WO2017047562A1 - Thermoelectric power generation device and method for manufacturing same - Google Patents

Thermoelectric power generation device and method for manufacturing same Download PDF

Info

Publication number
WO2017047562A1
WO2017047562A1 PCT/JP2016/076909 JP2016076909W WO2017047562A1 WO 2017047562 A1 WO2017047562 A1 WO 2017047562A1 JP 2016076909 W JP2016076909 W JP 2016076909W WO 2017047562 A1 WO2017047562 A1 WO 2017047562A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer plate
power generation
generation module
duct
thermoelectric
Prior art date
Application number
PCT/JP2016/076909
Other languages
French (fr)
Japanese (ja)
Inventor
新也 北川
拓也 松田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016155818A external-priority patent/JP6390676B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP16846433.7A priority Critical patent/EP3352366B1/en
Priority to CN201680053448.7A priority patent/CN108028617A/en
Priority to US15/758,818 priority patent/US10629794B2/en
Publication of WO2017047562A1 publication Critical patent/WO2017047562A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1872Construction facilitating manufacture, assembly, or disassembly the assembly using stamp-formed parts or otherwise deformed sheet-metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1888Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat the device being thermoelectric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a thermoelectric power generation apparatus that performs thermoelectric power generation using a high-temperature fluid and a low-temperature fluid, and a manufacturing method thereof.
  • the present invention relates to a thermoelectric power generation apparatus using vehicle exhaust and a method for manufacturing the same.
  • thermoelectric generator described in Patent Document 1.
  • the power generation module, the low temperature side member, and the high temperature side member have different coefficients of thermal expansion during operation, and are concerned about the destruction of the power generation element in the power generation module due to the thermal strain generated thereby. Therefore, the power generation module, the low temperature side member, and the high temperature side member are not firmly fixed.
  • a fastening member such as a bolt
  • a heat conduction member or the like between the members to improve the adhesion.
  • an object of the present disclosure is to provide a thermoelectric power generation device that suppresses a decrease in power generation performance and a manufacturing method thereof.
  • thermoelectric generator includes a duct through which a low-temperature fluid flows and a thermoelectric generator in each of the ducts, and the ducts are arranged on the opposing outer surfaces of the duct.
  • a first power generation module and a second power generation module that are in contact with each other so as to sandwich the first power generation module, and a first power generation module and a second power generation module that are in contact with the outer surfaces on the side opposite to the duct of the first power generation module and the second power generation module.
  • outer fins that are respectively provided on the outer surfaces of the first outer plate and the second outer plate on the side opposite to the power generation module and are in contact with the high-temperature fluid.
  • the first outer plate and the second outer plate have a low temperature
  • the first outer plate and the second outer plate in a direction perpendicular to the direction in which the fluid flows have bent portions that are welded in a state of being elastically deformed so as to approach each other.
  • a power generation module, a second power generation module, It is characterized in that it generates a stress that presses the duct.
  • the outer plate has bent portions that are welded close to each other at both ends in a direction orthogonal to the direction in which the first fluid flows, and stress that presses the power generation module against the duct by welding of the bent portions. Is occurring. Accordingly, the adhesion between the power generation module, the first outer plate, the second outer plate, and the duct is improved, and the power generation performance is improved. Further, since a fastening member such as a bolt is not required to secure and maintain the adhesion, an increase in heat capacity due to a member that does not contribute to the heat exchange performance can be suppressed. Therefore, it is possible to provide a thermoelectric power generation apparatus that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generation apparatus and can obtain sufficient performance.
  • thermoelectric power generation device includes a duct in which a low-temperature fluid flows, a thermoelectric generation element provided in each of the ducts, and the first and second outer surfaces facing each other so as to sandwich the duct.
  • the first outer plate and the second outer plate are orthogonal to the direction in which the low-temperature fluid flows.
  • a bent portion that is welded in a state of being elastically deformed so that at least one of the first outer plate and the second outer plate approaches the other at both ends of the first outer plate and the second outer plate.
  • the outer plate is bent at both ends in a direction orthogonal to the direction in which the first fluid flows, and is welded close to the other outer plate in a state where at least one outer plate is elastically deformed.
  • a stress that presses the first power generation module and the second power generation module against the duct is generated by welding the bent portion. Therefore, the power generation performance is improved by improving the adhesion between each power generation module and the first outer plate and the second outer plate and the adhesion between each power generation module and the duct.
  • a fastening member such as a bolt is not required to secure and maintain this adhesion, an increase in heat capacity due to a member that does not contribute to heat exchange performance can be suppressed. Therefore, it is possible to provide a thermoelectric power generation apparatus that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generation apparatus and can obtain sufficient performance.
  • thermoelectric power generation device includes a duct through which a low-temperature fluid flows, a power generation module that is provided with a thermoelectric generation element therein, and that is in contact with an opposite outer surface of the duct, and an anti-duct side of the power generation module
  • Outer fins that are respectively provided on the outer surface on the side opposite to the power generation module and come into contact with the high-temperature fluid, and the first outer plate and the second outer plate are arranged in a direction perpendicular to the direction in which the low-temperature fluid flows.
  • the outer plate is bent at both ends in a direction orthogonal to the direction in which the first fluid flows, and is welded close to the other outer plate in a state where at least one outer plate is elastically deformed. And a stress that presses the power generation module against the duct is generated by welding the bent portion. Therefore, the power generation performance is improved by improving the adhesion between the power generation module and the first outer plate and the second outer plate and the adhesion between the power generation module and the duct. Further, since a fastening member such as a bolt is not required to secure and maintain the adhesion, an increase in heat capacity due to a member that does not contribute to the heat exchange performance can be suppressed. Therefore, it is possible to provide a thermoelectric power generation apparatus that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generation apparatus and can obtain sufficient performance.
  • a method for manufacturing a thermoelectric generator includes a duct through which a low-temperature fluid flows, a power generation module in which a thermoelectric generator is provided, and a first outer plate and a second outer plate.
  • the first outer plate and the second outer plate are opposed to each other, and each of the first outer plate and the second outer plate is in contact with the outside on the side opposite to the duct of the power generation module,
  • the outer plate is welded so that both ends in a direction orthogonal to the direction in which the first fluid flows are close to each other, and a thermoelectric power generation device that generates stress that presses the power generation module against the duct by this welding is manufactured. it can. Accordingly, the adhesion of the power generation module, the first outer plate, the second outer plate, and the duct is improved, and the power generation performance is improved. Further, since a fastening member such as a bolt is not required to secure and maintain the adhesion, an increase in heat capacity due to a member that does not contribute to the heat exchange performance can be suppressed. Accordingly, it is possible to provide a method for manufacturing a thermoelectric power generator that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generator and can obtain sufficient performance.
  • thermoelectric power generator in 1st Embodiment. It is a perspective view of the thermoelectric generator in a 1st embodiment. It is a top view of the thermoelectric power generator seen from the arrow Z3 direction of FIG. 1 in 1st Embodiment. It is the right view seen from the arrow Z4 direction of FIG. 3 in 1st Embodiment. It is a perspective view explaining the rigidity of the outside fin in a 1st embodiment. It is a partial enlarged view of the outside fin in a 1st embodiment.
  • thermoelectric power generator in 2nd Embodiment It is a right view of the thermoelectric generator in 2nd Embodiment. It is a top view of the thermoelectric power generator in 3rd Embodiment. It is a right view of the thermoelectric generator in 3rd Embodiment. It is a perspective view in case the rod-shaped rigidity reinforcement member in 3rd Embodiment is a cross-sectional rectangle. It is a perspective view in case the rod-shaped rigidity reinforcement member in the modification of 3rd Embodiment is a rectangular tube type. It is a perspective view in case the rod-shaped rigidity reinforcement member in the modification of 3rd Embodiment is an angle type.
  • thermoelectric power generator in 4th Embodiment It is a perspective view in case the rod-shaped rigidity reinforcement member in the modification of 3rd Embodiment is a channel type with a U-shaped cross section. It is a top view of the thermoelectric power generator in 4th Embodiment. It is a right view of the thermoelectric generator in 4th Embodiment. It is explanatory drawing which shows the external appearance of the electric power generation module used as the comparative example with respect to 4th Embodiment. It is explanatory drawing which shows the external appearance of the electric power generation module in which the accommodation groove
  • FIG. 5 is an explanatory diagram showing an example of a method for manufacturing a thermoelectric generator in the first to fourth embodiments. It is explanatory drawing which shows the state which pressurized and deform
  • FIG. 6 is a characteristic diagram showing an example of characteristics common to the thermoelectric generators in the first to fourth embodiments. It is a perspective view of the thermoelectric generator of 5th Embodiment. It is a top view of the thermoelectric power generator of 5th Embodiment. It is the partial side view which showed the protrusion part of 5th Embodiment. It is the fragmentary sectional view which showed the protrusion part of 5th Embodiment.
  • thermoelectric power generator of 7th Embodiment It is the partial side view which showed the protrusion part of 6th Embodiment. It is the fragmentary sectional view which showed the protrusion part of 6th Embodiment. It is a top view of the thermoelectric power generator of 7th Embodiment. It is the partial side view which showed the protrusion part of 7th Embodiment. It is the partial side view which showed the modification about the protrusion part of 7th Embodiment. It is a perspective view of the thermoelectric generator of 8th Embodiment. It is a perspective view of the thermoelectric power generator of 9th Embodiment.
  • FIG. 1 is a partial cross-sectional configuration diagram of a thermoelectric generator 100.
  • the first power generation module 1 and the second power generation module 2 are housed in a flat box-shaped airtight case to prevent oxidation of the elements. Therefore, although the power generation modules 1 and 2 can be seen only as plate-like boxes in appearance, a large number of P-type semiconductor elements and N-type semiconductor elements are alternately arranged inside an airtight case made of thin stainless steel. It is connected in a net shape.
  • the power generation module generates power when the high temperature portion contacts one surface and the low temperature portion contacts the other surface.
  • first outer plate 3 and the second outer plate 4 may be collectively referred to simply as the outer plates 3 and 4.
  • the first outer plate 3 and the second outer plate 4 are bent so that both ends are welded to each other.
  • the bent portions 3a and 4a which are the bent portions are welded to each other by seam welding or laser welding which is welded in a direction parallel to the direction in which the low-temperature fluid flows in the duct 7. By this welding, an internal space 30 surrounded by the first outer plate 3 and the second outer plate 4 is formed.
  • the duct 7 is made of aluminum or stainless steel, and a low-temperature fluid made of automobile engine cooling water flows through the duct 7.
  • the duct 7 has flat outer surfaces.
  • Outer fins 5 and 6 are provided on the outer side (upper and lower sides in FIG. 1) of the first outer plate 3 and the second outer plate 4 on the side opposite to the power generation module. Exhaust of the automobile engine that becomes a high temperature fluid flows in contact with the outer fins 5 and 6.
  • the inner surface which is the other surface of the power generation modules 1 and 2 is in contact with the outer surface of the duct 7 forming the low temperature part.
  • the inside of the duct 7 is divided into a plurality of flow passages, and cooling water that becomes a low-temperature fluid flows in the flow passages.
  • thermoelectric power generation apparatus 100 which consists of one electric power generation unit, you may laminate
  • the first outer plate 3 and the second outer plate 4 are pressurized as indicated by arrows Y11 to Y14 so that the bent portions 3a and 4a overlap each other during assembly.
  • the bent portions 3a and 4a are welded to each other by seam welding or laser welding.
  • the first outer plate 3 and the second outer plate 4 are subjected to a stress that sandwiches the power generation modules 1 and 2 to complete the product.
  • the power generation modules 1 and 2 are easily brought into close contact with the first outer plate 3, the second outer plate 4 and the duct 7. That is, the pressure applied by the stress acts between the duct 7 and the power generation modules 1 and 2 and between the power generation modules 1 and 2 and the first outer plate 3 and the second outer plate 4, and the pressure contact portion therebetween. Is forming.
  • FIG. 2 is a perspective view of the entire thermoelectric generator 100.
  • the thermoelectric generator 100 includes an outer fin 5, a first outer plate 3, a first power generation module 1, a duct 7, a second power generation module 2, a second outer plate 4, and an outer fin 6 from the upper side to the lower side in FIG. 2. It is the laminated body comprised.
  • a low temperature fluid flows in the duct 7 as indicated by arrows Y21 and Y22.
  • the high temperature fluid flows as indicated by arrows Y21 and Y22 while contacting the outer fins 5 and 6, and the high temperature fluid and the outer fins 5 and 6 exchange heat.
  • FIG. 3 is a plan view of the thermoelectric generator 100 viewed from the direction of the arrow Z3 in FIG.
  • FIG. 4 shows the right side as seen from the direction of arrow Z4 in FIG.
  • the direction of arrow Y31 in FIG. 3 is the direction in which the high-temperature fluid flows.
  • the engine coolant that becomes a low temperature fluid flows orthogonally to the high temperature fluid as indicated by an arrow Y32 in FIG.
  • the low-temperature fluid flows through the inside of a duct 7 having a plurality of divided flow paths installed at the center of FIG.
  • the power generation modules 1 and 2 are installed on one surface side and the other surface side of the duct 7.
  • the pair of power generation modules 1 and 2 sandwich the duct 7 on the inside, and the outside is sandwiched between the first outer plate 3 and the second outer plate 4.
  • the width W4 between the outer fins 5 and 6 is 35 mm as an example.
  • FIG. 5 is a perspective view for explaining the rigidity of the outer fins 5 and 6.
  • the outer fins 5 and 6 are easy to expand and contract in the direction of extending in a wave shape and have low rigidity. On the other hand, it is hard to expand and contract in the direction perpendicular to it and has high rigidity.
  • FIG. 6 is a partially enlarged view of the outer fin 5.
  • the outer fin 5 bent into a corrugated shape has a low rigidity in the wave traveling direction and a strong composition in the wave overlapping direction.
  • the rigidity of the first outer plate 3 is also strengthened.
  • a gap that hinders heat transfer is less likely to occur between the first outer plate 3, the second outer plate 4, and the power generation modules 1 and 2.
  • offset fins in which the positions of adjacent fins are separated by being slightly offset are employed.
  • a heat conducting member such as a graphite sheet may be sandwiched between pressure contact portions where the gap may occur.
  • the heat conductive member absorbs a certain level difference or unevenness that causes a gap in the pressure contact portion, and the thermal conductivity can be maintained.
  • a duct 7 having a flat front and back outer surface through which a low-temperature fluid flows inside is contacted with the outer surface of the duct 7 so as to sandwich the duct 7, and a thermoelectric generator is provided inside.
  • Modules 1 and 2 are provided.
  • the first outer plate 3 and the second outer plate 4 are in contact with the outside of the power generation modules 1 and 2 on the side opposite to the duct.
  • outer fins 5 and 6 are joined to the outer sides of the first outer plate 3 and the second outer plate 4 on the side opposite to the power generation module.
  • the first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded in an elastically deformed state so as to approach each other at both ends in a direction orthogonal to the direction in which the low-temperature fluid flows.
  • a stress that presses the power generation modules 1 and 2 against the duct 7 is generated by welding the bent portions 3a and 4a.
  • the stress that presses the power generation modules 1 and 2 against the duct 7 is generated and maintained by welding the bent portions 3a and 4a. Therefore, the adhesiveness between the power generation modules 1, 2 and the first outer plate 3 and the second outer plate 4 and between the power generation modules 1, 2 and the duct 7 is improved, and the power generation performance is improved. Further, since welding is used to secure and maintain the adhesion, a fastening member such as a bolt is unnecessary. Therefore, the heat capacity that does not contribute to the heat exchange performance does not increase. As a result, a decrease in the amount of heat transfer and a decrease in the amount of power generation in the initial operation of the thermoelectric generator do not occur. Therefore, sufficient performance can be obtained.
  • the bent portions 3a and 4a are welded linearly by seam welding or laser welding in a pressurized state. Therefore, a stress that sandwiches the power generation modules 1 and 2 acts on the outer plates 3 and 4. As a result, the power generation modules 1 and 2 are in close contact with the outer plates 3 and 4 and the duct 7. The applied pressure acts between the duct 7 and the power generation modules 1 and 2 and between the power generation modules 1 and 2 and the outer plates 3 and 4, and a good pressure contact portion is formed between them.
  • the first outer plate 3 and the second outer plate 4 are bent and elastic on the outer side of the end 3t or the end 3t of the power generation modules 1 and 2. It is deformed. According to this, while maintaining the flat pressure contact portion between the end portions 3t, the power generation module 1 with the reaction force that the elastically deformed first outer plate 3 and second outer plate 4 try to return to the original state, The adhesion between the second outer plate 3, the first outer plate 3, the second outer plate 4, and the duct 7 can be improved.
  • the welding of the bent portions 3a and 4a is seam welding or laser welding having a weld portion 34 that extends along the direction in which the low-temperature fluid flows. According to this, bending part 3a, 4a can be welded firmly. In addition, you may weld the end surface 3b of the bending part 3a.
  • an internal space 30 sandwiched between the first outer plate 3 and the second outer plate 4 is formed by welding the bent portions 3 a and 4 a, and the power generation modules 1 and 2 are included in the inner space 30.
  • the high-temperature fluid flows in a direction orthogonal to the low-temperature fluid by stroking the outer fins 5 and 6. Accordingly, the hot fluid flows in the outer fins 5 and 6 in a direction intersecting the cold fluid.
  • the outer fins 5 and 6 are configured to have a plurality of wave portions. As shown in FIG.
  • the plurality of wave portions have a wave traveling direction in parallel with the arrow Y61 direction in which the low-temperature fluid flows, and have a wave overlapping direction in parallel with the arrow Y62 direction in which the high-temperature fluid flows. Accordingly, in the plurality of wave portions, the traveling direction of the waves is parallel to the direction in which the cryogenic fluid flows.
  • the plurality of wave portions may have the wave traveling direction intersecting the direction in which the low-temperature fluid flows.
  • the high-temperature fluid can easily flow between the waves, and the outer fins 5 and 6 can increase the rigidity in the direction in which the high-temperature fluid flows.
  • the first outer plate 3 and the second outer plate 4 to which the outer fins 5 and 6 are joined can also increase the rigidity in the direction in which the high-temperature fluid flows.
  • the first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded close to each other at both ends in the direction in which the high-temperature fluid flows. A stress that presses the power generation modules 1 and 2 against the duct 7 is generated by welding the bent portions 3a and 4a.
  • FIG. 7 is a plan view of a thermoelectric power generator showing a second embodiment.
  • FIG. 8 shows the right side.
  • plate-like rigidity reinforcing members 8 and 9 are attached to the outer sides of the left and right outer fins on the side opposite to the outer plate.
