WO2017045327A1 - 一种多级感应式连续流磁电加工装置及其应用 - Google Patents

一种多级感应式连续流磁电加工装置及其应用 Download PDF

Info

Publication number
WO2017045327A1
WO2017045327A1 PCT/CN2016/071560 CN2016071560W WO2017045327A1 WO 2017045327 A1 WO2017045327 A1 WO 2017045327A1 CN 2016071560 W CN2016071560 W CN 2016071560W WO 2017045327 A1 WO2017045327 A1 WO 2017045327A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant temperature
magnetoelectric
liquid
induced voltage
continuous flow
Prior art date
Application number
PCT/CN2016/071560
Other languages
English (en)
French (fr)
Inventor
杨哪
徐学明
金亚美
吴凤凤
金征宇
周星
田耀旗
焦爱权
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US15/548,052 priority Critical patent/US10460869B2/en
Publication of WO2017045327A1 publication Critical patent/WO2017045327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature

Definitions

  • the present invention relates to a multi-stage inductive continuous flow magnetoelectric processing apparatus based on alternating induced voltage and its application, for example, in the fields of food processing, natural substance modification or extraction.
  • Food and agricultural raw material processing equipment is actually a system equipment that can provide suitable reaction conditions for the chemical and biological reactions of natural organic polymer compounds, and can convert raw materials into specific products and improve their quality under certain operating parameters.
  • the technology can be widely used in the chemical, biological, food and pharmaceutical industries.
  • the application of electric fields in the processing of food and agricultural products is mainly high-voltage pulsed electric field devices, which can kill microorganisms in liquid foods and passivate enzymes.
  • high-efficiency extraction and component components related to functional components. Impact research.
  • the processing factors of high-voltage pulsed electric field technology mainly include electric field strength, processing time, pulse frequency, pulse width, pulse shape, sample flow rate, initial temperature, and electrode morphology.
  • this technique uses a charging electrode to process the sample, which tends to cause ion polarization between the plates and bleed out of the material of the electrode material.
  • the main object of the present invention is to provide a multi-stage inductive continuous flow magnetoelectric processing apparatus and application thereof.
  • the technical solution adopted by the present invention includes:
  • a multi-stage inductive continuous flow magnetoelectric machining apparatus comprising:
  • each level sensing unit comprises:
  • the secondary coil wound on the other side of the closed core and disposed in an induced voltage cavity, the secondary coil Including an insulated pipeline that can be used as a feed liquid, the two ends of the insulated pipeline are exposed from the induced voltage cavity and serve as a feed port and a discharge port respectively;
  • a high frequency power supply connected in parallel with the primary coil of the two or more induction units and providing an excitation voltage to each primary coil
  • liquid material container is connected in series with the insulated pipeline in the two or more induction units to form a liquid circulation circuit.
  • the high frequency power supply can emit a sine wave or a pulse wave having a frequency range of 20 kHz to 200 kHz, a signal voltage of 0 to 10 kV, an output power of 0 to 20 kW, and a pulse wave duty ratio of 5 % ⁇ 90%.
  • the closed core employs a closed core of ferrite material having an operating frequency in the range of 20 kHz to 200 kHz.
  • the ratio of the number of turns of the primary coil to the secondary coil wound on the same closed core is from 1 to 100:2 to 3.
  • the material of the primary coil is at least selected from copper, but is not limited thereto.
  • the number of turns of the primary coil is 100 to 1000;
  • the material of the insulating conduit is at least selected from the group consisting of a glass spring, but is not limited thereto.
  • the number of turns of the secondary coil is 20-30.
  • the processing apparatus further includes a temperature control unit for adjusting the temperature of the feed liquid.
  • the temperature control unit comprises a constant temperature jacket layer for circulating a constant temperature circulating solution
  • the constant temperature jacket layer is disposed in the induced voltage cavity and encloses the insulated pipeline
  • the thermostat jacket The layer is also in communication with the constant temperature circulating bath via a constant temperature circulating bath inlet and a constant temperature circulating bath outlet distributed over the induced voltage chamber.
  • the temperature control unit comprises a constant temperature bath, and the liquid container is placed in the constant temperature bath.
  • the temperature of the feed liquid in the feed liquid circulation loop is -20 to 130 °C.
  • At least one constant temperature circulation bath is disposed in series with at least two constant temperature jacket layers to form a constant temperature circulation loop.
  • the induced voltage cavity length is less than or equal to 500 mm.
  • the length of the silicone tube used to connect the insulated conduits in the adjacent two sensing units is less than 20 cm.
  • the processing apparatus further includes means for driving the feed liquid to circulate within the feed liquid circuit.
  • the flow rate of the feed liquid in the liquid circulation circuit is 50 ⁇ L/s to 500 mL/s.
  • the rated power P 0 ⁇ P 1 + P 2 + ⁇ Pn of the high-frequency power source wherein P 1 is the input power of the first-stage sensing unit, and P 2 is the second-level sensing unit.
  • Also provided in some embodiments is the use of the multi-stage inductive continuous flow magnetoelectric processing apparatus for efficient hydrolysis and/or modification of natural polymeric materials, assisted extraction of natural products, or improved quality of liquid foods.
  • the multi-stage inductive continuous flow magnetoelectric processing device of the invention has more operating conditions, including excitation voltage intensity, excitation signal type, signal frequency, processing temperature, solution flow rate, especially because the alternating voltage in the solution is derived. Inductive method, so it is not necessary to use energized plates or electrodes, that is, no electrode or plate directly in contact with the liquid, avoiding ionic polarization and electrochemical reaction on the surface of the electrode or plate, and the liquid is continuously flowed. Continuous processing with high efficiency and speed;
  • the multi-stage inductive continuous flow magnetoelectric processing device of the invention is simple and convenient to operate, greatly saves manpower and improves work efficiency.
  • FIG. 1 is a schematic structural view of a multi-stage inductive continuous flow magnetoelectric processing apparatus according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of an induced voltage cavity of a multi-stage inductive continuous flow magnetoelectric processing apparatus according to an exemplary embodiment of the present invention
  • FIG. 3 is a schematic structural view of a sensing unit of a multi-stage inductive continuous flow magnetoelectric processing apparatus according to an exemplary embodiment of the present invention
  • FIG. 4 is an equivalent circuit schematic diagram of a multi-stage inductive continuous flow magnetoelectric processing apparatus according to an exemplary embodiment of the present invention.
  • One aspect of the invention relates to a multi-stage inductive continuous flow magnetoelectric machining apparatus comprising:
  • each level sensing unit comprises:
  • a secondary coil is wound on the other side of the closed core 103 and disposed in an induced voltage cavity 200.
  • the secondary coil includes an insulating conduit for circulating a liquid, the insulating conduit The terminals are exposed from the induced voltage cavity 200 and serve as a feed port and a discharge port, respectively;
  • a high frequency power source 101 connected in parallel with the primary coil 104 of the two or more induction units and providing an excitation voltage to each of the primary coils 104;
  • liquid container 108 is connected in series with the insulated pipeline in the two or more induction units to form a liquid circulation circuit.
  • the machining fluid is used as a conductor of a plurality of transformer secondary coils and an insulated pipeline is used as a support.
  • the signal from the high frequency power source 101 excites the primary coil 104, which produces a correspondingly varying alternating flux in the closed core 103.
  • an alternating induced voltage is produced in the loop system in which the feed liquid is used as the secondary coil conductor, and the feed liquid is kept circulating in the liquid circulation circuit system and processed.
  • the transformer belongs to the electric energy-magnetic energy-electric energy conversion device, and the primary coil (number of turns Np) of the single-phase transformer is applied When the excitation voltage is Up, the corresponding magnetic flux is produced in the iron core, and the value is proportional to the number of turns of the coil.
  • the principle of electromagnetic induction is derived from the Ampere loop law, that is, in the magnetic field region, the selected magnetic field is arbitrary.
  • the closed line integral is equal to the algebraic sum of the conduction current through the face defined by the closed path.
  • the varying magnetic flux in the core will produce the same varying induced voltage Es in the secondary coil (number of turns Ns), and their relationship is as follows:
  • E, U are the induced voltage and the terminal voltage, respectively, and N is the number of turns of the coil.
  • the induced voltage is constant. Due to the internal impedance in the secondary coil, the induced voltage Es in the secondary circuit is shared by both the external load and the coil impedance. If the feed liquid containing a large amount of charged ions, charged compounds, polar molecules, and surface charged proteins and enzymes is affected by the alternating magnetic flux, according to the Ampere loop law, also in the liquid system. There is an alternating induced voltage that ultimately affects and changes the reaction kinetic parameters, product and quality of the feed.
