl having OMe at position 4, benzyl having F at position 4, benzyl having OH at position 4,
  • R4 is benzyl having Cl at position 4, benzyl having OMe at position 4, benzyl having F at position 4, benzyl having OH at position 4,
  • benzyl having NO 2 benzyl having (4-methoxyphenyl) methoxy at the 4-position, or benzyl having methoxymethoxy at the 4-position.
  • IC-2-Ar-Cl IC-2-506-1, IC-2-Cl, IC-2-OMe, IC-2-F, and IC-2-OH in Examples described later.
  • IC-2-NO2, IC-2-OPMB, and IC-2-OMOM exerted a stronger Wnt / ⁇ -catenin signaling pathway inhibitory effect at lower or the same concentration as IC-2 in hepatoma cells I have confirmed that.
  • R1 is 2, 3 Phenyl having Cl at the position, phenyl having Cl at the 2,4 position, or phenyl having Cl at the 3,4 position, and the R2 is --C (O) NH (CH2C6H5), or (ii) ) R1 is naphthyl and R2 is -C (O) NHR4 and R4 is benzyl having Cl at the 4-position; or (iii) R1 is naphthyl.
  • R2 is preferably phenyl having NO 2 at the 2-position.
  • the inventors of the present application have described that IC-2-506-1, IC-2-506-2, IC-2-506-3, IC-2-Cl, and 7c-NT in Examples described later are hepatic stellate cells. It was confirmed that the Wnt / ⁇ -catenin signal pathway inhibitory effect was exhibited at a lower concentration or at the same concentration as in IC-2.
  • the R1 is in position 4. the phenyl, with NO 2 phenyl, or 4-position with Cl, and the R2 is either a -C (O) NH (CH2C6H5) , or (ii) above R1 is a naphthyl, and
  • the R2 is preferably —C (O) NHR4, and the R4 is preferably benzyl having NO 2 at the 4-position or benzyl having (4-methoxyphenyl) methoxy at the 4-position.
  • the inventors of the present invention have identified IC-2-Ar-Cl, IC-2-Ar-NO2, IC-2-NO2, and IC-2-OPMB in Examples described later as IC-2 in mesenchymal stem cells. It has been confirmed that a stronger Wnt / ⁇ -catenin signal pathway inhibitory effect was exhibited at a low concentration or the same concentration.
  • R1 in formula (1) is naphthyl
  • R2 is -C (O) NHR4
  • R4 is benzyl with substituent R6, and R6 is H, halogen, nitro, amino, cyano, OH, C1-C6 alkyl, halogeno C1-C6 alkyl, hydroxy C1-C6 alkyl, C1-C6 alkylamino, C1-C6 alkoxy, halogeno C1-C6 alkoxy, hydroxy C1-C6 alkoxy, C1-C6 alkoxyamino, C1-C6 alkoxy C1-C6 alkoxy substituted with C1-C6 alkoxy substituted with C1-C6 alkoxyphenyl, tri-C1-C6 alkylsiloxy C1-C6 alkyl, C1-C6 alkyldiphenylsiloxy C1-C6 alkyl, triphenylsiloxy It may be one or more
  • halogen includes F, Cl, Br, or I.
  • alkyl and alkenyl mean straight or branched hydrocarbon chains unless otherwise specified.
  • C1 to C6 are hydrocarbons having 1, 2, 3, 4, 5, or 6 carbon atoms. That is, “C1-C6 alkyl” is an alkyl having 1, 2, 3, 4, 5, or 6 carbon atoms. C1-C6 alkyl includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl group and the like.
  • tri C1 to C6 includes, for example, mono C1 to C6 di C1 to C6, di C1 to C6 mono C1 to C6, or mono C1 to C6 mono C1 to C6 mono C1 to C6 .
  • alkenyl means, for example, ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 3-methyl-2- Including butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 3-hexenyl, 5-hexenyl and the like.
  • alkoxy includes, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, isopentoxy, hexoxy and the like.
  • “may be substituted” means having 1, 2, 3, 4, or 5 substituents at an unsubstituted or substitutable position.
  • “having a substituent” means that a substituent (including R1 to R6, for example) is substituted at a substitutable position, for example, 1, 2, 3, 4, 5, 6, 7 Or 13 of them, or any of those two values.
  • those substituents may be the same and may mutually differ.
  • the substitution position of the substituent is not specified, or when “having a substituent” is specified, the substitution position is, for example, 1, 2, 3, It may be in the 4, 5, 6, 7, 8, or 9 position.
  • examples of the substituent include H, halogen, nitro, amino, cyano, OH, C1-C6 alkyl, halogeno C1-C6 alkyl, hydroxy C1-C6 alkyl, C1-C6 alkylamino, C3-C6 cycloalkyl, C2-C6 alkenyl, halogeno C2-C6 alkenyl, hydroxy C2-C6 alkenyl, C2-C6 alkenylamino, C3-C6 cycloalkenyl, C2-C6 alkynyl, halogeno C2-C6 alkynyl, hydroxy C2-C6 alkynyl, C2-C6 alkynyl Amino, C1-C6 alkoxy, halogeno C1-C6 alkoxy, hydroxy C1-C6 alkoxy, C1-C6 alkoxyamino, C1-C6 alkoxyphenyl, trialkylsiloxy, alkyl
  • halogeno C1-C6 alkyl is C1-C6 alkyl substituted with one or more halogens.
  • the number of halogens may be, for example, 1, 2, 3, 4, 5, 6 or 13, and may be within the range of any two values exemplified here.
  • the types of halogens when there are two or more rogens may be the same or different.
  • Halogeno C1-C6 alkyl is, for example, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, dibromomethyl, tribromomethyl, chloroethyl, dichloroethyl, trichloroethyl, fluoroethyl, difluoroethyl , Trifluoroethyl and the like.
  • hydroxy C1-C6 alkyl is C1-C6 alkyl substituted with one or more hydroxy.
  • the number of hydroxyls may be, for example, 1, 2, 3, 4, 5, 6 or 13, and may be within the range of any two values exemplified here.
  • Hydroxy C1-C6 alkyl includes, for example, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2-hydroxy-n-propyl, 2,3-dihydroxy-n-propyl, and the like.
  • C1-C6 alkylamino is C1-C6 alkyl substituted with one or more amino.
  • the number of amino may be, for example, 1, 2, 3, 4, 5, 6, or 13, and may be within the range of any two values exemplified here.
  • C1-C6 alkylamino includes, for example, methylamino or ethylamino.
  • halogeno C1-C6 alkoxy is equivalent to the alkyl in the halogeno C1-C6 alkyl substituted with alkoxy.
  • Halogeno C1-C6 alkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, (1,1-difluoro) ethoxy, (1 , 2-difluoro) ethoxy, (2,2,2-trifluoro) ethoxy, (1,1,2,2-tetrafluoro) ethoxy, (1,1,2,2,2-pentafluoro) ethoxy, 1 -Fluoro-n-propoxy, 1,1-difluoro-n-propoxy, 2,2-difluoro-n-propoxy, 3-fluoro-n-propoxy, (3,3,3-trifluor
  • hydroxy C1-C6 alkoxy is equivalent to the hydroxy of C1-C6 alkyl substituted with alkoxy.
  • Hydroxy C1-C6 alkoxy includes, for example, 2-hydroxyethoxy, 2-hydroxy-n-propoxy, 3-hydroxy-n-propoxy, 2,3-dihydroxy-n-propoxy, 2-hydroxycyclopropyl, and the like.
  • C1-C6 alkoxyamino is equivalent to the alkyl in C1-C6 alkylamino replaced with alkoxy.
  • C1-C6 alkoxyamino includes, for example, methoxyamino, ethoxyamino.
  • aryl is a C6-14 monocyclic, bicyclic, or tricyclic aromatic hydrocarbon ring group.
  • aryl include phenyl, naphthyl (1-naphthyl, 2-naphthyl), benzyl, tetrahydronaphthalenyl, indenyl, and fluorenyl.
  • naphthyl, phenyl, or benzyl is preferable from the viewpoint of realizing an excellent antitumor effect, antifibrosis, and hepatocyte differentiation inducing effect.
  • Aryl includes, for example, a cyclic group condensed with C5-8 cycloalkene and its double bond site.
  • heteroaryl refers to a heteroatom selected from the group consisting of N, S, and O having 5 to 14 ring atoms in the ring and a shared ⁇ -electron system. Mention may be made of groups containing from 1 to 4. Heteroaryl includes, for example, thienyl, benzothienyl, furyl, benzofuryl, dibenzofuryl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, tetrazolyl, oxazolyl, thiazolyl, or isoxazolyl.
  • the “salt” is not particularly limited.
  • Including. Salts include inorganic and organic salts, including those described in [Berge, Bighley and Monkhouse, J. Pharm. Sci., 1977, 66, 1-19]. Examples thereof include metal salts, ammonium salts, salts with organic bases, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, and the like.
  • Examples of the metal salt include alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, magnesium salt, barium salt, etc.), aluminum salts and the like.
  • Examples of salts with organic bases include salts with trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N, N'-dibenzylethylenediamine, and the like. Is mentioned.
  • Examples of the salt with an inorganic acid include salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like.
  • salts with organic acids include formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, p- Examples thereof include salts with toluenesulfonic acid and the like.
  • salts with basic amino acids include salts with arginine, lysine, ornithine, and examples of salts with acidic amino acids include salts with aspartic acid, glutamic acid, and the like.
  • a “solvate” is a compound formed by a solute and a solvent.
  • the solvent is water
  • the solvate formed is a hydrate.
  • This solvent is preferably one that does not interfere with the biological activity of the solute. Examples of such preferred solvents include, without limitation, water, ethanol, and acetic acid.
  • the most preferred solvent is water.
  • the compound according to the present invention or a salt thereof absorbs moisture when exposed to air or recrystallizes, and in some cases has moisture absorption water or may be a hydrate.
  • “isomers” include molecules that have the same molecular formula but different structure. Includes enantiomers (enantiomers), geometric (cis / trans) isomers, or isomers having one or more asymmetric centers that are not mirror images of one another (diastereomers).
  • a “prodrug” is a compound that is a precursor, and when the compound is administered to a subject, it undergoes a chemical change by a metabolic process or various chemical reactions. Including a compound or a salt thereof or a solvate thereof.
  • prodrugs for example, [T. Higuchi and V. Stella, "Pro-Drugs as Novel Delivery Systems", A.C.S. Symposium Series, Volume 14] can be referred.
  • the “malignant tumor” includes, for example, a tumor generated by mutating a normal cell.
  • Malignant tumors can arise from any organ or tissue throughout the body.
  • This malignant tumor is, for example, lung cancer, esophageal cancer, stomach cancer, liver cancer, pancreatic cancer, kidney cancer, adrenal cancer, biliary tract cancer, breast cancer, colon cancer, small intestine cancer, ovarian cancer, uterine cancer, bladder cancer, prostate cancer, urine Duct cancer, renal pelvis cancer, ureteral cancer, penile cancer, testicular cancer, brain tumor, cancer of central nervous system, cancer of peripheral nervous system, head and neck cancer, glioma, glioblastoma multiforme, skin cancer, melanoma, thyroid cancer Including one or more selected from the group consisting of salivary gland cancer, malignant lymphoma, carcinoma, sarcoma, and hematological malignancy.
  • the liver cancer may be, for example, an epithelial tumor or a non-epithelial tumor, and may be a hepatocellular carcinoma or a cholangiocellular carcinoma.
  • the skin cancer includes, for example, basal cell carcinoma, squamous cell carcinoma, or malignant melanoma.
  • cancer stem cells have been found in the field of malignant tumor research. Cancer stem cells are thought to differentiate and become cancer cells. In cancer patients, recurrence may occur after a certain period of time after removal of cancer cells, which is also said to be caused by cancer stem cells that survived a very small number. A characteristic feature of this cancer stem cell is that many conventional anticancer agents are hardly effective.
  • Prof. Nakayama and colleagues in Kyushu University have reported the results of research that kills Fbxw7 in model mice and kills cancer stem cells with imatinib (anticancer drug) (Takeishi et al., Cancer Cell. 2013 Mar 18; 23 (3): 347-61.). However, no compound that directly suppresses the growth of cancer stem cells has been obtained.
  • cancer stem cells include cells that are the origin of cancer cells.
  • the cancer stem cell includes a cell expressing a cancer stem cell marker.
  • Cancer stem cell markers include, for example, CD44, CD90, CD133, or EpCAM.
  • Fibrosis is known as a symptom that typically occurs when a connective tissue containing collagen or the like grows and is replaced with a normal tissue, thereby hardening the tissue and losing its normal function. For example, it occurs in each tissue such as liver, lung, kidney, heart, and skin. For example, when a large amount of fibrosis occurs in the liver tissue, cirrhosis may occur, and further, liver cancer may occur. In addition to liver tissue, malignant tumors may develop in each tissue as fibrosis progresses. Fibrosis includes diseases associated with fibrosis. Diseases associated with fibrosis include, for example, fibrosis, cirrhosis, and malignant tumors of the above tissues associated with fibrosis.
  • “treatment” includes being able to exert a symptom-improving effect, an inhibitory effect, or a preventive effect of a patient's disease or one or more symptoms associated with the disease.
  • the “therapeutic agent” may be a pharmaceutical composition comprising an active ingredient and one or more pharmacologically acceptable carriers.
  • the pharmaceutical composition can be produced by any method known in the technical field of pharmaceutics, for example, by mixing the active ingredient and the carrier.
  • the form of use of the therapeutic agent is not limited as long as it is a substance used for treatment, and it may be an active ingredient alone or a mixture of an active ingredient and an arbitrary ingredient.
  • the shape of the carrier is not particularly limited, and may be, for example, a solid or a liquid (for example, a buffer solution).
  • the therapeutic agent for malignant tumor includes, for example, a drug (prophylactic agent) used for the prevention of malignant tumor, a malignant tumor recurrence inhibitor, or a malignant tumor cell growth inhibitor.
  • the therapeutic agent for cancer stem cells includes, for example, a therapeutic agent targeting cancer stem cells, a therapeutic agent for malignant tumor caused by cancer stem cells, or an inhibitor of cancer stem cells.
  • the administration route of the therapeutic agent is preferably one that is effective in the treatment, and may be, for example, intravenous, subcutaneous, intramuscular, intraperitoneal, or oral administration.
  • the administration form may be, for example, an injection, capsule, tablet, granule or the like.
  • the aqueous solution for injection may contain, for example, physiological saline, sugar (for example, trehalose), NaCl, or NaOH.
  • the therapeutic agent may contain, for example, a buffer (for example, phosphate buffer), a stabilizer and the like.
  • the dose is not particularly limited, and may be, for example, 0.001, 0.01, 0.1, 1, 4, 5, 10, 15, 20, 50, 100, or 1000 mg / kg body weight per time, either 2 It may be within a range of two values.
  • the dosing interval is not particularly limited, but for example, it may be administered once or twice per 1, 7, 14, 21, or 28 days, or once or twice per any two of these ranges of values. Also good.
  • the dose, administration interval, and administration method may be appropriately selected depending on the age, weight, symptoms, target organ, etc. of the patient.
  • the therapeutic agent preferably contains a therapeutically effective amount or an effective amount of an active ingredient that exhibits a desired action.
  • the therapeutic effect of a malignant tumor may be evaluated by image inspection, endoscopy, Seiken, or detection of a malignant tumor marker.
  • the therapeutic effect of cancer stem cells may be evaluated by image inspection, endoscopy, Seiken, or detection of cancer stem cell markers.
  • the therapeutic effect of fibrosis may be evaluated by image inspection, endoscopy, Seiken, or detection of fibrosis markers.
  • Each therapeutic effect may be judged to have a therapeutic effect when the amount of marker in the patient or patient-derived sample (eg, tissue, cell, cell population, or blood) is significantly reduced after administration of the therapeutic agent. .
  • the marker amount after administration of the therapeutic agent may be reduced to 0.7, 0.5, 0.3, or 0.1 times or less compared to before administration (or control).
  • the number of marker positive cells in the patient-derived sample is significantly decreased after administration of the therapeutic agent, it may be determined that there is a therapeutic effect.
  • the number of marker positive cells after administration of the therapeutic agent may be reduced to 0.7, 0.5, 0.3, or 0.1 times or less compared to before administration (or control).
  • Example 6 which will be described later, the therapeutic effect was evaluated using mice transplanted subcutaneously with CD44-positive HuH-7 cells.
  • the inventors of the present application instead of the CD44-positive HuH-7 cells, Experiments have confirmed that IC-2 showed therapeutic effects on malignant tumors when using HuH-7 cells.
  • the therapeutic effect of a malignant tumor may be judged as having a therapeutic effect when the growth rate of the test cell derived from the patient is significantly reduced after administration of the therapeutic agent.
  • the growth rate of the test cell after administration of the therapeutic agent may be reduced to 0.7, 0.5, 0.3, or 0.1 times or less as compared to before administration (or control).
  • “significantly” means, for example, that a statistically significant difference is evaluated using Student's t test (one-sided or two-sided), and p ⁇ 0.05 or p ⁇ 0.01. There may be. Or the state in which the difference has arisen substantially may be sufficient.
  • a “patient” is a human or non-human mammal (eg, mouse, guinea pig, hamster, rat, mouse, rabbit, pig, sheep, goat, cow, horse, cat, dog, marmoset. , Monkey or chimpanzee).
  • the patient may be a patient who is judged or diagnosed as having developed a malignant tumor or fibrosis.
  • the patient may be a patient in need of treatment for malignancy or fibrosis.
  • the patient may be a patient who has been judged or diagnosed as having a significantly larger number of cancer stem cells in the tissue than a healthy person.
  • the determination or diagnosis may be performed by detecting image inspection, endoscopy, Seiken, or various markers.
  • a state in which cell growth is suppressed includes a state in which the growth rate of the test cell is significantly reduced as compared to that before the drug treatment.
  • the proliferation rate can be evaluated by measuring the amount of cell proliferation over a certain period. For example, the amount of proliferation may be measured using absorbance as an indicator, or may be performed visually. Alternatively, the amount of proliferation may be measured using the amount of the malignant tumor marker in the patient or patient-derived sample as an index.
  • “suppression of cancer stem cells” includes, for example, suppression of cancer stem cell growth and function (eg, suppression of sphere formation, suppression of marker expression).
  • One embodiment of the present invention is a marker inhibitor of malignant tumor, cancer stem cell, or fibrosis, comprising a compound represented by the formula (1), a salt thereof, or a solvate thereof.
  • One embodiment of the present invention is a malignant tumor or cancer stem cell sphere formation inhibitor comprising a compound represented by formula (1), a salt thereof, or a solvate thereof. This sphere formation inhibitor can be used for the treatment of malignant tumors or cancer stem cells.
  • One embodiment of the present invention is a therapeutic method including a step of administering a compound represented by the formula (1), a salt thereof, or a solvate thereof to a patient.
  • One embodiment of the present invention is the use of a compound of formula (1), a salt thereof, or a solvate thereof for the manufacture of a therapeutic agent.
  • One embodiment of the present invention is a method for inhibiting the growth of malignant tumor cells or cancer stem cells, comprising the step of administering a compound represented by formula (1), a salt thereof, or a solvate thereof to a patient.
  • One embodiment of the present invention is the use of a compound represented by formula (1), a salt thereof, or a solvate thereof for the production of a growth inhibitor of malignant tumor cells or cancer stem cells.
  • One embodiment of the present invention is a method for inhibiting the recurrence of malignant tumors, comprising the step of administering a compound represented by formula (1), a salt thereof, or a solvate thereof to a patient.
  • One embodiment of the present invention is the use of a compound represented by formula (1), a salt thereof, or a solvate thereof for the manufacture of a malignant tumor recurrence inhibitor.
  • One embodiment of the present invention is a Wnt / ⁇ -catenin signal pathway inhibitor comprising a compound represented by formula (1), a salt thereof, or a solvate thereof. If this inhibitor is used, the Wnt / ⁇ -catenin signaling pathway can be suppressed. This inhibitor can be used, for example, for the treatment of diseases that are improved by the Wnt / ⁇ -catenin signal pathway inhibitory effect.
  • One embodiment of the present invention includes a compound represented by the formula (2) including a compound represented by the formula (2), a salt thereof, or a solvate thereof (hereinafter also referred to as “the compound represented by the formula (2)”). ) And a malignant tumor therapeutic agent used in combination therapy with 5-FU (5-fluorouracil).
  • One embodiment of the present invention is a therapeutic agent for malignant tumors used in combination therapy of 5-FU and a compound represented by the formula (2), a salt thereof, or a solvate thereof, including 5-FU. .
  • the compound shown in formula (2) and 5-FU may be administered simultaneously or separately.
  • “used in combination therapy” includes a form in which the compound represented by the formula (2) and the like and 5-FU are administered as a combination.
  • the administration sequence may be such that the compound represented by the formula (2) or the like may be administered first, or 5-FU may be administered first.
  • One embodiment of the present invention is a combination for malignant tumor treatment comprising a compound represented by the formula (2) and the like and 5-FU.
  • One embodiment of the present invention is a method for treating a malignant tumor, comprising a step of administering a compound represented by formula (2) and the like and 5-FU to a patient.
  • the patient may be a compound shown by the formula (2) or the like, or a patient after 5-FU administration.
  • one embodiment of the present invention is a use for the manufacture of a therapeutic agent for malignant tumor for use in a combination therapy of a compound represented by formula (2) etc. and 5-FU such as a compound represented by formula (2) It is.
  • a synergistic antitumor effect can be obtained by the compound represented by the formula (2) and the like and 5-FU.
  • administration in combination with 5-FU compared to when 5-FU is used alone High therapeutic effect can be obtained.
  • the “low concentration” may be, for example, 0.001, 0.01, 0.1, 1, 2, 3, 4, 5, 10, 15, or 20 mg / kg body weight per time. , Any two of them may be within the range of values.
  • the substituents R7 and R8 in the formula (2) are the same or different and may be an optionally substituted C1-C6 alkyl or an optionally substituted C2-C6 alkenyl.
  • the substituents R7 and R8 are the same or different and are C1-C6 alkyl.
  • the substituents R7 and R8 are the same or different and are C1-C3 alkyl.
  • the substituents R7 and R8 are methyl.
  • Any of the above methods may further include a step of detecting a malignant tumor marker, a cancer stem cell marker, a fibrosis marker, or a hepatocyte marker. Any of the above agents or methods can be used for in vitro or in vivo applications.
  • Example 1 Compound Synthesis was performed according to the schemes shown in FIGS. Details of the synthesis are shown below. The structural formulas and spectral data of the synthesized compounds are shown in FIGS.
  • Benzyl 4-hydroxyphenylacetate NaH (60% in oil, 0.88 g, 22 mmol) was added to a dry-DMF (20 mL) solution of 4-hydroxyphenylacetic acid (3.0 g, 20 mmol) cooled in an ice-water bath under Ar, and the temperature was 30. After stirring for min, benzyl bromide (6.8 g, 40 mmol) was added in several portions over 30 min. The mixture was stirred for 3 hr under cooling in an ice-water bath and then at room temperature overnight.
