WO2017047428A1 - 作業機械の油圧駆動装置 - Google Patents

作業機械の油圧駆動装置 Download PDF

Info

Publication number
WO2017047428A1
WO2017047428A1 PCT/JP2016/075964 JP2016075964W WO2017047428A1 WO 2017047428 A1 WO2017047428 A1 WO 2017047428A1 JP 2016075964 W JP2016075964 W JP 2016075964W WO 2017047428 A1 WO2017047428 A1 WO 2017047428A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
circuit
closed circuit
pump
actuator
Prior art date
Application number
PCT/JP2016/075964
Other languages
English (en)
French (fr)
Inventor
直紀 菅野
直人 堀
智史 前川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201680054166.9A priority Critical patent/CN108026943B/zh
Priority to US15/755,243 priority patent/US10392780B2/en
Priority to EP16846299.2A priority patent/EP3351806A4/en
Publication of WO2017047428A1 publication Critical patent/WO2017047428A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/008Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors with rotary output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/06Details
    • F15B7/10Compensation of the liquid content in a system
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2656Control of multiple pressure sources by control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/634Electronic controllers using input signals representing a state of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/785Compensation of the difference in flow rate in closed fluid circuits using differential actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a device for driving a load in a construction machine or the like by hydraulic pressure.
  • the open circuit type device includes a hydraulic actuator, a hydraulic pump that sucks hydraulic oil in a tank and supplies the hydraulic oil to the hydraulic actuator, and a control valve interposed between the hydraulic pump and the hydraulic actuator.
  • the control valve operates to control the direction and flow rate of the hydraulic oil supplied to the hydraulic actuator, and the hydraulic oil discharged from the hydraulic actuator is returned to the tank through the control valve.
  • a closed circuit type device includes a variable displacement hydraulic pump and a hydraulic actuator, and both are connected to form a closed circuit.
  • the hydraulic oil discharged from the hydraulic pump moves the hydraulic actuator while circulating in the closed circuit.
  • the open circuit type device has the advantage that it is possible to use a common hydraulic pump for supplying hydraulic oil to a plurality of hydraulic actuators, thereby reducing the required number of hydraulic pumps.
  • a common hydraulic pump for supplying hydraulic oil to a plurality of hydraulic actuators, thereby reducing the required number of hydraulic pumps.
  • a pressure loss is caused by a throttle element included in a control valve that is a flow control valve.
  • the closed circuit type device does not require a control valve including a throttle element, so that a high energy saving effect can be obtained.
  • each hydraulic actuator requires a hydraulic pump dedicated to the hydraulic actuator, There is a problem that the required number of hydraulic pumps increases by the number of hydraulic actuators, and the cost increases accordingly.
  • a charge pump for supplying insufficient hydraulic oil to the closed circuit in addition to a closed circuit pump that circulates hydraulic oil in a closed circuit, a charge pump for supplying insufficient hydraulic oil to the closed circuit, and the hydraulic actuator is a cylinder with a rod.
  • an open circuit pump is required to absorb the difference between the area of the head side chamber and the area of the rod side chamber. This further increases the required number of hydraulic pumps.
  • the provided apparatus includes a first actuator group including at least one hydraulic actuator, a second actuator group including at least one hydraulic actuator different from the hydraulic actuator included in the first actuator group, and the first actuator group. At least one closed circuit that is connected to each of the hydraulic actuators included in the hydraulic circuit and that circulates the hydraulic oil for moving the hydraulic actuator, and at least one for circulating the hydraulic oil in the closed circuit.
  • Part and the first and second activators At least one open circuit connecting a plurality of hydraulic actuators included in the eta group and changing the flow rate of the hydraulic oil supplied to each of the plurality of hydraulic actuators from the hydraulic pump included in the pump section.
  • a plurality of variable throttle valves provided for each of the plurality of hydraulic actuators, and a circuit switching unit.
  • the circuit switching unit opens the closed circuit and shuts off the open circuit, thereby allowing the hydraulic oil circulating in the closed circuit to move the hydraulic actuator included in the first actuator group.
  • the hydraulic circuit connected to the open circuit by cutting off the closed circuit and opening the open circuit, thereby allowing the hydraulic oil to be supplied to the hydraulic actuators through the variable throttle valves. Two states.
  • FIG. 1 is a circuit diagram showing a hydraulic drive device according to a first embodiment of the present invention. It is a circuit diagram which shows the principal part of the hydraulic drive device shown by FIG. It is a block diagram which shows the function structure of the controller contained in the hydraulic drive device which concerns on the said 1st Embodiment. It is a flowchart which shows the control operation of the said controller. It is a circuit diagram which shows the principal part of the hydraulic drive device which concerns on the 2nd Embodiment of this invention. It is a circuit diagram which shows the hydraulic drive device which concerns on the 3rd Embodiment of this invention. It is a circuit diagram which shows the principal part of the hydraulic drive device shown by FIG.
  • FIG. 10 is a diagram illustrating an appearance of a hydraulic excavator 10 that is an example of a work machine on which a hydraulic drive device according to each embodiment described below is mounted.
  • the excavator 10 includes a lower traveling body 12, an upper revolving body 14 that is mounted on the lower traveling body 12 so as to be rotatable about a vertical axis, and a work attachment 16 that is a work device attached to the upper revolving body 14.
  • the lower traveling body 12 includes a traveling device 11 including a pair of crawlers, for example.
  • the upper swing body 14 includes a swing frame 13, a cab 15 and a counterweight 17 mounted on the swing frame 13.
  • the work attachment 16 includes a boom 18 that is detachably mounted on the upper swing body 14, an arm 20 that is pivotably connected to the tip of the boom 18, and a pivotally connected to the tip of the arm 20. Bucket 22 to be provided.
  • the work attachment 16 is provided with a plurality of work hydraulic actuators such as a boom cylinder 24, an arm cylinder 26, and a bucket cylinder 28.
  • These cylinders 24, 26 and 28 are each constituted by a hydraulic cylinder with a rod which can be expanded and contracted.
  • the boom cylinder 24 is interposed between the boom 18 and the upper swing body 14 so as to expand and contract by receiving the supply of hydraulic oil and rotate the boom 18 in the undulation direction.
  • the arm cylinder 26 is interposed between the arm 20 and the boom 18 so as to expand and contract by receiving the supply of hydraulic oil and rotate the arm 20 about the horizontal axis with respect to the boom 18.
  • the bucket cylinder 28 is interposed between the bucket 22 and the arm 20 so as to expand and contract by receiving the supply of hydraulic oil and rotate the bucket 22 about the horizontal axis with respect to the arm 20.
  • FIG. 1 shows a hydraulic drive apparatus according to a first embodiment of the present invention, which is mounted on the hydraulic excavator.
  • a swing motor 30 which is a hydraulic actuator for rotating the upper swing body 14 is used.
  • a left traveling motor 31 and a right traveling motor 32 that are hydraulic actuators for traveling, which respectively drive the left and right crawlers included in the traveling device 11.
  • the boom cylinder 24, the arm cylinder 26, the bucket cylinder 28, and the swing motor 30 belong to a first actuator group
  • the travel motors 31 and 32 belong to a second actuator group.
  • the apparatus includes a plurality of closed circuits such as a boom closed circuit 34, an arm closed circuit 36, a bucket closed circuit 38 and a turning closed circuit 40, a pump section, and a plurality of open circuits.
  • a first open circuit 41 and a second open circuit 42 that are circuits, a circuit switching unit, and a controller shown in FIG. 3 are provided.
  • the boom closed circuit 34, the arm closed circuit 36, the bucket closed circuit 38, and the turning closed circuit 40 are the boom cylinder 24, the arm cylinder 26, the bucket cylinder 28, and the swing cylinder included in the first actuator group.
  • the oil passages are connected to the turning motors 30 to circulate the hydraulic oil for moving the corresponding hydraulic actuators.
  • the pump section includes a plurality of hydraulic pumps for circulating the hydraulic oil in the closed circuits 34, 36, 38, 40, as shown in FIG.
  • the pump section according to this embodiment includes a boom closed circuit pump 44, a boom open pump 45, an arm closed circuit pump 46, an arm open pump 47, and a bucket closed circuit.
  • a charge relief valve 51 is provided for the charge pump 52, including a pump 48, a bucket open pump 49, a swivel closed circuit pump 50, and a charge pump 52.
  • the pumps 44 to 50, 52 included in the pump section are connected to a common engine, and the hydraulic oil is discharged by being driven by the engine.
  • the boom closed circuit pump 44 is a variable displacement bidirectional hydraulic pump provided in the boom closed circuit 34 and operates to circulate hydraulic oil in both directions in the boom closed circuit 34. .
  • the boom closed circuit pump 44 has a pair of ports, and the boom closed circuit 34 connects one port of the boom closed circuit pump 44 to the head side chamber 24h of the boom cylinder 24.
  • a head side pipe 34h to be connected and a rod side pipe 34r for connecting the other port of the boom closed circuit pump 44 to the rod side chamber 24r of the boom cylinder 24 are provided. Accordingly, the boom cylinder 24 is supplied with hydraulic oil from the boom closed circuit pump 44 through the head side pipe 34h to the head side chamber 24h and from the rod side chamber 24r through the rod side pipe 34r.
  • the arm closed circuit pump 46 is a variable displacement bidirectional hydraulic pump provided in the arm closed circuit 36 and operates to circulate hydraulic oil in both directions in the arm closed circuit 36. .
  • the arm closed circuit pump 46 has a pair of ports, and the arm closed circuit 36 connects one port of the arm closed circuit pump 46 to the head side chamber 26h of the arm cylinder 26.
  • a head side pipe 36h to be connected and a rod side pipe 36r for connecting the other port of the boom closed circuit pump 46 to the rod side chamber 26r of the arm cylinder 26 are provided. Therefore, the arm cylinder 26 is supplied with hydraulic oil from the arm closed circuit pump 46 through the head side pipe 36h to the head side chamber 26h and from the rod side chamber 26r through the rod side pipe 36r.
  • the bucket closed circuit pump 48 is a variable displacement bidirectional hydraulic pump provided in the bucket closed circuit 38 and operates to circulate hydraulic oil in both directions in the bucket closed circuit 38. .
  • the bucket closed circuit pump 48 has a pair of ports, and the bucket closed circuit 38 connects one port of the bucket closed circuit pump 48 to the head side chamber 28h of the bucket cylinder 28.
  • a head side pipe 38h to be connected and a rod side pipe 38r for connecting the other port of the bucket closed circuit pump 48 to the rod side chamber 28r of the bucket cylinder 28 are provided. Accordingly, the bucket cylinder 28 is supplied with hydraulic oil from the bucket closed circuit pump 48 through the head side pipe 38h to the head side chamber 28h and from the rod side chamber 28r through the rod side pipe 38r.
  • the bucket closed circuit pump 48 is operated to the rod side chamber 28r through the rod side pipe 38r.
  • the oil is supplied and the hydraulic oil is returned from the head-side chamber 28h through the head-side pipe 38h, so that the hydraulic oil circulates to operate in a contracting direction, that is, a direction in which the bucket 22 is rotated in the opening direction. .
  • the swivel closed circuit pump 50 is a variable displacement bidirectional hydraulic pump provided in the swivel closed circuit 40 and operates to circulate hydraulic fluid in both directions in the swivel closed circuit 40.
  • the turning closed circuit pump 50 has a pair of ports, and the turning closed circuit 40 has one port of the turning closed circuit pump 50 as one port of the turning motor 30.
  • 1st piping 40a connected to 1 port 30a
  • 2nd piping 40b which connects the other port of the closed circuit pump 50 for rotation to the 2nd port 30b which is the other port of the rotation motor 30.
  • the swing motor 30 is supplied with hydraulic fluid from the swivel closed circuit pump 50 to the first port 30a and is returned from the second port 30b through the second pipe 40b.
  • the upper revolving body 14 is operated in a direction in which the upper revolving body 14 is revolved in a first direction (for example, a clockwise direction as viewed from above), and conversely, the revolving second circuit 40 is turned through the second pipe 40b.
  • the upper rotating body 14 is moved to the second direction opposite to the first direction. Operates in a direction that rotates in a direction (eg, counterclockwise as viewed from above).
  • Each of the open pumps 45, 47, 49 is a variable displacement hydraulic pump, and the difference between the cross-sectional area of the head side chamber and the cross-sectional area of the rod side chamber of the corresponding hydraulic cylinder with a rod, that is, the cross-sectional area of the rod.
  • the hydraulic oil is supplied and discharged between the tank and the closed circuit so as to absorb the corresponding area difference.
  • the boom open pump 45 is supplied from the tank when hydraulic oil is supplied from the boom closed circuit pump 44 to the head side chamber 24h of the boom cylinder 24 through the head side pipe 34h.
  • the head side pipe 34h operates as a pump so as to replenish hydraulic oil corresponding to the area difference, and conversely, from the head side chamber 24h of the boom cylinder 24 through the head side pipe 34h.
  • the hydraulic fluid When the hydraulic fluid is returned to the boom closed circuit pump 44, the hydraulic fluid is operated as a motor so as to release excess hydraulic fluid corresponding to the area difference from the head side pipe 34h to the tank.
  • the arm closed circuit pump 46 When the hydraulic oil is supplied from the arm closed circuit pump 46 to the head side chamber 26h of the arm cylinder 26 through the head side pipe 36h, the arm open type pump 47 is supplied from the tank. It operates as a pump so as to replenish the hydraulic fluid corresponding to the area difference to the head side pipe 36h, and conversely the head side pipe 26h through the head side pipe 36h from the head side chamber 26h.
  • the hydraulic oil When the hydraulic oil is returned to the arm closed circuit pump 46, it operates as a motor so that the excess hydraulic oil corresponding to the area difference is released from the head side pipe 36h to the tank.
  • the bucket open type pump 49 is supplied from the tank to the bucket side when the hydraulic fluid is supplied from the bucket closed circuit pump 48 to the head side chamber 28h of the bucket cylinder 28 through the head side pipe 38h. It operates as a pump so as to replenish the hydraulic fluid corresponding to the area difference to the head side pipe 38h, and conversely, the bucket side through the head side pipe 38h from the head side chamber 28h of the bucket cylinder 28.
  • the hydraulic fluid When the hydraulic fluid is returned to the closed circuit pump 48, the hydraulic fluid is operated as a motor so as to allow excess hydraulic fluid corresponding to the area difference to escape from the head side pipe 38h to the tank.
  • the charge pump 52 replenishes hydraulic oil corresponding to the amount of hydraulic oil leaked from the closed circuits 34, 36, 38, and 40 by the drains of the closed circuit pumps 44, 46, 48, and 50. 34, 36, 38, 40.
  • the charge pump 52 is connected to the pipes 34h, 34r, 36h, 36r, 38h, 38r, 40a, and 40b of the closed circuits 34, 36, 38, and 40 through charge check valves 53, respectively.
  • the hydraulic oil in the tank is supplied to each pipe through the charge check valve 53.
  • Each check valve 53 for charging prevents the backflow of hydraulic oil from each of the closed circuits 34, 36, 38, 40 to the tank.
  • the first and second open circuits 41, 42 are connected to the open pumps 45, 47, 49, the swiveling closed circuit pump 50, and the first and second actuator groups of the hydraulic pumps included in the pump section.
  • the pumps 45, 47, 49, and 50 are commonly used for driving the hydraulic actuators by connecting a plurality of included hydraulic actuators via a plurality of variable throttle valves provided for the hydraulic actuators. Make it possible.
  • the first open circuit 41 includes the boom open pump 45 and the bucket open pump 49, the boom cylinder 24 and the bucket cylinder 28 included in the first actuator group, and the second actuator group.
  • the head-side piping 78H and the rod-side piping 78R, and the left traveling motor 31 Having a first pipe 81A and the second pipe 81B is connected to the port.
  • the boom pump line 55 and the bucket pump line 59 are respectively connected to the upstream end connected to the discharge port of the boom open type pump 45 and the bucket open type pump 49 and the downstream connected to the common main line 61. And having an end.
  • the main line 61 branches in the middle into a hydraulic oil supply line 61s and a center bypass line 61c that reaches the tank.
  • the left travel control valve 71 and the boom control valve are sequentially provided along the both lines 61c and 61s from the upstream side. 64 and the bucket control valve 68 are provided.
  • a tank line 61t connected to each control valve 71, 64, 68 is connected to the center bypass line 61c on the downstream side of each control valve 71, 64, 68.
  • Each of the control valves 71, 64, 68 is a variable throttle valve and is composed of a hydraulic pilot switching valve having a pair of pilot ports (not shown), and maintains a neutral position when no pilot pressure is received. While the center bypass line 61c is fully opened, when the pilot pressure is received, the valve is opened with a stroke corresponding to the pilot pressure, thereby narrowing the center bypass line 61c and flowing into the hydraulic oil supply line 61s. The hydraulic oil is guided to a corresponding hydraulic actuator with an opening area corresponding to the magnitude of the pilot pressure, and the hydraulic oil discharged from the hydraulic actuator is guided to the tank line 61t.
  • the left travel control valve 71 receives the input of pilot pressure to any one of the pilot ports, thereby causing the hydraulic oil flowing through the hydraulic oil supply line 61s to flow through the first pipe 81A and the second pipe 81B. Are led to the left traveling motor 31 through a pipe corresponding to the pilot port.
  • the boom control valve 64 receives the pilot pressure input to any one of the pilot ports, thereby allowing the hydraulic oil flowing through the hydraulic oil supply line 61s to flow through the head side pipe 74H and the rod side pipe 74R. 2 to the head side chamber 24h or the rod side chamber 24r of the boom cylinder 24 shown in FIG. 2 through a pipe corresponding to the pilot port, and the bucket control valve 68 inputs the pilot pressure to one of the pilot ports.
  • the hydraulic oil flowing through the hydraulic oil supply line 61 s is fed to the bucket cylinder 28 shown in FIG. 2 through a pipe corresponding to the pilot port among the head side pipe 78H and the rod side pipe 78R. It leads to the rod side chamber 28h or the rod side chamber 28r.
  • the second open circuit 42 includes the arm open type pump 47 and the swing closed circuit pump 50 in the arm cylinder 26, the swing motor 30 and the second actuator group included in the first actuator group.