  • FIG. 1 is a schematic structural view of a multi-stage inductive continuous-current magnetoelectric processing apparatus according to an exemplary embodiment of the present invention, which mainly comprises a high-frequency power source 101, a primary coil 104, a closed core 103, and an induced voltage cavity.
  • the high-frequency power source 101 can emit a sine wave or a pulse wave having a frequency range of 20 kHz to 200 kHz, a peak voltage of the signal of 0 to 10 kV, an output power of 0 to 20 kW, and a pulse wave duty ratio of 5% to 90. %, thereby simultaneously energizing the primary coil 104 on the closed core to obtain an alternating induced voltage.
  • the closed core 103 is a ferrite material that operates in a frequency range of 20 kHz to 200 kHz and is closed.
  • the induced voltage cavity 200 has an insulating tube (preferably a glass spring) wound around the side of the ferrite closed core 103 as a support for the secondary coil conductor while the ends of the glass spring
  • the feed port and the discharge port are respectively taken out from the two ends of the induced voltage cavity 200 as a liquid, and the number of glass spring turns is 20-30, and the thermostat jacket layer is outside the glass spring, and the induction voltage cavity 200 is
  • the end has a constant temperature circulating bath inlet 205 and a constant temperature circulating bath outlet 206 for connecting circulating liquids of different temperatures to adjust the temperature of the processing liquid in the glass spring, thereby achieving the effect of controlling the temperature of the processing system.
  • the single induced voltage cavity 200 does not exceed 500 mm in length.
  • the primary coil 104 is a copper coil wound on a closed core with a number of 100 to 1000 That is, each of the primary coils 104 and the high frequency power source 101 are connected in parallel.
  • each stage of the sensing unit is connected using a corrosion-resistant and high-temperature resistant silicone tube 105 to form a series structure, that is, the glass spring discharge port of each induced voltage chamber 200 and the next induced voltage chamber 200.
  • the mouths are connected, preferably, the length of the silicone tube required for joining is less than 20 cm.
  • each secondary coil acts as a separate "power supply” and the total voltage applied to the feed system is the sum of the induced voltages of the secondary windings of each stage.
  • the transfer pump 106 may be disposed on the liquid circulation line and connected to the liquid container 108 for the purpose of driving the circulating flow of the liquid.
  • the volume flow rate may preferably be 50 ⁇ L/s to 500 mL/s.
  • the liquid container 108 is placed in the constant temperature bath 107 and maintained at the desired temperature, depending on processing temperature requirements.
  • the temperature control unit is a constant temperature circulation bath 102 and a constant temperature bath 107, wherein the outlet and the inlet of the constant temperature circulation bath 102 are respectively connected to the constant temperature circulation bath inlet 205 and the constant temperature circulation bath outlet 206 on the induced voltage chamber 200.
  • each constant temperature circulation bath 102 is used to maintain the temperature of one to three induced voltage chambers 200, that is, the constant temperature circulating bath outlets 206 and the lower portions of each of the induced voltage chambers 200 A constant temperature circulating bath inlet 205 of the induced voltage chamber 200 is connected.
  • the feed liquid circulates in the secondary coil support of a plurality of transformers and acts as a conductor thereof, and is affected by the induced voltage, and determines the cycle time according to the product requirements, and finally affects the physical properties, chemical components or microorganisms of the material, for example, Achieve the purpose of influencing and changing the reaction kinetic parameters, products and quality of food and agricultural raw materials.
  • the rated power of the high-frequency power supply 101 ensures that each stage of the sensing unit works normally, that is, P 0 ⁇ P 1 + P 2 + ⁇ + P n where P 0 is the rated power of the high-frequency power supply, and P 1 is the first stage.
  • U P is the high-frequency power supply output voltage
  • Z P is the impedance of the single-stage primary coil at the operating frequency
  • I P is the single-stage primary coil current
  • n is the maximum number of sensing units of the device.
  • Another aspect of the invention also relates to the application of the multi-stage inductive continuous flow magnetoelectric processing device, the application fields thereof include: 1: efficient hydrolysis and modification of natural polymer raw materials; 2: auxiliary extraction of natural products, 3 : Improved liquid food quality.
  • the cycle processing time is determined by the desired product characteristics.
  • the multi-stage inductive continuous flow magnetoelectric processing device of the present invention is based on The principle and structure of the pressure device, using the induced voltage to process the continuous flow of the liquid can be achieved without the use of energized electrodes or plates, to achieve rapid and large-scale processing of food and agricultural raw materials.
  • the following is an example of high-efficiency hydrolysis of wheat bran by acid method to prepare reducing sugar, and further illustrates the application of multi-stage inductive continuous flow magnetoelectric processing device in the hydrolysis reaction of natural polymer raw materials.
  • the present invention provides a multi-stage inductive continuous flow magnetoelectric processing apparatus, which includes a processing device chain 100, an induced voltage cavity 200, and a sensing unit 300.
  • the device processes an equivalent circuit diagram 400.
  • the processing device chain 100 includes a high frequency power supply 101, a constant temperature circulation bath 102, a ferrite closed iron core 103, a primary coil 104, an induced voltage cavity 200, an acid and alkali resistant high temperature silicone tube 105, and a pump 106. , the constant temperature bath 107, the liquid container 108.
  • the output end of the high-frequency power source 101 is connected to the primary coil 104, and the high-frequency power source 101 used can emit a sine wave or a pulse wave having a frequency of 20 kHz to 200 kHz, a voltage of 0 to 10 kV, an output power of 0 to 20 kW, and a pulse wave.
  • the duty ratio is 5% to 90%;
  • the primary coil 104 is a single-strand copper wire, the number of turns is 100-1000, and is wound on the side of the closed iron core 103.
  • the closed iron core 103 is made of ferrite material, and the working frequency ranges from 20 kHz to 200 kHz.
  • the rated power is 20kW, the center circumference of the closed iron core is 850mm, and the thickness is 20mm; the other side of the closed iron core 103 penetrates into the induced voltage cavity 200, so that the glass spring 201 is wound around the closed iron core 103, the glass spring The number of 201 turns is 20 to 30, and the inner diameter of the glass spring is 4 mm.
  • the glass spring 201, the constant temperature jacket layer 202, the feed port 203, the discharge port 204, the constant temperature circulation bath inlet 205, and the constant temperature circulation bath outlet 206 are included in the induction voltage chamber 200.
  • the two ends of the glass spring 201 are respectively taken out from the two ends of the induced voltage cavity 200 as the inlet 203 and the outlet 204 of the liquid, and the outside of the glass spring is the constant temperature jacket layer 202, and the temperature is constant at both ends of the induced voltage cavity 200.
  • each stage of sensing unit 300 is shown, including one induced voltage cavity 200, one ferrite closed core 103, one primary coil 104, and at least two stages of sensing units and primary coils of each stage and high.
  • the frequency power supplies are connected in parallel, and each stage of the sensing unit 300 is connected by using a corrosion-resistant and high-temperature resistant silicone tube 105 to form a series structure, that is, a discharge port 204 and a next induced voltage chamber on the glass spring 201 of each induced voltage cavity 200.
  • the feed ports 203 of the body are connected, and the length of the silicone tube required for connection is less than 20 cm, that is, each secondary coil is used as a single "power source", that is, En, and the equivalent circuit refers to FIG.
  • the transfer pump 106 is placed on the pipeline, and is connected with the liquid container 108 to achieve the purpose of driving the circulating flow of the liquid, and the volume flow rate is 50 ⁇ L/s to 500 mL/s, according to The processing temperature requires the liquid container 108 to be placed in the constant temperature bath 107 and maintained at the desired temperature;
  • the primary coils and the high-frequency power supply are connected in parallel, and the rated power of the high-frequency power supply can ensure the normal operation of each level of the sensing unit, that is, P0 ⁇ P1+P2+ ⁇ +Pn, where P0 is the high-frequency power supply.
  • P1 is the input power of the first-stage sensing unit
  • P2 is the input power of the second-stage sensing unit
  • Pn is the input power of the n-th sensing unit
  • U P is the high-frequency power supply output voltage
  • Z P is the impedance of the single-stage primary coil at the operating frequency
  • I P is the single-stage primary coil current
  • n is the maximum number of sensing units of the device
  • the cycle processing time is determined by the desired product characteristics
  • the constant temperature circulating bath 102 is respectively connected to the constant temperature circulating bath inlet 205 and the constant temperature circulating bath outlet 206 on the induced voltage chamber 200, and the processing temperature range is maintained at -20 to 130 ° C, and each constant temperature circulating bath 102 is used to maintain 1 to The temperature of the three induced voltage chambers 200, that is, the constant temperature circulating bath outlet 206 on each of the induced voltage chambers 200 and the constant temperature circulating bath inlet 205 of the next induced voltage chamber 200 are connected;
  • the device is used for high-efficiency acid hydrolysis of wheat bran, which comprises the following steps:
  • Step 1 Take 60g of wheat bran powder 1000g in 15L plastic cup 108, add 12L of distilled water, mix and shake, stir in 60 °C constant temperature bath 107 for 20min, and slowly add 1L, 10% hydrochloric acid solution. Stir for another 5 minutes;
  • Step 2 Turn on the peristaltic pump 106 to ensure that the material liquid fills all the glass springs 201 of the induced voltage unit, and starts to circulate and the volume flow rate is 100 mL/s, that is, the wheat bran powder liquid flows from each of the induced voltage chambers 200.
  • the inlet 203 flows in, then flows out of the discharge port 204, and enters the next induced voltage chamber 200, and then turns on the constant temperature circulation bath 102 and sets the temperature to 60 ° C.
  • the constant temperature circulating solution is from each induced voltage chamber.
  • the constant temperature circulating bath inlet 205 of 200 flows in, and then flows out from the constant temperature circulating bath outlet 206, and enters the next induced voltage chamber 200.
  • a 3-level induced voltage unit is used;
  • Step 3 Turn on the high-frequency power source 101 to select a sine wave with a frequency of 20 kHz, a voltage amplitude of 2 kV, and a rated power of 20 kW, and simultaneously energize the primary coil 104 on the closed ferrite core 103 in each of the sensing units.
  • the number of 104 turns is 100 ⁇ .
  • the primary coil current I P 1.424 A
  • the number of turns of the glass spring 201 is 20 ⁇ , that is, the secondary coil 20 ⁇ , the turns ratio is 5:1.
  • the induced voltage of the liquid in each glass spring 201 should be 400V.
  • Step 4 After 6 hours of circulating treatment, stop, discharge the liquid, and immediately add NaHCO 3 solution with a mass fraction of 1% to the room temperature, and let the pH of the solution be 7, terminate the reaction, and then centrifuge the solution at 5000 rpm for 20 minutes to remove the precipitate. A crude hydrolyzate of wheat bran containing reducing sugar is obtained.
  • the reduced sugar content of the wheat bran crude hydrolyzate treated by the multi-stage inductive continuous flow magnetoelectric processing device is 31.32%, compared with other reaction conditions, but no high frequency excitation is applied.
  • the voltage is applied to the primary coil 104, the final reduced sugar content of the wheat bran crude hydrolyzate is only 5.36%.
  • the multi-stage inductive continuous flow magnetoelectric processing apparatus described in Embodiment 1 is used as an example to assist in the extraction of natural products, and the method of using the system is further explained. It includes the following steps:
  • Step 1 Take 500g of pineapple skin, beat it into 10L plastic cup 108, add 8L of distilled water, mix and shake, stir in a constant temperature bath 107 of 55 °C for 20min, and slowly add 1L of hydrochloric acid solution with a concentration of 6.5%. Stir for another 5 minutes;
  • Step 2 Turn on the peristaltic pump 106 to ensure that the material liquid fills the glass spring 201 of all the sensing units, and starts to circulate and the volume flow rate is 50 mL/s, that is, the pineapple skin residue liquid from the inlet of each induced voltage chamber 200
  • the 203 flows in, then flows out of the discharge port 204, and enters the next induced voltage chamber 200, and then turns on the constant temperature circulation bath 102 and sets the temperature to 55 ° C.
  • the constant temperature circulating solution is from each of the induced voltage chambers 200.
  • the constant temperature circulating bath inlet 205 flows in, and then flows out from the constant temperature circulating bath outlet 206 to enter the next induced voltage chamber 200.
  • a 5-stage induction processing unit is used, and two constant temperature circulating baths are required to maintain five induced voltage chambers. Body temperature, one connected to three induced voltage chambers, and the other connected to two induced voltage chambers.
  • Step 3 Turn on the high-frequency power supply 101 to select a sine wave with a frequency of 50 kHz, a voltage amplitude of 3 kV, and a rated power of 20 kW, and simultaneously energize the primary coil 104 on the closed ferrite core 103 in each of the sensing units.
  • the 104 turns are 400 ⁇ .
  • the primary coil current I P 1.198A
  • the number of turns of the glass spring 201 is 20 ⁇ , that is, the secondary coil 20 ⁇ , the turns ratio is 20:1.
  • the induced voltage of the liquid in each glass spring 201 should be 150V.
  • Step 4 After 1 h of circulating treatment, stop, discharge the liquid, and immediately add NaHCO3 solution with a mass fraction of 1% to the room temperature, and let the pH of the solution be 7, terminate the reaction, and then centrifuge the solution at 3000 rpm for 15 min to remove the precipitate. The remaining filtrate was dried in a blast drying oven at 48 ° C for 15 h to obtain a pale yellow crude pectin powder.
  • the mass of the pineapple pomace pectin treated by the multi-stage inductive continuous flow magnetoelectric processing device was measured to be 87.7 g, compared with the other reaction conditions, but the high frequency excitation voltage was not applied.
  • the final pectin from the pineapple pomace was only 26.4g.
  • the multi-stage inductive continuous flow magnetoelectric processing apparatus described in Embodiment 1 is used to assist the modification of the natural polymer compound as an example, and the method of using the system will be further described. It includes the following steps:
  • Step 1 Take corn starch 600g in 15L plastic cup, add 10L of distilled water, mix and shake to obtain starch emulsion, add 5% hydrochloric acid solution, adjust the pH value of starch emulsion to 3.7, preheat and stir for 5min at 40 °C;
  • Step 2 The peristaltic pump 106 is turned on to ensure that the material liquid fills the glass springs 201 of all the sensing units, and begins to circulate and has a volume flow rate of 500 ⁇ L/s, that is, the starch emulsion liquid is fed from the inlet 203 of each of the induced voltage chambers 200. After flowing in, it flows out from its discharge port 204, and enters the next induced voltage chamber 200, and then turns on the constant temperature circulation bath 102 and sets the temperature to 62 ° C. At this time, the constant temperature circulating solution is heated from each of the induced voltage chambers 200.
  • the circulation bath inlet 205 flows in, and then flows out from the constant temperature circulating bath outlet 206, and enters the next induced voltage chamber 200.
  • a 9-stage induction voltage processing unit is used, and 3 constant temperature circulating baths are required to maintain 9 induced voltages.
  • the cavity temperature that is, each of the three induced voltage cavities is connected.
  • Step 3 Turn on the high-frequency power supply 101 to select the pulse wave, the duty ratio is 20%, the frequency is 180 kHz, the voltage amplitude is 4 kV, the rated power is 20 kW, and the primary coil on the closed ferrite core 103 in the sensing unit of each stage is excited.
  • the number of turns of the primary coil 104 is 500 ⁇
  • the primary coil current I P 0.470 A
  • the number of turns of the glass spring 201 is 25 ⁇
  • that is, the secondary coil is 25 ⁇
  • the turns ratio is 20:1.
  • the sensing unit 300 of each stage can be operated normally.
  • the precipitate was dried in a blast drying oven at 55 ° C for 3 hours, and then pulverized through a 200 mesh sieve to obtain a modified porous corn starch.
  • the multi-stage inductive continuous flow magnetoelectric processing apparatus described in Embodiment 1 is taken as an example to improve the quality of the liquid food, and the method of using the system will be further described. It includes the following steps:
  • Step 1 Take 12L of freshly squeezed orange juice in a 15L plastic cup and stir it in a constant temperature bath 107 at 10 °C for 20 minutes;
  • Step 2 The peristaltic pump 106 is turned on to ensure that the orange juice liquid fills the glass springs 201 of all the sensing units, and begins to circulate and the volume flow rate is 100 ⁇ L/s, that is, the liquid solution flows from the inlet 203 of each of the induced voltage chambers 200. Then, it flows out from the discharge port 204, and enters the next induced voltage chamber 200, and then turns on the constant temperature circulation bath 102 and sets the temperature to 10 ° C. At this time, the constant temperature circulating solution is heated from each of the induced voltage chambers 200. The bath inlet 205 flows in, and then flows out from the constant temperature circulating bath outlet 206, and enters the next induced voltage chamber 200. In this case, a 27-stage induction voltage processing unit is selected, and 9 constant temperature circulating baths are required to maintain 27 induced voltage chambers. The body temperature, that is, one connected three induced voltage chambers 200.
  • Step 3 Turn on the high-frequency power supply 101 to select the pulse wave, the duty ratio is 50%, the frequency is 200 kHz, the voltage amplitude is 3 kV, the rated power is 20 kW, and the primary coil on the closed ferrite core 103 in the sensing unit of each stage is excited.
  • the number of turns of the primary coil 104 is 900 ⁇
  • the primary coil current I P 0.239 A
  • the number of turns of the glass spring 201 is 30 ⁇ , that is, the secondary coil 30 ⁇
  • the turns ratio is 30:1
  • the induced voltage of the liquid in each glass spring 201 should be It is 100V
  • there are 27 units at this time that is, the total machining voltage is 2700V
  • the sensing units of each level can be operated normally.
  • Step 4 Stop after 3 hours of treatment, discharge the orange juice and immediately test the total number of colonies, peroxidase, polyphenol oxidase and phenylalanine ammonia lyase activity, compare with fresh orange juice, and take part in 5
  • the browning index was measured after 7 days of storage at °C.
  • the total number of colonies of the orange juice treated by the multi-stage inductive continuous flow magnetoelectric processing device was 8.3 ⁇ 10 4 cfu/mL, and the polyphenol oxidase activity was 16 unit/g/min. The activity was 35 unit/g/min. Compared with this, the total number of fresh orange juice colonies was 4.3 ⁇ 10 6 cfu/mL, the polyphenol oxidase activity was 40 unit/g/min, and the peroxidase activity was 116 unit/g/min.
  • the browning index of fresh orange juice sealed at 5 ° C for 7 days was 0.23, while the orange juice sealed by induction voltage treatment was stored at 5 ° C for 7 days and the browning index was 0.11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