  • DMEM Dulbecco's Modified Eagle Medium 2 (Nissui Pharmaceutical Co., Ltd., Tokyo), 2 mM L-glutamine 0.2% NaHCO 3 , 3500 mg / L D-glucose, 100 U / mL penicillin, 100 ⁇ g / mL streptomycin (Nacalai Tesque, Kyoto), 10% fetal bovine serum (FBS) (Sigma-Aldrich Corp., St.
  • FBS fetal bovine serum
  • the human hepatoma cell line HuH-7 is cultured on a ⁇ 10 cm cell culture dish (TPP Techno Plastic Products AG, Trasadingen, Switzerland) using DMEM under 5% CO 2 , 37 ° C, 100% humidity. Incubated in In a state of 70-90% confluence, add 200 ⁇ L of 0.25% Trypsin / 1 mM EDTA solution diluted 10-fold with PBS (-), peel off the cells, and collect cells by centrifugation at 1000 rpm for 3 minutes at room temperature , 1 sheet was subdivided into 4 sheets.
  • HuH-7 cells were cultured in the same manner as HuH-7 cells.
  • IC50 10 ⁇ ⁇ LOG (A / B) ⁇ (50-C) / (DC) + LOG (B) ⁇ .
  • A represents a high concentration sandwiching 50% inhibition rate
  • B represents a low concentration sandwiching 50%
  • C represents the inhibition rate at B
  • D represents the inhibition rate at A.
  • Significant differences were evaluated by Student's t-test (two-sided). * In the figure means significant difference at 0.1% DMSO at p ⁇ 0.05, and ** means significant difference at p ⁇ 0.01. Common to all figures in the example).
  • IC50 of each compound is IC-2-Ar-Cl: 45.07 ⁇ M, IC-2-506-1: 14.10 ⁇ M, IC-2-506-2: 25.63 ⁇ M, IC-2-506-3: 18.32 ⁇ M, IC -2-OTBS: 11.76 ⁇ M, 7c-NT: 36.11 ⁇ M, IC-2-OMe: 34.89 ⁇ M, IC-2-F: 22.20 ⁇ M, IC-2-Cl: 14.37 ⁇ M, IC-2-NO2: 28.07 ⁇ M IC-2-OPMB: 50 ⁇ M, IC-2-OMOM: 20.28 ⁇ M, IC-2-OH: 33.47 ⁇ M.
  • HuH-7 cells that were 70-90% confluent were collected and seeded 1.5 ⁇ 10 ⁇ 6 in a ⁇ 10 cm cell culture dish. After 24 hours, each compound was added to the cells and cultured at 37 ° C. After 48 hours of drug treatment, the cells were collected from the culture dish, centrifuged at 1000 rpm and 4 ° C. for 3 minutes, the supernatant was removed, and the cells were washed twice with 1 mL of 0.5% FBS / 2 mM EDTA / PBS. The suspension was suspended in 500 ⁇ L of 5% BSA / 0.5% FBS / 2 mM EDTA / PBS, and blocked at 4 ° C. for 15 minutes.
  • mouse anti-human CD44 monoclonal antibody 156-3C11, Cell Signaling Technology Inc., Danvers, MA
  • a primary antibody reaction was performed. Then, it was washed 3 times with 1 mL of 0.5% FBS / 2 mM EDTA / PBS.
  • the secondary antibody reaction was performed at 4 ° C. in the dark for 30 minutes. Then, it was washed 3 times with 1 mL of 0.5% FBS / 2 mM EDTA / PBS. Then, it was suspended in 500 ⁇ L of 0.5% FBS / 2 mM EDTA / PBS and passed through a 40 ⁇ m mesh column (Becton, Dickinson and Company, Franklin Lakes, NJ). Analysis was performed using Beckman Coulter-Moflo XDP (Beckman Coulter Inc., Fullerton, Calif.). After analysis, 2 ⁇ L of 0.25 mg / mL Propidium Iodide (PI) was added for further analysis. The same experiment was repeated four times.
  • PI Propidium Iodide
  • cancer stem cells were significantly decreased with respect to 0.1% DMSO as a control for all compounds (FIG. 32). Since cancer stem cells are known to cause recurrence and metastasis of malignant tumors, novel compounds that can suppress the growth of cancer stem cells can be said to be excellent compounds as active ingredients of therapeutic agents for malignant tumors.
  • Example 3 Antifibrotic effect 3.1 Use reagents
  • Example ⁇ DMEM Dulbecco's Modified Eagle Medium 2 (Nissui Pharmaceutical Co., Ltd., Tokyo), 2 mM L-glutamine 0.2 % NaHCO 3, 3500 mg / L D-glucose ( Nacalai Tesque, Inc., Kyoto)
  • FBS Fetal bovine serum (Sigma-Aldrich Corp., St.
  • ⁇ -SMA smooth muscle actin
  • the concentration of the compound used is as shown in FIG. For control, 0.1% DMSO as a solvent for each compound was used.
  • Collect LX-2 cells maintained in culture using 10% FBS / DMEM, and use 2.0% 10 ⁇ 5 in each well of 6-well plate (TPP) using 1% FBS / DMEM at n 3. Sowing. After 24 hours, TGF- ⁇ 2.5 ng / mL and each compound were added to the cells and cultured at 37 ° C. The medium was changed 24 hours after compound addition. After 0 and 48 hours of compound treatment, the medium was discarded, and RNA was collected using 1 mL of TRIzol (ambion, Life Technologies Corp., Carlsbad, Calif.).
  • a mixture of 3 equal amounts of cell cDNA treated with 0.1% DMSO was serially diluted 5 times to 6250 times to obtain a standard.
  • 7900HT applied biosystems, Life Technologies Corp., Carlsbad, Calif.
  • 40 cycles of 95 ° C. for 20 seconds, 95 ° C. for 10 seconds—annealing conditions—72 ° C. for 10 seconds were performed.
  • the annealing conditions for each gene are as follows. GAPDH: 60 ° C for 10 seconds, ⁇ -SMA: 56 ° C for 5 seconds.
  • a value obtained by dividing the calculated value of the ⁇ -SMA gene by the calculated value of the GAPDH gene was used.
  • Significant differences were evaluated by Student's t-test (two-sided). * In the figure is significant at p ⁇ 0.05 with respect to 0.1% DMSO, and ** means significant difference at p ⁇ 0.01. Common to all figures in the example).
  • ⁇ -SMA collagen, type I, and alpha 1 (COL1A1) as fibrosis markers.
  • concentration of the compound used is as shown in FIG.
  • 0.1% DMSO as a solvent for each compound was used.
  • 5'-CCT-CCA-GGG-CTC-CAA-CGA-G-3 'and 5'-TCA-ATC-ACT-GTC-TTG-CCC-CA-3' were used as primers for COL1A1.
  • the annealing conditions were 58 ° C. for 5 seconds.
  • a value obtained by dividing the calculated value of the COL1A1 gene by the calculated value of the GAPDH gene was used.
  • DMEM Dulbecco's modified Eagle's medium 2 (Nissui Pharmaceutical Co., Ltd., Tokyo), 2 mM L-glutamine 0.2% NaHCO 3 , 3500 mg / L D-glucose, 100 U / mL penicillin, 100 ⁇ g / mL streptomycin (Nacalai Tesque, Kyoto)
  • FBS Fetal bovine serum (Sigma-Aldrich Corp., St.
  • FBS for differentiation induction Fetal bovine serum (Biowest SAS, Nuaille, France) ⁇ PBS (-): 8000 mg / L NaCl, 2900 mg / L Na 2 HPO 4 ⁇ 12H 2 O, 200 mg / L KCl, 200 mg / L KH 2 PO 4 (Nacalai Tesque) ⁇ PBST: 0.2% Tween-20 (Nacalai Tesque) / PBS (-) ⁇ 0.25% Trypsin / 1 mM EDTA solution: (Nacalai Tesque) ⁇ 0.1M phosphate buffer (pH 6.8): 0.1M sodium dihydrogen phosphate aqueous solution and 0.1M disodium hydrogen phosphate (Nacalai Tesque) aqueous solution prepared to pH 6.8 ⁇ Sulphite water: 10% Prepared by adding 6 mL of aqueous sodium hydrogen sulfite (Nacalai Tesque) solution and 5 mL of 1
  • UE7T-13 cells are cultured on a ⁇ 10 cm cell culture dish (TPP Techno Plastic Products AG, Trasadingen, Switzerland) using 10% FBS / DMEM and 5% CO 2 The culture was maintained at 37 ° C. and 100% humidity. In a state of 70-90% confluence, add 200 ⁇ L of 0.25% Trypsin / 1 mM EDTA solution diluted 10-fold with PBS (-), peel off the cells, and collect cells by centrifugation at 1000 rpm for 3 minutes at room temperature , 1 sheet was subdivided into 4 sheets.
  • UE7T-13 cells that became 70-90% confluent were collected and seeded in each well of a 6-well plate (TPP) using DMEM containing 10% FBS at 8.064x10 ⁇ 4 (9.0x10 ⁇ 3 Pieces / cm ⁇ 2 ).
  • TPP 6-well plate
  • each compound was added to the cells using DMEM containing 10% differentiation-inducing FBS and cultured at 37 ° C.
  • the medium was changed 4 days after compound addition. After 0 and 7 days of compound treatment, the medium was discarded, RNA was collected using RNeasy Mini (Qiagen GmbH, Hilden, Germany), and DNase degradation was performed on the column.
  • albumin primer 5'-CAA-AGA-TGA-CAA-CCC-AAA-CCT-C-3 'and 5'-GGA-TGT-CTT-CTG-GCA-ATT-TCA-3' were used.
  • Probe # 54 of Universal Probe Library was used as a probe for detecting albumin.
  • HuH-7 cell cDNA was serially diluted 5 times to make a standard. Using 7900HT (applied biosystems, Life Technologies Corp., Carlsbad, CA), 50 cycles of 2 minutes at -95 ° C for 20 seconds and 45 cycles of 95 ° C for 1 second at -60 ° C for 20 seconds were performed. As the measurement result, a value obtained by dividing the calculated value of the albumin gene by the calculated value of the GAPDH gene was used. Significant differences were evaluated by Student's t-test (two-sided). * In the figure is significant at p ⁇ 0.05 with respect to 0.1% DMSO, and ** means significant difference at p ⁇ 0.01. Common to all figures in the example).
  • Hepatocyte function analysis (urea assay) Using the ability of urea synthesis, which is a function of hepatocytes, as an index, the effect of each compound on inducing hepatocyte differentiation was examined. The concentration of each compound is as described in FIG. For control, 0.1% DMSO as a solvent for each compound was used.
  • TPP 24-well plate
  • Each cell was diluted 10-fold with PBS ( ⁇ ), 0.25% Trypsin / 1 mM EDTA solution 50 ⁇ L was added, the cells were detached, and the number of cells was counted. The urea amount in each well was divided by the number of cells to obtain a measurement result.
  • HAS-11 mouse anti-human albumin monoclonal antibody
  • BSA / PBS 0.1% BSA / PBS
  • An antibody reaction was performed. After washing 5 times with 0.1% BSA / PBS (-), Alexa Fluor 488-labeled goat anti-mouse IgG (H + L) (ab150113, Abcam Ltd., Cambridge, UK) was diluted 1000-fold with 1% BSA / PBST. 100 ⁇ L each was added, and the secondary antibody reaction was performed at room temperature for 1 hour.
  • DAPI Cell Signaling Technology Inc., Danvers, MA
  • PBST PBST
  • MilliQ water a mounting medium containing a retirement inhibitor and nail polish
  • FV1000D IX81 Olympus, Tokyo
  • HuH-7 cells seeded at 2.5 ⁇ 10 ⁇ 4 cells / cm ⁇ 2 were used.
  • the acquired image data was analyzed using image analysis software inForm 2.0.4 (PerkinElmer, Waltham, MA) to determine the positive cell rate.
  • Collect 70-90% confluent UE7T-13 cells and use 1.5% 3 ⁇ 10 ⁇ 4 10% FBS / DMEM in each well of Lab-Tek II chamber slide for a total of 4 wells for n 3 + negative control Sowing one by one (9.0 ⁇ 10 ⁇ 3 / cm ⁇ 2 ).
  • each compound was added to cells using 10% FBS / DMEM for differentiation induction, and cultured at 37 ° C. The medium was changed 4 days after compound addition.
  • Example 5 Wnt / ⁇ -catenin signal inhibitory effect 5.1 Inhibitory effect of Wnt / ⁇ -catenin signal on hepatoma cells
  • the activity of Wnt / ⁇ -catenin signal was measured at the concentration of the compound that suppressed the proliferation of HuH-7 cells to about 50% or less.
  • the concentration of each compound is as described in FIG.
  • 0.1% DMSO as a solvent for each compound and 0.5 ⁇ M 5-FU were used.
  • Luciferase Assay ReagentIIII (LARII) was prepared by diluting Luciferase Assay Substrate with 10 mL of Luciferase Assay Buffer II returned to room temperature. 1 ml of Stop & Glo Substrate was diluted with 49 ⁇ L of Stop & Glo Buffer returned to room temperature, and Stop & Glo (Promega) was prepared for the number of samples.
  • the frozen PLB-dissolved sample was thawed and permeated for 15 minutes.
  • Dispense 50 ⁇ l of LARII into 3.5 ⁇ mL test tubes (Sarstedt, AG & Co., Numbecht, Germany), add 10 ⁇ L of thawed PLB-dissolved sample, mix well, and add MiniLumat® LB® 9506 (Berthold® Technologies® GmbH & Co, The color development was quantified with Bad (Wildbad, Germany) to measure firefly luciferase activity.
  • 50 ⁇ L of Stop & Glo was added and mixed well, and the color development was quantified with MiniLumat®LB-9506 to measure Renilla luciferase activity.
  • a value obtained by dividing firefly luciferase activity by Renilla luciferase activity was used.
  • Wnt / ⁇ -catenin signal inhibitory effect of mesenchymal stem cells The activity of Wnt / ⁇ -catenin signal was measured using UE7T-13 cells. The concentration of each compound is as described in FIG. For control, 0.1% DMSO as a solvent for each compound was used.
  • each compound was added to the cells and cultured at 37 ° C. The medium was changed 4 days after compound addition.
  • Luciferase Assay ReagentIIII (LARII) was prepared by diluting Luciferase Assay Substrate with 10 mL of Luciferase Assay Buffer II returned to room temperature.
  • DMEM Dulbecco's Modified Eagle Medium 2 (Nissui Pharmaceutical Co., Ltd., Tokyo), 2 mM L-glutamine 0.2% NaHCO 3 , 3500 mg / L D-glucose (Nacalai Tesque Co., Kyoto), 10% fetal bovine serum (FBS) (Sigma-Aldrich Corp., St.
  • the human hepatoma cell line HuH-7 is cultured on a ⁇ 10 cm cell culture dish (TPP Techno Plastic Products AG, Trasadingen, Switzerland) using DMEM under 5% CO 2 , 37 ° C, 100% humidity. Incubated in In a state of 70-90% confluence, add 200 ⁇ L of 0.25% Trypsin / 1 mM EDTA solution diluted 10-fold with PBS (-), peel off the cells, and collect cells by centrifugation at 1000 rpm for 3 minutes at room temperature , 1 sheet was subdivided into 4 sheets.
  • HuH-7 cells were cultured in the same manner as HuH-7 cells.
  • IC50 10 ⁇ ⁇ LOG (A / B) ⁇ (50-C) / (DC) + LOG (B) ⁇ .
  • A represents a high concentration sandwiching 50% inhibition rate
  • B represents a low concentration sandwiching 50%
  • C represents the inhibition rate at B
  • D represents the inhibition rate at A.
  • Significant differences were evaluated by Student's t test (two-sided). In the figure, * means significant difference at 0.1% DMSO at p ⁇ 0.05, and ** means significant difference at p ⁇ 0.01 (experimental). Common to all figures in the example).
  • IC-2 had an IC50 of 25.95 ⁇ M.
  • the cells were collected from the culture dish, centrifuged at 1000 rpm and 4 ° C. for 5 minutes, the supernatant was removed, and the cells were washed twice with 1 mL of 0.5% FBS / 2 mM EDTA / PBS.
  • the suspension was suspended in 500 ⁇ L of 5% BSA / 0.5% FBS / 2 mM EDTA / PBS, and blocked at 4 ° C. for 15 minutes.
  • mouse anti-human CD44 monoclonal antibody 156-3C11, Cell Signaling Technology, Inc., Danvers, MA
  • mouse anti-human CD44 monoclonal antibody 156-3C11, Cell Signaling Technology, Inc., Danvers, MA
  • 50 ⁇ L 500 ⁇ L cell suspension
  • Alexa Fluor 488-labeled goat anti-mouse IgG H + L
  • the cells were washed 3 times with 1 mL of PBS, and then once with 0.5% FBS / 2 mM mMEDTA / PBS. Then, it was suspended in 500 ⁇ L 0.5% FBS / 2 mM EDTA / PBS and passed through a 40 ⁇ m mesh column (Becton, Dickinson and Company, Franklin Lakes, NJ). Analysis was performed using Beckman Coulter-Moflo XDP (Beckman Coulter Inc., Fullerton, CA). After analysis, 2 ⁇ L of 0.25 mg / mL Propidium Iodide (PI) was added for further analysis. The same experiment was repeated 5 times.
  • PI Propidium Iodide
  • DMSO group 5 mice, 5-FU group: 4 mice, IC-2 group: 4
  • DMSO was added to 30 mg / kg 5-FU, 50 mg / kg IC-2, and the volume was adjusted to 100 ⁇ L.
  • 100% DMSO as the solvent for each drug was used as a control.
  • administered intraperitoneally every 3 days The body weight, the major axis and the minor axis of each mouse were measured every 3 days, and the tumor volume was calculated by the following formula.
  • Tumor volume major axis x (minor axis) ⁇ 2 x 0.5.
  • Tumor volume was normalized by Day 0 volume to create a graph.
  • the dose of 5-FU was set to twice the 15 mg / kg generally adopted in the paper to fully evaluate the effects of 5-FU.
  • the dose of IC-2 was calculated as the corresponding concentration from the concentration exhibiting the Wnt / ⁇ -catenin signal inhibitory effect in vitro, and set to twice that amount.
  • squamous cell carcinoma HSC2 squamous cell carcinoma cell
  • IC-2 was added at the concentrations shown in FIG. 47, and after 0, 24, 72, and 96 hours, 100 ⁇ L of 10% Cell Counting Kit-8 (Dojindo Laboratories, Kumamoto Co., Ltd.) was added at 37 ° C.
  • the absorbance was measured using Sunrise Rainbow RC (Tecan Group Ltd., Mannedorf, Switzerland).
  • IC-2 showed an inhibitory effect on the proliferation of squamous cell carcinoma cells (FIG. 47).
  • HSC2 5 ⁇ 10 ⁇ 5 HSC2 were seeded on a ⁇ 10 cm cell culture dish (TPP). After 24 hours, treatment was performed with 5-FU: 0.5 ⁇ M or IC-2: 25 ⁇ M. Cells not treated with low molecular weight compounds were also prepared (0 ⁇ M). Furthermore, after 48 hours, each cell was collected.
  • a primary antibody mouse anti-human CD44 antibody (Abcam Ltd., Cambridge, UK) was used, and Alexa Fluor 488-labeled goat anti-mouse IgG (H + L) (Life Technologies Corp., Carlsbad, CA) was used.
  • the proportion of CD44-expressing cells was 83.9% when not treated with low molecular weight compounds, but decreased to 71.4% with IC-2. That is, IC-2 showed an inhibitory effect on cancer stem cells. On the other hand, it was 83.3% for 5-FU, and no change was seen.
  • Example 8 Antitumor effect in colorectal cancer DLD-1 (colorectal cancer cell) was placed on a ⁇ 10 cm cell culture dish (TPP Techno Plastic Products AG, Trasadingen, Switzerland) using DMEM, 5% CO 2 , The cells were cultured at 37 ° C and 100% humidity. Passage is 70-90% confluent, washed with PBS (-), added 300 ⁇ L of 0.25% Trypsin / 1 mM EDTA to 2 mL of PBS (-), and incubated at 37 ° C for 5 minutes. After detachment, the cells were collected using 5 mL of DMEM. The collected cells were centrifuged at 1000 rpm for 3 minutes, the supernatant was removed, suspended in DMEM, and subcultured 1: 4.
  • DLD-1 was seeded in a 96-well plate (TPP) at 5 ⁇ 10 ⁇ 5 pieces each. After 24 hours, treatment with 0, 10, or 50 ⁇ M IC-2. 48 hours after treatment, add 100 ⁇ L of 10% Cell Counting Kit-8 (Dojindo Laboratories, Kumamoto Co., Ltd.), incubate at 37 ° C, and use Sunrise Rainbow RC (Tecan Group Ltd., Mannedorf, Switzerland) Absorbance (measurement wavelength 450 nm / control wavelength 600 nm) was measured.
  • TPP 96-well plate
  • IC-2 showed an inhibitory effect on the proliferation of colon cancer cells (FIG. 48).
  • DLD-1 cells 1 ⁇ 10 ⁇ 6 DLD-1 cells were seeded on a ⁇ 10 cm cell culture dish. After 24 hours, treatment was performed with 5-FU: 0.5, 5 ⁇ M, or IC-2: 50 ⁇ M. After an additional 48 hours, cells were harvested.
  • As the primary antibody mouse anti-human CD44 antibody (Abcam Ltd., Cambridge, UK) was used, and Alexa Fluor 488-labeled goat anti-mouse IgG (H + L) (Life Technologies Corp., Carlsbad, CA) was used. Thereafter, analysis was performed by MoFlo XDP (Beckman Coulter Inc., Fullerton, CA).
  • the IC-2 treatment significantly decreased the proportion of CD44 high cells (cells that strongly express CD44) relative to the control (FIG. 49). That is, IC-2 showed an inhibitory effect on cancer stem cells. On the other hand, it was rather increased in 5-FU.
  • Example 9 Suppression effect of fibrosis using liver injury model mouse 9.1 Evaluation method 9.1.1 Extraction of liver Using a 1 mL disposable syringe equipped with a 27G needle, 1 ⁇ L of general anesthetic somnopentyl (Kyoritsu Pharmaceutical Co., Ltd., Tokyo) was administered intraperitoneally to mice. Anesthesia was introduced. After introduction of anesthesia, whole blood was collected from the inferior vena cava using a 27G injection needle and 1 mL syringe, and then the whole liver was removed.
  • liver tissue pieces excised by the above method were fixed with 4% paraformaldehyde for 16 hours at room temperature.
  • tissue sections were prepared with a microtome, deparaffinized with xylene (Nacalai Tesque), and hydrated with ethanol (Nacalai Tesque), followed by 5% potassium dichromate / trichloroacetic acid aqueous solution (Wako Pure Chemical Industries, Ltd.) (Osaka, Osaka) for 20 minutes. After washing with running water for 5 minutes, it was stained with azocarmine G solution (Wako Pure Chemical Industries, Ltd.) at 60 ° C.
  • Carbon tetrachloride administration method and drug administration method Carbon tetrachloride (CCl 4 : Wako Pure Chemical Industries) 0.2 ml / kg, 3 times a week, 4, 6 and 8 weeks, microsyringe (ITO MFG. Shizuoka) was administered intraperitoneally.
  • the carbon tetrachloride used was a 10% concentration solution dissolved in corn oil (Wako Pure Chemical Industries). After this carbon tetrachloride solution was administered for 4 weeks, the mice were divided into a total of 4 groups, a vehicle administration group, a glycyrrhizin administration group, an ICG-001 administration group, and an IC-2 administration group.
  • the prepared drug solution was administered intraperitoneally 3 times a week for 4 weeks using a microsyringe. Carbon tetrachloride and drug solution were administered alternately every day.
  • Glycyrrhizin (Tokyo Chemical Industry Co., Ltd., Sakai Tokyo) was dissolved in physiological saline and adjusted to a pH of 7.0 with a 4M NaOH solution to a concentration of 30 mg / mL.
  • IC-2 and ICG-001 (AdooQ BioScience, Irvine, CA) were dissolved in Wellsolv (Celeste Co., Ltd., Tokyo, Japan) to a concentration of 40 mg / mL and 10 mg / mL, respectively. It was heated in a bath for 10 minutes and completely dissolved. Nine times the amount of physiological saline was added to the well-solve solution in which these drugs were dissolved.
  • glycyrrhizin was prepared in a necessary amount so that the concentration of glycyrrhizin was 150 mg / kg, and physiological saline was added to adjust the volume to 200 ⁇ L.
  • physiological saline was added to adjust the volume to 200 ⁇ L.
  • IC-2 is 10.6 mg / kg and ICG-001 is 5 mg / kg
  • a solution of wellsolv and saline in a ratio of 1: 9 was prepared as a vehicle.
  • FIG. 50 is a diagram showing a stained image of Sirius red staining and a quantification result of the fibrosis region 8 weeks after administration of carbon tetrachloride.
  • the area stained red indicates the fibrosis area.
  • mice were administered with Vehicle, sodium ursodeoxycholate, ICG-001, and IC-2 The group was divided into a total of 4 groups, and vehicle, ICG-001 and IC-2 drug solutions prepared by the following method were administered intraperitoneally 3 times a week for 3 and 6 weeks using a microsyringe.
  • sodium ursodeoxycholate was orally administered once a day using a 1 mL disposable syringe equipped with a sonde.
  • Ursodeoxycholate sodium (Mitsubishi Tanabe Pharma Co., Ltd., Osaka) was dissolved in 1M NaOH aqueous solution and adjusted to pH 8.3 with HCl aqueous solution to a concentration of 60 mg / mL.
  • IC-2 and ICG-001 were dissolved in the well-solve at concentrations of 40 mg / mL and 10 mg / mL, respectively, and further heated in a 60 ° C. water bath for 10 minutes to completely dissolve. Four times the amount of physiological saline was added to the well-solve solution in which these drugs were dissolved.
  • sodium ursodeoxycholate was taken in a necessary amount so that the sodium ursodeoxycholate would be 150 mg / kg, and sterilized water was added to adjust the volume to 200 ⁇ L.
  • IC-2 is 21.2 mg / kg and ICG-001 is 5 mg / kg
  • a solution of wellsolv and physiological saline in a ratio of 1: 9 was prepared.
  • a solution in which wellsolve and physiological saline were mixed at a ratio of 1: 9 was prepared.
  • FIG. 51 is a diagram showing stained images of Azan staining and fibrosis region quantification results after feeding for 12 weeks with a high fat diet.
  • a region stained blue shows a fibrosis region.
  • HC-1 hexachlorophene methyl ether bis (2,3,5-trichloro-6-methoxyphenyl) methane
  • 5-FU hexachlorophene methyl ether bis (2,3,5-trichloro-6-methoxyphenyl) methane
  • HSC2 was seeded 2.5 ⁇ 10 ⁇ 3 in 96-well plates. After 24 hours, 50 ⁇ M HC-1 and 5-FU were treated with the concentrations shown in FIG. 53 for 48 hours. Thereafter, 100 ⁇ L of 10% Cell Counting Kit-8 was added, incubated at 37 ° C., and absorbance (measurement wavelength 450 nm / control wavelength 600 nm) was measured using Sunrise Rainbow RC.
  • FIG. HC-1 showed a synergistic anti-tumor effect when used in combination with 5-FU.
  • HSC2 was seeded in a 6-well plate (TPP) at 1x10 ⁇ 5 .
  • TPP 6-well plate
  • 5-FU, HC-1, 5-FU and HC-1 were each treated with the concentrations shown in FIG. 54 for 48 hours.
  • the cells were treated with Annexin-V-FLUOS Staining Kit (Roche Diagnostics GmbH, Mannheim, Germany), and cells stained with Annexin-V and PI were observed with IX71 (Olympus, Tokyo). Analysis was performed with analysis software inForm 2.0.4 (PerkinElmer, Waltham, MA), and apoptotic cell rate and dead cell rate were calculated.
  • ⁇ Discussion> As described above, it was shown that the growth of cancer cells was suppressed by using the novel compound. Further, the novel compound had an effect of suppressing the growth of cancer stem cells. Further, the novel compound has an effect of suppressing fibrosis that can cause cancer. Further, the novel compound had an effect of inducing differentiation of mesenchymal stem cells into hepatocytes. Furthermore, HC-1 and 5-FU showed a synergistic anti-tumor effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