  • the right travel motor 32 which includes an arm pump line 57, a swing pump line 60, a main line 62, an arm control valve 66, a swing control valve 70, a right travel control valve 72, Head side piping 76H and rod side piping 76R connected to the head side chamber 26h and rod side chamber 26r of the arm cylinder 26, respectively, and first piping 80A and second piping connected to both ports of the turning motor 30, respectively.
  • the arm pump line 57 and the swing pump line 60 are connected to an upstream end connected to the discharge port of the arm open type pump 47 and the swing closed circuit pump 50, respectively, and the common main line 62, respectively. And a downstream end.
  • the main line 62 branches in the middle into a hydraulic oil supply line 62s and a center bypass line 62c that reaches the tank.
  • the right travel control valve 72 and the turning control valve are sequentially provided along the both lines 62c and 62s from the upstream side. 70 and the arm control valve 66 are provided.
  • a tank line 62t connected to each control valve 72, 70, 66 is connected to the center bypass line 62c on the downstream side of each control valve 72, 70, 66.
  • Each of the control valves 71, 64, 68 is a variable throttle valve, and is composed of a hydraulic pilot switching valve having a pair of pilot ports (not shown).
  • the control valves 71, 64, 68 are maintained in a neutral position. While the center bypass line 62c is fully opened, when the pilot pressure is input, the valve is opened with a stroke corresponding to the pilot pressure, thereby narrowing the center bypass line 62c and flowing into the hydraulic oil supply line 62s.
  • the hydraulic oil is guided to a corresponding hydraulic actuator with an opening area corresponding to the magnitude of the pilot pressure, and the hydraulic oil discharged from the hydraulic actuator is guided to the tank line 62t.
  • the right travel control valve 72 receives the pilot pressure input to any one of the pilot ports, thereby allowing the hydraulic oil flowing through the hydraulic oil supply line 62s to flow through the first pipe 82A and the second pipe 82B. Are led to the left traveling motor 32 through a pipe corresponding to the pilot port.
  • the swivel control valve 70 receives the input of pilot pressure to one of the pilot ports, thereby causing the working oil flowing through the working oil supply line 62s to flow out of the first pipe 70A and the second pipe 70B.
  • the arm control valve 66 is guided to the port of the swing motor 30 through a pipe corresponding to the pilot port, and the arm control valve 66 receives the input of the pilot pressure to one of the pilot ports, so that the hydraulic oil flows through the hydraulic oil supply line 62s. Is led to the head side chamber 26h or the rod side chamber 26r of the arm cylinder 26 shown in FIG. 2 through the pipe corresponding to the pilot port among the head side pipe 76H and the rod side pipe 76R.
  • the open pumps 45, 47, 49, 50 connected to the first and second open circuits 41, 42
  • the open pumps 45, 47, 49 directly suck the hydraulic oil in the tank and It is possible to supply the hydraulic actuator connected to the second open circuit 41, 42.
  • the swivel closed circuit pump 50 is provided in the swivel closed circuit 40 and cannot directly suck the hydraulic oil in the tank.
  • the swivel closed circuit 40 is supplied from the charge pump 52. It is possible to boost the hydraulic oil supplied to the hydraulic actuator and supply it to each hydraulic actuator connected to the second closed circuit 42, that is, to supply the hydraulic oil in cooperation with the charge pump 52.
  • the capacity of the swivel closed circuit pump 50 when supplying hydraulic oil to the second open circuit 42 in this way is the flow rate of hydraulic oil that can be supplied from the charge pump 52 to the swivel closed circuit 40. It is good to be limited to the following.
  • the circuit switching unit enables switching of a circuit used for supplying to each hydraulic actuator, and has a first state and a second state.
  • the closed circuits 34, 36, 38, 40 are circulated by opening the closed circuits 34, 36, 38, 40 and shutting off the first and second open circuits 41, 42.
  • the hydraulic oil is in a state that allows the boom cylinder 24, the arm cylinder 26, the bucket cylinder 28, and the swing motor 30 included in the first actuator group to move, and the second state includes the closed circuits 34, From the pumps 45, 47, 49, 50 connected to the first and second open circuits 41, 42 by cutting off the 36, 38, 40 and opening the first and second open circuits 41, 42.
  • hydraulic oil can be supplied to the hydraulic actuators through the control valves 71, 64, 68, 72, 70, and 66, which are the variable throttle valves.
  • the circuit switching unit includes closed circuit on / off valves 84H, 84R, 86H, 86R, 88H, 88R, 90A and 90B, and open circuit on / off valves 91 and 92. Consists of a switching valve.
  • the closed circuit on-off valves 84H, 84R, 86H, 86R, 88H, 88R, 90A, 90B are respectively connected to the pipes 34h, 34r, 36h, 36r, 38h included in the closed circuits 34, 36, 38, 40, respectively.
  • the first state is formed by opening the closed circuit on-off valves 84H, 84R, 86H, 86R, 88H, 88R, 90A, 90B and closing the open circuit on-off valves 91, 92.
  • the closed circuit on-off valves 84H, 84R, 86H, 86R, 88H, 88R, 90A, 90B are closed and the open circuit on-off valves 91, 92 are opened, the second state is formed.
  • the hydraulic drive device further includes a plurality of operating devices and a controller 110 shown in FIG. 3, and the plurality of operating devices includes a boom operating device 94 provided for the boom cylinder 24 and the arm cylinder. 26, an arm operation device 96 provided for the bucket cylinder 28, a bucket operation device 98 provided for the bucket cylinder 28, a turning operation device 100 provided for the turning motor 30, and a left provided for the left and right traveling motors 31 and 32, respectively. Traveling operation devices 101 and 102.
  • Each of the operating devices 94, 96, 98, 100, 101, 102 is provided in the driver's cab 15, and is an operating member that receives an operation for moving a corresponding hydraulic actuator among the hydraulic actuators, such as an operating lever.
  • An operation device body that generates an operation signal corresponding to an operation given to the operation member and inputs the operation signal to the controller 110.
  • the controller 110 includes a circuit switching control unit 113 shown in FIG. 3 and a plurality of actuator control units for controlling the operation of each hydraulic actuator, a boom control unit 114, an arm control unit 116, a bucket control unit 118, a turn A control unit 120, a left travel control unit 121, and a right travel control unit 122.
  • Each of the plurality of actuator control units 114, 116, 118, 120, 121, and 122 can function as a capacity adjustment unit.
  • the circuit switching control unit 113 is input according to an operation given to each of the operating devices 94, 96, 98, 100, 101, 102, that is, from each of the operating devices 94, 96, 98, 100, 101, 102.
  • the circuit switching unit is switched between the first state and the second state in accordance with the operation signal to be performed. Specifically, the circuit switching control unit 113 only operates the operating devices 94, 96, 98, 100 corresponding to the hydraulic actuators included in the first actuator group when no operation is given to any operating device. Is operated (in other words, when neither of the travel operation devices 101 and 102 included in the second actuator group is operated), the circuit switching unit is set to the first state, and at least the travel operation device is set. When an operation is given to 101 and 102, the circuit switching unit is set to the second state.
  • the boom control unit 114 operates the boom closed circuit pump 44, the boom open pump 45, and the boom control valve 64 in order to control the movement of the boom 18.
  • the boom control unit 114 is configured such that when the circuit switching unit is in the first state, that is, when the use of a closed circuit is selected, the boom closed circuit pump 44 and the boom open type are used.
  • the capacity of the pump 45 is set to a capacity corresponding to the operation given to the boom operating unit 94 and the circuit switching unit is in the second state, that is, when the use of the open circuit is selected, the boom
  • the capacity of the closed circuit pump 44 is set to 0
  • the capacity of the boom open pump 45 connected to the first open circuit 41 is set to an open circuit capacity, that is, to each hydraulic actuator through the first open circuit 41.
  • the boom control unit 114 is configured to operate the boom control valve 64 so as to operate the boom control valve 64 with a stroke corresponding to an operation given to the boom operation unit 94 when the circuit switching unit is in the second state.
  • a command signal is output to a boom operation valve 124 that is an electromagnetic proportional pressure reducing valve interposed between each pilot port 64 and a pilot hydraulic pressure source (not shown), and a pilot corresponding to the operation is applied to the pilot port of the boom control valve 64. Allow pressure to be input.
  • the arm control unit 116 operates the arm closed circuit pump 46, the arm open pump 47, and the arm control valve 66 in order to control the movement of the arm 20.
  • the arm control unit 116 is configured such that when the circuit switching unit is in the first state, that is, when the use of a closed circuit is selected, the arm closed circuit pump 46 and the arm open type are used.
  • the arm control unit 116 is configured to operate the arm control valve 66 so as to operate the arm control valve 66 with a stroke corresponding to an operation given to the arm operation unit 96 when the circuit switching unit is in the second state.
  • a command signal is output to an arm operation valve 126 which is an electromagnetic proportional pressure reducing valve interposed between each pilot port of 66 and the pilot hydraulic pressure source, and a pilot pressure corresponding to the operation is applied to the pilot port of the arm control valve 66. Is entered.
  • the bucket control unit 118 operates the bucket closed circuit pump 48, the bucket open pump 49, and the bucket control valve 68 in order to control the movement of the bucket 22.
  • the bucket control unit 118 is configured such that when the circuit switching unit is in the first state, that is, when the use of a closed circuit is selected, the bucket closed circuit pump 48 and the bucket open type are used.
  • the bucket control unit 118 is configured to operate the bucket control valve 68 to operate the bucket control valve 68 with a stroke corresponding to an operation given to the bucket operating unit 98 when the circuit switching unit is in the second state.
  • a command signal is output to a bucket operation valve 128 which is an electromagnetic proportional pressure reducing valve interposed between each pilot port 68 and the pilot hydraulic pressure source, and a pilot pressure corresponding to the operation is applied to the pilot port of the bucket control valve 68. Is entered.
  • the turning control unit 120 operates the turning closed circuit pump 50 and the turning control valve 70 in order to control the turning operation of the upper turning body 14. Specifically, when the circuit switching unit is in the first state, that is, when the use of the closed circuit is selected, the turning control unit 120 controls the capacity of the turning closed circuit pump 50 by the turning operation. When the circuit switching unit is in the second state, that is, when the use of an open circuit is selected, the capacity corresponding to the operation given to the device 100 is connected to the second open circuit 42. The capacity of the swivel closed circuit pump 50 is adjusted to an open circuit capacity, that is, a capacity for securing a flow rate necessary for supplying hydraulic oil to each hydraulic actuator through the second open circuit 42.
  • the swivel closed circuit pump 50 does not have the function of directly sucking and discharging the hydraulic oil in the tank as described above. Since the hydraulic oil is boosted and supplied to the second open circuit 42, the turning control unit 52 supplies the capacity of the turning closed circuit pump 50 from the charge pump 52 into the turning closed circuit 40. It is better to limit the capacity below the flow rate of hydraulic fluid that can be done.
  • the turning control unit 120 operates the turning control valve 70 to operate the turning control valve 70 with a stroke corresponding to the operation given to the turning operation unit 100.
  • a command signal is output to a swing operation valve 130 which is an electromagnetic proportional pressure reducing valve interposed between each pilot port 70 and the pilot hydraulic pressure source, and a pilot pressure corresponding to the operation is applied to the pilot port of the boom control valve 64. Is entered.
  • the left traveling control unit 121 and the right traveling control unit 122 are configured to control the traveling operation of the upper swing body 12 when the circuit switching unit is in the second state.
  • the right travel control valve 72 is operated.
  • the left travel control unit 121 and the right travel control unit 122 are configured to perform the left travel control valve 71 and the right travel with strokes corresponding to the operations given to the left travel operation unit 101 and the right travel operation unit 102, respectively.
  • a left travel operation valve 131 and a right travel operation which are electromagnetic proportional pressure reducing valves interposed between the pilot ports of the left travel control valve 71 and the right travel control valve 72 and the pilot hydraulic pressure source.
  • a command signal is output to each of the valves 132 so that a pilot pressure corresponding to the operation is input to the pilot ports of the left travel control valve 71 and the right travel control valve 72.
  • FIG. 4 shows a control operation specifically performed by the controller 110.
  • the controller 110 captures each operation amount (specifically, the operation amount of the operation lever, including positive and negative corresponding to the operation direction) input from each of the operation devices 94, 96, 98, 100, 101, 102. (Step S1). And based on the said operation amount, circuit switching control and each control accompanying the switching are performed.
  • the circuit switching control unit 113 of the controller 110 when no operation is given to either the left travel operation device 101 or the right travel operation device 102 (NO in step S2), specifically, both operation devices.
  • the operation amount for both 101 and 102 is less than a low threshold that can be regarded as 0, in other words, none of the operation devices are operated, or the operation devices for the hydraulic actuators belonging to the first actuator group.
  • the circuit switching control unit 113 of the controller 110 selects the closed circuit as the circuit to be used. Therefore, the circuit switching unit is set to the first state.
  • the circuit switching control unit 113 opens all the closed circuits 34, 36, 38, 40 by opening all the closed circuit on-off valves 84H, 84R, 86H, 86R, 88H, 88R, 90A, 90B ( Along with step S3), the first and second open circuit on-off valves 91 and 92 are closed (step S4).
  • the actuator control units 114, 116, 118, 120, 121, 122 of the controller 110 have actuator control valves 64, 66, 68, 70, 71, included in the first and second open circuits 41, 42 that are not selected. 72 is set to the neutral position (step S5).
  • the actuator control unit corresponding to the operation sets the corresponding hydraulic actuator.
  • the capacity of the hydraulic pump related to the closed circuit is controlled (step S6).
  • the boom control unit 114 which is an actuator control unit corresponding to the operation, causes the boom cylinder 24 to expand and contract at a speed corresponding to the given operation.
  • the capacity of the boom closed circuit pump 44 in the closed circuit 34 is adjusted, and the boom open pump 47 absorbs the area difference between the head side chamber 24h and the rod side chamber 24r of the boom cylinder 24.
  • the capacity of the boom open pump 47 is adjusted to operate.
  • the circuit switching control unit 113 specifically relates to both the operation devices 101 and 102. In other words, only the travel operation devices 101 and 102 are operated, or the travel operation devices 101 and 102 and other operation devices (hydraulic actuators belonging to the first actuator group).
  • the circuit switching unit is set to the second state to select the open circuit as the circuit to be used.
  • the circuit switching control unit 113 closes the closed circuits 34, 36, 38, 40 by closing all the closed circuit on-off valves 84H, 84R, 86H, 86R, 88H, 88R, 90A, 90B.
  • the first and second open circuit on-off valves 91 and 92 are opened (step S8).
  • the boom control unit 114, the arm control unit 116, the bucket control unit 118, and the turning control unit 120 of the controller 110 are pumps 45, 47, 49, 50 connected to the first and second open circuits 41, 42, respectively. Is adjusted to an open circuit capacity, that is, a capacity enabling the hydraulic actuator to be driven by the first and second open circuits 41 and 42 (step S9). Further, among the actuator control units 114, 116, 118, 120, 121, and 122, the actuator control unit corresponding to the operation device to which the operation is given operates the corresponding hydraulic actuator by an open circuit at a speed corresponding to the operation. In order to do this, the actuator control valve corresponding to the hydraulic actuator is operated (step S10).
  • a command signal is input to the left travel operation valve 131 and the right travel operation valve 132 to open the left travel control valve 71 and the right travel control valve 72, and the first open circuit 41 and The hydraulic fluid is supplied to the left traveling motor 31 and the right traveling motor 32 through the second open circuit 42, respectively.
  • closed circuits 34, 36, 38, 40 for moving hydraulic actuators (boom cylinder 24, arm cylinder 26, bucket cylinder 28, and swing motor 30) included in the first actuator group;
  • the hydraulic actuators further include first and second open circuits 41 and 42 for moving the hydraulic actuators (left and right traveling motors 31 and 32) included in the second actuator group, and the closed circuits 34, 36,
  • the hydraulic pumps included in the pump section for circulating the hydraulic oil in 38 and 40 the pumps 45, 47, 49, and 50 are diverted to the open circuits 41 and 42, and thus are included in the second actuator group.
  • the left and right traveling motors 31, 32 it is not necessary to provide a hydraulic pump for a closed circuit, and the total number of pumps can be reduced.
  • actuator control valves 64, 66, 68, 70, 71, 72 which are variable throttle valves included in the open circuits 41, 42, the pressure loss in the variable throttle valves is reduced and high. An energy saving effect can be obtained.
  • the circuit switching control unit 113 of the controller 110 does not perform the traveling operation, that is, the operation on the traveling motors 31 and 32 included in the second actuator group, and the hydraulic actuator ( When only the boom cylinder 24, the arm cylinder 26, the bucket cylinder 28, and the swing motor 30) are operated, the circuit switching unit is set to the first state so that the hydraulic actuator that has been operated is driven in a closed circuit.
  • the variable throttle valves actuator control valves 64, 66, 68, 70, 71, 72
  • the circuit switching control unit 113 sets the circuit switching unit to the second state, thereby causing the left traveling motor 31 and the right traveling motor 32 that are not connected to the closed circuit to be the first. And can be driven by the second open circuits 41 and 42, respectively. That is, the left and right traveling motors 31 and 32 can be driven without providing a dedicated pump for the left and right traveling motors 31 and 32. This makes it possible to reduce the cost by reducing the number of necessary pumps, and with a pump in which unused pumps are used when a plurality of pumps are connected to a common engine as described above. It is possible to further increase the energy saving effect by reducing energy loss caused by being rotated.