一种多级感应式连续流磁电加工装置及其应用,该加工装置包括:多级感应单元,其中每一级感应单元包括:闭合铁芯(103);初级线圈(104),绕制于该闭合铁芯一侧;次级线圈,绕制于该闭合铁芯另一侧并设于感应电压腔体(200)内,该次级线圈包括可供作为料液流通的绝缘管路,该绝缘管路两端从感应电压腔体内露出并分别作为进料口和出料口;高频电源(101),与该多级感应单元中的初级线圈并联连接并向各初级线圈提供激励电压;以及,料液容器(108),与该多级感应单元中的绝缘管路串联而形成料液循环回路。该装置操作条件丰富,无电极或极板直接与料液接触,可避免离子极化和电化学反应,同时料液以流动方式进行多级连续加工,具有高效和快速的优点。

Description

一种多级感应式连续流磁电加工装置及其应用 技术领域
本发明特别涉及一种基于交变感应电压的多级感应式连续流磁电加工装置及其应用,例如在食品加工、天然物质改性或提取等领域的应用。
背景技术
食品和农产品原辅料加工装置实际上是一种能为天然有机高分子化合物的化学和生物反应提供适宜反应条件,并且在某一操作参数下可将原料转化成特定产品并改善其品质的系统装备,技术可广泛应用于化工、生物、食品和医药行业。电场在食品和农产品加工中的应用主要是高压脉冲电场装置,它可实现对液态食品中微生物的杀灭,以及对酶的钝化,另外还有大量有关功能性成分的高效提取和对组分影响的研究。高压脉冲电场技术的加工因素主要有电场强度、处理时间、脉冲频率、脉冲宽度、脉冲形状、样品流速、初始温度、电极形态等。但是该技术采用的是充电电极来处理样品,容易造成极板间的离子极化,以及电极材料物质的渗出。
发明内容
针对现有技术的不足,本发明的主要目的在于提供一种多级感应式连续流磁电加工装置及其应用。
为实现前述发明目的,本发明采用的技术方案包括:
在一些实施例中提供了一种多级感应式连续流磁电加工装置,其包括:
两级以上感应单元,其中每一级感应单元包括:
一闭合铁芯,
一初级线圈,绕制于所述闭合铁芯一侧,
一次级线圈,绕制于所述闭合铁芯另一侧并设于一感应电压腔体内,所述次级线圈 包括可供作为料液流通的绝缘管路,所述绝缘管路两端从所述感应电压腔体内露出并分别作为进料口和出料口;
高频电源,与该两级以上感应单元中的初级线圈并联连接并向各初级线圈提供激励电压;
以及,料液容器,与该两级以上感应单元中的绝缘管路串联而形成料液循环回路。
在一些较为优选的实施例中,所述高频电源能够发出频率范围为20kHz~200kHz的正弦波或脉冲波,信号电压为0~10kV,输出功率为0~20kW,脉冲波占空比为5%~90%。
在一些较为优选的实施例中,所述闭合铁芯采用由铁氧体材料组成的闭合铁芯,其工作频率范围为20kHz~200kHz。
在一些较为优选的实施例中,绕制于同一闭合铁芯上的初级线圈与次级线圈的匝数之比为1~100:2~3。
进一步的,所述初级线圈的材料至少选自铜,但不限于此。
较为优选的,所述初级线圈的匝数为100~1000;
进一步的,所述绝缘管路的材料至少选自玻璃弹簧,但不限于此。
较为优选的,所述次级线圈的匝数为20~30。
在一些较为优选的实施例中,所述加工装置还包括用以调整所述料液温度的温控单元。
较为优选的,所述温控单元包括可供恒温循环溶液流通的恒温夹套层,所述恒温夹套层设于所述感应电压腔体内并包裹所述绝缘管路,并且所述恒温夹套层还经分布于所述感应电压腔体上的恒温循环浴进口和恒温循环浴出口与恒温循环浴连通。
较为优选的,所述温控单元包括恒温浴,所述料液容器被置于所述恒温浴内。
较为优选的,在所述料液循环回路内料液温度为-20~130℃。
在一些较为优选的实施例中,至少一恒温循环浴与至少两个恒温夹套层串联设置形成一恒温循环回路。
在一些较为优选的实施例中,所述感应电压腔体长度小于或等于500mm。
在一些较为优选的实施例中,用以连通相邻两个感应单元内绝缘管路的硅胶管长度小于20cm。
在一些较为优选的实施例中,所述加工装置还包括用于驱使料液体在所述料液循环回路内循环流动的装置。
较为优选的,所述料液循环回路内料液的流速为50μL/s~500mL/s。
较为优选的,所述高频电源的额定功率P0≥P1+P2+···+Pn,其中P1是第一级感应单元的输入功率,P2是第二级感应单元的输入功率,Pn是第n级感应单元的输入功率,Pn=UP×IP=(UP/ZP)×UP,其中,UP是高频电源输出电压,ZP是单级初级线圈在工作频率下的阻抗,IP是单级初级线圈电流,n即为所述加工装置的最大感应单元数。
在一些实施例中还提供了所述多级感应式连续流磁电加工装置在天然高分子原料的高效水解和/或改性、天然产物辅助提取或改善液态食品品质中的应用。
与现有技术相比,本发明的优点包括:
1.本发明多级感应式连续流磁电加工装置操作条件更为丰富,包括激励电压强度、激励信号种类、信号频率、加工温度、溶液流速,尤其因为料液溶液中的交变电压来源于感应的方法,故可不采用通电的极板或电极,即无电极或极板直接与料液接触,可避免电极或极板表面的离子极化和电化学反应,同时料液以流动方式进行多级连续加工,具有高效和快速的优点;
2.本发明多级感应式连续流磁电加工装置操作简单、方便,大大节约了人力,提高了工作效率。
附图说明
图1是本发明一典型实施方案之中一种多级感应式连续流磁电加工装置的结构示意图;
图2是本发明一典型实施方案之中一种多级感应式连续流磁电加工装置的感应电压腔体结构示意图;
图3是本发明一典型实施方案之中一种多级感应式连续流磁电加工装置的感应单元结构示意图;
图4是本发明一典型实施方案之中一种多级感应式连续流磁电加工装置的等效电路原理图。
附图标记说明:100—加工装置链,101—高频电源,102—恒温循环浴,103—铁氧体闭合铁芯,104—初级线圈,105—硅胶管,106—泵,107—恒温浴锅,108—料液容器,200—感应电压腔体,201—玻璃弹簧,202—恒温夹套层,203—料液进口,204—料液出口,205—恒温循环浴进口,206—恒温循环浴出口,300—感应单元,400—装置加工等效电路图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本发明的一个方面涉及了一种多级感应式连续流磁电加工装置,其包括:
两级以上感应单元,其中每一级感应单元包括:
一闭合铁芯103,
一初级线圈104,绕制于所述闭合铁芯103一侧,
一次级线圈,绕制于所述闭合铁芯103另一侧并设于一感应电压腔体200内,所述次级线圈包括可供作为料液流通的绝缘管路,所述绝缘管路两端从所述感应电压腔体200内露出并分别作为进料口和出料口;
高频电源101,与该两级以上感应单元中的初级线圈104并联连接并向各初级线圈104提供激励电压;
以及,料液容器108,与该两级以上感应单元中的绝缘管路串联而形成料液循环回路。
在所述多级感应式连续流磁电加工装置工作时,是以加工料液作为多个变压器次级线圈的导体且以绝缘管路作为支撑物。高频电源101发出的信号激励初级线圈104,则会在闭合铁芯103中生产相应变化规律的交变磁通。最终,在料液作为次级线圈导体的回路体系中生产交变感应电压,且料液在料液循环回路体系中保持循环流动并完成加工处理。
更为具体的讲,本发明的原理大致如下:
变压器属于电能-磁能-电能转换设备,对单相变压器的初级线圈(匝数Np)施加交 变激励电压Up,则会在铁芯中生产相应变化规律的磁通,其数值正比于线圈匝数,该电磁感应原理来源于安培环路定律,即在磁场区域中,对选定磁场的任意闭合线积分等于穿过闭合路径所界定面的传导电流的代数和。同时,铁芯中的变化磁通会在次级线圈(匝数Ns)中生产同样变化规律的感应电压Es,它们的关系如下:
Ep/Es=Up/Us=Np/Ns    (1)
由式(1)可知,E,U分别为感应电压和终端电压,N为线圈匝数。在激励电压及初、次级线圈匝数比固定的情况下,感应电压为定值。由于次级线圈中存在内部阻抗,次级电路中的感应电压Es由外部载荷和线圈阻抗两部分共同承担。若以含有大量带电离子、带电化合物、极性分子以及表面带电的蛋白质和酶类等的料液为次级线圈导体受交变磁通的影响,根据安培环路定律,同样在料液体系中存在交变感应电压,并最终影响并改变料液的反应动力学参数、产物和品质。
请参阅图1所示是本发明一典型实施方案中一种多级感应式连续流磁电加工装置的结构示意图,其主要由高频电源101、初级线圈104、闭合铁芯103、感应电压腔体200、循环管路、泵106、温控单元等构成。
在一些实施例中,所述高频电源101可发出频率范围在20kHz~200kHz的正弦波或脉冲波,信号的峰值电压0~10kV,输出功率0~20kW,脉冲波占空比5%~90%,以此同时激励闭合铁芯上的初级线圈104来获得交变感应电压。
在一些实施例中,所述闭合铁芯103采用铁氧体材料,工作频率范围20kHz~200kHz,呈现闭合状。
在一些实施例中,所述感应电压腔体200中有绝缘管路(优选玻璃弹簧),缠绕在铁氧体闭合铁芯103一侧,作为次级线圈导体的支撑物,同时玻璃弹簧两端分别从感应电压腔体200的两端引出作为料液的进料口和出料口,玻璃弹簧匝数为20~30,玻璃弹簧之外是恒温夹套层,并在感应电压腔体200两端有恒温循环浴进口205和恒温循环浴出口206,用于接入不同温度的循环液体以调节玻璃弹簧中加工料液的温度,从而达到控制加工体系温度的作用。
优选的,单个感应电压腔体200长度不超过500mm。
在一些实施例中,所述初级线圈104为铜制线圈,缠绕在闭合铁芯上匝数100~1000 匝,各个初级线圈104和高频电源101为并联连接。
在一些实施例中,每级感应单元使用耐腐蚀和耐高温的硅胶管105连接,形成串联结构,即每个感应电压腔体200的玻璃弹簧出料口和下一个感应电压腔体200的进料口相连接,优选的,连接时所需的硅胶管长度小于20cm。此时每个次级线圈作为单独一个“电源”,而施加到料液体系的总电压为各级次级线圈感应电压之和。
在一些实施例中,料液循环管路上可安置输送泵106,并与料液容器108相连接可达到驱动料液循环流动的目的,例如,体积流量可优选为50μL/s~500mL/s。
在一些实施例中,根据加工温度要求则料液容器108需置于恒温浴107中并维持所需温度。
在一些实施例中,温控单元为恒温循环浴102和恒温浴107,其中恒温循环浴102的出口和进口分别与感应电压腔体200上的恒温循环浴进口205和恒温循环浴出口206接通,保持加工温度范围为-20~130℃,每个恒温循环浴102用于维持1~3个感应电压腔体200的温度,即每个感应电压腔体200上的恒温循环浴出口206和下一个感应电压腔体200的恒温循环浴进口205相连接。
料液在多个变压器次级线圈支撑物中循环流动并作为其导体,同时受到感应电压的影响,根据产品要求确定循环时间,最终对物料的物理特性、化学组分或微生物等生产影响,例如达到影响和改变食品和农产品原辅料的反应动力学参数、产物和品质的目的。
其中,高频电源101的额定功率保证每级感应单元正常工作,即P0≥P1+P2+···+Pn其中,P0是高频电源额定功率,P1是第一级感应单元的输入功率,P2是第二级感应单元的输入功率,Pn是第n级感应单元的输入功率,Pn=UP×IP=(UP/ZP)×UP,其中,UP是高频电源输出电压,ZP是单级初级线圈在工作频率下的阻抗,IP是单级初级线圈电流,n即为本装置的最大感应单元数。
本发明的另一个方面还涉及了所述多级感应式连续流磁电加工装置的应用,其应用领域包括1:天然高分子原料的高效水解和改性;2:天然产物的辅助提取,3:液态食品品质改善。
在应用时,循环加工时间由所需产品特性所决定。
较之现有的高压脉冲电场装置等,本发明的多级感应式连续流磁电加工装置基于变 压器原理和结构,利用感应电压加工连续流的料液可不使用通电电极或极板,实现对食品和农产品原辅料的快速而规模化的加工。
如下将结合若干实施例对本发明的技术方案、其实施过程及原理等作进一步的解释说明。
实施例1:小麦麸皮高效酸解
下面以酸法高效水解小麦麸皮制备还原糖为例,进一步说明多级感应式连续流磁电加工装置在天然高分子原料水解反应中的应用。
如图1~图4所示,在此实施例中,本发明提供了一种多级感应式连续流磁电加工装置,其包括了加工装置链100,感应电压腔体200,感应单元300,装置加工等效电路图400。
其中,参考图1,加工装置链100包括高频电源101,恒温循环浴102,铁氧体闭合铁芯103,初级线圈104,感应电压腔体200,耐酸碱耐高温硅胶管105,泵106,恒温浴锅107,料液容器108。
其中高频电源101的输出端与初级线圈104接通,所使用的高频电源101可发出频率为20kHz~200kHz的正弦波、脉冲波,电压为0~10kV,输出功率0~20kW,脉冲波占空比5%~90%;初级线圈104为单股铜线,匝数为100~1000,缠绕在闭合铁芯103一侧,闭合铁芯103采用铁氧体材料,工作频率范围20kHz~200kHz,额定功率20kW,闭合铁芯的中心周长850mm,厚度20mm;闭合铁芯103的另一侧穿入感应电压腔体200,这样保证其中的玻璃弹簧201缠绕在闭合铁芯103上,玻璃弹簧201匝数为20~30,玻璃弹簧内径4mm。参考图2显示感应电压腔体200所含的玻璃弹簧201,恒温夹套层202,进料口203,出料口204,恒温循环浴进口205,恒温循环浴出口206。即玻璃弹簧201两端分别从感应电压腔体200的两端中引出作为料液的进口203和出口204,玻璃弹簧之外是恒温夹套层202,并在感应电压腔体200两端有恒温循环浴进口205和恒温循环浴出口206,用于通入不同温度的流体以保持玻璃弹簧201中循环料液的温度,单个感应电压腔体长度不超过500mm;
参考图3显示每级感应单元300,包括1个感应电压腔体200,1个铁氧体闭合铁芯103,1个初级线圈104,且至少有两级感应单元且各级的初级线圈和高频电源为并联连 接,每级感应单元300使用耐腐蚀和耐高温硅胶管105连接,形成串联结构,即每个感应电压腔体200的玻璃弹簧201上的出料口204和下一个感应电压腔体的进料口203相连接,连接时所需的硅胶管长度小于20cm,即每个次级线圈作为单独一个“电源”即En,等效电路参考图4,施加到料液体系的总电压为各个次级线圈感应电压之和,即E1+E2+···+En。料液的总阻抗为Zload,同时,在管路上安置着输送泵106,并与料液容器108相连接可达到驱动料液循环流动的目的,体积流量为50μL/s~500mL/s,根据加工温度要求料液容器108置于恒温浴107中并维持所需温度;
另外重要的是各级初级线圈和高频电源为并联连接,且高频电源的额定功率可保证每级感应单元正常工作,即P0≥P1+P2+···+Pn其中,P0是高频电源额定功率,P1是第一级感应单元的输入功率,P2是第二级感应单元的输入功率,Pn是第n级感应单元的输入功率,Pn=UP×IP=(UP/ZP)×UP,其中,UP是高频电源输出电压,ZP是单级初级线圈在工作频率下的阻抗,IP是单级初级线圈电流,n即为本装置的最大感应单元数,且循环加工时间由所需产品特性所决定;
恒温循环浴102分别与感应电压腔体200上的恒温循环浴进口205和恒温循环浴出口206接通,可保持加工温度范围为-20~130℃,每个恒温循环浴102用于维持1~3个感应电压腔体200的温度,即每个感应电压腔体200上的恒温循环浴出口206和下一个感应电压腔体200的恒温循环浴进口205相连接;
利用该装置进行小麦麸皮的高效酸水解反应,其包括如下步骤:
步骤一:取60目的小麦麸皮粉1000g于15L塑料杯108中,加入蒸馏水12L,混合摇匀,于60℃恒温浴107中搅拌20min预热,同时缓慢加入1L,浓度10%的盐酸溶液,再搅拌5min;
步骤二:开启蠕动泵106,保证料液充满所有感应电压单元的玻璃弹簧201,并开始循环流动且体积流量为100mL/s,即小麦麸皮粉料液从每个感应电压腔体200的进料口203流入,再从其出料口204流出,并进入下一个感应电压腔体200,然后开启恒温循环浴102并设定温度为60℃,此时恒温循环溶液从每个感应电压腔体200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个感应电压腔体200,此例用3级感应电压单元;
步骤三:开启高频电源101选择正弦波,频率为20kHz,电压幅值2kV,额定功率20kW,同时激励各级感应单元中的闭合铁氧体铁芯103上的初级线圈104,此时初级线圈104匝数为100匝,20kHz时初级线圈阻抗通过阻抗分析仪检测为ZP=1404Ω,初级线圈电流IP=1.424A,单级感应单元输入功率为Pn=UP×IP=2.849kW,玻璃弹簧201的匝数为20匝,即次级线圈20匝,匝数比为5:1,根据变压器电压分配原理,则每个玻璃弹簧201中料液的感应电压应为400V,此时有3级单元,即总加工电压为1200V,P0=20kW≥P1+P2+P3=2.849kW+2.849kW+2.849kW=8.547kW,即该高频电源可使各级感应单元正常运行。
步骤四:循环处理6h后停止,排出料液,待到室温立即加入质量分数为1%的NaHCO3溶液,使其料液pH=7,终止反应,再将料液于5000rpm下离心20min去掉沉淀物,得到含有还原糖的小麦麸皮粗水解液。
经检测,通过此多级感应式连续流磁电加工装置处理并得到的小麦麸皮粗水解液还原糖含量为31.32%,与此相比,若其他反应条件均相同,但不施加高频激励电压于初级线圈104时,最终得到的小麦麸皮粗水解液还原糖含量只为5.36%。
实施例2:菠萝皮渣果胶高效提取
利用实施例1所述的多级感应式连续流磁电加工装置,以辅助提取天然产物为例,进一步说明该系统的使用方法。其包括如下步骤:
步骤一:取菠萝皮500g,打浆后置于10L塑料杯108中,加入蒸馏水8L,混合摇匀,于55℃恒温浴107中搅拌20min预热,同时缓慢加入1L,浓度6.5%的盐酸溶液,再搅拌5min;
步骤二:开启蠕动泵106,保证料液充满所有感应单元的玻璃弹簧201,并开始循环流动且体积流量为50mL/s,即菠萝皮渣料液从每个感应电压腔体200的进料口203流入,再从其出料口204流出,并进入下一个感应电压腔体200,然后开启恒温循环浴102并设定温度为55℃,此时恒温循环溶液从每个感应电压腔体200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,进入下一个感应电压腔体200,此例用5级感应处理单元,且需用2台恒温循环浴来维持5个感应电压腔体温度,1台连接3个感应电压腔体,另1台连接2个感应电压腔体。
步骤三:开启高频电源101选择正弦波,频率为50kHz,电压幅值3kV,额定功率20kW,同时激励各级感应单元中的闭合铁氧体铁芯103上的初级线圈104,此时初级线圈104匝数为400匝,50kHz时初级线圈阻抗通过阻抗分析仪检测为ZP=2504Ω,初级线圈电流IP=1.198A,单级感应单元输入功率为Pn=UP×IP=3.594kW,玻璃弹簧201的匝数为20匝,即次级线圈20匝,匝数比为20:1,根据变压器电压分配原理,则每个玻璃弹簧201中料液的感应电压应为150V,此时有5级单元,即总加工电压为750V,P0=20kW≥P1+P2+···+P5=3.594kW+3.594kW+···+3.594kW=17.970kW,即该高频电源可101使各级感应单元300正常运行。
步骤四:循环处理1h后停止,排出料液,待到室温立即加入质量分数为1%的NaHCO3溶液,使其料液pH=7,终止反应,再将料液于3000rpm下离心15min去掉沉淀物,剩余滤液于48℃的鼓风干燥箱中干燥15h后得到淡黄色的粗果胶粉末。
经测量,通过此多级感应式连续流磁电加工装置处理并得到的菠萝皮渣粗果胶质量为87.7g,与此相比,若其他反应条件均相同,但不施加高频激励电压于初级线圈时,最终得到的菠萝皮渣粗果胶质量仅为26.4g。
实施例3:玉米多孔淀粉制备
利用实施例1所述的多级感应式连续流磁电加工装置,以辅助天然高分子化合物改性为例,进一步说明该系统的使用方法。其包括如下步骤:
步骤一:取玉米淀粉600g于15L塑料杯中,加入蒸馏水10L,混合摇匀得到淀粉乳液,加入5%的盐酸溶液,调节淀粉乳液的pH值为3.7,于40℃预热搅拌5min;
步骤二:开启蠕动泵106,保证料液充满所有感应单元的玻璃弹簧201,并开始循环流动且体积流量为500μL/s,即淀粉乳料液从每个感应电压腔体200的进料口203流入,再从其出料口204流出,并进入下一个感应电压腔体200,然后开启恒温循环浴102并设定温度为62℃,此时恒温循环溶液从每个感应电压腔体200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个感应电压腔体200,此例选用9级感应电压处理单元,且需用3台恒温循环浴来维持9个感应电压腔体温度,即每台连接3个感应电压腔体。
步骤三:开启高频电源101选择脉冲波,占空比20%,频率为180kHz,电压幅值 4kV,额定功率20kW,同时激励各级感应单元中的闭合铁氧体铁芯103上的初级线圈104,此时初级线圈104匝数为500匝,180kHz时初级线圈阻抗通过阻抗分析仪检测为ZP=8504Ω,初级线圈电流IP=0.470A,单级感应单元输入功率为Pn=UP×IP=1.880kW,玻璃弹簧201的匝数为25匝,即次级线圈25匝,匝数比为20:1,根据变压器电压分配原理,则每个玻璃弹簧201中料液的感应电压应为200V,此时有9级单元,即总加工电压为1800V,P0=20kW≥P1+P2+···+P9=1.880kW+1.880kW+···+1.880kW=16.920kW,即该高频电源101可使各级感应单元300正常运行。
步骤四:循环处理4h后停止,排出料液,待到室温立即加入质量分数为2%的NaOH溶液,使其料液pH=7,终止反应,再将料液于3000rpm下离心15min得到沉淀物,沉淀物于55℃的鼓风干燥箱中干燥3h后,再粉碎过200目筛,得到改性的多孔玉米淀粉。
经测量,通过此多级感应式连续流磁电加工装置处理并得到的多孔玉米淀粉的吸油率为154.6%,与此相比,若其他反应条件均相同,但不施加高频激励电压于初级线圈时,最终得到的多孔玉米淀粉吸油率仅为66.4%。
实施例4:橙汁的杀菌与钝化酶处理
利用实施例1所述的多级感应式连续流磁电加工装置,以液态食品品质改善为例,进一步说明该系统的使用方法。其包括如下步骤:
步骤一:取鲜榨的橙汁12L置于15L塑料杯中,于10℃恒温浴107中搅拌20min预热;
步骤二:开启蠕动泵106,保证橙汁料液充满所有感应单元的玻璃弹簧201,并开始循环流动且体积流量为100μL/s,即料液从每个感应电压腔体200的进料口203流入,再从其出料口204流出,并进入下一个感应电压腔体200,然后开启恒温循环浴102并设定温度为10℃,此时恒温循环溶液从每个感应电压腔体200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个感应电压腔体200,此例选用27级感应电压处理单元,且需用9台恒温循环浴来维持27个感应电压腔体温度,即1台连接3个感应电压腔体200。
步骤三:开启高频电源101选择脉冲波,占空比50%,频率为200kHz,电压幅值3kV,额定功率20kW,同时激励各级感应单元中的闭合铁氧体铁芯103上的初级线圈104, 此时初级线圈104匝数为900匝,200kHz时初级线圈阻抗通过阻抗分析仪检测为ZP=12564Ω,初级线圈电流IP=0.239A,单级感应单元输入功率为Pn=UP×IP=0.717kW,玻璃弹簧201的匝数为30匝,即次级线圈30匝,匝数比为30:1,根据变压器电压分配原理,则每个玻璃弹簧201中料液的感应电压应为100V,此时有27级单元,即总加工电压为2700V,P0=20kW≥P1+P2+···+P27=0.717kW+0.717kW+···+0.717kW=19.359kW,即该高频电源可使各级感应单元正常运行。
步骤四:循环处理3h后停止,排出橙汁后并立即测试其菌落总数、过氧化物酶、多酚氧化酶和苯丙氨酸解氨酶的酶活,与新鲜橙汁对比,并取一部分在5℃储藏7天后测定褐变指数。
经测量,通过此多级感应式连续流磁电加工装置处理并得到的橙汁的菌落总数为8.3×104cfu/mL,多酚氧化酶酶活为16unit/g/min,过氧化物酶酶活为35unit/g/min,与此相比,新鲜橙汁菌落总数4.3×106cfu/mL,多酚氧化酶酶活为40unit/g/min,过氧化物酶酶活为116unit/g/min,且新鲜橙汁密封5℃储藏7天时的褐变指数为0.23,而经过感应电压处理的橙汁密封5℃储藏7天褐变指数为0.11。其中多酚氧化酶酶活,过氧化物酶酶活,褐变指数测定方法参考文献Do-Hee,Kim.,Han-Bit,Kim.,Hun-Sik,Chung.,Kwang-Deog,Moon.(2014).Browning control of fresh-cut lettuce by phytoncide treatment.Food Chemistry,159,188-192.
需要说明的是,本实施例的附图均采用非常简化的形式且均使用非精准的比率,仅用于方便、明晰地辅助说明本发明的实施例。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种多级感应式连续流磁电加工装置,其特征在于包括:
    两级以上感应单元,其中每一级感应单元包括:
    一闭合铁芯,
    一初级线圈,绕制于所述闭合铁芯一侧,
    一次级线圈,绕制于所述闭合铁芯另一侧并设于一感应电压腔体内,所述次级线圈包括可供作为料液流通的绝缘管路,所述绝缘管路两端从所述感应电压腔体内露出并分别作为进料口和出料口;
    高频电源,与该两级以上感应单元中的初级线圈并联连接并向各初级线圈提供激励电压;
    以及,料液容器,与该两级以上感应单元中的绝缘管路串联而形成料液循环回路。
  2. 根据权利要求1所述的多级感应式连续流磁电加工装置,其特征在于所述高频电源能够发出频率范围为20kHz~200kHz的正弦波或脉冲波,信号电压为0~10kV,输出功率为0~20kW,脉冲波占空比为5%~90%。
  3. 根据权利要求1所述的多级感应式连续流磁电加工装置,其特征在于所述闭合铁芯采用由铁氧体材料组成的闭合铁芯,其工作频率范围为20kHz~200kHz。
  4. 根据权利要求1所述的多级感应式连续流磁电加工装置,其特征在于:
    绕制于同一闭合铁芯上的初级线圈与次级线圈的匝数之比为10~100:2~3;
    优选的,所述初级线圈的材料至少选自铜,且所述初级线圈的匝数为100~1000;
    优选的,所述绝缘管路的材料至少选自玻璃弹簧,且所述次级线圈的匝数为20~30。
  5. 根据权利要求1所述的多级感应式连续流磁电加工装置,其特征在于还包括用以调整所述料液温度的温控单元;
    优选的,所述温控单元包括可供恒温循环溶液流通的恒温夹套层,所述恒温夹套层设于所述感应电压腔体内并包裹所述绝缘管路,并且所述恒温夹套层还经分布于所述感应电压腔体上的恒温循环浴进口和恒温循环浴出口与恒温循环浴连通;
    和/或,优选的,所述温控单元包括恒温浴,所述料液容器被置于所述恒温浴内;
    优选的,在所述料液循环回路内料液温度为-20~130℃。
  6. 根据权利要求5所述的多级感应式连续流磁电加工装置,其特征在于,至少一恒温循环浴与至少两个恒温夹套层串联设置形成一恒温循环回路。
  7. 根据权利要求1-6中任一项所述的多级感应式连续流磁电加工装置,其特征在于:
    所述感应电压腔体长度小于或等于500mm;
    和/或,用以连通相邻两个感应单元内绝缘管路的硅胶管长度小于20cm。
  8. 根据权利要求1所述的多级感应式连续流磁电加工装置,其特征在于:
    所述加工装置还包括用于驱使料液体在所述料液循环回路内循环流动的装置;
    优选的,所述料液循环回路内料液的流速为50μL/s~500mL/s。
  9. 根据权利要求1所述的多级感应式连续流磁电加工装置,其特征在于所述高频电源的额定功率P0≥P1+P2+···+Pn,其中P1是第一级感应单元的输入功率,P2是第二级感应单元的输入功率,Pn是第n级感应单元的输入功率,Pn=UP×IP=(UP/ZP)×UP,其中,UP是高频电源输出电压,ZP是单级初级线圈在工作频率下的阻抗,IP是单级初级线圈电流,n即为所述加工装置的最大感应单元数。
  10. 如权利要求1-9中任一项所述多级感应式连续流磁电加工装置在天然高分子原料的高效水解和/或改性、天然产物辅助提取或改善液态食品品质中的应用。
PCT/CN2016/071560 2015-09-14 2016-01-21 一种多级感应式连续流磁电加工装置及其应用 WO2017045327A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/548,052 US10460869B2 (en) 2015-09-14 2016-01-21 Multi-series continuous-flow magnetoelectric coupling processing system and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510583199.X 2015-09-14
CN201510583199.XA CN105304298B (zh) 2015-09-14 2015-09-14 一种多级感应式连续流磁电加工装置及其应用

Publications (1)

Publication Number Publication Date
WO2017045327A1 true WO2017045327A1 (zh) 2017-03-23

Family

ID=55201429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071560 WO2017045327A1 (zh) 2015-09-14 2016-01-21 一种多级感应式连续流磁电加工装置及其应用

Country Status (3)

Country Link
US (1) US10460869B2 (zh)
CN (1) CN105304298B (zh)
WO (1) WO2017045327A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106140046B (zh) * 2016-07-06 2019-02-22 江南大学 阵列式感应电场流体反应系统及其应用
WO2018048891A1 (en) * 2016-09-06 2018-03-15 Apple Inc. Wirelessly charged devices
CN107486114B (zh) * 2017-09-22 2023-05-23 江南大学 基于感应电场的多磁路多次级流体反应系统及其应用
WO2020133100A1 (zh) * 2018-12-27 2020-07-02 江南大学 间歇式感应热反应器
CN111982976B (zh) * 2020-08-30 2022-04-08 广东利诚检测技术有限公司 基于异相等差感应电势检测红薯粉中明矾含量的方法
CN112899116B (zh) * 2021-04-22 2022-08-09 江南大学 一种基于磁感应电场的催陈处理设备及黄酒催陈装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190322793A (en) * 1903-10-21 1904-07-07 Raphael Chauvin Improvements in and relating to Speed-indicators.
CN103504454A (zh) * 2013-09-11 2014-01-15 江南大学 一种基于函数信号控制的强电解质离子电流的食品浸渍加工方法
CN104427669A (zh) * 2013-08-19 2015-03-18 宗明 一种利用电磁感应来加热工件的方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048215B2 (ja) * 1981-01-16 1985-10-25 株式会社井上ジャパックス研究所 磁気フイルタ
CN2108264U (zh) * 1991-11-30 1992-06-24 于小伟 一种电磁振荡防垢装置
JP2008226720A (ja) * 2007-03-14 2008-09-25 Omron Corp 熱交換装置
CN101292769B (zh) * 2008-06-05 2011-02-09 清华大学深圳研究生院 脉冲电场和磁场对物料协同杀菌钝酶方法及设备
JP5846609B2 (ja) * 2010-01-21 2016-01-20 バイオセップ リミテッド 希少細胞の磁気分離
CN103025666B (zh) * 2010-08-13 2014-08-27 株式会社志贺机能水研究所 水的电磁场处理方法以及电磁场处理装置
CN104722255B (zh) * 2015-03-18 2016-08-31 江南大学 感应式磁电生化反应系统及其应用
CN105268388B (zh) * 2015-09-14 2017-08-25 江南大学 一种循环式磁电感应反应系统及其应用
CN106140046B (zh) * 2016-07-06 2019-02-22 江南大学 阵列式感应电场流体反应系统及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190322793A (en) * 1903-10-21 1904-07-07 Raphael Chauvin Improvements in and relating to Speed-indicators.
CN104427669A (zh) * 2013-08-19 2015-03-18 宗明 一种利用电磁感应来加热工件的方法及装置
CN103504454A (zh) * 2013-09-11 2014-01-15 江南大学 一种基于函数信号控制的强电解质离子电流的食品浸渍加工方法

Also Published As

Publication number Publication date
US10460869B2 (en) 2019-10-29
US20180033548A1 (en) 2018-02-01
CN105304298A (zh) 2016-02-03
CN105304298B (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
WO2017045327A1 (zh) 一种多级感应式连续流磁电加工装置及其应用
WO2018006444A1 (zh) 阵列式感应电场流体反应系统及其应用
WO2017045434A1 (zh) 循环式磁电感应反应系统及其应用
WO2019056401A1 (zh) 基于感应电场的多磁路多次级流体反应系统及其应用
CN112167501B (zh) 一种连续流磁感应电场低温杀菌装置及方法
CN101292769A (zh) 脉冲电场和磁场对物料协同杀菌钝酶方法及设备
WO2012167721A1 (zh) 一种电喷雾灭菌设备
US20060013927A1 (en) Radio frequency electric field pasteurization system
CN103237378B (zh) 一种l波段的大功率微波能发生器
CN102640965A (zh) 一种电极间距可调的高压脉冲电场杀菌共场处理室
CN112189778B (zh) 一种三相连续流感应热绿色杀菌系统及方法
CN102595673A (zh) 电热水器高频套式电磁加热装置
CN109692637B (zh) 一种一体式放电装置及液体放电系统
CN116179299A (zh) 一种基于磁感应电场的热处理系统及方法
CN103274501B (zh) 一种大气压等离子体射流液相灭藻的方法及装置
CN109527328A (zh) 一种用于酱油的灭菌装置、系统及方法
Kurcevskis et al. High Power Electroporation System in Food Treatment-Review
Kajiwara et al. Liquid sterilization using intense electrical pulses combined with thermal post-treatment
RU2010108967A (ru) Способ и устройство индукционного нагрева жидкостей (варианты)
CN214103075U (zh) 一种基于脉冲电场的杀菌装置
WO2020133099A1 (zh) 连续式感应热反应器
CN209573103U (zh) 一种用于液体食品的灭菌装置及系统
Yang et al. Induced Electric Field (IEF) as an Emerging Nonthermal Techniques for the Food Processing Industries: Fundamental Concepts and Application
CN111821485A (zh) 一种柑橘育苗潮汐灌溉高频加热杀菌装置
CN1907874A (zh) 高效多频循环水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845447

Country of ref document: EP

Kind code of ref document: A1