WO2017045475A1 - 一种磁流体动量球 - Google Patents

一种磁流体动量球 Download PDF

Info

Publication number
WO2017045475A1
WO2017045475A1 PCT/CN2016/090264 CN2016090264W WO2017045475A1 WO 2017045475 A1 WO2017045475 A1 WO 2017045475A1 CN 2016090264 W CN2016090264 W CN 2016090264W WO 2017045475 A1 WO2017045475 A1 WO 2017045475A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
spherical shell
magnetic
spherical
magnetic fluid
Prior art date
Application number
PCT/CN2016/090264
Other languages
English (en)
French (fr)
Inventor
朱煜
陈安林
张鸣
杨开明
成荣
Original Assignee
清华大学
北京华卓精科科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 北京华卓精科科技股份有限公司 filed Critical 清华大学
Priority to US15/760,540 priority Critical patent/US10597172B2/en
Publication of WO2017045475A1 publication Critical patent/WO2017045475A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/285Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using momentum wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • G01C19/24Suspensions; Bearings using magnetic or electrostatic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • H02K5/1282Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs the partition wall in the air-gap being non cylindrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Definitions

  • the invention relates to a magnetic fluid momentum ball, and an actuator for satellite attitude adjustment, belonging to the technical field of aerospace.
  • satellite attitude stabilization and maneuvering actuators have been widely concerned.
  • the momentum wheel based on the principle of momentum moment conservation is a commonly used technical solution.
  • the existing mature technology is a mechanical ball bearing momentum wheel.
  • the mechanical ball bearing momentum wheel has large mechanical friction loss, large volume and mass, complicated structure and high cost.
  • one satellite needs to carry multiple momentum wheels to realize satellite triaxial attitude adjustment. The coupling between the multi-momentum wheels is large, and the payload of the satellite is further reduced.
  • a magnetic fluid momentum ball comprising a stator and a spherical shell;
  • the stator is divided into three groups, the axes of the three sets of stators are orthogonal to each other, each set comprising two stators, two of each group
  • the stator is symmetrically arranged with the spherical core of the spherical shell, and the inner surface of the stator is a spherical surface;
  • the spherical shell is composed of two hemispherical shells, and the spherical shell material is a non-ferromagnetic material, and the inner surface of the stator is closely attached to the outer shell of the spherical shell. On the surface, there is no relative motion between the spherical shell and the inner surface of the stator, and the spherical shell is filled with magnetic fluid.
  • Each stator comprises a stator motor and a magnetic wheel.
  • the magnetic wheel is mounted on the stator motor and driven to rotate by the stator motor;
  • the upper surface of the stator motor is the inner surface of the stator, and the inner surface of the stator is closely attached to the outer surface of the spherical shell;
  • the upper surface of the magnetic wheel is a spherical surface concentric with the upper surface of the stator motor, and the spherical radius thereof is larger than the spherical radius of the upper surface of the stator motor, and an air gap is left between the magnetic wheel and the spherical shell
  • the magnetic wheel is an NS permanent magnet array magnetic wheel or a Halbach permanent magnet array magnetic wheel.
  • Each stator comprises a stator core and a coil array; an upper surface of the stator core is an inner surface of the stator, an upper surface of the stator core is closely attached to an outer surface of the spherical shell, and a stator core is provided with a through slot in a radial direction. The slots are evenly distributed over the circumference of the stator core.
  • the coil array adopts a disc motor stator winding, and two effective sides of each coil in the coil array are respectively placed in two through slots of the stator core, and the number of coils of each stator is half of the number of through slots or The number of slots is equal.
  • An inner spherical shell made of a ferromagnetic material is embedded in the spherical shell, and a gap is formed between the outer surface of the inner spherical shell and the inner surface of the spherical shell, and the magnetic fluid is filled in the gap.
  • the invention adopts the rotation of the magnetic fluid to perform satellite attitude adjustment, has the advantages of small volume and mass, low cost, small coupling between the shafts, and the like.
  • the spherical shell of the magnetic fluid momentum ball does not rotate, is simple to manufacture, and has a compact structure; the friction between the magnetic fluid and the spherical shell is small, the loss is low, and the reliability and efficiency are high.
  • FIG. 1 is a schematic view showing the overall structure of an embodiment of a magnetic fluid momentum sphere provided by the present invention.
  • FIG. 2 is a schematic view of an embodiment of a magnetic fluid momentum ball using permanent magnet drive provided by the present invention.
  • FIG 3 is a schematic view showing the structure of a stator in a magnetic fluid momentum ball embodiment using a permanent magnet drive according to the present invention.
  • Fig. 4 is a schematic view showing the structure of a spherical shell in the embodiment.
  • Figure 5 is a schematic view showing the structure of the inner spherical shell in the embodiment.
  • FIG. 6 is a schematic view of an embodiment of a magnetic fluid momentum ball using electromagnetic drive provided by the present invention.
  • FIG. 7 is a schematic view showing the structure of a stator in an embodiment of a magnetic fluid momentum ball using electromagnetic driving provided by the present invention.
  • the magnetic fluid momentum ball comprises a spherical shell 2 and a stator 1.
