WO2018006444A1 - 阵列式感应电场流体反应系统及其应用 - Google Patents

阵列式感应电场流体反应系统及其应用 Download PDF

Info

Publication number
WO2018006444A1
WO2018006444A1 PCT/CN2016/090710 CN2016090710W WO2018006444A1 WO 2018006444 A1 WO2018006444 A1 WO 2018006444A1 CN 2016090710 W CN2016090710 W CN 2016090710W WO 2018006444 A1 WO2018006444 A1 WO 2018006444A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
electric field
induced electric
array
reaction unit
Prior art date
Application number
PCT/CN2016/090710
Other languages
English (en)
French (fr)
Inventor
杨哪
徐学明
金亚美
谢正军
金征宇
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US15/559,662 priority Critical patent/US10695736B2/en
Publication of WO2018006444A1 publication Critical patent/WO2018006444A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/42Preservation of non-alcoholic beverages
    • A23L2/50Preservation of non-alcoholic beverages by irradiation or electric treatment without heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/32Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/32Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect
    • A23L3/325Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect by electrolysis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0211Solvent extraction of solids in combination with an electric or magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/16Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
    • A23L3/18Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials while they are progressively transported through the apparatus
    • A23L3/22Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials while they are progressively transported through the apparatus with transport through tubes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0207Control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00418Means for dispensing and evacuation of reagents using pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00495Means for heating or cooling the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/0074Biological products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid

Definitions

  • the invention particularly relates to an array-based induced electric field fluid reaction system and its use, for example, in the fields of food processing, bactericidal enzymes, protein modification, chemical catalysis and modification or natural product extraction.
  • Tubular reaction systems including the basic units are mixers, heat exchangers, reactors, controllers, and the like. Its pipe size ranges from tens of millimeters to hundreds of microns, and the materials reacted in the flow can be quickly and evenly mixed, so it has excellent mass transfer and heat transfer performance, process conditions can be quickly and easily optimized and easy to produce.
  • the expansion shortens the cycle from product development to production and enables continuous production.
  • electric field processing technology has been widely used in food, chemical, biochemical and medical fields.
  • a large number of reported electric field processing techniques include Ohmic heating sterilization, Pulsed electric field, and Moderate electric field technology.
  • they are also the emerging research fields in the world.
  • the common feature of their processing is that the liquid raw materials are placed in the device and flow through the two discharge electrode regions in the narrow channel.
  • the reaction liquid is used as a dielectric to receive a certain field strength.
  • the effects of alternating electric fields can lead to electroporation of cell tissues, changes in mass transfer efficiency, and reaction kinetic parameters.
  • the source of the magnetic field is a permanent magnet or a Helmholtz coil
  • the source of the electromagnetic field is a magnetron and an oscillating generator. Since the magnetic field and the electromagnetic field are penetrating to ordinary inorganic substances and organic substances, they occur when the liquid is applied to the liquid. The source and the reaction liquid are in an isolated state, and the generator itself cannot and does not directly contact the reaction liquid. If the generators of the magnetic field and the electromagnetic field are arranged in the form of an array, the volume of the device is inevitably large and expensive, and it is less easy. expand.
  • the influence is limited to the area through which the magnetic field and the electromagnetic field pass, and has no influence on the liquid flowing in other areas in the pipeline, so the array type magnetic field and the electromagnetic field generator are activated. It does not have a "comprehensive" effect on chemical reactions.
  • the generator of the electric field is an electrode and a power source. Any electrochemical reaction requires direct contact between the electrode and the reaction solution, and in other electric field-assisted chemical reactions, such as a pulsed electric field and a medium-intensity electric field, due to its technology and device structure.
  • the reaction liquid needs to be in direct contact with the electrode, which is disadvantageous for long-term treatment of the reaction liquid, because the electrode is energized and any reaction material containing charged ions, charged molecules or particles will contact the electrode for a long time.
  • Surface corrosion and leakage of electrode material in the feed liquid contaminate the reaction system. Therefore, a large number of charging electrodes cannot be directly inserted into the reaction liquid in the form of an array, so the conventional electric field technology cannot realize the array-type electric field-assisted reaction.
  • the existing reactors can not effectively and conveniently apply the electric field as an array of control parameters to various chemical and biological reactions.
  • the main object of the present invention is to provide an array type induced electric field fluid reaction system and application thereof.
  • the technical solution adopted by the present invention includes:
  • Embodiments of the present invention provide an array type induced electric field fluid reaction system, including:
  • An array of reaction units comprising (m ⁇ n) reaction units in a network-connected manner, wherein m and n are each selected from a positive integer greater than 1, wherein each reaction unit comprises:
  • the secondary coil wound on the other side of the closed core, the secondary coil comprising an insulating conduit through which the liquid can flow, the insulating conduit having a feed port and a discharge port;
  • a power source electrically connected to the primary coils in each of the reaction units and providing an excitation voltage to each of the primary coils;
  • the inlet and the outlet of the insulated pipeline in the at least one reaction unit of the reaction unit array are respectively connected to the discharge port of the insulated pipeline of at least one reaction unit upstream and the insulation pipe of at least one reaction unit downstream; a feed port of the road is connected, and/or a feed port and a discharge port of the insulated pipe in at least one of the reaction units in the reaction unit array are respectively connected to the inlet and the outlet of the insulated pipe of at least one other reaction unit
  • the two ends of the windings of the primary coils in the array of reaction cells are electrically connected to the two poles of the corresponding power source (ie, the live end and the neutral end).
  • excitation voltage U m,n the frequency f m,n and the temperature T m,n of the array-type induced electric field fluid reaction system during operation may be expressed in the form of a matrix:
  • Embodiments of the present invention also provide the use of the array type induced electric field fluid reaction system in agricultural product processing and/or chemical reaction.
  • the array-type induced electric field fluid reaction system Compared with the prior art, the array-type induced electric field fluid reaction system provided by the invention operates, and the alternating electric field in the liquid solution is derived from the induction method, and the non-energized electrode or the plate is directly in contact with the liquid, which can be avoided. Ion polarization, electrochemical reaction and heavy metal leakage between the plates contaminate the liquid, and the reaction units in the array-induced electric field fluid reaction system form an array network connection, and the induced electric field in each reaction unit acts on the flow.
  • the feed liquid changes the activation energy of the reaction to achieve a specific reaction effect, and the array-type induced electric field fluid reaction system can be arbitrarily expanded according to scale and yield, and can meet the requirements of laboratory scale, pilot scale and mass production. To facilitate the expansion of production capacity.
  • FIG. 1 is a schematic structural view of an array type induced electric field fluid reaction system according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic structural view of another array type induced electric field fluid reaction system in an exemplary embodiment of the present invention.
  • Figure 3 is a schematic view showing the structure of a reaction unit in an exemplary embodiment of the present invention.
  • Figure 4 is a schematic view showing the basic structure of a series of reaction units in an exemplary embodiment of the present invention.
  • Figure 5 is a schematic diagram showing the parallel basic structure of a reaction unit in an exemplary embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the number of reaction units and an array of an array type induced electric field fluid reaction system in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram showing the number of reaction units and an array of an array type induced electric field fluid reaction system in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram showing the number of reaction units and an array of an array type induced electric field fluid reaction system in Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram showing the number of reaction units and an array of an array type induced electric field fluid reaction system in Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram showing the number of reaction units and an array of an array type induced electric field fluid reaction system in Embodiment 5 of the present invention.
  • Figure 11 is a diagram showing the number of reaction units and arrays of an array type induced electric field fluid reaction system in Embodiment 6 of the present invention. intention;
  • FIG. 12 is a schematic diagram showing the number of reaction units and an array of an array type induced electric field fluid reaction system in Embodiment 7 of the present invention.
  • FIG. 13 is a schematic diagram showing the number of reaction units and a series-parallel structure of an array type induced electric field fluid reaction system in Embodiment 8 of the present invention.
  • processing device chain 100a processing device chain 100b, power source 101, constant temperature circulating bath 102, closed iron core 103, primary coil 104, acid-base resistant high temperature silicone tube 105, pump 106, reaction liquid container 107, Constant temperature water bath 108, reactor 200, glass spring 201, constant temperature jacket layer 202, spiral tube inlet 203, spiral tube outlet 204, constant temperature circulation bath inlet 205, constant temperature circulation bath outlet 206, reaction unit 300, reactor
  • the number is in array 400, the reaction unit is connected in series with the basic structure 500a, and the reaction unit is connected in parallel with the basic structure 500b.
  • An array of reaction units comprising (m ⁇ n) reaction units in a network-connected manner, wherein m and n are each selected from a positive integer greater than 1, wherein each reaction unit comprises:
  • the secondary coil wound on the other side of the closed core, the secondary coil comprising an insulating conduit through which the liquid can flow, the insulating conduit having a feed port and a discharge port;
  • a power source electrically connected to the primary coils in each of the reaction units and providing an excitation voltage to each of the primary coils;
  • the inlet and the outlet of the insulated pipeline in the at least one reaction unit of the reaction unit array are respectively connected to the discharge port of the insulated pipeline of at least one reaction unit upstream and the insulation pipe of at least one reaction unit downstream; a feed port connection of the road (ie, in series), and/or an inlet pipe and a discharge port of the insulated pipe in at least one of the reaction unit arrays and an insulating pipe of at least one other reaction unit
  • the feed port and the discharge port of the road are connected (that is, in parallel); at the same time, the two ends of the winding of each primary coil in the reaction unit array are respectively connected with the two poles of the corresponding power source (that is, the live end and the neutral end) ) Electrical connection.
  • the two ends of the windings of the primary coils in the array of reaction cells are electrically connected to the two poles of the power source, that is, the hot and neutral ends, respectively, and different connections may cause excitation voltages in different directions on the primary coil.
  • each reaction unit in the reaction unit array, each reaction unit can be connected in various ways according to the needs of practical applications.
  • the reaction unit can be regarded as a structure of a transformer, belonging to an electric energy-magnetic energy-electric energy conversion device.
  • N P the number of turns
  • U P the alternating excitation voltage
  • U P the alternating excitation voltage
  • the closed core the value of which is proportional to the number of turns of the coil, and the principle is derived from the Ampere loop.
  • the law that is, in the magnetic field region, the integral of any closed line of the selected magnetic field equals the algebraic sum of the conduction current through the face defined by the closed path.
  • the varying magnetic flux in the closed core will produce the same varying induced voltages E s and E P in the secondary coil (the number of turns N S ) and the primary coil, respectively, and their relationship is as follows:
  • E P and E S are the induced voltages in the primary coil and the secondary coil, respectively;
  • U P and U S are the terminal voltages in the primary coil and the secondary coil, respectively;
  • N P and N S the number of turns of the primary coil and the secondary coil, respectively.
  • the induced voltage that is, the induced electric field strength is constant.
  • reaction units are connected in parallel with each other, that is, the feed port and the discharge port of the insulated line of any one of the partial reaction units are respectively connected to the inlet of the insulated line of the other reaction unit. And the outlet is connected.
  • At least a portion of the reaction units are connected in series with each other, that is, the inlet and outlet of the insulated conduit of each reaction unit in the portion of the reaction unit are separately from the insulated conduit of the reaction unit located upstream thereof
  • the feed port is connected to the feed port of the insulated pipe of the reaction unit located downstream thereof.
  • a portion of the reaction units may be simultaneously connected in parallel with each other and a portion of the reaction units may be connected in series to each other.
  • the feed liquid can be continuously passed through the reaction unit array (for example, one-time passage and completion of the reaction), or the feed liquid can be circulated in the reaction unit array until the reaction is completed.
  • reaction units can be connected to each other using a corrosion-resistant, pressure-resistant and high-temperature resistant pipe to form an array structure.
  • the arrayed induced electric field fluid reaction system may have a processing parameter such as excitation voltage U m,n , frequency f m,n , temperature T m,n in operation.
  • a processing parameter such as excitation voltage U m,n , frequency f m,n , temperature T m,n in operation.
  • multi-dimensional control of the reaction can be realized by real-time transformation and adjustment of the aforementioned excitation voltage, frequency and temperature matrix parameters.
  • Matrix a complex or real number set arranged in a rectangular matrix, and the number of m rows and n columns consisting of m ⁇ n numbers a ij is called m.
  • Row n column matrix referred to as m ⁇ n matrix.
  • the m ⁇ n matrix A is also denoted as A m,n :
  • each primary coil in the array of reaction cells is wound in a first direction, the secondary coil being wound in a first direction or a second direction, the first direction being opposite the second direction.
  • at least one primary coil of the array of reaction cells is wound in a first direction, at least another primary coil is wound in a second direction, the secondary coil being in a first direction or a second direction Winding, the first direction is opposite to the second direction.
  • the aforementioned first direction is a clockwise or counterclockwise direction.
  • the reaction unit may exhibit a "forward" or “negative” induced electric field, which can be realized in three ways:
  • the first is that all primary coils are placed in parallel with the power supply and the excitation voltages are in the same direction, and the winding directions of all the primary coils in the system are also the same, the insulated pipeline in the reactor can be specified (it can be spiral, so it can be When the winding direction is one of clockwise or counterclockwise, the direction of winding of the other spiral tube is “negative direction”, and the reaction of the “forward” spiral tube at this time A "positive” induced electric field is obtained in the unit, and a “negative” induced electric field is obtained in the reaction unit of the "negative” spiral tube.
  • the second type is that when all the primary coils are arranged in parallel with the power source and the excitation voltage directions are the same, and the spiral winding directions of the reactors in the system are also the same, the winding direction of the designated primary coil is one of clockwise or counterclockwise.
  • the other primary coil winding direction is "negative", in which case the reaction unit of the "forward” primary coil The “positive” induced electric field is obtained, and the “negative” induced electric field is obtained in the reaction unit of the "negative” primary coil.
  • the third is that the spiral winding directions of all the reactors in the system are the same, and when the winding directions of all the primary coils in the system are also the same, the "left" end of the primary coil is electrically connected to the live end of the power supply, and the primary coil is When the "right” end is electrically connected to the neutral end of the power supply, the excitation voltage is "forward”; otherwise, when the "right” end of the primary coil is electrically connected to the live end of the power supply, and the "left” end of the primary coil is electrically connected. When the neutral terminal of the power supply is used, the excitation voltage is "negative". At this time, a "positive” induced electric field is obtained in the reaction unit to which the "forward” excitation voltage is applied, and a “negative” induced electric field is obtained in the reaction unit to which the "negative” excitation voltage is applied.
  • the reaction units in the system of the present invention are arranged in an array, and the processing parameters can be characterized in the form of a matrix, by setting the excitation voltage direction, the reactor solenoid or the primary coil according to the right-handed screw rule.
  • the winding direction can cause "positive” and “negative” induced electric fields in the reaction unit of the system, further enriching the processing form of the system.
  • the power source is capable of emitting at least a sine wave, a sawtooth wave, a triangular wave, a unipolar pulse, and a bipolar pulse having a frequency range of 50 to 1300 Hz or 10 to 220 kHz, and the signal voltage is 0 to 200 kV.
  • the primary coil on the core can be energized by the power source to create an alternating induced electric field in the liquid.
  • the closed core adopts a closed core composed of at least one of silicon steel, nickel steel or ferrite material.
  • the primary coil may be made of metal.
  • the primary coil is wound around a closed core, and the primary coil and the power source are connected in parallel, that is, both ends of each primary coil are respectively connected to two poles on the corresponding power source (ie, the live end and The zero line ends are connected together.
  • the reaction unit includes a reactor, the insulated conduit is disposed in the reactor, and both ends of the insulated conduit are withdrawn from the reactor and serve as feed inlets and outlets, respectively. Feed port.
  • the insulated conduit is used as a support for the feed fluid (also referred to as an insulating support for the secondary coil) that is wound around the closed core and is generally helical. Therefore, it can be considered as a spiral tube, and both ends of the spiral tube can be respectively taken out from the two ends of the reactor as a feed port and a discharge port of the feed liquid, and the spiral tube is a thermostatic jacket layer and is in the reactor. There are constant temperature circulating bath inlets and constant temperature circulating bath outlets at both ends of the chamber for accessing mediums of different temperatures to maintain the reaction temperature of the feed liquid.
  • the spoke discharge port of each reactor is connected to the spiral tube feed port of the other reactor, and is also connected to the spiral tube discharge port of the other reactors.
  • the spiral tube feed port of each reactor is connected to the spiral tube discharge port of other reactors, and is also connected to the spiral tube feed ports of other reactors, that is, all the secondary coils are end to end. Connected to form a network.
  • a transfer pump may be disposed on the liquid supply line connecting the reaction units and/or the communication reaction unit and the liquid container to achieve the purpose of driving the liquid flow.
  • the reaction unit further includes a temperature control unit to adjust the temperature of the feed liquid.
  • the temperature control unit comprises a constant temperature jacket layer for circulating a temperature control medium
  • the constant temperature jacket layer is disposed in the reactor and encloses the insulation pipeline
  • the constant temperature jacket layer Also connected to the temperature control medium inlet and the temperature control medium outlet distributed on the reactor, the temperature control medium inlet and the temperature control medium outlet on the reactor are also connected to the constant temperature circulation bath.
  • the temperature regulating medium may be a fluid having different temperatures, particularly a liquid of different temperatures, and may be, for example, water and glycerin, etc., and is not limited thereto.
  • the temperature control medium inlet and the temperature control medium outlet on the at least one reactor may be respectively connected to the temperature control medium outlet on the upstream at least one reactor and the temperature control medium inlet on the downstream at least one reactor.