  • the material of the rigidity reinforcing members 8 and 9 is metal or ceramic.
  • the plate-like rigidity reinforcing members 8 and 9 and the outer fins 5 and 6 are joined by bonding or brazing.
  • the rigidity of the outer fins 5, 6, the first outer plate 3 and the second outer plate 4 can be enhanced.
  • As an outer fin there is a great merit that it is possible to enhance the rigidity of the offset fin as shown in FIG. 6 where the positions of adjacent fins are divided with some offset.
  • the offset fin itself is known, the heat exchange performance is excellent.
  • the fin is not limited to the offset fin. It is also possible to use wave fins that are not offset.
  • the plate-like rigidity reinforcing members 8 and 9 are joined to the outer fins 5 and 6 on the opposite sides of the first outer plate 3 and the second outer plate 4.
  • the plate-like rigidity reinforcing members 8 and 9 are joined to the outer side of the outer fins 5 and 6 on the side opposite to the outer plate.
  • the rigidity in the direction in which the high-temperature fluid flows in the first outer plate 3 and the second outer plate 4 can be increased.
  • the first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded close to each other at both ends in the direction in which the high-temperature fluid flows.
  • the rigid reinforcing members 10 and 11 use a metal bar having a rectangular cross section as shown in FIG. 11, but a rectangular tube type as shown in FIG. 12, an angle type as shown in FIG. 13, and a cross section as shown in FIG. A U-shaped channel type or the like can be adopted.
  • the direction in which the rod-shaped rigidity reinforcing members 10 and 11 extend is parallel to the direction in which the high-temperature fluid flows, and therefore the flow of the high-temperature fluid is rarely obstructed.
  • the divided outer fins 5 and 6 are disposed between the rigidity reinforcing members 10 and 11.
  • the rigidity reinforcing members 10 and 11 are brazed to the outer fins 5 and 6, the first outer plate 3, and the second outer plate 4.
  • the plurality of rod-like rigidity reinforcing members 10 and 11 that are mixed with the outer fins 5 and 6 and extend in parallel with the direction in which the high-temperature fluid flows are the outer fins 5 and 6 and the first outer plate. 3 and the second outer plate 4.
  • the rigidity in the direction in which the high-temperature fluid flows can be increased.
  • the first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded close to each other at both ends in the direction in which the high-temperature fluid flows.
  • a stress that presses the power generation modules 1 and 2 against the duct 7, the first outer plate 3, and the second outer plate 4 is generated by welding the bent portions 3a and 4a.
  • the rod-like rigidity reinforcing members 10 and 11 are installed between the outer fins 5 and 6, but the installation area of the outer fins 5 and 6 is reduced. Considering this, in the fourth embodiment, as shown in FIGS.
  • the inner rigidity reinforcing members 10 r and 11 r are installed inside the outer fins 5 and 6.
  • the inner rigidity reinforcing members 10 r and 11 r are joined to the first outer plate 3 and the second outer plate 4.
  • the inner rigidity reinforcing members 10r and 11r are provided between the first outer plate 3 and the second outer plate 4 and the power generation modules 1 and 2, respectively. However, this causes the inner rigidity reinforcing members 10r and 11r to interfere with the first outer plate 3 and the second outer plate 4 or the power generation modules 1 and 2.
  • a storage groove for storing at least part of the inner rigidity reinforcing members 10r and 11r may be formed in the first outer plate 3 and the second outer plate 4 or the power generation modules 1 and 2.
  • the dividing unit 13 can be formed in the power generation modules 1 and 2.
  • the dividing portion 13 can be used to accommodate at least a part of the inner rigidity reinforcing members 10r and 11r.
  • the power generation modules 1 and 2 each having a rectangular box as shown in FIG. 17 are employed.
  • the power generation modules 1 and 2 are provided with a storage groove 12 that stores a part of the inner rigidity reinforcing members 10 r and 11 r.
  • the power generation modules 1 and 2 are configured by a plurality of modules that are provided at predetermined intervals, which are the division units 13. A part of the inner rigidity reinforcing members 10r and 11r can be accommodated in the divided portion 13. Accordingly, it is possible to avoid the inner rigidity reinforcing members 10r and 11r from interfering with the first outer plate 3 and the second outer plate 4 or the power generation modules 1 and 2.
  • a plurality of inner rigidity reinforcing members 10r, 11r extending in parallel with the direction in which the high-temperature fluid flows between the first outer plate 3, the second outer plate 4, and the power generation modules 1, 2. Are joined to the first outer plate 3 and the second outer plate 4. According to this, since the rigidity of the first outer plate 3 and the second outer plate 4 can be strengthened by the inner rigidity reinforcing members 10r and 11r, the rigidity against stress can be increased, and the adhesion can be reliably maintained. it can.
  • the power generation modules 1 and 2 are provided with the storage grooves 12 or the divided portions 13 for storing the inner rigidity reinforcing members 10r and 11r. According to this, the inner rigidity reinforcing members 10r and 11r can be accommodated while avoiding interference between the first outer plate 3, the second outer plate 4, and the power generation modules 1 and 2.
  • the first outer plate 3 and the second outer plate 4 are combined and installed between the receiving jig 21 and the pressing jig 22 of the pressing device. Then, pressure is applied to these jigs 21 and 22 as indicated by an arrow Y20 by pressing. As a result, the bent portions 3a and 4a are pressurized as indicated by arrows Y11 to Y14 so as to increase the overlapping portions. As shown in FIG. 20, the first outer plate 3 and the second outer plate 4 are combined and installed between the receiving jig 21 and the pressing jig 22 of the pressing device. Then, pressure is applied to these jigs 21 and 22 as indicated by an arrow Y20 by pressing. As a result, the bent portions 3a and 4a are pressurized as indicated by arrows Y11 to Y14 so as to increase the overlapping portions. As shown in FIG.
  • the first outer plate 3 or the second outer plate 4 is bent and elastically deformed at the end portions 3t of the power generation modules 1 and 2, and the bent portions 3a and 4a are in a pressed state. They are welded together by a welder. Therefore, the first outer plate 3 and the second outer plate 4 are coupled together while a stress that sandwiches the power generation modules 1 and 2 is applied. As a result, the power generation modules 1 and 2 try to come into close contact with the first outer plate 3, the second outer plate 4 and the duct 7. Also, the arrows Y11 to Y14 indicating the applied pressure act between the duct 7 and the power generation modules 1 and 2 and between the power generation modules 1 and 2, the first outer plate 3, and the second outer plate 4, and are good pressure contact portions. Form.
  • the manufacturing method of the said thermoelectric power generating apparatus is applicable also in the modification of embodiment.
  • the method for manufacturing the thermoelectric generator includes a duct 7 in which a low-temperature fluid flows, a power generation module 1 and 2 that are in contact with the duct 7, and a first outer plate 3 that is in contact with the outside of the power generation modules 1 and 2, respectively. And the second outer plate 4 are applied to a thermoelectric generator.
  • first, the first outer plate 3 and the second outer plate 4 are opposed to each other, and the power generation modules 1 and 2 and the duct 7 are disposed between the first outer plate 3 and the second outer plate 4.
  • a pressurizing step is performed in which the first outer plate 3 and the second outer plate 4 are pressed so as to approach each other, and a stress is generated to press the first outer plate 3 and the second outer plate 4 against the power generation modules 1 and 2.
  • a pressurizing step is performed in which the first outer plate 3 and the second outer plate 4 are pressed so as to approach each other, and a stress is generated to press the first outer plate 3 and the second outer plate 4 against the power generation modules 1 and 2.
  • it has the welding process of welding the 1st outer plate 3 and the 2nd outer plate 4 and maintaining a pressurization state, generating this stress.
  • the thermoelectric generator does not cause a decrease in the amount of heat transfer and a decrease in the amount of power generation in the initial stage of operation, and sufficient performance can be obtained.
  • the horizontal axis indicates the passage of time T
  • the vertical axis indicates the flow rate Q of the high-temperature gas composed of exhaust gas and the heat exchange amount, and thus the power generation amount W.
  • the hot gas starts to flow into the outer fins 5 and 6 at time T1.
  • the power generation amount W rises quickly.
  • the characteristic C2 of the device in the development process without stress as a comparative example since the adhesion is poor, the rise of the power generation amount W is relatively slow.
  • the area of the difference region R12 between the characteristics C1 and the characteristics C2 indicates the performance improvement by the thermoelectric generator according to the embodiment.
  • the first outer plate 3 has ribs 3c on the surface on the duct 7 side opposite to the outer fins 5.
  • the rib 3c is a projecting deformed portion that is deformed so as to project the surface of the first outer plate 3 on the duct 7 side.
  • the rib 3 c is a reinforcing part that can increase the rigidity of the first outer plate 3.
  • the rib 3c can be manufactured by pressing the first outer plate 3 from the surface on the outer fin 5 side toward the duct 7 to deform the surface on the duct 7 side so as to protrude.
  • a plurality of ribs 3 c are provided on the first outer plate 3.
  • Each rib 3c is provided so as to extend over the entire length of the first outer plate 3 in the direction in which the high-temperature fluid flows.
  • Each rib 3c is provided to extend so as to connect the bent portion 3a and the bent portion 3a at both ends in the first outer plate 3.
  • the plurality of ribs 3 c are provided at intervals over the entire length of the outer fin 5 in the direction in which the low-temperature fluid flows in the first outer plate 3.
  • the rib 3c has at least a portion that overlaps with the end of the outer fin 5. As shown in FIG. According to this configuration, due to the overlap structure of the fins and the ribs 3c, when the first outer plate 3 is pressed during manufacturing, stress during pressing can be dispersed. Therefore, in the vicinity of the end portion of the outer fin 5, it is possible to avoid a situation in which the rigidity of the first outer plate 3 is greatly reduced, and it is possible to improve the durability of the thermoelectric generator 100.
  • the rib 3c is provided from the part which overlaps with the edge part of the outer side fin 5 to the bending part 3a. According to this configuration, there is an effect of stress dispersion when the springback occurs after the first outer plate 3 and the second outer plate 4 are welded. Therefore, a situation in which the rigidity of the first outer plate 3 is greatly reduced can be avoided, and the durability of the thermoelectric generator 100 can be improved.
  • the rib 3 c is provided at a position avoiding the joint portion between the first outer plate 4 and the outer fin 5. According to this configuration, it is possible to secure a joint portion in the outer fin 5 that is joined to the first outer plate 3. Therefore, since the area which is not brazed in the junction part of the 1st outer plate 4 and the outer side fin 5 can be suppressed, the rigidity of the 1st outer plate 3 can be ensured.
  • the above description relating to the rib 3 c in the first outer plate 3 is the same for the rib 4 c in the second outer plate 4. In the above description, the first outer plate 3 can be replaced with the second outer plate 4, and the rib 3c can be replaced with the rib 4c.
  • the sixth embodiment is different from the rib 3c and the rib 4c in the fifth embodiment in a block member 103c and a block member 104c.
  • the block-shaped member 103 c is a member provided integrally on the surface of the first outer plate 3 on the duct 7 side.
  • the block-shaped member 103c is a separate component from the first outer plate 3 before joining.
  • the block-like member 103c is joined to the first outer plate 3 by brazing, welding, or the like, and is provided integrally with the first outer plate 3.
  • the block-shaped member 103 c is a reinforcing part that can increase the rigidity of the first outer plate 3.
  • the block-shaped member 103c has a portion that overlaps at least the end portion of the outer fin 5. As shown in FIG. According to this configuration, due to the overlapping structure of the fins and the block-shaped member 103c, stress during pressurization can be dispersed when the first outer plate 3 is pressed during manufacturing. Therefore, in the vicinity of the end portion of the outer fin 5, it is possible to avoid a situation in which the rigidity of the first outer plate 3 is greatly reduced, and it is possible to improve the durability of the thermoelectric generator 100. As shown in FIG. 28, the block-like member 103 c is provided at a position that avoids the joint between the first outer plate 4 and the outer fin 5.
  • the block-like member 103c is provided from the portion overlapping the end of the outer fin 5 to the bent portion 3a. According to this configuration, there is an effect of stress dispersion when the springback occurs after the first outer plate 3 and the second outer plate 4 are welded. Therefore, a situation in which the rigidity of the first outer plate 3 is greatly reduced can be avoided, and the durability of the thermoelectric generator 100 can be improved.
  • the block-shaped member 104c has the same configuration as the block-shaped member 103c described in the sixth embodiment, and exhibits the same operational effects as described above.
  • the first outer plate 3 can be replaced with the second outer plate 4 in the operational effects described in the sixth embodiment.
  • a seventh embodiment will be described with reference to FIGS. About 7th Embodiment, the same code
  • the 7th Embodiment is a modification about the said reinforcement part.
  • the 1st outer plate 3 has the rigidity reduction part 203c.
  • the rigidity reduction portion 203 c is a portion that is provided adjacent to the outer fin 5 and has lower rigidity than the outer fin 5.
  • the rigidity lowering portion 203c is a portion having a simpler structure and a thinner plate thickness than the outer fins 5.
  • the rigidity reduction portion 203 c can be formed of a thin plate-like fin that protrudes vertically from the first outer plate 3.
  • the rigidity reduction portion 203c can be constituted by a protruding piece whose protruding height gradually decreases as the distance from the outer fin 5 increases.
  • the protruding piece 3 c 1 is adjacent to the outer fin 5 and is closest to the outermost fin 5.
  • the protruding piece 3 c 2 is adjacent to the protruding piece 3 c 1, has a protruding height lower than that of the protruding piece 3 c 1, and is separated from the outer fin 5.
  • the protruding piece 3c3 is adjacent to the protruding piece 3c2, has a protruding height lower than that of the protruding piece 3c2, and is separated from the outer fin 5.
  • the first outer plate 3 is the second outer plate 4
  • the reduced rigidity portion 203c is the reduced rigidity portion 204c
  • the protruding pieces 3c1 is the protruding pieces 3c2
  • the protruding pieces 3c3 are the protruding pieces 4c1, the protruding pieces 4c2, and the protruding portions.
  • Each of the pieces can be replaced with the piece 4c3.
  • the rigidity reduction part 203c can be replaced with a rigidity reduction part 303c shown in FIG. Even if the rigidity reduction part 303c leaves
  • the above description relating to the rigidity reduction portion 303 c in the first outer plate 3 is the same for the rigidity reduction portion 304 c in the second outer plate 4.
  • the first outer plate 3 can be replaced with the second outer plate 4, and the reduced rigidity portion 303c can be replaced with the reduced rigidity portion 304c.
  • the rigidity reduction portions 203 c, 204 c, 303 c, and 403 c have a portion that overlaps at least the end portion of the outer fin 5. According to this configuration, due to the overlap structure of the fins and the respective rigidity-decreasing portions, stress at the time of pressurization can be dispersed when the outer plate is pressed at the time of manufacture. Therefore, it is possible to avoid a situation in which the rigidity of the outer plate greatly decreases in the vicinity of the end portion of the outer fin 5, and to improve the durability of the thermoelectric generator 100. (Eighth embodiment) Next, an eighth embodiment will be described with reference to FIG. About 8th Embodiment, the same code
  • the eighth embodiment is different from the thermoelectric generator 100 of the first embodiment in that a power generation module is provided only on one side of the duct 7.
  • thermoelectric power generation apparatus 100 includes a duct 7 and a first power generation module 1 that is in contact with the outer surface of the duct 7 that faces each other.
  • the thermoelectric generator 100 further includes a first outer plate 3 that is in contact with an outer surface on the side opposite to the duct 7 of the first power generation module 1 and an outer surface on the opposite side of the duct 7 from the first power generation module 1 side.
  • a second outer plate 4 that is indirectly contacted.
  • thermoelectric generator 100 of 8th Embodiment can also be set as the structure which is not provided with the heat conductive member 102, and the duct 7 and the 2nd outer plate
  • Embodiment 9th Embodiment is a bending part in the state which elastically deformed only one outer plate among the 1st outer plates 3 and the 2nd outer plates 4 with respect to the thermoelectric generator 100 of 1st Embodiment. The difference is that it is an apparatus for welding.
  • the first outer plate 3 and the second outer plate 4 are arranged at both ends of the first outer plate 43 and the second outer plate 4 in a direction orthogonal to the direction in which the low-temperature fluid flows. It has the bending parts 3a and 4a welded in the state elastically deformed so that at least one of the 2nd outer plates 4 may approach with respect to the other. A stress that presses the first power generation module 1 and the second power generation module 2 against the duct 7 is generated by welding the bent portion.
  • the thermoelectric power generation device 100 of the ninth embodiment can achieve the same effects as those of the above-described embodiments.
  • the first outer plate 3 is made smaller than the second outer plate 4, and the first outer plate 3 is put on the second outer plate 4.
  • the first outer plate 3 and the second outer plate 4 may have the same size and may be assembled with their positions shifted from each other.
  • the first outer plate 3 and the second outer plate 4 are welded to seal the inner space 30 surrounded by the first outer plate 3 and the second outer plate 4.
  • the sealing may not be performed completely, and the high temperature fluid that is a high temperature gas may not be adversely affected on the power generation modules 1 and 2 in the internal space 30. That is, spot welding at multiple points may be used.
  • the power generation modules 1 and 2 are covered with an airtight case made of stainless steel, and a large number of P-type semiconductor elements and N-type semiconductor elements are alternately connected in a net-like manner inside the airtight case.
  • an airtight case made of stainless steel, and a large number of P-type semiconductor elements and N-type semiconductor elements are alternately connected in a net-like manner inside the airtight case.
  • the airtight case is not essential.
  • the internal space 30 can be sealed with a cover or the like.
  • the first outer plate 3 and the second outer plate 4 are bent after being elastically deformed so as to approach each other at both ends in a direction orthogonal to the direction in which the low-temperature fluid flows. 3a, 4a. And the stress which presses the electric power generation modules 1 and 2 against the duct 7 grade
  • the joining surfaces of the bent portions 3a and 4a are flat, a serrated projection shape that does not return after engaging with each other or a concavo-convex shape constituting a labyrinth shape may be processed into the joining surface.
  • the portions of the first outer plate 3 and the second outer plate 4 that are in contact with the power generation modules 1 and 2 are flat surfaces, but may have any curved shape.
  • a uniform stress should be applied to the power generation modules 1 and 2 as much as possible.
  • an inclusion such as a graphite sheet excellent in heat conduction may be sandwiched between the first outer plate 3 and the first power generation module 1 and between the second outer plate 4 and the second power generation module 2.
  • the thickness of the graphite sheet may not be uniform. In short, it is only necessary to apply a uniform stress as much as possible to the power generation module so that uniform heat conduction is achieved.
  • the duct 7 may be provided with a low-temperature fin for exchanging heat with a low-temperature fluid.
  • the flow path of the low-temperature fluid in the duct 7 is divided, but the division is not essential.
  • the low-temperature fin may be formed integrally with the duct 7. In this case, the low-temperature fin may be a hook-shaped or uneven fin protruding from the inner wall surface of the duct 7.
  • the outer fins 5 and 6 made of stainless steel or aluminum are joined to the outer sides of the outer plates 3 and 4 made of an iron plate or a stainless steel plate by brazing or the like. 4 may be integrally formed continuously.
  • the outer fins 5 and 6 may be hook-shaped fins that protrude or protrude from the surface of the outer plates 3 and 4.
  • thermoelectric power generation apparatus 100 shown in the first embodiment When the thermoelectric power generation apparatus 100 shown in the first embodiment is used as one unit and a plurality of units are stacked to constitute the entire thermoelectric power generation apparatus, each unit is inserted into a frame that holds the unit. Then, the high-temperature fluid flows into the outer fins 5 and 6 between the units, and the low-temperature fluid is divided into the ducts 7.
  • thermoelectric generator Although the example of the exhaust of the automobile engine as the high-temperature fluid and the example of the engine cooling water as the low-temperature fluid are shown as the thermoelectric generator, the high-temperature gas of other industrial boilers may be used. Can be used as the thermoelectric generator

