WO2017043837A1 - Method for preparing silver powder using silver grains - Google Patents

Method for preparing silver powder using silver grains Download PDF

Info

Publication number
WO2017043837A1
WO2017043837A1 PCT/KR2016/009970 KR2016009970W WO2017043837A1 WO 2017043837 A1 WO2017043837 A1 WO 2017043837A1 KR 2016009970 W KR2016009970 W KR 2016009970W WO 2017043837 A1 WO2017043837 A1 WO 2017043837A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
solution
silver nitrate
nitric acid
reaction solution
Prior art date
Application number
PCT/KR2016/009970
Other languages
French (fr)
Korean (ko)
Inventor
이창근
진우민
권태현
우상덕
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Publication of WO2017043837A1 publication Critical patent/WO2017043837A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present invention relates to a method for producing silver powder for conductive paste used in electronic components such as solar cell electrodes, internal electrodes of multilayer capacitors, conductor patterns of circuit boards, and the like.
  • a conductive metal paste is a paste in which electricity flows in a dried coating film having a coating ability capable of forming a coating film.
  • a conductive metal paste is a fluid composition in which a conductive filler (metal filler) is dispersed in a vehicle composed of a resin binder and a solvent. It is widely used for forming external electrodes of
  • the silver paste (Silver Paste) is the most chemically stable and excellent conductivity among the composite-based conductive paste has a wide range of applications in a variety of fields, such as for conductive adhesion and coating, and the formation of microcircuits.
  • silver paste is used in various ways, such as silver through hole (STH), adhesive or coating material.
  • Conventional silver powder is prepared by dissolving a silver ingot having a purity of 99.99% in nitric acid, adjusting the pH to 10-11, and reducing and precipitation by adding a reducing agent.
  • the current forms of silver commonly traded in the industry can be broadly divided into granules and ingots.
  • Granules refer to spherical particles having a diameter of 2 to 8 mm, and are manufactured by dropping molten silver into water to form spherical grains.
  • Ingots are produced by casting silver in the same molten state using a hexahedral mold.
  • the international standard sets 30Kg ingots as standard, but in some cases granules are preferred for the user's convenience.
  • silver powder may be used as a disadvantage in a silver powder manufacturing process for preparing a silver nitrate compound using nitric acid. This is because silver (Granule, Ingot) processed in the form of reducing specific surface area in order to minimize volume during storage and transportation has a small reaction area with silver nitrate, which takes a long time to prepare silver nitrate compounds.
  • the present inventors have conceived a fast and economical process by applying silver now in the form of silver grains having a specific surface area larger than granules and ingots and having the same properties as impurities.
  • the inventors of the present invention have come up with a process that can control the particle size of the silver powder to be deposited by applying a concentration step in the process of producing a silver salt for depositing the silver powder.
  • the present invention is to solve the above problems as a silver powder manufacturing method, by producing a silver salt using silver lip provides a fast, economical method for producing silver powder, silver powder precipitated by applying a concentration process It is to provide a method for producing a silver powder that can control the particle size of.
  • a silver powder manufacturing method comprising ;; silver salt manufacturing step (S1) comprising a silver nitrate concentration step (S12) to obtain a concentrated silver nitrate solution by removing.
  • the silver nitrate manufacturing step (S11) is characterized in that the step of producing a silver nitrate solution so that the nitric acid (HNO 3 ) to 100 to 300 parts by weight based on 100 parts by weight of silver (Ag).
  • the silver nitrate manufacturing step (S11) is characterized in that the step of dissolving the silver (Ag) lip in the nitric acid (HNO 3 ) solution at a temperature of 40 to 80 °C.
  • the concentrated nitric acid is characterized in that the step of adjusting the pH of the solution to 0.1 to 5.0.
  • the silver nitrate concentration step (S12) is characterized in that the step of obtaining a concentrated silver nitrate solution by heating to a temperature of 90 to 150 °C.
  • the present invention after the silver salt manufacturing step (S1), the reaction solution production step (S21) for preparing a second reaction solution containing the first reaction solution containing the concentrated silver nitrate solution and ammonia, and a reducing agent and It provides a silver powder production method further comprising; silver salt reduction step (S2) comprising a precipitation step (S22) of reacting the first reaction solution and the second reaction solution to obtain a silver powder.
  • reaction solution preparing step (S21) is a step of preparing the first reaction solution so that ammonia is dissolved in 30 to 50ml per 100g of silver nitrate, and the second reaction solution is prepared to include 40 to 60g of reducing agent per 100g of nitric acid It is characterized by that.
  • the reducing agent is characterized in that at least one member selected from the group consisting of hydroquinone, ascorbic acid, alkanolamine, hydrazine and formalin.
  • the present invention is prepared by selecting the concentrated silver nitrate solution in the pH range 0.1 to 5.5 when the first reaction solution in the reaction solution production step (S21), the average particle size of the silver powder precipitated in the precipitation step (S22) It provides a method for producing a silver powder to adjust to 0.1 to 2.0 ⁇ m.
  • silver (Ag) granules having a large specific surface area and excess nitric acid are used to dissolve the silver granules in nitric acid at a fast reaction rate, thereby reducing the production time of the nitrate and reducing the operating time of the equipment, thereby maintaining the reaction conditions such as temperature. It is possible to provide an economical method for producing silver powder by reducing the use of energy.
  • the pH of the silver nitrate solution can be easily adjusted through the process of concentrating the silver nitrate solution prepared using the excess nitric acid, thereby controlling the particle size of the finally produced silver powder.
  • the dispersant for controlling the particle size when added, it may act as an impurity when used in the conductive paste to inhibit the electrical conductivity, the present invention can effectively control the particle size without addition of the dispersant.
  • 1 is a graph showing the relationship between the specific surface area and the dissolution time.
  • Figure 3 shows the relationship between the pH and particle size of nitric acid according to an embodiment of the present invention.
  • Method for producing a silver powder according to an embodiment of the present invention is a silver salt manufacturing step (S1); Silver salt reduction step (S2); Purification step such as filtration and washing (S3); And a surface treatment step (S4).
  • the method for producing silver powder according to the present invention necessarily includes a silver salt preparation step (S1) and a silver salt reduction step (S2), and other steps may be omitted.
  • Silver salt preparation step (S1) can be prepared by the silver nitrate manufacturing step (S11) to dissolve the silver lip in the nitric acid solution to prepare a silver nitrate solution, and the prepared silver nitrate The silver nitrate may be further prepared by heating the solution to remove the nitric acid, thereby obtaining a silver nitrate solution.
  • Silver nitrate manufacturing step (S11) is a step of preparing a silver salt by dissolving the silver lip in the acid in the current form.
  • Silver lip refers to silver flakes in the form of twigs, and silver lip having a length of 1 to 10 mm generated in an electrorefining process to increase the purity of the non-ferrous metal smelting process can be used.
  • the silver lip uses silver (Ag) lip having a specific surface area of 0.001 to 0.01 m 2 / g.
  • the use of silver particles with a specific surface area of less than 0.001m 2 / g slows down the reaction time and increases the process time, increasing the operating time of the equipment, and using too much energy to maintain the temperature. There is a problem that the yield is lowered due to stagnation. As the specific surface area increases, the contact area with the nitric acid solution is wider, so that a quick dissolution reaction occurs, and thus the dissolution time can be shortened by 10 times or more compared with the ingot.
  • the silver lip is dissolved in an acid solution, especially a nitric acid (HNO 3 ) solution, to prepare a silver nitrate solution.
  • an acid solution especially a nitric acid (HNO 3 ) solution
  • the silver granules and the nitric acid solution are reacted by metering so that 100 parts by weight of silver (Ag) is dissolved in 100 to 300 parts by weight of nitric acid (HNO 3 ).
  • This can lead to faster reaction times and induce sufficient dissolution using nitric acid above the reaction equivalent required to dissolve Ag (Ag).
  • the prepared nitric acid will be contained in excess of nitric acid in the solution, which has the effect that the pH can be easily adjusted in the concentration step (S12) is nitric acid to be described later.
  • the added silver granules When the content of nitric acid is less than 100 parts by weight, the added silver granules have a slow dissolution rate, which increases the processing time and is insufficient to dissolve the injected silver granules. If the amount exceeds 300 parts by weight, the dissolution rate may be increased, but excessive NOx gas may be generated during the concentration reaction due to the addition of nitric acid, which causes an increase in the environmental treatment cost. Therefore, more preferably, it is preferable to react by metering so that 100 parts by weight of silver is dissolved in 170 to 230 parts by weight of nitric acid. For nitric acid solution, 30% solution is recommended.
  • Silver nitrate manufacturing step (S11) is preferably dissolved in the silver (Ag) granules in the nitric acid (HNO 3 ) solution at a temperature of 40 °C to 80 °C.
  • the reaction rate can be increased by applying an appropriate temperature when dissolving a metal in an acid.
  • the reaction temperature is less than 40 °C has a problem that the speed of dissolving the silver is slow, if the reaction temperature is higher than 80 °C because the solution is boiled in the reactor, there is a problem to reduce the input speed of the silver. Therefore, it is more preferable to dissolve at 60 to 70 ° C.
  • Concentrating the silver nitrate (S12) is a step of concentrating the silver nitrate solution by removing the nitric acid from the silver nitrate solution prepared using the silver lip.
  • the silver nitrate solution can be heated to remove the nitric acid by vaporization.
  • the nitric acid solution has a low pH value of 1 or less due to excessive addition of nitric acid.
  • the silver nitrate according to the present invention can easily adjust the pH of silver nitrate through the concentration step (S12), and pH It is possible to easily control the particle size of the finally produced silver powder by controlling the.
  • concentration (a) is changed in the range of 0.1 to 80%.
  • the concentrated silver nitrate was added to distilled water until the volume before concentration was adjusted to adjust the silver concentration in silver nitrate to prepare a silver nitrate solution.
  • the concentrated nitric acid can thereby adjust the pH value of the solution in the range of 0.1 to 5.5.
  • the pH value is increased, thereby controlling the particle size.
  • the higher the pH value the smaller the size of the silver powder can be produced.
  • Silver powder of desired size can be prepared within an average particle size range of 0.1 to 2.0 ⁇ m.
  • Silver salt reduction step (S2) is a step of depositing silver particles by reducing the silver ions by adding a reducing agent and ammonia to the silver salt solution, silver ions, ammonia and nitric acid It includes a reaction solution manufacturing step (S21) for producing a second reaction solution containing a first reaction solution and a reducing agent including and a precipitation step (S22) of reacting the first reaction solution and the second reaction solution to obtain a silver powder. .
  • the silver salt solution may be a concentrated silver nitrate solution, which is a silver salt prepared through the silver salt preparation step (S1) according to an embodiment of the present invention, and may also use a commercially available silver nitrate, silver salt complex or silver intermediate solution. have.
  • reaction solution preparation step (S21) ammonia is added to the silver nitrate solution, and stirred to dissolve to prepare a first reaction solution.
  • nitric acid is further added to prepare a first reaction solution.
  • concentration of silver ions included is not limited but may be in the range of 6 g / L to 40 g / L. If it is less than 6g / L yield is low economic problem, and if more than 40g / L there is a problem that causes the aggregation of the powder.
  • the first reaction solution was prepared by weighing silver nitrate to dissolve 30 to 50 ml of ammonia per 100 g of silver nitrate.
  • ammonia When ammonia is added below 30ml / 100gAgNO 3 , ammonia lacks ammonia in the complex salting reaction to produce silver oxide.
  • ammonia When ammonia is added above 50ml / 100gAgNO 3, the size of silver powder produced is large. There is a decreasing problem. At this time, it is preferable to use industrial 25% aqueous ammonia solution.
  • the amount of nitric acid is preferably added in an amount of 20 to 230 parts by weight based on 100 parts by weight of silver ions. If the nitric acid is added in excess of 230 parts by weight, the size (size) and organic matter content of the prepared silver powder is greatly increased, and the reduction reaction of silver ions is not completed due to the low pH, thereby greatly reducing the recovery rate.
  • the first reaction solution containing silver ions, ammonia, and nitric acid may be prepared in an aqueous state by adding silver nitrate solution and aqueous ammonia solution to a solvent such as water and stirring the solution, or adding silver ions, aqueous ammonia solution, and nitric acid solution, stirring, and dissolving the solution. It may also be prepared in the form of a slurry.
  • Reaction liquid preparation step (S21) according to an embodiment of the present invention also prepares a second reaction liquid containing a reducing agent.
  • the reducing agent may be at least one selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin, and among these, hydroquinone may be preferably selected.
  • the second reaction solution is prepared by weighing the reducing agent in an amount of 40 to 60 g per 100 g of silver nitrate included in the first reaction solution when the silver nitrate solution is used, and 100 weight of silver ions when using a silver salt or silver intermediate solution. It is preferable to prepare to include from 40 to 60 parts by weight relative to the part. When the reducing agent is used below the above range, all of the silver ions may not be reduced, and when used beyond the above range, the organic content may increase, which may be a problem.
  • the second reaction solution containing a reducing agent may be prepared in an aqueous solution state by adding a reducing agent to a solvent such as water and stirring the solution.
  • Precipitation step (S22) is a step of obtaining a silver powder by reacting the first reaction solution and the second reaction solution, stirring the first reaction solution prepared by the reaction solution preparation step (S21)
  • the second reaction liquid can be slowly added dropwise or added in a batch to react.
  • the batch reaction may be completed in a short time to collectively add the bulk to prevent aggregation of the particles and to improve dispersibility.
  • dispersant examples include fatty acids, fatty acid salts, surfactants, organometallics, chelate formers and protective colloids.
  • the dispersant for controlling the particle size when added, it can act as an impurity when used in the conductive paste to inhibit the electrical conductivity, the present invention has the advantage that can effectively control the particle size without addition of the dispersant .
  • Purification step (S3) is a silver salt reduction step (S2) after completing the silver particle precipitation reaction to remove and wash the silver powder dispersed in an aqueous solution or slurry using filtration and the like Step S31 is included. More specifically, after the silver particles in the silver powder dispersion are precipitated, the supernatant of the dispersion is discarded and filtered using a centrifuge, and the filter medium is washed with pure water. In addition to the centrifuge mentioned in the present invention, the application of various methods for solid-liquid separation such as filter press and decanter is not excluded from the scope of the right. The washing process is performed by completely removing the washing water from which the powder has been washed. Therefore, the water content is reduced to less than 10%. It is also possible to optionally add the aforementioned dispersants to the reaction complete solution prior to filtration to prevent aggregation of the silver powder.
  • the purification step (S3) may further comprise a drying and disintegration step (S34) after washing.
  • Surface treatment step (S4) is a step of hydrophobizing the hydrophilic surface of the silver powder, it may be made selectively. More specifically, after controlling the moisture content of the wet cake (wet cake) obtained after filtration to less than 10% can be added to the surface treatment agent for the surface treatment of the silver powder and the moisture content can be adjusted to 70% to 85%. Thereafter, silver powder can be obtained through drying and pulverization. When surface treatment of silver powder, the powder should be well dispersed, and the surface treatment is sufficient. If the water content is low, the dispersion efficiency is poor, so it is better to surface-treat a certain amount with water content.
  • Silver powder prepared according to an embodiment of the present invention by measuring the diameter size of each of the 100 powders by using a scanning electron microscope (SEM) and the average size measured within the range of 0.1um to 2.0um,
  • SEM scanning electron microscope
  • the organic matter content measured by TGA analysis in the range from normal temperature to 500 degreeC at the temperature increase rate of 10 degreeC / min is 1.0 weight% or less.
  • Example 1 Silver Crystal 0.0058 605 Comparative Example 1 Silver Granule 0.00017 2890 Comparative Example 2 Silver Ingot 0.00038 6060
  • Example 1 in which silver particles having a specific surface area of 0.0058 m 2 / g were dissolved in the same nitric acid solution, 0.00017 m 2 / g of Comparative Example 1 was four times or more than the silver granule of Comparative Example 2, and 0.00038 of Comparative Example 2 m 2 / g of silver can reduce the dissolution time by more than 10 times than the ingot.
  • 1 is a graph showing the relationship between the specific surface area and the dissolution time.
  • Example 2 Silver Nitrate Concentration (%) Silver Nitrate pH Example 2 0.1 0.4 Example 3 15.8 0.8 Example 4 46 1.6 Example 5 60 2 Example 6 67 3.9 Example 7 77.5 5.1
  • the pH of the silver nitrate solution can be easily adjusted from 0.4 to 5.1 by adjusting the concentration of nitric acid from 0.1% to 77.5%, and in FIG. 2, the relationship between the concentration of nitric acid and pH is shown. .
  • the 1st aqueous solution was made to stir, the 2nd aqueous solution was added collectively to this 1st aqueous solution, and further stirred for 5 minutes after completion
  • stirring was stopped the particles in the mixed solution were allowed to settle, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifuge, the media was washed with pure water, dried, and silver powder was obtained.
  • the SEM size was measured by measuring the diameter size of each of 100 powders using a scanning electron microscope manufactured by JEOL, and the results are shown in Table 3.
  • Example 8 Used silver nitrate Silver Nitrate pH SEM size (m)
  • Example 8 Example 2 0.4 1.6
  • Example 9 Example 3 0.8 1.5
  • Example 10 Example 4 1.6 1.3
  • Example 11 Example 5 2 One
  • Example 12 Example 6 3.9 0.8
  • Example 13 Example 7 5.1 0.6
  • each particle size was prepared from 1.6 ⁇ m to 0.6 ⁇ m using silver nitrate having a pH value of 0.4 to 5.1, and FIG. Indicated.

Abstract

The present invention relates to a method for preparing a silver powder, the method comprising a silver salt preparing step (S1) comprising: a silver nitrate preparing step (S11) for dissolving silver (Ag) grains with a specific surface area of 0.001-0.01 m2/g in a nitric acid (HNO3) solution, thereby preparing a silver nitrate solution; and a silver nitrate concentrating step (S12) for heating the prepared silver nitrate solution to remove nitric acid, thereby obtaining a concentrated silver nitrate solution. The present invention can provide a prompt and economical preparation method by preparing a silver salt using silver grains, and can provide a preparation method capable of controlling the particle size of a silver powder precipitated by an application of a concentrating process.

Description

은 립을 이용한 은 분말의 제조방법Manufacturing method of silver powder using silver lip
본 발명은 태양전지용 전극이나 적층 콘덴서의 내부전극, 회로기판의 도체 패턴 등 전자부품에 사용되는 도전성 페이스트용 은 분말의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silver powder for conductive paste used in electronic components such as solar cell electrodes, internal electrodes of multilayer capacitors, conductor patterns of circuit boards, and the like.
도전성 금속 페이스트는 도막 형성이 가능한 도포 적성을 갖고 건조된 도막에 전기가 흐르는 페이스트로서, 수지계 바인더와 용매로 이루어지는 비히클 중에 도전성 필러(금속 필러)를 분산시킨 유동성 조성물이며, 전기 회로의 형성이나 세라믹 콘덴서의 외부 전극의 형성 등에 널리 사용되고 있다. A conductive metal paste is a paste in which electricity flows in a dried coating film having a coating ability capable of forming a coating film. A conductive metal paste is a fluid composition in which a conductive filler (metal filler) is dispersed in a vehicle composed of a resin binder and a solvent. It is widely used for forming external electrodes of
특히, 은 페이스트(Silver Paste)는 복합계 도전성 페이스트 중에서 가장 화학적으로 안정하고 도전성이 우수하여 전도성 접착 및 코팅용 그리고 미세회로 형성 등 여러 분야에 있어서 상당히 그 응용범위가 넓다. PCB(Printed Circuit Board)등과 같은 신뢰성을 특별히 중요시하는 전자부품에 있어서 은 페이스트의 용도는 STH(Silver Through Hole)용, 접착 또는 코팅재 등으로 다양하게 사용되고 있다. In particular, the silver paste (Silver Paste) is the most chemically stable and excellent conductivity among the composite-based conductive paste has a wide range of applications in a variety of fields, such as for conductive adhesion and coating, and the formation of microcircuits. In electronic components such as printed circuit boards (PCBs), where reliability is particularly important, silver paste is used in various ways, such as silver through hole (STH), adhesive or coating material.
종래의 은 분말을 제조하는 방법으로는 순도가 99.99%인 은 괴를 질산에 용해한 후 pH를 10~11로 조절하고 환원제를 첨가하여 환원, 석출시켜 제조한다. 산업에서 일반적으로 거래되는 은 지금의 형태는 크게 그래뉼(Granule)과 잉고트(Ingot)로 나눌 수 있다. 그래뉼은 2~8mm의 지름을 가지는 구형의 입자를 일컫는데 용융된 상태의 은을 물에 적하하여 구형의 알갱이를 형성시키는 방법으로 제조된다. 잉고트는 동일한 용융된 상태의 은을 육면체의 금형을 사용하여 주조하여 제작된다. 국제 규격으로는 30Kg 잉고트가 표준으로 정해져 있지만 사용자의 편의에 의해 그래뉼을 선호하는 경우도 있다.Conventional silver powder is prepared by dissolving a silver ingot having a purity of 99.99% in nitric acid, adjusting the pH to 10-11, and reducing and precipitation by adding a reducing agent. The current forms of silver commonly traded in the industry can be broadly divided into granules and ingots. Granules refer to spherical particles having a diameter of 2 to 8 mm, and are manufactured by dropping molten silver into water to form spherical grains. Ingots are produced by casting silver in the same molten state using a hexahedral mold. The international standard sets 30Kg ingots as standard, but in some cases granules are preferred for the user's convenience.
부피를 최소화하여 보관이 용이하게 하고 이동시 발생하는 비용을 최소화하기 위하여 산업에서 그래뉼과 잉곳 두가지 형태의 은 지금이 사용되고 있다. 그러나 이러한 형태로 통용되는 그래뉼과 잉고트의 경우 질산을 사용하여 질산은 화합물을 제조하는 은분말 제조 공정에서는 단점으로 작용할 수 있다. 보관 및 이송시 부피를 최소화 하기 위해 비표면적을 줄이는 형태로 가공된 은 지금(그래뉼, 잉곳)은 질산은과의 반응 면적이 작아져 질산은 화합물 제조에 장시간이 소요되기 때문이다. Two types of silver are used in the industry, granules and ingots, to minimize volume, facilitate storage, and minimize travel costs. However, in the case of granules and ingots commonly used in this form, silver powder may be used as a disadvantage in a silver powder manufacturing process for preparing a silver nitrate compound using nitric acid. This is because silver (Granule, Ingot) processed in the form of reducing specific surface area in order to minimize volume during storage and transportation has a small reaction area with silver nitrate, which takes a long time to prepare silver nitrate compounds.
이에 본 발명자들은 그래뉼, 잉곳 대비 비표면적이 크고 불순물 등 성상이 동일한 은 립이라는 형태의 은 지금을 은분말 제조 공정에 적용하여 빠르고 경제적인 공정을 착안하게 되었다. Accordingly, the present inventors have conceived a fast and economical process by applying silver now in the form of silver grains having a specific surface area larger than granules and ingots and having the same properties as impurities.
한편, 종래의 은 분말 제조에 있어서, 유기 환원제를 사용하여 용액 중에 함유되어 있는 은 이온(Ag+)이 환원되어 석출시킬 때 환원반응이 급속도로 진행되기 때문에 은 분말의 입경 및 입자형태의 조절이 어렵고 석출된 은 입자의 입경이 조대해지고 응집 현상이 발생되는 문제점이 있다. On the other hand, in the conventional silver powder production, since the reduction reaction proceeds rapidly when the silver ions (Ag + ) contained in the solution are reduced and precipitated using an organic reducing agent, control of the particle size and particle shape of the silver powder is difficult. Difficult, there is a problem that the particle size of the precipitated silver particles are coarse and agglomeration phenomenon occurs.
이에 본 발명자들은 은 분말을 석출하기 위한 은 염을 제조하는 공정에 있어서, 농축 공정을 적용하여 석출되는 은 분말의 입자크기를 제어할 수 있는 공정을 착안하게 되었다. Accordingly, the inventors of the present invention have come up with a process that can control the particle size of the silver powder to be deposited by applying a concentration step in the process of producing a silver salt for depositing the silver powder.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 은 분말 제조방법으로서, 은 립을 사용하여 은 염을 제조함으로써 빠르고, 경제적인 은 분말의 제조방법을 제공하며, 농축 공정을 적용하여 석출되는 은 분말의 입자 크기를 제어할 수 있는 은 분말의 제조방법을 제공하는 것이다. The present invention is to solve the above problems as a silver powder manufacturing method, by producing a silver salt using silver lip provides a fast, economical method for producing silver powder, silver powder precipitated by applying a concentration process It is to provide a method for producing a silver powder that can control the particle size of.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 비표면적이 0.001 내지 0.01m2/g인 은(Ag) 립을 질산(HNO3) 용액에 용해시켜 질산은 용액을 제조하는 질산은 제조단계(S11) 및 상기 제조된 질산은 용액을 가열하여 질산을 제거함으로써 농축된 질산은 용액을 얻는 질산은 농축단계(S12)를 포함하는 은 염 제조단계(S1);를 포함하는 은 분말 제조방법을 제공한다. In the present invention, a silver nitrate manufacturing step (S11) of dissolving silver (Ag) grains having a specific surface area of 0.001 to 0.01 m 2 / g in a solution of nitric acid (HNO 3 ) to prepare a silver nitrate solution (S11) and the prepared silver nitrate solution are heated to nitric acid. It provides a silver powder manufacturing method comprising ;; silver salt manufacturing step (S1) comprising a silver nitrate concentration step (S12) to obtain a concentrated silver nitrate solution by removing.
또한 상기 질산은 제조단계(S11)는 은(Ag) 100 중량부에 대하여 질산(HNO3)이 100 내지 300 중량부로 용해되도록 질산은 용액을 제조하는 단계인 것을 특징으로 한다.In addition, the silver nitrate manufacturing step (S11) is characterized in that the step of producing a silver nitrate solution so that the nitric acid (HNO 3 ) to 100 to 300 parts by weight based on 100 parts by weight of silver (Ag).
또한 상기 질산은 제조단계(S11)는 40 내지 80℃의 온도에서 상기 은(Ag) 립을 상기 질산(HNO3) 용액에 용해시키는 단계인 것을 특징으로 한다.In addition, the silver nitrate manufacturing step (S11) is characterized in that the step of dissolving the silver (Ag) lip in the nitric acid (HNO 3 ) solution at a temperature of 40 to 80 ℃.
또한 상기 질산은 농축단계(S12)는, 상기 질산은 용액의 가열 전 부피에 대한 가열 후 부피의 비율을 농축량(a, %) 이라고 할 때, 상기 농축량을 0.1 내지 80% 범위 내에서 변화시켜, 농축된 질산은 용액의 pH를 0.1 내지 5.0으로 조절하는 단계인 것을 특징으로 한다.In addition, the silver nitrate concentration step (S12), when the ratio of the volume after heating to the volume before the heating of the silver nitrate solution (a,%) by changing the concentration within the range of 0.1 to 80%, The concentrated nitric acid is characterized in that the step of adjusting the pH of the solution to 0.1 to 5.0.
또한 상기 질산은 농축단계(S12)는 90 내지 150℃의 온도로 가열하여 농축된 질산은 용액을 얻는 단계인 것을 특징으로 한다.In addition, the silver nitrate concentration step (S12) is characterized in that the step of obtaining a concentrated silver nitrate solution by heating to a temperature of 90 to 150 ℃.
또한 본 발명은 상기 은 염 제조단계(S1) 이후에, 상기 농축된 질산은 용액 및 암모니아를 포함하는 제1 반응액, 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함하는 은 염 환원단계(S2);를 더 포함하는 은 분말 제조방법을 제공한다.In another aspect, the present invention after the silver salt manufacturing step (S1), the reaction solution production step (S21) for preparing a second reaction solution containing the first reaction solution containing the concentrated silver nitrate solution and ammonia, and a reducing agent and It provides a silver powder production method further comprising; silver salt reduction step (S2) comprising a precipitation step (S22) of reacting the first reaction solution and the second reaction solution to obtain a silver powder.
또한 상기 반응액제조단계(S21)는 제1 반응액을 질산은 100g 당 암모니아가 30 내지 50ml로 용해되도록 제조하는 단계이며, 제2 반응액을 질산은 100g 당 환원제가 40 내지 60g으로 포함되도록 제조하는 단계인 것을 특징으로 한다.In addition, the reaction solution preparing step (S21) is a step of preparing the first reaction solution so that ammonia is dissolved in 30 to 50ml per 100g of silver nitrate, and the second reaction solution is prepared to include 40 to 60g of reducing agent per 100g of nitric acid It is characterized by that.
또한 상기 환원제는 하이드로퀴논, 아스코르브산, 알칸올아민, 히드라진 및 포르말린으로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 한다.In addition, the reducing agent is characterized in that at least one member selected from the group consisting of hydroquinone, ascorbic acid, alkanolamine, hydrazine and formalin.
또한 본 발명은 상기 반응액제조단계(S21)에서 상기 제1 반응액 제조 시 pH 0.1 내지 5.5 범위 내의 농축된 질산은 용액을 선택하여 제조하여, 상기 석출단계(S22)에서 석출된 은 분말의 평균 입도를 0.1 내지 2.0μm로 조절하는 은 분말 제조방법을 제공한다. In addition, the present invention is prepared by selecting the concentrated silver nitrate solution in the pH range 0.1 to 5.5 when the first reaction solution in the reaction solution production step (S21), the average particle size of the silver powder precipitated in the precipitation step (S22) It provides a method for producing a silver powder to adjust to 0.1 to 2.0μm.
본 발명은 비표면적이 큰 은(Ag) 립과 과량의 질산을 사용하여 빠른 반응 속도로 은 립을 질산에 용해시킴으로서 질산은 제조 공정시간을 줄이고 설비의 가동시간을 줄여, 온도 등의 반응조건을 유지하기 위한 에너지 사용을 절감하여 경제적인 은 분말 제조방법을 제공할 수 있다.In the present invention, silver (Ag) granules having a large specific surface area and excess nitric acid are used to dissolve the silver granules in nitric acid at a fast reaction rate, thereby reducing the production time of the nitrate and reducing the operating time of the equipment, thereby maintaining the reaction conditions such as temperature. It is possible to provide an economical method for producing silver powder by reducing the use of energy.
또한 과량의 질산을 사용하여 제조된 질산은 용액을 농축하는 공정을 통하여 질산은 용액의 pH를 용이하게 조절할 수 있으며, 이로써 최종적으로 제조되는 은 분말의 입자 크기를 제어할 수 있다. In addition, the pH of the silver nitrate solution can be easily adjusted through the process of concentrating the silver nitrate solution prepared using the excess nitric acid, thereby controlling the particle size of the finally produced silver powder.
또한 입자 크기를 제어하기 위한 분산제가 첨가되는 경우, 도전성 페이스트에 사용 시 불순물로 작용하여 전기전도성을 저해시킬 수 있는데, 본 발명에 의해 분산제의 첨가 없이도 입자크기를 효과적으로 제어할 수 있다. In addition, when the dispersant for controlling the particle size is added, it may act as an impurity when used in the conductive paste to inhibit the electrical conductivity, the present invention can effectively control the particle size without addition of the dispersant.
도 1에 비표면적(Specific Surface Area)과 용해시간과의 관계를 나타낸 그래프를 도시하였다. 1 is a graph showing the relationship between the specific surface area and the dissolution time.
도 2에 본 발명의 일실시예에 따른 질산은 농축량과 pH 와의 관계를 나타내었다. 2 shows the relationship between the concentration of nitric acid and pH according to an embodiment of the present invention.
도 3에 본 발명의 일실시예에 따른 질산은 pH와 입자 크기의 관계를 나타내었다. Figure 3 shows the relationship between the pH and particle size of nitric acid according to an embodiment of the present invention.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Prior to describing the present invention in detail below, it is understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the invention, which is limited only by the scope of the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise indicated.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, unless otherwise indicated, the termcomprise, constitutes, and configure means to include the referenced article, step, or group of articles, and step, and any other article It is not intended to exclude a stage or group of things or groups of stages.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다. On the other hand, various embodiments of the present invention can be combined with any other embodiment unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention and the effects thereof.
본 발명의 일실시예에 따른 은 분말의 제조방법은 은 염 제조단계(S1); 은 염 환원단계(S2); 여과 및 세척 등 정제단계(S3); 및 표면처리단계(S4);를 포함하여 이루어진다. 본 발명에 따른 은 분말의 제조방법은 은 염 제조단계(S1) 및 은 염 환원단계(S2)를 반드시 포함하고, 이외의 단계는 생략 가능하다. Method for producing a silver powder according to an embodiment of the present invention is a silver salt manufacturing step (S1); Silver salt reduction step (S2); Purification step such as filtration and washing (S3); And a surface treatment step (S4). The method for producing silver powder according to the present invention necessarily includes a silver salt preparation step (S1) and a silver salt reduction step (S2), and other steps may be omitted.
1.One. 은 염 제조단계(S1)Silver salt manufacturing step (S1)
본 발명의 일 실시 예에 따른 은 염 제조단계(S1)는 은 립을 질산 용액에 용해시켜 질산은 용액을 제조하는 질산은 제조단계(S11)를 통해 은 염을 제조할 수 있으며, 또한 상기 제조된 질산은 용액을 가열하여 질산을 제거함으로써 농축된 질산은 용액을 얻는 질산은 농축단계(S12)를 더 포함하여, 은 염을 제조할 수 있다. Silver salt preparation step (S1) according to an embodiment of the present invention can be prepared by the silver nitrate manufacturing step (S11) to dissolve the silver lip in the nitric acid solution to prepare a silver nitrate solution, and the prepared silver nitrate The silver nitrate may be further prepared by heating the solution to remove the nitric acid, thereby obtaining a silver nitrate solution.
본 발명의 일 실시 예에 따른 질산은 제조단계(S11)는 은 지금의 형태 중 은 립을 산에 용해시켜 은 염을 제조하는 단계이다. 은 립은 나뭇가지의 형태를 띄는 은 지금을 의미하는 것으로, 비철 금속을 제련하는 공정 중 순도를 높이는 전기정련 공정에서 발생하는 1~10mm 길이를 가지는 은 립을 사용할 수 있다.Silver nitrate manufacturing step (S11) according to an embodiment of the present invention is a step of preparing a silver salt by dissolving the silver lip in the acid in the current form. Silver lip refers to silver flakes in the form of twigs, and silver lip having a length of 1 to 10 mm generated in an electrorefining process to increase the purity of the non-ferrous metal smelting process can be used.
상기 은 립은 비표면적이 0.001 내지 0.01m2/g인 은(Ag) 립을 사용한다. 0.001m2/g 미만의 비표면적의 은 립을 사용하는 경우 반응속도가 느려 공정시간이 길어져 설비의 가동시간이 늘어나며 온도를 유지하기 위한 에너지도 과량으로 사용되어 경제적이지 못하며, 반응이 일어나는 용기 바닥에 정체되어 수율이 낮아지는 문제점이 있다. 비표면적이 증가할수록 질산 용액과의 접촉면적이 넓어 빠른 용해 반응이 일어나고, 이로 인하여 용해시간을 잉곳 대비 10배 이상 단축할 수 있다. 그러나 0.01m2/g를 초과하는 비표면적을 갖는 은 립을 사용하는 경우 공정 진행에 있어 취급이 용이하지 않고, 공정 중 은립의 투입 시 진동에 의해 비산하여 유실 되거나 반응 공정에서 급격한 반응에 의한 용액의 반응기 넘침이 일어날 문제점이 있다. 따라서 이러한 문제를 해결하기 위해 더욱 바람직하게는 0.003 내지 0.008m2/g 인 은 립을 사용하는 것이 좋다.The silver lip uses silver (Ag) lip having a specific surface area of 0.001 to 0.01 m 2 / g. The use of silver particles with a specific surface area of less than 0.001m 2 / g slows down the reaction time and increases the process time, increasing the operating time of the equipment, and using too much energy to maintain the temperature. There is a problem that the yield is lowered due to stagnation. As the specific surface area increases, the contact area with the nitric acid solution is wider, so that a quick dissolution reaction occurs, and thus the dissolution time can be shortened by 10 times or more compared with the ingot. However, when using silver granules with a specific surface area exceeding 0.01 m 2 / g, it is not easy to handle during the process, and the solution may be lost or scattered due to vibration during the introduction of silver granules during the process, or the solution may be suddenly reacted in the reaction process. There is a problem that the reactor overflow occurs. Therefore, in order to solve this problem, it is preferable to use silver lip which is more preferably 0.003 to 0.008 m 2 / g.
상기 은 립을 산 용액, 특히 질산(HNO3) 용액에 용해시켜 질산은 용액을 제조한다. 은 립과 질산 용액은 은(Ag) 100 중량부가 질산(HNO3) 100 내지 300 중량부에 용해되도록 계량하여 반응시킨다. 이는 은(Ag)을 용해시키는데 필요한 반응 당량 이상의 질산을 사용하여 반응 시간을 더욱 빠르게 하고, 충분한 용해를 유도할 수 있다. 제조된 질산은 용액 내에 질산이 과량 포함되게 되며, 이는 후술할 질산은 농축단계(S12)에서 pH를 용이하게 조절할 수 있는 효과가 있다. 질산의 함량이 100 중량부 미만인 경우에는 첨가된 은 립의 용해 속도가 늦어 공정시간이 늘어나고 투입된 은 립을 용해하기에 부족하여 잔량이 용기 바닥에 침전되어 작업성을 나쁘게 한다. 300 중량부를 초과하는 경우에는 용해 속도를 높일 수는 있지만 과 첨가된 질산에 의해 농축 반응시 과도한 NOx가스를 발생 시켜 환경 처리 비용을 증가시키는 원인이 된다. 따라서 더욱 바람직하게는 은 100 중량부가 질산 170 내지 230 중량부에 용해되도록 계량하여 반응시키는 것이 좋다. 질산 용액은 30% 용액을 사용하는 것이 좋다.The silver lip is dissolved in an acid solution, especially a nitric acid (HNO 3 ) solution, to prepare a silver nitrate solution. The silver granules and the nitric acid solution are reacted by metering so that 100 parts by weight of silver (Ag) is dissolved in 100 to 300 parts by weight of nitric acid (HNO 3 ). This can lead to faster reaction times and induce sufficient dissolution using nitric acid above the reaction equivalent required to dissolve Ag (Ag). The prepared nitric acid will be contained in excess of nitric acid in the solution, which has the effect that the pH can be easily adjusted in the concentration step (S12) is nitric acid to be described later. When the content of nitric acid is less than 100 parts by weight, the added silver granules have a slow dissolution rate, which increases the processing time and is insufficient to dissolve the injected silver granules. If the amount exceeds 300 parts by weight, the dissolution rate may be increased, but excessive NOx gas may be generated during the concentration reaction due to the addition of nitric acid, which causes an increase in the environmental treatment cost. Therefore, more preferably, it is preferable to react by metering so that 100 parts by weight of silver is dissolved in 170 to 230 parts by weight of nitric acid. For nitric acid solution, 30% solution is recommended.
질산은 제조단계(S11)는 40℃ 내지 80℃의 온도에서 상기 은(Ag) 립을 상기 질산(HNO3) 용액에 용해시키는 것이 좋다. 일반적으로 금속을 산에 녹일 때에는 적절한 온도를 가함으로써 그 반응 속도를 증가 시킬 수 있다고 알려져 있다. 본 연구에서는 반응온도가 40℃ 미만인 경우 은립이 용해되는 속도가 느리게 되는 문제점이 있고, 80℃ 초과인 경우 반응이 너무 빨라져 반응기에서 용액이 끓어 넘쳐 은립의 투입속도를 줄여야 하는 문제점이 있다. 따라서 더욱 바람직하게는 60 내지 70℃에서 용해시키는 것이 좋다. Silver nitrate manufacturing step (S11) is preferably dissolved in the silver (Ag) granules in the nitric acid (HNO 3 ) solution at a temperature of 40 ℃ to 80 ℃. In general, it is known that the reaction rate can be increased by applying an appropriate temperature when dissolving a metal in an acid. In this study, when the reaction temperature is less than 40 ℃ has a problem that the speed of dissolving the silver is slow, if the reaction temperature is higher than 80 ℃ because the solution is boiled in the reactor, there is a problem to reduce the input speed of the silver. Therefore, it is more preferable to dissolve at 60 to 70 ° C.
본 발명의 일실시예에 따른 질산은 농축단계(S12)는 은 립을 사용하여 제조된 질산은 용액에서 질산을 제거함으로써 질산은 용액을 농축하는 단계이다. 이 계에서는 질산은 용액을 가열하여 질산을 기화시켜 제거할 수 있다. 은 립의 용해가 완료된 질산은 용액의 경우 과량으로 첨가된 질산으로 인해 1 이하의 낮은 pH 값을 가지는데, 본 발명에 따른 질산은 농축단계(S12)를 통해 질산은의 pH를 용이하게 조절할 수 있고, pH를 조절함으로써 최종적으로 제조되는 은 분말의 입자 크기를 용이하게 조절할 수 있는 효과를 갖는다. Concentrating the silver nitrate (S12) according to an embodiment of the present invention is a step of concentrating the silver nitrate solution by removing the nitric acid from the silver nitrate solution prepared using the silver lip. In this system, the silver nitrate solution can be heated to remove the nitric acid by vaporization. In the case of the silver nitrate solution in which silver granules are dissolved, the nitric acid solution has a low pH value of 1 or less due to excessive addition of nitric acid. The silver nitrate according to the present invention can easily adjust the pH of silver nitrate through the concentration step (S12), and pH It is possible to easily control the particle size of the finally produced silver powder by controlling the.
질산은 농축단계(S12)는 상기 질산은 용액을 90 내지 150℃의 온도로 가열하여 질산을 제거한다. 하기 식과 같이 질산은 용액의 가열 전 부피에 대한 가열 후 부피의 비율을 농축량(a, %)이라고 할 때, 농축량(a)를 0.1 내지 80% 범위에서 변화시킨다. 농축이 완료된 질산은 용액에 농축 전의 부피가 될 때까지 증류수를 첨가하여 질산은 내의 은 농도를 맞추어 질산은 용액을 제조한다. 이로써 농축되는 질산은 용액의 pH값을 0.1 내지 5.5 범위에서 조절할 수 있다.Concentrating the silver nitrate (S12) to remove the nitric acid by heating the silver nitrate solution to a temperature of 90 to 150 ℃. When the ratio of the volume after heating to the volume before heating the solution of the silver nitrate is represented by the following formula, the concentration (a) is changed in the range of 0.1 to 80%. The concentrated silver nitrate was added to distilled water until the volume before concentration was adjusted to adjust the silver concentration in silver nitrate to prepare a silver nitrate solution. The concentrated nitric acid can thereby adjust the pH value of the solution in the range of 0.1 to 5.5.
가열에 의해 질산을 증발시켜 농축시킬수록 pH 값은 높아지게 되며, 이를 통해 입자 크기를 제어할 수 있다. pH 값이 높아질수록 작은 크기의 은 분말을 제조할 수 있다. 후술할 은 염 환원단계(S2)에서 농축량(a)를 0.1 내지 80%로 조절하여 얻어진 0.1 내지 5.5 범위 내의 pH 값을 갖는 질산은 용액을 포함하는 제1 반응액을 사용하여 은 분말을 석출함으로써, 0.1 내지 2.0μm의 평균 입도 범위 내에서 원하는 크기의 은 분말을 제조할 수 있다. As the nitric acid is evaporated and concentrated by heating, the pH value is increased, thereby controlling the particle size. The higher the pH value, the smaller the size of the silver powder can be produced. By depositing the silver powder using a first reaction solution containing a silver nitrate solution having a pH value within the range of 0.1 to 5.5 obtained by adjusting the concentration (a) to 0.1 to 80% in the silver salt reduction step (S2) to be described later. , Silver powder of desired size can be prepared within an average particle size range of 0.1 to 2.0 μm.
2.2. 은 염 환원단계(S2)Silver salt reduction step (S2)
본 발명의 일실시예에 따른 은 염 환원단계(S2)는 은 염 용액에 환원제 및 암모니아를 첨가하여 은 이온을 환원시켜 은 입자(silver particle)를 석출하는 단계로서, 은 이온, 암모니아 및 질산을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함한다. Silver salt reduction step (S2) according to an embodiment of the present invention is a step of depositing silver particles by reducing the silver ions by adding a reducing agent and ammonia to the silver salt solution, silver ions, ammonia and nitric acid It includes a reaction solution manufacturing step (S21) for producing a second reaction solution containing a first reaction solution and a reducing agent including and a precipitation step (S22) of reacting the first reaction solution and the second reaction solution to obtain a silver powder. .
은 염 용액은 본 발명의 일실시예에 따른 은 염 제조단계(S1)를 통해 제조된 은 염인 농축된 질산은 용액을 사용할 수 있으며, 또한 시중에서 구입한 질산은, 은염착체 또는 은 중간체 용액을 사용할 수 있다. The silver salt solution may be a concentrated silver nitrate solution, which is a silver salt prepared through the silver salt preparation step (S1) according to an embodiment of the present invention, and may also use a commercially available silver nitrate, silver salt complex or silver intermediate solution. have.
본 발명의 일실시예에 따른 반응액제조단계(S21)는 질산은 용액에 암모니아를 첨가하고 교반하여 용해시켜 제1 반응액을 제조한다. 은염착체 또는 은 중간체 용액을 사용하는 경우 질산을 더 첨가하여 제1 반응액을 제조한다. 포함되는 은 이온의 농도는 제한되지 않으나 6g/L 내지 40g/L 범위 내가 좋다. 6g/L 미만의 경우 수율이 낮아져 경제성이 문제되며, 40g/L 초과하는 경우 분말의 응집을 초래하는 문제점이 있다.In the reaction solution preparation step (S21) according to the embodiment of the present invention, ammonia is added to the silver nitrate solution, and stirred to dissolve to prepare a first reaction solution. In the case of using a silver complex or a silver intermediate solution, nitric acid is further added to prepare a first reaction solution. The concentration of silver ions included is not limited but may be in the range of 6 g / L to 40 g / L. If it is less than 6g / L yield is low economic problem, and if more than 40g / L there is a problem that causes the aggregation of the powder.
반응액제조단계(S21)는 질산은 질산은 100g 당 암모니아가 30 내지 50ml로 용해되도록 계량하여 제1 반응액을 제조한다. 암모니아가 30ml/100gAgNO3 미만으로 첨가되는 경우 암모니아 은 착염 반응에서 암모니아가 부족하여 산화 은이 생성되는 문제점이 있으며, 암모니아가 50ml/100gAgNO3 초과하여 첨가되는 경우 제조된 은 분말의 크기(size)가 크게 감소하는 문제점이 있다. 이 때 사용하는 암모니아수는 공업용 25% 암모니아 수용액을 사용하는 것이 좋다. In the reaction solution preparation step (S21), the first reaction solution was prepared by weighing silver nitrate to dissolve 30 to 50 ml of ammonia per 100 g of silver nitrate. When ammonia is added below 30ml / 100gAgNO 3 , ammonia lacks ammonia in the complex salting reaction to produce silver oxide. When ammonia is added above 50ml / 100gAgNO 3, the size of silver powder produced is large. There is a decreasing problem. At this time, it is preferable to use industrial 25% aqueous ammonia solution.
은염착체 또는 은 중간체 용액을 사용하는 경우 질산의 사용량은 은 이온 100 중량부에 대하여 20 내지 230 중량부로 첨가하는 것이 좋다. 질산이 230 중량부를 초과하여 첨가되는 경우 제조된 은 분말의 크기(size)와 유기물 함량이 크게 증가하고 낮은 pH에 의해 은이온의 환원 반응이 완료되지 않아 회수율을 크게 떨어트리는 문제점이 있다. When using a silver salt solution or a silver intermediate solution, the amount of nitric acid is preferably added in an amount of 20 to 230 parts by weight based on 100 parts by weight of silver ions. If the nitric acid is added in excess of 230 parts by weight, the size (size) and organic matter content of the prepared silver powder is greatly increased, and the reduction reaction of silver ions is not completed due to the low pH, thereby greatly reducing the recovery rate.
은 이온, 암모니아 및 질산을 포함하는 제1 반응액은 물 등의 용제에 질산은 용액 및 암모니아 수용액을 첨가하고 교반하거나 은 이온, 암모니아 수용액, 질산 수용액을 첨가하고 교반하여 용해시켜 수용액 상태로 제조될 수 있으며, 또한 슬러리 형태로 제조될 수 있다. The first reaction solution containing silver ions, ammonia, and nitric acid may be prepared in an aqueous state by adding silver nitrate solution and aqueous ammonia solution to a solvent such as water and stirring the solution, or adding silver ions, aqueous ammonia solution, and nitric acid solution, stirring, and dissolving the solution. It may also be prepared in the form of a slurry.
본 발명의 일실시예에 따른 반응액제조단계(S21)는 또한 환원제를 포함하는 제2 반응액을 제조한다. Reaction liquid preparation step (S21) according to an embodiment of the present invention also prepares a second reaction liquid containing a reducing agent.
상기 환원제는 아스코르브산, 알칸올아민, 하이드로퀴논, 히드라진 및 포르말린으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있으며, 이 중에서 하이드로퀴논을 바람직하게 선택할 수 있다. 제2 반응액은 질산은 용액을 사용하는 경우에는 제1 반응액에 포함되는 질산은 100g 당 환원제가 40 내지 60g으로 포함되도록 계량하여 제조하고, 은염착체 또는 은 중간체 용액을 사용하는 경우에는 은 이온 100 중량부에 대하여 40 내지 60 중량부로 포함되도록 제조하는 것이 바람직하다. 환원제가 상기 범위 미만으로 사용되는 경우, 은 이온이 모두 환원되지 않을 수 있고, 상기 범위를 초과하여 사용되는 경우 유기물 함량이 증가하여 문제가 될 수 있다. The reducing agent may be at least one selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin, and among these, hydroquinone may be preferably selected. The second reaction solution is prepared by weighing the reducing agent in an amount of 40 to 60 g per 100 g of silver nitrate included in the first reaction solution when the silver nitrate solution is used, and 100 weight of silver ions when using a silver salt or silver intermediate solution. It is preferable to prepare to include from 40 to 60 parts by weight relative to the part. When the reducing agent is used below the above range, all of the silver ions may not be reduced, and when used beyond the above range, the organic content may increase, which may be a problem.
환원제를 포함하는 제2 반응액은 물 등의 용매에 환원제를 첨가하고 교반하여 용해시켜 수용액 상태로 제조될 수 있다. The second reaction solution containing a reducing agent may be prepared in an aqueous solution state by adding a reducing agent to a solvent such as water and stirring the solution.
본 발명의 일실시예에 따른 석출단계(S22)는 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 단계로서, 반응액제조단계(S21)에 의해 제조된 제1 반응액을 교반하는 상태에서 제2 반응액을 천천히 적하하거나, 일괄 첨가하여 반응시킬 수 있다. 바람직하기로는 일괄 첨가하는 것이 빠른 시간 내에 환원 반응이 일괄 종료되어 입자끼리의 응집을 방지하고 분산성을 높일 수 있어 좋다.Precipitation step (S22) according to an embodiment of the present invention is a step of obtaining a silver powder by reacting the first reaction solution and the second reaction solution, stirring the first reaction solution prepared by the reaction solution preparation step (S21) The second reaction liquid can be slowly added dropwise or added in a batch to react. Preferably, the batch reaction may be completed in a short time to collectively add the bulk to prevent aggregation of the particles and to improve dispersibility.
한편, 본 발명의 실시예에서는 은 입자의 분산성 향상 및 응집 방지를 위해 상기 분산제가 더 첨가되어 반응시키는 것을 권리범위에서 제외하지 않는다. 분산제의 예로는 지방산, 지방산염, 계면활성제, 유기 금속, 킬레이트 형성제 및 보호 콜로이드 등을 들 수 있다. On the other hand, in the embodiment of the present invention does not exclude the addition of the dispersant to react in order to improve the dispersibility of the silver particles and prevent aggregation. Examples of dispersants include fatty acids, fatty acid salts, surfactants, organometallics, chelate formers and protective colloids.
그러나, 입자 크기를 제어하기 위한 분산제가 첨가되는 경우, 도전성 페이스트에 사용 시 불순물로 작용하여 전기전도성을 저해시킬 수 있는데, 본 발명에 의해 분산제의 첨가 없이도 입자크기를 효과적으로 제어할 수 있는 장점이 있다. However, when the dispersant for controlling the particle size is added, it can act as an impurity when used in the conductive paste to inhibit the electrical conductivity, the present invention has the advantage that can effectively control the particle size without addition of the dispersant .
3.3. 정제단계(S3)Purification step (S3)
본 발명의 일실시예에 따른 정제단계(S3)는 은 염 환원단계(S2)를 통해 은 입자 석출 반응을 완료한 후 수용액 또는 슬러리 내에 분산되어 있는 은 분말을 여과 등을 이용하여 분리하고 세척하는 단계(S31)를 포함한다. 더욱 구체적으로는 은 분말 분산액 중의 은 입자를 침강시킨 후, 분산액의 상등액을 버리고 원심분리기를 이용하여 여과하고, 여재를 순수로 세정한다. 본 발명에서 언급된 원심분리기외에 필터프레스, 데칸터 등 고액 분리를 하기 위한 다양한 방법을 적용하는 것을 권리범위에서 제외하지 않는다. 세척을 하는 과정은 분말을 세척한 세척 수를 완전히 제거를 해야 이루어 진다. 따라서 함수율 10% 미만으로 감소시킨다. 선택적으로 여과 전에 반응 완료 용액에 상기 언급된 분산제를 첨가하여 은 분말의 응집을 방지하는 것도 가능하다. Purification step (S3) according to an embodiment of the present invention is a silver salt reduction step (S2) after completing the silver particle precipitation reaction to remove and wash the silver powder dispersed in an aqueous solution or slurry using filtration and the like Step S31 is included. More specifically, after the silver particles in the silver powder dispersion are precipitated, the supernatant of the dispersion is discarded and filtered using a centrifuge, and the filter medium is washed with pure water. In addition to the centrifuge mentioned in the present invention, the application of various methods for solid-liquid separation such as filter press and decanter is not excluded from the scope of the right. The washing process is performed by completely removing the washing water from which the powder has been washed. Therefore, the water content is reduced to less than 10%. It is also possible to optionally add the aforementioned dispersants to the reaction complete solution prior to filtration to prevent aggregation of the silver powder.
또한 본 발명의 일실시예에 따른 정제단계(S3)는 세척 후 건조 및 해쇄단계(S34)를 더 포함할 수 있다. In addition, the purification step (S3) according to an embodiment of the present invention may further comprise a drying and disintegration step (S34) after washing.
4.4. 표면처리단계(S4)Surface treatment step (S4)
본 발명의 일실시예에 따른 표면처리단계(S4)는 은 분말의 친수 표면을 소수화하는 단계로서, 선택적으로 이루어질 수 있다. 더욱 구체적으로는 여과 후 얻어지는 습윤 케이크(wet cake)의 함수율을 10% 미만으로 조절한 후 은 분말의 표면처리를 위해 표면처리제를 첨가하고 함수율을 70% ~ 85%로 조절할 수 있다. 이 후 건조, 해쇄 과정을 거쳐 은 분말을 얻을 수 있다. 은 분말을 표면처리할 때 분말의 분산이 잘 되어야 표면처리가 충분히 이루어지고, 함수율이 낮으면 분산 효율이 떨어지기 때문에 일정량을 함수율을 가지고 표면처리를 하는 것이 좋다. Surface treatment step (S4) according to an embodiment of the present invention is a step of hydrophobizing the hydrophilic surface of the silver powder, it may be made selectively. More specifically, after controlling the moisture content of the wet cake (wet cake) obtained after filtration to less than 10% can be added to the surface treatment agent for the surface treatment of the silver powder and the moisture content can be adjusted to 70% to 85%. Thereafter, silver powder can be obtained through drying and pulverization. When surface treatment of silver powder, the powder should be well dispersed, and the surface treatment is sufficient. If the water content is low, the dispersion efficiency is poor, so it is better to surface-treat a certain amount with water content.
본 발명의 일실시예에 따라 제조된 은 분말은 주사전자현미경(SEM)을 이용하여 파우더 100개 각각의 지름 크기를 측정한 후 평균을 내어 측정한 size가 0.1um 내지 2.0um 범위 내이며, 공기 중 승온 속도 10℃/min로 상온에서 500℃까지의 범위에서 TGA 분석을 행하여 측정된 유기물 함량이 1.0 중량% 이하이다. Silver powder prepared according to an embodiment of the present invention by measuring the diameter size of each of the 100 powders by using a scanning electron microscope (SEM) and the average size measured within the range of 0.1um to 2.0um, The organic matter content measured by TGA analysis in the range from normal temperature to 500 degreeC at the temperature increase rate of 10 degreeC / min is 1.0 weight% or less.
실시예 및 실험예Examples and Experimental Examples
<질산은의 제조><Production of Silver Nitrate>
(1) 실시예 1(1) Example 1
순수와 60%의 공업용 질산을 각각 10ml씩 계량하여 30%의 질산 용액을 제조하고, 60℃로 가열 및 교반하여 산 용액을 제조하였다. 교반을 통해 산 용액의 흐름이 원활하게 되는 상태에서 비표면적 0.0058m2/g의 은 립 5g을 1kg/min 속도로 투입하여 용해시켰다. 은 립이 완전히 용해되는 시간을 측정하여 표 1에 나타내었다. 10 ml of pure water and 60% of industrial nitric acid were each weighed to prepare a 30% nitric acid solution, and heated and stirred at 60 ° C. to prepare an acid solution. 5 g of silver granules with a specific surface area of 0.0058 m 2 / g were added at a rate of 1 kg / min while the acid solution flowed smoothly through stirring. Table 1 shows the measured time for the silver to dissolve completely.
(2) 비교예 1(2) Comparative Example 1
순수와 60%의 공업용 질산을 각각 10ml씩 계량하여 30%의 질산 용액을 제조하고, 60℃로 가열 및 교반하여 산 용액을 제조하였다. 교반을 통해 산 용액의 흐름이 원활하게 되는 상태에서 비표면적 0.00017m2/g의 은 그래뉼 5g을 투입하여 용해시켰다. 은 그래뉼이 완전히 용해되는 시간을 측정하여 표 1에 나타내었다.10 ml of pure water and 60% of industrial nitric acid were each weighed to prepare a 30% nitric acid solution, and heated and stirred at 60 ° C. to prepare an acid solution. 5 g of silver granules with a specific surface area of 0.00017 m 2 / g were dissolved while stirring to facilitate the flow of the acid solution. Table 1 shows the time when the granules were completely dissolved.
(3) 비교예 2(3) Comparative Example 2
순수와 60%의 공업용 질산을 각각 10ml씩 계량하여 30%의 질산 용액을 제조하고, 60℃로 가열 및 교반하여 산 용액을 제조하였다. 교반을 통해 산 용액의 흐름이 원활하게 되는 상태에서 비표면적 0.00038m2/g의 은 잉곳 5g을 투입하여 용해시켰다. 은 립이 완전히 용해되는 시간을 측정하여 표 1에 나타내었다.10 ml of pure water and 60% of industrial nitric acid were each weighed to prepare a 30% nitric acid solution, and heated and stirred at 60 ° C. to prepare an acid solution. 5 g of silver ingots with a specific surface area of 0.00038 m 2 / g were added and dissolved while the acid solution flowed smoothly through stirring. Table 1 shows the measured time for the silver to dissolve completely.
은 지금 종류Is kind now 비표면적(m2/g)Specific surface area (m 2 / g) 용해 시간(sec)Dissolution time (sec)
실시예 1Example 1 은 립(Silver Crystal)Silver Crystal 0.00580.0058 605605
비교예 1Comparative Example 1 은 그래뉼(Silver Granule)Silver Granule 0.000170.00017 28902890
비교예 2Comparative Example 2 은 잉곳(Silver Ingot)Silver Ingot 0.000380.00038 60606060
표 1에 나타나는 것과 같이 동일한 질산 용액에 비표면적 0.0058 m2/g의 은 립을 용해시킨 실시예 1의 경우 비교예 1의 0.00017 m2/g 의 은 그래뉼 보다 4배 이상, 비교예 2의 0.00038 m2/g 의 은 잉곳보다 10배 이상 용해시간을 단축시킬 수 있다. 도 1에 비표면적(Specific Surface Area)과 용해시간과의 관계를 나타낸 그래프를 도시하였다. As shown in Table 1, in the case of Example 1 in which silver particles having a specific surface area of 0.0058 m 2 / g were dissolved in the same nitric acid solution, 0.00017 m 2 / g of Comparative Example 1 was four times or more than the silver granule of Comparative Example 2, and 0.00038 of Comparative Example 2 m 2 / g of silver can reduce the dissolution time by more than 10 times than the ingot. 1 is a graph showing the relationship between the specific surface area and the dissolution time.
<질산은의 농축><Concentration of silver nitrate>
(1) 실시예 2(1) Example 2
실시예 1에 의해 제조된 은 립이 완전히 용융된 60℃의 질산은 용액을 교반하면서 150℃로 가열하여 질산을 제거함으로써, 가열 전 질산은 용액의 부피에 대한 가열 후 질산은 용액의 부피의 비율이 0.1% 이 되도록 질산은 용액을 농축하였다. 농축된 질산은 용액의 pH 값을 측정하여 표 2에 나타내었다.By heating the silver nitrate solution of 60 ° C. in which the silver granules prepared in Example 1 were completely melted to 150 ° C. with stirring, the ratio of the volume of the silver nitrate solution to the volume of the silver nitrate solution after heating was 0.1% The silver nitrate solution was concentrated. Concentrated nitric acid is shown in Table 2 by measuring the pH value of the solution.
(2) 실시예 3(2) Example 3
실시예 1에 의해 제조된 은 립이 완전히 용융된 60℃의 질산은 용액을 교반하면서 150℃로 가열하여 질산을 제거함으로써, 가열 전 질산은 용액의 부피에 대한 가열 후 질산은 용액의 부피의 비율이 15.8% 이 되도록 질산은 용액을 농축하였다. 농축된 질산은 용액의 pH 값을 측정하여 표 2에 나타내었다.By heating the silver nitrate solution of 60 ° C. in which the silver granules prepared in Example 1 were completely melted to 150 ° C. while stirring, the ratio of the volume of the silver nitrate solution to the volume of the silver nitrate solution before heating was 15.8%. The silver nitrate solution was concentrated. Concentrated nitric acid is shown in Table 2 by measuring the pH value of the solution.
(3) 실시예 4(3) Example 4
실시예 1에 의해 제조된 은 립이 완전히 용융된 60℃의 질산은 용액을 교반하면서 150℃로 가열하여 질산을 제거함으로써, 가열 전 질산은 용액의 부피에 대한 가열 후 질산은 용액의 부피의 비율이 46% 이 되도록 질산은 용액을 농축하였다. 농축된 질산은 용액의 pH 값을 측정하여 표 2에 나타내었다.By heating the silver nitrate solution of 60 ° C. in which the silver granules prepared in Example 1 were completely melted to 150 ° C. with stirring, the ratio of the volume of the silver nitrate solution to the volume of the silver nitrate solution after heating was 46%. The silver nitrate solution was concentrated. Concentrated nitric acid is shown in Table 2 by measuring the pH value of the solution.
(4) 실시예 5(4) Example 5
실시예 1에 의해 제조된 은 립이 완전히 용융된 60℃의 질산은 용액을 교반하면서 150℃로 가열하여 질산을 제거함으로써, 가열 전 질산은 용액의 부피에 대한 가열 후 질산은 용액의 부피의 비율이 60% 이 되도록 질산은 용액을 농축하였다. 농축된 질산은 용액의 pH 값을 측정하여 표 2에 나타내었다.By heating the silver nitrate solution of 60 ° C. in which the silver granules prepared in Example 1 were completely melted to 150 ° C. with stirring, the ratio of the volume of the silver nitrate solution to the volume of the silver nitrate solution after heating was 60% The silver nitrate solution was concentrated. Concentrated nitric acid is shown in Table 2 by measuring the pH value of the solution.
(5) 실시예 6(5) Example 6
실시예 1에 의해 제조된 은 립이 완전히 용융된 60℃의 질산은 용액을 교반하면서 150℃로 가열하여 질산을 제거함으로써, 가열 전 질산은 용액의 부피에 대한 가열 후 질산은 용액의 부피의 비율이 67% 이 되도록 질산은 용액을 농축하였다. 농축된 질산은 용액의 pH 값을 측정하여 표 2에 나타내었다.By heating the silver nitrate solution of 60 ° C. in which the silver granules prepared in Example 1 were completely melted to 150 ° C. with stirring, the ratio of the volume of the silver nitrate solution to the volume of the silver nitrate solution after heating was 67%. The silver nitrate solution was concentrated. Concentrated nitric acid is shown in Table 2 by measuring the pH value of the solution.
(6) 실시예 7(6) Example 7
실시예 1에 의해 제조된 은 립이 완전히 용융된 60℃의 질산은 용액을 교반하면서 150℃로 가열하여 질산을 제거함으로써, 가열 전 질산은 용액의 부피에 대한 가열 후 질산은 용액의 부피의 비율이 77.5% 이 되도록 질산은 용액을 농축하였다. 농축된 질산은 용액의 pH 값을 측정하여 표 2에 나타내었다.By heating the silver nitrate solution of 60 ° C. in which the silver granules prepared in Example 1 were completely melted to 150 ° C. with stirring, the ratio of the volume of the silver nitrate solution to the volume of the silver nitrate solution after heating was 77.5% The silver nitrate solution was concentrated. Concentrated nitric acid is shown in Table 2 by measuring the pH value of the solution.
질산은 농축량(%)Silver Nitrate Concentration (%) 질산은 pHSilver Nitrate pH
실시예 2Example 2 0.10.1 0.40.4
실시예 3Example 3 15.815.8 0.80.8
실시예 4Example 4 4646 1.61.6
실시예 5Example 5 6060 22
실시예 6Example 6 6767 3.93.9
실시예 7Example 7 77.577.5 5.15.1
표 2에 나타난 것과 같이 질산은 농축량을 0.1%부터 77.5%까지 조절하여 질산은 용액의 pH를 0.4 에서 5.1로 용이하게 조절할 수 있음을 알 수 있으며, 도 2에 질산은 농축량과 pH와의 관계를 나타내었다. As shown in Table 2, it can be seen that the pH of the silver nitrate solution can be easily adjusted from 0.4 to 5.1 by adjusting the concentration of nitric acid from 0.1% to 77.5%, and in FIG. 2, the relationship between the concentration of nitric acid and pH is shown. .
<은 분말의 제조><Production of Silver Powder>
실시예 8 내지 실시예 13Examples 8-13
상온의 순수 960.4g에 실시예 2 내지 실시예 7에 의해 농축된 질산은 용액 22mL, 암모니아(농도 25%) 17.6ml를 넣고 교반하여 용해시켜 제1수용액을 조제하였다. 한편 상온의 순수 1000g에 하이드로퀴논 5.5g을 넣고 교반하여 용해시켜 제2수용액을 조제하였다.22 mL of silver nitrate concentrated in Examples 2 to 7 and 17.6 ml of ammonia (concentration 25%) were added to 960.4 g of pure water at room temperature, followed by stirring to dissolve the first aqueous solution. Meanwhile, 5.5 g of hydroquinone was added to 1000 g of room temperature pure water, followed by stirring to dissolve the second aqueous solution.
이어서, 제1수용액을 교반한 상태로 하고, 이 제1수용액에 제2수용액을 일괄 첨가하여, 첨가 종료 후부터 5분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 혼합액 중의 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세정하고, 건조하여, 은 분을 얻었다. Subsequently, the 1st aqueous solution was made to stir, the 2nd aqueous solution was added collectively to this 1st aqueous solution, and further stirred for 5 minutes after completion | finish of addition, and the particle | grains were grown in the mixed liquid. After that, stirring was stopped, the particles in the mixed solution were allowed to settle, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifuge, the media was washed with pure water, dried, and silver powder was obtained.
얻어진 은분에 대하여, 지올(JEOL) 회사제 주사전자현미경을 이용하여, 파우더 100개 각각의 지름 크기를 측정한 후 평균을 내어 SEM size를 측정하였고 그 결과를 표 3에 나타내었다.With respect to the obtained silver powder, the SEM size was measured by measuring the diameter size of each of 100 powders using a scanning electron microscope manufactured by JEOL, and the results are shown in Table 3.
사용 질산은Used silver nitrate 질산은 pHSilver Nitrate pH SEM size(m)SEM size (m)
실시예 8Example 8 실시예 2Example 2 0.40.4 1.61.6
실시예 9Example 9 실시예 3Example 3 0.80.8 1.51.5
실시예 10Example 10 실시예 4Example 4 1.61.6 1.31.3
실시예 11Example 11 실시예 5Example 5 22 1One
실시예 12Example 12 실시예 6Example 6 3.93.9 0.80.8
실시예 13Example 13 실시예 7Example 7 5.15.1 0.60.6
표 3에 나타난 것과 같이 pH 값이 0.4 에서 5.1로 조절된 질산은을 사용하여 제조된 각각의 입자 크기가 1.6μm 부터 0.6μm까지 제조된 것을 알 수 있으며, 도 3에 질산은 pH와 입자 크기의 관계를 나타내었다. As shown in Table 3, it can be seen that each particle size was prepared from 1.6 μm to 0.6 μm using silver nitrate having a pH value of 0.4 to 5.1, and FIG. Indicated.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like illustrated in the above-described embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.

Claims (10)

  1. 비표면적이 0.001 내지 0.01m2/g인 은(Ag) 립을 질산(HNO3) 용액에 용해시켜 질산은 용액을 제조하는 질산은 제조단계(S11) 및 Silver nitrate manufacturing step (S11) of dissolving silver (Ag) granules having a specific surface area of 0.001 to 0.01 m 2 / g in a nitric acid (HNO 3 ) solution to produce a silver nitrate solution;
    상기 제조된 질산은 용액을 가열하여 질산을 제거함으로써 농축된 질산은 용액을 얻는 질산은 농축단계(S12)를 포함하는 은 염 제조단계(S1);를 포함하는 은 분말 제조방법. Silver silver nitrate manufacturing step (S1) comprising a silver nitrate concentration step (S12) to obtain a concentrated silver nitrate solution by heating the prepared silver nitrate solution to remove the nitric acid.
  2. 제1항에 있어서,The method of claim 1,
    상기 질산은 제조단계(S11)는 은(Ag) 100 중량부에 대하여 질산(HNO3)이 100 내지 300 중량부로 용해되도록 질산은 용액을 제조하는 단계인 은 분말 제조방법.The silver nitrate manufacturing step (S11) is a silver powder manufacturing method which is a step of preparing a silver nitrate solution to dissolve 100 to 300 parts by weight of nitric acid (HNO 3 ) with respect to 100 parts by weight of silver (Ag).
  3. 제1항에 있어서,The method of claim 1,
    상기 질산은 제조단계(S11)는 40 내지 80℃의 온도에서 상기 은(Ag) 립을 상기 질산(HNO3) 용액에 용해시키는 단계인 은 분말 제조방법.The silver nitrate manufacturing step (S11) is a step of dissolving the silver (Ag) lip in the nitric acid (HNO 3 ) solution at a temperature of 40 to 80 ℃.
  4. 제1항에 있어서,The method of claim 1,
    상기 질산은 농축단계(S12)는, The silver nitrate concentration step (S12),
    상기 질산은 용액의 가열 전 부피에 대한 가열 후 부피의 비율을 농축량(a, %) 이라고 할 때, When the ratio of the volume after heating to the volume before heating the silver solution is referred to as a concentrated amount (a,%),
    상기 농축량을 0.1 내지 80% 범위 내에서 변화시켜, 농축된 질산은 용액의 pH를 0.1 내지 5.0으로 조절하는 단계인 은 분말 제조방법. Changing the concentration within the range of 0.1 to 80%, adjusting the pH of the concentrated silver nitrate solution to 0.1 to 5.0 silver powder manufacturing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 질산은 농축단계(S12)는 90 내지 150℃의 온도로 가열하여 농축된 질산은 용액을 얻는 단계인 은 분말 제조방법.The silver nitrate concentration step (S12) is a silver powder manufacturing method which is a step of obtaining a concentrated silver nitrate solution by heating to a temperature of 90 to 150 ℃.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 은 염 제조단계(S1) 이후에, After the silver salt preparation step (S1),
    상기 농축된 질산은 용액 및 암모니아를 포함하는 제1 반응액, 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 The reaction solution manufacturing step (S21) for preparing a second reaction solution containing the first reaction solution containing the concentrated silver nitrate solution and ammonia, and a reducing agent and
    제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함하는 은 염 환원단계(S2);를 더 포함하는 은 분말 제조방법. Silver salt reduction step (S2) comprising a precipitation step (S22) to obtain a silver powder by reacting the first reaction solution and the second reaction solution; Silver powder manufacturing method further comprising.
  7. 제6항에 있어서,The method of claim 6,
    상기 반응액제조단계(S21)는 제1 반응액을 질산은 100g 당 암모니아가 30 내지 50ml로 용해되도록 제조하는 단계인 은 분말 제조방법.The reaction solution production step (S21) is a silver powder manufacturing method for producing a first reaction solution to dissolve in 30 to 50ml of ammonia per 100g of silver nitrate.
  8. 제6항에 있어서,The method of claim 6,
    상기 반응액제조단계(S21)는 제2 반응액을 질산은 100g 당 환원제가 40 내지 60g으로 포함되도록 제조하는 단계인 은 분말 제조방법.The reaction solution production step (S21) is a silver powder manufacturing method of producing a second reaction solution to include a reducing agent per 40g of silver nitrate 40 to 60g.
  9. 제6항에 있어서,The method of claim 6,
    상기 환원제는 하이드로퀴논, 아스코르브산, 알칸올아민, 히드라진 및 포르말린으로 구성되는 군에서 선택되는 1종 이상인 것을 특징으로 하는 은 분말 제조방법. The reducing agent is a silver powder production method, characterized in that at least one selected from the group consisting of hydroquinone, ascorbic acid, alkanolamine, hydrazine and formalin.
  10. 제6항에 있어서,The method of claim 6,
    상기 반응액제조단계(S21)에서 상기 제1 반응액 제조 시 pH 0.1 내지 5.5 범위 내의 농축된 질산은 용액을 선택하여 제조하여,In the preparation of the reaction solution (S21), the concentrated solution of silver nitrate in the pH range of 0.1 to 5.5 when the first reaction solution is prepared is selected and prepared.
    상기 석출단계(S22)에서 석출된 은 분말의 평균 입도를 0.1 내지 2.0μm로 조절하는 은 분말 제조방법.Silver powder manufacturing method for adjusting the average particle size of the silver powder precipitated in the precipitation step (S22) to 0.1 to 2.0μm.
PCT/KR2016/009970 2015-09-10 2016-09-06 Method for preparing silver powder using silver grains WO2017043837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0128478 2015-09-10
KR1020150128478A KR101764218B1 (en) 2015-09-10 2015-09-10 The manufacturing method of silver powder using the silver crystal