  • the first actuator group includes at least one working hydraulic actuator (in the embodiment, each cylinder 24, 26, 28). ), And the second actuator group includes at least one traveling hydraulic actuator (left and right traveling motors 31 and 32 in the above-described embodiment). That is, since the working hydraulic actuator is operated more frequently than the traveling hydraulic actuator, driving the working hydraulic actuator by a closed circuit, that is, a circuit that does not require a throttle element is effective in improving the energy saving effect. is there. On the other hand, when the working hydraulic actuator and the traveling hydraulic actuator are moved simultaneously, a pressure loss occurs in the actuator control valve, which is a variable throttle valve, for driving both hydraulic actuators.
  • the second hydraulic actuator includes a traveling hydraulic actuator that is less demanded to improve the energy saving effect than the working hydraulic actuator, and uses the hydraulic pump for the closed circuit of the working hydraulic actuator to drive the second hydraulic actuator. This makes it possible to reduce the required number of hydraulic pumps while making the energy saving effect effective.
  • the configuration of the circuit switching unit is not limited to that shown in FIG.
  • the pipes 34h, 34r, 36h of the closed circuits 34, 36, 38 according to the first embodiment In addition to the closed circuit on-off valves 84H, 84R, 86H, 86R, 88H, 88R provided in 36r, 38h, 38r, in addition to the control to make the capacity (displacement volume) of the closed circuit pumps 44, 45, 47, 49 zero, As shown in FIG.
  • an on-off valve 85 between each closed circuit 34, 36, 38 and an open type pump 45, 47, 49 related to the closed circuit 34, 36, 38, respectively.
  • 87 and 89 may be provided to close the on-off valves 85, 87 and 89 when the open circuit is used (when the second state is selected).
  • the hydraulic oil discharged from the open pumps 45, 47, 49 is supplied exclusively to the first open circuit 41 or the second open circuit 42. be able to.
  • FIG. 6 and 7 show a hydraulic drive device according to a third embodiment of the present invention.
  • the apparatus according to the third embodiment is different from that according to the first embodiment only in the following points.
  • the open type pumps 45, 47, 49 according to the first embodiment are omitted.
  • the charge check valve 53 according to the first embodiment is provided with a pilot check valve 184, respectively.
  • 185, 186, 187, 188, 189 and a charge accumulator 123 provided in parallel with the charge pump 52 are provided.
  • the pilot check valves 184, 185, 186, 187, 188, 189 include a head side pipe 34 h and a rod side pipe 34 r of the boom closed circuit 34, a head side pipe 36 h of the arm closed circuit 36, and The rod side pipe 36r is connected to the head side pipe 38h and the rod side pipe 38r of the bucket closed circuit 38, respectively.
  • the pilot check valves 184 to 189 have a check valve original function of preventing the backflow of hydraulic oil from the pipes 34h, 34r, 36h, 36r, 38h, and 38r to the tank.
  • the pressure of the pipe opposite to the pipe to which the valve is connected (for example, in the case of the pilot check valve 184 connected to the head side pipe 34h of the boom closed circuit 34, the rod side pipe 34r of the boom closed circuit 34).
  • the valve has a function of opening the valve so as to allow the reverse flow.
  • a combination of pilot check valves 184 to 189 connected to the head side and rod side pipes of the closed circuits 34, 36, and 38 and the charge accumulator 123 is combined with each cylinder 24, 26. , 28 can absorb the difference in area between the head side chambers 24h, 26h, 28h and the rod side chambers 24r, 26r, 28r.
  • the boom cylinder 24 is contracted to move the boom 18 in the downward direction, the hydraulic oil is discharged from the head side chamber 24h of the boom cylinder 24 and the hydraulic oil is sucked into the rod side chamber 24r.
  • the flow rate of discharge of the former hydraulic oil is larger than the flow rate of suction of the latter hydraulic oil by the area of the rod, but this flow rate difference is increased on the head side as the pilot pressure from the rod side pipe 34r increases.
  • the pilot check valve 184 connected to the pipe 34h is opened, and excess oil is stored in the charge accumulator 123 to be absorbed.
  • the hydraulic oil is sucked into the head side chamber 24h of the boom cylinder 24 and the hydraulic oil is discharged from the rod side chamber 24r.
  • the flow rate of intake of the former hydraulic fluid is larger than the flow rate of discharge of the latter hydraulic fluid by the area of the above, but this flow rate difference is activated through the pilot check valve 184 from the charge accumulator 124 or the charge pump 52. It is absorbed by replenishing oil.
  • the boom and bucket open pumps 45 and 49 include a boom control valve 64 and a bucket control valve 68.
  • the circuit 41 is connected to the arm open type pump 47 and the swing closed circuit pump 50 to the second open circuit 42 including the arm control valve 66 and the swing control valve 70, whereas the third embodiment
  • the arm closed circuit pump 46 is connected to the first open circuit 41
  • the turning closed circuit pump 50 is connected to the second open circuit 42.
  • the arm closed circuit pump 46 for driving the arm cylinder 26 controls the arm cylinder 26 out of the first and second open circuits 41 and 42.
  • the second open circuit 42 including the arm control valve 66 is connected to the first open circuit 41 not including the arm control valve 66, and conversely, the second closed circuit 42 including the arm control valve 66 is not connected to the arm closed circuit pump 46. It is connected to the circuit pump 50.
  • the circuit switching unit opens the closed circuits 34, 36, 38, 40 and shuts off the first and second open circuits 41, 42, and the closed circuits 34, 36. , 38 and 40 are shut off and the first and second open circuits 41 and 42 are opened, and only the first closed circuit 42 is shut off to the arm closed circuit pump 46.
  • hydraulic oil for moving the arm cylinder 26 is circulated through the arm closed circuit 36 and at the same time the second open circuit 62. It is possible to have a third state that allows hydraulic oil to be supplied to the arm cylinder 26 through.
  • both the hydraulic oil circulating in the arm closed circuit 36 and the hydraulic oil passing through the second open circuit 62 from the swiveling closed circuit pump 50 are supplied to the arm cylinder 36, that is, mutually.
  • the arm cylinder 36 can be accelerated.
  • the arm and swivel closed circuit pumps 46 and 50 do not have a function of directly sucking hydraulic fluid from the tank. However, like the swivel closed circuit pump 50 according to the first embodiment, the charge pump The hydraulic fluid supplied from 52 to the arm and turning closed circuits 36 and 40 can be supplied to the first and second open circuits 41 and 42.
  • the acceleration of the arm cylinder 36 is preferably performed when only the operation of the arm cylinder 36 is substantially performed, that is, when an operation that can be regarded as a substantially single arm operation is performed.
  • the substantial arm single operation is not only the operation given to the arm operator 96 but also the operation given to the turning operator 100 is minute compared to the operation given to the arm operator 96. For example, it may include that the operation given to the turning controller 100 is equal to or less than a preset threshold value. Therefore, it is preferable that the circuit switching control unit 113 of the controller 110 puts the circuit switching unit in the third state when the substantial arm single operation is performed.
  • the circuit switching control unit 113 of the controller 110 closes the first open circuit on-off valve 91 but opens the second circuit on-off valve 92 (step S12). Further, in order to enable supply of hydraulic oil to the arm cylinder 26 through the second open circuit 42 in the third state, the capacity of the turning closed circuit pump 50 is adjusted to the open circuit capacity (step S13). In addition, the arm control valve 66 and the swing control valve 70 are operated in accordance with the amount of operation given to the arm controller 96 and the swing controller 100 (step S14). Here, since the speed required for the turning motor 30 is very small, even if most of the hydraulic oil discharged from the turning closed circuit pump 50 is supplied to the arm cylinder 26, the turning drive is not hindered.
  • the apparatus according to the present invention only needs to have at least a closed circuit and an open circuit, and does not prevent including circuits other than the closed circuit and the open circuit.
  • An example thereof is shown in FIG. 9 as a fourth embodiment.
  • the apparatus according to the fourth embodiment includes a so-called secondary circuit 140 as a circuit for driving the turning motor 30, instead of the turning closed circuit 40 according to the first embodiment.
  • a so-called secondary circuit 140 as a circuit for driving the turning motor 30, instead of the turning closed circuit 40 according to the first embodiment.
  • an swivel open type pump 150 and a swivel motor / pump 160 are provided instead of the swivel closed circuit pump 50 and the swivel motor 30 according to the first embodiment.
  • the turning pump / motor 160 is a hydraulic device capable of switching the capacity so as to have both a function as a hydraulic pump and a function as a hydraulic motor.
  • the turning open type pump 150 is connected to the line 60 of the second open circuit 42 like the turning closed circuit pump 50 of the first embodiment, and the turning motor / pump 160 is connected to the first through the line 162. 2 connected to the turning control valve 70A in the open circuit 42.
  • an on-off valve 142 is provided between the turning open pump 150 and the turning motor / pump 160. Further, a regenerative accumulator 144 is provided between the on-off valve 142 and the turning open pump 150.
  • the on / off valve 142 is similarly opened.
  • the turning motor / pump 160 functions as a hydraulic motor, and the upper turning body 14 is turned by receiving supply of hydraulic oil from the opening type pump 150 for turning and the accumulator 144.
  • the turning motor / pump 160 functions as a hydraulic pump, and sucks the hydraulic oil in the tank and introduces it into the accumulator 144, thereby enabling the regeneration of energy at the turning deceleration.
  • the secondary circuit 140 does not include a variable throttle valve, it is possible to contribute to the improvement of the energy saving effect as in the other closed circuits 34, 36, and 38.
  • the open / close valve 142 is similarly closed.
  • the turning open pump 150 can contribute to the supply of hydraulic oil to the second open circuit 42.
  • the turning motor / pump 160 can be driven as a hydraulic motor by the hydraulic oil supplied to the second open circuit 42. .
  • the number of hydraulic actuators included in the first actuator group and the second actuator group is not limited, and for example, only a single hydraulic actuator may be included in the first actuator group or the second actuator group.
  • the open circuit is not limited to the one provided with a plurality of open circuits as described above, and may be provided with only a single open circuit.
  • the plurality of variable throttle valves are not connected in series but in parallel. It may be arranged only.
  • having a plurality of open circuits connected to different hydraulic pumps, such as the first and second open circuits 41 and 42 increases or decreases the flow rate of hydraulic oil supplied to one hydraulic actuator. Makes it possible to reduce the influence of other actuators on the movement of other actuators.
  • Each operation device is not limited to the electric operation device as described above.
  • a remote control valve that directly supplies a pilot pressure corresponding to the operation of the lever to each actuator control valve may be used.
  • the circuit switching control unit responds to each operation with the circuit switching unit. Can be switched between the first state and the second state.
  • a hydraulic drive device provided in a working device, which can obtain a high energy saving effect with a low-cost configuration while having a plurality of hydraulic actuators.
  • the provided apparatus includes a first actuator group including at least one hydraulic actuator, a second actuator group including at least one hydraulic actuator different from the hydraulic actuator included in the first actuator group, and the first actuator group. At least one closed circuit that is connected to each of the hydraulic actuators included in the hydraulic circuit and that circulates the hydraulic oil for moving the hydraulic actuator, and at least one for circulating the hydraulic oil in the closed circuit.
  • Part and the first and second activators At least one open circuit connecting a plurality of hydraulic actuators included in the eta group and changing the flow rate of the hydraulic oil supplied to each of the plurality of hydraulic actuators from the hydraulic pump included in the pump section.
  • a plurality of variable throttle valves provided for each of the plurality of hydraulic actuators, and a circuit switching unit.
  • the circuit switching unit opens the closed circuit and shuts off the open circuit, thereby allowing the hydraulic oil circulating in the closed circuit to move the hydraulic actuator included in the first actuator group.
  • the hydraulic circuit connected to the open circuit by cutting off the closed circuit and opening the open circuit, thereby allowing the hydraulic oil to be supplied to the hydraulic actuators through the variable throttle valves. Two states.
  • the apparatus has a closed circuit for moving the hydraulic actuators included in the first actuator group and an open circuit for moving the hydraulic actuators included in the first and second actuator groups. Since at least part of the hydraulic pump included in the pump section for circulating the hydraulic oil is diverted to the open circuit, it is not necessary to provide a closed-circuit hydraulic pump for the hydraulic actuator included in the second actuator group. By reducing the total number of pumps required and minimizing the use of variable throttle valves included in the open circuit, it is possible to reduce pressure loss in the variable throttle valves and obtain a high energy saving effect.
  • the hydraulic pump moves the hydraulic actuator with hydraulic oil that circulates in the closed circuit, thereby avoiding the use of the variable throttle valve with a pressure loss and obtaining a high energy saving effect.
  • the pump is provided by setting the circuit switching unit to the second state, that is, by closing the closed circuit and opening the open circuit.
  • the hydraulic oil can be supplied from the section to the hydraulic actuator through a variable throttle valve corresponding to the hydraulic actuator. Therefore, it is not necessary to provide a dedicated hydraulic pump for the hydraulic actuators included in the second actuator group.
  • the pump section may include other hydraulic pumps in addition to the closed circuit pump.
  • the hydraulic actuator is a rod-equipped hydraulic cylinder having a head side chamber and a rod side chamber
  • the pump section absorbs a difference between a cross-sectional area of the head side chamber and a cross-sectional area of the rod side chamber.
  • the pump section may include a charge pump that supplies a shortage of hydraulic oil from a tank to the closed circuit in addition to the closed circuit pump.
  • the closed circuit pump by connecting the closed circuit pump to the open circuit, the closed circuit pump supplies the hydraulic oil supplied from the charge pump into the closed circuit to the hydraulic actuators through the variable throttle valves. Is possible.
  • the hydraulic drive device is provided for each of the hydraulic actuators included in the first actuator group and the second actuator group, and includes a plurality of operating devices that receive an operation for moving the hydraulic actuator, and the plurality of operating devices. It is preferable that a circuit switching control unit that switches the circuit switching unit between the first state and the second state in accordance with the operation given to the device. This makes it possible to automatically switch the circuit state based on the operation performed for each actuator.
  • the circuit switching control unit sets the circuit switching unit to the first state, and sets the plurality of operating devices.
  • the hydraulic pump included in the pump section preferably includes a capacity adjusting unit that adjusts the capacity of the hydraulic pump according to the state of the circuit switching unit.
  • the capacity adjusting unit when the circuit switching unit is in the first state, the capacity of the closed circuit pump is set to a capacity corresponding to an operation given to an operating device corresponding to the closed circuit pump.
  • the capacity of the hydraulic pump connected to the open circuit among the hydraulic pumps included in the pump section is the flow rate necessary for supplying hydraulic oil to each hydraulic actuator through the open circuit It is preferable to use an open circuit capacity for ensuring the above.
  • the first actuator group may include a plurality of hydraulic actuators.
  • the first actuator group includes a first closed circuit hydraulic actuator and a second closed circuit hydraulic actuator that are different from each other, and the at least one closed circuit is connected to the first closed circuit hydraulic actuator; And a second closed circuit connected to the second closed circuit hydraulic actuator.
  • the at least one open circuit includes a first open circuit connected to a hydraulic pump for circulating hydraulic oil in the first closed circuit among the hydraulic pumps included in the pump section, and the pump section. It is possible to include a second open circuit connected to a hydraulic pump for circulating hydraulic oil in the second closed circuit among the included hydraulic pumps.
  • having a plurality of open circuits connected to different hydraulic pumps increases or decreases the flow rate of hydraulic oil supplied to one hydraulic actuator, compared to a single open circuit. Makes it possible to reduce the influence of other actuators on the movement of other actuators.
  • the second closed circuit hydraulic actuator is connected to the second open circuit, that is, an open circuit connected to a hydraulic pump for circulating hydraulic oil to the second closed circuit connected to the second closed circuit hydraulic actuator itself.
  • the circuit switching unit shuts off the first closed circuit and opens both the second closed circuit and the second open circuit
  • the hydraulic fluid for moving the second closed circuit hydraulic actuator is circulated through the second closed circuit, and at the same time, the hydraulic fluid is supplied to the second closed circuit hydraulic actuator through the second open circuit. It is possible to have three states. In this third state, both the hydraulic oil circulating in the second closed circuit and the hydraulic oil passing through the second open circuit are supplied from the hydraulic pump for the first closed circuit to the second closed circuit hydraulic actuator.
  • the speed of the second closed circuit hydraulic actuator can be increased.
  • the circuit switching control unit when substantially only the operation with respect to the second closed circuit hydraulic actuator is performed, specifically, the second When the amount of operation for the first closed circuit hydraulic actuator is sufficiently small (for example, below a preset threshold) with respect to the amount of operation for the closed circuit hydraulic actuator, the circuit switching unit is moved to the third state. It is good to do.
  • the hydraulic drive device is suitable for a work machine including a traveling device and a work device, for example.
  • the first actuator group of the hydraulic drive device includes at least one working hydraulic actuator that moves the working device
  • the second actuator group includes at least one traveling hydraulic actuator that moves the traveling device.
  • the working hydraulic actuator is operated more frequently than the traveling hydraulic actuator, driving the working hydraulic actuator by a closed circuit, that is, a circuit that does not require a throttle element, is effective in improving the energy saving effect.
  • a traveling hydraulic actuator that is less demanded to improve the energy saving effect than the working hydraulic actuator is included in the second actuator group, and a hydraulic pump for a closed circuit of the working hydraulic actuator is used for driving the actuator.
  • the required number of hydraulic pumps can be reduced while making the energy saving effect effective.