  • the stator 1 is divided into three groups, and the axes of the three sets of stators are orthogonal to each other, and each group includes two The stators, two of the stators in each group are symmetrically arranged in the center of the spherical shell 2.
  • FIG. 2 is a schematic view of an embodiment of a magnetic fluid momentum ball using permanent magnet drive provided by the present invention.
  • 3 is a schematic view showing the structure of a stator in a magnetic fluid momentum ball embodiment using a permanent magnet drive according to the present invention.
  • Each of the stators in this embodiment includes a stator motor 10 and a magnetic wheel 9, which is mounted on the stator motor 10 and driven to rotate by the stator motor 10; the upper surface of the stator motor 10 is the stator inner surface 11, and the stator inner surface 11 It is a spherical surface and it is in close contact with the outer surface of the spherical shell 2, and the spherical shell 2 and the inner surface 11 of the stator have no relative movement.
  • the upper surface of the magnetic wheel 9 is a spherical surface concentric with the upper surface of the stator motor 10, and its spherical radius is larger than the spherical radius of the upper surface of the stator motor, and an air gap is left between the magnetic wheel 9 and the spherical shell 2, and the magnetic wheel 9 is NS.
  • Permanent magnet array magnet wheel or Halbach permanent magnet array magnet wheel In a magnetic fluid momentum ball embodiment employing permanent magnet drive, the stator motor 10 of each stator 1 drives the magnetic wheel 9 to rotate to form a rotating magnetic field about the stator axis in the interior of the spherical shell 2.
  • Fig. 4 is a schematic view showing the structure of a spherical shell in the embodiment.
  • the spherical shell 2 is formed by combining two hemispherical shells 3, the spherical shell material is a non-ferromagnetic material, and the spherical shell 2 is filled with a magnetic fluid.
  • the inner spherical shell 12 made of a ferromagnetic material is embedded in the spherical shell 2, and the outer surface of the inner spherical shell 12 and the inner surface of the spherical shell 2 have a gap therebetween.
  • the magnetic fluid is filled in, and the ferromagnetic inner spherical shell 12 closes the magnetic circuit, increasing the magnetic induction intensity in the gap, which is beneficial to increase the torque received by the magnetic fluid.
  • FIG. 6 is a schematic view showing another embodiment of a magnetic fluid momentum ball using electromagnetic driving provided by the present invention.
  • the magnetic fluid momentum ball using electromagnetic drive is different from the magnetic fluid momentum ball driven by permanent magnet in the difference of the stator.
  • FIG. 7 is a schematic diagram of the stator structure in the embodiment of the magnetic fluid momentum ball using electromagnetic drive provided by the present invention, each stator 1
  • the stator core 4 and the coil array 5 are included; in this embodiment, the upper surface of the stator core 4 is the inner surface 11 of the stator, the inner surface 11 of the stator is a spherical surface, and the inner surface 11 of the stator is closely attached to the outer surface of the spherical shell 2, and the spherical shell 2 and The stator inner surface 11 has no relative motion.
  • the stator core 4 has a through groove in the radial direction 8.
  • the through slots 8 are evenly distributed on the circumference of the stator core 4, in the embodiment, a total of 24 through slots; the coil array 5 can be a disc motor stator winding, and the number of coils 6 of each stator 1 is a through slot.
  • the number of 8 is equal to the number of the through slots 8.
  • the number of the coils 6 is equal to the number of the through slots 8.
  • the number of the coils 6 is half the number of the through slots 8, In the embodiment, a single layer winding is used, a total of 12 coils, and the coils 6 are evenly arranged on the circumference.
  • Each of the coils 6 includes two effective sides 7, and the two effective sides 7 are respectively placed in two through slots.
  • the two through slots are separated by four through slots, and the two effective sides 7 are in the direction of the stator axis.
  • the high side is low, the effective side with the high position is placed in the upper half of one of the through grooves, and the straight side with the lower position is placed in the lower half of the other through groove, and the adjacent two coils are separated by a through groove.
  • the alternating currents in the adjacent two coils 6 of the coil array 5 of each stator 1 differ by the same electrical angle ⁇ /3 to form a rotating magnetic field around the stator axis in the spherical shell cavity.
  • a stator 1 When a stator 1 is in operation, that is, the coil array 5 in the electromagnetically driven magnetic fluid momentum ball is supplied with current or the permanent magnet driven magnetic fluid momentum ball drives the magnetic wheel 9 to rotate, then the spherical casing 2 is rotated.
  • the cavity forms a rotating magnetic field about the axis of the stator.
  • the magnetic fluid is forced by the rotating magnetic field to rotate around the inner surface of the spherical shell 2 under the force to generate a momentum moment about the axis of the stator.
  • each stator 1 When two or more stators 1 are in operation, each stator 1 forms a rotating magnetic field around the stator axis in the inner cavity of the spherical shell 2, and the magnetic fluid is subjected to a force in a rotating magnetic field, and is pressed against the spherical shell 2 under the force The inner surface rotates, so that the satellite can be provided with momentum moments around any axis to realize the three-axis attitude adjustment of the satellite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Linear Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种磁流体动量球,用于卫星姿态调整,该磁流体动量球包含定子和一个球壳;该定子分为三组,三组定子的轴线相互正交,每组包括两个定子,每组中的两个定子以球壳的球心对称布置,定子内表面为球面;该球壳采用两个半球壳组合而成,球壳材料为非铁磁性材料,定子内表面紧贴球壳外表面,球壳和定子内表面无相对运动,球壳内填充磁流体。通过磁流体的转动进行卫星姿态调整,体积和质量小,成本低,各轴之间耦合小;磁流体动量球的球壳不转动,制造简单,结构紧凑;磁流体与球壳之间的摩擦小、损耗低,可靠性和效率高。