Abstract

A thermoelectric power generation device is provided with: a duct (7) through the inside of which a low temperature fluid flows; a first power generation module (1) and a second power generation module (2) each internally provided with a thermoelectric power generation element and respectively making contact with outer surfaces of the duct (7) facing each other, so as to sandwich the duct (7); a first outer plate (3) and a second outer plate (4) respectively making contact with outer surfaces of the first and second power generation modules (1, 2) on the side opposite to the duct (7); and outside fins (5, 6) respectively provided on outer surfaces of the first and second outer plates (3, 4) on the side opposite to the respective power generation modules (1, 2) and making contact with a high temperature fluid. The first outer plate (3) and the second outer plate (4) have bent portions (3a, 4a), at both ends of the first and second outer plates (3, 4) in a direction orthogonal to a direction in which the low temperature fluid flows, which are welded in an elastically deformed state so that the first and second outer plates (3, 4) become closer to each other. The welding of the bent portions (3a, 4a) generates a stress of pressing the first power generation module (1) and the second power generation module (2) onto the duct (7).

Description

熱電発電装置及びその製造方法Thermoelectric generator and method for manufacturing the same 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年9月16日に出願された日本特許出願番号2015-183254号と、2016年8月8日に出願された日本特許出願番号2016-155818号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-183254 filed on September 16, 2015 and Japanese Patent Application No. 2016-155818 filed on August 8, 2016. The description is incorporated.
 本開示は、高温流体と低温流体とを用いて熱電発電を行う熱電発電装置及びその製造方法に関する。特に、車両の排気を利用した熱電発電装置及びその製造方法に関する。 The present disclosure relates to a thermoelectric power generation apparatus that performs thermoelectric power generation using a high-temperature fluid and a low-temperature fluid, and a manufacturing method thereof. In particular, the present invention relates to a thermoelectric power generation apparatus using vehicle exhaust and a method for manufacturing the same.
 従来、特許文献1に記載の熱電発電装置がある。この装置では、発電モジュールと低温側部材及び高温側部材は作動時の夫々の熱膨張率が違うため、それにより発生する熱歪による発電モジュールの中の発電素子の破壊を懸念している。そしてそのために、発電モジュールと低温側部材及び高温側部材とを強固に固定しない構造としている。 Conventionally, there is a thermoelectric generator described in Patent Document 1. In this apparatus, the power generation module, the low temperature side member, and the high temperature side member have different coefficients of thermal expansion during operation, and are concerned about the destruction of the power generation element in the power generation module due to the thermal strain generated thereby. Therefore, the power generation module, the low temperature side member, and the high temperature side member are not firmly fixed.
 また、発電モジュールと低温側部材及び高温側部材との間の熱移動を可能とするため、部材間に熱伝導部材等を入れ込むなどしながらボルトなどの締結部材を使用してその密着性を確保している。 In addition, in order to enable heat transfer between the power generation module and the low temperature side member and the high temperature side member, use a fastening member such as a bolt while inserting a heat conduction member or the like between the members to improve the adhesion. Secured.
特開2011-101460号公報JP 2011-101460 A
 上記特許文献1の技術によると、締結するためのボルト等の締結部材が新たに必要になり、部費点数が増え、製品の材料費、製造コストが増加する。また、このような部品点数の増加は熱交換性能に寄与しない熱容量が増加することになる。これにより、発電装置の作動初期における有効な熱の移動量の低下と、それに伴う発電量の低下が発生し、十分な性能が得られない。従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。 According to the technique of the above-mentioned Patent Document 1, a fastening member such as a bolt for fastening is newly required, the number of parts is increased, and the material cost and manufacturing cost of the product are increased. In addition, such an increase in the number of parts increases the heat capacity that does not contribute to the heat exchange performance. As a result, a decrease in the amount of effective heat transfer in the initial operation of the power generation device and a decrease in the amount of power generation associated therewith occur, and sufficient performance cannot be obtained. Descriptions of patent documents listed as prior art can be introduced or incorporated by reference as explanations of technical elements described in this specification.
 このような課題に鑑み、本開示の目的は、発電性能の低下を抑制する熱電発電装置及びその製造方法を提供することである。 In view of such a problem, an object of the present disclosure is to provide a thermoelectric power generation device that suppresses a decrease in power generation performance and a manufacturing method thereof.
 上記目的を達成するために、本開示の第1の態様における熱電発電装置は、内部に低温流体が流れるダクトと、夫々の内部に熱発電素子が設けられ、ダクトの相対向する外表面にダクトを挟むように夫々接触する第1発電モジュール及び第2発電モジュールと、第1発電モジュールと第2発電モジュールとの反ダクト側である外表面に夫々接触された第1外板及び第2外板と、第1外板及び第2外板の夫々の反発電モジュール側である外表面に夫々設けられて高温流体に接触する外側フィンとを備え、第1外板及び第2外板は、低温流体が流れる方向と直交する方向の第1外板及び第2外板の両端に互いに接近するように弾性変形した状態で溶接される折曲部を有し、この折曲部の溶接により第1発電モジュールと、第2発電モジュールとをダクトに押し付ける応力を発生していることを特徴としている。 In order to achieve the above object, the thermoelectric generator according to the first aspect of the present disclosure includes a duct through which a low-temperature fluid flows and a thermoelectric generator in each of the ducts, and the ducts are arranged on the opposing outer surfaces of the duct. A first power generation module and a second power generation module that are in contact with each other so as to sandwich the first power generation module, and a first power generation module and a second power generation module that are in contact with the outer surfaces on the side opposite to the duct of the first power generation module and the second power generation module. And outer fins that are respectively provided on the outer surfaces of the first outer plate and the second outer plate on the side opposite to the power generation module and are in contact with the high-temperature fluid. The first outer plate and the second outer plate have a low temperature The first outer plate and the second outer plate in a direction perpendicular to the direction in which the fluid flows have bent portions that are welded in a state of being elastically deformed so as to approach each other. A power generation module, a second power generation module, It is characterized in that it generates a stress that presses the duct.
 これによれば、外板は、第1流体が流れる方向と直交する方向の両端に互いに接近して溶接される折曲部を有し、この折曲部の溶接により発電モジュールをダクトに押し付ける応力を発生している。したがって、発電モジュールと第1外板と第2外板とダクトとの密着性が向上して発電性能が向上する。また、密着性を確保し維持するためにボルト等の締結部材が不要であるから、熱交換性能に寄与しない部材による熱容量の増加を抑制できる。したがって、発電装置の作動初期における有効な熱の移動量の低下及び発電量の低下が発生せず、十分な性能が得られる熱電発電装置を提供できる。 According to this, the outer plate has bent portions that are welded close to each other at both ends in a direction orthogonal to the direction in which the first fluid flows, and stress that presses the power generation module against the duct by welding of the bent portions. Is occurring. Accordingly, the adhesion between the power generation module, the first outer plate, the second outer plate, and the duct is improved, and the power generation performance is improved. Further, since a fastening member such as a bolt is not required to secure and maintain the adhesion, an increase in heat capacity due to a member that does not contribute to the heat exchange performance can be suppressed. Therefore, it is possible to provide a thermoelectric power generation apparatus that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generation apparatus and can obtain sufficient performance.
 本開示の第2の態様における熱電発電装置は、内部に低温流体が流れるダクトと、夫々の内部に熱発電素子が設けられ、ダクトの相対向する外表面にダクトを挟むように夫々接触する第1発電モジュール及び第2発電モジュールと、第1発電モジュールと第2発電モジュールとの反ダクト側である外表面に夫々接触する第1外板及び第2外板と、第1外板及び第2外板の夫々の反発電モジュール側である外表面に夫々設けられて高温流体に接触する外側フィンと、を備え、第1外板及び第2外板は、低温流体が流れる方向と直交する方向の第1外板及び第2外板の両端に、第1外板及び第2外板の少なくとも一方が他方に対して接近するように弾性変形した状態で溶接される折曲部を有し、この折曲部の溶接により第1発電モジュールと第2発電モジュールとをダクトに押し付ける応力を発生していることを特徴とする。 The thermoelectric power generation device according to the second aspect of the present disclosure includes a duct in which a low-temperature fluid flows, a thermoelectric generation element provided in each of the ducts, and the first and second outer surfaces facing each other so as to sandwich the duct. A first power generation module and a second power generation module; a first outer plate and a second outer plate that are in contact with the outer surfaces of the first power generation module and the second power generation module on the opposite side of the duct; Outer fins that are respectively provided on the outer surfaces of the outer plates on the side opposite to the power generation module and come into contact with the high-temperature fluid. The first outer plate and the second outer plate are orthogonal to the direction in which the low-temperature fluid flows. A bent portion that is welded in a state of being elastically deformed so that at least one of the first outer plate and the second outer plate approaches the other at both ends of the first outer plate and the second outer plate. By welding this bent part, the first power generation module and the first Characterized in that it generates a stress that presses the power generation module to the duct.
 この熱電発電装置によれば、外板は、第1流体が流れる方向と直交する方向の両端に、少なくとも一方の外板が弾性変形した状態で他方の外板に接近して溶接される折曲部を有する。この折曲部の溶接により第1発電モジュールと第2発電モジュールとをダクトに押し付ける応力を発生している。したがって、各発電モジュールと第1外板及び第2外板との密着性、各発電モジュールとダクトとの密着性が向上することで、発電性能が向上する。また、この密着性を確保し維持するためにボルト等の締結部材が不要であるから、熱交換性能に寄与しない部材による熱容量の増加を抑制できる。したがって、発電装置の作動初期における有効な熱の移動量の低下及び発電量の低下が発生せず、十分な性能が得られる熱電発電装置を提供できる。 According to this thermoelectric generator, the outer plate is bent at both ends in a direction orthogonal to the direction in which the first fluid flows, and is welded close to the other outer plate in a state where at least one outer plate is elastically deformed. Part. A stress that presses the first power generation module and the second power generation module against the duct is generated by welding the bent portion. Therefore, the power generation performance is improved by improving the adhesion between each power generation module and the first outer plate and the second outer plate and the adhesion between each power generation module and the duct. Further, since a fastening member such as a bolt is not required to secure and maintain this adhesion, an increase in heat capacity due to a member that does not contribute to heat exchange performance can be suppressed. Therefore, it is possible to provide a thermoelectric power generation apparatus that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generation apparatus and can obtain sufficient performance.
 本開示の第3の態様における熱電発電装置は、内部に低温流体が流れるダクトと、内部に熱発電素子が設けられ、ダクトの対向する外表面に接触する発電モジュールと、発電モジュールの反ダクト側である外表面に接触する第1外板と、ダクトにおいて発電モジュール側とは反対側の外表面に直接または間接的に接触する第2外板と、第1外板及び第2外板の夫々の反発電モジュール側である外表面に夫々設けられて高温流体に接触する外側フィンと、を備え、第1外板及び第2外板は、低温流体が流れる方向と直交する方向の第1外板及び第2外板の両端に、第1外板及び第2外板の少なくとも一方が他方に対して接近するように弾性変形した状態で溶接される折曲部を有し、この折曲部の溶接により発電モジュールをダクトに押し付ける応力を発生していることを特徴とする。 A thermoelectric power generation device according to a third aspect of the present disclosure includes a duct through which a low-temperature fluid flows, a power generation module that is provided with a thermoelectric generation element therein, and that is in contact with an opposite outer surface of the duct, and an anti-duct side of the power generation module A first outer plate that contacts the outer surface, a second outer plate that directly or indirectly contacts the outer surface of the duct opposite to the power generation module side, and the first outer plate and the second outer plate, respectively. Outer fins that are respectively provided on the outer surface on the side opposite to the power generation module and come into contact with the high-temperature fluid, and the first outer plate and the second outer plate are arranged in a direction perpendicular to the direction in which the low-temperature fluid flows. At both ends of the plate and the second outer plate, there is a bent portion that is welded in a state of being elastically deformed so that at least one of the first outer plate and the second outer plate approaches the other. Press the power generation module against the duct by welding Characterized in that it has occurred to stress.
 この熱電発電装置によれば、外板は、第1流体が流れる方向と直交する方向の両端に、少なくとも一方の外板が弾性変形した状態で他方の外板に接近して溶接される折曲部を有し、この折曲部の溶接により発電モジュールをダクトに押し付ける応力を発生している。したがって、発電モジュールと第1外板及び第2外板との密着性、発電モジュールとダクトとの密着性が向上することで、発電性能が向上する。また、密着性を確保し維持するためにボルト等の締結部材が不要であるから、熱交換性能に寄与しない部材による熱容量の増加を抑制できる。したがって、発電装置の作動初期における有効な熱の移動量の低下及び発電量の低下が発生せず、十分な性能が得られる熱電発電装置を提供できる。 According to this thermoelectric generator, the outer plate is bent at both ends in a direction orthogonal to the direction in which the first fluid flows, and is welded close to the other outer plate in a state where at least one outer plate is elastically deformed. And a stress that presses the power generation module against the duct is generated by welding the bent portion. Therefore, the power generation performance is improved by improving the adhesion between the power generation module and the first outer plate and the second outer plate and the adhesion between the power generation module and the duct. Further, since a fastening member such as a bolt is not required to secure and maintain the adhesion, an increase in heat capacity due to a member that does not contribute to the heat exchange performance can be suppressed. Therefore, it is possible to provide a thermoelectric power generation apparatus that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generation apparatus and can obtain sufficient performance.
 本開示の第4の態様における熱電発電装置の製造方法は、内部に低温流体が流れるダクトと、内部に熱発電素子が設けられる発電モジュールと、第1外板及び第2外板と、を備えた熱電発電装置の製造方法であり、第1外板及び第2外板を相対向させて、発電モジュールの反ダクト側である外側に第1外板及び第2外板の夫々が接触し、ダクトの相対向する外表面の夫々に発電モジュールが接触するように、第1外板及び第2外板との間に発電モジュールとダクトとを配設する配設工程と、第1外板と第2外板とが互いに接近するように加圧し、第1外板及び第2外板の夫々を発電モジュールに押し付ける応力を発生させる加圧工程と、応力を発生させた状態で第1外板と第2外板とを溶接する溶接工程と、を有することを特徴とする。 A method for manufacturing a thermoelectric generator according to a fourth aspect of the present disclosure includes a duct through which a low-temperature fluid flows, a power generation module in which a thermoelectric generator is provided, and a first outer plate and a second outer plate. The first outer plate and the second outer plate are opposed to each other, and each of the first outer plate and the second outer plate is in contact with the outside on the side opposite to the duct of the power generation module, A disposing step of disposing the power generation module and the duct between the first outer plate and the second outer plate so that the power generation module contacts each of the opposing outer surfaces of the duct; Pressurizing step to pressurize the second outer plate so as to approach each other and generate stress to press each of the first outer plate and the second outer plate against the power generation module; and the first outer plate in a state where the stress is generated And a welding step of welding the second outer plate.
 この製造方法によれば、外板は、第1流体が流れる方向と直交する方向の両端が互いに接近して溶接されて、この溶接により発電モジュールをダクトに押し付ける応力を発生する熱電発電装置を製造できる。したがって、発電モジュール、第1外板、第2外板及びダクトの密着性が向上して発電性能が向上する。また、密着性を確保し維持するためにボルト等の締結部材が不要であるから、熱交換性能に寄与しない部材による熱容量の増加を抑制できる。したがって、発電装置の作動初期における有効な熱の移動量の低下及び発電量の低下が発生せず、十分な性能が得られる熱電発電装置の製造方法を提供できる。 According to this manufacturing method, the outer plate is welded so that both ends in a direction orthogonal to the direction in which the first fluid flows are close to each other, and a thermoelectric power generation device that generates stress that presses the power generation module against the duct by this welding is manufactured. it can. Accordingly, the adhesion of the power generation module, the first outer plate, the second outer plate, and the duct is improved, and the power generation performance is improved. Further, since a fastening member such as a bolt is not required to secure and maintain the adhesion, an increase in heat capacity due to a member that does not contribute to the heat exchange performance can be suppressed. Accordingly, it is possible to provide a method for manufacturing a thermoelectric power generator that does not cause a decrease in the amount of effective heat transfer and a decrease in the amount of power generation in the initial stage of operation of the power generator and can obtain sufficient performance.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態における熱電発電装置の一部を示す斜視図である。 第1実施形態における熱電発電装置の斜視図である。 第1実施形態における図1の矢印Z3方向から見た熱電発電装置の平面図である。 第1実施形態における図3の矢印Z4方向から見た右側面図である。 第1実施形態における外側フィンの剛性を説明する斜視図である。 第1実施形態における外側フィンの一部拡大図である。 第2実施形態における熱電発電装置の平面図である。 第2実施形態における熱電発電装置の右側面図である。 第3実施形態における熱電発電装置の平面図である。 第3実施形態における熱電発電装置の右側面図である。 第3実施形態における棒状の剛性強化部材が断面矩形である場合の斜視図である。 第3実施形態の変形例における棒状の剛性強化部材が矩形管型である場合の斜視図である。 第3実施形態の変形例における棒状の剛性強化部材がアングル型である場合の斜視図である。 第3実施形態の変形例における棒状の剛性強化部材が断面U字状のチャンネル型である場合の斜視図である。 第4実施形態における熱電発電装置の平面図である。 第4実施形態における熱電発電装置の右側面図である。 第4実施形態に対する比較例となる発電モジュールの外観を示す説明図である。 第4実施形態における収納溝が形成された発電モジュールの外観を示す説明図である。 第4実施形態の変形例における分割部が設けられた発電モジュールの外観を示す説明図である。 第1~第4実施形態における熱電発電装置の製造方法の一例を示す説明図である。 図20に示す製造方法の過程において、第1外板を加圧し変形させた状態を示す説明図である。 第1~第4実施形態における熱電発電装置に共通する特性の一例を示す特性図である。 第5実施形態の熱電発電装置の斜視図である。 第5実施形態の熱電発電装置の平面図である。 第5実施形態の突出部を示した部分側面図である。 第5実施形態の突出部を示した部分断面図である。 第6実施形態の突出部を示した部分側面図である。 第6実施形態の突出部を示した部分断面図である。 第7実施形態の熱電発電装置の平面図である。 第7実施形態の突出部を示した部分側面図である。 第7実施形態の突出部についての変形例を示した部分側面図である。 第8実施形態の熱電発電装置の斜視図である。 第9実施形態の熱電発電装置の斜視図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a perspective view which shows a part of thermoelectric power generator in 1st Embodiment. It is a perspective view of the thermoelectric generator in a 1st embodiment. It is a top view of the thermoelectric power generator seen from the arrow Z3 direction of FIG. 1 in 1st Embodiment. It is the right view seen from the arrow Z4 direction of FIG. 3 in 1st Embodiment. It is a perspective view explaining the rigidity of the outside fin in a 1st embodiment. It is a partial enlarged view of the outside fin in a 1st embodiment. It is a top view of the thermoelectric power generator in 2nd Embodiment. It is a right view of the thermoelectric generator in 2nd Embodiment. It is a top view of the thermoelectric power generator in 3rd Embodiment. It is a right view of the thermoelectric generator in 3rd Embodiment. It is a perspective view in case the rod-shaped rigidity reinforcement member in 3rd Embodiment is a cross-sectional rectangle. It is a perspective view in case the rod-shaped rigidity reinforcement member in the modification of 3rd Embodiment is a rectangular tube type. It is a perspective view in case the rod-shaped rigidity reinforcement member in the modification of 3rd Embodiment is an angle type. It is a perspective view in case the rod-shaped rigidity reinforcement member in the modification of 3rd Embodiment is a channel type with a U-shaped cross section. It is a top view of the thermoelectric power generator in 4th Embodiment. It is a right view of the thermoelectric generator in 4th Embodiment. It is explanatory drawing which shows the external appearance of the electric power generation module used as the comparative example with respect to 4th Embodiment. It is explanatory drawing which shows the external appearance of the electric power generation module in which the accommodation groove | channel in 4th Embodiment was formed. It is explanatory drawing which shows the external appearance of the electric power generation module provided with the division part in the modification of 4th Embodiment. FIG. 5 is an explanatory diagram showing an example of a method for manufacturing a thermoelectric generator in the first to fourth embodiments. It is explanatory drawing which shows the state which pressurized and deform | transformed the 1st outer plate in the process of the manufacturing method shown in FIG. FIG. 6 is a characteristic diagram showing an example of characteristics common to the thermoelectric generators in the first to fourth embodiments. It is a perspective view of the thermoelectric generator of 5th Embodiment. It is a top view of the thermoelectric power generator of 5th Embodiment. It is the partial side view which showed the protrusion part of 5th Embodiment. It is the fragmentary sectional view which showed the protrusion part of 5th Embodiment. It is the partial side view which showed the protrusion part of 6th Embodiment. It is the fragmentary sectional view which showed the protrusion part of 6th Embodiment. It is a top view of the thermoelectric power generator of 7th Embodiment. It is the partial side view which showed the protrusion part of 7th Embodiment. It is the partial side view which showed the modification about the protrusion part of 7th Embodiment. It is a perspective view of the thermoelectric generator of 8th Embodiment. It is a perspective view of the thermoelectric power generator of 9th Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部を説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組合せることも可能である。