悪性腫瘍、又は線維症に対する新規の治療薬を取得する。 式(1)に示す化合物、その塩、又はそれらの溶媒和物を用いる。又は式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍の治療薬、又は線維症の治療薬を用いる。

Description

低分子化合物による癌と線維化の抑制と再生促進の効果
 本発明は、悪性腫瘍又は線維症の治療薬に関する。
 ヒトの死亡原因として、悪性腫瘍、心疾患、脳血管疾患などの疾患が上位に挙げられる。この中でも悪性腫瘍は、発生機序が複雑であるため、特に予防及び治療の難しい疾患といえる。
 悪性腫瘍の原因となる症状として、組織の線維化が挙げられる。例えば、肝臓の線維化が進むと、肝硬変、肝癌になる。その他、線維化は肺、腎臓、心臓、皮膚などにも生じる。非特許文献1には、線維化治療に関するものとして、ピルフェニドンの臨床試験の結果が記載されている。
 本願発明者らは、低分子化合物に関して、3つの報告をしている(非特許文献2、3、特許文献1)。非特許文献2、3には、肝癌細胞増殖抑制効果及びWnt/β-カテニンシグナル抑制効果を示す低分子化合物が記載されている。文献2、3には、どのような構造及び機能を有する化合物が肝癌細胞に対して増殖抑制効果を示すかは記載されていない。
 特許文献1には、PN-1-2、PN-3-4、PN-3-13、HC-1、及びIC-2が、間葉系幹細胞のWnt/β-カテニンシグナルを抑制し、間葉系幹細胞を肝細胞に分化誘導させたことが記載されている。この文献には、癌細胞の増殖抑制に関する記載はない。
WO2012/141038
Noble et al., Lancet. 2011 May 21;377(9779):1760-9. Sakabe et al., 肝臓, 53巻, Supplement 1, 2012, A226, WS-54 Seto et al., 肝臓, 54巻, Supplement 1, 2013, P-12
 悪性腫瘍は、ヒトの死因の上位に位置しており、従来の治療戦略だけでは十分ではなかった。悪性腫瘍の治療分野では、個々の骨格の持つ特性によって、投与する低分子化合物の有する薬理作用が大きく変わることが知られている。また、この分野は不確実性の高い分野であり、新規の治療方法を開発する際、所望の薬理作用が得られるかどうかは予想が困難といえる。そのため、悪性腫瘍に対する治療効果をもった低分子化合物を新たに同定することは容易なことではなかった。
 また、上記のように、線維化治療に関する研究成果が徐々に報告されてきている。しかしながら、線維化の治療に有効な治療薬は少なく、また患者によっては副作用が問題となることもある。そのため、従来の抗線維化剤だけでは十分ではなかった。
 本発明は上記事情に鑑みてなされたものであり、悪性腫瘍、又は線維症に対する新規の治療薬を提供すること等を目的とする。
 本発明者らは鋭意研究の結果、下記式(1)に示す低分子化合物が、抗悪性腫瘍効果を有することを発見した。また、下記式(1)に示す低分子化合物が、線維化の抑制効果をも有することを発見した。そして、これらの知見に基づき、本発明を完成させるに至った。
 即ち、本発明の一態様によれば、式(1)に示す化合物、その塩、又はそれらの溶媒和物が提供される:
Figure JPOXMLDOC01-appb-C000004
(式中、置換基R1及びR2は下記(a)又は(b)を意味する。
 (a)R1は、置換されていてもよいフェニル;
 R2は、H、-C(O)NHR3、置換されていてもよいフェニル; 及び
 前記R3は、H、C1~C6アルキル、置換されていてもよいベンジル; 又は
 (b)R1は、置換されていてもよいナフチル、又は置換されていてもよいフェニル;
 R2は、-C(O)NHR4、置換されていてもよいフェニル; 及び
 前記R4は、H、C1~C6アルキル、置換されていてもよいシロキシベンジル。)
 この化合物、その塩、又はそれらの溶媒和物によれば、悪性腫瘍、又は線維症の治療をすることができる。
 また本発明の一態様によれば、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍、又は線維症の治療薬が提供される。
 また本発明の一態様によれば、下記式(2)に示す化合物、その塩、又はそれらの溶媒和物を含む、下記式(2)に示す化合物、その塩、又はそれらの溶媒和物と5-FUとの併用療法において用いられる悪性腫瘍の治療薬が提供される:
Figure JPOXMLDOC01-appb-C000005
(式中、
 R7、及びR8は、同一又は異なって、置換されていてもよいC1~C6アルキル、又は置換されていてもよいC2~C6アルケニルである。)
 また本発明の一態様によれば、5-FUを含む、5-FUと式(2)に示す化合物、その塩、又はそれらの溶媒和物との併用療法において用いられる悪性腫瘍の治療薬が提供される。
 本発明によれば、悪性腫瘍、又は線維症の治療をすることができる。
図1~9は、実施例1の低分子化合物の合成スキームを表した図である。 図10~14は、実施例1の低分子化合物の構造式とスペクトルデータを表した図である。 図15~31は、低分子化合物の抗腫瘍効果を調べた結果を表した図である。 図32は、低分子化合物の癌幹細胞抑制効果を調べた結果を表した図である。 図33~34は、低分子化合物の抗線維化効果を調べた結果を表した図である。 図35~39は、低分子化合物の肝細胞分化誘導効果を調べた結果を表した図である。 図40~42は、低分子化合物のWnt/β-カテニンシグナル抑制効果を調べた結果を表した図である。 図43は、低分子化合物の抗腫瘍効果を調べた結果を表した図である。 図44は、低分子化合物の癌幹細胞抑制効果を調べた結果を表した図である。 図45は、低分子化合物を投与後の、肝癌モデルマウスの体重変化を調べた結果を表した図である。 図46~48は、低分子化合物の抗腫瘍効果を調べた結果を表した図である。 図49は、低分子化合物の癌幹細胞抑制効果を調べた結果を表した図である。 図50~51は、低分子化合物の抗線維化効果を調べた結果を表した図である。 図52は、低分子化合物の抗腫瘍効果を調べた結果を表した図である。 図53~55は、HC-1と5-FUを併用したときの、抗腫瘍効果を調べた結果を表した図である。
 以下、本発明の実施の形態について詳細に説明する。なお、同様な内容については繰り返しの煩雑を避けるために、適宜説明を省略する。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物である。この化合物、その塩、又はそれらの溶媒和物を用いれば、悪性腫瘍、又は線維症を治療することができる。又は、この化合物、その塩、又はそれらの溶媒和物を用いれば、間葉系幹細胞の肝細胞への分化誘導をすることができる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍の治療薬である。この治療薬を用いれば、悪性腫瘍を治療することができる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、癌幹細胞の治療薬である。この治療薬を用いれば、癌幹細胞を治療することができる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍細胞又は癌幹細胞の増殖抑制剤である。この治療薬を用いれば、悪性腫瘍細胞又は癌幹細胞の増殖を抑制することができる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍の再発抑制薬である。この抑制薬を用いれば、悪性腫瘍の再発を抑制することができる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、線維症の治療薬である。この治療薬を用いれば、線維症を治療することができる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、線維化に伴う疾患の治療薬である。この治療薬を用いれば、線維化に伴う疾患を治療することができる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、間葉系幹細胞の肝細胞への分化誘導剤である。この誘導剤を用いれば、効率的に間葉系幹細胞を肝細胞へ分化誘導できる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を細胞に接触させる工程を含む、肝細胞の生産方法である。この方法を用いれば、効率的に肝細胞を生産できる。この方法は、さらに、肝細胞を回収する工程、又は肝細胞マーカーを検出する工程、を含んでいてもよい。
 本発明の一実施形態において、式(1)の置換基R1及びR2は下記(a)又は(b)を意味する。
 (a)R1は、置換されていてもよいフェニル;
 R2は、H、-C(O)NHR3、置換されていてもよいフェニル; 及び
 上記R3は、H、C1~C6アルキル、置換されていてもよいベンジル; 又は
 (b)R1は、置換されていてもよいナフチル、又は置換されていてもよいフェニル;
 R2は、-C(O)NHR4、置換されていてもよいフェニル; 及び
 上記R4は、H、C1~C6アルキル、置換されていてもよいシロキシベンジル。
 本発明の一実施形態において、より優れた抗腫瘍効果、抗線維化、又は肝細胞分化誘導効果を実現する観点からは、上記置換基R1及びR2は、好ましくは以下の通りである。
 上記(a)のR1は、置換基R5を有するフェニルであり、
 上記R5は、H、ハロゲン、ニトロ、アミノ、シアノ、OH、C1~C6アルキル、ハロゲノC1~C6アルキル、ヒドロキシC1~C6アルキル、C1~C6アルキルアミノ、C1~C6アルコキシ、ハロゲノC1~C6アルコキシ、ヒドロキシC1~C6アルコキシ、及びC1~C6アルコキシアミノからなる群から選ばれる1種以上の置換基であり、
 上記(a)のR2は、H、-C(O)NHR3、又は置換基R5を有するフェニルであり、
 上記R3は、置換基R6を有するベンジルであり、
 上記R6は、H、ハロゲン、ニトロ、アミノ、シアノ、OH、C1~C6アルキル、ハロゲノC1~C6アルキル、ヒドロキシC1~C6アルキル、C1~C6アルキルアミノ、C1~C6アルコキシ、ハロゲノC1~C6アルコキシ、ヒドロキシC1~C6アルコキシ、C1~C6アルコキシアミノ、C1~C6アルコキシで置換されているC1~C6アルコキシ、C1~C6アルコキシフェニルで置換されているC1~C6アルコキシ、トリC1~C6アルキルシロキシC1~C6アルキル、C1~C6アルキルジフェニルシロキシC1~C6アルキル、トリフェニルシロキシC1~C6アルキル、トリC1~C6アルキルシロキシ、C1~C6アルキルジフェニルシロキシ、及びトリフェニルシロキシからなる群から選ばれる1種以上の置換基であり、
 上記(b)のR1は、置換基R5を有するフェニル、又はナフチルであり、
 上記(b)のR2は、-C(O)NHR4、又は置換基R5を有するフェニルであり、且つ
 上記R4は、H、C1~C6アルキル、置換基R5を有するシロキシベンジル。
 本発明の一実施形態において、より優れた抗腫瘍効果、抗線維化、又は肝細胞分化誘導効果を実現する観点からは、上記置換基R1及びR2は、好ましくは以下の通りである。
 上記(a)のR1は、置換基R5を有するフェニルであり、
 上記R5は、H、ハロゲン、ニトロ、アミノ、シアノ、OH、C1~C6アルキル、ハロゲノC1~C6アルキル、ヒドロキシC1~C6アルキル、C1~C6アルキルアミノ、C1~C6アルコキシ、ハロゲノC1~C6アルコキシ、ヒドロキシC1~C6アルコキシ、及びC1~C6アルコキシアミノからなる群から選ばれる1種以上の置換基であり、
 上記(a)のR2は、-C(O)NH(CH2C6H5)であり、
 上記(b)のR1は、ナフチルであり、
 上記(b)のR2は、-C(O)NHR4、又はニトロフェニルであり、且つ
 上記R4は、H、又は置換基R5を有するシロキシベンジル。
 本発明の一実施形態において、さらに優れた抗腫瘍効果、抗線維化、又は肝細胞分化誘導効果を実現する観点からは、上記置換基R1及びR2は、好ましくは以下の通りである。
 上記(a)のR1は、F、Cl、ニトロ、OH、及びメトキシからなる群から選ばれる1種以上の置換基を有するフェニルであり、
 上記(a)のR2は、-C(O)NH(CH2C6H5)であり、
 上記(b)のR1は、ナフチルであり、且つ
 上記(b)のR2は、-C(O)NH2、ニトロフェニル、又はtert-ブチルジメチルシロキシベンジル。
 本発明の一実施形態において、IC-2に比べて低濃度でより強力な抗腫瘍効果を発揮する観点からは、(i)上記R1が、2,3位にClを有するフェニルであり、且つ上記R2が、-C(O)NH(CH2C6H5)であるか、又は(ii)上記R1が、ナフチルであり、且つ上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にtert-ブチルジメチルシロキシを有するベンジル、又は4位にClを有するベンジルであることが好ましい。後述の実施例では、IC-2-506-1、IC-2-OTBS、及びIC-2-Clが、IC-2に比べて低濃度でより強力な抗腫瘍効果を発揮している。
 本発明の一実施形態において、IC-2よりIC50が低い観点からは、(i)上記R1が、2,3位にClを有するフェニル、2,4位にClを有するフェニル、もしくは3,4位にClを有するフェニルであり、且つ上記R2が、-C(O)NH(CH2C6H5)であるか、又は(ii)上記R1が、ナフチルであり、上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にtert-ブチルジメチルシロキシを有するベンジル、4位にFを有するベンジル、4位にClを有するベンジル、又は4位にメトキシメトキシを有するベンジルであることが好ましい。後述の実施例では、IC-2-506-1、IC-2-506-2、IC-2-506-3、IC-2-OTBS、IC-2-F、IC-2-Cl、及びIC-2-OMOMのIC50が、IC-2のIC50より低くなっている。
 本発明の一実施形態において、IC-2より強力な癌幹細胞の抑制効果を発揮する観点からは、上記R1が、ナフチルであり、上記R2が、4位にNO2を有するベンジル、4位に(4-メトキシフェニル)メトキシを有するベンジル、又は4位にFを有するベンジルであることが好ましい。後述の実施例では、IC-2-NO2、IC-2-OPMB、及びIC-2-Fが、IC-2より強力な癌幹細胞の抑制効果を発揮している。
 本発明の一実施形態において、IC-2に比べて低濃度で癌幹細胞の抑制効果を発揮する観点からは、(i)上記R1が、ナフチルであり、上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にtert-ブチルジメチルシロキシを有するベンジルであることが好ましい。本願発明者らは、後述の実施例のIC-2-OTBSが、IC-2に比べて低濃度で癌幹細胞の抑制効果を発揮したことを確認している。
 本発明の一実施形態において、IC-2に比べて低濃度でより強力な抗線維化効果を発揮する観点からは、(i)上記R1が、3,4位にClを有するフェニルであり、且つ上記R2が、-C(O)NH(CH2C6H5)であるか、又は(ii)上記R1が、ナフチルであり、且つ上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にtert-ブチルジメチルシロキシを有するベンジル、又は4位にFを有するベンジルあることが好ましい。本願発明者らは、後述の実施例のIC-2-506-3、IC-2-OTBS、及びIC-2-Fが、IC-2に比べて低濃度でより強力な抗線維化効果を発揮したことを確認している。
 本発明の一実施形態において、IC-2に比べて低濃度で抗線維化効果を発揮する観点からは、上記R1が、ナフチルであり、上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にClを有するベンジルであることが好ましい。本願発明者らは、後述の実施例のIC-2-Clが、IC-2に比べて低濃度で抗線維化効果を発揮したことを確認している。
 本発明の一実施形態において、IC-2に比べて同濃度、又は高濃度でより強力な抗線維化効果を発揮する観点からは、(i)上記R1が、4位にClを有するフェニル、2,3位にClを有するフェニル、又は3,4位にClを有するフェニル、であり、且つ上記R2が、-C(O)NH(CH2C6H5)であるか、又は(ii)上記R1が、ナフチルであり、且つ上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にOHを有するベンジルであることが好ましい。本願発明者らは、後述の実施例のIC-2-Ar-Cl、IC-2-506-1、IC-2-506-2、及びIC-2-OHが、IC-2に比べて同濃度、又は高濃度でより強力な抗線維化効果を発揮したことを確認している。
 本発明の一実施形態において、低濃度で肝細胞誘導効果を発揮する観点からは、上記R1が、ナフチルであり、且つ上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にtert-ブチルジメチルシロキシを有するベンジル、4位にClを有するベンジル、4位にFを有するベンジル、又は4位に(4-メトキシフェニル)メトキシを有するベンジルであることが好ましい。本願発明者らは、後述の実施例のIC-2-OTBS、IC-2-Cl、IC-2-F、及びIC-2-OPMBが、低濃度で肝細胞誘導効果を発揮したことを確認している。
 本発明の一実施形態において、IC-2に比べて高濃度でより強力な肝細胞誘導効果を発揮する観点からは、上記R1が、2,4位にClを有するフェニルであり、且つ上記R2が、-C(O)NH(CH2C6H5)であることが好ましい。本願発明者らは、後述の実施例のIC-2-506-2が、IC-2に比べて高濃度でより強力な肝細胞誘導効果を発揮したことを確認している。
 本発明の一実施形態において、肝癌細胞においてIC-2に比べて低濃度又は同濃度でより強力なWnt/βカテニンシグナル経路を抑制する観点からは、(i)上記R1が、4位にClを有するフェニル、又は2,3位にClを有するフェニルであり、且つ上記R2が、-C(O)NH(CH2C6H5)であるか、又は(ii)上記R1が、ナフチルであり、且つ上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にClを有するベンジル、4位にOMeを有するベンジル、4位にFを有するベンジル、4位にOHを有するベンジル、4位にNO2を有するベンジル、4位に(4-メトキシフェニル)メトキシを有するベンジル、又は4位にメトキシメトキシを有するベンジルあることが好ましい。本願発明者らは、後述の実施例のIC-2-Ar-Cl、IC-2-506-1、IC-2-Cl、IC-2-OMe、IC-2-F、IC-2-OH、IC-2-NO2、IC-2-OPMB、及びIC-2-OMOMが、肝癌細胞においてIC-2に比べて低濃度又は同濃度でより強力なWnt/βカテニンシグナル経路抑制効果を発揮したことを確認している。
 本発明の一実施形態において、肝星細胞においてIC-2に比べて低濃度又は同濃度でより強力なWnt/βカテニンシグナル経路を抑制する観点からは、(i)上記R1が、2,3位にClを有するフェニル、2,4位にClを有するフェニル、又は3,4位にClを有するフェニルであり、且つ上記R2が、-C(O)NH(CH2C6H5)であるか、(ii)上記R1が、ナフチルであり、且つ上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にClを有するベンジルであるか、又は(iii)上記R1が、ナフチルであり、且つ上記R2が、2位にNO2を有するフェニルであることが好ましい。本願発明者らは、後述の実施例のIC-2-506-1、IC-2-506-2、IC-2-506-3、IC-2-Cl、及び7c-NTが、肝星細胞においてIC-2に比べて低濃度又は同濃度でより強力なWnt/βカテニンシグナル経路抑制効果を発揮したことを確認している。
 本発明の一実施形態において、間葉系幹細胞においてIC-2に比べて低濃度又は同濃度でより強力なWnt/βカテニンシグナル経路を抑制する観点からは、(i)上記R1が、4位にClを有するフェニル、又は4位にNO2を有するフェニル、であり、且つ上記R2が、-C(O)NH(CH2C6H5)であるか、又は(ii)上記R1が、ナフチルであり、且つ上記R2が、-C(O)NHR4であり、且つ上記R4が、4位にNO2を有するベンジル、又は4位に(4-メトキシフェニル)メトキシを有するベンジルあることが好ましい。本願発明者らは、後述の実施例のIC-2-Ar-Cl、IC-2-Ar-NO2、IC-2-NO2、及びIC-2-OPMBが、間葉系幹細胞においてIC-2に比べて低濃度又は同濃度でより強力なWnt/βカテニンシグナル経路抑制効果を発揮したことを確認している。
 本発明の一実施形態において、式(1)のR1はナフチル、R2は-C(O)NHR4、R4は置換基R6を有するベンジル、及びR6はH、ハロゲン、ニトロ、アミノ、シアノ、OH、C1~C6アルキル、ハロゲノC1~C6アルキル、ヒドロキシC1~C6アルキル、C1~C6アルキルアミノ、C1~C6アルコキシ、ハロゲノC1~C6アルコキシ、ヒドロキシC1~C6アルコキシ、C1~C6アルコキシアミノ、C1~C6アルコキシで置換されているC1~C6アルコキシ、C1~C6アルコキシフェニルで置換されているC1~C6アルコキシ、トリC1~C6アルキルシロキシC1~C6アルキル、C1~C6アルキルジフェニルシロキシC1~C6アルキル、トリフェニルシロキシC1~C6アルキル、トリC1~C6アルキルシロキシ、C1~C6アルキルジフェニルシロキシ、及びトリフェニルシロキシからなる群から選ばれる1種以上の置換基であってもよい。
 本発明の一実施形態において「ハロゲン」とは、F、Cl、Br、又はIを含む。
 本発明の一実施形態において「アルキル」及び「アルケニル」とは、特に断らない限り、直鎖又は分枝状の炭化水素鎖を意味する。
 本発明の一実施形態において「C1~C6」は、炭素数が1、2、3、4、5、又は6の炭化水素である。即ち、「C1~C6アルキル」は、炭素数が1、2、3、4、5、又は6のアルキルである。C1~C6アルキルとしては、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、n-ヘキシル基等を含む。本発明の一実施形態において「トリC1~C6」は、例えば、モノC1~C6ジC1~C6、ジC1~C6モノC1~C6、又はモノC1~C6モノC1~C6モノC1~C6を含む。
 本発明の一実施形態において「アルケニル」は、例えば、エテニル、1-プロペニル、2-プロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、3-メチル-2-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、4-メチル-3-ペンテニル、1-ヘキセニル、3-ヘキセニル、又は5-ヘキセニル等を含む。
 本発明の一実施形態において「アルコキシ」は、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペントキシ、イソペントキシ、ヘキソキシ等を含む。
 本発明の一実施形態において「置換されていてもよい」とは、無置換、又は置換可能な位置に置換基を1、2、3、4、又は5個有していることを意味する。また、本発明の一実施形態において「置換基を有する」は、置換可能な位置に置換基(例えば、R1~R6を含む)を、例えば、1、2、3、4、5、6、7、又は13個有していてもよく、それらいずれか2つの値の範囲内で有していてもよい。なお、複数個の置換基を有する場合、それらの置換基は同一であってもよく、互いに異なっていてもよい。また本発明の一実施形態に係る化合物において、置換基の置換位置が特定されていない場合、又は「置換基を有する」と明記されている場合、置換位置は、例えば、1、2、3、4、5、6、7、8、又は9位であってもよい。ここで、置換基としては、例えばH、ハロゲン、ニトロ、アミノ、シアノ、OH、C1~C6アルキル、ハロゲノC1~C6アルキル、ヒドロキシC1~C6アルキル、C1~C6アルキルアミノ、C3~C6シクロアルキル、C2~C6アルケニル、ハロゲノC2~C6アルケニル、ヒドロキシC2~C6アルケニル、C2~C6アルケニルアミノ、C3~C6シクロアルケニル、C2~C6アルキニル、ハロゲノC2~C6アルキニル、ヒドロキシC2~C6アルキニル、C2~C6アルキニルアミノ、C1~C6アルコキシ、ハロゲノC1~C6アルコキシ、ヒドロキシC1~C6アルコキシ、C1~C6アルコキシアミノ、C1~C6アルコキシフェニル、トリアルキルシロキシ、アルキルジフェニルシロキシ、アリール、ヘテロアリール、C1~C6アルコキシで置換されているC1~C6アルコキシ、C1~C6アルコキシフェニルで置換されているC1~C6アルコキシ、トリC1~C6アルキルシロキシC1~C6アルキル、C1~C6アルキルジフェニルシロキシC1~C6アルキル、トリフェニルシロキシC1~C6アルキル、トリC1~C6アルキルシロキシ、C1~C6アルキルジフェニルシロキシ、又はトリフェニルシロキシ等が挙げられる。
 本発明の一実施形態において「ハロゲノC1~C6アルキル」とは、1個以上のハロゲンで置換されたC1~C6アルキルである。このハロゲンの数は、例えば1、2、3、4、5、6又は13個であってもよく、ここで例示したいずれか2つの値の範囲内であってもよい。又はロゲンが2個以上である場合の各ハロゲンの種類は、同一又は異なっていてもよい。ハロゲノC1~C6アルキルは、例えば、クロロメチル、ジクロロメチル、トリクロロメチル、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、クロロエチル、ジクロロエチル、トリクロロエチル、フルオロエチル、ジフルオロエチル、トリフルオロエチル等を含む。
 本発明の一実施形態において「ヒドロキシC1~C6アルキル」とは、1個以上のヒドロキシで置換されたC1~C6アルキルである。このヒドロキシンの数は、例えば1、2、3、4、5、6又は13個であってもよく、ここで例示したいずれか2つの値の範囲内であってもよい。ヒドロキシC1~C6アルキルは、例えば、ヒドロキシメチル、1-ヒドロキシエチル、2-ヒドロキシエチル、2-ヒドロキシ-n-プロピル、又は2,3-ジヒドロキシ-n-プロピル等を含む。
 本発明の一実施形態において「C1~C6アルキルアミノ」とは、1個以上のアミノで置換されたC1~C6アルキルである。このアミノの数は、例えば1、2、3、4、5、6又は13個であってもよく、ここで例示したいずれか2つの値の範囲内であってもよい。C1~C6アルキルアミノは、例えば、メチルアミノ、又はエチルアミノ等を含む。
 本発明の一実施形態において「ハロゲノC1~C6アルコキシ」とは、ハロゲノC1~C6アルキルのアルキルをアルコキシに置き換えたものと等価である。ハロゲノC1~C6アルコキシは、例えば、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、1-フルオロエトキシ、2-フルオロエトキシ、2-クロロエトキシ、2-ブロモエトキシ、(1,1-ジフルオロ)エトキシ、(1,2-ジフルオロ)エトキシ、(2,2,2-トリフルオロ)エトキシ、(1,1,2,2-テトラフルオロ)エトキシ、(1,1,2,2,2-ペンタフルオロ)エトキシ、1-フルオロ-n-プロポキシ、1,1-ジフルオロ-n-プロポキシ、2,2-ジフルオロ-n-プロポキシ、3-フルオロ-n-プロポキシ、(3,3,3-トリフルオロ)-n-プロポキシ、(2,2,3,3,3-ペンタフルオロ)-n-プロポキシ、4-フルオロ-n-ブトキシ、(4,4,4-トリフルオロ)-n-ブトキシ、5-フルオロ-n-ペンチルオキシ、(5,5,5-トリフルオロ)-n-ペンチルオキシ、6-フルオロ-n-ヘキシルオキシ、(6,6,6-トリフルオロ)-n-ヘキシルオキシ、2-フルオロシクロプロポキシ、2-フルオロシクロブトキシ等を含む。
 本発明の一実施形態において「ヒドロキシC1~C6アルコキシ」とは、ヒドロキシC1~C6アルキルのアルキルをアルコキシに置き換えたものと等価である。ヒドロキシC1~C6アルコキシは、例えば、2-ヒドロキシエトキシ、2-ヒドロキシ-n-プロポキシ、3-ヒドロキシ-n-プロポキシ、2,3-ジヒドロキシ-n-プロポキシ、2-ヒドロキシシクロプロピル等を含む。
 本発明の一実施形態において「C1~C6アルコキシアミノ」とは、C1~C6アルキルアミノのアルキルをアルコキシに置き換えたものと等価である。C1~C6アルコキシアミノは、例えば、メトキシアミノ、エトキシアミノを含む。
 本発明の一実施形態において「アリール」とは、C6~14の単環、二環、又は三環式芳香族炭化水素環基である。アリールは、例えばフェニル、ナフチル(1-ナフチル、2-ナフチル)、ベンジル、テトラヒドロナフタレニル、インデニル、又はフルオレニル等が挙げられる。特に、優れた抗腫瘍効果、抗線維化、肝細胞分化誘導効果を実現する観点からは、ナフチル、フェニル、又はベンジルが好ましい。またアリールは、例えばC5~8シクロアルケンとその二重結合部位で縮合した環基を含む。
 本発明の一実施形態において「ヘテロアリール」とは、環内に5から14個の環原子、および共有π電子系を有し、N、S、及びOよりなる群から選択されたヘテロ原子を1~4個含有する基を挙げることができる。ヘテロアリールは、例えば、チエニル、ベンゾチエニル、フリル、ベンゾフリル、ジベンゾフリル、ピロリル、イミダゾリル、ピラゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニル、テトラゾリル、オキサゾリル、チアゾリル、又はイソオキサゾリル等を含む。