Description

一种磁流体动量球 技术领域
本发明涉及一种磁流体动量球,用于卫星姿态调整的执行器,属于航空航天技术领域。
背景技术
在轨卫星承担特定的探测、开发和利用空间的任务,此类任务对卫星姿态控制提出了姿态稳定或姿态机动的需求。卫星姿态稳定与机动的执行机构作为卫星姿态控制的一项关键技术一直广受关注,基于动量矩守恒原理的动量轮是常用的一种技术方案。现有成熟技术为机械滚珠轴承动量轮,机械滚珠轴承动量轮存在较大的机械摩擦损耗、体积与质量大、结构复杂、成本高,此外一个卫星需搭载多个动量轮实现卫星三轴姿态调整,多动量轮之间耦合较大,并进一步降低了卫星的有效载荷。
发明内容
本发明的目的在于提供一种磁流体动量球,通过磁流体的转动为卫星提供绕任意轴的动量矩,实现卫星的三轴姿态调整。
本发明的技术方案如下:
一种磁流体动量球,所述磁流体动量球包含定子和一个球壳;所述定子分为三组,三组定子的轴线相互正交,每组包括两个定子,每组中的两个定子以球壳的球心对称布置,定子内表面为球面;所述球壳采用两个半球壳组合而成,球壳材料为非铁磁性材料,其特征在于:定子内表面紧贴球壳外表面,球壳和定子内表面无相对运动,球壳内填充磁流体。
每个定子包含定子电机和磁轮,磁轮安装在定子电机上并由定子电机驱动旋转;定子电机的上表面为定子内表面,定子内表面紧贴球壳外表面;磁轮的上表面是与定子电机的上表面同心的球面,且其球面半径大于定子电机的上表面球面半径,磁轮和球壳之间留有气隙,磁轮为NS永磁阵列磁轮或Halbach永磁阵列磁轮。
每个定子包含定子铁芯和线圈阵列;所述定子铁芯的上表面为定子内表面,定子铁芯的上表面紧贴球壳外表面,定子铁芯沿径向开有通槽,该通槽在定子铁芯的圆周上均匀分布。
所述线圈阵列采用盘式电机定子绕组,线圈阵列中每个线圈的两个有效边分别放置于定子铁芯的两个通槽内,每个定子的线圈数量是通槽数量的一半或与通槽数量相等。
在球壳内嵌入由铁磁性材料制成的内球壳,内球壳的外表面与球壳的内表面之间有间隙,间隙中填充磁流体。
本发明与现有技术方案相比,具有以下优点及突出性的技术效果:本发明中采用磁流体的转动进行卫星姿态调整,具有体积和质量小,成本低,各轴之间耦合小等优点;本发明中磁流体动量球的球壳不转动,制造简单,结构紧凑;磁流体与球壳之间的摩擦小、损耗低,可靠性和效率高。
附图说明
图1是本发明提供的磁流体动量球实施例整体结构示意图。
图2是本发明提供的采用永磁驱动的磁流体动量球实施例示意图。
图3是本发明提供的采用永磁驱动的磁流体动量球实施例中定子结构示意图。
图4是实施例中球壳结构示意图。
图5是实施例中内球壳结构示意图。
图6是本发明提供的采用电磁驱动的磁流体动量球实施例示意图。
图7是本发明提供的采用电磁驱动的磁流体动量球实施例中定子结构示意图。
图中:1-定子;2-球壳;3-半球壳;4-定子铁芯;5-线圈阵列;6-线圈;7-线圈有效边;8-通槽;9-磁轮;10-定子电机;11-定子内表面;12-内球壳。
具体实施方式
下面结合附图对本发明实施方式作进一步详细描述。