(第1実施形態)
 以下、第1実施形態について図1ないし図6を用いて詳細に説明する。図1は、熱電発電装置100の一部断面構成図である。第1発電モジュール1と第2発電モジュール2とは、素子の酸化防止のため扁平な箱形の気密ケースの内部に収納されている。したがって、発電モジュール1、2は、外観的には板状の箱としか見えないが、薄いステンレスから構成された気密ケースの内部には多数のP型半導体素子とN型半導体素子とが交互に網状に連結されている。発電モジュールは、一方の面に高温部が接触し、他方の面に低温部が接触することで発電する。
Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. In the case where a part of the configuration is described in each form, the other forms described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also the embodiments are partially combined even if they are not clearly specified unless there is a problem with the combination. It is also possible.
(First embodiment)
Hereinafter, the first embodiment will be described in detail with reference to FIGS. 1 to 6. FIG. 1 is a partial cross-sectional configuration diagram of a thermoelectric generator 100. The first power generation module 1 and the second power generation module 2 are housed in a flat box-shaped airtight case to prevent oxidation of the elements. Therefore, although the power generation modules 1 and 2 can be seen only as plate-like boxes in appearance, a large number of P-type semiconductor elements and N-type semiconductor elements are alternately arranged inside an airtight case made of thin stainless steel. It is connected in a net shape. The power generation module generates power when the high temperature portion contacts one surface and the low temperature portion contacts the other surface.
 各発電モジュール1、2の一面は、高温部を成す第1外板3と第2外板4とに接触されている。第1外板3及び第2外板4を総称して単に外板3、4と呼ぶことがある。第1外板3と第2外板4とは両端同士が互いに溶接されるように折り曲げられている。この折り曲げられた部分である折曲部3a、4aは、ダクト7の中を低温流体が流れる方向と平行な方向に溶接されたシーム溶接又はレーザー溶接で互いに溶接されている。この溶接により第1外板3と第2外板4とによって囲まれた内部空間30が形成されている。第1外板3と第2外板4とによって囲まれた内部空間30には発電モジュール1、2とダクト7が収納されている。ダクト7は、アルミニウム製又はステンレス製であり内部に自動車エンジンの冷却水から成る低温流体が流れる。ダクト7は、扁平な表裏の外表面を持つ。 One surface of each of the power generation modules 1 and 2 is in contact with the first outer plate 3 and the second outer plate 4 forming the high temperature part. The first outer plate 3 and the second outer plate 4 may be collectively referred to simply as the outer plates 3 and 4. The first outer plate 3 and the second outer plate 4 are bent so that both ends are welded to each other. The bent portions 3a and 4a which are the bent portions are welded to each other by seam welding or laser welding which is welded in a direction parallel to the direction in which the low-temperature fluid flows in the duct 7. By this welding, an internal space 30 surrounded by the first outer plate 3 and the second outer plate 4 is formed. In the internal space 30 surrounded by the first outer plate 3 and the second outer plate 4, the power generation modules 1, 2 and the duct 7 are accommodated. The duct 7 is made of aluminum or stainless steel, and a low-temperature fluid made of automobile engine cooling water flows through the duct 7. The duct 7 has flat outer surfaces.
 第1外板3と第2外板4との反発電モジュール側である外側(図1の上方及び下方)には外側フィン5、6が夫々設けられている。この外側フィン5、6に接して高温流体となる自動車エンジンの排気が流れる。発電モジュール1、2の他の表面である内側表面は、低温部を成すダクト7の外表面に接触されている。ダクト7の内部は、複数の流通路に区切られ、この流通路の内部に低温流体となる冷却水が流れる。 Outer fins 5 and 6 are provided on the outer side (upper and lower sides in FIG. 1) of the first outer plate 3 and the second outer plate 4 on the side opposite to the power generation module. Exhaust of the automobile engine that becomes a high temperature fluid flows in contact with the outer fins 5 and 6. The inner surface which is the other surface of the power generation modules 1 and 2 is in contact with the outer surface of the duct 7 forming the low temperature part. The inside of the duct 7 is divided into a plurality of flow passages, and cooling water that becomes a low-temperature fluid flows in the flow passages.
 なお、図1に示したのは1つの発電ユニットからなる熱電発電装置100であるが、このような発電ユニットを複数積層してもよい。この場合においても積層された発電ユニット相互間に位置する外側フィン5、6に接して高温流体が流れる。 In addition, although what was shown in FIG. 1 is the thermoelectric power generation apparatus 100 which consists of one electric power generation unit, you may laminate | stack a plurality of such electric power generation units. Also in this case, the high-temperature fluid flows in contact with the outer fins 5 and 6 positioned between the stacked power generation units.
 第1外板3と第2外板4とは、組み付け時において、折曲部3a、4aが互いに重なり部分を増加させるように矢印Y11~Y14のごとく加圧されている。この加圧された状態で折曲部3a、4aは、互いにシーム溶接又はレーザー溶接よって溶接されている。したがって、第1外板3と第2外板4とには発電モジュール1、2を挟みこむような応力が作用して製品が完成している。これにより発電モジュール1、2は第1外板3と第2外板4とダクト7とに密接し易くなる。つまり、応力による加圧力は、ダクト7と発電モジュール1、2の間及び発電モジュール1、2と第1外板3及び第2外板4との間に作用し、これらの間に圧力接触部を形成している。 The first outer plate 3 and the second outer plate 4 are pressurized as indicated by arrows Y11 to Y14 so that the bent portions 3a and 4a overlap each other during assembly. In this pressurized state, the bent portions 3a and 4a are welded to each other by seam welding or laser welding. Accordingly, the first outer plate 3 and the second outer plate 4 are subjected to a stress that sandwiches the power generation modules 1 and 2 to complete the product. As a result, the power generation modules 1 and 2 are easily brought into close contact with the first outer plate 3, the second outer plate 4 and the duct 7. That is, the pressure applied by the stress acts between the duct 7 and the power generation modules 1 and 2 and between the power generation modules 1 and 2 and the first outer plate 3 and the second outer plate 4, and the pressure contact portion therebetween. Is forming.
 図2は、熱電発電装置100全体の斜視図である。この熱電発電装置100は、図2の上方から下方に向けて外側フィン5、第1外板3、第1発電モジュール1、ダクト7、第2発電モジュール2、第2外板4、外側フィン6と構成された積層体である。ダクト7の内部には矢印Y21、Y22のように低温流体が流れる。外側フィン5、6の内部には外側フィン5、6と接触しながら高温流体が矢印Y21、Y22のように流れ、高温流体と外側フィン5、6とが熱交換する。 FIG. 2 is a perspective view of the entire thermoelectric generator 100. The thermoelectric generator 100 includes an outer fin 5, a first outer plate 3, a first power generation module 1, a duct 7, a second power generation module 2, a second outer plate 4, and an outer fin 6 from the upper side to the lower side in FIG. 2. It is the laminated body comprised. A low temperature fluid flows in the duct 7 as indicated by arrows Y21 and Y22. Inside the outer fins 5 and 6, the high temperature fluid flows as indicated by arrows Y21 and Y22 while contacting the outer fins 5 and 6, and the high temperature fluid and the outer fins 5 and 6 exchange heat.
 図3は、図1の矢印Z3方向から見た熱電発電装置100の平面図である。図4は、図3の矢印Z4方向から見た右側面を示す。図3の矢印Y31方向が高温流体の流れる方向である。また、低温流体となるエンジン冷却水は、図3の矢印Y32のように高温流体と直交して流れる。低温流体は、図1の中心部に設置され分割された流路を複数持つダクト7の内部を流れる。このダクト7の一表面側と他表面側とに発電モジュール1、2が設置されている。これらの一対の発電モジュール1、2は、内側にダクト7を挟んでおり、更に、外側は第1外板3と第2外板4とによって挟まれている。外側フィン5、6相互間の幅W4は、一例として35mmである。 FIG. 3 is a plan view of the thermoelectric generator 100 viewed from the direction of the arrow Z3 in FIG. FIG. 4 shows the right side as seen from the direction of arrow Z4 in FIG. The direction of arrow Y31 in FIG. 3 is the direction in which the high-temperature fluid flows. Further, the engine coolant that becomes a low temperature fluid flows orthogonally to the high temperature fluid as indicated by an arrow Y32 in FIG. The low-temperature fluid flows through the inside of a duct 7 having a plurality of divided flow paths installed at the center of FIG. The power generation modules 1 and 2 are installed on one surface side and the other surface side of the duct 7. The pair of power generation modules 1 and 2 sandwich the duct 7 on the inside, and the outside is sandwiched between the first outer plate 3 and the second outer plate 4. The width W4 between the outer fins 5 and 6 is 35 mm as an example.
 図5は、外側フィン5、6の剛性を説明する斜視図である。外側フィン5、6は波状に延伸する方向に伸び縮みしやすく剛性が弱い。一方、それと直角方向には伸び縮みしにくく剛性が高い。 FIG. 5 is a perspective view for explaining the rigidity of the outer fins 5 and 6. The outer fins 5 and 6 are easy to expand and contract in the direction of extending in a wave shape and have low rigidity. On the other hand, it is hard to expand and contract in the direction perpendicular to it and has high rigidity.
 また図1において、矢印Y11~Y14に示す加圧力の影響で第1外板3と第2外板4とには曲げ応力が加わる。よってこの曲げ応力に耐える剛性が必要になる。したがって、図1の矢印Y11、Y12と直交する左右方向つまり折曲部3a、4aを結ぶ方向の剛性を強くすることが望ましい。図3及び図4から判明するように、折曲部3a、4aを結ぶ方向は高温流体が流れる矢印Y31の方向である。したがって、図5のように外側フィン5、6は高温流体が流れる矢印Y31の方向の剛性を強くし、それと直角方向の剛性を弱くしている。 In FIG. 1, bending stress is applied to the first outer plate 3 and the second outer plate 4 due to the influence of the pressing force indicated by arrows Y11 to Y14. Therefore, rigidity that can withstand this bending stress is required. Therefore, it is desirable to increase the rigidity in the left-right direction orthogonal to the arrows Y11 and Y12 in FIG. 1, that is, the direction connecting the bent portions 3a and 4a. As can be seen from FIGS. 3 and 4, the direction connecting the bent portions 3a and 4a is the direction of the arrow Y31 through which the high-temperature fluid flows. Therefore, as shown in FIG. 5, the outer fins 5 and 6 have increased rigidity in the direction of the arrow Y31 through which the high-temperature fluid flows, and decreased rigidity in the direction perpendicular thereto.
 図6は、外側フィン5の一部拡大図である。波型に折り曲げられた外側フィン5は波の進行方向に剛性が弱く、波の重なり方向に合成が強くなる。このような外側フィン5が第1外板3にロウ付けされることにより、第1外板3の剛性も強化される。この結果、第1外板3と第2外板4と発電モジュール1、2との間に熱伝達を阻害する隙間が生じにくくなる。図6では、外側フィン5、6として、隣り合うフィン同士の位置が多少オフセットして分断されているオフセットフィンが採用されている。 FIG. 6 is a partially enlarged view of the outer fin 5. The outer fin 5 bent into a corrugated shape has a low rigidity in the wave traveling direction and a strong composition in the wave overlapping direction. By brazing such outer fins 5 to the first outer plate 3, the rigidity of the first outer plate 3 is also strengthened. As a result, a gap that hinders heat transfer is less likely to occur between the first outer plate 3, the second outer plate 4, and the power generation modules 1 and 2. In FIG. 6, as the outer fins 5 and 6, offset fins in which the positions of adjacent fins are separated by being slightly offset are employed.
 なお、上記隙間が生じる可能性のある圧力接触部にグラファイトシートなどの熱伝導部材を挟み込んでもよい。このような熱伝導部材を圧力接触部に設けることで、圧力接触部に隙間ができる要因となる多少の高低差又は凹凸を熱伝導部材が吸収し、熱伝導性を維持することができる。 It should be noted that a heat conducting member such as a graphite sheet may be sandwiched between pressure contact portions where the gap may occur. By providing such a heat conductive member in the pressure contact portion, the heat conductive member absorbs a certain level difference or unevenness that causes a gap in the pressure contact portion, and the thermal conductivity can be maintained.
 第1実施形態の作用効果について述べる。第1実施形態では、内部に低温流体が流れる扁平な表裏の外表面を持つダクト7と、ダクト7の外表面にこのダクト7を挟むように接触され、内部に熱発電素子が設けられた発電モジュール1、2とを備えている。かつ、発電モジュール1、2の反ダクト側である外側に第1外板3及び第2外板4が夫々接触されている。更に、第1外板3及び第2外板4の夫々の反発電モジュール側である外側に外側フィン5、6が接合されている。 The operation and effect of the first embodiment will be described. In the first embodiment, a duct 7 having a flat front and back outer surface through which a low-temperature fluid flows inside is contacted with the outer surface of the duct 7 so as to sandwich the duct 7, and a thermoelectric generator is provided inside. Modules 1 and 2 are provided. In addition, the first outer plate 3 and the second outer plate 4 are in contact with the outside of the power generation modules 1 and 2 on the side opposite to the duct. Further, outer fins 5 and 6 are joined to the outer sides of the first outer plate 3 and the second outer plate 4 on the side opposite to the power generation module.
 第1外板3及び第2外板4は、低温流体が流れる方向と直交する方向の両端に互いに接近するように弾性変形した状態で溶接される折曲部3a、4aを有している。この折曲部3a、4aの溶接により発電モジュール1、2をダクト7に押し付ける応力を発生している。 The first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded in an elastically deformed state so as to approach each other at both ends in a direction orthogonal to the direction in which the low-temperature fluid flows. A stress that presses the power generation modules 1 and 2 against the duct 7 is generated by welding the bent portions 3a and 4a.
 この折曲部3a、4aの溶接により発電モジュール1、2をダクト7に押し付ける応力を発生し、かつ維持している。したがって、発電モジュール1、2と第1外板3と第2外板4との間、及び発電モジュール1、2とダクト7との間の密着性が向上し、発電性能が向上する。また、密着性を確保し、維持するために溶接を用いるから、ボルト等の締結部材が不要である。よって、熱交換性能に寄与しない熱容量が増加することが無い。この結果、熱電発電装置の作動初期における熱の移動量の低下及び発電量の低下が発生しない。よって、十分な性能が得られる。 The stress that presses the power generation modules 1 and 2 against the duct 7 is generated and maintained by welding the bent portions 3a and 4a. Therefore, the adhesiveness between the power generation modules 1, 2 and the first outer plate 3 and the second outer plate 4 and between the power generation modules 1, 2 and the duct 7 is improved, and the power generation performance is improved. Further, since welding is used to secure and maintain the adhesion, a fastening member such as a bolt is unnecessary. Therefore, the heat capacity that does not contribute to the heat exchange performance does not increase. As a result, a decrease in the amount of heat transfer and a decrease in the amount of power generation in the initial operation of the thermoelectric generator do not occur. Therefore, sufficient performance can be obtained.
 第1実施形態では、加圧された状態で折曲部3a、4aは、互いにシーム溶接又はレーザー溶接よって線状に溶接されている。したがって、外板3、4には発電モジュール1、2を挟みこむような応力が作用している。これにより発電モジュール1、2は外板3、4とダクト7とに密接する。また、加圧力はダクト7と発電モジュール1、2の間及び発電モジュール1、2と外板3、4の間に作用し、これらの間に良好な圧力接触部を形成している。 In the first embodiment, the bent portions 3a and 4a are welded linearly by seam welding or laser welding in a pressurized state. Therefore, a stress that sandwiches the power generation modules 1 and 2 acts on the outer plates 3 and 4. As a result, the power generation modules 1 and 2 are in close contact with the outer plates 3 and 4 and the duct 7. The applied pressure acts between the duct 7 and the power generation modules 1 and 2 and between the power generation modules 1 and 2 and the outer plates 3 and 4, and a good pressure contact portion is formed between them.
 第1実施形態においては、後述する図21に示すように、第1外板3及び第2外板4は、発電モジュール1、2の端部3t又は端部3tの外側にて曲げられて弾性変形している。これによれば、端部3t相互間はフラットな圧力接触部を維持しながら、弾性変形した第1外板3と第2外板4とが元に戻ろうとする反力にて発電モジュール1、2と第1外板3と第2外板4とダクト7との密着性を向上させることができる。 In the first embodiment, as shown in FIG. 21, which will be described later, the first outer plate 3 and the second outer plate 4 are bent and elastic on the outer side of the end 3t or the end 3t of the power generation modules 1 and 2. It is deformed. According to this, while maintaining the flat pressure contact portion between the end portions 3t, the power generation module 1 with the reaction force that the elastically deformed first outer plate 3 and second outer plate 4 try to return to the original state, The adhesion between the second outer plate 3, the first outer plate 3, the second outer plate 4, and the duct 7 can be improved.
 第1実施形態では、折曲部3a、4aの溶接は、低温流体が流れる方向に沿って延伸する溶接部34を持つシーム溶接又はレーザー溶接である。これによれば、折曲部3a、4a同士を強固に溶接することができる。なお折曲部3aの端面3bを溶接してもよい。 In the first embodiment, the welding of the bent portions 3a and 4a is seam welding or laser welding having a weld portion 34 that extends along the direction in which the low-temperature fluid flows. According to this, bending part 3a, 4a can be welded firmly. In addition, you may weld the end surface 3b of the bending part 3a.
 第1実施形態では、折曲部3a、4aの溶接により第1外板3と第2外板4によって挟まれた内部空間30を形成し、この内部空間30の中に発電モジュール1、2が収納される。また、第1実施形態では、外側フィン5、6を撫でて高温流体が低温流体と直交する方向に流れる。したがって、外側フィン5、6には、高温流体が低温流体に対して交差する方向に流れる。外側フィン5、6は、複数の波部を有して構成される。この複数の波部は、図6のように低温流体の流れる矢印Y61方向に並行に波の進行方向を有し、高温流体の流れる矢印Y62方向に並行に波の重なり方向を有する。したがって、複数の波部は、波の進行方向が低温流体の流れる方向に対して平行である。また、複数の波部は、波の進行方向が低温流体の流れる方向に対して交差してもよい。 In the first embodiment, an internal space 30 sandwiched between the first outer plate 3 and the second outer plate 4 is formed by welding the bent portions 3 a and 4 a, and the power generation modules 1 and 2 are included in the inner space 30. Stored. In the first embodiment, the high-temperature fluid flows in a direction orthogonal to the low-temperature fluid by stroking the outer fins 5 and 6. Accordingly, the hot fluid flows in the outer fins 5 and 6 in a direction intersecting the cold fluid. The outer fins 5 and 6 are configured to have a plurality of wave portions. As shown in FIG. 6, the plurality of wave portions have a wave traveling direction in parallel with the arrow Y61 direction in which the low-temperature fluid flows, and have a wave overlapping direction in parallel with the arrow Y62 direction in which the high-temperature fluid flows. Accordingly, in the plurality of wave portions, the traveling direction of the waves is parallel to the direction in which the cryogenic fluid flows. The plurality of wave portions may have the wave traveling direction intersecting the direction in which the low-temperature fluid flows.
 これによれば、波と波の間を高温流体が流れやすく、かつ、外側フィン5、6は、高温流体の流れる方向の剛性を強くすることができる。この結果、外側フィン5、6が接合された第1外板3と第2外板4も高温流体の流れる方向の剛性を強くすることができる。一方、第1外板3及び第2外板4は、高温流体が流れる方向の両端に互いに接近して溶接される折曲部3a、4aを有している。この折曲部3a、4aの溶接により発電モジュール1、2をダクト7に押し付ける応力を発生している。したがって、この応力に対する剛性を外側フィン5、6によって強くすることができ、密着性を確実に保つことができる。
(第2実施形態)
 次に、第2実施形態について説明する。なお、第2実施形態以下については、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。
According to this, the high-temperature fluid can easily flow between the waves, and the outer fins 5 and 6 can increase the rigidity in the direction in which the high-temperature fluid flows. As a result, the first outer plate 3 and the second outer plate 4 to which the outer fins 5 and 6 are joined can also increase the rigidity in the direction in which the high-temperature fluid flows. On the other hand, the first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded close to each other at both ends in the direction in which the high-temperature fluid flows. A stress that presses the power generation modules 1 and 2 against the duct 7 is generated by welding the bent portions 3a and 4a. Therefore, the rigidity with respect to this stress can be increased by the outer fins 5 and 6, and the adhesion can be reliably maintained.