 本発明の一実施形態において「塩」は、特に限定されないが、例えば任意の酸性(例えばカルボキシル)基で形成されるアニオン塩、又は任意の塩基性(例えばアミノ)基で形成されるカチオン塩を含む。塩類には無機塩および有機塩を含み、[Berge,BighleyおよびMonkhouse, J.Pharm.Sci., 1977, 66, 1-19]に記載されている塩が含まれる。例えば、金属塩、アンモニウム塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性又は酸性アミノ酸との塩等が挙げられる。金属塩は、例えば、アルカリ金属塩(ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩、バリウム塩等)、アルミニウム塩等が挙げられる。有機塩基との塩は、例えば、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N'-ジベンジルエチレンジアミン等との塩が挙げられる。無機酸との塩は、例えば、塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩は、例えば、ギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等との塩が挙げられる。塩基性アミノ酸との塩は、例えば、アルギニン、リジン、オルニチン等との塩が挙げられ、酸性アミノ酸との塩は、例えば、アスパラギン酸、グルタミン酸等との塩が挙げられる。
 本発明の一実施形態において「溶媒和物」は、溶質および溶媒によって形成される化合物である。溶媒和物については例えば、[J.Honig et al., The Van Nostrand Chemist's Dictionary P650 (1953)]を参照できる。溶媒が水であれば形成される溶媒和物は水和物である。この溶媒は、溶質の生物活性を妨げないものが好ましい。そのような好ましい溶媒の例として、限定するものではないが、水、エタノール、および酢酸が挙げられる。最も好ましい溶媒は、水である。本発明に係る化合物又はその塩は、大気に触れるか又は再結晶するときに水分を吸収し、場合によっては吸湿水を有するか又は水和物となりうる。本発明の一実施形態において「異性体」は、分子式は同一だが構造が異なる分子を含む。鏡像異性体(エナンチオマー)、幾何(シス/トランス)異性体、又は相互に鏡像ではない不斉中心を1個以上有する異性体(ジアステレオマー)を含む。本発明の一実施形態において「プロドラッグ」は、前駆体である化合物であって、その化合物を被験体へ投与した際に、代謝過程又は種々化学反応によって化学的変化を起こし、本発明に係る化合物又はその塩もしくはその溶媒和物をもたらす化合物を含む。プロドラッグについては、例えば[T. Higuchi and V. Stella, "Pro-Drugs as Novel Delivery Systems", A.C.S . Symposium Series, Volume 14]を参照できる。
 本発明の一実施形態において「悪性腫瘍」は、例えば、正常な細胞が突然変異を起こして発生する腫瘍を含む。悪性腫瘍は全身のあらゆる臓器や組織から生じ得る。この悪性腫瘍は、例えば、肺癌、食道癌、胃癌、肝臓癌、膵臓癌、腎臓癌、副腎癌、胆道癌、乳癌、大腸癌、小腸癌、卵巣癌、子宮癌、膀胱癌、前立腺癌、尿管癌、腎盂癌、尿管癌、陰茎癌、精巣癌、脳腫瘍、中枢神経系の癌、末梢神経系の癌、頭頸部癌、グリオーマ、多形性膠芽腫、皮膚癌、メラノーマ、甲状腺癌、唾液腺癌、悪性リンパ腫、癌腫、肉腫、及び血液悪性腫瘍からなる群から選ばれる1種以上を含む。上記肝臓癌は、例えば、上皮性腫瘍、又は非上皮性腫瘍であってもよく、肝細胞癌、胆管細胞癌であってもよい。上記皮膚癌は、例えば、基底細胞癌、扁平上皮癌、又は悪性黒色腫を含む。
 悪性腫瘍の研究分野において、近年、癌幹細胞の存在が見いだされている。癌幹細胞は、分化して癌細胞になると考えられている。癌患者では、癌細胞の除去後一定期間を経た後に再発が起きることがあるが、これは極少数生き残った癌幹細胞に起因するものだとも言われている。この癌幹細胞の特徴的なことは、従来の多くの抗癌剤が効きにくいということである。この点に関して、九州大学の中山教授らは、モデルマウスにおいてFbxw7を欠損させると、癌幹細胞がイマチニブ(抗癌剤)で死滅するという研究結果を報告している(Takeishi et al., Cancer Cell. 2013 Mar 18;23(3):347-61.)。但し、癌幹細胞の増殖を直接抑制する化合物は得られていない。
 本発明の一実施形態において「癌幹細胞」は、癌細胞の起源となる細胞を含む。この癌幹細胞は、癌幹細胞マーカーを発現している細胞を含む。癌幹細胞マーカーは、例えば、CD44、CD90、CD133、又はEpCAMを含む。
 線維化は、典型的には、コラーゲンなどを構成要素とする結合組織が増生し正常組織に置きかわることによって、組織が硬化し正常な機能が失われることによって生じる症状として知られている。例えば、肝臓、肺、腎臓、心臓、皮膚などの各組織に生じる。また例えば、肝組織に多量の線維化が生じた場合には、肝硬変になり、さらには肝癌になることがある。また肝組織以外にも、線維化の進行に伴い、各組織に悪性腫瘍が生じることがある。線維症は、線維化に伴う疾患を含む。線維化に伴う疾患は、例えば、線維化に伴う、上記各組織の線維症、硬変、悪性腫瘍等を含む。
 本発明の一実施形態において「治療」は、患者の疾患、もしくは疾患に伴う1つ以上の症状の、症状改善効果、抑制効果、又は予防効果を発揮しうることを含む。本発明の一実施形態において「治療薬」は、有効成分と、薬理学的に許容される1つもしくはそれ以上の担体とを含む医薬組成物であってもよい。医薬組成物は、例えば有効成分と上記担体とを混合し、製剤学の技術分野において知られる任意の方法により製造できる。また治療薬は、治療のために用いられる物であれば使用形態は限定されず、有効成分単独であってもよいし、有効成分と任意の成分との混合物であってもよい。また上記担体の形状は特に限定されず、例えば、固体又は液体(例えば、緩衝液)であってもよい。なお悪性腫瘍の治療薬は、例えば、悪性腫瘍の予防のために用いられる薬物(予防薬)、悪性腫瘍の再発抑制薬、又は悪性腫瘍細胞の増殖抑制剤を含む。癌幹細胞の治療薬は、例えば、癌幹細胞を標的とした治療薬、癌幹細胞に起因する悪性腫瘍の治療薬、又は癌幹細胞の抑制剤を含む。
 治療薬の投与経路は、治療に際して効果的なものを使用するのが好ましく、例えば、静脈内、皮下、筋肉内、腹腔内、又は経口投与等であってもよい。投与形態としては、例えば、注射剤、カプセル剤、錠剤、顆粒剤等であってもよい。注射用の水溶液は、例えば生理食塩水、糖(例えばトレハロース)、NaCl、又はNaOH等を配合してもよい。また治療薬は、例えば、緩衝剤(例えばリン酸塩緩衝液)、安定剤等を配合してもよい。
 投与量は特に限定されないが、例えば、1回あたり0.001、0.01、0.1、1、4、5、10、15、20、50、100、又は1000mg/kg体重であってもよく、それらいずれか2つの値の範囲内であってもよい。投与間隔は特に限定されないが、例えば、1、7、14、21、又は28日あたりに1又は2回投与してもよく、それらいずれか2つの値の範囲あたりに1又は2回投与してもよい。投与量、投与間隔、投与方法は、患者の年齢や体重、症状、対象臓器等により、適宜選択してもよい。また治療薬は、治療有効量、又は所望の作用を発揮する有効量の有効成分を含むことが好ましい。
 悪性腫瘍の治療効果は、画像検査、内視鏡検査、生研、又は悪性腫瘍マーカーの検出により評価してもよい。また、癌幹細胞の治療効果は、画像検査、内視鏡検査、生研、又は癌幹細胞マーカーの検出により評価してもよい。また、線維症の治療効果は、画像検査、内視鏡検査、生研、又は線維化マーカーの検出により評価してもよい。各治療効果は、患者又は患者由来サンプル(例えば、組織、細胞、細胞集団、又は血液)中のマーカー量が、治療薬投与後に有意に減少した場合に、治療効果があったと判断してもよい。このとき、治療薬投与後のマーカー量は、投与前(又はコントロール)に比べて、0.7、0.5、0.3、又は0.1倍以下に減少していてもよい。又は、患者由来サンプル中のマーカー陽性細胞数が、治療薬投与後に有意に減少した場合に、治療効果があったと判断してもよい。このとき、治療薬投与後のマーカー陽性細胞数は、投与前(又はコントロール)に比べて、0.7、0.5、0.3、又は0.1倍以下に減少していてもよい。なお、後述する実施例6では、CD44陽性HuH-7細胞を皮下に移植したマウスを用いて治療効果を評価したが、本願発明者らは、上記CD44陽性HuH-7細胞に代えて、通常のHuH-7細胞を用いた場合にも、IC-2が悪性腫瘍の治療効果を示したことを実験で確認している。
 また悪性腫瘍の治療効果は、患者由来の被験細胞の増殖速度が、治療薬投与後に有意に減少した場合に、治療効果があったと判断してもよい。このとき、治療薬投与後の被験細胞の増殖速度は、投与前(又はコントロール)に比べて、0.7、0.5、0.3、又は0.1倍以下に減少していてもよい。なお、本発明の一実施形態において「有意に」は、例えば、統計学的有意差をスチューデントのt検定(片側又は両側)を使用して評価し、p<0.05又はp<0.01である状態であってもよい。又は、実質的に差異が生じている状態であってもよい。
 本発明の一実施形態において「患者」は、ヒト、又はヒトを除く哺乳動物(例えば、マウス、モルモット、ハムスター、ラット、ネズミ、ウサギ、ブタ、ヒツジ、ヤギ、ウシ、ウマ、ネコ、イヌ、マーモセット、サル、又はチンパンジー等の1種以上)を含む。また患者は、悪性腫瘍又は線維症を発症していると判断又は診断された患者であってもよい。又は、患者は、悪性腫瘍又は線維症の治療を必要としている患者であってもよい。又は、患者は、健常人に比べて組織中の癌幹細胞数が有意に多いと判断又は診断された患者であってもよい。なお、判断又は診断は、画像検査、内視鏡検査、生研、又は各種マーカーを検出することにより行ってもよい。
 本発明の一実施形態において「細胞の増殖が抑制されている状態」は、被験細胞の増殖速度が、薬剤処理前に比べて有意に減少している状態を含む。増殖速度は、一定期間の細胞の増殖量を測定することで評価できる。増殖量の測定は、例えば、吸光度を指標にして測定しても良く、目視で行ってもよい。又は、増殖量の測定は、患者又は患者由来サンプル中の悪性腫瘍マーカーの量を指標にして測定してもよい。本発明の一実施形態において「癌幹細胞の抑制」は、例えば、癌幹細胞の増殖抑制、機能抑制(例えば、スフェア形成抑制、マーカー発現抑制)を含む。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍、癌幹細胞、又は線維化のマーカー抑制剤である。本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍又は癌幹細胞のスフェア形成阻害剤である。このスフェア形成阻害剤は、悪性腫瘍又は癌幹細胞の治療に使用できる。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を患者に投与する工程を含む、治療方法である。本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物の、治療薬の製造のための使用である。本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を患者に投与する工程を含む、悪性腫瘍細胞、又は癌幹細胞の増殖抑制方法である。本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物の、悪性腫瘍細胞、又は癌幹細胞の増殖抑制剤の製造のための使用である。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を患者に投与する工程を含む、悪性腫瘍の再発抑制方法である。本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物の、悪性腫瘍の再発抑制薬の製造のための使用である。
 本発明の一実施形態は、式(1)に示す化合物、その塩、又はそれらの溶媒和物を含むWnt/β-カテニンシグナル経路抑制剤である。この抑制剤を用いれば、Wnt/β-カテニンシグナル経路を抑制することができる。この抑制剤は、例えば、Wnt/β-カテニンシグナル経路抑制効果によって改善される疾患の治療に使用できる。
 本発明の一実施形態は、式(2)に示す化合物、その塩、又はそれらの溶媒和物(以下、「式(2)に示す化合物等」と称することもある)を含む、式(2)に示す化合物等と5-FU(5-フルオロウラシル)との併用療法において用いられる悪性腫瘍の治療薬である。また本発明の一実施形態は、5-FUを含む、5-FUと式(2)に示す化合物、その塩、又はそれらの溶媒和物との併用療法において用いられる悪性腫瘍の治療薬である。
 このとき、「併用療法において用いられる」は、式(2)に示す化合物等と、5-FUとが同時に又は別々に投与されてもよい。また「併用療法において用いられる」は、式(2)に示す化合物等と、5-FUとが合剤として投与される形態を含む。また、投与の順番は、式(2)に示す化合物等を先に投与してもよく、5-FUを先に投与してもよい。また本発明の一実施形態は、式(2)に示す化合物等と、5-FUとを含む、悪性腫瘍治療用の合剤である。また本発明の一実施形態は、式(2)に示す化合物等と、5-FUとを患者に投与する工程を含む、悪性腫瘍の治療方法である。このとき、患者は、式(2)に示す化合物等、又は5-FU投与後の患者であってもよい。また本発明の一実施形態は、式(2)に示す化合物等の、式(2)に示す化合物等と5-FUとの併用療法において用いられるための悪性腫瘍治療薬の製造のための使用である。これらの治療薬、合剤、又は治療方法によれば、例えば、式(2)に示す化合物等と、5-FUとによる、相乗的な抗腫瘍効果が得られる。例えば、単独では有意な治療効果を示さない低濃度の式(2)に示す化合物等を使用した場合でも、5-FUと併用投与することによって、5-FUを単独で用いたときに比べて、高い治療効果が得られる。又は、例えば、単独では有意な治療効果を示さない低濃度の式(2)に示す化合物等と、単独では有意な治療効果を示さない低濃度の5-FUとを併用投与した場合に、治療効果が得られる。なお、本発明の一実施形態において「低濃度」は、例えば、1回あたり0.001、0.01、0.1、1、2、3、4、5、10、15、又は20mg/kg体重であってもよく、それらいずれか2つの値の範囲内であってもよい。
 本発明の一実施形態において、式(2)の置換基R7、及びR8は同一又は異なって、置換されていてもよいC1~C6アルキル、又は置換されていてもよいC2~C6アルケニルである。本発明の一実施形態において、優れた抗腫瘍効果を実現する観点からは、好ましくは、上記置換基R7及びR8は、同一又は異なって、C1~C6アルキルである。また、より優れた抗腫瘍効果を実現する観点からは、より好ましくは、上記置換基R7及びR8は、同一又は異なって、C1~C3アルキルである。また、さらに優れた抗腫瘍効果を実現する観点からは、さらに好ましくは、上記置換基R7及びR8は、メチルである。
 上記いずれかの方法は、さらに、悪性腫瘍マーカー、癌幹細胞マーカー、繊維化マーカー、又は肝細胞マーカーを検出する工程を含んでいてもよい。上記いずれかの剤、又は方法は、in vitro又はin vivoの用途に使用できる。
 本明細書において引用しているあらゆる刊行物、公報類(特許、又は特許出願)は、その全体を参照により援用する。
 本明細書において「又は」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。本明細書において「A~B」は、A以上B以下を意味するものとする。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記実施形態に記載の構成を組み合わせて採用することもできる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
<実施例1>化合物の合成
 化合物の合成を図1~9に示すスキームにしたがって行った。合成の詳細については以下に示す。合成した化合物の構造式とスペクトルデータを図10~14に示す。
 化合物1
 1-naphtaldehyde(1.6 g, 10 mmol)と2,2-dietoxyethanamine(1.3 g, 10 mmol)を混合し、100 oCで30 min~1 hr撹拌した。放冷後、反応混合物にEtOH(25 mL)を加え、撹拌して均一にした後、NaBH4(0.38 g, 10 mmol)を少量ずつ加え、その後は室温で1 hr~一晩撹拌した。反応終了後、減圧濃縮によりEtOHを留去し、得られた残渣に水(適量)を加え、生成物をAcOEtで抽出した。分離した有機層は飽和食塩水で洗浄し、Na2SO4で乾燥を行った後、ろ過および減圧濃縮を行った。得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 5/1)で精製することで1(2.3 g, 8.5 mmol, 85 %)を無色透明液体で得た。
 化合物2b
 Fmoc-L-Phe-OH(0.54 g, 2.0 mmol)のdry-DMF(7 mL)溶液にHATU(0.76 g, 2.0 mmol)とdiisopropylethylamine(DIEA)(0.26 g, 2.0 mmol)を加え、室温で30 min撹拌後、その反応混合物に1(0.54 g, 2.0 mmol)を加え、室温で一晩撹拌した。反応終了後、水(20 mL)を加え、生成物をAcOEtで抽出した。分離した有機層は飽和食塩水で2回洗浄し、Na2SO4で乾燥を行った後、ろ過および減圧濃縮を行った。得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 1/2)で精製することで2b(1.2 g, 1.9 mmol, 95 %)を無色固体で得た。
 化合物3b
 2b(1.1 g, 1.7 mmol)のCH2Cl2(20 mL)溶液にdiethylamine(DEA)(10 mL)を加え、室温で3 hr撹拌した。反応終了後、減圧濃縮によりCH2Cl2および過剰のDEAを留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/EtOH = 5/1)で精製することで3b(0.55 g, 1.3 mmol, 76 %)を無色透明の粘性液体で得た。
 化合物4b
 Fmoc-β-Ala-OH(2.5 g, 8.0 mmol)のdry-DMF(15 mL)溶液にHATU(3.3 g, 8.7 mmol)とDIEA(1.1 g, 8.5 mmol)を加え、室温で30 min撹拌後、その反応混合物に3b(3.3 g, 7.8 mmol)を加え、室温で一晩撹拌した。反応終了後、水(30 mL)を加え、生成物をAcOEtで抽出した。分離した有機層は飽和食塩水で2回洗浄し、Na2SO4で乾燥を行った後、ろ過および減圧濃縮を行った。得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 3/1)で精製することで4b(5.1 g, 7.1 mmol, 91 %)を無色固体で得た。
 化合物6b
 4b(2.8 g, 3.9 mmol)のCH2Cl2(10 mL)溶液にDEA(6 mL)を加え、室温で3~4 hr撹拌した。減圧濃縮によりCH2Cl2および過剰のDEAを留去し、得られた残渣にCH2Cl2(適量)を加え、均一溶液にした後、再度、減圧濃縮を行った。この操作を2回行った後、得られた残渣にCH2Cl2(10 mL)を加え、撹拌して均一にした後、benzyl isocyanate(0.78 g, 5.9 mmol)を加え、室温で一晩撹拌した。反応終了後、減圧濃縮によりCH2Cl2を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/EtOH = 30/1)で精製することで6b(1.5 g, 2.4 mmol, 62 %)を無色固体で得た。
 化合物8b
 4b(1.6 g, 2.3 mmol)にギ酸(10 mL)を加え、室温で一晩撹拌した。反応終了後、減圧濃縮によりギ酸を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 4/1)で精製することで8b(1.3 g, 2.1 mmol, 91 %)を無色固体で得た。
 化合物9b
 8b(1.1 g, 1.8 mmol)のCH2Cl2(5.5 mL)溶液にdiethylamine(1.3 g, 18 mmol, 1.8 mL)を加え、室温で3 hr撹拌した。反応終了後、減圧濃縮によりCH2Cl2を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/EtOH = 7/1)で精製することで9b(0.57 g, 1.4 mmol, 78 %)を無色固体で得た。
 化合物IC-2(6bからの合成)
 6b(1.3 g, 2.1 mmol)にギ酸(8 mL, 0.21 mol)を加え、室温で一晩撹拌した。反応終了後、減圧濃縮によりギ酸を留去し、得られた残渣をカラムクロマトグラフィー(AcOEt/EtOH = 30/1)で精製することでIC-2 (1.0 g, 1.9 mmol, 90 %)を無色固体で得た。
 化合物IC-2 (9bからの合成)
 9b(3.3 g, 8.3 mmol)のCH2Cl2(10 mL)溶液にbenzyl isocyanate(1.4 g, 11 mmol)を加え、室温で一晩撹拌した。反応終了後、減圧濃縮によりCH2Cl2を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/EtOH = 30/1)で精製することでIC-2(3.7 g, 6.9 mmol, 83 %)を無色固体で得た。
 化合物1-Ar-R(R = 4-OMe, 4-Cl, 4-F, 4-NO2, 2,3-Cl2, 2,4-Cl2, 又は3,4-Cl2
 化合物1の場合と同様の合成手順において、1-naphtaldehydeに変えて4置換benzaldehyde(置換基R = OMe, Cl, F, NO2)、2,3置換benzaldehyde(置換基R = Cl)、2,4置換benzaldehyde(置換基R = Cl)、又は3,4置換benzaldehyde(置換基R = Cl)を用いて操作を行った。
 化合物1-Ar-OBoc
 4-hydroxybenzaldehyde(1.9 g, 16 mmol)と2,2-dietoxyethanamine(2.0 g, 15 mmol)を混合し、100 oCで1 hr撹拌した。放冷後、反応混合物にTHF(30 mL)を加え、撹拌して均一にした後、4-(dimethylamino)pyridine(DMAP)(0.55 g, 4.5 mmol)とdi-tert-butyl dicarbonate(Boc2O)(3.9 g, 18 mmol)を加え、室温で30 min撹拌した。反応混合物にAcOEt(適量)を加え、有機層を飽和NH4Cl水溶液(適量)で2回、飽和食塩水(適量)で1回洗浄し、Na2SO4で乾燥を行った。ろ過および減圧濃縮を行った後、得られた残渣にEtOH(30 mL)を加え、撹拌して均一にした後、NaBH4(0.43 g, 11 mmol)を少量ずつ加え、その後、室温で1 hr撹拌した。反応終了後、減圧濃縮によりEtOHを留去し、得られた残渣に水(適量)を加え、生成物をAcOEtで抽出した。分離した有機層は飽和食塩水で洗浄し、Na2SO4で乾燥を行った後、ろ過および減圧濃縮を行った。得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 3/1)で精製することで1-Ar-OBoc(2.7 g, 8.0 mmol, 53 %)を無色透明液体で得た。
 化合物2b-Ar-R及び2b-Ar-OBoc
 化合物2bの場合と同様の合成手順において、化合物1に変えて化合物1-Ar-R(R = 4-OMe, 4-Cl, 4-F, 4-NO2, 2,3-Cl2, 2,4-Cl2, 又は3,4-Cl2)又は化合物1-Ar-OBocを用いて操作を行った。
 化合物3b-Ar-R及び3b-Ar-OBoc
 化合物3bの場合と同様の合成手順において、化合物2bに変えて化合物2b-Ar-R又は化合物2b-Ar-OBocを用いて操作を行った。
 化合物4b-Ar-R及び4b-Ar-OBoc
 化合物4bの場合と同様の合成手順において、化合物3bに変えて化合物3b-Ar-R化合物3b-Ar-OBocを用いて操作を行った。
 化合物8b-Ar-R
 化合物8bの場合と同様の合成手順において、化合物4bに変えて化合物4b-Ar-Rを用いて操作を行った。
 化合物9b-Ar-R
 化合物9bの場合と同様の合成手順において、化合物8bに変えて化合物8b-Ar-Rを用いて操作を行った。
 化合物IC-2-Ar-R及びIC-2-506-1~-3
 化合物IC-2 (9bからの合成)の場合と同様の合成手順において、化合物9bに変えて化合物9b-Ar-Rを用いて操作を行った。
 化合物6b-Ar-OBoc
 化合物6bの場合と同様の合成手順において、化合物4bに変えて化合物4b-Ar-OBocを用いて操作を行った。
 化合物IC-2-Ar-OH
 化合物IC-2(6bからの合成)の場合と同様の合成手順において、化合物6bに変えて化合物6b-Ar-OBocを用いて操作を行った。
 化合物6b-R(R = OMe, Cl, F)
 化合物6bと同様の合成手順において、benzyl isocyanateに代えて4置換benzyl isocyanate(置換基R = OMe, Cl, 又はF)を用いて操作を行った。
 化合物IC-2-R
 IC-2(6bからの合成)と同様の合成手順において、6bに代えて6b-R(R = OMe, Cl, F)を用いて操作を行った。
 IC-2-R(R = NO2
 IC-2(9bからの合成)と同様の合成手順において、benzyl isocyanateに代えて4置換benzyl isocyanate(置換基R = NO2)を用いて操作を行った。
 4-(4-Methoxybenzyloxy)phenylacetic acid
 methyl 4-hydroxyphenylacetate (2.7 g, 16 mmol)のdry-DMF (20 mL)溶液にK2CO3 (4.4 g, 32 mmol)と4-methoxybenzyl chloride (1.3 g, 8 mmol)を加え、室温で24 hr撹拌した。反応混合物を氷水(30 mL)に投入し、生成物をEtOAcで抽出した。分離した有機層は飽和食塩水で洗浄し、Na2SO4で乾燥を行った後、ろ過および減圧濃縮を行った。得られた残渣にMeOH (24 mL)とTHF (8 mL)を加え、撹拌して均一にした後、NaOH水溶液 (0.96 g, 24 mmol, 6 mL)をゆっくり加え、室温で2 hr撹拌した。減圧濃縮により有機溶媒を留去した後、水 (50 mL)を加え、1M-硫酸で酸性にし、酢酸エチルとTHFで生成物を抽出した。有機層を飽和食塩水で2回洗浄した後、Na2SO4で乾燥を行い、ろ過および減圧濃縮を行った。得られた残渣を再結晶(EtOAc-THF)することで純粋な4-(4-Methoxybenxyloxy)phenylacetic acid (1.8 g, 6.8 mmol, 85 %)を得た。
 4-Methoxymethoxyphenylacetic acid
 Methyl 4-hydroxyphenylacetate (2.5 g, 15 mmol)のCH2Cl2 (15 mL)溶液にDIEA (3.9 g, 30 mmol)を加え、氷水浴での冷却下、Chloromethyl Methyl Ether (1.8 g, 23 mmol)を加え、10 min間その温度で撹拌後、室温に戻し、さらに一晩撹拌した。減圧濃縮によりCH2Cl2および過剰のChloromethyl Methyl Etherを除去した後、MeOH (25 mL)を加え、撹拌して均一にしたところにKOH水溶液 (3.0 g, 45 mmol, 5 mL)を加え、室温で1.5 hr撹拌した。反応混合物に水 (20 mL)を加え、水層を分離後、飽和NH4Cl水溶液 (20 mL)を加え、希硫酸でpHを約4まで調整した。そこへEtOAcを加え、有機層を分離後、飽和食塩水による洗浄およびNa2SO4による乾燥を行った。ろ過、減圧濃縮および減圧乾燥により、4-methoxymethoxyphenylacetic acid (2.2 g, 11 mmol, 76 %)を得た。
 Benzyl 4-hydroxyphenylacetate
 Ar下、氷水浴によって冷却された4-hydroxyphenylacetic acid (3.0 g, 20 mmol)のdry-DMF (20 mL)溶液にNaH (60 % in oil, 0.88 g, 22 mmol)を加え、その温度で30 min間撹拌後、benzyl bromide (6.8 g, 40 mmol)を何回かに分けて、30 minかけて加えた。氷水浴冷却下で3 hr撹拌後、室温で一晩撹拌した。反応混合物に水 (20 mL)とEtOAc (20 mL)を加え、よく撹拌した後、有機層を分離し、5 %-NaHCO3水溶液および飽和食塩水による洗浄、そしてNa2SO4による乾燥を行った。ろ過および減圧濃縮後、得られた固体にhexaneを加え、吸引ろ過を行い、得られた固体を減圧乾燥することでbenzyl 4-hydroxyphenylacetate (3.4 g, 14 mmol, 70 %)を得た。
 4-(tert-Butyldimethylsiloxy)phenylacetic acid