图1是本发明提供的磁流体动量球实施例整体结构示意图,磁流体动量球包含一个球壳2和定子1,定子1分为三组,三组定子的轴线相互正交,每组包括两个定子,每组中的两个定子以球壳2的球心对称布置。
图2是本发明提供的采用永磁驱动的磁流体动量球实施例示意图。图3是本发明提供的采用永磁驱动的磁流体动量球实施例中定子结构示意图。本实施例中的每个定子包含定子电机10和磁轮9,磁轮9安装在定子电机10上并由定子电机10驱动旋转;定子电机10的上表面为定子内表面11,定子内表面11为球面并其紧贴球壳2外表面,球壳2和定子内表面11无相对运动。磁轮9的上表面是与定子电机10的上表面同心的球面,且其球面半径大于定子电机的上表面球面半径,磁轮9和球壳2之间留有气隙,磁轮9为NS永磁阵列磁轮或Halbach永磁阵列磁轮。在采用永磁驱动的磁流体动量球实施例中,每个定子1的定子电机10驱动磁轮9旋转,以在球壳2的内腔形成绕该定子轴线的旋转磁场。
图4是实施例中球壳结构示意图。球壳2采用两个半球壳3组合而成,球壳材料为非铁磁性材料,球壳2内填充磁流体。
图5是实施例中内球壳结构示意图,在球壳2内嵌入由铁磁性材料制成的内球壳12,内球壳12的外表面与球壳2的内表面之间有间隙,间隙中填充磁流体,铁磁性内球壳12使磁路闭合,增大间隙中的磁感应强度,有利于提高磁流体所受的转矩。
图6是本发明提供的另一种采用电磁驱动的磁流体动量球实施例示意图。采用电磁驱动的磁流体动量球和采用永磁驱动的磁流体动量球区别在于定子的不同,图7是本发明提供的采用电磁驱动的磁流体动量球实施例中定子结构示意图,每个定子1包含定子铁芯4和线圈阵列5;本实施例中定子铁芯4的上表面为定子内表面11,定子内表面11为球面,定子内表面11紧贴球壳2外表面,球壳2和定子内表面11无相对运动。定子铁芯4沿径向开有通槽 8,通槽8在定子铁芯4的圆周上均匀分布,本实施例中共24个通槽;所述线圈阵列5可采用盘式电机定子绕组,每个定子1的线圈6的数量是通槽8数量的一半或与通槽8数量相等,采用双层绕组时,线圈6的数量和通槽8的数量相等,采用单层绕组时,线圈6的数量是通槽8的数量的一半,本实施例中采用单层绕组,共12个线圈,线圈6在圆周上均匀排列。每个线圈6包含两条有效边7,两个有效边7分别放在两个通槽内,本实施例中两通槽中间相隔4个通槽,两条有效边7在定子轴线方向上一高一低,位置高的有效边放置于其中一个通槽的上半部分,位置低的直边放置于另一通槽的下半部分,相邻两个线圈之间相隔一个通槽。本实施例中,每个定子1的线圈阵列5中相邻两个线圈6中的交电流相差相同的电角度π/3,以在球壳内腔形成绕该定子轴线的旋转磁场。
当某个定子1工作时,即电磁驱动的磁流体动量球中的线圈阵列5通入电流或永磁驱动的磁流体动量球中的定子电机10驱动磁轮9旋转,则在球壳2内腔形成绕该定子轴线的旋转磁场,磁流体在旋转磁场中受力,在力作用下紧贴球壳2内表面绕该定子轴线转动,产生绕该定子轴线的动量矩。
当两个或两个以上定子1工作时,每个定子1均在球壳2内腔形成绕该定子轴线的旋转磁场,磁流体在旋转磁场中受力,在力作用下紧贴球壳2内表面转动,从而可以为卫星提供绕任意轴的动量矩,实现卫星的三轴姿态调整。