(Second Embodiment)
Next, a second embodiment will be described. In addition, about 2nd Embodiment or less, the same code | symbol as 1st Embodiment shows the same structure, Comprising: The description which precedes is used.
 図7は、第2実施形態を示す熱電発電装置の平面図である。図8は、右側面を示す。図8に示すように、第2実施形態では左右の外側フィンの夫々の反外板側となる外側に板状の剛性強化部材8、9をはりつけている。この剛性強化部材8、9の材質は金属又はセラミックである。板状の剛性強化部材8、9と外側フィン5、6とは接着、又は、ロウ付けにて接合される。これにより外側フィン5、6と第1外板3と第2外板4との剛性強化を図ることができる。特に、外側フィンとして、隣り合うフィン同士の位置が多少オフセットして分断されている図6のようなオフセットフィンの剛性強化を図ることができるメリットが大きい。オフセットフィン自体は公知であるが、熱交換性能が優れる。なおフィンはオフセットフィンに限るものではない。オフセットしていないウェーブフィンの採用も可能である。 FIG. 7 is a plan view of a thermoelectric power generator showing a second embodiment. FIG. 8 shows the right side. As shown in FIG. 8, in the second embodiment, plate-like rigidity reinforcing members 8 and 9 are attached to the outer sides of the left and right outer fins on the side opposite to the outer plate. The material of the rigidity reinforcing members 8 and 9 is metal or ceramic. The plate-like rigidity reinforcing members 8 and 9 and the outer fins 5 and 6 are joined by bonding or brazing. As a result, the rigidity of the outer fins 5, 6, the first outer plate 3 and the second outer plate 4 can be enhanced. Particularly, as an outer fin, there is a great merit that it is possible to enhance the rigidity of the offset fin as shown in FIG. 6 where the positions of adjacent fins are divided with some offset. Although the offset fin itself is known, the heat exchange performance is excellent. The fin is not limited to the offset fin. It is also possible to use wave fins that are not offset.
 第2実施形態の作用効果について述べる。第2実施形態によれば、外側フィン5、6には、第1外板3及び第2外板4の夫々とは反対側に、板状の剛性強化部材8、9が接合されている。換言すれば、外側フィン5、6の反外板側である外側に板状の剛性強化部材8、9が接合されている。これによれば、第1外板3と第2外板4とにおける高温流体の流れる方向の剛性を強くすることができる。一方、第1外板3と第2外板4とは、高温流体が流れる方向の両端に互いに接近して溶接される折曲部3a、4aを有している。そして、この折曲部3a、4aの溶接により発電モジュール1、2をダクト7と第1外板3と第2外板4とに押し付ける応力を発生している。この応力に対する剛性を板状の剛性強化部材8、9にて強くすることができ、密着性を確実に保つことができる。
(第3実施形態)
 次に、第3実施形態について説明する。上記した実施形態と異なる部分を説明する。図9及び図10において、第1外板3と第2外板4との外側に位置する外側フィン5、6の中に、つまり外側フィン5、6に混じって、一例として合計8本の棒状の剛性強化部材10、11を挿入している。この剛性強化部材10、11は、図11のように断面矩形の金属棒材を使用しているが、図12のような矩形管型、図13のようなアングル型、図14のような断面U字状のチャンネル型等を採用できる。棒状の剛性強化部材10、11が延伸する方向は、高温流体が流れる向きと平行であるため高温流体の流れをさまたげることが少ない。剛性強化部材10、11の相互間には分断された外側フィン5、6が配設されている。剛性強化部材10、11は、外側フィン5、6と第1外板3と第2外板4とにロウ付けされている。
The operational effects of the second embodiment will be described. According to the second embodiment, the plate-like rigidity reinforcing members 8 and 9 are joined to the outer fins 5 and 6 on the opposite sides of the first outer plate 3 and the second outer plate 4. In other words, the plate-like rigidity reinforcing members 8 and 9 are joined to the outer side of the outer fins 5 and 6 on the side opposite to the outer plate. According to this, the rigidity in the direction in which the high-temperature fluid flows in the first outer plate 3 and the second outer plate 4 can be increased. On the other hand, the first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded close to each other at both ends in the direction in which the high-temperature fluid flows. And the stress which presses the electric power generation modules 1 and 2 against the duct 7, the 1st outer plate 3, and the 2nd outer plate 4 is generate | occur | produced by welding of this bending part 3a, 4a. The rigidity against the stress can be increased by the plate-like rigidity reinforcing members 8 and 9, and the adhesion can be reliably maintained.
(Third embodiment)
Next, a third embodiment will be described. A different part from above-described embodiment is demonstrated. 9 and 10, a total of eight rod-like shapes are mixed in the outer fins 5 and 6 positioned outside the first outer plate 3 and the second outer plate 4, that is, the outer fins 5 and 6 as an example. The rigidity reinforcing members 10 and 11 are inserted. The rigid reinforcing members 10 and 11 use a metal bar having a rectangular cross section as shown in FIG. 11, but a rectangular tube type as shown in FIG. 12, an angle type as shown in FIG. 13, and a cross section as shown in FIG. A U-shaped channel type or the like can be adopted. The direction in which the rod-shaped rigidity reinforcing members 10 and 11 extend is parallel to the direction in which the high-temperature fluid flows, and therefore the flow of the high-temperature fluid is rarely obstructed. The divided outer fins 5 and 6 are disposed between the rigidity reinforcing members 10 and 11. The rigidity reinforcing members 10 and 11 are brazed to the outer fins 5 and 6, the first outer plate 3, and the second outer plate 4.
 第3実施形態の作用効果について述べる。第3実施形態によれば、外側フィン5、6に混じって、高温流体の流れる方向と平行に延在する複数本の棒状の剛性強化部材10、11が外側フィン5、6と第1外板3と第2外板4とに接合されている。 The effect of the third embodiment will be described. According to the third embodiment, the plurality of rod-like rigidity reinforcing members 10 and 11 that are mixed with the outer fins 5 and 6 and extend in parallel with the direction in which the high-temperature fluid flows are the outer fins 5 and 6 and the first outer plate. 3 and the second outer plate 4.
 これによれば、高温流体の流れる方向の剛性を強くすることができる。一方、第1外板3と第2外板4とは、高温流体が流れる方向の両端に互いに接近して溶接される折曲部3a、4aを有している。この折曲部3a、4aの溶接により発電モジュール1、2をダクト7と第1外板3と第2外板4とに押し付ける応力を発生している。
(第4実施形態)
 次に、第4実施形態について説明する。図9及び図10の第3実施形態において外側フィン5、6の間に棒状の剛性強化部材10、11を設置したが、外側フィン5、6の設置面積が少なくなる。これを考慮して第4実施形態では、図15及び図16のように、外側フィン5、6の内側に内側剛性強化部材10r、11rを設置したものである。内側剛性強化部材10r、11rは、第1外板3及び第2外板4に接合されている。また内側剛性強化部材10r、11rは、第1外板3及び第2外板4と発電モジュール1、2との夫々の間に挟まれて設けられる。しかし、これによって、内側剛性強化部材10r、11rが第1外板3と第2外板4、又は発電モジュール1、2と干渉する。
According to this, the rigidity in the direction in which the high-temperature fluid flows can be increased. On the other hand, the first outer plate 3 and the second outer plate 4 have bent portions 3a and 4a that are welded close to each other at both ends in the direction in which the high-temperature fluid flows. A stress that presses the power generation modules 1 and 2 against the duct 7, the first outer plate 3, and the second outer plate 4 is generated by welding the bent portions 3a and 4a.
(Fourth embodiment)
Next, a fourth embodiment will be described. 9 and 10, the rod-like rigidity reinforcing members 10 and 11 are installed between the outer fins 5 and 6, but the installation area of the outer fins 5 and 6 is reduced. Considering this, in the fourth embodiment, as shown in FIGS. 15 and 16, the inner rigidity reinforcing members 10 r and 11 r are installed inside the outer fins 5 and 6. The inner rigidity reinforcing members 10 r and 11 r are joined to the first outer plate 3 and the second outer plate 4. The inner rigidity reinforcing members 10r and 11r are provided between the first outer plate 3 and the second outer plate 4 and the power generation modules 1 and 2, respectively. However, this causes the inner rigidity reinforcing members 10r and 11r to interfere with the first outer plate 3 and the second outer plate 4 or the power generation modules 1 and 2.
 そのため、第1外板3と第2外板4、又は発電モジュール1、2に内側剛性強化部材10r、11rの少なくとも一部を収納するための収納溝を形成してもよい。また、発電モジュール1、2を所定の間隔をあけて設けられた複数のモジュールによって構成することにより、発電モジュール1、2において分割部13を形成することができる。内側剛性強化部材10r、11rと発電モジュール1、2との干渉を避けるために、分割部13は、内側剛性強化部材10r、11rの少なくとも一部を収容するために用いることができる。 Therefore, a storage groove for storing at least part of the inner rigidity reinforcing members 10r and 11r may be formed in the first outer plate 3 and the second outer plate 4 or the power generation modules 1 and 2. In addition, by forming the power generation modules 1 and 2 with a plurality of modules provided at a predetermined interval, the dividing unit 13 can be formed in the power generation modules 1 and 2. In order to avoid interference between the inner rigidity reinforcing members 10r and 11r and the power generation modules 1 and 2, the dividing portion 13 can be used to accommodate at least a part of the inner rigidity reinforcing members 10r and 11r.
 以下これについて説明する。第1実施形態では図17のように端面が四角形の箱から成る発電モジュール1、2を採用した。これと比較して第4実施形態では、図18に示すように、発電モジュール1、2には、内側剛性強化部材10r、11rの一部を収納する収納溝12が設けられている。図19に示すように、発電モジュール1、2は、分割部13である所定の間隔をあけて設けられた複数のモジュールによって構成されている。この分割部13には内側剛性強化部材10r、11rの一部を収納することができる。これによって、内側剛性強化部材10r、11rが、第1外板3と第2外板4、又は発電モジュール1、2と干渉するのを避けることができる。 This will be explained below. In the first embodiment, the power generation modules 1 and 2 each having a rectangular box as shown in FIG. 17 are employed. In contrast, in the fourth embodiment, as shown in FIG. 18, the power generation modules 1 and 2 are provided with a storage groove 12 that stores a part of the inner rigidity reinforcing members 10 r and 11 r. As shown in FIG. 19, the power generation modules 1 and 2 are configured by a plurality of modules that are provided at predetermined intervals, which are the division units 13. A part of the inner rigidity reinforcing members 10r and 11r can be accommodated in the divided portion 13. Accordingly, it is possible to avoid the inner rigidity reinforcing members 10r and 11r from interfering with the first outer plate 3 and the second outer plate 4 or the power generation modules 1 and 2.
 第4実施形態の作用効果について述べる。第4実施形態によれば、第1外板3と第2外板4と発電モジュール1、2との間に高温流体の流れる方向と平行に延在する複数本の内側剛性強化部材10r、11rが第1外板3と第2外板4とに接合されて設けられている。これによれば、内側剛性強化部材10r、11rによって第1外板3と第2外板4との剛性を強化できるから、応力に対する剛性を強くすることができ、密着性を確実に保つことができる。 The operational effects of the fourth embodiment will be described. According to the fourth embodiment, a plurality of inner rigidity reinforcing members 10r, 11r extending in parallel with the direction in which the high-temperature fluid flows between the first outer plate 3, the second outer plate 4, and the power generation modules 1, 2. Are joined to the first outer plate 3 and the second outer plate 4. According to this, since the rigidity of the first outer plate 3 and the second outer plate 4 can be strengthened by the inner rigidity reinforcing members 10r and 11r, the rigidity against stress can be increased, and the adhesion can be reliably maintained. it can.
 第4実施形態によれば、発電モジュール1、2に内側剛性強化部材10r、11rを収納するための収納溝12又は分割部13が設けられている。これによれば、第1外板3と第2外板4と発電モジュール1、2の間に干渉を避けて内側剛性強化部材10r、11rを収納することができる。 According to the fourth embodiment, the power generation modules 1 and 2 are provided with the storage grooves 12 or the divided portions 13 for storing the inner rigidity reinforcing members 10r and 11r. According to this, the inner rigidity reinforcing members 10r and 11r can be accommodated while avoiding interference between the first outer plate 3, the second outer plate 4, and the power generation modules 1 and 2.
 以下上記第1~第4実施形態に概略共通する発電装置の製造方法について便宜上第1実施形態を用いて説明する。図20に示すように、第1外板3と第2外板4とをお互いに組み合わせて加圧装置の受け治具21と加圧治具22との間に設置する。そしてプレスにてこれらの治具21、22に矢印Y20のように圧力を印加する。これにより折曲部3a、4aが互いに重なり部分を増加させるように矢印Y11~Y14のごとく加圧される。図21のように、第1外板3又は第2外板4は、発電モジュール1、2の端部3tにて曲げられて弾性変形し、加圧された状態で折曲部3a、4aは、互いに溶接機によって溶接される。したがって、第1外板3と第2外板4とは発電モジュール1、2を挟みこむような応力が作用したまま結合される。これにより発電モジュール1、2は第1外板3と第2外板4とダクト7とに密接しようとする。また、加圧力を示す矢印Y11~Y14はダクト7と発電モジュール1、2の間及び発電モジュール1、2と第1外板3と第2外板4との間に作用し良好な圧力接触部を形成する。なお、上記熱電発電装置の製造方法は、実施形態の変形例においても応用できる。 Hereinafter, a method of manufacturing a power generation apparatus that is generally common to the first to fourth embodiments will be described using the first embodiment for convenience. As shown in FIG. 20, the first outer plate 3 and the second outer plate 4 are combined and installed between the receiving jig 21 and the pressing jig 22 of the pressing device. Then, pressure is applied to these jigs 21 and 22 as indicated by an arrow Y20 by pressing. As a result, the bent portions 3a and 4a are pressurized as indicated by arrows Y11 to Y14 so as to increase the overlapping portions. As shown in FIG. 21, the first outer plate 3 or the second outer plate 4 is bent and elastically deformed at the end portions 3t of the power generation modules 1 and 2, and the bent portions 3a and 4a are in a pressed state. They are welded together by a welder. Therefore, the first outer plate 3 and the second outer plate 4 are coupled together while a stress that sandwiches the power generation modules 1 and 2 is applied. As a result, the power generation modules 1 and 2 try to come into close contact with the first outer plate 3, the second outer plate 4 and the duct 7. Also, the arrows Y11 to Y14 indicating the applied pressure act between the duct 7 and the power generation modules 1 and 2 and between the power generation modules 1 and 2, the first outer plate 3, and the second outer plate 4, and are good pressure contact portions. Form. In addition, the manufacturing method of the said thermoelectric power generating apparatus is applicable also in the modification of embodiment.
 製造方法の作用効果について述べる。上記熱電発電装置の製造方法は、内部に低温流体が流れるダクト7と、このダクト7に接触された発電モジュール1、2と、発電モジュール1、2の外側に夫々接触された第1外板3と第2外板4とを備えた熱電発電装置に適用される。 Describes the effects of the manufacturing method. The method for manufacturing the thermoelectric generator includes a duct 7 in which a low-temperature fluid flows, a power generation module 1 and 2 that are in contact with the duct 7, and a first outer plate 3 that is in contact with the outside of the power generation modules 1 and 2, respectively. And the second outer plate 4 are applied to a thermoelectric generator.
 製造に当たり、まず、第1外板3及び第2外板4を相対向させて、この第1外板3及び第2外板4との間に発電モジュール1、2とダクト7とを配設する配設工程を有する。次に、第1外板3及び第2外板4が互いに接近するように加圧し、第1外板3及び第2外板4を発電モジュール1、2に押し付ける応力を発生させる加圧工程を有する。またこの応力が発生させながら、第1外板3と第2外板4とを溶接して加圧状態を維持させる溶接工程を有する。 In manufacturing, first, the first outer plate 3 and the second outer plate 4 are opposed to each other, and the power generation modules 1 and 2 and the duct 7 are disposed between the first outer plate 3 and the second outer plate 4. A disposing step. Next, a pressurizing step is performed in which the first outer plate 3 and the second outer plate 4 are pressed so as to approach each other, and a stress is generated to press the first outer plate 3 and the second outer plate 4 against the power generation modules 1 and 2. Have. Moreover, it has the welding process of welding the 1st outer plate 3 and the 2nd outer plate 4 and maintaining a pressurization state, generating this stress.
 これによれば、第1外板3及び第2外板4を発電モジュール1、2に押し付ける応力を発生させながら、第1外板3と第2外板4とを溶接するから、発電モジュール1、2と外板3、4とダクト7との密着性が向上する。この結果、発電性能が向上する。また、密着性を確保し、維持するためのボルト等の締結部材が不要であるから、熱交換性能に寄与しない熱容量が増加することが無い。この結果、熱電発電装置が作動初期における熱の移動量の低下及び発電量の低下が発生せず、十分な性能が得られる。 According to this, since the first outer plate 3 and the second outer plate 4 are welded while generating the stress that presses the first outer plate 3 and the second outer plate 4 against the power generation modules 1 and 2, the power generation module 1. 2 and the outer plates 3, 4 and the duct 7 are improved in adhesion. As a result, the power generation performance is improved. Further, since a fastening member such as a bolt for securing and maintaining the adhesion is not necessary, the heat capacity that does not contribute to the heat exchange performance does not increase. As a result, the thermoelectric generator does not cause a decrease in the amount of heat transfer and a decrease in the amount of power generation in the initial stage of operation, and sufficient performance can be obtained.
 以下これについて図22を用いて説明する。図22は、横軸に時間Tの経過を取り、縦軸に排気から成る高温ガスの流量Qと熱交換量ひいては発電量Wを示している。時間T1にて高温ガスが外側フィン5、6の中に流入を開始する。それによって発電を開始するが、実施形態の特性C1は発電量Wの立ち上がりが早い。一方、比較例としての上記応力の無い開発過程における装置の特性C2では、密着性が悪いため、発電量Wの立ち上がりが比較的遅い。特性C1と特性C2の差分領域R12の面積は実施形態に係る熱電発電装置による性能向上分を示している。
(第5実施形態)
 次に第5実施形態について図23~図26を参照して説明する。第5実施形態については、前述の実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。
This will be described below with reference to FIG. In FIG. 22, the horizontal axis indicates the passage of time T, and the vertical axis indicates the flow rate Q of the high-temperature gas composed of exhaust gas and the heat exchange amount, and thus the power generation amount W. The hot gas starts to flow into the outer fins 5 and 6 at time T1. As a result, power generation is started, but in the characteristic C1 of the embodiment, the power generation amount W rises quickly. On the other hand, in the characteristic C2 of the device in the development process without stress as a comparative example, since the adhesion is poor, the rise of the power generation amount W is relatively slow. The area of the difference region R12 between the characteristics C1 and the characteristics C2 indicates the performance improvement by the thermoelectric generator according to the embodiment.
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIGS. About 5th Embodiment, the same code | symbol as above-mentioned embodiment shows the same structure, Comprising: The description which precedes is used.
 図に示すように、第1外板3は、外側フィン5とは反対側であるダクト7側の表面にリブ3cを有する。リブ3cは、第1外板3のダクト7側の表面を突出するように変形させた突出変形部である。リブ3cは、第1外板3の剛性を高めることができる補強部である。リブ3cは、第1外板3を外側フィン5側の表面からダクト7側に向けてプレス加工することによりダクト7側の表面を突出するように変形させて、製造することができる。図23及び図24に図示するように、リブ3cは第1外板3において複数個設けられている。各リブ3cは、第1外板3において高温流体が流れる方向の長さ全体にわたって延びるように設けられている。各リブ3cは、第1外板3において両端の折曲部3aと折曲部3aとを結ぶように延びて設けられている。複数個のリブ3cは、第1外板3において低温流体が流れる方向に外側フィン5の長さ全体にわたって間隔をあけて設けられている。 As shown in the figure, the first outer plate 3 has ribs 3c on the surface on the duct 7 side opposite to the outer fins 5. The rib 3c is a projecting deformed portion that is deformed so as to project the surface of the first outer plate 3 on the duct 7 side. The rib 3 c is a reinforcing part that can increase the rigidity of the first outer plate 3. The rib 3c can be manufactured by pressing the first outer plate 3 from the surface on the outer fin 5 side toward the duct 7 to deform the surface on the duct 7 side so as to protrude. As shown in FIGS. 23 and 24, a plurality of ribs 3 c are provided on the first outer plate 3. Each rib 3c is provided so as to extend over the entire length of the first outer plate 3 in the direction in which the high-temperature fluid flows. Each rib 3c is provided to extend so as to connect the bent portion 3a and the bent portion 3a at both ends in the first outer plate 3. The plurality of ribs 3 c are provided at intervals over the entire length of the outer fin 5 in the direction in which the low-temperature fluid flows in the first outer plate 3.
 図25に図示するように、リブ3cは、少なくとも外側フィン5の端部と重なる部分を有する。この構成によれば、フィンとリブ3cとのオーバーラップ構造により、製造時に第1外板3を加圧する際に、加圧時の応力を分散することができる。したがって、外側フィン5の端部付近において、第1外板3の剛性が大きく低下する事態を回避でき、熱電発電装置100の耐久性を向上することができる。 25, the rib 3c has at least a portion that overlaps with the end of the outer fin 5. As shown in FIG. According to this configuration, due to the overlap structure of the fins and the ribs 3c, when the first outer plate 3 is pressed during manufacturing, stress during pressing can be dispersed. Therefore, in the vicinity of the end portion of the outer fin 5, it is possible to avoid a situation in which the rigidity of the first outer plate 3 is greatly reduced, and it is possible to improve the durability of the thermoelectric generator 100.
 さらにリブ3cは、外側フィン5の端部と重なる部分から折曲部3aにわたって設けられている。この構成によれば、第1外板3と第2外板4の溶接後の、スプリングバック発生時に応力分散の効果を奏する。したがって、第1外板3の剛性が大きく低下する事態を回避でき、熱電発電装置100の耐久性を向上することができる。 Furthermore, the rib 3c is provided from the part which overlaps with the edge part of the outer side fin 5 to the bending part 3a. According to this configuration, there is an effect of stress dispersion when the springback occurs after the first outer plate 3 and the second outer plate 4 are welded. Therefore, a situation in which the rigidity of the first outer plate 3 is greatly reduced can be avoided, and the durability of the thermoelectric generator 100 can be improved.
 図26に示すように、リブ3cは、第1外板4と外側フィン5との接合部を避けた位置に設けられている。この構成によれば、第1外板3に接合される外側フィン5における接合部を確保することができる。したがって、第1外板4と外側フィン5との接合部においてろう付けされていない面積を抑制できるので、第1外板3の剛性を確保することができる。第1外板3におけるリブ3cに関わる以上の記載は、第2外板4におけるリブ4cについても同様である。以上の記載は、第1外板3を第2外板4に、リブ3cをリブ4cにそれぞれ置き換えることができる。
(第6実施形態)
 次に第6実施形態について図27及び図28を参照して説明する。第6実施形態については、前述の実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。
As shown in FIG. 26, the rib 3 c is provided at a position avoiding the joint portion between the first outer plate 4 and the outer fin 5. According to this configuration, it is possible to secure a joint portion in the outer fin 5 that is joined to the first outer plate 3. Therefore, since the area which is not brazed in the junction part of the 1st outer plate 4 and the outer side fin 5 can be suppressed, the rigidity of the 1st outer plate 3 can be ensured. The above description relating to the rib 3 c in the first outer plate 3 is the same for the rib 4 c in the second outer plate 4. In the above description, the first outer plate 3 can be replaced with the second outer plate 4, and the rib 3c can be replaced with the rib 4c.
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIGS. About 6th Embodiment, the same code | symbol as above-mentioned embodiment shows the same structure, Comprising: The description which precedes is used.
 第6実施形態は、第5実施形態におけるリブ3c及びリブ4cに対して、ブロック状部材103c及びブロック状部材104cが相違する。ブロック状部材103cは、第1外板3のダクト7側の表面に一体に設けられた部材である。ブロック状部材103cは、接合前は第1外板3とは別部品である。ブロック状部材103cは、第1外板3に対して、ろう付け接合、溶接等により接合されて第1外板3に一体に設けられる。ブロック状部材103cは、第1外板3の剛性を高めることができる補強部である。 The sixth embodiment is different from the rib 3c and the rib 4c in the fifth embodiment in a block member 103c and a block member 104c. The block-shaped member 103 c is a member provided integrally on the surface of the first outer plate 3 on the duct 7 side. The block-shaped member 103c is a separate component from the first outer plate 3 before joining. The block-like member 103c is joined to the first outer plate 3 by brazing, welding, or the like, and is provided integrally with the first outer plate 3. The block-shaped member 103 c is a reinforcing part that can increase the rigidity of the first outer plate 3.
 図27に図示するように、ブロック状部材103cは、少なくとも外側フィン5の端部と重なる部分を有する。この構成によれば、フィンとブロック状部材103cとのオーバーラップ構造により、製造時に第1外板3を加圧する際に、加圧時の応力を分散することができる。したがって、外側フィン5の端部付近において、第1外板3の剛性が大きく低下する事態を回避でき、熱電発電装置100の耐久性を向上することができる。また、図28に示すように、ブロック状部材103cは、第1外板4と外側フィン5との接合部を避けた位置に設けられている。 27, the block-shaped member 103c has a portion that overlaps at least the end portion of the outer fin 5. As shown in FIG. According to this configuration, due to the overlapping structure of the fins and the block-shaped member 103c, stress during pressurization can be dispersed when the first outer plate 3 is pressed during manufacturing. Therefore, in the vicinity of the end portion of the outer fin 5, it is possible to avoid a situation in which the rigidity of the first outer plate 3 is greatly reduced, and it is possible to improve the durability of the thermoelectric generator 100. As shown in FIG. 28, the block-like member 103 c is provided at a position that avoids the joint between the first outer plate 4 and the outer fin 5.
 ブロック状部材103cは、外側フィン5の端部と重なる部分から折曲部3aにわたって設けられている。この構成によれば、第1外板3と第2外板4の溶接後の、スプリングバック発生時に応力分散の効果を奏する。したがって、第1外板3の剛性が大きく低下する事態を回避でき、熱電発電装置100の耐久性を向上することができる。 The block-like member 103c is provided from the portion overlapping the end of the outer fin 5 to the bent portion 3a. According to this configuration, there is an effect of stress dispersion when the springback occurs after the first outer plate 3 and the second outer plate 4 are welded. Therefore, a situation in which the rigidity of the first outer plate 3 is greatly reduced can be avoided, and the durability of the thermoelectric generator 100 can be improved.
 また、ブロック状部材104cは、第6実施形態で説明したブロック状部材103cと同様の構成を有し、前述した同様の作用効果を奏する。この場合、第6実施形態で説明した作用効果において第1外板3を第2外板4に置き換えることができる。
(第7実施形態)
 次に第7実施形態について図29~図31を参照して説明する。第7実施形態については、前述の実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。
Further, the block-shaped member 104c has the same configuration as the block-shaped member 103c described in the sixth embodiment, and exhibits the same operational effects as described above. In this case, the first outer plate 3 can be replaced with the second outer plate 4 in the operational effects described in the sixth embodiment.
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIGS. About 7th Embodiment, the same code | symbol as above-mentioned embodiment shows the same structure, Comprising: The description which precedes is used.
 第7実施形態は、上記補強部についての変形例である。図29及び図30に示すように、第1外板3は、剛性低下部203cを有する。剛性低下部203cは、外側フィン5よりに隣接して設けられて、外側フィン5よりも剛性が低い部分である。剛性低下部203cは、外側フィン5よりも簡素な構成や板厚の薄い部分である。例えば、剛性低下部203cは、第1外板3から垂直に突出する薄板状のフィンで形成することができる。 7th Embodiment is a modification about the said reinforcement part. As shown in FIG.29 and FIG.30, the 1st outer plate 3 has the rigidity reduction part 203c. The rigidity reduction portion 203 c is a portion that is provided adjacent to the outer fin 5 and has lower rigidity than the outer fin 5. The rigidity lowering portion 203c is a portion having a simpler structure and a thinner plate thickness than the outer fins 5. For example, the rigidity reduction portion 203 c can be formed of a thin plate-like fin that protrudes vertically from the first outer plate 3.
 剛性低下部203cは、外側フィン5から離れるにつれて段階的に突出高さが小さくなる突出片によって構成できる。突出片3c1は、最も外側フィン5に近く外側フィン5に隣接している。突出片3c2は、突出片3c1に隣接して、突出片3c1よりも、突出高さが低く、外側フィン5から離れている。突出片3c3は、突出片3c2に隣接して、突出片3c2よりも、突出高さが低く、外側フィン5から離れている。第1外板3における剛性低下部203cに関わる以上の記載は、第2外板4における剛性低下部204cについても同様である。以上の記載は、第1外板3を第2外板4に、剛性低下部203cを剛性低下部204cに、突出片3c1、突出片3c2及び突出片3c3を突出片4c1、突出片4c2及び突出片4c3に、それぞれ置き換えることができる。 The rigidity reduction portion 203c can be constituted by a protruding piece whose protruding height gradually decreases as the distance from the outer fin 5 increases. The protruding piece 3 c 1 is adjacent to the outer fin 5 and is closest to the outermost fin 5. The protruding piece 3 c 2 is adjacent to the protruding piece 3 c 1, has a protruding height lower than that of the protruding piece 3 c 1, and is separated from the outer fin 5. The protruding piece 3c3 is adjacent to the protruding piece 3c2, has a protruding height lower than that of the protruding piece 3c2, and is separated from the outer fin 5. The above description relating to the rigidity reduction portion 203c in the first outer plate 3 is the same for the rigidity reduction portion 204c in the second outer plate 4. In the above description, the first outer plate 3 is the second outer plate 4, the reduced rigidity portion 203c is the reduced rigidity portion 204c, the protruding pieces 3c1, the protruding pieces 3c2, and the protruding pieces 3c3 are the protruding pieces 4c1, the protruding pieces 4c2, and the protruding portions. Each of the pieces can be replaced with the piece 4c3.
 また、剛性低下部203cは、図31に示す剛性低下部303cに置き換えることができる。剛性低下部303cは、外側フィン5から離れても突出高さが同じに設定されている。第1外板3における剛性低下部303cに関わる以上の記載は、第2外板4における剛性低下部304cについても同様である。以上の記載は、第1外板3を第2外板4に、剛性低下部303cを剛性低下部304cに、それぞれ置き換えることができる。 Moreover, the rigidity reduction part 203c can be replaced with a rigidity reduction part 303c shown in FIG. Even if the rigidity reduction part 303c leaves | separates from the outer side fin 5, the protrusion height is set the same. The above description relating to the rigidity reduction portion 303 c in the first outer plate 3 is the same for the rigidity reduction portion 304 c in the second outer plate 4. In the above description, the first outer plate 3 can be replaced with the second outer plate 4, and the reduced rigidity portion 303c can be replaced with the reduced rigidity portion 304c.
 剛性低下部203c、204c、303c、403cは、少なくとも外側フィン5の端部と重なる部分を有する。この構成によれば、フィンと各剛性低下部とのオーバーラップ構造により、製造時に外板を加圧する際に、加圧時の応力を分散することができる。したがって、外側フィン5の端部付近において、外板の剛性が大きく低下する事態を回避でき、熱電発電装置100の耐久性を向上することができる。
(第8実施形態)
 次に第8実施形態について図32を参照して説明する。第8実施形態については、前述の実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。
The rigidity reduction portions 203 c, 204 c, 303 c, and 403 c have a portion that overlaps at least the end portion of the outer fin 5. According to this configuration, due to the overlap structure of the fins and the respective rigidity-decreasing portions, stress at the time of pressurization can be dispersed when the outer plate is pressed at the time of manufacture. Therefore, it is possible to avoid a situation in which the rigidity of the outer plate greatly decreases in the vicinity of the end portion of the outer fin 5, and to improve the durability of the thermoelectric generator 100.
(Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIG. About 8th Embodiment, the same code | symbol as above-mentioned embodiment shows the same structure, Comprising: The description which precedes is used.
 第8実施形態は、第1実施形態の熱電発電装置100に対して、発電モジュールをダクト7の片側のみに有する点が相違する。 The eighth embodiment is different from the thermoelectric generator 100 of the first embodiment in that a power generation module is provided only on one side of the duct 7.
 第8実施形態の熱電発電装置100は、ダクト7と、ダクト7の対向する外表面に接触する第1発電モジュール1と、を備える。熱電発電装置100は、さらに第1発電モジュール1の反ダクト7側である外表面に接触する第1外板3と、ダクト7において第1発電モジュール1側とは反対側の外表面に直接または間接的に接触する第2外板4と、を備える。 A thermoelectric power generation apparatus 100 according to the eighth embodiment includes a duct 7 and a first power generation module 1 that is in contact with the outer surface of the duct 7 that faces each other. The thermoelectric generator 100 further includes a first outer plate 3 that is in contact with an outer surface on the side opposite to the duct 7 of the first power generation module 1 and an outer surface on the opposite side of the duct 7 from the first power generation module 1 side. A second outer plate 4 that is indirectly contacted.
 図32に示す例では、ダクト7と第2外板4とは、熱伝導性部材102を介して接触する。つまり、ダクト7と第2外板4とは部材を介するため、間接的に接触している。また、第8実施形態の熱電発電装置100は、熱伝導性部材102を備えず、ダクト7と第2外板4とが直接接触する構成とすることもできる。第8実施形態の熱電発電装置100においても、前述の各実施形態と同様の効果を奏することができる。
(第9実施形態)
 次に第9実施形態について図33を参照して説明する。第9実施形態については、前述の実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。
In the example shown in FIG. 32, the duct 7 and the second outer plate 4 are in contact with each other through the heat conductive member 102. That is, the duct 7 and the second outer plate 4 are in indirect contact with each other because the member is interposed therebetween. Moreover, the thermoelectric generator 100 of 8th Embodiment can also be set as the structure which is not provided with the heat conductive member 102, and the duct 7 and the 2nd outer plate | plate 4 contact directly. Also in the thermoelectric generator 100 of 8th Embodiment, there can exist an effect similar to each above-mentioned embodiment.
(Ninth embodiment)
Next, a ninth embodiment will be described with reference to FIG. About 9th Embodiment, the same code | symbol as above-mentioned embodiment shows the same structure, Comprising: The description which precedes is used.
 第9実施形態は、第1実施形態の熱電発電装置100に対して、第1外板3及び第2外板4のうち、一方の外板のみを弾性変形させた状態で折曲部にて溶接を行う装置である点が相違する。 9th Embodiment is a bending part in the state which elastically deformed only one outer plate among the 1st outer plates 3 and the 2nd outer plates 4 with respect to the thermoelectric generator 100 of 1st Embodiment. The difference is that it is an apparatus for welding.
 図33のように、第1外板3及び第2外板4は、低温流体が流れる方向と直交する方向の第1外板43及び第2外板4の両端に、第1外板3及び第2外板4の少なくとも一方が他方に対して接近するように弾性変形した状態で溶接される折曲部3a、4aを有する。この折曲部の溶接により第1発電モジュール1と第2発電モジュール2とをダクト7に押し付ける応力を発生している。第9実施形態の熱電発電装置100においても、前述の各実施形態と同様の効果を奏することができる。 As shown in FIG. 33, the first outer plate 3 and the second outer plate 4 are arranged at both ends of the first outer plate 43 and the second outer plate 4 in a direction orthogonal to the direction in which the low-temperature fluid flows. It has the bending parts 3a and 4a welded in the state elastically deformed so that at least one of the 2nd outer plates 4 may approach with respect to the other. A stress that presses the first power generation module 1 and the second power generation module 2 against the duct 7 is generated by welding the bent portion. The thermoelectric power generation device 100 of the ninth embodiment can achieve the same effects as those of the above-described embodiments.
 上記のように実施形態について説明したが、本開示は上記した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造はあくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、更に、特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。上記実施形態の変形例について述べる。 Although the embodiment has been described as described above, the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure. The structure of the said embodiment is an illustration to the last, Comprising: The range of this indication is not limited to the range of these description. The scope of the present disclosure is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope. A modification of the above embodiment will be described.
 上記第1実施形態においては、図1のように、第1外板3を第2外板4よりも小さくして、第1外板3を第2外板4に被せるようにして組み付けるが、第1外板3と第2外板4とを同じ大きさにして互いに位置をずらせて組み付けてもよい。 In the first embodiment, as shown in FIG. 1, the first outer plate 3 is made smaller than the second outer plate 4, and the first outer plate 3 is put on the second outer plate 4. The first outer plate 3 and the second outer plate 4 may have the same size and may be assembled with their positions shifted from each other.
 上記第1実施形態においては、第1外板3と第2外板4とを溶接して、第1外板3と第2外板4とで囲まれた内部空間30を密封した。しかし、完全に密封せず、高温ガスである高温流体が内部空間30内の発電モジュール1、2に悪影響を及ぼさない程度にしてもよい。つまり、多数点のスポット溶接でもよい。 In the first embodiment, the first outer plate 3 and the second outer plate 4 are welded to seal the inner space 30 surrounded by the first outer plate 3 and the second outer plate 4. However, the sealing may not be performed completely, and the high temperature fluid that is a high temperature gas may not be adversely affected on the power generation modules 1 and 2 in the internal space 30. That is, spot welding at multiple points may be used.
 上記第1実施形態においては、発電モジュール1、2がステンレスから構成された気密ケースにて覆われ、この気密ケースの内部に多数のP型半導体素子とN型半導体素子とが交互に網状に連結されている。しかし、気密ケースが無く多数のP型半導体素子とN型半導体素子とが、第1外板3と第2外板4とで囲まれた内部空間30の内部に露出して設けられていてもよい。つまり気密ケースは必須のものではない。この場合は、内部空間30をカバー等で密封することができる。 In the first embodiment, the power generation modules 1 and 2 are covered with an airtight case made of stainless steel, and a large number of P-type semiconductor elements and N-type semiconductor elements are alternately connected in a net-like manner inside the airtight case. Has been. However, even if there is no airtight case and a large number of P-type semiconductor elements and N-type semiconductor elements are exposed inside the internal space 30 surrounded by the first outer plate 3 and the second outer plate 4. Good. In other words, the airtight case is not essential. In this case, the internal space 30 can be sealed with a cover or the like.
 また、第1実施形態においては、第1外板3及び第2外板4は、低温流体が流れる方向と直交する方向の両端に互いに接近するように弾性変形してから溶接される折曲部3a、4aを有している。そして、この折曲部3a、4aの結合により発電モジュール1、2をダクト7等に押し付ける応力を発生している。折曲部3a、4aの接合面は平坦なものとしたが、互いに係合して後戻りしない鋸歯状の突起形状又はラビリンス形状を構成する凹凸形状を接合面に加工してもよい。 In the first embodiment, the first outer plate 3 and the second outer plate 4 are bent after being elastically deformed so as to approach each other at both ends in a direction orthogonal to the direction in which the low-temperature fluid flows. 3a, 4a. And the stress which presses the electric power generation modules 1 and 2 against the duct 7 grade | etc., Is generate | occur | produced by the coupling | bonding of these bending parts 3a and 4a. Although the joining surfaces of the bent portions 3a and 4a are flat, a serrated projection shape that does not return after engaging with each other or a concavo-convex shape constituting a labyrinth shape may be processed into the joining surface.
 上記第1実施形態においては、第1外板3と第2外板4の発電モジュール1、2と接する部分は、平坦面としたが、任意の湾曲形状としてもよい。要は極力均一な応力が発電モジュール1、2に印加されるようにすればよい。また、第1外板3と第1発電モジュール1との間及び第2外板4と第2発電モジュール2との間に熱伝導に優れたグラファイトシート等の介在物を挟んでもよい。グラファイトシートの厚さは均一でなくてもよい。要は極力均一な応力が発電モジュールに印加され均一な熱伝導がなされるようにすればよい。 In the first embodiment, the portions of the first outer plate 3 and the second outer plate 4 that are in contact with the power generation modules 1 and 2 are flat surfaces, but may have any curved shape. In short, a uniform stress should be applied to the power generation modules 1 and 2 as much as possible. Further, an inclusion such as a graphite sheet excellent in heat conduction may be sandwiched between the first outer plate 3 and the first power generation module 1 and between the second outer plate 4 and the second power generation module 2. The thickness of the graphite sheet may not be uniform. In short, it is only necessary to apply a uniform stress as much as possible to the power generation module so that uniform heat conduction is achieved.
 ダクト7内に低温流体と熱交換する低温フィンを設けてもよい。また第1実施形態ではダクト7内の低温流体の流路を分割したが、分割は、必須ではない。また、低温フィンは、ダクト7と一体に形成してもよい。この場合は、低温フィンはダクト7の内壁面から突出した襞状又は凹凸状のフィンとしてもよい。 The duct 7 may be provided with a low-temperature fin for exchanging heat with a low-temperature fluid. In the first embodiment, the flow path of the low-temperature fluid in the duct 7 is divided, but the division is not essential. Further, the low-temperature fin may be formed integrally with the duct 7. In this case, the low-temperature fin may be a hook-shaped or uneven fin protruding from the inner wall surface of the duct 7.
 第1実施形態においては、鉄板又はステンレス板から成る外板3、4の外側にステンレス又はアルミニウムの外側フィン5、6を、ロウ付け等で接合したが、外側フィン5、6を外板3、4と一体に連続して形成してもよい。この場合は、外側フィン5、6は外板3、4の表面から突出又は隆起した襞状のフィンとしてもよい。 In the first embodiment, the outer fins 5 and 6 made of stainless steel or aluminum are joined to the outer sides of the outer plates 3 and 4 made of an iron plate or a stainless steel plate by brazing or the like. 4 may be integrally formed continuously. In this case, the outer fins 5 and 6 may be hook-shaped fins that protrude or protrude from the surface of the outer plates 3 and 4.
 第1実施形態に示した熱電発電装置100を一つのユニットとして、複数ユニットを積層して全体の熱電発電装置を構成する場合は、ユニットを保持するフレームの中に各ユニットが挿入される。そして高温流体が各ユニット相互間の外側フィン5、6に流れ、低温流体は、各ダクト7の中に分流する。 When the thermoelectric power generation apparatus 100 shown in the first embodiment is used as one unit and a plurality of units are stacked to constitute the entire thermoelectric power generation apparatus, each unit is inserted into a frame that holds the unit. Then, the high-temperature fluid flows into the outer fins 5 and 6 between the units, and the low-temperature fluid is divided into the ducts 7.
 熱電発電装置は、高温流体として自動車エンジンの排気、低温流体としてエンジン冷却水の例を示したが、その他の工業用ボイラの高温ガスを使用しても良く、自動車用に限らず排熱回収装置として活用することができる。 Although the example of the exhaust of the automobile engine as the high-temperature fluid and the example of the engine cooling water as the low-temperature fluid are shown as the thermoelectric generator, the high-temperature gas of other industrial boilers may be used. Can be used as
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (20)

  1.  内部に低温流体が流れるダクト(7)と、
     夫々の内部に熱発電素子が設けられ、前記ダクト(7)の相対向する外表面に前記ダクト(7)を挟むように夫々接触する第1発電モジュール(1)及び第2発電モジュール(2)と、
     前記第1発電モジュール(1)と前記第2発電モジュール(2)との反ダクト(7)側である外表面に夫々接触された第1外板(3)及び第2外板(4)と、
     前記第1外板(3)及び前記第2外板(4)の夫々の反発電モジュール(1、2)側である外表面に夫々設けられ高温流体に接触する外側フィン(5、6)と、を備え、
     前記第1外板(3)及び前記第2外板(4)は、前記低温流体が流れる方向と直交する方向の前記第1外板(3)及び前記第2外板(4)の両端に互いに接近するように弾性変形した状態で溶接される折曲部(3a、4a)を有し、
     この折曲部(3a、4a)の溶接により前記第1発電モジュール(1)と前記第2発電モジュール(2)とを前記ダクト(7)に押し付ける応力を発生していることを特徴とする熱電発電装置。
    A duct (7) through which a cryogenic fluid flows;
    The first power generation module (1) and the second power generation module (2) are provided with thermoelectric power generation elements in each of them, and are in contact with the opposing outer surfaces of the duct (7) so as to sandwich the duct (7), respectively. When,
    A first outer plate (3) and a second outer plate (4), which are in contact with outer surfaces of the first power generation module (1) and the second power generation module (2) on the side opposite to the duct (7), respectively; ,
    Outer fins (5, 6) provided on the outer surfaces of the first outer plate (3) and the second outer plate (4) on the side opposite to the power generation module (1, 2), respectively, and in contact with the high temperature fluid; With
    The first outer plate (3) and the second outer plate (4) are disposed at both ends of the first outer plate (3) and the second outer plate (4) in a direction orthogonal to the direction in which the low-temperature fluid flows. Having bent portions (3a, 4a) welded in an elastically deformed state so as to approach each other;
    The thermoelectric power is characterized in that stress that presses the first power generation module (1) and the second power generation module (2) against the duct (7) is generated by welding of the bent portions (3a, 4a). Power generation device.
  2.  前記第1外板(3)及び前記第2外板(4)は、夫々の前記第1発電モジュール(1)と前記第2発電モジュール(2)との端部(3t)にて又は前記端部(3t)の外側にて曲げられて弾性変形していることを特徴とする請求項1に記載の熱電発電装置。 The first outer plate (3) and the second outer plate (4) are at the ends (3t) of the first power generation module (1) and the second power generation module (2) or the ends. The thermoelectric generator according to claim 1, wherein the thermoelectric generator is bent and elastically deformed outside the portion (3t).
  3.  前記折曲部(3a、4a)の溶接は、前記低温流体が流れる方向に沿って溶接されたシーム溶接又はレーザー溶接であることを特徴とする請求項1又は2に記載の熱電発電装置。 The thermoelectric generator according to claim 1 or 2, wherein welding of the bent portions (3a, 4a) is seam welding or laser welding welded along a direction in which the low-temperature fluid flows.
  4.  前記折曲部(3a、4a)の溶接により前記第1外板(3)と前記第2外板(4)とによって挟まれた内部空間(30)を形成し、この内部空間(30)の中に前記第1発電モジュール(1)と前記第2発電モジュール(2)とが収納されることを特徴とする請求項1ないし3のいずれか一項に記載の熱電発電装置。 An inner space (30) sandwiched between the first outer plate (3) and the second outer plate (4) is formed by welding the bent portions (3a, 4a), and the inner space (30) The thermoelectric power generator according to any one of claims 1 to 3, wherein the first power generation module (1) and the second power generation module (2) are accommodated therein.
  5.  前記外側フィン(5、6)は、複数の波部を有して構成され、前記外側フィン(5、6)に前記高温流体が前記低温流体に対して交差する方向に流れ、前記複数の波部は、波の進行方向が前記低温流体の流れる方向に対して平行または交差することを特徴とする請求項1ないし4のいずれか一項に記載の熱電発電装置。 The outer fins (5, 6) are configured to have a plurality of wave portions, the hot fluid flows through the outer fins (5, 6) in a direction intersecting the cold fluid, and the plurality of waves. 5. The thermoelectric generator according to claim 1, wherein the wave traveling direction is parallel to or intersects with a direction in which the cryogenic fluid flows.
  6.  前記外側フィン(5、6)には、前記第1外板(3)及び前記第2外板(4)の夫々とは反対側に、板状の剛性強化部材(8、9)が接合されていることを特徴とする請求項1ないし5のいずれか一項に記載の熱電発電装置。 Plate-shaped rigidity reinforcing members (8, 9) are joined to the outer fins (5, 6) on the opposite sides of the first outer plate (3) and the second outer plate (4). The thermoelectric power generator according to any one of claims 1 to 5, wherein the thermoelectric generator is provided.
  7.  前記外側フィン(5、6)と前記外側フィン(5、6)との間に、前記高温流体の流れる方向と平行に延在する棒状の剛性強化部材(10、11)を備え、
     前記棒状の剛性強化部材(10、11)は、前記外側フィン(5、6)と前記第1外板(3)又は前記第2外板(4)に接合されていることを特徴とする請求項1ないし5のいずれか一項に記載の熱電発電装置。
    Between the outer fins (5, 6) and the outer fins (5, 6), a rod-like rigidity reinforcing member (10, 11) extending in parallel with the flowing direction of the high-temperature fluid is provided.
    The rod-shaped rigidity reinforcing member (10, 11) is joined to the outer fin (5, 6) and the first outer plate (3) or the second outer plate (4). Item 6. The thermoelectric generator according to any one of Items 1 to 5.
  8.  前記第1外板(3)と前記第1発電モジュール(1)との間に及び前記第2外板(4)と前記第2発電モジュール(2)との間に、夫々挟まれて前記高温流体の流れる方向と平行に延在する複数本の内側剛性強化部材(10r、11r)を更に備え、
     前記内側剛性強化部材(10r、11r)は、前記第1外板(3)又は前記第2外板(4)に接合されて設けられていることを特徴とする請求項1ないし5のいずれか一項に記載の熱電発電装置。
    The high temperature is sandwiched between the first outer plate (3) and the first power generation module (1) and between the second outer plate (4) and the second power generation module (2). A plurality of inner rigidity reinforcing members (10r, 11r) extending in parallel with the fluid flow direction;
    The inner rigidity reinforcing member (10r, 11r) is provided by being joined to the first outer plate (3) or the second outer plate (4). The thermoelectric generator according to one item.
  9.  前記第1発電モジュール(1)と前記第2発電モジュール(2)とは、前記内側剛性強化部材(10r、11r)の少なくとも一部を収納するための収納溝(12)を有することを特徴とする請求項8に記載の熱電発電装置。 The first power generation module (1) and the second power generation module (2) include a storage groove (12) for storing at least a part of the inner rigidity reinforcing member (10r, 11r). The thermoelectric generator according to claim 8.
  10.  前記第1発電モジュール(1)及び前記第2発電モジュール(2)のそれぞれは、間隔(13)をあけて設けられる複数の発電モジュールによって構成され、
     前記内側剛性強化部材(10r、11r)の少なくとも一部は、前記間隔(13)に収容されていることを特徴とする請求項8に記載の熱電発電装置。
    Each of the first power generation module (1) and the second power generation module (2) is constituted by a plurality of power generation modules provided at intervals (13),
    The thermoelectric generator according to claim 8, wherein at least a part of the inner rigidity reinforcing member (10r, 11r) is accommodated in the gap (13).
  11.  内部に低温流体が流れるダクト(7)と、
     夫々の内部に熱発電素子が設けられ、前記ダクト(7)の相対向する外表面に前記ダクト(7)を挟むように夫々接触する第1発電モジュール(1)及び第2発電モジュール(2)と、
     前記第1発電モジュール(1)と前記第2発電モジュール(2)との反ダクト(7)側である外表面に夫々接触する第1外板(3)及び第2外板(4)と、
     前記第1外板(3)及び前記第2外板(4)の夫々の反発電モジュール(1、2)側である外表面に夫々設けられて高温流体に接触する外側フィン(5、6)と、を備え、
     前記第1外板(3)及び前記第2外板(4)は、前記低温流体が流れる方向と直交する方向の前記第1外板(3)及び前記第2外板(4)の両端に、前記第1外板(3)及び前記第2外板(4)の少なくとも一方が他方に対して接近するように弾性変形した状態で溶接される折曲部(3a、4a)を有し、
     この折曲部(3a、4a)の溶接により前記第1発電モジュール(1)と前記第2発電モジュール(2)とを前記ダクト(7)に押し付ける応力を発生していることを特徴とする熱電発電装置。
    A duct (7) through which a cryogenic fluid flows;
    The first power generation module (1) and the second power generation module (2) are provided with thermoelectric power generation elements in each of them, and are in contact with the opposing outer surfaces of the duct (7) so as to sandwich the duct (7), respectively. When,
    A first outer plate (3) and a second outer plate (4) that are in contact with outer surfaces of the first power generation module (1) and the second power generation module (2) on the side opposite to the duct (7);
    Outer fins (5, 6) provided on the outer surfaces of the first outer plate (3) and the second outer plate (4) on the side opposite to the power generation module (1, 2) and in contact with the high temperature fluid. And comprising
    The first outer plate (3) and the second outer plate (4) are disposed at both ends of the first outer plate (3) and the second outer plate (4) in a direction orthogonal to the direction in which the low-temperature fluid flows. A bent portion (3a, 4a) welded in a state where at least one of the first outer plate (3) and the second outer plate (4) is elastically deformed so as to approach the other,
    The thermoelectric power is characterized in that stress that presses the first power generation module (1) and the second power generation module (2) against the duct (7) is generated by welding of the bent portions (3a, 4a). Power generation device.
  12.  内部に低温流体が流れるダクト(7)と、
     内部に熱発電素子が設けられ、前記ダクト(7)の対向する外表面に接触する発電モジュール(1)と、
     前記発電モジュール(1)の反ダクト(7)側である外表面に接触する第1外板(3)と、
     前記ダクト(7)において前記発電モジュール(1)側とは反対側の外表面に直接または間接的に接触する第2外板(4)と、
     前記第1外板(3)及び前記第2外板(4)の夫々の反発電モジュール(1)側である外表面に夫々設けられて高温流体に接触する外側フィン(5、6)と、を備え、
     前記第1外板(3)及び前記第2外板(4)は、前記低温流体が流れる方向と直交する方向の前記第1外板(3)及び前記第2外板(4)の両端に、前記第1外板(3)及び前記第2外板(4)の少なくとも一方が他方に対して接近するように弾性変形した状態で溶接される折曲部(3a、4a)を有し、
     この折曲部(3a、4a)の溶接により前記発電モジュール(1)を前記ダクト(7)に押し付ける応力を発生していることを特徴とする熱電発電装置。
    A duct (7) through which a cryogenic fluid flows;
    A power generation module (1) provided with a thermoelectric generation element therein and in contact with the opposing outer surface of the duct (7);
    A first outer plate (3) in contact with the outer surface of the power generation module (1) on the side opposite to the duct (7);
    A second outer plate (4) in direct or indirect contact with the outer surface of the duct (7) opposite to the power generation module (1) side;
    Outer fins (5, 6) provided on the outer surfaces of the first outer plate (3) and the second outer plate (4) on the side opposite to the power generation module (1) and in contact with the high-temperature fluid; With
    The first outer plate (3) and the second outer plate (4) are disposed at both ends of the first outer plate (3) and the second outer plate (4) in a direction orthogonal to the direction in which the low-temperature fluid flows. A bent portion (3a, 4a) welded in a state where at least one of the first outer plate (3) and the second outer plate (4) is elastically deformed so as to approach the other,
    The thermoelectric power generator characterized by generating the stress which presses the said power generation module (1) against the said duct (7) by welding of this bending part (3a, 4a).
  13.  前記第1外板(3)及び前記第2外板(4)は、前記外側フィン(5、6)とは反対側である前記ダクト(7)側の表面に補強部(3c、4c;103c、104c;203c、204c;303c、304c)を有し、
     前記補強部(3c、4c;103c、104c;203c、204c;303c、304c)は、前記外側フィン(5、6)の端部と重なる部分を少なくとも有することを特徴とする請求項1ないし請求項12のいずれか一項に記載の熱電発電装置。
    The first outer plate (3) and the second outer plate (4) are provided with reinforcing portions (3c, 4c; 103c) on the surface on the duct (7) side opposite to the outer fins (5, 6). 104c; 203c, 204c; 303c, 304c)
    The said reinforcement part (3c, 4c; 103c, 104c; 203c, 204c; 303c, 304c) has at least the part which overlaps with the edge part of the said outer fin (5,6), The Claim 1 thru | or 3 characterized by the above-mentioned. The thermoelectric power generator according to any one of 12 above.
  14.  前記補強部(3c、4c)は、前記第1外板(3)及び前記第2外板(4)の夫々の前記ダクト(7)側の表面を突出するように変形させた突出変形部(3c、4c)であることを特徴とする請求項13に記載の熱電発電装置。 The reinforcing portion (3c, 4c) is a protruding deformation portion (deformed so as to protrude on the duct (7) side surface of each of the first outer plate (3) and the second outer plate (4). The thermoelectric generator according to claim 13, which is 3c, 4c).
  15.  前記補強部(103c、104c)は、前記第1外板(3)及び前記第2外板(4)の夫々の前記ダクト(7)側の表面に一体に設けられたブロック状部材(103c、104c)であることを特徴とする請求項13に記載の熱電発電装置。 The reinforcing portion (103c, 104c) is a block-shaped member (103c, 104c) provided integrally on the surface of the first outer plate (3) and the second outer plate (4) on the duct (7) side. The thermoelectric generator according to claim 13, which is 104c).
  16.  前記補強部(203c、204c;303c、304c)は、前記外側フィン(5、6)よりに隣接して設けられて、前記外側フィン(5、6)よりも剛性が低い剛性低下部(203c、204c;303c、304c)であることを特徴とする請求項13に記載の熱電発電装置。 The reinforcing portions (203c, 204c; 303c, 304c) are provided adjacent to the outer fins (5, 6) and have a lower rigidity than the outer fins (5, 6) (203c, 204c; 303c, 304c).
  17.  前記突出変形部(3c、4c)は、前記外側フィン(5、6)の端部と重なる部分から前記折曲部(3a、4a)にわたって設けられていることを特徴とする請求項14に記載の熱電発電装置。 The said projecting deformation part (3c, 4c) is provided from the part which overlaps with the edge part of the said outer side fin (5, 6) to the said bending part (3a, 4a), It is characterized by the above-mentioned. Thermoelectric generator.
  18.  前記ブロック状部材(103c、104c)は、前記外側フィン(5、6)の端部と重なる部分から前記折曲部(3a、4a)にわたって設けられていることを特徴とする請求項15に記載の熱電発電装置。 The said block-shaped member (103c, 104c) is provided from the part which overlaps with the edge part of the said outer side fin (5, 6) to the said bending part (3a, 4a), It is characterized by the above-mentioned. Thermoelectric generator.
  19.  前記突出変形部(3c、4c)は、前記第1外板(3)及び前記第2外板(4)の夫々と前記外側フィン(5、6)との接合部を避けた位置に設けられていることを特徴とする請求項14に記載の熱電発電装置。 The projecting deformable portions (3c, 4c) are provided at positions avoiding joint portions between the first outer plate (3) and the second outer plate (4) and the outer fins (5, 6). The thermoelectric power generator according to claim 14, wherein
  20.  内部に低温流体が流れるダクト(7)と、内部に熱発電素子が設けられる発電モジュール(1、2)と、第1外板(3)及び第2外板(4)と、を備えた熱電発電装置の製造方法において、
     前記第1外板(3)及び前記第2外板(4)を相対向させて、前記発電モジュール(1、2)の反ダクト(7)側である外側に前記第1外板(3)及び前記第2外板(4)の夫々が接触し、前記ダクト(7)の相対向する外表面の夫々に前記発電モジュール(1、2)が接触するように前記第1外板(3)及び前記第2外板(4)との間に前記発電モジュール(1、2)と前記ダクト(7)とを配設する配設工程と、
     前記第1外板(3)と前記第2外板(4)とが互いに接近するように加圧し、前記第1外板(3)及び前記第2外板(4)の夫々を前記発電モジュール(1、2)に押し付ける応力を発生させる加圧工程と、
     前記応力を発生させた状態で前記第1外板(3)と前記第2外板(4)とを溶接する溶接工程と、
    を有することを特徴とする熱電発電装置の製造方法。
    A thermoelectric device comprising: a duct (7) through which a low-temperature fluid flows; a power generation module (1, 2) provided with a thermoelectric generation element; and a first outer plate (3) and a second outer plate (4). In the method of manufacturing the power generation device,
    The first outer plate (3) and the second outer plate (4) are opposed to each other, and the first outer plate (3) is disposed outside the power generation module (1, 2) on the side opposite to the duct (7). And the second outer plate (4) are in contact with each other, and the power generation module (1, 2) is in contact with each of the opposing outer surfaces of the duct (7). And an arrangement step of arranging the power generation modules (1, 2) and the duct (7) between the second outer plate (4),
    The first outer plate (3) and the second outer plate (4) are pressurized so as to approach each other, and the first outer plate (3) and the second outer plate (4) are respectively connected to the power generation module. A pressurizing step for generating a stress to be pressed against (1, 2);
    A welding step of welding the first outer plate (3) and the second outer plate (4) in a state where the stress is generated;
    A method for manufacturing a thermoelectric generator, comprising:
PCT/JP2016/076909 2015-09-16 2016-09-13 Thermoelectric power generation device and method for manufacturing same WO2017047562A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16846433.7A EP3352366B1 (en) 2015-09-16 2016-09-13 Thermoelectric power generation device and method for manufacturing same
CN201680053448.7A CN108028617A (en) 2015-09-16 2016-09-13 Thermoelectric generating device and its manufacture method
US15/758,818 US10629794B2 (en) 2015-09-16 2016-09-13 Thermoelectric power generation device and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015183254 2015-09-16
JP2015-183254 2015-09-16
JP2016155818A JP6390676B2 (en) 2015-09-16 2016-08-08 Thermoelectric generator
JP2016-155818 2016-08-08

Publications (1)

Publication Number Publication Date
WO2017047562A1 true WO2017047562A1 (en) 2017-03-23

Family

ID=58288837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076909 WO2017047562A1 (en) 2015-09-16 2016-09-13 Thermoelectric power generation device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017047562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189772B2 (en) 2016-01-21 2021-11-30 Denso Corporation Thermoelectric power generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979766A (en) * 1995-09-12 1997-03-28 Nippon Light Metal Co Ltd Heat exchanger and its manufacture
JPH09243287A (en) * 1996-03-04 1997-09-19 Sanden Corp Heat exchanger and its manufacture
JPH1136981A (en) * 1997-07-22 1999-02-09 Nissan Motor Co Ltd Exhaust heat power generating device
WO2007026432A1 (en) * 2005-08-31 2007-03-08 Hitachi, Ltd. Egr gas power generator
WO2010084718A1 (en) * 2009-01-21 2010-07-29 財団法人電力中央研究所 Packaged thermoelectric conversion module
JP2011165976A (en) * 2010-02-10 2011-08-25 Toshiba Corp Thermoelectric converter and thermoelectric conversion method
JP2012156227A (en) * 2011-01-25 2012-08-16 National Institute Of Advanced Industrial & Technology Casing for thermoelectric power generation module and manufacturing method therefor
JP2013232500A (en) * 2012-04-27 2013-11-14 Central Research Institute Of Electric Power Industry Apparatus for evaluating thermoelectric conversion module
JP2014059087A (en) * 2012-09-17 2014-04-03 Denso Corp Bracket attachment device of heat exchanger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979766A (en) * 1995-09-12 1997-03-28 Nippon Light Metal Co Ltd Heat exchanger and its manufacture
JPH09243287A (en) * 1996-03-04 1997-09-19 Sanden Corp Heat exchanger and its manufacture
JPH1136981A (en) * 1997-07-22 1999-02-09 Nissan Motor Co Ltd Exhaust heat power generating device
WO2007026432A1 (en) * 2005-08-31 2007-03-08 Hitachi, Ltd. Egr gas power generator
WO2010084718A1 (en) * 2009-01-21 2010-07-29 財団法人電力中央研究所 Packaged thermoelectric conversion module
JP2011165976A (en) * 2010-02-10 2011-08-25 Toshiba Corp Thermoelectric converter and thermoelectric conversion method
JP2012156227A (en) * 2011-01-25 2012-08-16 National Institute Of Advanced Industrial & Technology Casing for thermoelectric power generation module and manufacturing method therefor
JP2013232500A (en) * 2012-04-27 2013-11-14 Central Research Institute Of Electric Power Industry Apparatus for evaluating thermoelectric conversion module
JP2014059087A (en) * 2012-09-17 2014-04-03 Denso Corp Bracket attachment device of heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352366A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189772B2 (en) 2016-01-21 2021-11-30 Denso Corporation Thermoelectric power generator

Similar Documents

Publication Publication Date Title
US10777725B2 (en) Thermoelectric generator
CN109029053B (en) Header for heat exchanger
WO2017064940A1 (en) Heat exchanger
US20130045411A1 (en) Cooling device
JP6390676B2 (en) Thermoelectric generator
US20140311543A1 (en) Thermoelectric conversion generating device
US20150280097A1 (en) Thermoelectric conversion generating device
WO2017047562A1 (en) Thermoelectric power generation device and method for manufacturing same
CN113490828B (en) Heat exchanger
EP3352367B1 (en) Thermoelectric power generation device
JP2017059821A5 (en) Thermoelectric generator
JP6331870B2 (en) Stacked cooler
WO2015159529A1 (en) Heat exchanger
WO2017212822A1 (en) Thermoelectric generator
JP6191414B2 (en) Laminate heat exchanger
JP6820558B2 (en) Storage battery module
JP6327081B2 (en) COOLER MODULE AND METHOD FOR MANUFACTURING COOLER MODULE
JP6340997B2 (en) COOLER MODULE AND METHOD FOR MANUFACTURING COOLER MODULE
KR20190006535A (en) Conversion device for converting electrical energy into thermal energy
JP2022089387A (en) Cooler
JP2016046422A (en) Cooler module and manufacturing method thereof
CN116057285A (en) Clamping device and laminated heat exchanger
US20190353426A1 (en) Side member and heat exchanger having the same
JP2018191490A (en) Thermoelectric power generation device
JP6106546B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846433

Country of ref document: EP