 Benzyl 4-hydroxyphenylacetate (1.7 g, 7 mmol)のdry-DMF (10 mL)溶液にtert-butyldimethylsilyl chloride (1.5 g, 9.8 mmol)とimidazole (1.1 g, 16.8 mmol)を加え、室温で2 hr撹拌した。反応混合物に水 (15 mL)とEtOAc (15 mL)を加え、有機層を分離した後、飽和食塩水による洗浄およびNa2SO4による乾燥を行い、ろ過および減圧濃縮を行った。得られた残渣にEtOH (15 mL)を加え、撹拌して均一にした溶液に、5%-Pd/C (0.75 g)を加え、系内をH2置換した。室温で4 hr撹拌した後、ろ紙を二枚重ねたろ過でPd/Cを除去し、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 1/2)に通すことで4-(tert-butyldimethylsiloxy)phenylacetic acid (0.78 g, 2.9 mmol, 42 %)を得た。
 4-(tert-Butyldimethylsiloxymethyl)phenylacetic acid
 4-Hydroxymethylphenylacetic acidを出発原料とし、CO2H基へのベンジル化およびOH基へのtert-ブチルジメチルシリル化をそれぞれBenzyl 4-hydroxyphenylacetateおよび4-(tert-Butyl- dimethylsiloxy)phenylacetic acidと同様の手順で操作を行った。ただし、ベンジル化した化合物は単離せずに行った。シリカゲルカラムクロマトグラフィー:AcOEt/hexane = 1/2。4-hydroxymethyl- phenylacetic acidからの収率:34 %。
 化合物IC-2-OMOM
 4-Methoxymethoxyphenylacetic acid (0.59 g, 3 mmol)のtoluene (10 mL)溶液にdiphenylphosphoryl azide (0.83 g, 3 mmol)とEt3N (0.36 g, 3.6 mmol)を加え、80℃で2 hr撹拌した。放冷後、hexane (15 mL)を加え、しばらく撹拌した後、上澄み液をデカンテーションで採取した。残渣に再度、hexane (7 mL)を加え、しばらく撹拌後、デカンテーションによる上澄み液の採取を行い、さらにもう一度同じ操作を行った。採取した上澄み液を減圧濃縮し、残渣にCH2Cl2 (8 mL)を加えて均一にしたところに9b (0.40 g, 1 mmol)を加えた。室温で混合物を一晩撹拌した後、減圧濃縮で有機溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(AcOEt)に通すことでIC-2-OMOM (0.50 g, 0.85 mmol, 84 %)を得た。
 化合物IC-2-NO2
 IC-2-OMOMと同様の手順で、4-nitrophenylacetic acidを用いて、操作を行った。ただし、途中、hexaneを加えて上澄み液を採取する操作は省略し、放冷後、反応混合物へ直接、CH2Cl2および9bを加えて行った。シリカゲルカラムクロマトグラフィー:AcOEt/EtOH = 8/1。収率:24 %。
 化合物IC-2-OPMB
 IC-2-OMOMと同様の手順で、4-(4-Methoxybenzyloxy)phenylacetic acidを用いて、操作を行った。ただし、4-(4-methoxybenzyloxy)phenylacetic acidはtolueneのみでは均一溶液とならず、dry-THF (5 mL)も加えて行った。シリカゲルカラムクロマトグラフィー:AcOEt/EtOH = 30/1。収率:93 %。
 化合物IC-2-OTBS
 IC-2-OMOMと同様の手順で、4-(tert-butyldimethylsiloxy)phenylacetic acidを用いて、操作を行った。シリカゲルカラムクロマトグラフィー:AcOEt。収率:76 %。
 化合物IC-2-MOTBS
 IC-2-OMOMと同様の手順で、4-(tert-butyldimethylsiloxymethyl)phenylacetic acidを用いて、操作を行った。シリカゲルカラムクロマトグラフィー:AcOEt。収率:66 %。
 化合物9b-CONH2
 IC-2-OPMB(0.27 g, 0.40 mmol)のCH2Cl2(8 mL) - 水(0.4 mL)溶液に2,3-Dichloro-5,6-dicyano-1,4-benzoquinone(DDQ)(0.19 g, 0.84 mmol)を加え、室温で一晩撹拌した。反応混合物に5 %-NaHCO3水溶液(10 mL)を加え、しばらく撹拌後、CH2Cl2で生成物を抽出した。分離した有機層は飽和食塩水で洗浄し、Na2SO4で乾燥を行った。ろ過および減圧濃縮を行った後、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/EtOH = 10/1)で精製することで9b-CONH2(0.11 g, 0.25 mmol, 63 %)を得た。
 化合物IC-2-OH
 IC-2-OTBS(0.46 g, 0.69 mmol)のdry-THF(8 mL)溶液に氷水冷却化でTBAFのTHF溶液(1 M, 1.4 mL, 1.4 mmol)を加え、その温度で30 min撹拌した。反応混合物に水(10 mL)を加えた後、生成物をAcOEtで抽出した。分離した有機層は飽和食塩水で洗浄し、Na2SO4で乾燥を行った。ろ過および減圧濃縮を行った後、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/EtOH = 30/1)で精製することでIC-2-OH(0.35 g, 0.64 mmol, 93 %)を得た。
 化合物IC-2-MOH
 IC-2-OHと同様の手順で、IC-2-MOTBSを用いて、操作を行った。ただし、TBAFのTHF溶液を加えた後、氷水浴をはずして室温まで昇温させ、それから1.5 hr撹拌した。シリカゲルカラムクロマトグラフィー:AcOEt/EtOH = 10/1。収率:71 %。
 化合物6c-NT
 5b(0.85 g, 1.7 mmol)のDMSO(8 mL)溶液にDIEA(0.50g, 3.9 mmol)と2-fluoronitrobenzene(0.37 g, 2.6 mmol)を加え、室温で2晩撹拌した。反応混合物に水(20 mL)を加え、しばらく撹拌後、生成物をAcOEtで抽出した。分離した有機層は飽和食塩水で洗浄し、Na2SO4で乾燥を行った。ろ過および減圧濃縮を行った後、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 1/1)で精製することで6c-NT(0.68 g, 1.1 mmol, 65 %)を黄色固体で得た。
 化合物7c-NT
 6c-NT(0.74 g, 1.2 mmol)にギ酸(4.5 mL, 120 mmol)を加え、室温で1 hr撹拌した。反応終了後、減圧濃縮でギ酸を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt/hexane = 2/1)で精製し、さらに再結晶(AcOEt - hexane)を行うことで7c-NT(87 mg, 0.17 mmol, 14 %)を黄色針状結晶で得た。
<実施例2>抗腫瘍効果
2.1 使用した試薬例
 ・DMEM: ダルベッコ変法イーグル培地2(日水製薬株式会社, 東京)、2 mM L-glutamine 0.2% NaHCO3、3500 mg/L D-glucose、100U/mL penicillin、100 μg/mL streptomycin(ナカライテスク株式会社, 京都)、10% ウシ胎児血清(FBS) (Sigma-Aldrich Corp., St. Louis, MO)
 ・PBS(-): 8000 mg/L NaCl、2900 mg/L Na2HPO4・12H2O、200 mg/L KCl、200 mg/L KH2PO4(ナカライテスク)
・0.25% Trypsin/1 mM EDTA solution:(ナカライテスク)
2.2 細胞培養
 ヒト肝癌細胞株HuH-7細胞は、φ10 cm細胞培養皿(TPP Techno Plastic Products AG, Trasadingen, Switzerland)上にて、DMEMを用いて、5% CO2、37℃、100%湿度下において培養した。70~90%コンフルエントになった状態で、PBS(-)で10倍希釈した0.25% Trypsin/1 mM EDTA solution 200 μLを加えて細胞を剥がし、1000 rpmで3分間、室温で遠心し細胞を回収、1枚分を4枚に分けて継代した。
 pGL4.20 (Promega Corp., Fitchburg, WI)のマルチクローニングサイトに、CMVプロモーターと、その上流にTCF4モチーフ(CCT TTG ATC)を3コピー持つpTCF4-CMVpro-GL4.20プラスミドベクターを線状化し、安定導入したHuH-7細胞(HuH7-TCF4細胞)は、HuH-7細胞と同様にして培養した。
2.3 癌細胞の増殖抑制効果(WSTアッセイ)
 70~90%コンフルエントになったHuH-7細胞を回収し、96穴プレート(TPP)の各ウェルに5×10^3個ずつn=3で播種した。24時間後に各化合物を細胞に添加し、37℃で培養した。各化合物の濃度は0、10、20、30、40、50 μMである。ただし、IC-2-506-1は0、10、20、25、30、40、50 μMを使用した。コントロール(0 μM)には、各化合物の溶媒とした0.1% DMSOを用いた。
 化合物処理0、24、48、96時間後にDMEMで希釈した10% Cell Counting Kit-8(株式会社同仁化学研究所, 熊本)100 μLを加え、37℃、60分間インキュベートし、サンライズレインボーRC (Tecan Group Ltd., Mannedorf, Switzerland)を用いて吸光度(測定波長450 nm/対照波長600 nm)を測定した。測定結果は、10% Cell Counting Kit-8のみの吸光度との差をとることで、細胞のみの吸光度とした。
 また、各化合物のIC50は、IC50=10^{LOG(A/B)×(50-C)/(D-C)+LOG(B)}により求めた。Aは抑制率50%を挟む高い濃度、Bは50%を挟む低い濃度、CはBでの抑制率、DはAでの抑制率を表す。なお、有意差はスチューデントのt検定(両側)で評価し、図中の*は0.1% DMSOに対してp<0.05で有意差あり、**はp<0.01で有意差ありを意味する(実施例中の全図に共通)。
 以上の結果、すべての化合物でコントロールに対して有意な増殖抑制効果がみられた(図15~31)。各化合物のIC50はIC-2-Ar-Cl: 45.07 μM、IC-2-506-1: 14.10 μM、IC-2-506-2: 25.63 μM、IC-2-506-3: 18.32 μM、IC-2-OTBS: 11.76 μM、7c-NT: 36.11 μM、IC-2-OMe: 34.89 μM、IC-2-F: 22.20 μM、IC-2-Cl: 14.37 μM、IC-2-NO2: 28.07 μM、IC-2-OPMB: 50 μM、IC-2-OMOM: 20.28 μM、IC-2-OH: 33.47 μMであった。
2.4 癌幹細胞の抑制効果(FCM解析)
 癌幹細胞マーカーであるCD44を指標として、化合物による癌幹細胞の抑制効果を調べた。各化合物の濃度は図32に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。図中、‡はp<0.01で有意差ありを意味する。
 70~90%コンフルエントになったHuH-7細胞を回収し、φ10 cm細胞培養皿に1.5×10^6個ずつ播種した。24 時間後に各化合物を細胞に添加し、37℃で培養した。薬剤処理48時間後に細胞を培養皿から回収し、1000 rpm、4℃で3分間遠心を行い、上清を取り除き、1 mLの0.5% FBS/2 mM EDTA/PBSで2回洗浄を行った。5% BSA/0.5% FBS/2 mM EDTA/PBS 500 μLに懸濁し、4℃で15分間ブロッキングを行った。マウス抗ヒトCD44モノクローナル抗体(156-3C11, Cell Signaling Technology Inc., Danvers, MA) を500 μLの細胞懸濁液に対して5 μL加えた後、再び懸濁し、4℃、暗所で30分間一次抗体反応を行った。その後、1 mLの0.5% FBS/2 mM EDTA/PBSで3回洗浄を行った。5% BSA/0.5% FBS/2 mM EDTA/PBSで200倍に希釈したAlexa Fluor 488標識ヤギ抗マウスIgG (H+L) (ab150113, Abcam Ltd., Cambridge, UK) 100 μLで細胞を懸濁し、4℃、暗所で30分間二次抗体反応を行った。その後、1 mLの0.5%FBS/2 mM EDTA/PBSで3回洗浄を行った。そして、500 μL の0.5% FBS/2 mM EDTA/PBSに懸濁し、40 μmメッシュカラム(Becton, Dickinson and Company, Franklin Lakes, NJ) に通した。Beckman Coulter-Moflo XDP (Beckman Coulter Inc., Fullerton, CA)を用いて解析を行った。解析後、0.25 mg/mL Propidium Iodide (PI)を2 μL加えてさらに解析した。同様の実験を4回繰り返し行った。
 以上の結果、すべての化合物でコントロールの0.1% DMSOに対して癌幹細胞の割合が有意に減少していた(図32)。癌幹細胞は悪性腫瘍の再発や転移の原因となり得ることが知られているため、癌幹細胞の増殖を抑制できる新規化合物は、悪性腫瘍の治療薬の有効成分として優れた化合物といえる。
<実施例3>抗線維化効果
3.1 使用した試薬例
・DMEM: ダルベッコ変法イーグル培地2(日水製薬株式会社, 東京)、2 mM L-glutamine 0.2% NaHCO3、3500 mg/L D-glucose(ナカライテスク株式会社, 京都)
・FBS: ウシ胎児血清 (Sigma-Aldrich Corp., St. Louis, MO)
・PBS(-): 8000 mg/L NaCl、2900 mg/L Na2HPO4・12H2O、200 mg/L KCl、200 mg/L KH2PO4(ナカライテスク)
・0.25% Trypsin/1 mM EDTA solution:(ナカライテスク)
3.2 細胞培養
 ヒト肝星細胞株LX-2細胞は、φ10 cm細胞培養皿(TPP Techno Plastic Products AG, Trasadingen, Switzerland)上にて、10% FBS/DMEMを用いて、5% CO2、37℃、100%湿度下において維持培養した。70~80%コンフルエントになった状態で、PBS(-)で10倍希釈した0.25% Trypsin/1 mM EDTA solution 200 μLを加えて細胞を剥がし、1000 rpmで3分間、室温で遠心し細胞を回収、1枚分を2枚に分けて継代した。
3.3 遺伝子発現解析(リアルタイムRT-PCR)
 線維化マーカーであるα-smooth muscle actin(α-SMA)を指標として、低分子化合物で処理したLX-2細胞からRNAを回収し、リアルタイムRT-PCRで線維化の抑制効果を調べた。
 使用した化合物の濃度は図33に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。
 10% FBS/DMEMを用いて維持培養しているLX-2細胞を回収し、1% FBS/DMEMを用いて6穴プレート(TPP)の各ウェルに2.0×10^5個ずつn=3で播種した。24時間後、TGF-β 2.5 ng/mLと各化合物を細胞に添加し、37℃で培養した。化合物添加24時間後に培地交換を行った。
化合物処理0、48時間後に培地を捨て、TRIzol (ambion, Life Technologies Corp., Carlsbad, CA) 1 mLを用いてRNAを回収した。
 RNA 1 μgに対し、10 mM Oligo (dT)18プライマー0.5 μL、10 mM dNTP Mix (PCR Grade, invitrogen, Life Technologies Corp., Carlsbad, CA) 0.5 μLを加え、MilliQ水で全量を6.5 μLとなるように調製し65℃5分間インキュベート後、直ちに氷中で冷却した。その後5×First-Strand Buffer 2 μL、DTT 1 μL、200U/μL SuperScript II Reverse Transcriptase 0.5 μL (invitrogen)を加え、42℃60分間、72℃10分間逆転写反応を行い、cDNAを合成した。
 MilliQ水で10倍希釈したcDNA 2 μLに対し、10 μMプライマー各0.5 μL、25 mM MgCl2 stock solution 0.8 μL、PCR grade H2O 2.7 μL、LightCycler FastStart DNA Master SYBER Green I (Roche Diagnostics GmbH, Mannheim, Germany) 1.0 μLを加えた。GAPDHのプライマーとして、5'-AGC CAC ATC GCT CAG ACA C-3'と5'-GCC CAA TAC GAC CAA ATC C-3'を用いた。α-SMAのプライマーとして、5'-CTG TTC CAG CCA TCC TTC AT-3'と5'-CCG TGA TCT CCT TCT GCA TT-3'を用いた。
 0.1% DMSOで処理した細胞のcDNA 3サンプルを等量ずつ混合したものを5倍ずつ6250倍まで段階希釈し、スタンダードとした。7900HT (applied biosystems, Life Technologies Corp., Carlsbad, CA)を用いて、95℃20秒間を1サイクル、95℃10秒間-アニーリング条件-72℃10秒間を40サイクル行った。各遺伝子のアニーリング条件は以下の通りである。GAPDH: 60℃10秒間、α-SMA: 56℃5秒間。測定結果は、α-SMA遺伝子の計算値をGAPDH遺伝子の計算値で除算した値を用いた。なお、有意差はスチューデントのt検定(両側)で評価し、図中の*は0.1% DMSOに対してp<0.05で有意差あり、**はp<0.01で有意差ありを意味する(実施例中の全図に共通)。
 以上の結果、すべての化合物でコントロールの0.1% DMSOに対して有意なα-SMAの抑制効果を示した(図33)。
 また、α-SMAに代えて、線維化マーカーであるcollagen, type I, alpha 1 (COL1A1)を指標にして同様の操作を行った。このとき、使用した化合物の濃度は図34に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。また、COL1A1のプライマーとして、5'-CCT CCA GGG CTC CAA CGA G-3'と5'-TCA ATC ACT GTC TTG CCC CA-3'を用いた。アニーリング条件は58℃5秒間で行った。測定結果は、COL1A1遺伝子の計算値をGAPDH遺伝子の計算値で除算した値を用いた。
 その結果、すべての化合物でコントロールの0.1% DMSOに対して有意なCOL1A1の抑制効果を示した(図34)
<実施例4>肝細胞への分化誘導効果
4.1 使用した試薬例
・DMEM: ダルベッコ変法イーグル培地2(日水製薬株式会社, 東京)、2 mM L-glutamine 0.2% NaHCO3、3500 mg/L D-glucose、100U/mL penicillin、100 μg/mL streptomycin(ナカライテスク株式会社, 京都)
・FBS: ウシ胎児血清(Sigma-Aldrich Corp., St. Louis, MO)
・分化誘導用FBS: ウシ胎児血清(Biowest SAS, Nuaille, France)
・PBS(-): 8000 mg/L NaCl、2900 mg/L Na2HPO4・12H2O、200 mg/L KCl、200 mg/L KH2PO4(ナカライテスク)
・PBST: 0.2% Tween-20(ナカライテスク)/PBS(-)
・0.25% Trypsin/1 mM EDTA solution:(ナカライテスク)
・0.1Mリン酸緩衝液(pH6.8): 0.1Mリン酸二水素ナトリウム水溶液に0.1Mリン酸水素二ナトリウム(ナカライテスク)水溶液を加えてpH6.8に調製したもの
・亜硫酸水: 10%亜硫酸水素ナトリウム(ナカライテスク)水溶液6 mLと1N塩酸(和光純薬工業株式会社, 大阪)5 mLをMilliQ水100 mLに加えて調製したもの
4.2 細胞培養
 ヒト骨髄由来間葉系幹細胞株UE7T-13細胞は、φ10 cm細胞培養皿(TPP Techno Plastic Products AG, Trasadingen, Switzerland)上にて、10% FBS/DMEMを用いて、5% CO2、37℃、100%湿度下において維持培養した。70~90%コンフルエントになった状態で、PBS(-)で10倍希釈した0.25% Trypsin/1 mM EDTA solution 200 μLを加えて細胞を剥がし、1000 rpmで3分間、室温で遠心し細胞を回収、1枚分を4枚に分けて継代した。
 pGL4.20 (Promega Corp., Fitchburg, WI)のマルチクローニングサイトに、CMVプロモーターと、その上流にTCF4モチーフ(CCT TTG ATC)を3コピー持つpTCF4-CMVpro-GL4.20プラスミドベクターを線状化し、安定導入したUE7T-13細胞(E7-TCF4細胞)およびpGL4.20のマルチクローニングサイトにCMVプロモーターを持つpCMVpro-GL4.20プラスミドベクターを線状化し、安定導入したUE7T-13細胞(E7-CMV細胞)は、0.25 μg/mL puromycinを含む10% FBS/DMEMでUE7T-13細胞と同様にして培養した。
4.3 遺伝子発現解析(リアルタイムRT-PCR)
 肝細胞マーカーであるアルブミンを指標として、各化合物で処理した細胞からRNAを回収し、リアルタイムRT-PCRで肝細胞分化誘導効果を調べた。各化合物の濃度は図35に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。
 70~90%コンフルエントになったUE7T-13細胞を回収し、6穴プレート(TPP) の各ウェルに8.064×10^4個ずつ10% FBSを含むDMEMを用いて播種した(9.0×10^3個/cm^2)。1日後に10% 分化誘導用FBSを含むDMEMを用いて各化合物を細胞に添加し、37℃で培養した。化合物添加4日後に培地交換を行った。化合物処理0、7日後に培地を捨て、RNeasy Mini (Qiagen GmbH, Hilden, Germany)を用いてRNAを回収し、カラム上でDNase分解を行った。
 RNA 1 μgに対し、10 mM Oligo (dT)18プライマー0.5 μL、10 mM dNTP Mix (PCR Grade, invitrogen, Life Technologies Corp., Carlsbad, CA) 0.5 μLを加え、MilliQ水で全量を6.5 μLとなるように調製し65℃5分間インキュベート後、直ちに氷中で冷却した。その後5×First-Strand Buffer 2 μL、DTT 1 μL、200U/μL SuperScript II Reverse Transcriptase 0.5 μL (invitrogen)を加え、42℃60分間、72℃10分間逆転写反応を行い、cDNAを合成した。
 MilliQ水で10倍希釈したcDNA 2 μLに対し、10 μMプライマー各0.9 μL、各プローブ 1.2 μL、EXPRESS qPCR SuperMix with Premixed ROX (invitrogen) 5.0 μLを加えた。GAPDHのプライマーとして、5'-AGC CAC ATC GCT CAG ACA C-3'と5'-GCC CAA TAC GAC CAA ATC C-3'を用いた。また、GAPDHを検出するプローブとしてUniversal Probe Library (Roche Diagnostics GmbH, Mannheim, Germany)のProbe #60を使用した。アルブミンのプライマーとして、5'-CAA AGA TGA CAA CCC AAA CCT C-3'と5'-GGA TGT CTT CTG GCA ATT TCA-3'を用いた。また、アルブミンを検出するプローブとしてUniversal Probe LibraryのProbe #54を使用した。
 HuH-7細胞のcDNAを5倍ずつ段階希釈し、スタンダードとした。7900HT (applied biosystems, Life Technologies Corp., Carlsbad, CA)を用いて、50℃2分間-95℃20秒間を1サイクル、95℃1秒間-60℃20秒間を45サイクル行った。測定結果は、アルブミン遺伝子の計算値をGAPDH遺伝子の計算値で除算した値を用いた。なお、有意差はスチューデントのt検定(両側)で評価し、図中の*は0.1% DMSOに対してp<0.05で有意差あり、**はp<0.01で有意差ありを意味する(実施例中の全図に共通)。
 以上の結果、すべての化合物で処理した場合に、コントロールの0.1% DMSOに対して有意なアルブミン遺伝子発現を示した(図35)。
4.4 肝細胞機能解析(尿素アッセイ)
 肝細胞の機能である尿素合成能を指標として、各化合物の肝細胞分化誘導効果を調べた。
各化合物の濃度は図36に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。
 70~90%コンフルエントになったUE7T-13細胞を回収し、24穴プレート(TPP)の各ウェルに1.6758×10^4個ずつ10% FBS/DMEMを用いてn=6で播種した(9.0×10^3個/cm^2)。1日後に10%分化誘導用FBS/DMEMを用いて各化合物を細胞に添加し、37℃で培養した。化合物添加4日後に培地交換を行った。
 化合物処理7日後に培地を捨て、5 mMの塩化アンモニウム(ナカライテスク)と各化合物を含む10%分化誘導用FBS DMEMでさらに4日間培養後、培地中の尿素をQuantiChrom Urea Assay Kit (BioAssay Systems LLC, Hayward, CA) を使用し、サンライズレインボーRC (Tecan Group Ltd., Mannedorf, Switzerland)を用いて吸光度(測定波長430 nm)を測定した。測定結果は、10%分化誘導用FBS/DMEMにキット試薬を加えた吸光度との差をとった。各細胞をPBS(-)で10倍希釈した0.25% Trypsin/1 mM EDTA solution 50 μLを加えて細胞を剥がし、細胞数を計数した。各ウェルの尿素量を細胞数で除算して測定結果とした。
 以上の結果、すべての化合物でコントロールの0.1% DMSOに対して有意な尿素合成能が誘導されていることが示された(図36)。
4.5 肝細胞機能解析(免疫蛍光染色)
 各化合物で処理した細胞を肝細胞マーカーであるアルブミンの免疫蛍光染色を行い、肝細胞分化誘導効果を調べた。各化合物の濃度は図37に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。
 70~90%コンフルエントになったUE7T-13細胞を回収し、Lab-Tek IIチェンバースライド(Nunc, Thermo Fisher Scientific Inc., Madison, MA)の各ウェルに1.53×10^4個ずつ10% FBS/DMEMを用いてn=3で播種した(9.0×10^3個/cm^2)。1日後に10% 分化誘導用FBS/DMEMを用いて各化合物を細胞に添加し、37℃で培養した。化合物添加4日後に培地交換を行った。
 化合物処理0、7日後に培地を捨て、PBS(-) 800 μLで1回洗浄した後、4%パラホルムアルデヒド(ナカライテスク)、8% sucrose(和光純薬)を含むPBS(-) 500 μLで20分間固定した。PBS(-) 1 mLで2回洗浄した後、0.2% Triton X-100(和光純薬)で10分間透過処理をした。PBS(-) 1 mLで1回洗浄した後、3% BSA(ナカライテスク)を含むPBS(-) 500 μLで、30分間ブロッキングを行った。余分なブロッキング液を除去し、マウス抗ヒトアルブミンモノクローナル抗体(HAS-11、Sigma-Aldrich)を0.1% BSA/PBS(-)で1000倍希釈して75 μLずつ添加し、4℃で一晩一次抗体反応を行った。0.1% BSA/PBS(-)で5回洗浄した後、Alexa Fluor 488標識ヤギ抗マウスIgG (H+L) (ab150113, Abcam Ltd., Cambridge, UK)を1% BSA/PBSTで1000倍希釈して100 μLずつ添加し、室温で1時間二次抗体反応を行った。核染色には2 mg/mL DAPI (Cell Signaling Technology Inc., Danvers, MA) を1000倍希釈して用いた。反応終了後、PBST 1 mLで5回洗浄し、さらにMilliQ水1 mLで1回洗浄し、退職防止剤入りの封入剤とマニキュアで封入後、FV1000D IX81(オリンパス株式会社, 東京)で観察した。陽性対照として2.5×10^4個/cm^2で播種したHuH-7細胞を用いた。取得した画像データは画像解析ソフトウェアinForm 2.0.4 (PerkinElmer, Waltham, MA)を用いて解析し、陽性細胞率を求めた。
 以上の結果、すべての化合物でコントロールの0.1% DMSOに対して有意なアルブミンタンパク質発現が誘導されていることが示された(図37、38)。
4.6 肝細胞機能解析(PAS染色)
 肝細胞の機能であるグリコーゲン合成能を指標として、各化合物の肝細胞分化誘導効果を調べた。
各化合物の濃度は図39に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。
 70~90 %コンフルエントになったUE7T-13細胞を回収し、Lab-Tek IIチェンバースライドの各ウェルに1.53×10^4個ずつ10% FBS/DMEMを用いてn=3+陰性対照の計4ウェルずつ播種した(9.0×10^3個/cm^2)。1日後に10% 分化誘導用FBS/DMEMを用いて各化合物を細胞に添加し、37℃で培養した。化合物添加4日後に培地交換を行った。
 化合物処理0、7日後に培地を捨て、PBS(-) 1 mLで2回洗浄した後、4%パラホルムアルデヒド/PBS(-) 500 μLで30分間固定した。PBS(-) 1 mLで2回洗浄した後、0.1Mリン酸緩衝液(pH6.8) 450 μLを加え、陰性対照には10 mg/mL α-アミラーゼ(ナカライテスク)を50 μL加えて37℃で1時間インキュベートし、グリコーゲンを消化した。MilliQ水1 mLで3回洗浄し、1%過ヨウ素酸水溶液(ナカライテスク)500 μLで10分間処理し、糖質を酸化した。MilliQ水1 mLで3回洗浄し、冷却したSchiff's Reagent Solution(ナカライテスク)500 μLで15分間処理してグリコーゲンを染色し、亜硫酸水1 mLで3回、MilliQ水1 mLで3回洗浄した。Mayer's Hematoxylin(武藤化学株式会社, 東京)で1分間核染色した後、MilliQ水1 mLで3回洗浄し、エンテランニュー(Merck Millipore Corporation, Darmstadt, Germany)で封入後、BZ-9000(株式会社キーエンス, 大阪)で観察した。陽性対照として2.5×10^4個/cm^2で播種したHuH-7細胞を用いた。
 以上の結果、すべての化合物でグリコーゲン合成能が誘導されていることが示された(図39)。
<実施例5>Wnt/β-カテニンシグナル抑制効果
5.1  肝癌細胞のWnt/β-カテニンシグナル抑制効果
 HuH-7細胞の増殖を50%程度以下に抑制する化合物の濃度でWnt/β-カテニンシグナルの活性を測定した。各化合物の濃度は図40に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOと、0.5 μM 5-FUを用いた。70~90%コンフルエントになったHuH7-TCF4細胞を回収し、24穴プレート(TPP)の各ウェルに5.0×10^4 個ずつn=3で播種した。24時間後に各化合物を細胞に添加し、37℃で培養した。
 化合物処理48時間後に培地を捨て、室温に戻した5×Passive Lysis Buffer (PLB) (Promega Corp., Fitchburg, WI)をMilliQ水で5倍希釈したものを各ウェルに100 μLずつに加えて、室温で15分間震盪し、-30℃で一晩凍結した。室温に戻したLuciferase Assay Buffer II 10 mLでLuciferase Assay Substrateを希釈しLuciferase Assay Reagent II (LARII)を調製した(Promega)。凍結したPLB溶解サンプルを解凍し、15分間浸透してから96穴ホワイトプレート(Corning Inc., Corning, NY)に10 μLずつ加えていき、1420マルチラベルカウンターARVO MX (PerkinElmer Singapore Pte Ltd., Singapore)を用いてLARIIを50 μLずつ加えながら発色を定量してホタルルシフェラーゼ活性を測定した。なお、有意差はスチューデントのt検定(両側)で評価し、図中の*は0.1% DMSOに対してp<0.05で有意差あり、**はp<0.01で有意差ありを意味する(実施例中の全図に共通)。
 以上の結果、すべての化合物でコントロールの0.1% DMSOに対して有意なWnt/β-カテニンシグナルの抑制効果を示した(図40)。
5.2  肝星細胞のWnt/β-カテニンシグナル抑制効果
 線維化の元凶となる肝星細胞LX-2の細胞増殖を50~80%程度に抑制する化合物の濃度でWnt/β-カテニンシグナルの活性を測定した。9b、9b-CONH2は100 μMでLX-2細胞の増殖抑制効果を示さなかった。各化合物の濃度は図41に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。
 10% FBS/DMEMを用いて維持培養しているLX-2細胞を回収し、1% FBS/DMEMを用いて24穴プレートの各ウェルに4.0×10^4 個ずつn=3で播種した。pGL4.20 (Promega)のマルチクローニングサイトに、CMVプロモーターと、その上流にTCF4モチーフ(CCT TTG ATC)を3コピー持つpTCF4-CMVpro-GL4.20プラスミドベクター 50 ngと、pRL-CMV Vector (Promega) 5 ngをOpti-MEM (gibco, Life Technologies Corp., Carlsbad, CA) 25 μL中で混合したものとLipofectamine 2000 (invitrogen, Life Technologies Corp., Carlsbad, CA) 0.4 μLをOpti-MEM 25 μLに添加したものを混合して室温で20分間インキュベートし、細胞播種から20時間後に各ウェルに添加して両レポータープラスミドを細胞に一過性導入する。さらに4時間後、TGF-β 2.5 ng/mLと各化合物を細胞に添加し、37℃で培養した。
 化合物処理24、48時間後に培地を捨て、室温に戻した5×Passive Lysis Buffer (PLB)をMilliQ水で5倍希釈したものを各ウェルに100 μLずつに加えて、室温で15分間震盪し、-30℃で一晩凍結した。室温に戻したLuciferase Assay Buffer II 10 mLでLuciferase Assay Substrateを希釈しLuciferase Assay Reagent II (LARII)を調製した。室温に戻したStop&Glo Buffer 49 μLでStop&Glo Substrate 1 μLを希釈しStop&Glo (Promega)をサンプル数分調製した。
 凍結したPLB溶解サンプルを解凍し、15分間浸透した。3.5 mL テストチューブ (Sarstedt, AG & Co., Numbrecht, Germany) にLARIIを50μlずつ分注し、解凍したPLB溶解サンプルを10 μL添加してよく混合し、MiniLumat LB 9506 (Berthold Technologies GmbH & Co, Bad Wildbad, Germany)で発色を定量してホタルルシフェラーゼ活性を測定した。測定後、Stop&Gloを50 μL添加してよく混合しMiniLumat LB 9506で発色を定量してウミシイタケルシフェラーゼ活性を測定した。測定結果は、ホタルルシフェラーゼ活性をウミシイタケルシフェラーゼ活性で除算した値を用いた。
 以上の結果、すべての化合物でコントロールの0.1% DMSOに対して有意なWnt/β-カテニンシグナルの抑制効果を示した(図41)。
5.3  間葉系幹細胞のWnt/β-カテニンシグナル抑制効果
 UE7T-13細胞を用いてWnt/β-カテニンシグナルの活性を測定した。各化合物の濃度は図42に記載の通りである。コントロールには、各化合物の溶媒とした0.1% DMSOを用いた。
 70~90%コンフルエントになったE7-TCF4細胞およびE7-CMV細胞を回収し、24穴プレートの各ウェルに1.6758×10^4 個ずつn=3で播種した(9.0×10^3個/cm^2)。1日後に各化合物を細胞に添加し、37℃で培養した。化合物添加4日後に培地交換を行った。
 化合物処理1、4、8日後に培地を捨て、室温に戻した5×Passive Lysis Buffer (PLB)をMilliQ水で5倍希釈したものを各ウェルに100 μLずつに加えて、室温で15分間震盪し、-30℃で一晩凍結した。室温に戻したLuciferase Assay Buffer II 10 mLでLuciferase Assay Substrateを希釈しLuciferase Assay Reagent II (LARII)を調製した。凍結したPLB溶解サンプルを解凍し、15分間浸透してから96穴ホワイトプレートに10 μLずつ加えていき、1420マルチラベルカウンターARVO MXを用いてLARIIを50 μLずつ加えながら発色を定量してホタルルシフェラーゼ活性を測定した。
 以上の結果、化合物添加8日後においてIC-2-Ar-OMe、9b、7c-NTを除くすべての化合物でコントロールの0.1% DMSOに対して有意なWnt/β-カテニンシグナルの抑制効果を示した(図42)。
<実施例6>肝癌における抗腫瘍効果
6.1  使用した試薬例
 ・DMEM: ダルベッコ変法イーグル培地2(日水製薬株式会社, 東京)、2 mM L-glutamine 0.2% NaHCO3、3500 mg/L D-glucose(ナカライテスク株式会社, 京都)、10% ウシ胎児血清(FBS) (Sigma-Aldrich Corp., St. Louis, MO)
 ・PBS(-): 8000 mg/L NaCl、2900 mg/L Na2HPO4・12H2O、200 mg/L KCl、200 mg/L KH2PO4(ナカライテスク)
・0.25% Trypsin/1 mM EDTA solution:(ナカライテスク)
・IC-2: WO2012/141038に記載の方法に従って合成した。
6.2 細胞培養
 ヒト肝癌細胞株HuH-7細胞は、φ10 cm細胞培養皿(TPP Techno Plastic Products AG, Trasadingen, Switzerland)上にて、DMEMを用いて、5% CO2、37℃、100%湿度下において培養した。70~90%コンフルエントになった状態で、PBS(-)で10倍希釈した0.25% Trypsin/1 mM EDTA solution 200 μLを加えて細胞を剥がし、1000 rpmで3分間、室温で遠心し細胞を回収、1枚分を4枚に分けて継代した。
 pGL4.20 (Promega Corp., Fitchburg, WI)のマルチクローニングサイトに、CMVプロモーターと、その上流にTCF4モチーフ(CCT TTG ATC)を3コピー持つpTCF4-CMVpro-GL4.20プラスミドベクターを線状化し、安定導入したHuH-7細胞(HuH7-TCF4細胞)は、HuH-7細胞と同様にして培養した。
6.3 癌細胞の増殖抑制効果(WSTアッセイ)
 70~90%コンフルエントになったHuH-7細胞を回収し、96穴プレート(TPP)の各ウェルに1×10^4個ずつn=3で播種した。24時間後にIC-2を細胞に添加し、37℃で培養した。コントロール(0 μM)には、各化合物の溶媒とした1% DMSOを用いた。使用したIC-2の濃度は0、1、5、10、25、50 μMである。
 IC-2処理4日後にDMEMで希釈した10% Cell Counting Kit-8(株式会社同仁化学研究所, 熊本)100 μLを加え、37℃、60分間インキュベートし、サンライズレインボーRC (Tecan Group Ltd., Mannedorf, Switzerland)を用いて吸光度(測定波長450 nm/対照波長600 nm)を測定した。測定結果は、10% Cell Counting Kit-8のみの吸光度との差をとることで、細胞のみの吸光度とした。
 また、各化合物のIC50は、IC50=10^{LOG(A/B)×(50-C)/(D-C)+LOG(B)}により求めた。Aは抑制率50%を挟む高い濃度、Bは50%を挟む低い濃度、CはBでの抑制率、DはAでの抑制率を表す。なお、有意差はスチューデントのt検定(両側)で評価し、図中の*は0.1% DMSOに対してp<0.05で有意差あり、**はp<0.01で有意差ありを意味する(実験例中の全図に共通)。
 以上の結果、IC-2で処理することによって、HuH-7細胞の増殖が抑制された(図43)。IC-2のIC50は、25.95μMであった。
6.4 癌幹細胞の抑制効果(FCM解析)
 癌幹細胞マーカーであるCD44を指標として、IC-2による癌幹細胞の抑制効果を調べた。70~90%コンフルエントになったHuH-7細胞を回収し、φ10 cm細胞培養皿に1.5×10^6個ずつ播種した。15時間後にhexachlorophene (15 μM)、ICG-001 (15 μM)、PKF118-310 (5 μM)、IC-2 (50 μM)、又は5-FU (0.5 μM)でそれぞれ処理し、37℃で培養した。コントロールには、各化合物、抗癌剤の溶媒とした1% DMSOを用いた。薬剤処理2日後に細胞を培養皿から回収し、1000 rpm、4℃で5分間遠心を行い、上清を取り除き、1 mLの0.5% FBS/2 mM EDTA/PBSで2回洗浄を行った。5% BSA/0.5% FBS/2 mM EDTA/PBS 500 μLに懸濁し、4℃で15分間ブロッキングを行った。
マウス抗ヒトCD44モノクローナル抗体(156-3C11, Cell Signaling Technology Inc., Danvers, MA) を500 μLの細胞懸濁液に対して5 μL加えた後、再び懸濁し、4℃、暗所で10分間一次抗体反応を行った。その後、1 mLのPBSで3回洗浄を行った。Alexa Fluor 488標識ヤギ抗マウスIgG (H+L) (Life Technologies Corp., Carlsbad, CA) を1.0 μg加えた後、懸濁し、4℃、暗所で10分間二次抗体反応を行った。その後、1 mLのPBSで3回洗浄を行った後、0.5%FBS/2 mM EDTA/PBSで1回洗浄を行った。そして、500 μL の0.5% FBS/2 mM EDTA/PBSに懸濁し、40 μmメッシュカラム(Becton, Dickinson and Company, Franklin Lakes, NJ) に通した。Beckman Coulter-Moflo XDP (Beckman Coulter Inc., Fullerton, CA)を用いて解析を行った。解析後、0.25 mg/mL Propidium Iodide (PI)を2 μL加えてさらに解析した。同様の実験を5回繰り返し行った。
 以上の結果、IC-2を用いた場合に、癌幹細胞の細胞数が、コントロールの1% DMSOに比べて有意に減少していた(図44)。代表的な抗癌剤である5-FUを用いた場合には、むしろ癌幹細胞の細胞数が増加していた。
6.5 肝癌モデルマウスを用いた悪性腫瘍治療効果
 CD44陽性HuH-7細胞を皮下に移植し、生着したマウスを3群(DMSO群: 5匹、5-FU群: 4匹、IC-2群: 4匹)に分け、30 mg/kg 5-FU、50 mg/kg IC-2となるようにDMSOを加えて液量を100 μLに調製し、各薬剤の溶媒である100% DMSOをコントロールとして、3日毎に腹腔内に投与した。各マウスの体重、腫瘍の長径、短径を3日毎に測定し、腫瘍体積は下記の計算式によって算出した。腫瘍体積 = 長径×(短径)^2×0.5。腫瘍体積は、Day 0の体積で標準化してグラフを作成した。5-FUの投与量は、5-FUの効果を十分に評価するため、論文で一般的に採用されている15 mg/kgの2倍量に設定した。IC-2の投与量は、in vitroでWnt/β-カテニンシグナル抑制効果を示した濃度から対応する濃度を算出し、その2倍量に設定した。
 以上の結果、IC-2及び5-FUのいずれを投与した場合も、体重の変化は見られなかった(図45)。このことは、IC-2及び5-FUがいずれも安全に投与可能であることを意味している。さらに、IC-2は5-FUよりも顕著に高い悪性腫瘍の治療効果を示した(図46)。
<実施例7>扁平上皮癌における抗腫瘍効果
 HSC2(扁平上皮癌細胞)を96穴プレート(TPP Techno Plastic Products AG, Trasadingen, Switzerland)に2.5×10^3個ずつ播種した。24時間後にIC-2を図47に記載の濃度で加え、それから0、24、72、96時間後に10% Cell Counting Kit-8(株式会社同仁化学研究所, 熊本)100 μLを加え、37℃でインキュベートし、サンライズレインボーRC (Tecan Group Ltd., Mannedorf, Switzerland)を用いて吸光度(測定波長450 nm/対照波長600 nm)を測定した。
 以上の結果、IC-2は、扁平上皮癌細胞の増殖抑制効果を示した(図47)。
 また、HSC2をφ10 cm細胞培養皿(TPP)に5×10^5個播種した。24時間後、5-FU: 0.5 μM、又はIC-2: 25 μMで処理を行った。また、低分子化合物で処理しない細胞も調製した(0 μM)。さらに、48時間後、各細胞を回収した。1次抗体としてマウス抗ヒトCD44抗体(Abcam Ltd., Cambridge, UK)を使用し、さらにAlexa Fluor 488標識ヤギ抗マウスIgG (H+L) (Life Technologies Corp., Carlsbad, CA)を使用した。その後、BD bioscience FACS Ariaセルソーター(Becton, Dickinson and Company, Franklin Lakes, NJ)によって解析を行った。なお、各低分子化合物の濃度は、WSTアッセイ48時間におけるIC50の濃度に基づいて設定した。
 以上の結果、CD44発現細胞の割合は、低分子化合物で処理しない場合が83.9%であったのに対し、IC-2では71.4%に減少した。即ち、IC-2は、癌幹細胞の抑制効果を示した。一方で、5-FUでは83.3%であり、変化は見られなかった。
<実施例8>大腸癌における抗腫瘍効果
 DLD-1(大腸癌細胞)を、φ10 cm細胞培養皿(TPP Techno Plastic Products AG, Trasadingen, Switzerland)上にて、DMEMを用いて5% CO2、37℃、100%湿度下で培養した。継代は、70~90%コンフルエント時に、PBS(-)で洗浄後、PBS(-) 2 mLに対し、0.25% Trypsin/1 mM EDTAを300 μL添加し、37℃で5分インキュベートし細胞を剥離後、DMEM 5 mLを用いて、細胞を回収した。回収した細胞は、1000 rpmで3分間遠心を行い、上清を除去し、DMEMに懸濁後、1:4で継代した。
 DLD-1を96穴プレート(TPP)に5×10^5 個ずつ播種した。24時間後、0、10、又は50 μM IC-2で処理した。処理後48時間後に、10% Cell Counting Kit-8(株式会社同仁化学研究所, 熊本)100 μLを加え、37℃でインキュベートし、サンライズレインボーRC (Tecan Group Ltd., Mannedorf, Switzerland)を用いて吸光度(測定波長450 nm/対照波長600 nm)を測定した。
 以上の結果、IC-2は、大腸癌細胞の増殖抑制効果を示した(図48)。
 また、DLD-1をφ10 cm細胞培養皿に1×10^6個播種した。24時間後、5-FU:0.5、5 μM、又はIC-2:50 μMで処理を行った。さらに48時間後、細胞を回収した。1次抗体は、マウス抗ヒトCD44抗体(Abcam Ltd., Cambridge, UK)を使用しAlexa Fluor 488標識ヤギ抗マウスIgG (H+L) (Life Technologies Corp., Carlsbad, CA)を使用した。その後、MoFlo XDP (Beckman Coulter Inc., Fullerton, CA)によって解析を行った。
 以上の結果、IC-2の処理によって、コントロールに対してCD44high 細胞(CD44を強く発現する細胞)の割合が有意に減少していた(図49)。即ち、IC-2は癌幹細胞の抑制効果を示した。一方で、5-FUではむしろ増加していた。
<実施例9>肝障害モデルマウスを用いた線維化の抑制効果
9.1  評価方法
9.1.1  肝臓の摘出
 マウスに対して、27G注射針を装着した1 mLのディスポーサブルシリンジを用いて1 gあたり1 μLの全身麻酔薬ソムノペンチル(共立製薬株式会社, 東京)を腹腔内に投与し、麻酔導入した。麻酔導入後、27G注射針ならびに1 mLシリンジを用いて下大静脈より全採血を実施したのち、全肝臓を摘出した。
9.1.2  Sirius red染色
 上記の方法により摘出した肝組織片は4%パラホルムアルデヒド(ナカライテスク株式会社, 京都)により室温にて16時間固定し、パラフィン包埋後ミクロトームにて組織切片を作製し、Picosirius Red Stain Kit (Polysciences Inc., Warrington, PA)を用いて添付の操作方法に従い染色した。その後BZ-9000(キーエンス株式会社, 大阪)を用いて明視野にて100倍拡大像を各組織切片につき10枚撮影し、各撮影画像中の組織面積に対する赤く染色される線維の面積を定量して線維化陽性面積率を算出した。
9.1.3  Azan染色
 上記の方法により摘出した肝組織片は4%パラホルムアルデヒドにより室温にて16時間固定した。パラフィン包埋後ミクロトームにて組織切片を作製し、キシレン(ナカライテスク)による脱パラフィン、そしてエタノール(ナカライテスク)による水和反応後、5%重クロム酸カリウム・トリクロロ酢酸水溶液(和光純薬工業株式会社, 大阪)中にて20分間静置した。流水による5分間の洗浄後、アゾカルミンG液 (和光純薬)にて60℃、1時間染色し、水洗した後5%アニリン(ナカライテスク)含有のエタノール溶液にて3分間脱色した。その後5%酢酸(ナカライテスク)含有のエタノール溶液にて脱色反応を停止し、水洗後に5%リンタングステン酸水溶液(Alfa Aesar, Ward Hill, MA)にて1時間静置した。水洗した後、1%オレンジG・0.25%アニリンブルー(和光純薬)・4%酢酸水溶液にて30分間染色した後、エタノール中にて赤色と青色が区別できるようになるまで脱色した。その後キシレンに置換し、カバーガラスを被せて封入した後、作製した染色切片をBZ-9000を用いて明視野にて100倍拡大像を各組織片につき10枚撮影し、各撮影画像中の組織面積に対する青く染色される線維の面積を定量して線維化陽性面積率を算出した。
9.2  四塩化炭素投与線維化モデルマウスを用いた線維症治療効果の評価
9.2.1  動物実験及び飼育条件
 7週齢のC57BL/6雄マウス(日本エスエルシー株式会社, 静岡)を1週間予備飼育し健康なものを用いた。予備飼育および実験期間を通じて室温22±1℃、湿度50±5%の動物室内で飼育し、飼料および水は自由に摂取させた。
9.2.2  四塩化炭素投与方法及び薬剤の投与方法
 四塩化炭素(CCl4:和光純薬)を0.2 ml/kg、週3回、4、6、および8週間、マイクロシリンジ(株式会社伊藤製作所, 静岡)にて腹腔内に投与した。四塩化炭素はコーン油(和光純薬)に溶解した濃度10%の溶液を使用した。この四塩化炭素溶液を4週間投与後、マウスをVehicle投与群、グリチルリチン投与群、ICG-001投与群、及びIC-2投与群の計4群に分割し、四塩化炭素と同時に下記の方法により調製した薬液を週3回、4週間、マイクロシリンジを用いて腹腔内に投与した。なお四塩化炭素と薬液は1日毎に交互に投与した。
 グリチルリチン(東京化成工業株式会社, 東京)は生理食塩水中に溶解し、4M NaOH液にてpH7.0に合わせて30 mg/mLの濃度に調製した。IC-2およびICG-001 (AdooQ BioScience, Irvine, CA)はそれぞれ40 mg/mLおよび10 mg/mLの濃度になるようにウェルソルブ(株式会社セレステ, 東京)中に溶解し, さらに60℃の湯浴にて10分間加熱し, 完全に溶解した。これらの薬剤が溶解したウェルソルブ溶液に9倍量の生理食塩水を加えた。次にグリチルリチンは150 mg/kgとなるように薬液を必要量とり、生理食塩水を加えて液量を200 μLに調製した。IC-2は10.6 mg/kg、ICG-001は5 mg/kgとなるように薬液を必要量とり、ウェルソルブと生理食塩水を1:9の割合で混合した溶液を加えて液量を200 μLに調製した。またウェルソルブと生理食塩水を1:9の割合で混合した溶液をVehicleとして用意した。
9.2.3 結果
 図50は、四塩化炭素投与8週間後におけるSirius red染色の染色像と線維化領域の定量結果を示す図である。赤く染色されている領域が線維化領域を示す。四塩化炭素を8週間投与中、薬剤を後半の4週間投与したところ、Vehicle群と比較してIC-2投与群で線維化領域の減少を認めた。
9.3  非アルコール性脂肪性肝炎モデルマウスを用いた線維症治療効果の評価
9.3.1  動物実験及び飼育条件
 7週齢のC57BL/6JHamSlc-ob/ob雄マウス(日本チャールス・リバー, 神奈川)を1週間予備飼育した後、2群に分けてそれぞれの群に高脂肪食D09100301およびコントロール食D09100304(Research Diets Inc., New Brunswick, NJ)を飼料として与えた。予備飼育および実験期間を通じて室温22±1℃、湿度50±5%の動物室内で飼育し、飼料および水は自由に摂取させた。
9.3.2  非アルコール性脂肪性肝炎誘導方法及び薬剤の投与方法
 高脂肪食を6週間投与後、マウスをVehicle投与群、ウルソデオキシコール酸ナトリウム投与群、ICG-001投与群、およびIC-2投与群の計4群に分割し、下記の方法により調製したVehicle、ICG-001およびIC-2の薬液を週3回、3および6週間、マイクロシリンジを用いて腹腔内に投与した。またウルソデオキシコール酸ナトリウムはゾンデを装着した1 mLのディスポーサブルシリンジを用いて1日1回経口投与した。
 ウルソデオキシコール酸ナトリウム(田辺三菱製薬株式会社, 大阪)は1M NaOH水溶液中に溶解し、HCl水溶液にてpH8.3に合わせて60 mg/mLの濃度に調製した。IC-2およびICG-001はそれぞれ40 mg/mLおよび10 mg/mLの濃度になるようにウェルソルブ中に溶解し, さらに60℃の湯浴にて10分間加熱し, 完全に溶解した。これらの薬剤が溶解したウェルソルブ溶液に4倍量の生理食塩水を加えた。次にウルソデオキシコール酸ナトリウムは150 mg/kgとなるように薬液を必要量とり、滅菌水を加えて液量を200 μLに調製した。IC-2は21.2 mg/kg、ICG-001は5 mg/kgとなるように薬液を必要量とり、ウェルソルブと生理食塩水を1:9の割合で混合した溶液を加えて液量を200 μLに調製した。またVehicleとしてウェルソルブと生理食塩水を1:9の割合で混合した溶液を用意した。
9.3.3  結果
 図51は、高脂肪食12週間給餌後におけるAzan染色の染色像と線維化領域の定量結果を示す図である。青く染色されている領域が線維化領域を示す。高脂肪食を12週間給餌中、薬剤を後半の6週間投与したところ、Vehicle群と比較してIC-2投与群で線維化領域の減少を認めた。
 <実施例10>HC-1と5-FUの併用効果
 HC-1 (hexachlorophene methyl ether bis(2,3,5-trichloro-6-methoxyphenyl)methane)をWO2012/141038に記載の方法に従って合成した。HSC2を96穴プレート(TPP Techno Plastic Products AG, Trasadingen, Switzerland)に2.5×10^3個ずつ播種した。24時間後、HC-1、又は5-FUを図52に示す濃度及び時間で処理した。その後に、10% Cell Counting Kit-8(株式会社同仁化学研究所, 熊本)100μLを加え、37℃でインキュベートし、サンライズレインボーRC (Tecan Group Ltd., Mannedorf, Switzerland)を用いて吸光度(測定波長450 nm/対照波長600 nm)を測定した。その結果を図52に示す。
 HSC2を96穴プレートに2.5×10^3個ずつ播種した。24時間後、50 μM HC-1及び5-FUを図53に示す濃度で48時間処理した。その後に、10% Cell Counting Kit-8 100 μLを加え、37℃でインキュベートし、サンライズレインボーRCを用いて吸光度(測定波長450 nm/対照波長600 nm)を測定した。
 その結果を図53に示す。HC-1は、5-FUと併用で用いることによって、相乗的な抗腫瘍効果を示した。
 HSC2を6穴プレート(TPP)に1×10^5個ずつ播種した。24時間後、5-FU、HC-1、5-FU及びHC-1図54に示す濃度でそれぞれ48時間処理した。その後、Annexin-V-FLUOS Staining Kit (Roche Diagnostics GmbH, Mannheim, Germany)で処理し、Annexin-V及びPIで染色された細胞をIX71(オリンパス株式会社, 東京)で観察し、それぞれ10視野を画像解析ソフトウェアinForm 2.0.4 (PerkinElmer, Waltham, MA)で解析し、アポトーシス細胞率及び死細胞率を算出した。
その結果を図54~55に示す。HC-1は、5-FUと併用で用いることによって、細胞死を誘導した。
 <考察>
 上述の通り、新規化合物を用いることにより、癌細胞の増殖が抑制されることが示された。また新規化合物は、癌幹細胞の増殖抑制効果を有していた。また新規化合物は、癌の発生原因となりえる線維化の抑制効果を有していた。また新規化合物は、間葉系幹細胞を肝細胞へ分化誘導する効果を有していた。さらに、HC-1と5-FUは相乗的な抗腫瘍効果を示した。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。