  • the temperature control medium inlet and the temperature control medium outlet on at least one of the reactors may also be separately coupled to the temperature control medium inlet and the temperature control medium outlet on at least one other reactor.
  • the temperature control unit is a type of constant temperature circulation bath and a constant temperature bath, wherein the outlet and the inlet of the constant temperature circulation bath are respectively connected to the constant temperature circulation bath inlet and the constant temperature circulation bath outlet on each reactor.
  • the temperature of the feed liquid during processing can be maintained, and the constant temperature circulating bath outlet on each reactor can be connected to the constant temperature circulating bath inlet on the next-stage reactor; the liquid container can be placed in a constant temperature bath as needed.
  • the power source may be one or more. Further, in the array type induced electric field fluid reaction system, a certain number of power sources may be added according to the actual reaction amount.
  • the liquid material participating in the reaction serves as a conductor of the secondary coil of a plurality of reaction units (which can be regarded as a transformer) and an insulated spiral tube as a support.
  • a conductor of the secondary coil of a plurality of reaction units which can be regarded as a transformer
  • an alternating magnetic flux corresponding to the regular change is produced in the closed iron core.
  • an alternating induced electric field is generated in the liquid as the secondary coil, and the liquid can be in the pipeline system. Flow in one go and pass continuously, or continuously in the system in a cyclical manner until the reaction is completed.
  • the flow rate, excitation voltage, frequency, reaction cell array size, and reaction unit series-parallel structure can be set according to the characteristics of the reaction materials and the requirements of the product, and finally the purpose of controlling the reaction is achieved.
  • the reaction unit of the array type induced electric field fluid reaction system of the present invention exhibits a network-like interactive connection in which the induced electric field in each reaction unit is derived from an induction method, and the generator is a closed core, a coil, and a power source. Therefore, the energized electrode or the electrode plate is not used, and thus the contact with the reaction liquid does not occur.
  • the compactness of the reaction unit makes it easy to expand the processing scale.
  • the induced electric field that is, the induced voltage, appears in the solenoid of each reactor, according to wearing According to Weining's law, the total equivalent induced voltage in the flow path of the system varies with the matrix of the excitation voltage parameter.
  • the flow reaction liquid impedance also changes with the influence of the excitation voltage parameter matrix, the frequency parameter matrix and the reaction temperature parameter matrix. Therefore, according to Ohm's law, when the total equivalent voltage of the reaction system acts on the flowing reaction liquid with time-varying impedance, it will exhibit specific ion conduction, mass transfer and heat transfer effects, and change the activation energy of the reaction, thereby achieving Specific reaction effect.
  • Embodiments of the present invention also provide the use of the array type induced electric field fluid reaction system in agricultural product processing and/or chemical reaction.
  • the biochemical reaction includes at least one of catalysis, synthesis, extraction, hydrolysis, sterilization, enzyme inhibition, and protein modification, and is not limited thereto.
  • the array type induced electric field fluid reaction system can be applied to an auxiliary organic solvent method for rapidly extracting essential oils, vegetable oils and the like.
  • the vegetable oil can be continuously extracted rapidly in the application.
  • the power source used in the application is a variable frequency power supply, which can emit sine waves, sawtooth waves, triangular waves, unipolar pulses and bipolar pulses with a frequency range of 50 to 1000 Hz, and the signal voltage is 0 to 1000V.
  • the array type induced electric field fluid reaction system can be applied to sterilization, enzyme inactivation, protein modification, and the like.
  • the power source used in the application is a high voltage power supply, which can emit sine waves, sawtooth waves, triangular waves, unipolar pulses and bipolar pulses with a frequency range of 20 kHz to 100 kHz, and the signal voltage is 0 to 120 kV.
  • an array-type induced electric field fluid reaction system is provided in some embodiments of the present invention, which includes a processing device chain 100a (circulating flow) or a processing device chain 100b (single flow), reaction
  • the reactor 200, the reaction unit 300, the number of reactors and the array 400, etc., the reaction unit is connected in series with the basic structure 500a, and the reaction unit is connected in parallel to the basic structure 500b.
  • the processing device chain may include a power source 101, a constant temperature circulation bath 102, a closed iron core 103, a primary coil 104, a reactor 200, an acid and alkali resistant high temperature silicone tube 105, a pump 106, and a reaction liquid.
  • the output end of the power source 101 is connected to the primary coil 104, and the power source 101 used can emit sine waves, sawtooth waves, triangular waves, unipolar pulses and bipolar pulses with a frequency of 50 Hz to 1300 Hz or 10-220 kHz, and the signal voltage is 0.
  • the primary coil 104 is a metal coil wound on one side of the closed core 103, the closed core 103 may be made of silicon steel, nickel steel or ferrite material; the other side of the closed core 103 is enclosed in the reactor 200 This ensures that the spiral tube, i.e., the glass spring 201, in the reactor 200 is wound around the closed core 103.
  • the reactor 200 includes a glass spring 201 as an insulating support for the secondary coil, a constant temperature jacket layer 202, a glass spring feed port 203, a glass spring discharge port 204, a constant temperature circulation bath inlet 205, and a constant temperature circulation bath outlet. 206. That is, the two ends of the glass spring 201 are respectively taken out from the two ends of the reactor 200 as the inlet 203 and the outlet 204 of the reaction liquid, and the outside of the glass spring 201 is a constant temperature jacket layer 202, and a constant temperature circulating bath inlet is arranged at both ends of the reactor 200. 205 and a constant temperature circulating bath outlet 206 for introducing fluid medium (e.g., water, etc.) at different temperatures to maintain the temperature of the reaction liquid in the glass spring 201.
  • fluid medium e.g., water, etc.
  • the reaction unit 300 may include a reactor 200, a closed iron core 103, and a primary coil 104, and the primary coil 104 and the power source 101 of each reaction unit 300 are connected in parallel, each reaction.
  • Unit 300 is joined using a corrosion resistant and high temperature resistant silicone tube 105 to form the most basic series, parallel, string/parallel or other array structure in the system.
  • the series structure that is, the discharge port 204 on the glass spring 201 of each reactor 200 is connected to the feed port 203 of the next reactor, see Fig. 4; the parallel structure, that is, the advancement of the glass spring 201 of each reactor 200.
  • the ports 203 are all joined together while the discharge ports 204 on the glass spring 201 of each reactor 200 are also connected together, see FIG.
  • the series/parallel structure that is, a part of the reaction units in the system are simultaneously connected in parallel with each other and a part of the reaction units are connected in series; other array structures such as the spiral tube discharge port 204 of each reactor 200 and the spiral tube feed of other reactors 200
  • the ports 203 are connected while also being connected to the spiral tube discharge ports 204 of the other reactors 200, and vice versa, that is, the spiral tube feed ports 203 of each of the reactors 200 and the spiral tubes of the other reactors 200 are discharged.
  • the ports 204 are connected, and are also connected to the spiral tube inlets 203 of the other reactors 200, and all the secondary coils, i.e., the spiral tubes, are connected end to end to form a network.
  • each secondary coil, glass spring 201 and the reaction feed acts as a separate "voltage source".
  • the transfer pump 106 is disposed on the pipeline, and is connected with the reaction liquid container 107 to drive the flow of the reaction liquid.
  • the liquid container can be placed in the constant temperature bath 108 according to different reaction requirements. According to the reaction requirements, it is divided into a cyclic flow reaction (the system is shown in Figure 1) and a single flow reaction (the system is shown in Figure 2).
  • each reaction unit 300 driven by it operates normally, that is, P 0 ⁇ P 1 + P 2 + ⁇ + P n
  • P 0 a single power supply rated power
  • P n Is the input power of the nth reaction unit
  • U P is the output voltage of each power supply
  • Z P is the single primary coil at the operating frequency
  • I P is a single primary coil current
  • n is the maximum number of reaction units that each power source can drive.
  • the equipment can add any number of power supplies 101 according to the actual processing characteristics and is integrated into the cabinet; the constant temperature circulation bath 102 and The constant temperature circulating bath inlet 205 and the constant temperature circulating bath outlet 206 on the reactor 202 are turned on to maintain the temperature of the reaction liquid in the glass spring 201, and the constant temperature circulating bath outlet 206 and the next reactor 200 on each reactor 200.
  • the constant temperature circulating bath inlet 205 is connected.
  • the reaction unit 300 can generate a "forward" or “negative” induced voltage, which is implemented in the following three ways.
  • the first type is that when all the primary coils 104 are arranged in parallel with the power source 101 and the excitation voltage directions are the same, and the winding directions of all the primary coils 104 in the system are also the same, the glass spring 201 in the designated reactor 200 is wound.
  • the winding direction of the other glass spring 201 is "negative”, at this time in the reaction unit 300 of the "forward” glass spring 201.
  • a "positive” induced electric field is obtained, while a “negative” induced electric field is obtained in the reaction unit 300 of the "negative” glass spring 201.
  • the second type is that all the primary coils 104 are arranged in parallel with the power source 101 and the excitation voltage directions are the same, and when the winding directions of the glass springs 201 of all the reactors 200 in the system are also the same, the winding direction of the designated primary coil 104 is clockwise. Or one of the counterclockwise directions is "forward”, then the other primary coil 104 is wound in the direction of "negative direction", at which time "positive” is obtained in the reaction unit 300 of the "forward” primary coil 104. The induced electric field results in a "negative” induced electric field in the reaction unit 300 of the "negative” primary coil 104.
  • the third type is that the glass springs 201 of all the reactors 200 in the system have the same winding direction, and when the winding directions of all the primary coils 104 in the system are also the same, the "left" end of the designated primary coil 104 is electrically connected to the live end of the power source 101.
  • the excitation voltage is "forward”; otherwise, when the "right” end of the primary coil 104 is electrically connected to the live terminal of the power supply 101, and the primary When the "left” end of the coil 104 is electrically connected to the neutral terminal of the power supply 101, the excitation voltage is "negative".
  • a "forward" induced electric field is obtained in the reaction unit 300 to which the "forward” excitation voltage is applied, and a “negative” induced electric field is obtained in the reaction unit 300 to which the "negative” excitation voltage is applied.
  • the synthesis of the epoxy emulsifier comprises the following steps:
  • Step 1 setting the "forward” or “negative” induced electric field of the reaction unit 300, in the third form, in which the glass springs 201 of all the reactors 200 in the system are wound in a clockwise direction, and the system The winding directions of all the primary coils 104 are also clockwise.
  • the excitation voltage in the reaction unit 300 is designated as "forward”
  • the induced electric field is “forward”
  • the excitation voltage in the reaction unit 300 is "negative”.
  • the direction is ", the induced electric field is "negative”;
  • Step 2 Add 100 g of epoxy resin and 120 g of polydiethanol to the beaker 107, stir and mix well, and slowly add 3 g of potassium persulfate;
  • Step 3 Turn on the constant temperature circulating bath 102 and the constant temperature bath 108 and set the temperature to 120 ° C.
  • the constant temperature circulating solution flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out from the constant temperature circulating bath outlet 206, and Entering the constant temperature jacket layer 202 of the next reactor 200, this embodiment uses 9 reaction units 300, the excitation voltage in the three reaction units 300 is "forward", and the excitation voltage in the other six reaction units 300 is "Negative direction", the reaction time is 120 min in total, wherein the reaction unit 300 in which a "forward" induced electric field appears in the system 30 minutes before the reaction, and the reaction unit 301 in which a "negative” induced electric field appears, as shown by a in FIG.
  • the reaction unit 300 in which a "forward" induced electric field appears in the system 90 minutes after the reaction, and the reaction unit 301 in which a "negative” induced electric field appears, as shown by b in FIG. 6, uses a cyclic flow reaction, that is, Using a processing device chain 100a;
  • Step 4 Turn on the power supply 101 to select a sine wave with a frequency of 700 Hz and a voltage amplitude of 750 V.
  • the center of the nickel steel core 103 has a circumference of 1050 mm and a thickness of 20 mm.
  • the current I P of the primary coil 104 is 1 A
  • the number of turns of the glass spring 201 is 25 ⁇ , that is, the secondary coil is 25 ⁇
  • the inner diameter of the spring 201 is 4 mm.
  • there are 9 reaction units 300 that is, the total input power of the system is 6.75 kW
  • Step 5 Turn on the peristaltic pump 106 again to ensure that the reaction liquid starts to flow and pass through all the reaction units 300 in the equipment and the volume flow rate is 150 mL/min, that is, the sample liquid flows from the glass spring inlet 203 of each reactor 200. And then flow out from its glass spring discharge port 204, and enter the next reaction unit 300, the total reaction time is 120min, wherein the excitation voltage of the first 30min is U 3,3 , and the excitation voltage after 90min is The whole process voltage frequency is f 3,3 , the reaction whole temperature is T 3,3 , the power supply 101, the peristaltic pump 106, the constant temperature bath 108 and the constant temperature circulating water bath 102 are turned off;
  • Step 6 The discharged sample was measured for the epoxy value of the reaction system by the hydrochloric acid-acetone method, and the epoxy value was measured to be 0.643.
  • Step 1 setting the "forward” or “negative” induced electric field of the reaction unit 300, in the first form, all the primary coils 104 and the power source 101 are arranged in parallel and the excitation voltage directions are "forward". And the winding direction of all the primary coils 104 in the system is clockwise.
  • the induced electric field is "forward”; then the glass spring 201 in the reaction unit 300 is reversed.
  • the induced electric field is "negative”;
  • Step 2 Take 60 g of corn stalk powder of 60 mesh in 50 L plastic drum 107, add 30 L of distilled water, adjust the pH of the reaction solution with 1.2 mol of HCl, and mix and shake;
  • Step 3 Turn on the constant temperature circulating bath 102 and the constant temperature water bath 108 and set the temperature to 80 ° C.
  • the constant temperature circulating solution flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out from the constant temperature circulating bath outlet 206, and Entering the constant temperature jacket layer 202 of the next reactor 200
  • this embodiment uses 16 reaction units 300, wherein the glass springs 201 in the 8 reaction units 300 are clockwise, and the glass springs 201 in the other 8 reaction units 300
  • the reaction unit 300 in which a "forward" induced electric field appears in the system, and a reaction unit 301 in which a "negative” induced electric field appears as shown in FIG. 7, uses a cyclic flow reaction, that is, a processing device chain 100a;
  • Step 4 Turn on the power supply 101 to select a sine wave with a frequency of 500 Hz and a voltage amplitude of 500 V.
  • the matrix of the control parameters is: excitation voltage U 2,8 , voltage frequency f 2,8 , temperature T 2,8 , as shown in Figure 7.
  • reaction units 300 there are 16 reaction units 300, that is, the total of the system.
  • Step 5 Turn on the peristaltic pump 106 again to ensure that the reaction liquid starts to flow and pass through all the reaction units 300 in the system and the volume flow rate is 500 mL/min, that is, the sample liquid flows from the glass spring inlet 203 of each reactor 200. Then, it flows out from the glass spring discharge port 204 and enters the next reaction unit 300, and the cycle reaction time is 8 hours, wherein the excitation voltage of the whole process is U 2,8 , and the voltage frequency of the whole process is f 2,8 , the temperature of the whole process is T 2,8 , the power supply 101, the peristaltic pump 106, the constant temperature water bath 108 and the constant temperature circulating water bath 102;
  • the reduced sugar content of the crude straw hydrolysate treated by the array type induced electric field fluid reaction system is 45.4 g/L, and if other reaction conditions are the same, no excitation voltage is applied to each primary.
  • the finally obtained corn stalk crude hydrolyzate has a reducing sugar content of only 5.3 g/L.
  • apple pomace extraction takes apple pomace extraction as an example to further illustrate the application of the array induced electric field fluid reaction system in the extraction reaction.
  • Step 1 setting the "forward" or “negative” induced electric field of the reaction unit 300, in the first form, all the primary coils 104 and the power source 101 are arranged in parallel and the excitation voltage directions are "forward". And the winding directions of all the primary coils 104 in the system are clockwise.
  • the induced electric field is "forward”; and the glass spring 201 in the reaction unit 300 is reversed.
  • the induced electric field is "negative”;
  • Step 2 Take 2000g of apple, beat it in 50L plastic cup 107, add 35L of distilled water, mix and shake, adjust the pH of the reaction liquid with 1.5 mol of HCl, mix and shake;
  • Step 3 Turn on the constant temperature circulating bath 102 and the constant temperature water bath 108 and set the temperature to 60 ° C.
  • the constant temperature circulating solution flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out from the constant temperature circulating bath outlet 206, and Entering the constant temperature jacket layer 202 of the next reactor 200, this embodiment uses 25 reaction units 300, wherein the glass springs 201 in the 15 reaction units 300 are clockwise, and the glass springs 201 in the other 10 reaction units 300 For Counterclockwise, the reaction unit 300 in which a "forward" induced electric field appears in the system, and a reaction unit 301 in which a "negative” induced electric field appears.
  • a one-time flow reaction is employed, that is, a processing device chain 100b is employed. ;
  • Step 4 Turn on the power supply 101 to select a sine wave with a frequency of 45 kHz and a voltage amplitude of 10 kV.
  • the matrix of the control parameters is: excitation voltage U 5,5 , voltage frequency f 5,5 , temperature T 5,5 , as shown in Figure 8. It is shown that the rated power P 0 of each power source is 40 kW, and the primary coil 104 on the closed ferrite core 103 in each reaction unit 300 is excited, and the center circumference of the closed ferrite core 103 is 850 mm and the thickness is 28 mm.
  • Step 5 Turn on the peristaltic pump 106 again to ensure that the reaction liquid starts to flow and pass through all the reaction units 300 in the equipment and the volume flow rate is 500 mL/min, that is, the sample liquid flows from the glass spring inlet 203 of each reactor 200. Then, it flows out from its glass spring discharge port 204 and enters the next reaction unit 300 until all the outflow equipments have a time of 85 minutes, wherein the excitation voltage of the whole reaction process is U 5 , 5 , and the voltage frequencies of the whole process are all f 5,5 , the temperature of the whole process is T 5,5 , the power supply 101, the peristaltic pump 106, the constant temperature water bath 108 and the constant temperature circulating water bath 102;