Abstract

作業装置に設けられる油圧駆動装置であって複数の油圧アクチュエータを具備しながら低コストの構成で高い省エネルギー効果を得ることが可能なものが提供される。油圧駆動装置は、第1及び第2アクチュエータ群と、第1アクチュエータ群に含まれる油圧アクチュエータに接続される閉回路(34,36,38,40)と、閉回路ポンプ(44,46,48,50)を含むポンプセクションと、開回路(41,42)であってポンプセクションに含まれる油圧ポンプから油圧アクチュエータに供給される作動油の流量を変化させる複数の可変絞り弁(64,66,68,70,71,72)を含むものと、閉回路(34,36,38,40)を開通して開回路(41,42)を遮断する第1状態と閉回路(34,36,38,40)を遮断して開回路(41,42)を開通する第2状態とを有する回路切換部(84H,84R,…)と、を備える。

Description

作業機械の油圧駆動装置
 本発明は、建設機械等における負荷を油圧によって駆動するための装置に関するものである。
 従来、油圧ショベル等の作業機械に設けられる油圧駆動装置として、いわゆる開回路タイプのものと、いわゆる閉回路タイプのものと、が知られている。
 開回路タイプの装置は、油圧アクチュエータと、タンク内の作動油を吸入して前記油圧アクチュエータに供給する油圧ポンプと、この油圧ポンプと前記油圧アクチュエータとの間に介在するコントロールバルブと、を備える。前記コントロールバルブは、前記油圧アクチュエータに前記作動油が供給される方向及び流量を制御するように作動し、前記油圧アクチュエータから排出される作動油は当該コントロールバルブを通じて前記タンクに戻される。
 一方、閉回路タイプの装置は、例えば特許文献1に開示されるように、可変容量型の油圧ポンプと油圧アクチュエータとを備え、両者が閉回路を構成するように接続される。前記油圧ポンプから吐出される作動油は当該閉回路内を循環しながら前記油圧アクチュエータを動かす。
 前記開回路タイプの装置は、複数の油圧アクチュエータへの作動油の供給に共通の油圧ポンプを用いることを可能にし、これにより、当該油圧ポンプの必要台数の削減を可能にする利点をもつ。しかし、その反面、流量制御弁であるコントロールバルブに含まれる絞り要素による圧力損失が生じるため、高い省エネルギー効果を得ることが難しいという課題がある。
 逆に、前記閉回路タイプの装置は、絞り要素を含むコントロールバルブを要しないので、高い省エネルギー効果を得ることが可能であるが、油圧アクチュエータごとに当該油圧アクチュエータ専用の油圧ポンプを要するため、当該油圧アクチュエータの数だけ油圧ポンプの必要台数が増え、その分コストが増大するという課題がある。さらに、各油圧アクチュエータの駆動にあたっては、閉回路中で作動油を循環させる閉回路ポンプに加え、当該閉回路に不足分の作動油を補給するためのチャージポンプや、当該油圧アクチュエータがロッド付シリンダである場合にそのへッド側室の面積とロッド側室の面積との差を吸収するための開回路ポンプを要する場合が多い。これにより前記油圧ポンプの必要台数はさらに増える。
特開2014-84558号公報
 本発明は、作業機械に設けられる油圧駆動装置であって複数の油圧アクチュエータを具備しながら低コストの構成で高い省エネルギー効果を得ることが可能なもの、を提供することを目的とする。
 提供される装置は、少なくとも一つの油圧アクチュエータを含む第1アクチュエータ群と、前記第1アクチュエータ群に含まれる油圧アクチュエータとは異なる少なくとも一つの油圧アクチュエータを含む第2アクチュエータ群と、前記第1アクチュエータ群に含まれる油圧アクチュエータのそれぞれに接続され、当該油圧アクチュエータを動かすための作動油を循環させる油路を形成する少なくとも一つの閉回路と、前記閉回路内で前記作動油を循環させるための少なくとも一つの油圧ポンプを含むポンプセクションであって、前記少なくとも一つの油圧ポンプは前記閉回路中に設けられる可変容量型油圧ポンプである閉回路ポンプを含むものと、前記ポンプセクションに含まれる油圧ポンプの少なくとも一部と前記第1及び第2アクチュエータ群に含まれる複数の油圧アクチュエータとを接続する少なくとも一つの開回路であって当該ポンプセクションに含まれる油圧ポンプから当該複数の油圧アクチュエータにそれぞれ供給される作動油の流量を変化させるように当該複数の油圧アクチュエータごとに設けられる複数の可変絞り弁を含むものと、回路切換部と、を備える。当該回路切換部は、前記閉回路を開通して前記開回路を遮断することにより当該閉回路を循環する作動油が前記第1アクチュエータ群に含まれる油圧アクチュエータを動かすことを可能にする第1状態と、前記閉回路を遮断して前記開回路を開通することにより当該開回路に接続される前記油圧ポンプから前記各可変絞り弁を通じての前記各油圧アクチュエータへの作動油の供給を可能にする第2状態と、を有する。
本発明の第1の実施の形態に係る油圧駆動装置を示す回路図である。 図1に示される油圧駆動装置の要部を示す回路図である。 前記第1の実施の形態に係る油圧駆動装置に含まれるコントローラの機能構成を示すブロック図である。 前記コントローラの制御動作を示すフローチャートである。 本発明の第2の実施の形態に係る油圧駆動装置の要部を示す回路図である。 本発明の第3の実施の形態に係る油圧駆動装置を示す回路図である。 図6に示される油圧駆動装置の要部を示す回路図である。 前記第3の実施の形態に係る油圧駆動装置に含まれるコントローラの制御動作を示すフローチャートである。 本発明の第4の実施の形態に係る油圧駆動装置を示す回路図である。 前記各実施の形態に係る油圧駆動装置が搭載される作業機械の例である油圧ショベルを示す正面図である。
 本発明の好ましい実施の形態を、図面を参照しながら説明する。
 図10は、以下に示す各実施の形態に係る油圧駆動装置が搭載される作業機械の例である油圧ショベル10の外観を示す図である。この油圧ショベル10は、下部走行体12と、その上に縦軸回りに旋回可能に搭載される上部旋回体14と、この上部旋回体14に装着される作業装置である作業アタッチメント16と、を備える。前記下部走行体12は、例えば一対のクローラを含む走行装置11を有する。前記上部旋回体14は、旋回フレーム13と、当該旋回フレーム13上に搭載される運転室15及びカウンタウェイト17と、を含む。前記作業アタッチメント16は、前記上部旋回体14に起伏可能に装着されるブーム18と、このブーム18の先端に回動可能に連結されるアーム20と、このアーム20の先端に回動可能に連結されるバケット22と、を備える。
 前記作業アタッチメント16には、複数の作業用油圧アクチュエータであるブームシリンダ24、アームシリンダ26、及びバケットシリンダ28が装着される。これらのシリンダ24,26,28は、それぞれ伸縮可能なロッド付油圧シリンダにより構成される。前記ブームシリンダ24は、作動油の供給を受けることにより伸縮して前記ブーム18を起伏方向に回動させるように当該ブーム18と前記上部旋回体14との間に介在する。前記アームシリンダ26は、作動油の供給を受けることにより伸縮して前記アーム20を前記ブーム18に対して水平軸回りに回動させるように当該アーム20と当該ブーム18との間に介在する。バケットシリンダ28は、作動油の供給を受けることにより伸縮して前記バケット22を前記アーム20に対して水平軸回りに回動させるように当該バケット22と当該アーム20との間に介在する。
 図1は、本発明の第1の実施の形態に係る油圧駆動装置であって、前記油圧ショベルに搭載されるものを示す。この装置は、複数の油圧アクチュエータとして、作業用油圧アクチュエータである前記ブームシリンダ24、前記アームシリンダ26及び前記バケットシリンダ28に加え、前記上部旋回体14を旋回させるための油圧アクチュエータである旋回モータ30と、走行用油圧アクチュエータである左走行モータ31及び右走行モータ32であって前記走行装置11に含まれる左右のクローラをそれぞれ駆動するものと、を備える。これらの油圧アクチュエータのうち、前記ブームシリンダ24、前記アームシリンダ26、前記バケットシリンダ28及び前記旋回モータ30は第1アクチュエータ群に属し、前記両走行モータ31,32は第2アクチュエータ群に属する。
 この装置は、前記複数の油圧アクチュエータに加え、複数の閉回路であるブーム用閉回路34、アーム用閉回路36、バケット用閉回路38及び旋回用閉回路40と、ポンプセクションと、複数の開回路である第1開回路41及び第2開回路42と、回路切換部と、図3に示されるコントローラと、を備える。
 前記ブーム用閉回路34、アーム用閉回路36、バケット用閉回路38及び旋回用閉回路40は、前記第1アクチュエータ群に含まれる前記ブームシリンダ24、前記アームシリンダ26、前記バケットシリンダ28及び前記旋回モータ30にそれぞれ接続され、対応する油圧アクチュエータを動かすための作動油を循環させる油路を形成する。
 前記ポンプセクションは、図2にも示されるように、前記各閉回路34,36,38,40内で前記作動油を循環させるための複数の油圧ポンプを含む。具体的に、この実施の形態に係るポンプセクションは、ブーム用閉回路ポンプ44と、ブーム用オープン型ポンプ45と、アーム用閉回路ポンプ46と、アーム用オープン型ポンプ47と、バケット用閉回路ポンプ48と、バケット用オープン型ポンプ49と、旋回用閉回路ポンプ50と、チャージポンプ52と、を含み、当該チャージポンプ52についてチャージ用リリーフ弁51が設けられる。この実施の形態では、前記ポンプセクションに含まれる前記各ポンプ44~50,52が共通のエンジンに連結されており、当該エンジンによって駆動されることにより作動油を吐出する。
 前記ブーム用閉回路ポンプ44は、前記ブーム用閉回路34中に設けられる可変容量型の双方向油圧ポンプであって、当該ブーム用閉回路34中で作動油を両方向に循環させるように作動する。具体的に、当該ブーム用閉回路ポンプ44は一対のポートを有し、前記ブーム用閉回路34は、前記ブーム用閉回路ポンプ44の一方のポートを前記ブームシリンダ24のへッド側室24hに接続するへッド側配管34hと、前記ブーム用閉回路ポンプ44の他方のポートをブームシリンダ24のロッド側室24rに接続するロッド側配管34rと、を有する。従って、前記ブームシリンダ24は、前記ブーム閉回路ポンプ44から前記へッド側配管34hを通じて前記へッド側室24hに作動油が供給されるとともに前記ロッド側室24rから前記ロッド側配管34rを通じて作動油が戻されるという作動油の循環により、伸長方向すなわち前記ブーム18を上げる方向に作動し、逆に、前記ブーム閉回路ポンプ44から前記ロッド側配管34rを通じて前記ロッド側室24rに作動油が供給されるとともに前記へッド側室24hから前記へッド側配管34hを通じて作動油が戻されるという作動油の循環により、収縮方向すなわち前記ブーム18を下げる方向に作動する。
 前記アーム用閉回路ポンプ46は、前記アーム用閉回路36中に設けられる可変容量型の双方向油圧ポンプであって、当該アーム用閉回路36中で作動油を両方向に循環させるように作動する。具体的に、当該アーム用閉回路ポンプ46は一対のポートを有し、前記アーム用閉回路36は、前記アーム用閉回路ポンプ46の一方のポートを前記アームシリンダ26のへッド側室26hに接続するへッド側配管36hと、前記ブーム用閉回路ポンプ46の他方のポートをアームシリンダ26のロッド側室26rに接続するロッド側配管36rと、を有する。従って、前記アームシリンダ26は、前記アーム閉回路ポンプ46から前記へッド側配管36hを通じて前記へッド側室26hに作動油が供給されるとともに前記ロッド側室26rから前記ロッド側配管36rを通じて作動油が戻されるという作動油の循環により、伸長方向すなわち前記アーム20を引き方向に回動させる方向に作動し、逆に、前記アーム閉回路ポンプ46から前記ロッド側配管36rを通じて前記ロッド側室26rに作動油が供給されるとともに前記へッド側室26hから前記へッド側配管36hを通じて作動油が戻されるという作動油の循環により、収縮方向すなわち前記アーム20を押し方向に回動させる方向に作動する。
 前記バケット用閉回路ポンプ48は、前記バケット用閉回路38中に設けられる可変容量型の双方向油圧ポンプであって、当該バケット用閉回路38中で作動油を両方向に循環させるように作動する。具体的に、当該バケット用閉回路ポンプ48は一対のポートを有し、前記バケット用閉回路38は、前記バケット用閉回路ポンプ48の一方のポートを前記バケットシリンダ28のへッド側室28hに接続するへッド側配管38hと、前記バケット用閉回路ポンプ48の他方のポートをバケットシリンダ28のロッド側室28rに接続するロッド側配管38rと、を有する。従って、前記バケットシリンダ28は、前記バケット閉回路ポンプ48から前記へッド側配管38hを通じて前記へッド側室28hに作動油が供給されるとともに前記ロッド側室28rから前記ロッド側配管38rを通じて作動油が戻されるという作動油の循環により、伸長方向すなわち前記バケット22を掬い方向に回動させる方向に作動し、逆に、前記バケット閉回路ポンプ48から前記ロッド側配管38rを通じて前記ロッド側室28rに作動油が供給されるとともに前記へッド側室28hから前記へッド側配管38hを通じて作動油が戻されるという作動油の循環により、収縮方向すなわち前記バケット22を開き方向に回動させる方向に作動する。
 前記旋回用閉回路ポンプ50は、前記旋回用閉回路40中に設けられる可変容量型の双方向油圧ポンプであって、当該旋回用閉回路40中で作動油を両方向に循環させるように作動する。具体的に、当該旋回用閉回路ポンプ50は一対のポートを有し、前記旋回用閉回路40は、前記旋回用閉回路ポンプ50の一方のポートを前記旋回モータ30の一方のポートである第1ポート30aに接続する第1配管40aと、前記旋回用閉回路ポンプ50の他方のポートを前記旋回モータ30の他方のポートである第2ポート30bに接続する第2配管40bと、を有する。従って、前記旋回モータ30は、前記旋回用閉回路ポンプ50から前記第1ポート30aに作動油が供給されるとともに前記第2ポート30bから前記第2配管40bを通じて作動油が戻されるという作動油の循環により、前記上部旋回体14を第1方向(例えば上から見て時計回り方向)に旋回させる方向に作動し、逆に、前記旋回用閉回路ポンプ50から前記第2配管40bを通じて前記第2ポート30bに作動油が供給されるとともに前記第1ポート30aから前記第1配管40aを通じて作動油が戻されるという作動油の循環により、前記上部旋回体14を前記第1方向とは逆の第2方向(例えば上から見て反時計回り方向)に回転させる方向に作動する。
 前記各オープン型ポンプ45,47,49は、可変容量型油圧ポンプからなり、対応するロッド付油圧シリンダのへッド側室の断面積とロッド側室の断面積の差、つまり当該ロッドの断面積に相当する面積差、を吸収するようにタンクと閉回路との間での作動油の給排を行う。具体的に、前記ブーム用オープン型ポンプ45は、前記ブーム用閉回路ポンプ44から前記へッド側配管34hを通じて前記ブームシリンダ24のへッド側室24hに作動油が供給されるときはタンクから当該へッド側配管34hに前記面積差に相当する不足分の作動油を補給するようにポンプとして作動し、逆に前記ブームシリンダ24のへッド側室24hから前記へッド側配管34hを通じて前記ブーム用閉回路ポンプ44に作動油が戻されるときは前記面積差に相当する余剰分の作動油を前記へッド側配管34hからタンクに逃がすようにモータとして作動する。同様に、前記アーム用オープン型ポンプ47は、前記アーム用閉回路ポンプ46から前記へッド側配管36hを通じて前記アームシリンダ26のへッド側室26hに作動油が供給されるときはタンクから当該へッド側配管36hに前記面積差に相当する不足分の作動油を補給するようにポンプとして作動し、逆に前記アームシリンダ26のへッド側室26hから前記へッド側配管36hを通じて前記アーム用閉回路ポンプ46に作動油が戻されるときは前記面積差に相当する余剰分の作動油を前記へッド側配管36hからタンクに逃がすようにモータとして作動する。また、前記バケット用オープン型ポンプ49は、前記バケット用閉回路ポンプ48から前記へッド側配管38hを通じて前記バケットシリンダ28のへッド側室28hに作動油が供給されるときはタンクから当該へッド側配管38hに前記面積差に相当する不足分の作動油を補給するようにポンプとして作動し、逆に前記バケットシリンダ28のへッド側室28hから前記へッド側配管38hを通じて前記バケット用閉回路ポンプ48に作動油が戻されるときは前記面積差に相当する余剰分の作動油を前記へッド側配管38hからタンクに逃がすようにモータとして作動する。