Claims (9)

  1.  下記式(1)に示す化合物、その塩、又はそれらの溶媒和物:
    Figure JPOXMLDOC01-appb-C000001
    (式中、置換基R1及びR2は下記(a)又は(b)を意味する。
     (a)R1は、置換されていてもよいフェニル;
     R2は、H、-C(O)NHR3、置換されていてもよいフェニル; 及び
     前記R3は、H、C1~C6アルキル、置換されていてもよいベンジル; 又は
     (b)R1は、置換されていてもよいナフチル、又は置換されていてもよいフェニル;
     R2は、-C(O)NHR4、置換されていてもよいフェニル; 及び
     前記R4は、H、C1~C6アルキル、置換されていてもよいシロキシベンジル。)
  2.  前記(a)のR1は、置換基R5を有するフェニルであり、
     前記R5は、H、ハロゲン、ニトロ、アミノ、シアノ、OH、C1~C6アルキル、ハロゲノC1~C6アルキル、ヒドロキシC1~C6アルキル、C1~C6アルキルアミノ、C1~C6アルコキシ、ハロゲノC1~C6アルコキシ、ヒドロキシC1~C6アルコキシ、及びC1~C6アルコキシアミノからなる群から選ばれる1種以上の置換基であり、
     前記(a)のR2は、H、-C(O)NHR3、又は置換基R5を有するフェニルであり、
     前記R3は、置換基R6を有するベンジルであり、
     前記R6は、H、ハロゲン、ニトロ、アミノ、シアノ、OH、C1~C6アルキル、ハロゲノC1~C6アルキル、ヒドロキシC1~C6アルキル、C1~C6アルキルアミノ、C1~C6アルコキシ、ハロゲノC1~C6アルコキシ、ヒドロキシC1~C6アルコキシ、C1~C6アルコキシアミノ、C1~C6アルコキシで置換されているC1~C6アルコキシ、C1~C6アルコキシフェニルで置換されているC1~C6アルコキシ、トリC1~C6アルキルシロキシC1~C6アルキル、C1~C6アルキルジフェニルシロキシC1~C6アルキル、トリフェニルシロキシC1~C6アルキル、トリC1~C6アルキルシロキシ、C1~C6アルキルジフェニルシロキシ、及びトリフェニルシロキシからなる群から選ばれる1種以上の置換基であり、
     前記(b)のR1は、置換基R5を有するフェニル、又はナフチルであり、
     前記(b)のR2は、-C(O)NHR4、又は置換基R5を有するフェニルであり、且つ
     前記R4は、H、C1~C6アルキル、置換基R5を有するシロキシベンジルである、
     請求項1に記載の化合物、その塩、又はそれらの溶媒和物。
  3.  前記(a)のR2は、-C(O)NH(CH2C6H5)であり、
     前記(b)のR1は、ナフチルであり、
     前記(b)のR2は、-C(O)NHR4、又はニトロフェニルであり、且つ
     前記R4は、H、又は置換基R5を有するシロキシベンジルである、
     請求項2に記載の化合物、その塩、又はそれらの溶媒和物。
  4.  前記(a)のR1は、F、Cl、ニトロ、OH、及びメトキシからなる群から選ばれる1種以上の置換基を有するフェニルであり、
     前記(a)のR2は、-C(O)NH(CH2C6H5)であり、
     前記(b)のR1は、ナフチルであり、且つ
     前記(b)のR2は、-C(O)NH2、ニトロフェニル、又はtert-ブチルジメチルシロキシベンジルである、
     請求項1~3いずれかに記載の化合物、その塩、又はそれらの溶媒和物。
  5.  請求項1~4のいずれかに記載の化合物、その塩、又はそれらの溶媒和物を含む、悪性腫瘍の治療薬。
  6.  請求項1~4のいずれかに記載の化合物、その塩、又はそれらの溶媒和物を含む、線維症の治療薬。
  7.  請求項1~4のいずれかに記載の化合物、その塩、又はそれらの溶媒和物を含む、間葉系幹細胞の肝細胞への分化誘導剤。
  8.  下記式(2)に示す化合物、その塩、又はそれらの溶媒和物を含む、下記式(2)に示す化合物、その塩、又はそれらの溶媒和物と5-FUとの併用療法において用いられる悪性腫瘍の治療薬。
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     R7、及びR8は、同一又は異なって、置換されていてもよいC1~C6アルキル、又は置換されていてもよいC2~C6アルケニルである。)
  9.  5-FUを含む、5-FUと下記式(2)に示す化合物、その塩、又はそれらの溶媒和物との併用療法において用いられる悪性腫瘍の治療薬。
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     R7、及びR8は、同一又は異なって、置換されていてもよいC1~C6アルキル、又は置換されていてもよいC2~C6アルケニルである。)
PCT/JP2016/077475 2015-09-18 2016-09-16 低分子化合物による癌と線維化の抑制と再生促進の効果 WO2017047762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680054131.5A CN108026104B (zh) 2015-09-18 2016-09-16 利用低分子化合物的癌及纤维化的抑制和再生促进的效果
US15/760,374 US10597398B2 (en) 2015-09-18 2016-09-16 Suppression and regeneration promoting effect of low molecular weight compound on cancer and fibrosis
EP16846633.2A EP3366687B1 (en) 2015-09-18 2016-09-16 Suppression and regeneration promoting effect of low molecular weight compound on cancer and fibrosis
JP2017540011A JP6785487B2 (ja) 2015-09-18 2016-09-16 低分子化合物による癌と線維化の抑制と再生促進の効果