Claims (5)

  1. 一种磁流体动量球,所述磁流体动量球包含定子(1)和一个球壳(2);所述定子分为三组,三组定子的轴线相互正交,每组包括两个定子,每组中的两个定子以球壳的球心对称布置,定子内表面(11)为球面;所述球壳采用两个半球壳(3)组合而成,球壳材料为非铁磁性材料,其特征在于:定子内表面紧贴球壳外表面,球壳和定子内表面无相对运动,球壳内填充磁流体。
  2. 根据权利要求1所述的一种磁流体动量球,其特征在于:每个定子包含定子电机(10)和磁轮(9),磁轮安装在定子电机上并由定子电机驱动旋转;定子电机的上表面为定子内表面,定子内表面紧贴球壳外表面;磁轮的上表面是与定子电机的上表面同心的球面,且其球面半径大于定子电机的上表面球面半径,磁轮和球壳之间留有气隙,磁轮为NS永磁阵列磁轮或Halbach永磁阵列磁轮。
  3. 根据权利要求1所述的一种磁流体动量球,其特征在于:每个定子包含定子铁芯(4)和线圈阵列(5);所述定子铁芯的上表面为定子内表面,定子铁芯的上表面紧贴球壳外表面,定子铁芯沿径向开有通槽(8),该通槽在定子铁芯的圆周上均匀分布。
  4. 根据权利要求3所述的一种磁流体动量球,其特征在于:所述线圈阵列采用盘式电机定子绕组,线圈阵列中每个线圈(6)的两个有效边(7)分别放置于定子铁芯的两个通槽内,每个定子的线圈数量是通槽数量的一半或与通槽数量相等。
  5. 根据权利要求1~4任一权利要求所述的一种磁流体动量球,其特征在于:在球壳内嵌入由铁磁性材料制成的内球壳(12),内球壳的外表面与球壳的内表面之间有间隙,间隙中填充磁流体。
PCT/CN2016/090264 2015-09-15 2016-07-18 一种磁流体动量球 WO2017045475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/760,540 US10597172B2 (en) 2015-09-15 2016-07-18 Magnetic-fluid momentum sphere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510587640.1 2015-09-15
CN201510587640.1A CN105141089A (zh) 2015-09-15 2015-09-15 一种磁流体动量球

Publications (1)

Publication Number Publication Date
WO2017045475A1 true WO2017045475A1 (zh) 2017-03-23

Family

ID=54726343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090264 WO2017045475A1 (zh) 2015-09-15 2016-07-18 一种磁流体动量球

Country Status (3)

Country Link
US (1) US10597172B2 (zh)
CN (1) CN105141089A (zh)
WO (1) WO2017045475A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753273B (zh) * 2015-04-23 2017-06-13 清华大学 一种磁悬浮动量球
CN105141089A (zh) 2015-09-15 2015-12-09 清华大学 一种磁流体动量球
USD897783S1 (en) * 2017-08-05 2020-10-06 Jessica Ma Storage container
CN108438256A (zh) * 2018-03-27 2018-08-24 天津大学 一种基于永磁动量交换球的对地凝视卫星姿态控制方法
CN109193288B (zh) * 2018-08-09 2023-10-10 云南科威液态金属谷研发有限公司 一种运动件间的导电系统
US10951105B2 (en) * 2019-04-11 2021-03-16 Honeywell International Inc. Geared spherical electromagnetic machine with two-axis rotation
CN111017266A (zh) * 2019-11-27 2020-04-17 山东航天电子技术研究所 一种卫星姿控动量轮真空密封阀及抽气辅助装置
US11355977B2 (en) * 2019-12-12 2022-06-07 Honeywell International Inc. Multi-degree-of-freedom electromagnetic machine with Halbach array
CN113014063A (zh) * 2021-02-26 2021-06-22 河南理工大学 一种超导-永磁驱动的输出可调式低温杜瓦
CN113665847A (zh) * 2021-08-09 2021-11-19 上海交通大学 三轴调姿的单驱动器磁流体调姿机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215343A1 (en) * 2002-05-20 2003-11-20 Karsten A. Laing Centrifugal pump with integrated motor
JP2004045362A (ja) * 2002-07-10 2004-02-12 Shozo Hirayama 蓄圧室を備えた磁性流体式三軸加速度計
CN104483972A (zh) * 2014-10-31 2015-04-01 上海新跃仪表厂 一种航天器流体环反作用执行机构
CN104853273A (zh) * 2015-05-29 2015-08-19 上海佑刻网络科技有限公司 一种定制式蓝牙耳机及其制造方法
CN105141089A (zh) * 2015-09-15 2015-12-09 清华大学 一种磁流体动量球