 前記チャージポンプ52は、前記閉回路ポンプ44,46,48,50のドレン等による前記各閉回路34,36,38,40からの作動油の漏れ量に相当する作動油の補給を当該閉回路34,36,38,40に対して行う。具体的に、当該チャージポンプ52は、前記各閉回路34,36,38,40の配管34h,34r,36h,36r,38h,38r,40a,40bにそれぞれチャージ用チェック弁53を介して接続され、当該チャージ用チェック弁53を通じてタンク内の作動油を各配管に補給する。各チャージ用チェック弁53は、前記各閉回路34,36,38,40からタンクへの作動油の逆流を阻止する。
 前記第1及び第2開回路41,42は、前記ポンプセクションに含まれる油圧ポンプのうちの各オープン型ポンプ45,47,49及び旋回用閉回路ポンプ50と前記第1及び第2アクチュエータ群に含まれる複数の油圧アクチュエータとを当該複数の油圧アクチュエータごとに設けられる複数の可変絞り弁を介して接続することにより、前記各ポンプ45,47,49,50を前記各油圧アクチュエータの駆動に共用することを可能にする。
 具体的に、前記第1開回路41は、前記ブーム用オープン型ポンプ45及びバケット用オープン型ポンプ49を前記第1アクチュエータ群に含まれる前記ブームシリンダ24及び前記バケットシリンダ28並びに前記第2アクチュエータ群に含まれる前記左走行モータ31に接続するものであって、ブームポンプライン55と、バケットポンプライン59と、メインライン61と、ブーム制御弁64と、バケット制御弁68と、左走行制御弁71と、ブームシリンダ24のへッド側室24h及びロッド側室24rにそれぞれ接続されるへッド側配管74H及びロッド側配管74Rと、バケットシリンダ28のへッド側室28h及びロッド側室28rにそれぞれ接続されるへッド側配管78H及びロッド側配管78Rと、左走行モータ31の両ポートにそれぞれ接続される第1配管81A及び第2配管81Bと、を有する。
 前記ブームポンプライン55及び前記バケットポンプライン59は、それぞれ、前記ブーム用オープン型ポンプ45及びバケット用オープン型ポンプ49の吐出口にそれぞれ接続される上流端と、共通の前記メインライン61につながる下流端と、を有する。前記メインライン61はその途中で作動油供給ライン61sとタンクに至るセンターバイパスライン61cとに分岐し、両ライン61c,61sに沿ってその上流側から順に前記左走行制御弁71、前記ブーム制御弁64及び前記バケット制御弁68が設けられている。また、前記各制御弁71,64,68の下流側で前記センターバイパスライン61cに当該各制御弁71,64,68とつながるタンクライン61tがつながっている。
 前記各制御弁71,64,68は、いずれも可変絞り弁であって図略の一対のパイロットポートを有する油圧パイロット切換弁からなり、パイロット圧の入力を受けないときは中立位置を保った前記センターバイパスライン61cを全開通する一方、パイロット圧の入力を受けると当該パイロット圧に対応したストロークで開弁作動し、これにより、前記センターバイパスライン61cを絞るとともに前記作動油供給ライン61sに流入する作動油を前記パイロット圧の大きさに対応した開口面積で対応する油圧アクチュエータに導き、当該油圧アクチュエータから排出される作動油を前記タンクライン61tに導く。具体的に、前記左走行制御弁71は、いずれかのパイロットポートへのパイロット圧の入力を受けることにより、前記作動油供給ライン61sを流れる作動油を前記第1配管81A及び前記第2配管81Bのうち前記パイロットポートに対応する配管を通じて前記左走行モータ31に導く。同様に、前記ブーム制御弁64は、いずれかのパイロットポートへのパイロット圧の入力を受けることにより、前記作動油供給ライン61sを流れる作動油を前記へッド側配管74H及び前記ロッド側配管74Rのうち前記パイロットポートに対応する配管を通じて図2に示される前記ブームシリンダ24のへッド側室24hまたはロッド側室24rに導き、前記バケット制御弁68は、いずれかのパイロットポートへのパイロット圧の入力を受けることにより、前記作動油供給ライン61sを流れる作動油を前記へッド側配管78H及び前記ロッド側配管78Rのうち前記パイロットポートに対応する配管を通じて図2に示される前記バケットシリンダ28のへッド側室28hまたはロッド側室28rに導く。
 一方、前記第2開回路42は、前記アーム用オープン型ポンプ47及び旋回用閉回路ポンプ50を前記第1アクチュエータ群に含まれる前記アームシリンダ26及び前記旋回モータ30並びに前記第2アクチュエータ群に含まれる前記右走行モータ32に接続するものであって、アームポンプライン57と、旋回ポンプライン60と、メインライン62と、アーム制御弁66と、旋回制御弁70と、右走行制御弁72と、アームシリンダ26のへッド側室26h及びロッド側室26rにそれぞれ接続されるへッド側配管76H及びロッド側配管76Rと、旋回モータ30の両ポートにそれぞれ接続される第1配管80A及び第2配管80Bと、右走行モータ32の両ポートにそれぞれ接続される第1配管82A及び第2配管82Bと、を有する。
 前記アームポンプライン57及び前記旋回ポンプライン60は、それぞれ、前記アーム用オープン型ポンプ47及び前記旋回用閉回路ポンプ50の吐出口にそれぞれ接続される上流端と、共通の前記メインライン62につながる下流端と、を有する。前記メインライン62はその途中で作動油供給ライン62sとタンクに至るセンターバイパスライン62cとに分岐し、両ライン62c,62sに沿ってその上流側から順に前記右走行制御弁72、前記旋回制御弁70及び前記アーム制御弁66が設けられている。また、前記各制御弁72,70,66の下流側で前記センターバイパスライン62cに当該各制御弁72,70,66とつながるタンクライン62tがつながっている。
 前記各制御弁71,64,68は、いずれも可変絞り弁であって図略の一対のパイロットポートを有する油圧パイロット切換弁からなり、パイロット圧の入力を受けないときは中立位置を保って前記センターバイパスライン62cを全開通する一方、パイロット圧の入力を受けると当該パイロット圧に対応したストロークで開弁作動し、これにより、前記センターバイパスライン62cを絞るとともに前記作動油供給ライン62sに流入する作動油を前記パイロット圧の大きさに対応した開口面積で対応する油圧アクチュエータに導き、当該油圧アクチュエータから排出される作動油を前記タンクライン62tに導く。具体的に、前記右走行制御弁72は、いずれかのパイロットポートへのパイロット圧の入力を受けることにより、前記作動油供給ライン62sを流れる作動油を前記第1配管82A及び前記第2配管82Bのうち前記パイロットポートに対応する配管を通じて前記左走行モータ32に導く。同様に、前記旋回制御弁70は、いずれかのパイロットポートへのパイロット圧の入力を受けることにより、前記作動油供給ライン62sを流れる作動油を前記第1配管70A及び前記第2配管70Bのうち前記パイロットポートに対応する配管を通じて前記旋回モータ30のポートに導き、前記アーム制御弁66は、いずれかのパイロットポートへのパイロット圧の入力を受けることにより、前記作動油供給ライン62sを流れる作動油を前記へッド側配管76H及び前記ロッド側配管76Rのうち前記パイロットポートに対応する配管を通じて図2に示される前記アームシリンダ26のへッド側室26hまたはロッド側室26rに導く。
 前記第1及び第2開回路41,42に接続されるポンプ45,47,49,50のうち、各オープン型ポンプ45,47,49はタンク内の作動油を直接吸入して前記第1又は第2開回路41,42につながる油圧アクチュエータに供給することが可能である。これに対して旋回用閉回路ポンプ50は、旋回用閉回路40中に設けられているため、タンク内の作動油を直接吸入することはできないが、前記チャージポンプ52から前記旋回用閉回路40に供給される作動油を昇圧して前記第2閉回路42につながる各油圧アクチュエータに供給すること、つまり当該チャージポンプ52との協働により前記作動油の供給を行うこと、が可能である。従って、このように第2開回路42に作動油を供給するときの旋回用閉回路ポンプ50の容量は、前記チャージポンプ52から前記旋回用閉回路40に供給することが可能な作動油の流量以下に制限されるのが、よい。
 前記回路切換部は、前記各油圧アクチュエータに供給するために使用される回路の切換を可能にするものであって、第1状態と第2状態とを有する。前記第1状態は、前記各閉回路34,36,38,40を開通して前記第1及び第2開回路41,42を遮断することにより当該閉回路34,36,38,40を循環する作動油が前記第1アクチュエータ群に含まれるブームシリンダ24、アームシリンダ26、バケットシリンダ28及び旋回モータ30をそれぞれ動かすことを可能にする状態であり、前記第2状態は、前記各閉回路34,36,38,40を遮断して前記第1及び第2開回路41,42を開通することにより当該第1及び第2開回路41,42に接続される前記ポンプ45,47,49,50から前記各可変絞り弁である制御弁71,64,68,72,70,66を通じての前記各油圧アクチュエータへの作動油の供給を可能にする状態である。
 具体的に、当該回路切換部は、閉回路開閉弁84H,84R,86H,86R,88H,88R,90A,90Bと、開回路開閉弁91,92と、を含み、これらの開閉弁は例えば電磁切換弁により構成される。前記各閉回路開閉弁84H,84R,86H,86R,88H,88R,90A,90Bは、それぞれ、前記各閉回路34,36,38,40に含まれる前記配管34h,34r,36h,36r,38h,38r,40a,40bの開通及び遮断の切換を行うように作動し、前記各開回路開閉弁91,92はそれぞれ前記第1開回路41及び第2開回路42の開通及び遮断の切換、具体的には前記メインライン61,62の開通及び遮断の切換、を行う。従って、前記閉回路開閉弁84H,84R,86H,86R,88H,88R,90A,90Bが開くとともに前記開回路開閉弁91,92が閉じることにより、前記第1状態が形成され、逆に、前記閉回路開閉弁84H,84R,86H,86R,88H,88R,90A,90Bが閉じるとともに前記開回路開閉弁91,92が開くことにより、前記第2状態が形成される。
 この実施の形態に係る油圧駆動装置は、さらに、図3に示す複数の操作器及びコントローラ110を備え、前記複数の操作器は、前記ブームシリンダ24について設けられるブーム操作器94と、前記アームシリンダ26について設けられるアーム操作器96と、前記バケットシリンダ28について設けられるバケット操作器98と、前記旋回モータ30について設けられる旋回操作器100と、前記左及び右走行モータ31,32についてそれぞれ設けられる左走行操作器101,102と、を含む。
 前記各操作器94,96,98,100,101,102は、前記運転室15内に設けられ、前記油圧アクチュエータのうち対応する油圧アクチュエータを動かすための操作を受ける操作部材、例えば操作レバー、と、当該操作部材に与えられる操作に対応した操作信号を生成して前記コントローラ110に入力する操作器本体と、を有する。
 前記コントローラ110は、図3に示される回路切換制御部113と、各油圧アクチュエータの動作を制御するための複数のアクチュエータ制御部であるブーム制御部114、アーム制御部116、バケット制御部118、旋回制御部120、左走行制御部121及び右走行制御部122と、を有する。当該複数のアクチュエータ制御部114,116,118,120,121,122はそれぞれが容量調節部として機能することが可能である。
 前記回路切換制御部113は、前記各操作器94,96,98,100,101,102に与えられる操作に応じて、すなわち、当該各操作器94,96,98,100,101,102から入力される操作信号に応じて、前記回路切換部を第1状態と第2状態との間で切換える。具体的に、当該回路切換制御部113は、いずれの操作器にも操作が与えられないとき、及び、前記第1アクチュエータ群に含まれる油圧アクチュエータに対応する操作器94,96,98,100のみに操作が与えられているとき(換言すれば前記第2アクチュエータ群に含まれる走行操作器101,102がいずれも操作されないとき)は、前記回路切換部を第1状態にし、少なくとも前記走行操作器101,102に操作が与えられているときは前記回路切換部を前記第2状態にする。
 前記ブーム制御部114は、前記ブーム18の動きを制御するために、前記ブーム用閉回路ポンプ44、前記ブーム用オープン型ポンプ45及びブーム制御弁64の操作を行う。具体的に、前記ブーム制御部114は、前記回路切換部が前記第1状態にあるとき、つまり閉回路の使用が選択されているとき、は前記ブーム用閉回路ポンプ44及び前記ブーム用オープン型ポンプ45の容量を前記ブーム操作器94に与えられた操作に対応した容量にし、前記回路切換部が前記第2状態にあるとき、つまり開回路の使用が選択されているとき、は前記ブーム用閉回路ポンプ44の容量を0にするとともに前記第1開回路41に接続される前記ブーム用オープン型ポンプ45の容量を開回路用容量、つまり当該第1開回路41を通じての各油圧アクチュエータへの作動油の供給に必要な流量を確保するための容量、に調節する。また、ブーム制御部114は、前記回路切換部が前記第2状態にあるときは、前記ブーム操作器94に与えられる操作に対応したストロークで前記ブーム制御弁64を作動させるべく、当該ブーム制御弁64の各パイロットポートと図示されないパイロット油圧源との間に介在する電磁比例減圧弁であるブーム操作弁124に指令信号を出力して当該ブーム制御弁64の当該パイロットポートに前記操作に対応したパイロット圧が入力されるようにする。
 前記アーム制御部116は、前記アーム20の動きを制御するために、前記アーム用閉回路ポンプ46、前記アーム用オープン型ポンプ47及びアーム制御弁66の操作を行う。具体的に、前記アーム制御部116は、前記回路切換部が前記第1状態にあるとき、つまり閉回路の使用が選択されているとき、は前記アーム用閉回路ポンプ46及び前記アーム用オープン型ポンプ47の容量を前記アーム操作器96に与えられた操作に対応した容量にし、前記回路切換部が前記第2状態にあるとき、つまり開回路の使用が選択されているとき、は前記アーム用閉回路ポンプ46の容量を0にするとともに前記第2開回路42に接続される前記アーム用オープン型ポンプ47の容量を開回路用容量、つまり当該第2開回路42を通じての各油圧アクチュエータへの作動油の供給に必要な流量を確保するための容量、に調節する。また、アーム制御部116は、前記回路切換部が前記第2状態にあるときは、前記アーム操作器96に与えられる操作に対応したストロークで前記アーム制御弁66を作動させるべく、当該アーム制御弁66の各パイロットポートと前記パイロット油圧源との間に介在する電磁比例減圧弁であるアーム操作弁126に指令信号を出力して当該アーム制御弁66の当該パイロットポートに前記操作に対応したパイロット圧が入力されるようにする。
 前記バケット制御部118は、前記バケット22の動きを制御するために、前記バケット用閉回路ポンプ48、前記バケット用オープン型ポンプ49及び前記バケット制御弁68の操作を行う。具体的に、前記バケット制御部118は、前記回路切換部が前記第1状態にあるとき、つまり閉回路の使用が選択されているとき、は前記バケット用閉回路ポンプ48及び前記バケット用オープン型ポンプ49の容量を前記バケット操作器98に与えられた操作に対応した容量にし、前記回路切換部が前記第2状態にあるとき、つまり開回路の使用が選択されているとき、は前記バケット用閉回路ポンプ48の容量を0にするとともに前記第1開回路41に接続される前記バケット用オープン型ポンプ49の容量を開回路用容量、つまり当該第1開回路41を通じての各油圧アクチュエータへの作動油の供給に必要な流量を確保するための容量、に調節する。また、バケット制御部118は、前記回路切換部が前記第2状態にあるときは、前記バケット操作器98に与えられる操作に対応したストロークで前記バケット制御弁68を作動させるべく、当該バケット制御弁68の各パイロットポートと前記パイロット油圧源との間に介在する電磁比例減圧弁であるバケット操作弁128に指令信号を出力して当該バケット制御弁68の当該パイロットポートに前記操作に対応したパイロット圧が入力されるようにする。