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185988 2015-09-18
JP2015185988 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047762A1 true WO2017047762A1 (ja) 2017-03-23

Family

ID=58288986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077475 WO2017047762A1 (ja) 2015-09-18 2016-09-16 低分子化合物による癌と線維化の抑制と再生促進の効果

Country Status (6)

Country Link
US (1) US10597398B2 (ja)
EP (1) EP3366687B1 (ja)
JP (1) JP6785487B2 (ja)
CN (1) CN108026104B (ja)
TW (1) TWI636983B (ja)
WO (1) WO2017047762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044753A1 (ja) 2017-09-01 2019-03-07 国立大学法人鳥取大学 線維化抑制作用を有する細胞シート
WO2019235362A1 (ja) 2018-06-08 2019-12-12 カノンキュア株式会社 線維化抑制組成物、これを生産する細胞、およびこの細胞からなる細胞シート

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021235252A1 (en) 2020-03-11 2022-10-06 Bit Bio Limited Method of generating hepatic cells
CN116925081A (zh) * 2022-04-11 2023-10-24 中国科学院上海药物研究所 一种环肽类化合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449418A (en) * 1965-12-22 1969-06-10 Ciba Geigy Corp Etherified bisaryl compounds
JPS5140142B1 (ja) * 1968-06-11 1976-11-01
US7671054B1 (en) * 2001-10-12 2010-03-02 Choongwae Pharma Corporation Reverse-turn mimetics and method relating thereto
JP2011518773A (ja) * 2008-03-19 2011-06-30 チャイナ シンセティック ラバー コーポレイション 肝細胞癌の診断および治療のための方法および作用物質
JP2011522037A (ja) * 2008-06-06 2011-07-28 PRISM BioLab株式会社 アルファへリックスミメティック及び関連の方法
WO2012141038A1 (ja) * 2011-04-15 2012-10-18 国立大学法人鳥取大学 ヒト間葉系幹細胞を肝細胞へ分化誘導する新規化合物の合成と解析
WO2015147107A1 (ja) * 2014-03-28 2015-10-01 国立大学法人鳥取大学 低分子化合物による癌と線維化の抑制効果

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232822B2 (en) 2001-10-12 2007-06-19 Choongwae Pharma Corporation Reverse-turn mimetics and method relating thereto
US7576084B2 (en) 2001-10-12 2009-08-18 Choongwae Pharma Corporation Reverse-turn mimetics and method relating thereto
US20040072831A1 (en) * 2001-10-12 2004-04-15 Choongwae Pharma Corporation Reverse-turn mimetics and method relating thereto
ATE398129T1 (de) * 2001-10-12 2008-07-15 Choongwae Pharma Corp Reverse-turn-mimetika und diese betreffendes verfahren
US7566711B2 (en) 2001-10-12 2009-07-28 Choongwae Pharma Corporation Reverse-turn mimetics and method relating thereto
US20050222158A1 (en) * 2004-03-19 2005-10-06 Andres Charles J Jr Method of treating migraine headaches using calcitonin gene related peptide mimetics
WO2006101858A1 (en) * 2005-03-18 2006-09-28 Institute For Chemical Genomics Alpha-helix mimetics and methods relating to the treatment of fibrosis
CN101495120A (zh) * 2006-05-30 2009-07-29 中外制药株式会社 用于诱导或抑制干细胞分化的组合物
US20090325992A1 (en) * 2006-07-31 2009-12-31 Ono Pharmaceutical Co., Ltd. Compound having cyclic group bound thereto through spiro binding and use thereof
CN102186853A (zh) * 2008-10-14 2011-09-14 株式会社棱镜生物实验室 治疗癌症α-螺旋模拟物
ES2935544T3 (es) * 2010-11-16 2023-03-07 Univ Southern California Antagonistas de CBP/catenina para aumentar la división asimétrica de células madre somáticas
US20140051706A1 (en) * 2011-02-25 2014-02-20 Prism Pharma Co., Ltd. Alpha helix mimetics and methods relating thereto
WO2013090991A1 (en) * 2011-12-22 2013-06-27 The University Of Sydney Tgf-beta therapy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449418A (en) * 1965-12-22 1969-06-10 Ciba Geigy Corp Etherified bisaryl compounds
JPS5140142B1 (ja) * 1968-06-11 1976-11-01
US7671054B1 (en) * 2001-10-12 2010-03-02 Choongwae Pharma Corporation Reverse-turn mimetics and method relating thereto
JP2011518773A (ja) * 2008-03-19 2011-06-30 チャイナ シンセティック ラバー コーポレイション 肝細胞癌の診断および治療のための方法および作用物質
JP2011522037A (ja) * 2008-06-06 2011-07-28 PRISM BioLab株式会社 アルファへリックスミメティック及び関連の方法
WO2012141038A1 (ja) * 2011-04-15 2012-10-18 国立大学法人鳥取大学 ヒト間葉系幹細胞を肝細胞へ分化誘導する新規化合物の合成と解析
WO2015147107A1 (ja) * 2014-03-28 2015-10-01 国立大学法人鳥取大学 低分子化合物による癌と線維化の抑制効果

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044753A1 (ja) 2017-09-01 2019-03-07 国立大学法人鳥取大学 線維化抑制作用を有する細胞シート
JPWO2019044753A1 (ja) * 2017-09-01 2020-10-01 国立大学法人鳥取大学 線維化抑制作用を有する細胞シート
WO2019235362A1 (ja) 2018-06-08 2019-12-12 カノンキュア株式会社 線維化抑制組成物、これを生産する細胞、およびこの細胞からなる細胞シート
US11866483B2 (en) 2018-06-08 2024-01-09 Kanoncure, Inc. Fibrosis-inhibiting composition, cells producing same, and cell sheet comprising said cells

Also Published As

Publication number Publication date
TWI636983B (zh) 2018-10-01
US10597398B2 (en) 2020-03-24
EP3366687A1 (en) 2018-08-29
CN108026104A (zh) 2018-05-11
JP6785487B2 (ja) 2020-11-18
CN108026104B (zh) 2021-06-18
EP3366687B1 (en) 2020-04-29
JPWO2017047762A1 (ja) 2018-07-05
EP3366687A4 (en) 2019-01-23
TW201825493A (zh) 2018-07-16
US20190055249A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
Reece et al. Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor activity by disrupting the HIF-1α/p300 complex in a preclinical model of prostate cancer
Hong et al. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells
Henske et al. Lymphangioleiomyomatosis—a wolf in sheep’s clothing
He et al. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway
Hu et al. Lycorine is a novel inhibitor of the growth and metastasis of hormone-refractory prostate cancer
García-Caballero et al. Dimethylfumarate inhibits angiogenesis in vitro and in vivo: a possible role for its antipsoriatic effect?
WO2017047762A1 (ja) 低分子化合物による癌と線維化の抑制と再生促進の効果
Dorn et al. The effect of cantharidins on leukemic stem cells
US20210386747A1 (en) Inhibitory effect of low molecular weight compound on cancer and fibrosis
Wu et al. Effects of non-steroidal anti-inflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells
Ng et al. FHL2 exhibits anti-proliferative and anti-apoptotic activities in liver cancer cells
Tang et al. Shizukaol D, a dimeric sesquiterpene isolated from Chloranthus serratus, represses the growth of human liver cancer cells by modulating Wnt signalling pathway
Zhang et al. Osthole ameliorates renal fibrosis in mice by suppressing fibroblast activation and epithelial-mesenchymal transition
Ma et al. IPM712, a vanillin derivative as potential antitumor agents, displays better antitumor activity in colorectal cancers cell lines
Li et al. Ginkgolic acid suppresses the invasion of HepG2 cells via downregulation of HGF/c‑Met signaling
CN113164446A (zh) 用于抑制和/或治疗代谢病和/或其临床病症的组合物和方法
JP2019502671A (ja) 小分子組成物を用いてヒト腫瘍細胞を非腫瘍形成性細胞に直接リプログラミングすることを誘導する方法
Bonavida et al. Breaking tolerance to pancreatic cancer unresponsiveness to chemotherapy
Pandey et al. 7-hydroxyfrullanolide, isolated from Sphaeranthus indicus, inhibits colorectal cancer cell growth by p53-dependent and-independent mechanism
Zichittella et al. Long non-coding RNA H19 enhances the pro-apoptotic activity of ITF2357 (a histone deacetylase inhibitor) in colorectal cancer cells
Muche et al. Synergistic effects of β-catenin inhibitors and sorafenib in hepatoma cells
Shlepova et al. Selective targeting of α7 nicotinic acetylcholine receptor by synthetic peptide mimicking loop I of human SLURP-1 provides efficient and prolonged therapy of epidermoid carcinoma in vivo
Song et al. (3R)‑5, 6, 7‑trihydroxy‑3‑isopropyl‑3‑methylisochroman‑1‑one inhibited osteosarcoma growth by inducing apoptosis
Hui et al. Fusaricide is a Novel Iron Chelator that Induces Apoptosis through Activating Caspase-3
Liang et al. Hesperidin inhibits tobacco smoke‑induced pulmonary cell proliferation and EMT in mouse lung tissues via the p38 signaling pathway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846633

Country of ref document: EP