  • Step 6 The discharged liquid is added to the NaHCO 3 solution with a mass fraction of 1% immediately after room temperature, the pH of the solution is changed to 7, the reaction is terminated, and the solution is centrifuged at 3000 rpm for 15 minutes to remove the precipitate, and the remaining filtrate is After drying in a blast oven at 48 ° C for 15 h, a pale yellow crude pectin powder was obtained.
  • the mass of the apple pomace pectin treated by the array type induced electric field fluid reaction system device was measured to be 306.5 g, compared with the other reaction conditions, but no excitation voltage was applied to each of the primary coils 104.
  • the final quality of the crude pectin is only 76.5g.
  • the grape seed oil extraction is taken as an example to further illustrate the application of the array induced electric field fluid reaction system in vegetable oil extraction reaction.
  • Grape seed oil extraction is as follows:
  • Step 1 setting the "forward” or “negative” induced electric field of the reaction unit 300, in the second form, in which all the primary coils 104 and the power source 101 are arranged in parallel and the excitation voltage direction is "forward". And the winding direction of the glass spring 201 of the reactor 200 in the system is clockwise, and the induced electric field appearing in the reaction unit 300 containing the clockwise primary coil 104 is “positive", and the counterclockwise primary coil 104 is included. The induced electric field appearing in the reaction unit 300 is "negative direction";
  • Step 2 Take 10kg of grape seed powder of 60 mesh in 200L sealed plastic drum 107, and use n-hexane as extractant. And adding 130L to the sealed plastic drum 107, mixing and shaking;
  • Step 3 Turn on the constant temperature circulating bath 102 and the constant temperature water bath 108 and set the temperature to 48 ° C.
  • the constant temperature circulating solution flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out from the constant temperature circulating bath outlet 206.
  • this embodiment uses 25 reaction units 300, wherein the primary coil 104 in the 12 reaction units 300 is clockwise, and the primary coil in the other 13 reaction units 300 104 is counterclockwise, the reaction unit 300 in which a "forward" induced electric field appears in the system, and a reaction unit 301 in which a "negative” induced electric field appears.
  • a one-time flow reaction is adopted, that is, a processing device is used.
  • Step 4 Turn on the variable frequency power supply 101 to select the sawtooth wave, the frequency is 800Hz, and the voltage amplitude is 900V.
  • the matrix of the control parameters is: excitation voltage U 5,5 , voltage frequency f 5,5 , temperature T 5,5 , as shown in Figure 9.
  • the rated power of each power source P 0 50 kW, while exciting the primary coil 104 on the closed nickel steel core 103 in each reaction unit 300, closing the center circumference of the nickel steel core 103 1050 mm, thickness 20 mm, at this time all
  • the number of turns of the primary coil 104 on the reaction unit 300 is 120 ⁇
  • the current I P 3 A of each primary coil 104, of the single reaction unit 300
  • the number of turns of the glass spring 201 is 23 ⁇ , that is, the secondary coil is 23 ⁇
  • the inner diameter of the glass spring 201 is 4 mm.
  • reaction units 300 there are 25 reaction units 300, that is, equipped
  • Unit 300 operates normally.
  • Step 5 Turn on the peristaltic pump 106 again to ensure that the feed liquid begins to flow and pass through all the reaction units 300 in the equipment and the volume flow rate is 5 L/min, that is, the grape seed powder-n-hexane feed liquid enters from the glass spring of each reactor 200.
  • the inlet 203 flows in, then flows out from the glass spring outlet 204, and enters the next reactor 200 until all the equipment is out, the time is 33 min, wherein the excitation voltage of the whole reaction is U 5,5 , and the whole reaction process
  • the voltage frequency is f 5,5
  • the temperature of the whole process is T 5,5
  • the variable frequency power supply 101, the peristaltic pump 106, the constant temperature water bath 108 and the constant temperature circulating water bath 102 are turned off;
  • Step 6 The discharged liquid is filtered, and the grape seed residue and the extracting agent are separated, and the extract is subjected to rotary evaporation under reduced pressure at 55 ° C to recover n-hexane to obtain grape seed oil with a mass of 1458 g.
  • the other reaction conditions were the same, but no excitation voltage was applied to each of the primary coils 104, the final quality of the grape seed oil was only 563 g.
  • the following is an example of the killing of E. coli and the inactivation of polyphenol oxidase in apple juice, and further illustrate the application of array-type induced electric field fluid reaction system in liquid food sterilization and enzyme elimination.
  • Step 1 setting the "forward” or “negative” induced electric field of the reaction unit 300, in the second form, in which all the primary coils 104 and the power source 101 are arranged in parallel and the excitation voltage direction is "forward". And the winding direction of the glass spring 201 of the reactor 200 in the system is also clockwise, and the induced electric field appearing in the reaction unit 300 containing the clockwise primary coil 104 is "positive", and the counterclockwise primary coil 104 is included.
  • Reaction unit 300 The induced electric field that appears is "negative";
  • Step 2 After the apple is cleaned and peeled, cut into small pieces of 2cm ⁇ 2cm ⁇ 2cm, and put it into a masher to beat into juice. When it is beaten, it will be protected by adding 0.1% vitamin C to prevent browning.
  • the apple pulp was centrifuged at 8000 rpm for 20 min, and then the supernatant was filtered with two layers of filter cloth to remove coarse particles or suspended particles dispersed in the apple juice to obtain a clearer apple juice, which is a sample of the original apple juice, and then After sterilization at 121 ° C for 20 min, the microorganisms were inoculated to prepare a sample containing the apple juice;
  • Escherichia coli (CGMCC 1.90) is the target microorganism and purchased from the China General Microorganisms Collection and Management Center.
  • Escherichia coli for experiment firstly, the activated culture of test-tube bacteria is carried out, that is, it is made into nutrient agar slant culture, and then the strain is inoculated into nutrient broth, and cultured at 35 ° C for 13 h at constant temperature to make the cell concentration reach 10 8 -10 9 cfu. /mL.
  • the above 6 mL culture solution was connected to 600 mL of sterilized apple juice, and the bacterial cell concentration in the sample was 10 6 -10 7 cfu/mL to obtain a sample containing the apple juice.
  • Step 5 successively taking the original apple juice sample and the bacteria-containing apple juice sample 5L in the sealed plastic drum 107;
  • Step 6 Turn on the constant temperature circulating bath 102 and the constant temperature water bath 108 and set the temperature to 12 ° C.
  • the constant temperature circulating solution flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out from the constant temperature circulating bath outlet 206, and Entering the constant temperature jacket layer 202 of the next reactor 200, this embodiment uses 16 reaction units 300, wherein the primary coil 104 of the 10 reaction units 300 is clockwise, and the primary coil 104 of the other 6 reaction units 300 In the case of counterclockwise, the reaction unit 300 in which a "forward" induced electric field appears in the system, and a reaction unit 301 in which a "negative” induced electric field appears, as shown in FIG. 10, adopts a one-time flow processing, that is, a processing device chain 100b;
  • Step 7 Turn on the high-frequency power supply 101 to select a sine wave with a frequency of 20 kHz and a voltage amplitude of 10 kV.
  • the matrix of the control parameters is: excitation voltage U 4,4 , voltage frequency f 4,4 , temperature T 4,4 , as shown in the figure
  • the rated power of each power source P 0 40 kW, while exciting the primary coil 104 on the closed ferrite core 103 in each reaction unit 300, closing the center circumference of the ferrite core 103 by 850 mm, thickness 28 mm, at this time, the number of turns of the primary coil 104 on all the reaction units 300 is 100 ⁇
  • the current I P 0.5 A per primary coil 104
  • glass spring 201 turns of 25 turns, namely 25 coil turns,
  • Step 8 Turn on the peristaltic pump 106 again to ensure that the feed liquid begins to flow and pass through all the reaction units 300 in the equipment and the volume flow rate is 2 L/min, that is, the sample feed liquid flows in from the glass spring feed port 203 of each reactor 200. Then, it flows out from its glass spring discharge port 204 and enters the next reactor 200 until it flows out of the equipment for 3 minutes.
  • the excitation voltage of the whole process is U 4,4
  • the voltage frequency of the whole process is f. 4,4
  • the temperature of the whole process is T 4,4 , turn off the variable frequency power supply 101, the peristaltic pump 106, the constant temperature water bath 108 and the constant temperature circulating water bath 102;
  • Step 9 Samples of the original apple juice and the apple juice containing bacteria were successively subjected to polyphenol oxidase activity measurement and Escherichia coli determination, and Escherichia coli was measured according to the method described in AOAC 991.14, and the samples were counted for colonies.
  • the bactericidal effect is expressed in terms of lethal magnitude and is calculated as follows:
  • Lethal magnitude log(N 0 /N)
  • N is the number of microorganisms treated by the device, cfu/mL
  • N 0 is the number of microorganisms before the treatment of the device, cfu/mL.
  • Polyphenol oxidase relative enzyme activity (%) enzyme activity after treatment of the equipment / enzyme activity before treatment of the equipment ⁇ 100%
  • the arrayed induced electric field fluid reaction system showed that the number of E. coli colonies in the sample containing apple juice decreased by 4.3 orders of magnitude.
  • the polyphenol oxidase relative enzyme activity of the original apple juice sample was 26.5%. .
  • Orange peel oil is extracted as follows:
  • Step 1 setting the "forward” or “negative” induced electric field of the reaction unit 300, in the second form, in which all the primary coils 104 and the power source 101 are arranged in parallel and the excitation voltage direction is "forward". And the winding direction of the glass spring 201 of the reactor 200 in the system is clockwise, and the induced electric field appearing in the reaction unit 300 containing the clockwise primary coil 104 is “positive", and the counterclockwise primary coil 104 is included. The induced electric field appearing in the reaction unit 300 is "negative direction";
  • Step 2 Take 80 kg of orange peel powder of 80 mesh in a sealed plastic drum 107 of 50 L, petroleum ether as an extractant and add 20 L to the sealed plastic drum 107, and mix and shake;
  • Step 3 Turn on the constant temperature circulating bath 102 and the constant temperature water bath 108 and set the temperature to 42 ° C.
  • the constant temperature circulating solution flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out from the constant temperature circulating bath outlet 206.
  • this embodiment uses 8 reaction units 300, of which 4 The primary coil 104 in the reaction unit 300 is clockwise, and the primary coil 104 in the other four reaction units 300 is counterclockwise, and the reaction unit 300 of the "positive" induced electric field appears in the system, and a "negative” induction occurs.
  • the electric field reaction unit 301 as shown in FIG. 11, the circulating flow processing, that is, using the processing device chain 100a;
  • Step 4 Turn on the variable frequency power supply 101 to select a sine wave with a frequency of 700 Hz and a voltage amplitude of 500 V.
  • the matrix of the control parameters is: excitation voltage U 8,1 , voltage frequency f 8,1 , temperature T 8,1 , as shown in Figure 11.
  • the rated power of each power source P 0 10 kW, while exciting the primary coil 104 on the closed nickel steel core 103 in each reaction unit 300, closing the center circumference of the nickel steel core 103 1050 mm, thickness 20 mm, at this time all
  • the number of turns of the primary coil 104 on the reaction unit 300 is 100 ⁇
  • the current I P 2 A per primary coil 104, of the single reaction unit 300
  • the number of turns of the glass spring 201 is 20 ⁇ , that is, the secondary coil is 20 ⁇
  • the inner diameter of the glass spring 201 is 3 mm.
  • Step 5 Turn on the peristaltic pump 106 again to ensure that the feed liquid starts to flow and pass through all the reaction units 300 in the equipment and the volume flow rate is 1 L/min, that is, the orange peel powder-petroleum ether liquid is fed from the glass spring of each reactor 200.
  • the feed port 203 flows in, then flows out from the glass spring discharge port 204, and enters the next reactor 200.
  • the circulation flow processing time is 15 min, wherein the excitation voltage of the whole reaction process is U 8 , 1 , and the voltage frequency of the whole reaction process is For f 8,1 , the temperature of the whole process is T 8,1 , turn off the variable frequency power supply 101, the peristaltic pump 106, the constant temperature water bath 108 and the constant temperature circulating water bath 102;
  • Step 6 The discharged liquid is filtered, and the orange peel and the extracting agent are separated, and the extract is subjected to rotary evaporation under reduced pressure at 52 ° C to recover petroleum ether, and the orange peel oil is obtained, and the mass is 213 g.
  • the other reaction conditions are the same, but the excitation voltage is not applied to each of the primary coils 104, the quality of the orange peel oil finally obtained is only 63 g.
  • Step 1 setting the "forward” or “negative” induced electric field of the reaction unit 300, in the second form, in which all the primary coils 104 and the power source 101 are arranged in parallel and the excitation voltage direction is "forward". And the winding direction of the glass spring 201 of all the reactors 200 in the system is clockwise, and the induced electric field appearing in the reaction unit 300 containing the clockwise primary coil 104 is "positive", and the counterclockwise primary coil 104 is included. The induced electric field appearing in the reaction unit 300 is "negative direction";
  • Step 2 Dip the eggshell intact in 30 °C warm water, dry at room temperature, beat the egg, remove the tie, carefully separate the egg yolk, stir with a power stirrer at a small speed (100r/min) Evenly, get egg whites.
  • Step 3 taking 6L of the prepared egg white sample in the sealed plastic drum 107;
  • Step 4 Turn on the constant temperature circulation bath 102 and the constant temperature bath 108 and set the temperature to 10 ° C.
  • the liquid flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out of its constant temperature circulating bath outlet 206, and enters the constant temperature jacket layer 202 of the next reactor 200.
  • 10 reaction units 300 are used, wherein When the primary coil 104 of the five reaction units 300 is clockwise, and the primary coil 104 of the other five reaction units 300 is counterclockwise, a reaction unit 300 of "positive" induced electric field appears in the system, and "negative direction" occurs.
  • the reaction unit 301 of the induced electric field adopts a one-time flow processing, that is, using a processing device chain 100b;
  • Step 5 Turn on the high-voltage power supply 101 to select a sine wave with a frequency of 80 kHz and a voltage amplitude of 10 kV.
  • the matrix of the control parameters is: excitation voltage U 1,10 , voltage frequency f 1,10 , temperature T 1,10 , as shown in Figure 12
  • Step 6 Turn on the peristaltic pump 106 again to ensure that the liquid begins to flow and through all the reaction units 300 in the equipment and the volume flow rate is 500 mL/min, that is, the egg white liquid flows in from the glass spring inlet 203 of each reactor 200. Then, it flows out from its glass spring discharge port 204 and enters the next reactor 200 until it flows out of the equipment for 15 minutes.
  • the excitation voltage of the whole process is U 1,10
  • the voltage frequency of the whole process is f. 1,10
  • the temperature of the whole process is T 1,10
  • the high voltage power supply 101, the peristaltic pump 106, the constant temperature water bath 108 and the constant temperature circulating water bath 102 are turned off;
  • Step 7 The discharged egg white is tested for foaming and foam stability.
  • the egg white is diluted with deionized water to a mass content of 2%, 100 mL of diluted egg white solution is taken, and a high-speed disperser is used at 10000 r/min. The speed was dispersed for 2 min. Record the foam volume numbers V 1 and V 2 at the time of homogenization stop and 30 min after the stop, and calculate according to the following formula:
  • Foaming property /% (V 1 /100) ⁇ 100
  • Foam stability /% (V 2 /V 1 ) ⁇ 100
  • the extraction of the sapphire oil is as follows:
  • Step 1 setting the "forward” or “negative” induced electric field of the reaction unit 300, in the second form, in which all the primary coils 104 and the power source 101 are arranged in parallel and the excitation voltage direction is "forward". And the winding direction of the glass spring 201 of the reactor 200 in the system is clockwise, and the induced electric field appearing in the reaction unit 300 containing the clockwise primary coil 104 is “positive", and the counterclockwise primary coil 104 is included. The induced electric field appearing in the reaction unit 300 is "negative direction";
  • Step 2 Take 10 kg of 60-degree crown fruit powder in a sealed plastic drum 107 of 200 L, use n-hexane as an extractant, and add 160 L to the sealed plastic drum 107, mix and shake;
  • Step 3 Turn on the constant temperature circulating bath 102 and the constant temperature bath 108 and set the temperature to 48 ° C.
  • the constant temperature circulating solution flows in from the constant temperature circulating bath inlet 205 of each reactor 200, and then flows out from the constant temperature circulating bath outlet 206.
  • this embodiment uses 60 reaction units 300, wherein the primary coils 104 in all 60 reaction units 300 are clockwise, then all the reaction units 300 in the system are "forward" induction
  • 40 reaction units 300 in the system is a series structure 600a, 20 reaction units 300 is a parallel structure 600b, as shown in Figure 13, using a one-time flow reaction, that is, using a processing device chain 100b;
  • the rated power of each power source P 0 50 kW, while exciting the closed nickel steel core 103 in each reaction unit 300
  • the upper primary coil 104, the 60 closed nickel steel cores 103 have a central circumference of 1000 mm and a thickness of 22 mm.
  • the number of turns of the primary coil 104 on the 40 reaction units 300 of 600a is 120 ⁇ , and the primary coil 104 at 800 Hz.
  • the total input power of 600a is 20kW
  • the 20 reaction units 300 are in normal operation, so four variable frequency power supplies are installed in the system and installed in the whole cabinet.
  • Step 5 Turn on the peristaltic pump 106 again to ensure that the feed liquid begins to flow and pass through all the reaction units 300 in the equipment and the volume flow rate is 5 L/min, that is, the ginseng powder-n-hexane feed liquid enters from the glass spring of each reactor 200.
  • the port 203 flows in, then flows out from its glass spring outlet 204, and enters the next reactor 200 until all the equipment is out, the time is 38 min, wherein the excitation voltage U 1 and U 2 of the whole process are reacted, and the voltage of the whole process is reacted.
  • Frequency f 1 and f 2 the temperature T of the whole process does not change, turn off the variable frequency power supply 101, the peristaltic pump 106, the constant temperature bath 108 and the constant temperature circulating water bath 102;
  • Step 6 The discharged liquid is filtered, and the grape seed residue and the extracting agent are separated, and the extract is subjected to rotary evaporation under reduced pressure at 55 ° C to recover n-hexane to obtain a medicinal fruit oil having a mass of 4526 g.
  • the other reaction conditions are the same, but the excitation voltage is not applied to each of the primary coils 104, the final quality of the dried fruit oil is only 1093 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种阵列式感应电场流体反应系统及其应用。所述系统包括:包含呈网络式交互连接的若干反应单元(300)的反应单元阵列(400),其中每一反应单元(300)包括一闭合铁芯(103)以及分别绕制于所述闭合铁芯两侧的初级线圈(104)和次级线圈,所述次级线圈包括可供料液流通的绝缘管路,所述绝缘管路具有进料口(203)和出料口(204);电源(101),用以向各初级线圈(104)提供激励电压;以及,料液容器(107),与各反应单元(300)中的绝缘管路连通。所述系统在工作时,无电极或极板直接与料液接触,可避免料液被污染,而且各反应单元(300)可形成阵列式网络连接以及其他形式的串并联连接,其中系统中各反应单元(300)中的感应电场各自作用于料液时,能达成特异性反应效果,同时该系统可根据规模和产量进行任意的扩展,可满足不同规模的生产需求,方便扩大产能。

Description

阵列式感应电场流体反应系统及其应用 技术领域
本发明特别涉及一种基于阵列式感应电场流体反应系统及其应用,例如在食品加工、杀菌灭酶、蛋白质改性、化学催化和改性或天然产物提取等领域的应用。
背景技术
使用连续流的管式反应器进行各类化学反应,是一项新兴的反应技术,在过去的短短几年中发展迅速,在食品、药物、精细化工及能源领域中得到了越来越多的应用。管式反应系统,包括的基本单元有混和器、换热器、反应器、控制器等等。它的管道尺寸可从数十毫米到数百微米,流动时反应的物料能够得到快速和均匀的混和,因此具有出色的传质和传热性能,工艺条件可得到快速而便捷的优化且易于产能扩大,缩短了产品从研发到生产的周期且可实现连续化的生产。近年来也有报道将电场、磁场和电磁场等物理场引入并结合到管式反应器中,对流动反应原料中的具有特异性电介质或磁导率的溶质进行作用,达到改变传质效率和提升反应动力学参数的目的。
进一步,电场加工技术已经广泛的应用于食品、化工、生化和医疗等领域。近年来,大量报道的电场加工技术包括欧姆加热杀菌(Ohmic heating sterilization)、脉冲电场(Pulsed electric field)和中强度电场(Moderate electric field)技术。同时,它们也都是国际上新兴的研究领域,其加工的共同特点都是将液态原料置于装置内,并流经狭长通道中的两个放电电极区域,反应料液作为电介质受到一定场强的交变电场影响,进而可引起细胞组织的电穿孔、改变传质效率以及反应动力学参数。但是,这些技术都采用了充电电极或极板来处理样品,易造成极板间的离子极化、电化学反应、重金属渗透对料液的污染。故采用现成的电场技术来辅助各类化学反应就会被限制,特别是应用到有各类强酸和强碱的反应中。
再者,物理场如磁场、电场、电磁场也可作为反应器的控制参数,即这些物理参数应用于各类反应中会起到对化学反应的促进或抑制作用,但是根据它们的“发生源”的特点,具体在工程应用时又会有极大的限制。主要是因为磁场、电场和电磁场的发生器结构较为复杂、体积偏大、发生装置价格高昂、且不易灵活的排布和安装,从而也限制了它们作为加工控制参数在化学反应中的应用,故无法更好的实现多维度的反应控制。
例如,磁场的发生源采用永磁铁或赫姆霍兹线圈,电磁场的发生源用磁控管和振荡发生器,由于磁场和电磁场对普通无机物质和有机物具有穿透性,作用于料液时发生源和反应料液是处于隔离的状态,发生器本身无法且也不会和反应料液直接物理接触。若将磁场和电磁场的发生器按阵列的形式进行排布,装置体积必然巨大且昂贵,更不易于 扩大。而且磁场和电磁场作用于反应料液时,影响仅限于磁场和电磁场穿过的区域,对流动在管路中其他区域的料液无影响,故阵列式的排布磁场和电磁场发生器并启动,不会对化学反应有“综合性”的作用。又例如,电场的发生器为电极和电源,任何电化学反应都需要电极和反应料液直接接触,而在其他电场辅助的化学反应中,如脉冲电场和中强度电场,因其技术和装置结构的特定,反应料液需要和电极直接接触,这样就不利于长时间的对反应料液进行处理,因为通电的电极和任何含有带电离子、带电分子或颗粒的反应物质长时间接触都会发生电极的表面腐蚀和电极物质在料液中的渗漏,从而污染反应系统。故更无法以阵列的形式使大量的充电电极并直接插入到反应料液中,所以传统的电场技术也无法实现阵列式的电场辅助反应。
综上所述,现有的反应器均无法有效而便捷的将电场作为阵列式的控制参数而应用到各类化学和生物反应中。
发明内容
针对现有技术的不足,本发明的主要目的在于提供一种阵列式感应电场流体反应系统及其应用。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种阵列式感应电场流体反应系统,其包括:
反应单元阵列,包含呈网络式交互连接的(m×n)个反应单元,m、n均选自大于1的正整数,其中每一反应单元包括:
一闭合铁芯,
一初级线圈,绕制于所述闭合铁芯一侧,
一次级线圈,绕制于所述闭合铁芯另一侧,所述次级线圈包括可供料液流通的绝缘管路,所述绝缘管路具有进料口和出料口;
电源,与各反应单元中的初级线圈电连接并向各初级线圈提供激励电压;
以及,料液容器,与各反应单元阵列中的绝缘管路连通;
并且,所述反应单元阵列中至少一反应单元中绝缘管路的进料口和出料口分别与上游的至少一反应单元的绝缘管路的出料口及下游的至少一反应单元的绝缘管路的进料口连接,和/或,所述反应单元阵列中至少一反应单元中绝缘管路的进料口和出料口分别与至少另一反应单元的绝缘管路的进料口和出料口连接;同时,所述反应单元阵列中各初级线圈的绕线两端分别与相应电源的两极(亦即,火线端和零线端)电连接。
进一步的,所述阵列式感应电场流体反应系统在工作时的激励电压Um,n、频率fm,n与温度Tm,n可用矩阵的形式进行表示:
Figure PCTCN2016090710-appb-000001
本发明实施例还提供了所述阵列式感应电场流体反应系统在农产品加工和/或化学反应中的应用。
与现有技术相比,本发明提供的阵列式感应电场流体反应系统在工作时,料液中的交变电场来源于感应的方法,无通电的电极或极板直接与料液接触,可避免极板间的离子极化、电化学反应和重金属渗漏对料液的污染,而且该阵列式感应电场流体反应系统中反应单元形成阵列式的网络连接,各反应单元中的感应电场作用于流动的料液,改变反应活化能,能达成特异性反应效果,同时该阵列式感应电场流体反应系统可根据规模和产量进行任意的扩展,可满足实验室规模、中试规模和大规模生产的需求,方便产能的扩大。
附图说明
图1是本发明一典型实施方案中一种阵列式感应电场流体反应系统的结构示意图;
图2是本发明一典型实施方案中另一种阵列式感应电场流体反应系统的结构示意图;
图3是本发明一典型实施方案中一种反应单元的结构示意图;
图4是本发明一典型实施方案中一种反应单元的串联基本结构示意图;
图5是本发明一典型实施方案中一种反应单元的并联基本结构示意图;
图6是本发明实施例1中一种阵列式感应电场流体反应系统的反应单元数和阵列示意图;
图7是本发明实施例2中一种阵列式感应电场流体反应系统的反应单元数和阵列示意图;
图8是本发明实施例3中一种阵列式感应电场流体反应系统的反应单元数和阵列示意图;
图9是本发明实施例4中一种阵列式感应电场流体反应系统的反应单元数和阵列示意图;
图10是本发明实施例5中一种阵列式感应电场流体反应系统的反应单元数和阵列示意图;
图11是本发明实施例6中一种阵列式感应电场流体反应系统的反应单元数和阵列示 意图;
图12是本发明实施例7中一种阵列式感应电场流体反应系统的反应单元数和阵列示意图;
图13是本发明实施例8中一种阵列式感应电场流体反应系统的反应单元数和串并联结构示意图;
附图标记说明:加工装置链100a、加工装置链100b、电源101、恒温循环浴102、闭合铁芯103、初级线圈104、耐酸碱耐高温硅胶管105、泵106、反应料液容器107、恒温水浴108、反应器200、玻璃弹簧201、恒温夹套层202、螺旋管进料口203、螺旋管出料口204、恒温循环浴进口205、恒温循环浴出口206、反应单元300,反应器个数与阵列400,反应单元串联基本结构500a,反应单元并联基本结构500b。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,其主要是通过阵列式交变感应电场实现对各类生化反应的特异性影响,体现在对传质效率、反应动力学参数、反应活化能和产量上的改变。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本发明实施例的一个方面提供的一种阵列式感应电场流体反应系统包括:
反应单元阵列,包含呈网络式交互连接的(m×n)个反应单元,m、n均选自大于1的正整数,其中每一反应单元包括:
一闭合铁芯,
一初级线圈,绕制于所述闭合铁芯一侧,
一次级线圈,绕制于所述闭合铁芯另一侧,所述次级线圈包括可供料液流通的绝缘管路,所述绝缘管路具有进料口和出料口;
电源,与各反应单元中的初级线圈电连接并向各初级线圈提供激励电压;
以及,料液容器,与各反应单元阵列中的绝缘管路连通;
并且,所述反应单元阵列中至少一反应单元中绝缘管路的进料口和出料口分别与上游的至少一反应单元的绝缘管路的出料口及下游的至少一反应单元的绝缘管路的进料口连接(亦即,串联方式),和/或,所述反应单元阵列中至少一反应单元中绝缘管路的进料口和出料口分别与至少另一反应单元的绝缘管路的进料口和出料口连接(亦即,并联方式);同时,所述反应单元阵列中各初级线圈的绕线两端分别与相应电源的两极(亦即,火线端和零线端)电连接。
在一些实施方案中,所述反应单元阵列中各初级线圈的绕线两端分别与电源的两极即火线端和零线端电连接,不同的接法可导致初级线圈上出现不同方向的激励电压,进 而影响反应单元中的感应电场方向,如规定当初级线圈的“左”端电连接电源的火线端,而初级线圈的“右”端电连接电源的零线端时,激励电压为“正向”;反之,则当初级线圈的“右”端电连接电源的火线端,而初级线圈的“左”端电连接电源的零线端时,激励电压则为“负向”。
其中,在所述反应单元阵列中,各反应单元之间可依据实际应用的需求而通过多种方式连接。
其中,所述反应单元实际上可以视为一种变压器的结构,属于电能-磁能-电能转换设备。其中,对初级线圈(匝数为NP),施加交变激励电压UP,则会在闭合铁芯中生产相应变化规律的磁通,其数值正比于线圈匝数,原理来源于安培环路定律,即在磁场区域中,对选定磁场的任意闭合线积分等于穿过闭合路径所界定面的传导电流的代数和。同时,闭合铁芯中的变化磁通会在次级线圈(匝数为NS)和初级线圈中分别生产同样变化规律的感应电压Es和EP,它们的关系如下:
EP/ES=UP/US=NP/NS   (1)
由式(1)可知,EP和ES,分别为初级线圈和次级线圈中的感应电压;UP和US,分别为初级线圈和次级线圈中的终端电压;NP和NS,分别为初级线圈和次级线圈的线圈匝数。在激励电压及初、次级线圈匝数比固定的情况下,感应电压即感应电场场强为定值。
例如,在一些实施方案中,至少部分反应单元彼此并联,即该部分反应单元中任一反应单元的绝缘管路的进料口和出料口分别与其它反应单元的绝缘管路的进料口及出料口连接。
例如,在一些实施方案中,至少部分反应单元彼此串联,即该部分反应单元中各反应单元的绝缘管路的进料口和出料口分别与位于其上游的反应单元的绝缘管路的出料口及位于其下游的反应单元的绝缘管路的进料口连接。
例如,在一些实施方案中,可以同时有一部分反应单元彼此并联以及一部分反应单元彼此串联。
其中,通过采用不同的反应单元连接形式,可以使料液在反应单元阵列中连续通过(例如一次性通过并完成反应),或者可以使料液在反应单元阵列中循环流动,直到反应完成。
较为优选的,各反应单元之间可使用耐腐蚀,耐压和耐高温的管路相连接而形成阵列式结构。
在一些较为优选的实施方案中,所述阵列式感应电场流体反应系统在运行时其特征性的加工参数如激励电压Um,n、频率fm,n、温度Tm,n可采用矩阵的形式进行标示,例如:
Figure PCTCN2016090710-appb-000002
因此,在基于所述阵列式感应电场流体反应系统的农产品加工和/或化学反应过程中,通过实时的变换和调整前述的这些激励电压、频率和温度矩阵参数,可实现对反应的多维度控制。
其中,前述矩阵(Matrix)的含义是业界知悉的,即,是一个按照长方阵列排列的复数或实数集合,其由m×n个数aij组成的m行n列的数,称为m行n列矩阵,简称m×n矩阵。m×n矩阵A也记作Am,n
Figure PCTCN2016090710-appb-000003
同时,矩阵可以进行相应的解析和变换,可转换为其他矩阵如转置矩阵AT、逆矩阵A-1、伴随矩阵A*。其中若要变换为逆矩阵和伴随矩阵还要求原矩阵的行列数都一致,即m=n。
在一些实施方案中,所述反应单元阵列中各初级线圈均沿第一方向绕制,所述次级线圈沿第一方向或第二方向绕制,所述第一方向与第二方向相反。或者,在一些实施方案中,所述反应单元阵列中至少一初级线圈沿第一方向绕制,至少另一初级线圈沿第二方向绕制,所述次级线圈沿第一方向或第二方向绕制,所述第一方向与第二方向相反。前述第一方向为顺时针或逆时针方向。
较为具体的,也可以认为,在所述阵列式感应电场流体反应系统中反应单元可出现“正向”或“负向”的感应电场,其可以通过三种方式实现:
第一种是所有初级线圈与电源为并联设置且激励电压方向都一致,并且系统中所有初级线圈的缠绕方向也都一致时,指定反应器中的绝缘管路(其可以为螺旋状,因此可称为螺旋管)缠绕方向为顺时针或逆时针中的一种为“正向”时,则另一种螺旋管缠绕方向即为“负向”,此时在“正向”螺旋管的反应单元中得到“正向”的感应电场,而在“负向”螺旋管的反应单元中得到“负向”的感应电场。
第二种是所有初级线圈与电源为并联设置且激励电压方向都一致,并且系统中反应器的螺旋管缠绕方向也都一致时,指定初级线圈的缠绕方向为顺时针或逆时针中的一种为“正向”时,则另一种初级线圈缠绕方向即为“负向”,此时在“正向”初级线圈的反应单元 中得到“正向”的感应电场,而在“负向”初级线圈的反应单元中得到“负向”的感应电场。
第三种是系统中所有反应器的螺旋管缠绕方向都一致,并且系统中所有初级线圈的缠绕方向也都一致时,指定当初级线圈的“左”端电连接电源的火线端,而初级线圈的“右”端电连接电源的零线端时,激励电压为“正向”;反之,则当初级线圈的“右”端电连接电源的火线端,而初级线圈的“左”端电连接电源的零线端时,激励电压则为“负向”。此时在施加“正向”的激励电压的反应单元中得到“正向”的感应电场,而在施加“负向”的激励电压的反应单元中得到“负向”的感应电场。
简言之,本发明的所述系统中的反应单元以阵列形式排布,加工参数则可以矩阵的形式进行表征,根据右手螺旋定则,通过设置激励电压方向,反应器螺线管或者初级线圈的缠绕方向,可使系统的反应单元中可出现“正向”和“负向”的感应电场,进一步的丰富了该系统的加工形式。
在一些较为优选的实施方案中,所述电源至少能够发出频率范围为50~1300Hz或者10-220kHz的正弦波、锯齿波、三角波、单极脉冲和双极脉冲,信号电压为0~200kV。籍由所述电源可以激励铁芯上的初级线圈以便在料液中出现交变的感应电场。
进一步的,所述闭合铁芯采用由硅钢、镍钢或铁氧体材料中的至少一种组成的闭合铁芯。
进一步的,所述初级线圈可以为金属制的。
在一些实施方案中,所述初级线圈缠绕于闭合铁芯,且所述初级线圈和电源为并联连接,亦即,各初级线圈的两端分别与相应电源上的两极(亦即,火线端和零线端)对应的连接在一起。
在一些实施方案中,所述反应单元包括反应器,所述绝缘管路设于所述反应器内,且所述绝缘管路两端从所述反应器中引出并分别作为进料口和出料口。
在一些更为具体的实施方案中,所述绝缘管路系作为料液的支撑物(亦可称为次级线圈的绝缘支撑物),其绕制于闭合铁芯上,一般呈螺旋状,因此可以认为是螺旋管,所述螺旋管两端可以分别从所述反应器的两端引出作为料液的进料口和出料口,螺旋管之外是恒温夹套层,并在反应器腔体两端有恒温循环浴进口和恒温循环浴出口,用于接入不同温度的介质以保持料液的反应温度。
在一些更为具体的实施方案中,每个反应器的螺旋管出料口和其他反应器的螺旋管进料口相连接,同时也和另一些反应器的螺旋管出料口相连接,反之亦然,即每个反应器的螺旋管进料口和其他反应器的螺旋管出料口相连接,同时也和另一些反应器的螺旋管进料口相连接,即所有次级线圈相互首尾连通,形成网络。
进一步的,在连通各反应单元和/或连通反应单元与料液容器的料液管路上可安置输送泵,用以达到驱动料液流动的目的。
在一些实施方案中,所述反应单元还包括用以调整所述料液温度的温控单元。
较为优选的,所述温控单元包括可供调温介质流通的恒温夹套层,所述恒温夹套层设于所述反应器内并包裹所述绝缘管路,并且所述恒温夹套层还与分布于所述反应器上的调温介质进口和调温介质出口连通,所述反应器上的调温介质进口和调温介质出口还与恒温循环浴连接。
其中,所述调温介质可以为具有不同温度的流体,特别是不同温度的液体,例如可以为水和丙三醇等,且不限于此。
在一些实施方案中,至少一反应器上的调温介质进口和调温介质出口可以分别与上游的至少一反应器上的调温介质出口及下游的至少一反应器上的调温介质进口连接。
在一些实施方案中,至少一反应器上的调温介质进口和调温介质出口也可分别与至少另一反应器上的调温介质进口和调温介质出口连接。
在一些较为具体的实施方案中,所述温控单元为各类恒温循环浴和恒温浴,其中恒温循环浴的出口和进口分别与各反应器上的恒温循环浴进口和恒温循环浴出口接通,可保持加工时料液的温度,各反应器上的恒温循环浴出口可与下一级反应器上的恒温循环浴进口相连接;料液容器根据需要可置于恒温浴中。
进一步的,所述电源的额定功率应保证由它驱动的每个反应单元均可正常工作。因此,所述电源的额定功率P0≥(P1+P2+···+Px),其中P1是第一个反应单元的输入功率,P2是第二个反应单元的输入功率,Pn是第x个反应单元的输入功率,Px=UP×IP=(UP/ZP)×UP,其中UP是所述电源的输出电压,ZP是单个初级线圈在工作频率下的阻抗,IP是单个初级线圈电流,x为每个电源可驱动的反应单元数量的最大值。
其中,所述电源可以为一个或多个。进一步的,所述的阵列式感应电场流体反应系统中可根据实际的反应量添置若干数量的电源。
本发明的阵列式感应电场流体反应系统在工作时,参与反应的料液作为多个反应单元(可以视为变压器)的次级线圈的导体且以绝缘的螺旋管作为支撑物。电源发出的信号激励初级线圈,则会在闭合铁芯中生产相应变化规律的交变磁通,最终,在作为次级线圈的料液中产生交变感应电场,料液可在管路体系中一次性连续的流动并通过,或者以循环的方式不停的在体系中流动直到反应完成。在此过程中可以根据反应物质特性和产物的要求设置流速、激励电压、频率、反应单元阵列规模和反应单元串并联结构,并最终达到控制反应的目的。
本发明的阵列式感应电场流体反应系统的反应单元呈现网络式的交互连接,其中各个反应单元中的感应电场来源于感应的方法,发生器是闭合铁芯、线圈和电源。所以不使用通电电极或极板,进而也不会出现与反应料液接触的情况。反应单元结构紧凑故容易实现加工规模的扩大。感应电场也即感应电压出现在各个反应器的螺线管中,根据戴 维宁定律,该系统流路中总的等效感应电压随激励电压参数矩阵的变化而变化。流动的反应料液阻抗也随激励电压参数矩阵、频率参数矩阵和反应温度参数矩阵的影响而随时不断的变化。因此,根据欧姆定律,该反应体系的总等效电压作用于具有时变阻抗的流动的反应料液时,会呈现特异性的离子传导、传质和传热效果,改变反应活化能,进而达到特异性的反应效果。
本发明实施例还提供了所述阵列式感应电场流体反应系统在农产品加工和/或化学反应中的应用。
其中,所述生化反应包括催化、合成、提取、水解、杀菌、灭酶、蛋白质改性中的至少一种反应,且不限于此。
例如,所述阵列式感应电场流体反应系统可应用于辅助有机溶剂法快速提取精油、植物油等。
较为优选的,在所述应用中可以连续的快速提取植物油。
较为优选的,在所述应用中采用的电源为变频电源,其可以发出频率范围在50~1000Hz的正弦波、锯齿波、三角波、单极脉冲和双极脉冲,信号电压0~1000V
例如,所述阵列式感应电场流体反应系统可应用于杀菌、灭酶、蛋白质改性等。
较为优选的,在所述应用中采用的电源为高压电源,其可以发出频率范围在20kHz~100kHz的正弦波、锯齿波、三角波、单极脉冲和双极脉冲,信号电压0~120kV。
如下将结合若干实施例对本发明的技术方案、其实施过程及原理等作进一步的解释说明。
实施例1:环氧乳化剂合成
下面以环氧乳化剂的合成为例,进一步说明阵列式感应电场流体反应系统在化学合成中的应用。
如图1~图6所示,在本发明的一些实施例中提供了阵列式感应电场流体反应系统,其包括了加工装置链100a(循环流动)或加工装置链100b(单次流动),反应器200,反应单元300,反应器个数与阵列400等,反应单元串联基本结构500a,反应单元并联基本结构500b。
其中,参考图1和图2,加工装置链可以包括电源101,恒温循环浴102,闭合铁芯103,初级线圈104,反应器200,耐酸碱耐高温硅胶管105,泵106,反应料液容器107,恒温浴108。其中电源101的输出端与初级线圈104接通,所使用的电源101可发出频率为50Hz~1300Hz或者10-220kHz的正弦波、锯齿波、三角波、单极脉冲和双极脉冲,信号电压为0~200kV;初级线圈104为金属制线圈,缠绕在闭合铁芯103一侧,闭合铁芯103可采用硅钢、镍钢或铁氧体材料;闭合铁芯103的另一侧包合入反应器200,这样保证反应器200中的螺旋管即玻璃弹簧201缠绕在闭合铁芯103上。
参考图3,反应器200包含玻璃弹簧201作为次级线圈的绝缘支撑物,恒温夹套层202,玻璃弹簧进料口203,玻璃弹簧出料口204,恒温循环浴进口205,恒温循环浴出口206。即玻璃弹簧201两端分别从反应器200的两端引出作为反应料液的进口203和出口204,玻璃弹簧201之外是恒温夹套层202,并在反应器200两端有恒温循环浴进口205和恒温循环浴出口206,用于通入不同温度的流体介质(例如水等)以保持玻璃弹簧201中反应料液的温度。
再请参考图3,反应单元300可以包括1个反应器200,1个闭合铁芯103,1个初级线圈104,且每个反应单元300的初级线圈104和电源101为并联连接,每个反应单元300使用耐腐蚀和耐高温硅胶管105连接,形成系统中最基本的串联结构,并联结构,串/并联结构或者其它阵列式的结构。串联结构即每个反应器200的玻璃弹簧201上的出料口204和下一个反应器的进料口203相连接,见图4;并联结构即每个反应器200的玻璃弹簧201上的进料口203都连接在一起,同时每个反应器200的玻璃弹簧201上的出料口204也都连接在一起,见图5。串/并联结构即系统中同时有一部分反应单元彼此并联以及一部分反应单元彼此串联;其它阵列式的结构例如,每个反应器200的螺旋管出料口204和其他反应器200的螺旋管进料口203相连接,同时也和另一些反应器200的螺旋管出料口204相连接,反之亦然,即每个反应器200的螺旋管进料口203和其他反应器200的螺旋管出料口204相连接,同时也和另一些反应器200的螺旋管进料口203相连接,所有次级线圈即螺旋管相互首尾连通,形成网络。此时每个次级线圈即玻璃弹簧201和反应料液作为一个单独的“电压源”。同时,在管路上安置着输送泵106,并与反应料液容器107相连接可达到驱动反应料液流动的目的,料液容器根据不同反应需求可置于恒温浴108中。根据反应要求分为循环式流动反应(系统如图1所示)和单次流动反应(系统如图2所示)。
每个电源101的额定功率可保证由它驱动的每个反应单元300都正常工作,即P0≥P1+P2+···+Pn其中,P0是单个电源额定功率,Pn是第n个反应单元的输入功率,Pn=UP×IP=(UP/ZP)×UP,其中,UP是每个电源输出电压,ZP是单个初级线圈在工作频率下的阻抗,IP是单个初级线圈电流,n即为每个电源可驱动的最大反应单元数,装备可根据实际加工特点添置任意数量的电源101并整体装入机柜;恒温循环浴102分别与反应器202上的恒温循环浴进口205和恒温循环浴出口206接通,可保持玻璃弹簧201中反应料液的温度,且每个反应器200上的恒温循环浴出口206和下一个反应器200的恒温循环浴进口205相连接。
反应单元300可出现“正向”或“负向”的感应电压,通过以下三种方式实现,
第一种是所有初级线圈104与电源101为并联设置且激励电压方向都一致,并且系统中所有初级线圈104的缠绕方向也都一致时,指定反应器200中的玻璃弹簧201缠绕 方向为顺时针或逆时针中的一种为“正向”时,则另一种玻璃弹簧201的缠绕方向即为“负向”,此时在“正向”玻璃弹簧201的反应单元300中得到“正向”的感应电场,而在“负向”玻璃弹簧201的反应单元300中得到“负向”的感应电场。
第二种是所有初级线圈104与电源101为并联设置且激励电压方向都一致,并且系统中所有反应器200的玻璃弹簧201的缠绕方向也都一致时,指定初级线圈104的缠绕方向为顺时针或逆时针中的一种为“正向”时,则另一种初级线圈104缠绕方向即为“负向”,此时在“正向”初级线圈104的反应单元300中得到“正向”的感应电场,而在“负向”初级线圈104的反应单元300中得到“负向”的感应电场。
第三种是系统中所有反应器200的玻璃弹簧201缠绕方向都一致,并且系统中所有初级线圈104的缠绕方向也都一致时,指定初级线圈104的“左”端电连接电源101的火线端,而初级线圈104的“右”端电连接电源101的零线端时,激励电压为“正向”;反之,则当初级线圈104的“右”端电连接电源101的火线端,而初级线圈104的“左”端电连接电源101的零线端时,激励电压则为“负向”。此时在施加“正向”激励电压的反应单元300中得到“正向”的感应电场,而在施加“负向”激励电压的反应单元300中得到“负向”的感应电场。
环氧乳化剂的合成其包括如下步骤:
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第三种形式进行,此时系统中所有反应器200的玻璃弹簧201缠绕方向都为顺时针,并且系统中所有初级线圈104的缠绕方向也都为顺时针,指定反应单元300中的激励电压为“正向”时,得到的感应电场为“正向”;而反应单元300中的激励电压为“负向”时,得到的感应电场为“负向”;
步骤二:在烧杯107中加入100g环氧树脂和120g聚二乙醇,搅拌使之混合均匀,缓慢滴加3g过硫酸钾;
步骤三:开启恒温循环浴102和恒温浴108并设定温度为120℃,此时恒温循环溶液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200的恒温夹套层202,此实施例用9个反应单元300,有3个反应单元300中的激励电压为“正向”,另外6个反应单元300中的激励电压为“负向”,反应时间总共120min,其中反应前30min系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图6中的a所示;而反应后90min系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图6中的b所示,采用循环式的流动反应,即采用加工装置链100a;
步骤四:开启电源101选择正弦波,频率为700Hz,电压幅值750V,则控制参数的矩阵为:前30min的激励电压U3,3和后90min的激励电压
Figure PCTCN2016090710-appb-000004
电压频率f3,3,温度T3,3,如图6所示,每个电源的额定功率P0=10kW,同时激励各个反应单元300中的闭合镍钢 铁芯103上的初级线圈104,闭合镍钢铁芯103的中心周长1050mm,厚度20mm,此时所有反应单元300上的初级线圈104匝数为130匝,700Hz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=750Ω,则每个初级线圈104的电流IP=1A,单个反应单元300的输入功率为Pn=UP×IP=0.75kW,玻璃弹簧201的匝数为25匝,即次级线圈为25匝,玻璃弹簧201内径4mm,此时有9个反应单元300,即系统的总输入功率为6.75kW,P0=10kW>P1+P2+…+P8+P9=6.75kW,即该系统需配置1台电源即可保证能驱动所有的9个反应单元300正常运行。
步骤五:再开启蠕动泵106,保证反应料液开始流动并通过装备中所有的反应单元300且体积流量为150mL/min,即样品料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应单元300,循环反应总时间为120min,其中前30min的激励电压为U3,3,后90min的激励电压为
Figure PCTCN2016090710-appb-000005
全程的电压频率均为f3,3,反应全程温度均为T3,3,关闭电源101、蠕动泵106,恒温浴108和恒温循环水浴102;
步骤六:排出的样品,利用盐酸-丙酮法测定反应体系的环氧值,测量得到环氧值为0.643。
与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,则样品的环氧值为0.353。
实施例2:玉米秸秆水解
下面以玉米秸秆水解为例,进一步说明阵列式感应电场流体反应系统在催化水解中的应用。
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第一种形式进行,所有初级线圈104与电源101为并联设置且激励电压方向都为“正向”,并且系统中所有初级线圈104的缠绕方向都为顺时针,指定反应单元300中的玻璃弹簧201为顺时针时,得到的感应电场为“正向”;则反应单元300中的玻璃弹簧201为逆时针时,得到的感应电场为“负向”;
步骤二:取60目的玉米秸秆粉2000g于50L塑料桶107中,加入蒸馏水30L,用1mol/L的HCl调节反应料液pH值为1.2,混合摇匀;
步骤三:开启恒温循环浴102和恒温水浴108并设定温度为80℃,此时恒温循环溶液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200的恒温夹套层202,此实施例用16个反应单元300,其中有8个反应单元300中的玻璃弹簧201为顺时针,另外8个反应单元300中的玻璃弹簧201为逆时针,则系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图7所示,采用循环式流动反应,即采用加工装置链100a;
步骤四:开启电源101选择正弦波,频率为500Hz,电压幅值500V,则控制参数的 矩阵为:激励电压U2,8,电压频率f2,8,温度T2,8,如图7所示,每个电源的额定功率P0=20kW,同时激励各个反应单元300中的闭合镍钢铁芯103上的初级线圈104,闭合镍钢铁芯103的中心周长1050mm,厚度20mm,此时所有反应单元300上的初级线圈104匝数为200匝,500Hz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=250Ω,则每个初级线圈104的电流IP=2A,单个反应单元300的输入功率为Pn=UP×IP=1kW,玻璃弹簧201的匝数为25匝,即次级线圈为25匝,玻璃弹簧201内径3mm,此时有16个反应单元300,即系统的总输入功率为16kW,P0=20kW>P1+P2+…+P15+P16=16kW,即该系统需配置1台电源即可保证能驱动所有的16个反应单元300正常运行。
步骤五:再开启蠕动泵106,保证反应料液开始流动并通过系统中所有的反应单元300且体积流量为500mL/min,即样品料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应单元300,循环反应时间为8h,其中反应全程的激励电压均为U2,8,反应全程的电压频率均为f2,8,反应全程的温度均为T2,8,关闭电源101、蠕动泵106,恒温水浴108和恒温循环水浴102;
步骤六:排出料液,待到室温立即加入质量分数为1%的NaHCO3溶液,使其料液pH=7,终止反应,再将反应料液于5000rpm下离心30min去掉沉淀物,得到含有还原糖的玉米秸秆粗水解液。
经检测,通过此阵列式感应电场流体反应系统处理并得到的玉米秸秆粗水解液还原糖含量为45.4g/L,与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,最终得到的玉米秸秆粗水解液还原糖含量只为5.3g/L。
实施例3:苹果渣果胶提取
下面以苹果渣果胶提取为例,进一步说明阵列式感应电场流体反应系统在提取反应中的应用。
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第一种形式进行,所有初级线圈104与电源101为并联设置且激励电压方向都为“正向”,并且系统中所有初级线圈104的缠绕方向都为顺时针,指定反应单元300中的玻璃弹簧201为顺时针时,得到的感应电场为“正向”;而反应单元300中的玻璃弹簧201为逆时针时,得到的感应电场为“负向”;
步骤二:取苹果2000g,打浆后置于50L塑料杯107中,加入蒸馏水35L,混合摇匀,用1mol/L的HCl调节反应料液pH值为1.5,混合摇匀;
步骤三:开启恒温循环浴102和恒温水浴108并设定温度为60℃,此时恒温循环溶液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200的恒温夹套层202,此实施例用25个反应单元300,其中有15个反应单元300中的玻璃弹簧201为顺时针,另外10个反应单元300中的玻璃弹簧201为 逆时针,则系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图8所示,采用一次性流动反应,即采用加工装置链100b;
步骤四:开启电源101选择正弦波,频率为45kHz,电压幅值10kV,则控制参数的矩阵为:激励电压U5,5,电压频率f5,5,温度T5,5,如图8所示,每个电源的额定功率P0=40kW,同时激励各个反应单元300中的闭合铁氧体铁芯103上的初级线圈104,闭合铁氧体铁芯103的中心周长850mm,厚度28mm,此时所有反应单元300上的初级线圈104匝数为110匝,45kHz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=25kΩ,则每个初级线圈104的电流IP=0.4A,单个反应单元300的输入功率为Pn=UP×IP=4kW,玻璃弹簧201的匝数为23匝,即次级线圈为23匝,玻璃弹簧201内径4mm,此时有25个反应单元300,即系统的总输入功率为100kW,P0+P0+P0=120kW>P1+P2+…+P24+P25=100kW,即该系统需配置3台电源即可保证能驱动所有的25个反应单元300正常运行。
步骤五:再开启蠕动泵106,保证反应料液开始流动并通过装备中所有的反应单元300且体积流量为500mL/min,即样品料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应单元300,直至全部流出装备,其时间为85min,其中反应全程的激励电压均为U5,5,反应全程的电压频率均为f5,5,反应全程的温度均为T5,5,关闭电源101、蠕动泵106,恒温水浴108和恒温循环水浴102;
步骤六:排出的料液,待到室温立即加入质量分数为1%的NaHCO3溶液,使其料液pH=7,终止反应,再将料液于3000rpm下离心15min去掉沉淀物,剩余滤液于48℃的鼓风干燥箱中干燥15h后得到淡黄色的粗果胶粉末。
经测量,通过此阵列式感应电场流体反应系统装置处理并得到的苹果渣粗果胶质量为306.5g,与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,最终得到的粗果胶质量仅为76.5g。
实施例4:葡萄籽油提取
下面以葡萄籽油提取为例,进一步说明阵列式感应电场流体反应系统在植物油提取反应中的应用。
葡萄籽油提取如下步骤:
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第二种形式进行,此时所有初级线圈104与电源101为并联设置且激励电压方向都为“正向”,并且系统中反应器200的玻璃弹簧201的缠绕方向都为顺时针,指定含有顺时针初级线圈104的反应单元300中出现的感应电场为“正向”,则含有逆时针初级线圈104的反应单元300中出现的感应电场为“负向”;
步骤二:取60目的葡萄籽粉10kg于200L的密封塑料桶107中,正己烷作为萃取剂 并加入130L到密封塑料桶107中,混合摇匀;
步骤三:开启恒温循环浴102和恒温水浴108并设定温度为48℃,此时恒温的循环溶液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200的恒温夹套层202,此实施例用25个反应单元300,其中有12个反应单元300中的初级线圈104为顺时针,另外13个反应单元300中的初级线圈104为逆时针,则系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图9所示,采用一次性流动反应,即采用加工装置链100b;
步骤四:开启变频电源101选择锯齿波,频率为800Hz,电压幅值900V,则控制参数的矩阵为:激励电压U5,5,电压频率f5,5,温度T5,5,如图9所示,每个电源的额定功率P0=50kW,同时激励各个反应单元300中的闭合镍钢铁芯103上的初级线圈104,闭合镍钢铁芯103的中心周长1050mm,厚度20mm,此时所有反应单元300上的初级线圈104匝数为120匝,800Hz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=300Ω,则每个初级线圈104的电流IP=3A,单个反应单元300的输入功率为Pn=UP×IP=2.7kW,玻璃弹簧201的匝数为23匝,即次级线圈为23匝,玻璃弹簧201内径4mm,此时有25个反应单元300,即装备的总输入功率为67.5kW,P0+P0=100kW>P1+P2+…+P24+P25=67.5kW,即该装备系统配置2台变频电源即可保证驱动所有25个反应单元300正常运行。
步骤五:再开启蠕动泵106,保证料液开始流动并通过装备中所有的反应单元300且体积流量为5L/min,即葡萄籽粉-正己烷料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应器200,直至全部流出装备,其时间为33min,其中反应全程的激励电压均为U5,5,反应全程的电压频率均为f5,5,反应全程的温度均为T5,5,关闭变频电源101、蠕动泵106,恒温水浴108和恒温循环水浴102;
步骤六:排出的料液过滤,可将葡萄籽渣和萃取剂分离,萃取液于55℃进行减压旋转蒸发,回收正己烷,得到经葡萄籽油,质量为1458g。与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,最终得到的葡萄籽油质量只有563g。
实施例5:苹果汁的杀菌和灭酶
下面以苹果汁中大肠杆菌杀灭和多酚氧化酶失活为例,进一步说明阵列式感应电场流体反应系统在液态食品杀菌和灭酶中的应用。
步骤如下:
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第二种形式进行,此时所有初级线圈104与电源101为并联设置且激励电压方向都为“正向”,并且系统中反应器200的玻璃弹簧201的缠绕方向也都为顺时针,指定含有顺时针初级线圈104的反应单元300中出现的感应电场为“正向”,则含有逆时针初级线圈104的反应单元300中 出现的感应电场为“负向”;
步骤二:将苹果清洗、去皮后,切成2cm×2cm×2cm的小块,放入捣碎机打浆成汁,打浆时为防止褐变加入0.1%的维生素C进行护色,将破碎好的苹果浆在8000rpm下离心20min,然后用两层滤布过滤上清液,以除去分散在苹果汁中的粗大颗粒或悬浮粒,得到较澄清的苹果汁,即为原苹果汁样品,再于121℃杀菌20min冷却后接种微生物,以制备含菌的苹果汁样品;
步骤三:大肠杆菌(CGMCC 1.90)为目标微生物,购自中国普通微生物菌种保藏管理中心。实验用大肠杆菌:先进行试管菌种的活化培养,即做成营养琼脂斜面培养,再将菌种接种到营养肉汤中,35℃恒温培养13h,使菌体浓度达到108-109cfu/mL。将上述6mL培养液接到600mL灭菌苹果汁中,使样品中菌体浓度达到106-107cfu/mL,得到含菌的苹果汁样品。
步骤四:多酚氧化酶粗提液的制备是将100mL未经过121℃灭菌处理的苹果汁样品(感应电场处理前或处理后)和400mL预先冷冻至-26℃的丙酮一起混合,然后迅速抽滤,得到沉淀,并将沉淀中的残留丙酮用冷风吹去(至沉淀无丙酮味)。将得到的沉淀再溶于150mL 0.05mol/L磷酸盐缓冲液(pH=6.5),搅拌30min,然后离心,所得上清液即为多酚氧化酶粗提取液。
步骤五:先后分别取原苹果汁样品和含菌的苹果汁样品5L于密封塑料桶107中;
步骤六:开启恒温循环浴102和恒温水浴108并设定温度为12℃,此时恒温循环溶液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200的恒温夹套层202,此实施例用16个反应单元300,其中有10个反应单元300中的初级线圈104为顺时针,另外6个反应单元300中的初级线圈104为逆时针,则系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图10所示,采用一次性流动处理,即采用加工装置链100b;
步骤七:开启高频电源101选择正弦波,频率为20kHz,电压幅值10kV,则控制参数的矩阵为:激励电压U4,4,电压频率f4,4,温度T4,4,如图10所示,每个电源的额定功率P0=40kW,同时激励各个反应单元300中的闭合铁氧体铁芯103上的初级线圈104,闭合铁氧体铁芯103的中心周长850mm,厚度28mm,此时所有反应单元300上的初级线圈104匝数为100匝,20kHz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=20kΩ,则每个初级线圈104的电流IP=0.5A,单个反应单元300的输入功率为Pn=UP×IP=5kW,玻璃弹簧201的匝数为25匝,即次级线圈为25匝,玻璃弹簧201内径2mm,此时有16个反应单元300,即装备的总输入功率为80kW,P0+P0+P0=120kW>P1+P2+…+P15+P16=80kW,即该装备至少配置3台高频电源即可保证驱动所有16个反应单元300正常运行。
步骤八:再开启蠕动泵106,保证料液开始流动并通过装备中所有的反应单元300 且体积流量为2L/min,即样品料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应器200,直至全部流出装备,其时间为3min,其中反应全程的激励电压均为U4,4,反应全程的电压频率均为f4,4,反应全程的温度均为T4,4,关闭变频电源101、蠕动泵106,恒温水浴108和恒温循环水浴102;
步骤九:先后排出的原苹果汁样品和含菌的苹果汁样品,分别进行多酚氧化酶活测定和大肠杆菌测定,大肠杆菌的测定,根据AOAC 991.14描述的方法进行,对样品进行菌落计数。杀菌效果用致死数量级表示,计算公式如下:
致死数量级=log(N0/N)
式中:N为该装置处理后的微生物数,cfu/mL;N0为该装置处理前的微生物数,cfu/mL。多酚氧化酶活力的测定是在比色杯中加入2mL具有pH=4.3的缓冲液和0.7mL儿茶酚溶液,搅拌后再加入0.3mL多酚氧化酶粗提取液,再搅拌均匀,同时用分光光度计测定在400nm波长下反应混合物的消光值随时间而改变的情况。酶活单位定义为:反应混合物在400nm下的消光值每分钟增加“1”定义为一个酶活力单位。多酚氧化酶相对酶活(%)=该装备处理后的酶活/该装备处理前酶活×100%
经测量,通过阵列式感应电场流体反应系统处理后,表明含菌的苹果汁样品中的大肠杆菌菌落数下降了4.3个数量级,同时,原苹果汁样品的多酚氧化酶相对酶活为26.5%。
与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,最终得到的原苹果汁样品的多酚氧化酶相对酶活,和含菌的苹果汁样品中的大肠杆菌菌落数相对于处理前无显著性差异(P<0.05)。
实施例6:橘皮油提取
下面以橘皮油提取为例,进一步说明阵列式感应电场流体反应系统在提取反应中的应用。
橘皮油提取如下步骤:
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第二种形式进行,此时所有初级线圈104与电源101为并联设置且激励电压方向都为“正向”,并且系统中反应器200的玻璃弹簧201的缠绕方向都为顺时针,指定含有顺时针初级线圈104的反应单元300中出现的感应电场为“正向”,则含有逆时针初级线圈104的反应单元300中出现的感应电场为“负向”;
步骤二:取80目的橘皮粉2kg于50L的密封塑料桶107中,石油醚作为萃取剂并加入20L到密封塑料桶107中,混合摇匀;
步骤三:开启恒温循环浴102和恒温水浴108并设定温度为42℃,此时恒温的循环溶液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200的恒温夹套层202,此实施例用8个反应单元300,其中有4个 反应单元300中的初级线圈104为顺时针,另外4个反应单元300中的初级线圈104为逆时针,则系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图11所示,采循环式流动处理,即采用加工装置链100a;
步骤四:开启变频电源101选择正弦波,频率为700Hz,电压幅值500V,则控制参数的矩阵为:激励电压U8,1,电压频率f8,1,温度T8,1,如图11所示,每个电源的额定功率P0=10kW,同时激励各个反应单元300中的闭合镍钢铁芯103上的初级线圈104,闭合镍钢铁芯103的中心周长1050mm,厚度20mm,此时所有反应单元300上的初级线圈104匝数为100匝,700Hz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=250Ω,则每个初级线圈104的电流IP=2A,单个反应单元300的输入功率为Pn=UP×IP=1kW,玻璃弹簧201的匝数为20匝,即次级线圈为20匝,玻璃弹簧201内径3mm,此时有8个反应单元300,即装备的总输入功率为8kW,P0=10kW>P1+P2+…+P7+P8=8kW,即该装备系统配置1台变频电源即可保证驱动所有8个反应单元300正常运行。
步骤五:再开启蠕动泵106,保证料液开始流动并通过装备中所有的反应单元300且体积流量为1L/min,即橘皮粉-石油醚料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应器200,循环流动处理时间为15min,其中反应全程的激励电压均为U8,1,反应全程的电压频率均为f8,1,反应全程的温度均为T8,1,关闭变频电源101、蠕动泵106,恒温水浴108和恒温循环水浴102;
步骤六:排出的料液过滤,可将橘皮渣和萃取剂分离,萃取液于52℃进行减压旋转蒸发,回收石油醚,得到经橘皮油,质量为213g。与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,最终得到的橘皮油质量只有63g。
实施例7:蛋清处理
下面以蛋清处理前后的起泡性和泡沫稳定性对比为例,进一步说明阵列式感应电场流体反应系统在蛋白质改性中的应用。
如下步骤:
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第二种形式进行,此时所有初级线圈104与电源101为并联设置且激励电压方向都为“正向”,并且系统中所有反应器200的玻璃弹簧201的缠绕方向都为顺时针,指定含有顺时针初级线圈104的反应单元300中出现的感应电场为“正向”,则含有逆时针初级线圈104的反应单元300中出现的感应电场为“负向”;
步骤二:将蛋壳完整无损的鸡蛋浸在30℃温水中洗净,室温下晾干后打蛋,除去系带,小心分离蛋黄,用电动搅拌器在较小转速(100r/min)下搅拌均匀,得到蛋清液。
步骤三:取配制的蛋清样品6L于密封塑料桶107中;
步骤四:开启恒温循环浴102和恒温浴108并设定温度为10℃,此时恒温的循环溶 液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200的恒温夹套层202,此实施例用10个反应单元300,其中有5个反应单元300中的初级线圈104为顺时针,另外5个反应单元300中的初级线圈104为逆时针,则系统中出现“正向”的感应电场的反应单元300,出现“负向”的感应电场的反应单元301,参考图12所示,采一次性流动处理,即采用加工装置链100b;
步骤五:开启高压电源101选择正弦波,频率为80kHz,电压幅值10kV,则控制参数的矩阵为:激励电压U1,10,电压频率f1,10,温度T1,10,如图12所示,每个电源的额定功率P0=20kW,同时激励各个反应单元300中的闭合铁氧体铁芯103上的初级线圈104,闭合铁氧体铁芯103的中心周长950mm,厚度25mm,此时所有反应单元300上的初级线圈104匝数为100匝,80kHz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=40kΩ,则每个初级线圈104的电流IP=0.25A,单个反应单元300的输入功率为Pn=UP×IP=2.5kW,玻璃弹簧201的匝数为24匝,即次级线圈为24匝,玻璃弹簧201内径3mm,此时有10个反应单元300,即装备的总输入功率为25kW,P0+P0=40kW>P1+P2+…+P9+P10=25kW,即该装备系统配置2台变频电源即可保证驱动所有10个反应单元300正常运行。
步骤六:再开启蠕动泵106,保证料液开始流动并通过装备中所有的反应单元300且体积流量为500mL/min,即蛋清料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应器200,直至全部流出装备,其时间为15min,其中反应全程的激励电压均为U1,10,反应全程的电压频率均为f1,10,反应全程的温度均为T1,10,关闭高压电源101、蠕动泵106,恒温水浴108和恒温循环水浴102;
步骤七:排出的蛋清进行起泡性与泡沫稳定性测定,参照SATHE的方法,用去离子水将蛋清稀释到质量含量为2%,取100mL稀释蛋清液,用高速分散器以10000r/min的转速分散2min。记录均质停止时和停止后30min的泡沫体积数V1及V2,并按下面公式计算:
起泡性/%=(V1/100)×100
泡沫稳定性/%=(V2/V1)×100
起泡性和泡沫稳定性的测定参考文献:
SATHE S K.Functional properties of the great northern bean proteins:emulsion,foaming,viscosity and gelation properties[J].Journal of Food Science,1981,46(1):71-74.
经测量,表明经过感应电场处理后,蛋清的起泡性与泡沫稳定性分别为127.4%和88.3%,与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,则蛋清的起泡性与泡沫稳定性分别为87.4%和68.3%。
实施例8:文冠果油提取
下面以文冠果油提取为例,进一步说明阵列式感应电场流体反应系统在果油提取反 应中的应用。
文冠果油提取如下步骤:
步骤一:设定反应单元300的“正向”或“负向”的感应电场,按第二种形式进行,此时所有初级线圈104与电源101为并联设置且激励电压方向都为“正向”,并且系统中反应器200的玻璃弹簧201的缠绕方向都为顺时针,指定含有顺时针初级线圈104的反应单元300中出现的感应电场为“正向”,则含有逆时针初级线圈104的反应单元300中出现的感应电场为“负向”;
步骤二:取60目的文冠果粉10kg于200L的密封塑料桶107中,正己烷作为萃取剂并加入160L到密封塑料桶107中,混合摇匀;
步骤三:开启恒温循环浴102和恒温浴108并设定温度为48℃,此时恒温的循环溶液从每个反应器200的恒温循环浴进口205流入,再从其恒温循环浴出口206流出,并进入下一个反应器200,此实施例用60个反应单元300,其中所有60个反应单元300中的初级线圈104都为顺时针,则系统中所有反应单元300都为“正向”的感应电场,同时,系统中40个反应单元300为串联结构600a,20个反应单元300为并联结构600b,如图13所示,采用一次性流动反应,即采用加工装置链100b;
步骤四:开启变频电源101选择正弦波,频率分别为800Hz和700Hz,电压幅值900V和500V,由于本例所采用系统的60个反应单元300属于串/并联结构,故不用矩阵形式来表示控制参数,控制参数为激励电压U1=900V,U2=500V,电压频率f1=800Hz,f2=700Hz,温度T=48℃,其中U1,f1,T作用于600a的40个反应单元300,U2,f2,T作用于600b的20个反应单元300,如图13所示,每个电源的额定功率P0=50kW,同时激励各个反应单元300中的闭合镍钢铁芯103上的初级线圈104,60个闭合镍钢铁芯103的中心周长都为1000mm,厚度22mm,此时600a的40个反应单元300上的初级线圈104匝数为120匝,800Hz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=300Ω,则600a的每个反应单元300上的初级线圈104的电流IP=3A,则单个反应单元300的输入功率为Pn=UP×IP=2.7kW,600a的40个反应单元300中的玻璃弹簧201的匝数为23匝,即次级线圈为23匝,玻璃弹簧201内径4mm,此时“Series”区的总输入功率为108kW,P0+P0+P0=150kW>P1+P2+…+P39+P40=108kW,即该装备系统中需配置3台变频电源即可保证驱动600a的40个反应单元300正常运行,同时,此时600b的20个反应单元300上的初级线圈104匝数为100匝,700Hz时初级线圈104的阻抗通过阻抗分析仪检测为ZP=250Ω,则600b的每个反应单元300上的初级线圈104的电流IP=2A,则单个反应单元300的输入功率为Pn=UP×IP=1kW,600a的20个反应单元300中的玻璃弹簧201的匝数为25匝,即次级线圈为25匝,玻璃弹簧201内径4mm,此时600a的总输入功率为20kW,P0=50kW>P1+P2+…+P19+P20=20kW,即该装备系统中还需配置1台变频电源即 可保证驱动600a的20个反应单元300正常运行,故本系统中配置了4台变频电源并装入整机机柜。
步骤五:再开启蠕动泵106,保证料液开始流动并通过装备中所有的反应单元300且体积流量为5L/min,即文冠果粉-正己烷料液从每个反应器200的玻璃弹簧进料口203流入,再从其玻璃弹簧出料口204流出,并进入下一个反应器200,直至全部流出装备,其时间为38min,其中反应全程的激励电压U1和U2,反应全程的电压频率f1和f2,反应全程的温度T不发生变改变,关闭变频电源101、蠕动泵106,恒温浴108和恒温循环水浴102;
步骤六:排出的料液过滤,可将葡萄籽渣和萃取剂分离,萃取液于55℃进行减压旋转蒸发,回收正己烷,得到经文冠果油,质量为4526g。与此相比,若其他反应条件均相同,但不施加激励电压于各个初级线圈104时,最终得到的文冠果油质量只有1093g。
需要说明的是,本实施例的附图均采用非常简化的形式且均使用非精准的比率,仅用于方便、明晰地辅助说明本发明的实施例。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,如反应单元的任意串并联连接形式和不同的激励电压水平,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种阵列式感应电场流体反应系统,其特征在于包括:
    反应单元阵列,包含呈网络式交互连接的(m×n)个反应单元,m、n均选自大于1的正整数,其中每一反应单元包括:
    一闭合铁芯,
    一初级线圈,绕制于所述闭合铁芯一侧,
    一次级线圈,绕制于所述闭合铁芯另一侧,所述次级线圈包括可供料液流通的绝缘管路,所述绝缘管路具有进料口和出料口;
    电源,与各反应单元中的初级线圈电连接并向各初级线圈提供激励电压;
    以及,料液容器,与各反应单元中的绝缘管路连通;
    并且,所述反应单元阵列中至少一反应单元中绝缘管路的进料口和出料口分别与上游的至少一反应单元的绝缘管路的出料口及下游的至少一反应单元的绝缘管路的进料口连接,和/或,所述反应单元阵列中至少一反应单元中绝缘管路的进料口和出料口分别与至少另一反应单元的绝缘管路的进料口和出料口连接;同时,所述反应单元阵列中各初级线圈的绕线两端分别与相应电源的两极电连接。
  2. 根据权利要求1所述的阵列式感应电场流体反应系统,其特征在于:所述阵列式感应电场流体反应系统在工作时的激励电压U、频率f与温度T的关系以矩阵的形式表示为:
    Figure PCTCN2016090710-appb-100001
    Figure PCTCN2016090710-appb-100002
    Figure PCTCN2016090710-appb-100003
  3. 根据权利要求1或2所述的阵列式感应电场流体反应系统,其特征在于:所述反应单元阵列中各初级线圈均沿第一方向绕制,所述次级线圈沿第一方向或第二方向绕制,所述第一方向与第二方向相反,所述第一方向为顺时针或逆时针方向;或者,所述反应单元阵列中至少一初级线圈沿第一方向绕制,至少另一初级线圈沿第二方向绕制,所述次级线圈沿第一方向或第二方向绕制,所述第一方向与第二方向相反,所述第一方向为顺时针或逆时针方向。
  4. 根据权利要求1所述的阵列式感应电场流体反应系统,其特征在于:所述电源至少能够发出频率范围为50~1300Hz或者10-220kHz的正弦波、锯齿波、三角波、单极脉 冲和双极脉冲,信号电压为0~200kV。
  5. 根据权利要求1所述的阵列式感应电场流体反应系统,其特征在于:所述闭合铁芯采用由硅钢、镍钢或铁氧体材料中的至少一种组成的闭合铁芯。
  6. 根据权利要求1所述的阵列式感应电场流体反应系统,其特征在于:所述反应单元包括反应器,所述绝缘管路设于所述反应器内,且所述绝缘管路两端从所述反应器中引出并分别作为进料口和出料口。
  7. 根据权利要求6所述的阵列式感应电场流体反应系统,其特征在于:所述反应单元还包括用以调整所述料液温度的温控单元,所述温控单元包括可供调温介质流通的恒温夹套层,所述恒温夹套层设于所述反应器内并包裹所述绝缘管路,并且所述恒温夹套层还与分布于所述反应器上的调温介质进口和调温介质出口连通,所述反应器上的调温介质进口和调温介质出口还与恒温循环浴连接。
  8. 根据权利要求7所述的阵列式感应电场流体反应系统,其特征在于:至少一反应器上的调温介质进口和调温介质出口分别与上游的至少一反应器上的调温介质出口及下游的至少一反应器上的调温介质进口连接,和/或,至少一反应器上的调温介质进口和调温介质出口分别与至少另一反应器上的调温介质进口和调温介质出口连接。
  9. 根据权利要求1所述的阵列式感应电场流体反应系统,其特征在于:所述电源的额定功率P0≥(P1+P2+···+Px),其中P1是第一个反应单元的输入功率,P2是第二个反应单元的输入功率,Pn是第x个反应单元的输入功率,Px=UP×IP=(UP/ZP)×UP,其中UP是所述电源的输出电压,ZP是单个初级线圈在工作频率下的阻抗,IP是单个初级线圈电流,x为每个电源可驱动的反应单元数量的最大值。
  10. 如权利要求1-9中任一项所述阵列式感应电场流体反应系统在生物和/或化学反应中的应用,所述生化反应包括催化、合成、提取、水解、杀菌、灭酶、蛋白质改性中的至少一种反应。
PCT/CN2016/090710 2016-07-06 2016-07-20 阵列式感应电场流体反应系统及其应用 WO2018006444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/559,662 US10695736B2 (en) 2016-07-06 2016-07-20 Array induced electric field fluid reaction system and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610530097.6A CN106140046B (zh) 2016-07-06 2016-07-06 阵列式感应电场流体反应系统及其应用
CN201610530097.6 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018006444A1 true WO2018006444A1 (zh) 2018-01-11

Family

ID=58062114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090710 WO2018006444A1 (zh) 2016-07-06 2016-07-20 阵列式感应电场流体反应系统及其应用

Country Status (3)

Country Link
US (1) US10695736B2 (zh)
CN (1) CN106140046B (zh)
WO (1) WO2018006444A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11123417B2 (en) 2018-02-05 2021-09-21 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
US11147864B2 (en) 2018-02-05 2021-10-19 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
US11224652B2 (en) 2016-08-05 2022-01-18 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
US11241489B2 (en) 2016-08-05 2022-02-08 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304298B (zh) * 2015-09-14 2017-07-21 江南大学 一种多级感应式连续流磁电加工装置及其应用
CN106932465B (zh) * 2017-03-13 2020-04-14 江南大学 利用同步交变磁通分析生化料液理化特性的系统及方法
CN107486114B (zh) * 2017-09-22 2023-05-23 江南大学 基于感应电场的多磁路多次级流体反应系统及其应用
US20190159487A1 (en) * 2017-11-30 2019-05-30 Thomas E. Terwilliger Reduction of oxidation from consumer organic products by electric field
CN109647305B (zh) * 2018-12-27 2021-03-26 英都斯特(无锡)感应科技有限公司 连续式感应热反应器
CN109701473B (zh) * 2018-12-27 2021-03-30 英都斯特(无锡)感应科技有限公司 星形-三角形式三相感应热反应器
US11486847B1 (en) * 2019-10-25 2022-11-01 Spartek Systems, Inc. Method and apparatus for determining water content of a fluid
CN111965244B (zh) * 2020-08-30 2022-04-05 广东利诚检测技术有限公司 基于励磁等差电位设备检测米粉中焦亚硫酸钠的方法
CN111982976B (zh) * 2020-08-30 2022-04-08 广东利诚检测技术有限公司 基于异相等差感应电势检测红薯粉中明矾含量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047192A (ja) * 2002-07-10 2004-02-12 Adtec Plasma Technology Co Ltd 透磁コアによるトランス放電型プラズマ発生装置
US20040255794A1 (en) * 2003-06-19 2004-12-23 Frontier Engineering Co., Ltd Current-carrying/heating apparatus of liquid food
CN102258971A (zh) * 2011-06-13 2011-11-30 厦门大学 一种列管式纳米二氧化钛管阵列光催化反应器及制备方法
CN104826569A (zh) * 2015-04-10 2015-08-12 中国科学院工程热物理研究所 一种多级注入式线聚焦太阳能吸收反应器
CN105268388A (zh) * 2015-09-14 2016-01-27 江南大学 一种循环式磁电感应反应系统及其应用
CN105304298A (zh) * 2015-09-14 2016-02-03 江南大学 一种多级感应式连续流磁电加工装置及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803271B (zh) * 2005-12-14 2010-09-01 微宏科技(湖州)有限公司 分流器及高通量并行催化反应装置
US8742759B2 (en) * 2008-08-18 2014-06-03 Hitachi Medical Corporation High-frequency coil and magnetic resonance imaging device
US20110207155A1 (en) * 2008-10-13 2011-08-25 Xeptagen Spa Method for the preparation of immunoconjugates and use thereof
CN103597711B (zh) * 2011-06-08 2017-01-18 Lg伊诺特有限公司 电子设备、无线电力接收装置以及显示装置
CN104722255B (zh) * 2015-03-18 2016-08-31 江南大学 感应式磁电生化反应系统及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047192A (ja) * 2002-07-10 2004-02-12 Adtec Plasma Technology Co Ltd 透磁コアによるトランス放電型プラズマ発生装置
US20040255794A1 (en) * 2003-06-19 2004-12-23 Frontier Engineering Co., Ltd Current-carrying/heating apparatus of liquid food
CN102258971A (zh) * 2011-06-13 2011-11-30 厦门大学 一种列管式纳米二氧化钛管阵列光催化反应器及制备方法
CN104826569A (zh) * 2015-04-10 2015-08-12 中国科学院工程热物理研究所 一种多级注入式线聚焦太阳能吸收反应器
CN105268388A (zh) * 2015-09-14 2016-01-27 江南大学 一种循环式磁电感应反应系统及其应用
CN105304298A (zh) * 2015-09-14 2016-02-03 江南大学 一种多级感应式连续流磁电加工装置及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11224652B2 (en) 2016-08-05 2022-01-18 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
US11241489B2 (en) 2016-08-05 2022-02-08 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
US11123417B2 (en) 2018-02-05 2021-09-21 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
US11147864B2 (en) 2018-02-05 2021-10-19 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition
US11911452B2 (en) 2018-02-05 2024-02-27 Sanofi Pasteur Inc. Multivalent pneumococcal polysaccharide-protein conjugate composition

Also Published As

Publication number Publication date
CN106140046A (zh) 2016-11-23
CN106140046B (zh) 2019-02-22
US20190118153A1 (en) 2019-04-25
US10695736B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2018006444A1 (zh) 阵列式感应电场流体反应系统及其应用
US10460869B2 (en) Multi-series continuous-flow magnetoelectric coupling processing system and applications thereof
Sitzmann et al. Applications of electricity and specifically pulsed electric fields in food processing: Historical backgrounds
Qin et al. Nonthermal pasteurization of liquid foods using high‐intensity pulsed electric fields
WO2012021831A2 (en) Procedure for extracting of lipids from algae without cell sacrifice
AU2010315875B2 (en) A pulsed electric field (PEF) method for continuous enhanced extraction of oil and lipids from small aquatic plants
WO2019056401A1 (zh) 基于感应电场的多磁路多次级流体反应系统及其应用
WO2017045434A1 (zh) 循环式磁电感应反应系统及其应用
Frey et al. Inactivation of Pseudomonas putida by pulsed electric field treatment: a study on the correlation of treatment parameters and inactivation efficiency in the short-pulse range
Mattar et al. Stimulation of Saccharomyces cerevisiae cultures by pulsed electric fields
EP2686428A2 (en) Enhancing algae growth by reducing competing microorganisms in a growth medium
CN112189778B (zh) 一种三相连续流感应热绿色杀菌系统及方法
US20020155611A1 (en) Method for treatment of an aqueous flux by electropulsation of a field parallel to the flow, pulsation chamber and uses thereof
CN207287403U (zh) 基于感应电场的多磁路多次级流体反应系统
JP6418649B2 (ja) 電気穿孔用の反応器装置
US20160298104A1 (en) Method for electrical treatment of fluid medium containing biological matter and a system for its implementation
Sitzmann et al. History of pulsed electric fields in food processing
SE522099C2 (sv) Anordning för multipel simultan genöverföring
JP2021045071A (ja) 抽出物の製造方法、細胞内成分の抽出方法、及び抽出装置
De Gol et al. Pulsed electric field treatment for preservation of Chlorella suspensions and retention of gelling capacity
Mikhaylin Impact of high-voltage electrical treatments on the biofunctional properties of proteins and peptides
US20070105223A1 (en) Non uniform electric field chamber for cell fusion
Toepfl et al. Industrial scale equipment, patents, and commercial applications
Iatcheva et al. Investigation of heat effects in pulse electric field treatment of cellular materials
Pliquett Perspectives on using pulsed electric field to enhance biogas yield in anaerobic digestion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907948

Country of ref document: EP

Kind code of ref document: A1