 前記旋回制御部120は、前記上部旋回体14の旋回動作を制御するために、前記旋回用閉回路ポンプ50及び旋回制御弁70の操作を行う。具体的に、前記旋回制御部120は、前記回路切換部が前記第1状態にあるとき、つまり閉回路の使用が選択されているとき、は前記旋回用閉回路ポンプ50の容量を前記旋回操作器100に与えられた操作に対応した容量にし、前記回路切換部が前記第2状態にあるとき、つまり開回路の使用が選択されているとき、は前記第2開回路42に接続される前記旋回用閉回路ポンプ50の容量を開回路用容量、つまり当該第2開回路42を通じての各油圧アクチュエータへの作動油の供給に必要な流量を確保するための容量、に調節する。ここで、前記旋回用閉回路ポンプ50は、前記のようにタンク内の作動油を直接吸引して吐出する機能は有しておらず、チャージポンプ52から補給される旋回用閉回路40内の作動油を昇圧して第2開回路42に供給するものであるから、前記旋回制御部52は、前記旋回用閉回路ポンプ50の容量を前記チャージポンプ52から前記旋回用閉回路40内に供給されることが可能な作動油の流量以下の容量に制限するのが、よい。
 また、旋回制御部120は、前記回路切換部が前記第2状態にあるときは、前記旋回操作器100に与えられる操作に対応したストロークで前記旋回制御弁70を作動させるべく、当該旋回制御弁70の各パイロットポートと前記パイロット油圧源との間に介在する電磁比例減圧弁である旋回操作弁130に指令信号を出力して当該ブーム制御弁64の当該パイロットポートに前記操作に対応したパイロット圧が入力されるようにする。
 前記左走行制御部121及び前記右走行制御部122は、前記回路切換部が前記第2状態にあるときの前記上部旋回体12の走行動作を制御するために、前記左走行制御弁71及び前記右走行制御弁72の操作をそれぞれ行う。具体的に、前記左走行制御部121及び右走行制御部122は、前記左走行操作器101及び前記右走行操作器102にそれぞれ与えられる操作に対応したストロークで前記左走行制御弁71及び右走行制御弁72を作動させるべく、当該左走行制御弁71及び右走行制御弁72の各パイロットポートと前記パイロット油圧源との間に介在する電磁比例減圧弁である左走行操作弁131及び右走行操作弁132にそれぞれ指令信号を出力して当該左走行制御弁71及び右走行制御弁72の当該パイロットポートに前記操作に対応したパイロット圧が入力されるようにする。
 図4は、前記コントローラ110が具体的に行う制御動作を示す。
 コントローラ110は、前記各操作器94,96,98,100,101,102から入力される各操作量(具体的には操作レバーの操作量であって操作方向に対応した正負も含む)の取り込みを行う(ステップS1)。そして、当該操作量に基づき、回路切換制御及びその切換に伴う各制御を行う。
 具体的に、コントローラ110の回路切換制御部113は、左走行操作器101及び右走行操作器102のいずれにも操作が与えられていないとき(ステップS2でNO)、具体的には両操作器101,102についての操作量がともに0とみなせる程度の低い閾値以下であるとき、換言すれば、いずれの操作器も操作されておらず、もしくは、第1アクチュエータ群に属する油圧アクチュエータについての操作器(ブーム操作器94、アーム操作器96、バケット操作器98及び旋回操作器100)のみに操作が与えられているとき、コントローラ110の回路切換制御部113は、使用する回路として閉回路を選択すべく、回路切換部を第1状態にする。すなわち、前記回路切換制御部113は、閉回路開閉弁84H,84R,86H,86R,88H,88R,90A,90Bをいずれも開弁させて各閉回路34,36,38,40を開通する(ステップS3)とともに、第1及び第2開回路開閉弁91,92を閉弁させる(ステップS4)。一方、コントローラ110の各アクチュエータ制御部114,116,118,120,121,122は、選択されない第1及び第2開回路41,42に含まれるアクチュエータ制御弁64,66,68,70,71,72を中立位置にする(ステップS5)。
 さらに、ブーム操作器94、アーム操作器96、バケット操作器98及び旋回操作器100の少なくとも一つに対して操作が与えられたとき、その操作に対応するアクチュエータ制御部は、対応する油圧アクチュエータを当該操作に応じた速度で閉回路により作動させるべく、当該閉回路に係る油圧ポンプの容量を制御する(ステップS6)。例えば、ブーム操作器94に操作が与えられた場合、当該操作に対応するアクチュエータ制御部であるブーム制御部114は、その与えられた操作に対応する速度でブームシリンダ24を伸縮させるようにブーム用閉回路34中のブーム用閉回路ポンプ44の容量を調節するとともに、ブーム用オープン型ポンプ47が前記ブームシリンダ24のへッド側室24hとロッド側室24rとの間の面積差を吸収するように作動すべく当該ブーム用オープン型ポンプ47の容量を調節する。
 一方、前記回路切換制御部113は、左走行操作器101及び右走行操作器102の少なくとも一方に操作が与えられたとき(ステップS2でYES)、具体的には、両操作器101,102についての操作量が前記閾値を上回るとき、換言すれば、走行操作器101,102のみに操作が与えられるか、あるいは当該走行操作器101,102と他の操作器(第1アクチュエータ群に属する油圧アクチュエータに対応する操作器)94,96,98,100,101,102の少なくとも一つに対して同時に操作が与えられたとき、使用する回路として開回路を選択すべく、回路切換部を第2状態にする。具体的に、前記回路切換制御部113は、閉回路開閉弁84H,84R,86H,86R,88H,88R,90A,90Bをいずれも閉弁させて各閉回路34,36,38,40を遮断する(ステップS7)とともに、第1及び第2開回路開閉弁91,92を開弁させる(ステップS8)。
 一方、コントローラ110のブーム制御部114、アーム制御部116、バケット制御部118及び旋回制御部120は、前記第1及び第2開回路41,42に接続されているポンプ45,47,49,50の容量を開回路用容量すなわち当該第1及び第2開回路41,42による油圧アクチュエータの駆動を可能にする容量に調節する(ステップS9)。さらに、各アクチュエータ制御部114,116,118,120,121,122のうち操作が与えられた操作器に対応するアクチュエータ制御部は、対応する油圧アクチュエータを当該操作に応じた速度で開回路により作動させるべく、当該油圧アクチュエータに対応するアクチュエータ制御弁を操作する(ステップS10)。例えば、左走行操作器101及び右走行操作器102の双方に操作が与えられた場合、左走行制御部121及び右走行制御部122は、与えられた操作に対応する速度で左走行モータ31及び右走行モータ32を回転させるべく、左走行操作弁131及び右走行操作弁132に指令信号を入力して左走行制御弁71及び右走行制御弁72を開弁作動させ、第1開回路41及び第2開回路42を通じて左走行モータ31及び右走行モータ32にそれぞれ作動油の供給を行わせる。
 以上のように、この装置では、第1アクチュエータ群に含まれる油圧アクチュエータ(ブームシリンダ24、アームシリンダ26、バケットシリンダ28及び旋回モータ30)を動かすための閉回路34,36,38,40と、当該油圧アクチュエータさらには第2アクチュエータ群に含まれる油圧アクチュエータ(左右走行モータ31,32)を動かすための第1及び第2開回路41,42と、を併有するとともに、前記閉回路34,36,38,40内で作動油を循環させるためのポンプセクションに含まれる油圧ポンプのうちのポンプ45,47,49,50が前記開回路41,42に流用されるので、第2アクチュエータ群に含まれる左右走行モータ31,32については閉回路用の油圧ポンプの具備を不要にしてポンプ総台数を減らしながら、開回路41,42に含まれる可変絞り弁であるアクチュエータ制御弁64,66,68,70,71,72の使用を最小限に抑えることにより当該可変絞り弁における圧力損失を減らして高い省エネルギー効果を得ることが可能である。
 具体的に、コントローラ110の回路切換制御部113は、走行操作、すなわち、第2アクチュエータ群に含まれる走行モータ31,32についての操作、が行われず、前記第1アクチュエータ群に含まれる油圧アクチュエータ(ブームシリンダ24、アームシリンダ26、バケットシリンダ28及び旋回モータ30)のみについて操作が行われる場合は、回路切換部を第1状態にしてその操作が行われた油圧アクチュエータが閉回路で駆動されるようにすることにより、開回路に含まれる可変絞り弁(各アクチュエータ制御弁64,66,68,70,71,72)の使用を避けて当該使用による圧力損失をなくし、これにより高い省エネルギー効果を得ることを可能にする。
 一方、少なくとも走行操作が行われる場合、前記回路切換制御部113は、前記回路切換部を第2状態にすることにより、閉回路に接続されていない左走行モータ31及び右走行モータ32を第1及び第2開回路41,42によってそれぞれ駆動することを可能にする。つまり、当該左右走行モータ31,32について専用のポンプを装備することなく、当該左右走行モータ31,32を駆動することが可能である。このことは、必要なポンプ台数を減らしてコストの低減を可能にするとともに、前記のように共通のエンジンに複数のポンプが連結されている場合に不使用のポンプが使用されているポンプと連れ回りさせられることによるエネルギーロスを低減して前記省エネルギー効果をさらに高めることを可能にする。
 前記省エネルギー効果の促進は、この第1の実施の形態及び以下の実施の形態のように、前記第1アクチュエータ群が少なくとも一つの作業用油圧アクチュエータ(前記実施の形態では各シリンダ24,26,28)を含み、第2アクチュエータ群が少なくとも一つの走行用油圧アクチュエータ(前記実施の形態では左右走行モータ31,32)を含むことにより、さらに顕著となる。すなわち、前記作業用油圧アクチュエータは前記走行用油圧アクチュエータに比べて作動頻度が高いため、当該作業用油圧アクチュエータを閉回路すなわち絞り要素を要しない回路によって駆動することは省エネルギー効果の向上に効果的である。一方、作業用油圧アクチュエータと走行用油圧アクチュエータを同時に動かす場合には、双方の油圧アクチュエータの駆動について可変絞り弁であるアクチュエータ制御弁での圧力損失が生じるが、このような走行用油圧アクチュエータと作業用油圧アクチュエータの同時操作はまれであり、よって省エネルギー効果に与える影響は小さい。このように、前記作業用油圧アクチュエータよりも省エネルギー効果の向上の要請が低い走行用油圧アクチュエータを第2アクチュエータ群に含ませてその駆動に作業用油圧アクチュエータの閉回路のための油圧ポンプを流用することは、前記省エネルギー効果を有効にしながら油圧ポンプの必要台数の削減を図ることを可能にする。
 前記回路切換部の構成は、図1に示すものに限定されない。例えば、第2状態つまり開回路が選択された状態を実現にあたって閉回路を遮断するための手段として、前記第1の実施の形態に係る閉回路34,36,38の配管34h,34r,36h,36r,38h,38r中に設けられる閉回路開閉弁84H,84R,86H,86R,88H,88Rに代え、閉回路ポンプ44,45,47,49の容量(押しのけ容積)を0にする制御とともに、第2の実施の形態として図5に示すように、各閉回路34,36,38と当該閉回路34,36,38に係るオープン型ポンプ45,47,49との間にそれぞれ開閉弁85,87,89を設けて開回路使用時(第2状態選択時)に当該開閉弁85,87,89を閉じるようにしてもよい。この第2の実施の形態においても、前記第1の実施の形態と同じく、前記オープン型ポンプ45,47,49が吐出する作動油を専ら第1開回路41または第2開回路42に供給することができる。
 図6及び図7は、本発明の第3の実施の形態に係る油圧駆動装置を示す。この第3の実施の形態に係る装置は、次の点においてのみ、前記第1の実施の形態に係ると相違する。
(A)閉回路におけるロッド付油圧シリンダの面積差を吸収する手段について
 第3の実施の形態に係る装置では、第1の実施の形態に係るオープン型ポンプ45,47,49が省略されている。さらに、ロッド付油圧シリンダであるブームシリンダ24、アームシリンダ26及びバケットシリンダ28の面積差を吸収するための手段として、第1の実施の形態に係るチャージ用チェック弁53がそれぞれパイロットチェック弁184,185,186,187,188,189に置換されるとともに、チャージポンプ52と並設されるチャージ用アキュムレータ123が装備される。
 前記パイロットチェック弁184,185,186,187,188,189は、前記ブーム用閉回路34のへッド側配管34h及びロッド側配管34r、前記アーム用閉回路36のへッド側配管36h及びロッド側配管36r、並びにバケット用閉回路38のへッド側配管38h及びロッド側配管38rに、それぞれ接続される。当該パイロットチェック弁184~189は、前記各配管34h,34r,36h,36r,38h,38rからタンクへの作動油の逆流を阻止するというチェック弁本来の機能に加え、各閉回路において当該パイロットチェック弁が接続されている配管と反対側の配管(例えばブーム用閉回路34のヘッド側配管34hに接続されているパイロットチェック弁184の場合は当該ブーム用閉回路34のロッド側配管34r)の圧力をパイロット圧として取り込み、当該パイロット圧が一定以上であると前記逆流を許容するように開弁する機能を有する。
 この装置では、前記各閉回路34,36,38のへッド側及びロッド側配管に接続されるパイロットチェック弁184~189と、前記チャージ用アキュムレータ123と、の組み合わせが、各シリンダ24,26,28のへッド側室24h,26h,28hとロッド側室24r,26r,28rとの面積の差を吸収することを可能にする。例えば、ブーム18を下げ方向に動かすためにブームシリンダ24を収縮させる場合、当該ブームシリンダ24のへッド側室24hから作動油が排出されるとともにロッド側室24rに作動油が吸入され、このときにロッドの面積分だけ前者の作動油の排出の流量が後者の作動油の吸入の流量よりも多くなるが、この流量差は、ロッド側配管34rからのパイロット圧の上昇に伴ってへッド側配管34hに接続されたパイロットチェック弁184が開いて余剰油をチャージ用アキュムレータ123に蓄えさせることにより、吸収される。逆に、ブーム18を上げ方向に動かすためにブームシリンダ24を伸長させる場合、当該ブームシリンダ24のへッド側室24hに作動油が吸入されるとともにロッド側室24rから作動油が排出されて、ロッドの面積分だけ前者の作動油の吸入の流量が後者の作動油の排出の流量よりも多くなるが、この流量差は、前記チャージ用アキュムレータ124または前記チャージポンプ52から前記パイロットチェック弁184を通じて作動油が補給されることにより、吸収される。
(B)開回路に接続される油圧ポンプについて
 前記第1の実施の形態に係る装置では、ブーム用及びバケット用オープン型ポンプ45,49がブーム制御弁64及びバケット制御弁68を含む第1開回路41に接続され、アーム用オープン型ポンプ47及び旋回用閉回路ポンプ50がアーム制御弁66及び旋回制御弁70を含む第2開回路42に接続されているのに対し、第3の実施の形態に係る装置では、アーム用閉回路ポンプ46が前記第1開回路41に接続され、旋回用閉回路ポンプ50が前記第2開回路42に接続されている。
 つまり、この第3の実施の形態では、前記アームシリンダ26を駆動するためのアーム用閉回路ポンプ46が前記第1及び第2開回路41,42のうち前記アームシリンダ26を制御するための前記アーム制御弁66を含まない前記第1開回路41に接続され、逆に、当該アーム制御弁66を含む前記第2開回路42は前記アーム用閉回路ポンプ46に接続されずに前記旋回用閉回路ポンプ50に接続されている。