Publications (1)

Publication Number Publication Date
WO2017043837A1 true WO2017043837A1 (en) 2017-03-16

Family

ID=58240287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009970 WO2017043837A1 (en) 2015-09-10 2016-09-06 Method for preparing silver powder using silver grains

Country Status (2)

Country Link
KR (1) KR101764218B1 (en)
WO (1) WO2017043837A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160803A (en) * 2021-11-17 2022-03-11 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-efficiency preparation method of high-dispersity spherical gold powder
CN115780824A (en) * 2023-01-29 2023-03-14 苏州银瑞光电材料科技有限公司 Preparation method and application of silver powder with high sintering activity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023714B1 (en) * 2019-05-15 2019-11-04 파워팩 주식회사 A silver nano powder improved in oxidation stability prepared by a wet process
KR102017177B1 (en) * 2019-05-02 2019-09-02 파워팩 주식회사 A method for preparing high-purity silver nano powder using wet process
WO2020222542A1 (en) * 2019-05-02 2020-11-05 파워팩 주식회사 Oxidation stability-improved silver nano powder prepared by wet process and method for preparing same
KR102023711B1 (en) * 2019-05-02 2019-11-04 파워팩 주식회사 A silver nano powder of high purity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000928A (en) * 1986-03-17 1991-03-19 Eastman Kodak Company Preparation of ultra-pure silver nitrate
KR100713662B1 (en) * 2005-10-20 2007-05-02 한국지질자원연구원 Manufacturing Process of Sphere Shape Silver Powder from Silver Scrap
KR20090045508A (en) * 2007-11-02 2009-05-08 주식회사 지오션 An apparatus and a method for preparation of silver powder by double-jet type continuous solution reduction
KR20100040505A (en) * 2008-10-10 2010-04-20 엘에스니꼬동제련 주식회사 Silver crystal treatment automation apparatus
KR20130142852A (en) * 2012-06-20 2013-12-30 (주)이건이엔씨 Method for preparing silver cluster of micro-size consisting of agglomerate nano-silver particle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270695B2 (en) 2004-04-01 2007-09-18 Dong-A University Synthesis of nanosized metal particles
KR100982042B1 (en) 2007-12-31 2010-09-13 주식회사 휘닉스피디이 Method of manufacturing silver powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000928A (en) * 1986-03-17 1991-03-19 Eastman Kodak Company Preparation of ultra-pure silver nitrate
KR100713662B1 (en) * 2005-10-20 2007-05-02 한국지질자원연구원 Manufacturing Process of Sphere Shape Silver Powder from Silver Scrap
KR20090045508A (en) * 2007-11-02 2009-05-08 주식회사 지오션 An apparatus and a method for preparation of silver powder by double-jet type continuous solution reduction
KR20100040505A (en) * 2008-10-10 2010-04-20 엘에스니꼬동제련 주식회사 Silver crystal treatment automation apparatus
KR20130142852A (en) * 2012-06-20 2013-12-30 (주)이건이엔씨 Method for preparing silver cluster of micro-size consisting of agglomerate nano-silver particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160803A (en) * 2021-11-17 2022-03-11 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-efficiency preparation method of high-dispersity spherical gold powder
CN115780824A (en) * 2023-01-29 2023-03-14 苏州银瑞光电材料科技有限公司 Preparation method and application of silver powder with high sintering activity

Also Published As

Publication number Publication date
KR20170030930A (en) 2017-03-20
KR101764218B1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2017043837A1 (en) Method for preparing silver powder using silver grains
WO2017026722A1 (en) Production method for silver powder for high-temperature sintering type of electrically-conductive paste
WO2018080092A1 (en) Silver powder and preparation method therefor
WO2021010741A1 (en) Method for preparing silver-copper mixed powder having core-shell structure by using wet process
CN103100722B (en) Preparation method of high tap density monodisperse silver powder
WO2006019144A1 (en) Copper microparticle and process for producing the same
CN103624267A (en) Method for preparing silver powder in continuous mode
TW201341087A (en) Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles
JP2010043337A (en) Silver powder and its manufacturing method
CN114192795A (en) Preparation method of composite silver powder
WO2018080090A1 (en) Surface-treated silver powder and method for producing same
WO2019088509A1 (en) Surface-treated silver powder and preparation method therefor
KR101764219B1 (en) The manufacturing method of silver powder
JPS6299406A (en) Production of copper powder
JP5803830B2 (en) Silver powder manufacturing method
KR100567444B1 (en) Composite metal powder manufaturing method of silver and copper
WO2018070817A1 (en) Silver powder for high temperature sintering, and preparation method therefor
WO2020106120A1 (en) Method for preparing monodispersed silver powder
WO2018043995A1 (en) Method for preparing silver powder having increased specific surface area
WO2018066724A1 (en) Method for preparing silver powder
WO2020222542A1 (en) Oxidation stability-improved silver nano powder prepared by wet process and method for preparing same
WO2019088507A1 (en) Silver powder and method for producing same
KR20170030929A (en) The manufacturing method of silver
KR102023711B1 (en) A silver nano powder of high purity
WO2018080091A1 (en) Silver powder and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844655

Country of ref document: EP

Kind code of ref document: A1