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954024A (en) * 1974-10-25 1976-05-04 Honeywell Inc. Automatic adaptive centering apparatus for electrically supported inertial instruments
GB2070244B (en) * 1980-01-23 1984-02-29 Furuno Electric Co Gyroscopic instrument
US4570507A (en) * 1983-08-19 1986-02-18 The United States Of America As Represented By The Secretary Of The Army Magnetic fluid gyro bearing and caging mechanism
US4961352A (en) * 1988-02-24 1990-10-09 Satcon Technology Corporation Magnetic bearing and suspension system
CN203180806U (zh) * 2012-11-28 2013-09-04 哈尔滨功成科技创业投资有限公司 一种磁悬浮球控制系统
US9543818B2 (en) * 2013-09-15 2017-01-10 The Boeing Company Ferrofluid motor
CN104753273B (zh) * 2015-04-23 2017-06-13 清华大学 一种磁悬浮动量球
CN204967571U (zh) * 2015-09-15 2016-01-13 清华大学 一种磁流体动量球

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215343A1 (en) * 2002-05-20 2003-11-20 Karsten A. Laing Centrifugal pump with integrated motor
JP2004045362A (ja) * 2002-07-10 2004-02-12 Shozo Hirayama 蓄圧室を備えた磁性流体式三軸加速度計
CN104483972A (zh) * 2014-10-31 2015-04-01 上海新跃仪表厂 一种航天器流体环反作用执行机构
CN104853273A (zh) * 2015-05-29 2015-08-19 上海佑刻网络科技有限公司 一种定制式蓝牙耳机及其制造方法
CN105141089A (zh) * 2015-09-15 2015-12-09 清华大学 一种磁流体动量球

Also Published As

Publication number Publication date
US20180273212A1 (en) 2018-09-27
US10597172B2 (en) 2020-03-24
CN105141089A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017045475A1 (zh) 一种磁流体动量球
US10532832B2 (en) Magnetic levitation reaction sphere
US9584000B2 (en) Method and device for torque generation based on electromagnetic effect
JP6896495B2 (ja) 高いエネルギー効率の球状運動量制御装置
CN101557982A (zh) 盘状浮动飞行器
CN104836408A (zh) 一种六自由度永磁同步磁悬浮球形电机
CN105978295B (zh) 一种集成化的五自由度磁悬浮电机
CN104410241A (zh) 磁悬浮球面电机
EP3269650B1 (en) Spin and tilt control of a multi-degree of freedom electromagnetic machine
CN108591750A (zh) 大型精密磁悬浮旋转工作台
WO2010117819A1 (en) Reaction sphere for spacecraft attitude control
CN201918878U (zh) 一种径向永磁耦合传动器
CN108448867A (zh) 一种具有外转子结构的永磁球形电机
CN204967571U (zh) 一种磁流体动量球
CN105207430B (zh) 一种磁轮驱动的磁悬浮动量球
US9148046B2 (en) Method and device for torque generation based on electromagnetic effect
WO2018079488A1 (ja) 回転装置
WO2018073880A1 (ja) 新型モーター 発電機、新型エンジン、新型タービン、新型リニア
US10587164B2 (en) Spherical flywheel battery and storage device
CN206834971U (zh) 三维度有限转角球形电机
CN112572832B (zh) 同步式三轴姿态控制磁悬浮惯性执行机构
CN112009728A (zh) 感应式磁悬浮动量球装置
CN205004936U (zh) 具有电磁永磁直接驱动的自转动轴的多维驱动系统
CN107425695A (zh) 一种三维度有限转角球形电机
CN108317171A (zh) 磁悬浮章动球轴承及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845589

Country of ref document: EP

Kind code of ref document: A1