 このことは、前記回路切換部が、前記閉回路34,36,38,40を開通して前記第1及び第2開回路41,42を遮断する前記第1状態と、前記閉回路34,36,38,40を遮断して前記第1及び第2開回路41,42を開通する前記第2状態と、に加え、前記第1閉回路42のみを遮断して前記アーム用閉回路ポンプ46に対応するアーム用閉回路36及び前記第2開回路62の双方を開通することにより、当該アーム用閉回路36に前記アームシリンダ26を動かすための作動油を循環させると同時に当該第2開回路62を通じて前記アームシリンダ26に作動油が供給されることを可能にする第3状態を有することを可能にする。この第3状態では、前記アーム用閉回路36を循環する作動油と前記旋回用閉回路ポンプ50から第2開回路62を経由する作動油の双方が前記アームシリンダ36に供給される、すなわち互いに合流する、ことにより、当該アームシリンダ36の増速を可能にする。
 なお、前記アーム用及び旋回用閉回路ポンプ46,50はタンクから直接作動油を吸引する機能を有しないが、前記第1の実施の形態に係る旋回用閉回路ポンプ50と同様、前記チャージポンプ52から前記アーム用及び旋回用閉回路36,40に供給される作動油を第1及び第2開回路41,42に供給することが可能である。
 前記アームシリンダ36の増速は、実質上当該アームシリンダ36についての操作のみが行われている時、つまり実質上アーム単独操作とみなせるような操作が行われている時、に行われることが好ましい。この実質上のアーム単独操作とは、アーム操作器96に対してのみ操作が与えられることに加え、当該アーム操作器96に与えられる操作と比較して旋回操作器100に与えられる操作が微小であること、例えば旋回操作器100に与えられる操作が予め設定された閾値以下であること、を含んでもよい。従って、コントローラ110の回路切換制御部113は、前記実質上のアーム単独操作が行われている場合に前記回路切換部を前記第3状態にすることが好ましい。
 その制御動作の例を図8のフローチャートに示す。このフローチャートにおいて、ステップS1~S10の動作は図4のフローチャートのそれと同等である。図8のフローチャートでは、さらに、走行操作がない場合(ステップS2でNO)において実質アーム単独操作が行われている場合に(ステップS11でYES)、回路切換部を第1状態ではなく第3状態にする動作が行われる。
 具体的に、コントローラ110の回路切換制御部113は、各閉回路開閉弁を開くのに加え、第1開回路開閉弁91は閉じるが第2回路開閉弁92は開く(ステップS12)。さらに、この第3状態での前記第2開回路42を通じてのアームシリンダ26への作動油の供給を可能にすべく、旋回用閉回路ポンプ50の容量を開回路用容量に調節する(ステップS13)とともに、アーム操作器96及び旋回操作器100に与えられる操作の量に対応してアーム制御弁66及び旋回制御弁70を操作する(ステップS14)。ここで、前記旋回モータ30に求められる速度は微小であるため、旋回用閉回路ポンプ50の吐出する作動油の大部分がアームシリンダ26に供給されても旋回駆動に支障がない。
 本発明に係る装置は、少なくとも閉回路及び開回路を併有するものであればよく、当該閉回路及び開回路以外の回路を含むことを妨げない。その例を第4の実施の形態として図9に示す。
 この第4の実施の形態に係る装置は、旋回モータ30を駆動するための回路として、第1の実施の形態に係る旋回用閉回路40に代え、いわゆるセカンダリ回路140を備えている。具体的には、前記第1の実施の形態に係る旋回用閉回路ポンプ50及び旋回モータ30に代えて旋回用オープン型ポンプ150及び旋回用モータ/ポンプ160が装備される。この旋回用ポンプ/モータ160は、油圧ポンプとしての機能と油圧モータとしての機能とを併有するように容量の切換が可能な油圧機器である。前記旋回用オープン型ポンプ150は第1の実施の形態の旋回用閉回路ポンプ50と同じく第2開回路42のライン60に接続され、前記旋回用モータ/ポンプ160はライン162を介して前記第2開回路42中の旋回制御弁70Aに接続されている。
 このセカンダリ回路140では、当該旋回用オープン型ポンプ150と当該旋回用モータ/ポンプ160との間に開閉弁142が設けられる。また、当該開閉弁142と前記旋回用オープン型ポンプ150との間には回生用のアキュムレータ144が設けられる。
 前記第1状態、つまり他の作業用アクチュエータの閉回路開閉弁74H,74R,76H,76R,78H,78Rが開かれる状態、では前記開閉弁142も同様に開弁される。ここで、旋回加速時には、前記旋回用モータ/ポンプ160が油圧モータとして機能し、前記旋回用オープン型ポンプ150及び前記アキュムレータ144からの作動油の供給を受けることにより上部旋回体14を旋回させる。逆に、旋回減速時には、前記旋回用モータ/ポンプ160が油圧ポンプとして機能し、タンク内の作動油を吸引してアキュムレータ144に導入することにより、当該旋回減速時のエネルギーの回生を可能にする。しかも、前記セカンダリ回路140は可変絞り弁を含まないので、他の閉回路34,36,38と同様に、省エネルギー効果の向上に寄与することが可能である。
 前記第2状態、つまり他の作業用アクチュエータの閉回路開閉弁74H,74R,76H,76R,78H,78Rが閉じられる状態、では前記開閉弁142も同様に閉弁される。この状態で、旋回用オープン型ポンプ150は第2開回路42への作動油の供給に寄与することができる。また、この第2状態で前記旋回制御弁70Aが操作されることにより、当該第2開回路42に供給される作動油によって旋回用モータ/ポンプ160が油圧モータとして駆動されることが可能である。
 本発明において、前記第1アクチュエータ群及び前記第2アクチュエータ群に含まれる油圧アクチュエータの個数は問わず、例えば単一の油圧アクチュエータのみが第1アクチュエータ群または第2アクチュエータ群に含まれてもよい。また、開回路についても、前記のように複数の開回路を備えるものに限らず、単一の開回路のみを備えるものでもよいし、当該開回路において複数の可変絞り弁が直列ではなく並列にのみ配置されたものでもよい。ただし、前記第1及び第2開回路41,42のように互いに異なる油圧ポンプに接続される複数の開回路を併有することは、一つの油圧アクチュエータに対して供給される作動油の流量の増減が他のアクチュエータの動きに与える影響を小さくすることを可能にする。
 本発明に係る各操作器は、前記のような電気式の操作器に限らない。例えば、レバーの操作に対応したパイロット圧を直接前記各アクチュエータ制御弁に供給するリモコン弁であってもよい。この場合、当該パイロット圧を検出するパイロット圧検出器を装備すること、及び、その検出信号を回路切換制御部に入力すること、によって、当該回路切換制御部が前記各操作に応じて回路切換部を第1状態と第2状態とに切換えることが可能になる。
 以上のように、作業装置に設けられる油圧駆動装置であって、複数の油圧アクチュエータを具備しながら、低コストの構成で高い省エネルギー効果を得ることが可能なものが、提供される。
 提供される装置は、少なくとも一つの油圧アクチュエータを含む第1アクチュエータ群と、前記第1アクチュエータ群に含まれる油圧アクチュエータとは異なる少なくとも一つの油圧アクチュエータを含む第2アクチュエータ群と、前記第1アクチュエータ群に含まれる油圧アクチュエータのそれぞれに接続され、当該油圧アクチュエータを動かすための作動油を循環させる油路を形成する少なくとも一つの閉回路と、前記閉回路内で前記作動油を循環させるための少なくとも一つの油圧ポンプを含むポンプセクションであって、前記少なくとも一つの油圧ポンプは前記閉回路中に設けられる可変容量型油圧ポンプである閉回路ポンプを含むものと、前記ポンプセクションに含まれる油圧ポンプの少なくとも一部と前記第1及び第2アクチュエータ群に含まれる複数の油圧アクチュエータとを接続する少なくとも一つの開回路であって当該ポンプセクションに含まれる油圧ポンプから当該複数の油圧アクチュエータにそれぞれ供給される作動油の流量を変化させるように当該複数の油圧アクチュエータごとに設けられる複数の可変絞り弁を含むものと、回路切換部と、を備える。当該回路切換部は、前記閉回路を開通して前記開回路を遮断することにより当該閉回路を循環する作動油が前記第1アクチュエータ群に含まれる油圧アクチュエータを動かすことを可能にする第1状態と、前記閉回路を遮断して前記開回路を開通することにより当該開回路に接続される前記油圧ポンプから前記各可変絞り弁を通じての前記各油圧アクチュエータへの作動油の供給を可能にする第2状態と、を有する。
 当該装置は、第1アクチュエータ群に含まれる油圧アクチュエータを動かすための閉回路と、第1及び第2アクチュエータ群に含まれる油圧アクチュエータを動かすための開回路と、を併有し、前記閉回路内で作動油を循環させるためのポンプセクションに含まれる油圧ポンプの少なくとも一部が開回路に流用されるので、前記第2アクチュエータ群に含まれる油圧アクチュエータについての閉回路用の油圧ポンプの具備を不要にしてポンプ総必要台数を減らしながら、開回路に含まれる可変絞り弁の使用を最小限に抑えることにより当該可変絞り弁における圧力損失を減らして高い省エネルギー効果を得ることが可能である。具体的に、前記第1アクチュエータ群に含まれる油圧アクチュエータのみを動かす場合には、前記回路切換部を第1状態にすることにより、つまり、閉回路を開通して開回路を遮断することにより、前記油圧ポンプが前記閉回路内を循環させる作動油によって前記油圧アクチュエータを動かし、これにより、圧力損失を伴う前記可変絞り弁の使用を避けて高い省エネルギー効果を得ることが可能である。一方、少なくとも第2アクチュエータ群に含まれる油圧アクチュエータを動かす場合には、前記回路切換部を第2状態にすることにより、つまり、前記閉回路を閉じて前記開回路を開通することにより、前記ポンプセクションから前記油圧アクチュエータに当該油圧アクチュエータに対応する可変絞り弁を通じて作動油を供給することができる。従って、前記第2アクチュエータ群に含まれる油圧アクチュエータについて専用の油圧ポンプを具備する必要がない。
 前記ポンプセクションは、前記閉回路ポンプに加えてそれ以外の油圧ポンプを含んでもよい。例えば、前記油圧アクチュエータがへッド側室とロッド側室とを有するロッド付油圧シリンダである場合、前記ポンプセクションは、前記へッド側室の断面積と前記ロッド側室の断面積との差を吸収するようにタンクと前記閉回路との間での作動油の給排を行うオープン型油圧ポンプをさらに含むのが、よい。当該オープン型油圧ポンプはタンク内の作動油を吸入することが可能であるため、当該オープン型油圧ポンプを前記開回路に接続することにより、当該オープン型油圧ポンプから各可変絞り弁を通じて各油圧アクチュエータへの作動油の供給が可能である。あるいは、前記ポンプセクションは、前記閉回路ポンプに加え、タンクから前記閉回路に作動油の不足分を補給するチャージポンプを含んでもよい。この場合、前記閉回路ポンプを前記開回路に接続することにより、当該閉回路ポンプは、前記チャージポンプから前記閉回路内に補給される作動油を前記各可変絞り弁を通じて前記各油圧アクチュエータに供給することが可能である。
 前記油圧駆動装置は、前記第1アクチュエータ群及び前記第2アクチュエータ群に含まれる前記油圧アクチュエータのそれぞれについて設けられ、当該油圧アクチュエータを動かすための操作を受ける複数の操作器と、当該複数の操作器に与えられる前記操作に応じて前記回路切換部を第1状態と第2状態との間で切換える回路切換制御部と、を含むのが、好ましい。これにより、前記各アクチュエータについて行われる操作に基づいて回路状態を自動的に切換えることが可能になる。
 当該回路切換制御部は、例えば、前記第1アクチュエータ群に含まれる油圧アクチュエータに対応する操作器のみに操作が与えられているときは前記回路切換部を第1状態にし、当該複数の操作器のうち少なくとも前記第2アクチュエータ群に含まれる油圧アクチュエータに対応する操作器に操作が与えられているときは前記回路切換部を前記第2状態にするものが、好適である。
 一方、前記ポンプセクションに含まれる油圧ポンプについては、前記回路切換部の状態に応じて当該油圧ポンプの容量を調節する容量調節部を備えるのが、好ましい。この容量調節部としては、前記回路切換部が前記第1状態にあるときは前記閉回路ポンプの容量を当該閉回路ポンプに対応する操作器に与えられた操作に対応した容量にし、前記回路切換部が前記第2状態にあるときは前記ポンプセクションに含まれる油圧ポンプのうち前記開回路に接続される油圧ポンプの容量を前記開回路を通じての各油圧アクチュエータへの作動油の供給に必要な流量を確保するための開回路用容量にするものが、好適である。
 前記第1アクチュエータ群は、複数の油圧アクチュエータを含んでもよい。例えば、当該第1アクチュエータ群は、互いに異なる第1閉回路油圧アクチュエータ及び第2閉回路油圧アクチュエータを含み、前記少なくとも一つの閉回路は前記第1閉回路油圧アクチュエータに接続される第1閉回路と前記第2閉回路油圧アクチュエータに接続される第2閉回路とを含んでもよい。この場合、前記少なくとも一つの開回路は、前記ポンプセクションに含まれる油圧ポンプのうち前記第1閉回路に作動油を循環させるための油圧ポンプに接続される第1開回路と、前記ポンプセクションに含まれる油圧ポンプのうち前記第2閉回路に作動油を循環させるための油圧ポンプに接続される第2開回路と、を含むことが、可能である。このように、互いに異なる油圧ポンプに接続される複数の開回路を具備することは、単一の開回路のみを備えるものに比べ、一つの油圧アクチュエータに対して供給される作動油の流量の増減が他のアクチュエータの動きに与える影響を小さくすることを可能にする。
 前記第2閉回路油圧アクチュエータは、前記第2開回路、すなわち当該第2閉回路油圧アクチュエータ自身に接続される前記第2閉回路に作動油を循環させるための油圧ポンプに接続された開回路に接続されてもよいし、前記第1開回路、すなわち、当該第2閉回路油圧アクチュエータと異なる前記第1閉回路油圧アクチュエータに接続される前記第1閉回路に作動油を循環させるための油圧ポンプに接続された開回路、に接続されてもよい。後者の場合、前記回路切換部は、前記第1状態及び前記第2状態に加え、前記第1閉回路を遮断して前記第2閉回路及び前記第2開回路の双方を開通することにより、当該第2閉回路に前記第2閉回路油圧アクチュエータを動かすための作動油を循環させると同時に当該第2開回路を通じて前記第2閉回路油圧アクチュエータに作動油が供給されることを可能にする第3状態を有することが可能である。この第3状態では、前記第2閉回路を循環する作動油と前記第1閉回路のための油圧ポンプから前記第2開回路を経由する作動油の双方が前記第2閉回路油圧アクチュエータに供給されることにより、当該第2閉回路油圧アクチュエータの増速が可能である。
 このように前記回路切換部が前記第3状態を有する態様では、前記回路切換制御部は、実質上前記第2閉回路油圧アクチュエータについての操作のみが行われる場合、具体的には、当該第2閉回路油圧アクチュエータについての操作の量に対して前記第1閉回路油圧アクチュエータについての操作の量が十分小さい(例えば予め設定された閾値以下である)場合に、前記回路切換部を前記第3状態にするのが、よい。
 本発明に係る油圧駆動装置は、例えば、走行装置と作業装置とを含む作業機械に好適である。この場合、当該油圧駆動装置の第1アクチュエータ群は前記作業装置を動かす少なくとも一つの作業用油圧アクチュエータを含み、第2アクチュエータ群は前記走行装置を動かす少なくとも一つの走行用油圧アクチュエータを含むのが、よい。前記作業用油圧アクチュエータは前記走行用油圧アクチュエータに比べて作動頻度が高いため、当該作業用油圧アクチュエータを閉回路すなわち絞り要素を要しない回路によって駆動することは省エネルギー効果の向上に効果的である。その一方、当該作業用油圧アクチュエータよりも省エネルギー効果の向上の要請が低い走行用油圧アクチュエータは第2アクチュエータ群に含ませてその駆動に作業用油圧アクチュエータの閉回路のための油圧ポンプを流用することにより、前記省エネルギー効果を有効にしながら油圧ポンプの必要台数の削減を図ることができる。

Claims (11)

  1.  作業装置に設けられる油圧駆動装置であって、
     少なくとも一つの油圧アクチュエータを含む第1アクチュエータ群と、
     前記第1アクチュエータ群に含まれる油圧アクチュエータとは異なる少なくとも一つの油圧アクチュエータを含む第2アクチュエータ群と、
     前記第1アクチュエータ群に含まれる油圧アクチュエータのそれぞれに接続され、当該油圧アクチュエータを動かすための作動油を循環させる油路を形成する少なくとも一つの閉回路と、
     前記閉回路内で前記作動油を循環させるための少なくとも一つの油圧ポンプを含むポンプセクションであって、前記少なくとも一つの油圧ポンプは前記閉回路中に設けられる可変容量型油圧ポンプである閉回路ポンプを含むものと、
     前記ポンプセクションに含まれる油圧ポンプの少なくとも一部と前記第1及び第2アクチュエータ群に含まれる複数の油圧アクチュエータとを接続する少なくとも一つの開回路であって当該ポンプセクションに含まれる油圧ポンプから当該複数の油圧アクチュエータにそれぞれ供給される作動油の流量を変化させるように当該複数の油圧アクチュエータごとに設けられる複数の可変絞り弁を含むものと、
     回路切換部と、を備え、当該回路切換部は、前記閉回路を開通して前記開回路を遮断することにより当該閉回路を循環する作動油が前記第1アクチュエータ群に含まれる油圧アクチュエータを動かすことを可能にする第1状態と、前記閉回路を遮断して前記開回路を開通することにより当該開回路に接続される前記油圧ポンプから前記各可変絞り弁を通じての前記各油圧アクチュエータへの作動油の供給を可能にする第2状態と、を有する、作業機械の油圧駆動装置。
  2.  請求項1記載の作業機械の油圧駆動装置であって、前記第1アクチュエータ群は前記油圧アクチュエータとしてへッド側室とロッド側室とを有するロッド付油圧シリンダを含み、前記ポンプセクションは、前記閉回路ポンプであって前記ロッド付油圧シリンダに接続される閉回路中に設けられるものと、前記へッド側室の断面積と前記ロッド側室の断面積との差を吸収するようにタンクと前記閉回路との間での作動油の給排を行うオープン型油圧ポンプと、を含む、作業機械の油圧駆動装置。
  3.  請求項1記載の作業機械の油圧駆動装置であって、前記ポンプセクションは、タンクから前記閉回路に作動油の不足分を補給するチャージポンプをさらに含み、前記閉回路ポンプは、前記チャージポンプから前記閉回路内に補給される作動油を前記各可変絞り弁を通じて前記各油圧アクチュエータに供給するように前記開回路に接続される、作業機械の油圧駆動装置。
  4.  請求項1記載の作業機械の油圧駆動装置であって、前記第1アクチュエータ群及び前記第2アクチュエータ群に含まれる前記油圧アクチュエータのそれぞれについて設けられ、当該油圧アクチュエータを動かすための操作を受ける複数の操作器と、当該複数の操作器に与えられる操作に応じて前記回路切換部を第1状態と第2状態との間で切換える回路切換制御部と、をさらに備える、作業機械の油圧駆動装置。
  5.  請求項4記載の作業機械の油圧駆動装置であって、前記回路切換制御部は、前記第1アクチュエータ群に含まれる油圧アクチュエータに対応する操作器のみに操作が与えられているときは前記回路切換部を第1状態にし、当該複数の操作器のうち少なくとも前記第2アクチュエータ群に含まれる油圧アクチュエータに対応する操作器に操作が与えられているときは前記回路切換部を前記第2状態にする、作業機械の油圧駆動装置。
  6.  請求項1記載の作業機械の油圧駆動装置であって、前記回路切換部の状態に応じて前記ポンプセクションに含まれる前記油圧ポンプの容量を調節する容量調節部をさらに備える、作業機械の油圧駆動装置。
  7.  請求項6記載の作業機械の油圧駆動装置であって、前記容量調節部は、前記回路切換部が前記第1状態にあるときは前記閉回路ポンプの容量を当該閉回路ポンプに対応する操作器に与えられた操作に対応した容量にし、前記回路切換部が前記第2状態にあるときは前記ポンプセクションに含まれる油圧ポンプのうち前記開回路に接続される油圧ポンプの容量を前記開回路を通じての各油圧アクチュエータへの作動油の供給に必要な流量を確保するための開回路用容量にする、作業機械の油圧駆動装置。
  8.  請求項1記載の作業機械の油圧駆動装置であって、前記第1アクチュエータ群は、互いに異なる第1閉回路油圧アクチュエータ及び第2閉回路油圧アクチュエータを含み、前記少なくとも一つの閉回路は前記第1閉回路油圧アクチュエータに接続される第1閉回路と前記第2閉回路油圧アクチュエータに接続される第2閉回路とを含み、前記少なくとも一つの開回路は、前記ポンプセクションに含まれる油圧ポンプのうち前記第1閉回路に作動油を循環させるための油圧ポンプに接続される第1開回路と、前記ポンプセクションに含まれる油圧ポンプのうち前記第2閉回路に作動油を循環させるための油圧ポンプに接続される第2開回路と、を含む、作業機械の油圧駆動装置。
  9.  請求項8記載の作業機械の油圧駆動装置であって、前記第2閉回路油圧アクチュエータは前記第1閉回路に接続され、前記回路切換部は、前記第1閉回路を遮断して前記第2閉回路及び前記第2開回路の双方を開通することにより、当該第2閉回路に前記第2閉回路油圧アクチュエータを動かすための作動油を循環させると同時に当該第2開回路を通じて前記第2閉回路油圧アクチュエータに作動油が供給されることを可能にする第3状態をさらに有する、作業機械の油圧駆動装置。
  10.  請求項9記載の作業機械の油圧駆動装置であって、前記回路切換制御部は、前記第2閉回路油圧アクチュエータについての操作が行われ、かつ、前記第1閉回路油圧アクチュエータについての操作の量が予め設定された閾値以下である場合に、前記回路切換部を前記第3状態にする、作業機械の油圧駆動装置。
  11.  請求項1~10のいずれかに記載の作業機械の油圧駆動装置であって、当該油圧駆動装置は、走行装置と作業装置とを含む作業機械に設けられるものであって、前記第1アクチュエータ群は前記作業装置を動かす少なくとも一つの作業用油圧アクチュエータを含み、前記第2アクチュエータ群は前記走行装置を動かす少なくとも一つの走行用油圧アクチュエータを含む、作業機械の油圧駆動装置。
     
     
PCT/JP2016/075964 2015-09-18 2016-09-05 作業機械の油圧駆動装置 WO2017047428A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680054166.9A CN108026943B (zh) 2015-09-18 2016-09-05 作业机械的液压驱动装置
US15/755,243 US10392780B2 (en) 2015-09-18 2016-09-05 Work machine hydraulic drive device
EP16846299.2A EP3351806A4 (en) 2015-09-18 2016-09-05 HYDRAULIC DRIVE DEVICE FOR WORKING MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185230A JP6539556B2 (ja) 2015-09-18 2015-09-18 作業機械の油圧駆動装置
JP2015-185230 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047428A1 true WO2017047428A1 (ja) 2017-03-23

Family

ID=58289314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075964 WO2017047428A1 (ja) 2015-09-18 2016-09-05 作業機械の油圧駆動装置

Country Status (5)

Country Link
US (1) US10392780B2 (ja)
EP (1) EP3351806A4 (ja)
JP (1) JP6539556B2 (ja)
CN (1) CN108026943B (ja)
WO (1) WO2017047428A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518192B1 (de) * 2016-01-22 2017-11-15 Engel Austria Gmbh Hydraulikvorrichtung für eine Formgebungsmaschine
JP6615138B2 (ja) * 2017-03-01 2019-12-04 日立建機株式会社 建設機械の駆動装置
JP7209602B2 (ja) * 2019-08-26 2023-01-20 日立建機株式会社 建設機械
WO2021066892A1 (en) * 2019-10-01 2021-04-08 Parker-Hannifin Corporation Dual architecture for an electro-hydraulic drive system, machine and method for controlling a machine with an for an electro-hydraulic drive system
JP7362412B2 (ja) * 2019-10-18 2023-10-17 ナブテスコ株式会社 制御回路及び建設機械
JP7202278B2 (ja) * 2019-11-07 2023-01-11 日立建機株式会社 建設機械
US11530524B2 (en) 2021-01-29 2022-12-20 Cnh Industrial America Llc System and method for controlling hydraulic fluid flow within a work vehicle
US11261582B1 (en) 2021-01-29 2022-03-01 Cnh Industrial America Llc System and method for controlling hydraulic fluid flow within a work vehicle using flow control valves
US11143211B1 (en) 2021-01-29 2021-10-12 Cnh Industrial America Llc System and method for controlling hydraulic fluid flow within a work vehicle
US11313388B1 (en) 2021-01-29 2022-04-26 Cnh Industrial America Llc System and method for controlling hydraulic fluid flow within a work vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076781A (ja) * 2003-09-01 2005-03-24 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144301A (ja) * 1997-07-28 1999-02-16 Ishikawajima Harima Heavy Ind Co Ltd 液圧シリンダの駆動装置
US7111458B2 (en) * 2003-07-11 2006-09-26 Sauer-Danfoss Inc. Electrical loop flushing system
JP2006336844A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械
EP2466017A1 (en) * 2010-12-14 2012-06-20 Caterpillar, Inc. Closed loop drive circuit with open circuit pump assist for high speed travel
US9057389B2 (en) * 2011-09-30 2015-06-16 Caterpillar Inc. Meterless hydraulic system having multi-actuator circuit
WO2013115140A1 (ja) * 2012-01-31 2013-08-08 日立建機株式会社 油圧閉回路システム
JP5956179B2 (ja) * 2012-02-23 2016-07-27 株式会社小松製作所 油圧駆動システム
JP5956184B2 (ja) * 2012-02-27 2016-07-27 株式会社小松製作所 油圧駆動システム
JP2013245787A (ja) * 2012-05-28 2013-12-09 Hitachi Constr Mach Co Ltd 作業機械の駆動装置
WO2014045672A1 (ja) * 2012-09-20 2014-03-27 日立建機株式会社 作業機械の駆動装置及びこれを備えた作業機械
JP6109522B2 (ja) 2012-10-19 2017-04-05 株式会社小松製作所 作業車両
US9938691B2 (en) * 2013-01-08 2018-04-10 Hitachi Construction Machinery Co., Ltd. Hydraulic system for work machine
JP6134614B2 (ja) * 2013-09-02 2017-05-24 日立建機株式会社 作業機械の駆動装置
JP6285787B2 (ja) * 2014-04-14 2018-02-28 日立建機株式会社 油圧駆動装置
US10119556B2 (en) * 2015-12-07 2018-11-06 Caterpillar Inc. System having combinable transmission and implement circuits

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076781A (ja) * 2003-09-01 2005-03-24 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置

Also Published As

Publication number Publication date
EP3351806A1 (en) 2018-07-25
CN108026943B (zh) 2020-03-03
JP2017057980A (ja) 2017-03-23
US20180245312A1 (en) 2018-08-30
CN108026943A (zh) 2018-05-11
JP6539556B2 (ja) 2019-07-03
EP3351806A4 (en) 2019-06-26
US10392780B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2017047428A1 (ja) 作業機械の油圧駆動装置
JP4380643B2 (ja) 作業機械の油圧制御装置
JP6506146B2 (ja) 作業機械の油圧駆動装置
KR102284285B1 (ko) 쇼벨
JP6006666B2 (ja) 油圧ショベル
WO2019220872A1 (ja) 作業機械の油圧駆動装置
JP6675871B2 (ja) ショベル
KR101955751B1 (ko) 건설 기계
JP2015172400A (ja) ショベル
KR102575846B1 (ko) 건설 기계용 유압 회로 및 건설 기계
JP6675870B2 (ja) ショベル
JP2009179983A (ja) 作業機械の油圧制御回路
JPH08218443A (ja) 建設機械の油圧駆動装置
JP6282523B2 (ja) 作業機械
JP2021177100A (ja) 作業機の油圧システム
JP6522386B2 (ja) ショベル
JP2015172396A (ja) ショベル
JP2002206510A (ja) 作業機械の油圧制御回路
JP6580301B2 (ja) ショベル
CN113950554A (zh) 作业设备的液压控制装置
JP2019094609A (ja) ショベル
JP2012247000A (ja) 油圧制御装置および作業機械
JP2015172397A (ja) ショベル
JP2022155880A (ja) 旋回式油圧作業機械
JP2015172398A (ja) ショベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755243

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE