WO2019088509A1 - Surface-treated silver powder and preparation method therefor - Google Patents

Surface-treated silver powder and preparation method therefor Download PDF

Info

Publication number
WO2019088509A1
WO2019088509A1 PCT/KR2018/012184 KR2018012184W WO2019088509A1 WO 2019088509 A1 WO2019088509 A1 WO 2019088509A1 KR 2018012184 W KR2018012184 W KR 2018012184W WO 2019088509 A1 WO2019088509 A1 WO 2019088509A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver powder
treatment agent
conductive paste
silver
fatty acid
Prior art date
Application number
PCT/KR2018/012184
Other languages
French (fr)
Korean (ko)
Inventor
이미영
김영환
진우민
강태훈
최재원
이창근
Original Assignee
엘에스니꼬동제련 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스니꼬동제련 주식회사 filed Critical 엘에스니꼬동제련 주식회사
Priority to JP2020524301A priority Critical patent/JP6982688B2/en
Priority to CN201880083265.9A priority patent/CN111511489B/en
Publication of WO2019088509A1 publication Critical patent/WO2019088509A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Definitions

  • the present invention relates to a surface-treated silver powder and a method for producing the same, and more particularly to a silver powder suitable for use in a conductive paste for forming an electrode in an electronic component such as an electrode for a solar cell or an internal electrode of a multilayer capacitor, And a manufacturing method thereof.
  • the conductive metal paste is a paste in which electricity is applied to a dried or baked coating film having a coating ability capable of forming a coating film and is dispersed with a conductive filler (metal filler) alone or in a glass frit in a vehicle made of a resin- It is widely used for the formation of an electric circuit or the formation of an external electrode of a ceramic capacitor.
  • Silver Paste is the most chemically stable and excellent in conductivity among the conductive paste of composite system, and has a wide range of applications in various fields such as conductive bonding and coating and fine circuit formation.
  • the electronic parts such as PCBs (Printed Circuit Boards), which are particularly important for reliability, the use of silver paste is used for bonding or coating materials for STH (Silver Through Hole), for internal electrodes in multilayer capacitors, Is widely used as an electrode material.
  • the front electrode of the solar cell is formed by sintering after a conductive paste mainly composed of silver (Ag) powder is printed in a grid pattern on the antireflection film.
  • a conductive paste mainly composed of silver (Ag) powder is printed in a grid pattern on the antireflection film.
  • the front electrode penetrates the antireflection film in the sintering process through the heat treatment to form an ohmic contact with the N-type silicon layer, thereby lowering the series resistance of the solar cell to increase the conversion efficiency.
  • the rheology of the conductive paste is a major factor that determines the printing property (application suitability).
  • the conductive paste The rheological properties of the conductive paste are particularly important because screen printed electrodes for solar cells require an increase in the narrow line width and high thickness, that is, the aspect ratio, of the electrodes.
  • Properties including rheological properties are changed by a network structure formed by the interaction of a filler, a resin binder, a solvent, an additive, etc. constituting the conductive paste.
  • the silver powder which occupies the largest amount in the conductive paste is important in determining the shape of the network structure formed by varying the interaction force between the silver powder and the other constituents depending on the kind and content of the surface treatment agent coated on the surface thereof . Therefore, in order to control the printing properties and the rheological properties of the paste, it is necessary to control the surface chemical properties of the silver powder according to the kind and content of the surface treatment agent.
  • Japanese Patent Laid-Open Publication No. 2016-33259 provides a silver powder capable of obtaining a conductive paste having a high consumption ratio (low rpm viscosity / high rpm viscosity) for forming a fine pattern through screen printing and a method for producing the same have.
  • the present invention provides a surface treatment method for a silver powder used in a conductive paste for solving the above problems, and it is an object of the present invention to provide a method for surface treatment of a silver powder used for a conductive paste, And to provide a conductive paste favorable for high-speed printing and fine pattern printing.
  • the anionic surfactant may be any one selected from the group consisting of Aromatic alcohol phosphate, Fatty alcohol phosphate, Dialkyl sulfosuccinate, and Polypeptide. Or more.
  • the fatty acid may be selected from the group consisting of lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linolic acid, And at least one selected from the group consisting of arachidonic acid.
  • the fatty acid salt may be prepared by dissolving the fatty acid in an aqueous medium such as calcium hydroxide, sodium hydroxide, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, And a fatty acid salt which forms a salt with diethylamine, triethylamine, ethanolamine, diethanolamine, or triethanolamine.
  • an aqueous medium such as calcium hydroxide, sodium hydroxide, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, and a fatty acid salt which forms a salt with diethylamine, triethylamine, ethanolamine, diethanolamine, or triethanolamine.
  • the first surface treatment step (S41) may be performed by preparing a silver powder dispersion in which silver powder is dispersed in a solvent, adding the first treatment agent to a solvent and stirring to prepare a first coating solution, Adding the first coating liquid, and mixing and stirring.
  • the first surface treatment step (S41) is a step of mixing the silver powder dispersion and the first coating solution such that the first treating agent is mixed in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the silver powder.
  • the second surface treatment step (S42) is a step of dispersing the silver powder coated with the first treatment agent in a solvent, and then adding and stirring the alcohol solution containing the second treatment agent.
  • the second surface treatment step (S42) is a step of adding an alcohol solution containing a second treatment agent to 100 parts by weight of the silver powder coated with the first treatment agent so that the second treatment agent is mixed with 0.1 to 1.0 part by weight .
  • the present invention is an ion, ammonia (NH 3) and nitric acid (HNO 3)
  • the first reaction solution and for producing a second reaction solution containing a reducing agent in the reaction mixture prepared step (S21) and the first reaction solution containing the and A silver salt reducing step (S2) including a precipitation step (S22) of reacting the second reaction solution to obtain silver powder;
  • the present invention is a silver powder having an average particle size (D50) of 1.0 to 3.0 m, wherein the silver powder is subjected to a first surface treatment using a first treatment agent containing an anionic surfactant, And a silver powder for a conductive paste, which is a second surface-treated silver powder using the second treatment agent.
  • D50 average particle size
  • the present invention also relates to a metal powder including the silver powder for the conductive paste.
  • a glass vehicle comprising a solvent and an organic binder; And a conductive paste.
  • the conductive paste is characterized by having a viscosity ratio of 0.8 to 1.5 as measured at 1 rpm to a viscosity measured at 10 rpm when the viscosity (Pa ⁇ s) is measured at 25 ° C.
  • the conductive paste has a viscosity of 350 to 500 Pa ⁇ s measured at 10 rpm when the viscosity (Pa ⁇ s) is measured at 25 ° C.
  • a metal powder containing the silver powder for the conductive paste Glass frit; And an organic vehicle including a solvent and an organic binder.
  • the present invention relates to a silver paste which is surface-treated with a first treatment agent containing an anionic surfactant and a second treatment agent comprising a fatty acid or a fatty acid salt to provide silver paste and a conductive paste containing the silver paste, It is possible to provide a conductive paste favorable for pattern printing.
  • the present invention relates to a conductive paste containing a silver powder prepared by surface-treating a silver powder using a first surface treatment agent containing an anionic surfactant and a second surface treatment agent containing a fatty acid or a fatty acid salt in the production process, So as to provide a conductive paste particularly suitable for high speed printing and fine pattern printing.
  • a method of manufacturing a silver powder according to an embodiment of the present invention includes: a silver salt producing step (S1); Silver salt reduction step (S2); Purification step such as filtration and washing (S3); And a surface treatment step (S4).
  • the method for producing silver powder according to the present invention necessarily includes the surface treatment step (S4), and the other steps can be omitted. That is, the surface treatment step (S4) according to one embodiment of the present invention can be applied not only to the silver powder prepared through the above step but also to silver powder produced by a general method or a conventional method.
  • the silver salt preparation step S1 is a step of preparing a silver salt solution containing silver ions (Ag + ) by acid treatment of silver (Ag) in the form of ingots, comprising the steps of manufacturing, but can produce a powder to prepare a salt is passed through the step the solution directly, silver nitrate was purchased commercially (AgNO 3), the salt complex, or can proceed to the later steps, using the intermediate solution have.
  • the silver salt reducing step S2 is a step of reducing silver ions by adding a reducing agent and ammonia to a silver salt solution to precipitate silver particles, and silver ions, ammonia, and nitric acid (S21) for producing a second reaction solution containing a first reaction solution containing a reducing agent and a precipitation step (S22) for obtaining a silver powder by reacting the first reaction solution and the second reaction solution .
  • reaction solution preparation step (S21) ammonia and nitric acid are added to a silver salt solution containing silver ions, and the solution is stirred and dissolved to prepare a first reaction solution.
  • the silver ions are not limited as long as they are contained in the form of silver cations.
  • silver nitrate (AgNO 3 ), silver salt complex or silver intermediate may be used. It is preferable to use silver nitrate (AgNO 3 ).
  • AgNO 3 silver nitrate
  • the use of silver nitrate (AgNO 3 ) containing an ion will be described as an example.
  • Ammonia (NH 3 ) can be used in the form of an aqueous solution.
  • 25% ammonia aqueous solution 100 to 150 parts by weight of silver nitrate (AgNO 3 ) is added in 100 parts by weight.
  • the aqueous ammonia solution is added in an amount of less than 100 parts by weight, the reaction pH is low and silver ions are not completely reduced, or there is a problem in forming a uniform particle distribution.
  • the amount is more than 150 parts by weight, There is a problem that it becomes excessively high.
  • a 25% ammonia aqueous solution is added in an amount of 120 to 140 parts by weight based on 100 parts by weight of silver nitrate (AgNO 3 ).
  • the ammonia includes a derivative thereof.
  • the nitric acid (HNO 3 ) can be used in the form of an aqueous solution.
  • 60% nitric acid aqueous solution 40 to 120 parts by weight are added to 100 parts by weight of silver nitrate (AgNO 3 ).
  • the amount of the nitric acid (HNO 3 ) is less than 40 parts by weight, it is difficult to control the size of the powder.
  • the amount of the nitric acid (HNO 3 ) is more than 120 parts by weight, have.
  • a 60% nitric acid aqueous solution is added in an amount of 80 to 100 parts by weight based on 100 parts by weight of silver nitrate (AgNO 3 ).
  • the nitric acid includes a derivative thereof.
  • the first reaction solution containing silver ions, ammonia and nitric acid can be prepared in an aqueous solution state by adding a silver ion, an aqueous ammonia solution and an aqueous nitric acid solution to a solvent such as water and dissolving them by stirring to form a slurry form .
  • the reaction solution preparation step (S21) according to an embodiment of the present invention also produces a second reaction solution containing a reducing agent.
  • the reducing agent may be at least one member selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin, and among them, hydroquinone can be preferably selected.
  • the content of the reducing agent is preferably 10 to 20 parts by weight based on 100 parts by weight of silver nitrate (AgNO 3 ) contained in the first reaction solution. If less than 10 parts by weight is used, silver ions may not be reduced at all, and when used in excess of 20 parts by weight, organic matter content increases.
  • the second reaction liquid is prepared by using 14 to 16 parts by weight of a reducing agent per 100 parts by weight of silver nitrate.
  • the second reaction solution containing a reducing agent can be prepared in an aqueous solution state by adding a reducing agent to a solvent such as water and dissolving it by stirring.
  • the precipitation step (S22) is a step of reacting the first reaction solution and the second reaction solution to obtain a silver powder, wherein the first reaction solution produced by the reaction solution production step (S21)
  • the second reaction solution may be slowly added dropwise or the reaction may be carried out in a batch.
  • the particles are added in a batch and further stirred for 5 minutes to 10 minutes to grow the particles in the mixed solution, so that the reduction reaction can be terminated in a short period of time to prevent agglomeration of the particles and increase dispersibility.
  • the silver powder dispersed in the aqueous solution or slurry is separated and washed by filtration after completing the silver particle precipitation reaction through the silver salt reducing step S2 Step S31. More specifically, after precipitating silver particles in the silver powder dispersion, the supernatant of the dispersion is discarded, filtered using a centrifugal separator, and the filter material is washed with pure water. The process of washing is done by completely removing the washing water from which the powder is washed. It is also possible to prevent agglomeration of the silver powder by optionally adding the above-mentioned dispersant to the reaction-completed solution before filtration.
  • the purification step S3 may further include a post-cleaning drying and decoloring step (S34).
  • the surface treatment step S4 is a method that can be generally applied to the silver powder produced by the general method or the conventional method as well as the silver powder prepared through the above step.
  • the surface treatment step S4 is a step of treating the rheological properties of the conductive paste including the silver powder prepared by surface treatment of the silver powder using the first treatment agent containing the anionic surfactant and the second treatment agent containing the fatty acid or the fatty acid salt Can be controlled.
  • the surface treatment step S4 includes a first surface treatment step S41 using the first treatment agent and a second surface treatment step S42 using the second treatment agent.
  • the first surface treatment step (S41) is a step of hydrophobizing the hydrophilic surface of the silver powder.
  • the silver powder is dispersed in a solvent, and a first treatment agent containing an anionic surfactant is added and mixed and stirred to coat the silver powder.
  • the first treatment agent includes at least one selected from the group consisting of aromatic alcohol phosphate, fatty alcohol phosphate, dialkyl sulfosuccinate, and a polypeptide. do.
  • aromatic alcohol phosphate fatty alcohol phosphate
  • dialkyl sulfosuccinate a polypeptide.
  • a polypeptide e.g. an aliphatic alcohol phosphate.
  • solvent water, ethanol, isopropyl alcohol, ethylene glycol hexyl ether, diethylene glycol, butyl ether, propylene glycol, propyl ether and the like can be used, and water is preferably used.
  • the first surface treatment step (S41) is a step of first treating the surface of the silver powder with the first treatment agent so as to coat the second treatment agent more effectively.
  • the silver powder dispersion is prepared by dispersing silver powder in a solvent, A first treatment agent is added to a solvent and stirred to prepare a first coating solution, and then the first coating solution is added to the silver powder dispersion, followed by mixing and stirring.
  • Silver powder is obtained by adding silver powder to a solvent having a mass of 2 to 5 times the mass of the silver powder and agitating the powder at 2000 to 5000 rpm for 10 to 30 minutes using a stirrer. Preferably 3000 to 4000 rpm, for 15 to 25 minutes to obtain a silver powder dispersion.
  • the first coating liquid is prepared by placing the first treating agent in a solvent having a mass of 5 to 20 times the mass of the first treating agent, and then stirring the mixture with ultrasonic waves for 5 to 20 minutes.
  • the first coating liquid is added to the silver powder dispersion prepared above, and the mixture is stirred at 2000 to 5000 rpm for 10 to 30 minutes using a stirrer to perform a first surface treatment. At this time, the silver powder dispersion and the first coating solution are added so that the first treating agent is treated with 0.1 to 2 parts by weight per 100 parts by weight of the powder.
  • the amount of the first surface treatment agent is less than 0.1 part by weight, the amount of the first surface treatment agent adsorbed on the surface of the powder is so small that there is a problem in that it is difficult to produce a conductive paste having a low consumption, Excessive bubbles are generated in the surface treatment process and the workability is poor and there is a problem that the electrical conductivity of the electrode manufactured by adsorbing an excessive amount of the surface treatment agent on the surface of the silver powder may be deteriorated.
  • 0.5 to 1.5 parts by weight of the first treatment agent is applied to 100 parts by weight of the silver powder.
  • the second surface treatment step (S42) is a step of secondary treatment with the second treatment agent so that the surface of the silver powder coated with the first treatment agent is coated with the second treatment agent, 5-fold mass of a solvent, adding an alcohol solution containing a second treatment agent, stirring the solution, filtering, washing and drying to obtain a second surface-treated silver powder.
  • silver powder is added to an alcohol solution containing a fatty acid or a fatty acid salt as a second treatment agent and stirred.
  • an alcohol solution in which a fatty acid or a fatty acid salt is dissolved in an amount of 5 to 20 wt% based on the total weight of the solution is used.
  • the alcohol may be methanol, ethanol, n-propanol, benzyl alcohol, terpineol or the like, preferably ethanol.
  • the alcohol solution containing the second treatment agent is added to the solution in which the primary surface-treated silver powder is dispersed, and the mixture is stirred at 2000 to 5000 rpm for 10 to 30 minutes using a stirrer to perform the second surface treatment.
  • 0.1 to 1.0 part by weight of the second treating agent is mixed with 100 parts by weight of the silver powder coated with the first treating agent.
  • the second treating agent is mixed at less than 0.1 part by weight, the amount of the second treating agent adsorbed on the surface of the powder is small and aggregation occurs between the powders, and the dispersibility of the paste is lowered due to low compatibility with the vehicle during the production of the conductive paste There is a problem that it is difficult to obtain the desired rheological characteristics of the paste.
  • the silver powder When the silver powder is mixed in an amount exceeding 1.0 part by weight, excessive electrical conductivity of the electrode, which is produced by adsorbing excess surface treatment agent on the silver powder surface, There is a problem.
  • 0.1 to 0.5 parts by weight of the second treating agent is mixed with 100 parts by weight of the silver powder.
  • the fatty acid may be selected from the group consisting of lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linolic acid, And arachidonic acid.
  • the fatty acid may be at least one selected from the group consisting of calcium hydroxide, sodium hydroxide, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, And a fatty acid salt which forms a salt with diethylamine, triethylamine, ethanolamine, diethanolamine or triethanolamine.
  • stearic acid or ammonium stearate or ammonium oleate in which oleic acid forms a salt with ammonia water is preferably used.
  • the silver powder finally surface-treated through the purification step (S3) once more can be obtained.
  • the silver powder produced by the silver powder production method according to an embodiment of the present invention has an average particle size (D50) of 0.5 to 5.0 mu m, more specifically 1.0 to 3.0 mu m.
  • D50 average particle size
  • the adsorption amount of the first treatment agent which is measured as the difference between the organic matter content (%) of the silver powder after the first surface treatment and the organic matter content (%) of the powder before the first surface treatment, is 0.05 to 0.2% (%) Of the silver powder after the secondary surface treatment and the adsorption amount of the second treating agent measured by the difference of the organic matter content (%) of the powder before the secondary surface treatment (after the primary surface treatment) Is at least 0.05%.
  • Amount of adsorbed amount of first treating agent (%) amount of powdered organic matter (%) after first surface treatment Powder organic matter content (%) before first surface treatment
  • the present invention also provides a conductive paste comprising silver powder prepared according to an embodiment of the present invention.
  • the conductive paste includes a metal powder and an organic vehicle.
  • a surface-treated silver powder is used according to an embodiment of the present invention.
  • the content of the metal powder is preferably 85 to 95 wt% based on the total weight of the conductive paste composition, considering the thickness of the electrode formed during printing and the line resistance of the electrode.
  • the organic vehicle preferably contains 5 to 15% by weight, based on the total weight of the conductive paste composition, of an organic binder mixed with 5 to 15% by weight of a solvent.
  • Examples of the organic binder include a cellulose ester compound such as cellulose acetate and cellulose acetate butyrate.
  • Examples of the cellulose ether compound include ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose , And hydroxyethyl methyl cellulose.
  • Examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate.
  • Examples of the vinyl compound include polyvinyl butyrate Polyvinyl acetate, polyvinyl alcohol, and the like. At least one or more organic binders may be selected and used.
  • Examples of the solvent used for diluting the composition include alcohols such as methanol, ethanol, n-propanol, benzyl alcohol and terpineol; Ketones such as acetone, methyl ethyl ketone, cyclohexanone, isophorone, and acetylacetone; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Ethers such as tetrahydrofuran, dioxane, methyl cellosolve, diglyme and butyl carbitol; Esters such as methyl acetate, ethyl acetate, diethyl carbonate, TXIB (1-isopropyl-2,2-dimethyltrimethylene diisobutyrate), acetic acid carbitol and acetic acid butyl carbitol; Sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane; Aliphatic
  • the conductive paste according to the present invention comprises a metal powder, a glass frit, and an organic vehicle.
  • a surface-treated silver powder is used according to an embodiment of the present invention.
  • the content of the metal powder is preferably 85 to 95% by weight based on the total weight of the conductive paste composition, taking into account the electrode thickness formed during printing and the line resistance of the electrode.
  • the composition, particle diameter and shape of the glass frit are not particularly limited. It is possible to use not only flexible glass frit but also lead-free glass frit.
  • the content and content of the glass frit are 5 to 29 mol% of PbO, 20 to 34 mol% of TeO 2 , 3 to 20 mol% of Bi 2 O 3 , 20 mol% or less of SiO 2 , 10 mol% or less of B 2 O 3 , 10 to 20 mol% of an alkali metal (Li, Na, K, etc.) and an alkaline earth metal (Ca, Mg, etc.)
  • the average particle diameter of the glass frit is not limited, but it may have a particle diameter in the range of 0.5 to 10 mu m, and a mixture of various particles having different average particle diameters may be used.
  • at least one kind of glass frit has an average particle diameter (D50) of not less than 2 mu m and not more than 10 mu m.
  • the content of the glass frit is preferably 1 to 5% by weight based on the total weight of the conductive paste composition. If the amount is less than 1% by weight, incomplete firing may occur to increase electrical resistivity. If the amount exceeds 5% by weight, There is a possibility that the electrical resistivity becomes too high due to too much component.
  • the organic vehicle is not limited, but organic binders, solvents, and the like may be included. Solvents may sometimes be omitted.
  • the organic vehicle is not limited, but is preferably 1 to 10% by weight based on the total weight of the conductive paste composition.
  • the organic vehicle is required to have a property of keeping the metal powder and the glass frit uniformly mixed.
  • the conductive paste becomes homogeneous, And a property to suppress the flow and to improve the discharging property and the plate separability of the conductive paste from the screen plate.
  • the organic binder contained in the organic vehicle is not limited, but examples of the cellulose ester compound include cellulose acetate and cellulose acetate butyrate.
  • examples of the cellulose ether compound include ethylcellulose, methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose
  • examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate, and the like.
  • examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate
  • examples of vinyl based ones include polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, and the like. At least one or more organic binders may be selected and used.
  • Examples of the solvent used for diluting the composition include alpha-terpineol, texanol, dioctyl phthalate, dibutyl phthalate, cyclohexane, hexane, toluene, benzyl alcohol, dioxane, diethylene glycol, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, and the like.
  • the conductive paste composition according to the present invention may further contain additives commonly known in the art, for example, dispersants, plasticizers, viscosity regulators, surfactants, oxidizing agents, metal oxides, metal organic compounds and the like.
  • the present invention also provides a method of forming an electrode of a solar cell and a solar cell electrode produced by the method, wherein the conductive paste is applied on a substrate, followed by drying and firing.
  • the methods used for producing substrates, printing, drying, and firing can be generally those used for manufacturing solar cells, except that conductive pastes containing silver powder having the above- to be.
  • the substrate may be a silicon wafer.
  • Production Example 1 is a step for preparing powder
  • DW De-Mineralized Water
  • 500 g of the silver powder prepared in the above Preparation Example were placed in a 5 L beaker, and silver powder was dispersed in a homo-mixer at 4000 rpm for 20 minutes to prepare silver slurry.
  • 30 ml of pure water was added to a 50 ml beaker, 5 g of PS-810E (ADEKA) (Fatty alcohol phosphate) was added thereto, and the mixture was stirred with ultrasonic waves for 10 minutes to prepare a first coating solution.
  • the first coating solution was added to the silver slurry and agitated at 4000 rpm for 20 minutes to perform primary surface treatment of the silver powder, followed by further washing with pure water through centrifugation to prepare a primary coated silver powder.
  • the silver powder was dispersed again in 2 L of pure water, and then a second coating solution of ammonium stearate solution dissolved in 15 ml of ethanol was added and stirred at 4000 rpm for 20 minutes to subject the silver powder to a second surface treatment,
  • the surface-treated silver powder was prepared by washing with the same process.
  • the surface-treated silver powder was prepared in the same manner as in Example 1 except that the composition of the surface-treated coating liquid was changed as shown in Table 1 below.
  • Comparative Examples 2 to 13 which were surface-treated silver powders, were prepared in the same manner as in Example 1 except that the surface treatment was not carried out in Comparative Example 1 and the composition of the surface-treated coating liquid was changed as shown in Table 1 below.
  • the first treatment agent The second treatment agent ingredient Content (g) ingredient Content (g)
  • Example 1 500 Fatty alcohol phosphate 5 Ammonium stearate 1.5
  • Example 2 500 Aromatic alcohol phosphate 5 Ammonium stearate 1.5
  • Example 3 500 Dialkyl sulfosuccinate 5 Ammonium stearate 1.5
  • Example 4 500 Polypeptide 5 Ammonium stearate 1.5
  • Example 5 500 Fatty alcohol phosphate 5 Stearic acid 1.5
  • Example 6 500 Fatty alcohol phosphate 5 Oleic acid 1.5
  • Example 7 500 Fatty alcohol phosphate 5 Ammonium oleate 1.5
  • Example 8 500 Fatty alcohol phosphate 5 Triethanolamine myristate 1.5
  • Example 9 500 Fatty alcohol phosphate 0.5 Ammonium stearate 1.5
  • Example 10 500 Fatty alcohol phosphate 2.5 Ammonium stearate 1.5
  • Example 11 500 Fatty alcohol phosphate 7.5 Ammonium stearate 1.5
  • Example 12 500 Fatty alcohol phosphate 10 Ammonium ste
  • the surface-treated silver powder was measured for weight loss at room temperature and 500 ° C at a temperature rising rate of 10 ° C / min in the air using a Seiko Instrument TG / DTA EXART 6600 to determine the ignition loss Respectively.
  • the conductive paste prepared in Preparation Example 2 was measured for viscosity at 25 ° C by a Brookfield viscometer (HBDVII + Pro) at a shear rate of 1 rpm at 10 rpm, as shown in Table 2 below. Rick consumption means the ratio of 1 rpm viscosity (low rpm) to 10 rpm viscosity (high rpm).
  • Example 1 0.16 0.06 380 369 1.03
  • Example 2 0.19 0.08 370 320 1.16
  • Example 3 0.08 0.19 540 377 1.43
  • Example 4 0.1 0.19 470 457 1.03
  • Example 5 0.19 0.17 380 443 0.86
  • Example 6 0.08 0.12 310 322 0.96
  • Example 7 0.08 0.05 380 410 0.93
  • Example 8 0.12 0.11 390 400 0.98
  • Example 9 0.06 0.14 530 358 1.48
  • Example 10 0.09 0.11 400 354 1.13
  • Example 11 0.17 0.16 430 464 0.93
  • Example 12 0.06 0.2 480 410 1.17
  • Example 13 0.2 0.17 370 319 1.16
  • Example 14 0.13 0.17 410 498 0.82
  • Example 15 0.08 0.2 490 412 1.19 Comparative Example 1 - - 720 326 2.21 Comparative Example 2 0.01 0.17
  • the viscosity at 1 rpm is 600 to 850 Pa ⁇ s and the viscosity at 10 rpm is 250 to 450 Pa ⁇ s.
  • the slip property of the paste is decreased and the tacky is increased, so that the print quality may be deteriorated.
  • the electroconductive paste prepared in Preparation Example 2 was applied on an alumina substrate using a 360 mesh screen manufactured by Murakami Co., Ltd. with a screen distance of 1.5 mm, a squeegee pressure of 75 N, and a printing speed of 300 mm /
  • the line width pattern was screen printed and dried at 100 DEG C for 30 minutes.
  • the line width of the dried electrode pattern was measured using an optical microscope.
  • Example 10 Line width ( ⁇ m) Line width spreading rate (%) Example 1 48.5 21.3 Example 2 52.9 32.3 Example 3 54.7 36.8 Example 4 52.7 31.8 Example 5 50.6 26.5 Example 6 52.4 31.0 Example 7 51.6 29.0 Example 8 49.2 23.0 Example 9 54.4 36.0 Example 10 51.3 28.3 Example 11 51.1 27.8 Example 12 53.8 34.5 Example 13 53.1 32.8 Example 14 49.5 23.8 Example 15 54.2 35.5 Comparative Example 1 65.4 63.5 Comparative Example 2 59.2 48.0 Comparative Example 3 58.6 46.5 Comparative Example 4 63.8 59.5 Comparative Example 5 66.8 67.0 Comparative Example 6 66.8 67.0 Comparative Example 7 65.7 64.3 Comparative Example 8 63.5 58.8 Comparative Example 9 60.7 51.8 Comparative Example 10 57.8 44.5 Comparative Example 11 55.6 39.0 Comparative Example 12 71.1 77.8 Comparative Example 13 61.8 54.5
  • the line width spreading ratio was at least 21.3% and the maximum was 36.8%, and the line width spreading ratio of the comparative example was at least 44.5% It can be seen that the fine pattern formation is excellent. In particular, it can be seen that, in Examples 1, 7, 8, 10, and 11, the line width spreading rate is 30% or less and the fine pattern formation is further superior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention relates to a method for surface treating a silver powder and a method for preparing a surface-treated silver powder, and provides a conductive paste having a low thixotropic ratio and comprising a surface-treated silver powder by surface treating a silver powder with a first treatment agent comprising an anionic surfactant and a second treatment agent comprising a fatty acid or a fatty acid salt, and thus a conductive paste is advantageous for high-speed printing and micropattern printing.

Description

표면 처리된 은 분말 및 이의 제조방법Surface-treated silver powder and method for producing the same
본 발명은 표면 처리된 은 분말 및 이의 제조방법에 관한 것으로서, 태양전지용 전극이나 적층 콘덴서의 내부전극, 회로 기판의 도체 패턴 등 전자 부품에서 전극을 형성시키기 위한 도전성 페이스트에 사용되기 적합한 은 분말 및 이의 제조방법에 관한 것이다.The present invention relates to a surface-treated silver powder and a method for producing the same, and more particularly to a silver powder suitable for use in a conductive paste for forming an electrode in an electronic component such as an electrode for a solar cell or an internal electrode of a multilayer capacitor, And a manufacturing method thereof.
도전성 금속 페이스트는 도막 형성이 가능한 도포 적성을 갖고 건조 또는 소성된 도막에 전기가 흐르는 페이스트로서, 수지계 바인더와 용매로 이루어지는 비히클 중에 도전성 필러(금속 필러) 단독 또는 글라스 프릿과 함께 분산시킨 유동성 조성물이며, 전기 회로의 형성이나 세라믹 콘덴서의 외부 전극의 형성 등에 널리 사용되고 있다. The conductive metal paste is a paste in which electricity is applied to a dried or baked coating film having a coating ability capable of forming a coating film and is dispersed with a conductive filler (metal filler) alone or in a glass frit in a vehicle made of a resin- It is widely used for the formation of an electric circuit or the formation of an external electrode of a ceramic capacitor.
특히, 은 페이스트(Silver Paste)는 복합계 도전성 페이스트 중에서 가장 화학적으로 안정하고 도전성이 우수하여 전도성 접착 및 코팅용 그리고 미세회로 형성 등 여러 분야에 있어서 상당히 그 응용범위가 넓다. PCB(Printed Circuit Board) 등과 같은 신뢰성을 특별히 중요시하는 전자부품에 있어서 은 페이스트의 용도는 STH(Silver Through Hole)용 접착 또는 코팅재 등으로 사용되며, 적층 콘덴서에서는 내부전극용으로, 최근에는 실리콘계 태양전지에서 전극 재료로 널리 사용되고 있다.In particular, Silver Paste is the most chemically stable and excellent in conductivity among the conductive paste of composite system, and has a wide range of applications in various fields such as conductive bonding and coating and fine circuit formation. In the electronic parts, such as PCBs (Printed Circuit Boards), which are particularly important for reliability, the use of silver paste is used for bonding or coating materials for STH (Silver Through Hole), for internal electrodes in multilayer capacitors, Is widely used as an electrode material.
더욱 구체적으로 태양전지의 전면전극은 주로 은(Ag) 분말을 주재료로 한 도전성 페이스트가 반사 방지막상에 그리드 패턴(grid pattern)으로 인쇄된 다음, 소결되어 형성된다. 이때, 전면 전극은 열처리를 통한 소결 과정에서 반사 방지막을 침투하여 N형 실리콘층과 오믹 컨택(ohmic contact)을 형성함으로써, 태양전지의 직렬 저항을 낮춰 변환 효율을 상승시킨다. More specifically, the front electrode of the solar cell is formed by sintering after a conductive paste mainly composed of silver (Ag) powder is printed in a grid pattern on the antireflection film. At this time, the front electrode penetrates the antireflection film in the sintering process through the heat treatment to form an ohmic contact with the N-type silicon layer, thereby lowering the series resistance of the solar cell to increase the conversion efficiency.
도전성 페이스트의 유변물성(rheology)은 인쇄 특성(도포 적성)을 결정짓는 주요 인자인데, 전자부품의 소형화가 진행되고, 전극 패턴의 고밀도화나 미세패턴화에 대응하기 위해서는 인쇄 특성에 영향을 주는 도전성 페이스트의 유변물성이 중요하며, 특히 태양전지용 스크린 인쇄된 전극은 전극의 좁은 선폭과 높은 두께, 즉 종횡비(aspect ratio)의 증가를 요구하기 때문에 도전성 페이스트의 유변물성이 더욱 중요하다. The rheology of the conductive paste is a major factor that determines the printing property (application suitability). In order to cope with miniaturization of the electronic parts and high density of the electrode pattern and fine patterning, the conductive paste The rheological properties of the conductive paste are particularly important because screen printed electrodes for solar cells require an increase in the narrow line width and high thickness, that is, the aspect ratio, of the electrodes.
도전성 페이스트를 구성하고 있는 필러, 수지계 바인더, 용제, 첨가제 등의 상호작용에 의해 형성되는 망목(Network) 구조에 의해 유변물성을 포함하는 특성이 달라지게 된다. 특히 도전성 페이스트에 가장 많은 양을 차지하는 은 분말은 그 표면에 코팅된 표면처리제의 종류 및 함량에 따라 은 분말과 다른 구성 성분들과의 상호작용력을 다르게 하여 형성되는 망목 구조의 형태를 결정 짓는데 중요한 역할을 하게 된다. 따라서 페이스트의 인쇄 특성 및 유변 물성을 제어하기 위해서는 은 분말의 표면처리제 종류 및 함량에 따른 표면 화학적 특성을 제어하는 기술이 필요하게 된다.Properties including rheological properties are changed by a network structure formed by the interaction of a filler, a resin binder, a solvent, an additive, etc. constituting the conductive paste. Particularly, the silver powder which occupies the largest amount in the conductive paste is important in determining the shape of the network structure formed by varying the interaction force between the silver powder and the other constituents depending on the kind and content of the surface treatment agent coated on the surface thereof . Therefore, in order to control the printing properties and the rheological properties of the paste, it is necessary to control the surface chemical properties of the silver powder according to the kind and content of the surface treatment agent.
종래 선행 특허(일본공개 특허 제2016-33259호)에서는 스크린 인쇄를 통한 미세 패턴 형성을 위해 칙소비(낮은 rpm 점도/높은 rpm 점도)가 높은 도전성 페이스트를 얻을 수 있는 은가루 및 그 제조 방법을 제공하고 있다. Conventional prior art (Japanese Patent Laid-Open Publication No. 2016-33259) provides a silver powder capable of obtaining a conductive paste having a high consumption ratio (low rpm viscosity / high rpm viscosity) for forming a fine pattern through screen printing and a method for producing the same have.
그러나 최근에는 태양전지용 스크린 인쇄의 인쇄 속도가 고속화되고, 패턴도 더욱 미세화 되면서 도전성 페이스트의 판 빠짐성이 중요한 특징이 되고, 이로 인해 높은 칙소비를 갖는 도전성 페이스트의 경우, 페이스트의 슬립(Slip)성이 감소하고 끈적임(tacky)이 증가하여 인쇄 품질이 저하되는 문제점이 있다.In recent years, however, the printing speed of a screen printing process for a solar cell has been accelerated and the pattern has become finer, and the slippage of the conductive paste is important. In the case of the conductive paste having high consumption, And the tacky is increased to deteriorate the printing quality.
본 발명은 상기와 같은 문제점을 해결하기 위하여 도전성 페이스트에 사용되는 은 분말의 표면처리방법을 제공함으로써, 상기 표면 처리된 은 분말을 포함하여 높은 rpm 점도에 대한 낮은 rpm 점도의 비율인 칙소비가 낮고 고속인쇄 및 미세패턴 인쇄에 유리한 도전성 페이스트를 제공하는 것이다. The present invention provides a surface treatment method for a silver powder used in a conductive paste for solving the above problems, and it is an object of the present invention to provide a method for surface treatment of a silver powder used for a conductive paste, And to provide a conductive paste favorable for high-speed printing and fine pattern printing.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.
본 발명은 용제에 은 분말을 분산시키고 음이온계 계면활성제를 포함하는 제1 처리제를 넣고 혼합 교반하여 은 분말에 코팅시키는 제1 표면처리단계(S41); 및 상기 제1 처리제가 코팅된 은 분말의 표면에 지방산 또는 지방산염을 포함하는 제2 처리제가 코팅되도록 표면처리하는 제2 표면처리단계(S42);를 포함하는 은 분말의 표면처리방법을 제공한다. (S41) a first surface treatment step (S41) of dispersing silver powder in a solvent, adding a first treatment agent containing an anionic surfactant, mixing and stirring the silver powder to coat silver powder; And a second surface treatment step (S42) of surface-treating the surface of the silver powder coated with the first treatment agent so as to coat a second treatment agent containing a fatty acid or a fatty acid salt, .
또한 상기 음이온계 계면활성제는 방향족 알코올 포스페이트(Aromatic alcohol phosphate), 지방족 알코올 포스페이트(Fatty alcohol phosphate), 디알킬 설포석시네이트(Dialkyl sulfosuccinate) 및 폴리펩티드(Polypeptide)로 구성되는 군에서 선택되는 어느 1종 이상을 포함하는 것을 특징으로 한다.The anionic surfactant may be any one selected from the group consisting of Aromatic alcohol phosphate, Fatty alcohol phosphate, Dialkyl sulfosuccinate, and Polypeptide. Or more.
또한 상기 지방산은 라우르산(lauric acid), 미리스틴산(myristic acid), 팔미틴산(palmitic acid), 스테아린산(Stearic Acid), 베헨산(behenic acid), 올레인산(oleic acid), 리놀산(linolic acid) 및 아라키돈산(arachidonic acid)으로 구성되는 군에서 선택되는 적어도 1종 이상을 포함하는 것을 특징으로 한다.The fatty acid may be selected from the group consisting of lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linolic acid, And at least one selected from the group consisting of arachidonic acid.
또한 상기 지방산염은 지방산이 수산화칼슘(calcium hydroxide), 수산화나트륨(sodium hydroxide), 암모니아(ammonia), 메틸아민(methylamine), 디에틸아민(dimethylamine), 트리메틸아민(trimethylamine), 에틸아민(ethylamine), 디에틸아민(diethylamine), 트리에틸아민(triethylamine), 에탄올아민(ethanolamine), 디에탄올아민(diethanolamine) 또는 트리에탄올아민(triethanolamine)과 염을 형성한 지방산염을 포함하는 것을 특징으로 한다.Also, the fatty acid salt may be prepared by dissolving the fatty acid in an aqueous medium such as calcium hydroxide, sodium hydroxide, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, And a fatty acid salt which forms a salt with diethylamine, triethylamine, ethanolamine, diethanolamine, or triethanolamine.
또한 상기 제1 표면처리단계(S41)는 용제에 은 분말을 넣어 분산시킨 은 분말 분산액을 제조하고, 용제에 상기 제1 처리제를 넣고 교반하여 제1 코팅액을 제조한 후, 상기 은 분말 분산액에 상기 제1 코팅액을 넣고 혼합 교반하는 단계인 것을 특징으로 한다.In addition, the first surface treatment step (S41) may be performed by preparing a silver powder dispersion in which silver powder is dispersed in a solvent, adding the first treatment agent to a solvent and stirring to prepare a first coating solution, Adding the first coating liquid, and mixing and stirring.
또한 상기 제1 표면처리단계(S41)는 은 분말 100 중량부에 대하여 상기 제1 처리제가 0.1 내지 2 중량부로 혼합되도록 은 분말 분산액 및 제1 코팅액을 혼합하는 단계인 것을 특징으로 한다.The first surface treatment step (S41) is a step of mixing the silver powder dispersion and the first coating solution such that the first treating agent is mixed in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the silver powder.
또한 상기 제2 표면처리단계(S42)는 상기 제1 처리제가 코팅된 은 분말을 용제에 분산시킨 후 제2 처리제를 포함하는 알코올 용액을 첨가하고 교반하는 단계인 것을 특징으로 한다.The second surface treatment step (S42) is a step of dispersing the silver powder coated with the first treatment agent in a solvent, and then adding and stirring the alcohol solution containing the second treatment agent.
또한 상기 제2 표면처리단계(S42)는 상기 제1 처리제로 코팅된 은 분말 100 중량부에 대하여 상기 제2 처리제가 0.1 내지 1.0 중량부로 혼합되도록 제2 처리제를 포함하는 알코올 용액을 첨가하는 단계인 것을 특징으로 한다.The second surface treatment step (S42) is a step of adding an alcohol solution containing a second treatment agent to 100 parts by weight of the silver powder coated with the first treatment agent so that the second treatment agent is mixed with 0.1 to 1.0 part by weight .
또한 본 발명은 은 이온, 암모니아(NH3) 및 질산(HNO3)을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함하는 은 염 환원단계(S2); 및 상기 얻어진 은 분말을 음이온계 계면활성제를 포함하는 제1 처리제를 이용하여 1차 처리하고, 지방산 또는 지방산염을 포함하는 제2 처리제를 이용하여 2차 처리하는 표면처리단계(S4);를 포함하는 표면 처리된 은 분말을 제조하는 은 분말 제조방법을 제공한다. In another aspect, the present invention is an ion, ammonia (NH 3) and nitric acid (HNO 3) The first reaction solution and for producing a second reaction solution containing a reducing agent in the reaction mixture prepared step (S21) and the first reaction solution containing the and A silver salt reducing step (S2) including a precipitation step (S22) of reacting the second reaction solution to obtain silver powder; And a surface treatment step (S4) of subjecting the obtained silver powder to a primary treatment using a first treatment agent containing an anionic surfactant and a secondary treatment using a second treatment agent including a fatty acid or a fatty acid salt To a surface of the silver powder.
또한 본 발명은 평균 입자 크기(D50)가 1.0 내지 3.0μm 인 은 분말로서, 상기 은 분말은 음이온계 계면활성제를 포함하는 제1 처리제를 이용하여 1차 표면처리되고, 지방산 또는 지방산염을 포함하는 제2 처리제를 이용하여 2차 표면처리된 은 분말인 도전성 페이스트용 은 분말을 제공한다. Also, the present invention is a silver powder having an average particle size (D50) of 1.0 to 3.0 m, wherein the silver powder is subjected to a first surface treatment using a first treatment agent containing an anionic surfactant, And a silver powder for a conductive paste, which is a second surface-treated silver powder using the second treatment agent.
또한 본 발명은 상기 도전성 페이스트용 은 분말을 포함하는 금속 분말; 및The present invention also relates to a metal powder including the silver powder for the conductive paste; And
용제 및 유기 바인더를 포함하는 유리 비히클; 을 포함하는 도전성 페이스트를 제공한다. A glass vehicle comprising a solvent and an organic binder; And a conductive paste.
또한 상기 도전성 페이스트는 25℃에서 점도(Pa·s)를 측정한 경우, 10rpm에서 측정된 점도에 대한 1rpm에서 측정된 점도의 비가 0.8 내지 1.5 인 것을 특징으로 한다.The conductive paste is characterized by having a viscosity ratio of 0.8 to 1.5 as measured at 1 rpm to a viscosity measured at 10 rpm when the viscosity (Pa · s) is measured at 25 ° C.
또한 상기 도전성 페이스트는 25℃에서 점도(Pa·s)를 측정한 경우, 10rpm에서 측정된 점도가 350 내지 500 Pa·s 인 것을 특징으로 한다. The conductive paste has a viscosity of 350 to 500 Pa · s measured at 10 rpm when the viscosity (Pa · s) is measured at 25 ° C.
또한 상기 도전성 페이스트용 은 분말을 포함하는 금속 분말; 유리 프릿; 및 용제 및 유기 바인더를 포함하는 유기 비히클;을 포함하는 태양전지 전극용 도전성 페이스트를 제공한다. A metal powder containing the silver powder for the conductive paste; Glass frit; And an organic vehicle including a solvent and an organic binder.
본 발명은 은 분말을 음이온계 계면활성제를 포함하는 제1 처리제 및 지방산 또는 지방산염을 포함하는 제2 처리제를 이용하여 표면처리함으로써 칙소비가 낮고, 이를 포함하는 도전성 페이스트를 제공하여 고속인쇄 및 미세패턴 인쇄에 유리한 도전성 페이스트를 제공할 수 있다.The present invention relates to a silver paste which is surface-treated with a first treatment agent containing an anionic surfactant and a second treatment agent comprising a fatty acid or a fatty acid salt to provide silver paste and a conductive paste containing the silver paste, It is possible to provide a conductive paste favorable for pattern printing.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Before describing the present invention in detail, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the invention, which is defined solely by the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise stated.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, the word "comprise", "comprises", "comprising" means including a stated article, step or group of articles, and steps, , Step, or group of objects, or a group of steps.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.On the contrary, the various embodiments of the present invention can be combined with any other embodiments as long as there is no clear counterpoint. Any feature that is specifically or advantageously indicated as being advantageous may be combined with any other feature or feature that is indicated as being preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.
본 발명은 제조 과정에서 음이온계 계면활성제를 포함하는 제1 표면처리제 및 지방산 또는 지방산염을 포함하는 제2 표면처리제를 이용하여 은 분말을 표면처리함으로써 제조되는 은 분말을 포함하는 도전성 페이스트의 유변물성을 제어하여, 고속인쇄 및 미세패턴 인쇄에 특히 적합한 도전성 페이스트를 제공한다. The present invention relates to a conductive paste containing a silver powder prepared by surface-treating a silver powder using a first surface treatment agent containing an anionic surfactant and a second surface treatment agent containing a fatty acid or a fatty acid salt in the production process, So as to provide a conductive paste particularly suitable for high speed printing and fine pattern printing.
본 발명의 일실시예에 따른 은 분말의 제조방법은 은 염 제조단계(S1); 은 염 환원단계(S2); 여과 및 세척 등 정제단계(S3); 및 표면처리단계(S4);를 포함하여 이루어진다. 본 발명에 따른 은 분말의 제조방법은 표면처리단계(S4)를 반드시 포함하고, 이외의 단계는 생략 가능하다. 즉 본 발명의 일실시예에 따른 표면처리단계(S4)는 상기 단계를 통해 제조된 은 분말뿐만 아니라 일반적인 방법이나 종래의 방법으로 제조되는 은 분말에도 범용적으로 적용될 수 있다.A method of manufacturing a silver powder according to an embodiment of the present invention includes: a silver salt producing step (S1); Silver salt reduction step (S2); Purification step such as filtration and washing (S3); And a surface treatment step (S4). The method for producing silver powder according to the present invention necessarily includes the surface treatment step (S4), and the other steps can be omitted. That is, the surface treatment step (S4) according to one embodiment of the present invention can be applied not only to the silver powder prepared through the above step but also to silver powder produced by a general method or a conventional method.
본 발명의 일실시예에 따른 은 염 제조단계(S1)는 잉곳, 립, 그래뉼 형태의 은(silver, Ag)을 산처리하여 은 이온(Ag+)을 포함하는 은 염(silver salt) 용액을 제조하는 단계로서, 본 단계를 거쳐 은 염 용액을 직접 제조하여 은 분말을 제조할 수 있으나, 시중에서 구입한 질산은(AgNO3), 은 염 착체 또는 은 중간체 용액을 이용하여 이 후 단계를 진행할 수 있다.The silver salt preparation step S1 according to an embodiment of the present invention is a step of preparing a silver salt solution containing silver ions (Ag + ) by acid treatment of silver (Ag) in the form of ingots, comprising the steps of manufacturing, but can produce a powder to prepare a salt is passed through the step the solution directly, silver nitrate was purchased commercially (AgNO 3), the salt complex, or can proceed to the later steps, using the intermediate solution have.
본 발명의 일실시예에 따른 은 염 환원단계(S2)는 은 염 용액에 환원제 및 암모니아를 첨가하여 은 이온을 환원시켜 은 입자(silver particle)를 석출하는 단계로서, 은 이온, 암모니아 및 질산을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함한다. The silver salt reducing step S2 according to an embodiment of the present invention is a step of reducing silver ions by adding a reducing agent and ammonia to a silver salt solution to precipitate silver particles, and silver ions, ammonia, and nitric acid (S21) for producing a second reaction solution containing a first reaction solution containing a reducing agent and a precipitation step (S22) for obtaining a silver powder by reacting the first reaction solution and the second reaction solution .
본 발명의 일실시예에 따른 반응액제조단계(S21)는 은 이온을 포함하는 은 염 용액에 암모니아 및 질산을 첨가하고 교반하여 용해시켜 제1 반응액을 제조한다. In the reaction solution preparation step (S21) according to an embodiment of the present invention, ammonia and nitric acid are added to a silver salt solution containing silver ions, and the solution is stirred and dissolved to prepare a first reaction solution.
상기 은 이온은 은 양이온의 형태로 포함되는 물질이라면 제한되지 않는다. 일례로 질산은(AgNO3), 은 염 착체 또는 은 중간체일 수 있다. 바람직하게는 질산은(AgNO3)을 사용하는 것이 좋다. 이하 은 이온을 포함하는 질산은(AgNO3)을 사용하는 것을 일 예시로 서술한다. The silver ions are not limited as long as they are contained in the form of silver cations. For example, silver nitrate (AgNO 3 ), silver salt complex or silver intermediate may be used. It is preferable to use silver nitrate (AgNO 3 ). Hereinafter, the use of silver nitrate (AgNO 3 ) containing an ion will be described as an example.
암모니아(NH3)는 수용액 형태로 사용될 수 있으며, 25% 암모니아 수용액을 사용하는 경우 질산은(AgNO3) 100 중량부에 대하여 100 내지 150 중량부로 첨가한다. 암모니아 수용액이 100 중량부 미만으로 첨가되는 경우 반응 pH가 낮아서 은 이온이 모두 환원되지 않거나, 균일한 입자 분포를 형성시키는데 문제가 있으며, 150 중량부를 초과하여 첨가되는 경우 제조된 은 분말 중 유기물 함량이 지나치게 높아지는 문제점이 있다. 바람직하게는 질산은(AgNO3) 100 중량부에 대하여 25% 암모니아 수용액을 120 내지 140 중량부로 첨가하는 것이 좋다. 상기 암모니아는 그 유도체를 포함한다. Ammonia (NH 3 ) can be used in the form of an aqueous solution. When 25% ammonia aqueous solution is used, 100 to 150 parts by weight of silver nitrate (AgNO 3 ) is added in 100 parts by weight. When the aqueous ammonia solution is added in an amount of less than 100 parts by weight, the reaction pH is low and silver ions are not completely reduced, or there is a problem in forming a uniform particle distribution. When the amount is more than 150 parts by weight, There is a problem that it becomes excessively high. Preferably, a 25% ammonia aqueous solution is added in an amount of 120 to 140 parts by weight based on 100 parts by weight of silver nitrate (AgNO 3 ). The ammonia includes a derivative thereof.
질산(HNO3)은 수용액 형태로 사용될 수 있으며, 60% 질산 수용액을 사용하는 경우 질산은(AgNO3) 100 중량부에 대하여 40 내지 120 중량부로 첨가한다. 질산(HNO3)이 40 중량부 미만으로 첨가되는 경우 은 분말의 크기(size)를 조절 하는데 어려움이 있으며, 질산(HNO3)이 120 중량부를 초과하여 첨가되는 경우 유기물 함량이 크게 증가하는 문제점이 있다. 바람직하게는 질산은(AgNO3) 100 중량부에 대하여 60% 질산 수용액을 80 내지 100 중량부로 첨가하는 것이 좋다. 상기 질산은 그 유도체를 포함한다. The nitric acid (HNO 3 ) can be used in the form of an aqueous solution. When 60% nitric acid aqueous solution is used, 40 to 120 parts by weight are added to 100 parts by weight of silver nitrate (AgNO 3 ). When the amount of the nitric acid (HNO 3 ) is less than 40 parts by weight, it is difficult to control the size of the powder. When the amount of the nitric acid (HNO 3 ) is more than 120 parts by weight, have. Preferably, a 60% nitric acid aqueous solution is added in an amount of 80 to 100 parts by weight based on 100 parts by weight of silver nitrate (AgNO 3 ). The nitric acid includes a derivative thereof.
은 이온, 암모니아 및 질산을 포함하는 제1 반응액은 물 등의 용제에 은 이온, 암모니아 수용액 및 질산 수용액을 첨가하고 교반하여 용해시켜 수용액 상태로 제조될 수 있으며, 또한 슬러리 형태로 제조될 수 있다. The first reaction solution containing silver ions, ammonia and nitric acid can be prepared in an aqueous solution state by adding a silver ion, an aqueous ammonia solution and an aqueous nitric acid solution to a solvent such as water and dissolving them by stirring to form a slurry form .
본 발명의 일실시예에 따른 반응액제조단계(S21)는 또한 환원제를 포함하는 제2 반응액을 제조한다. The reaction solution preparation step (S21) according to an embodiment of the present invention also produces a second reaction solution containing a reducing agent.
상기 환원제는 아스코르브산, 알칸올아민, 하이드로퀴논, 히드라진 및 포르말린으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있으며, 이 중에서 하이드로퀴논을 바람직하게 선택할 수 있다. 환원제의 함량은 제1 반응액에 포함되는 질산은(AgNO3) 100 중량부에 대하여 10 내지 20 중량부로 포함되는 것이 바람직하다. 10 중량부 미만을 사용하는 경우, 은 이온이 모두 환원되지 않을 수 있고, 20 중량부를 초과하여 사용하는 경우 유기물 함량이 증가하는 문제가 있다. 바람직하게는 질산은 100 중량부에 대하여 환원제를 14 내지 16 중량부 사용하여 제2 반응액을 제조하는 것이 좋다. The reducing agent may be at least one member selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin, and among them, hydroquinone can be preferably selected. The content of the reducing agent is preferably 10 to 20 parts by weight based on 100 parts by weight of silver nitrate (AgNO 3 ) contained in the first reaction solution. If less than 10 parts by weight is used, silver ions may not be reduced at all, and when used in excess of 20 parts by weight, organic matter content increases. Preferably, the second reaction liquid is prepared by using 14 to 16 parts by weight of a reducing agent per 100 parts by weight of silver nitrate.
환원제를 포함하는 제2 반응액은 물 등의 용매에 환원제를 첨가하고 교반하여 용해시켜 수용액 상태로 제조될 수 있다. The second reaction solution containing a reducing agent can be prepared in an aqueous solution state by adding a reducing agent to a solvent such as water and dissolving it by stirring.
본 발명의 일실시예에 따른 석출단계(S22)는 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 단계로서, 반응액제조단계(S21)에 의해 제조된 제1 반응액을 교반하는 상태에서 제2 반응액을 천천히 적가하거나, 일괄 첨가하여 반응시킬 수 있다. 바람직하기로는 일괄 첨가한 후 5분 내지 10분간 더 교반하여 혼합액 중에서 입자를 성장시키는 것이 빠른 시간 내에 환원 반응이 일괄 종료되어 입자끼리의 응집을 방지하고 분산성을 높일 수 있어 좋다.The precipitation step (S22) according to an embodiment of the present invention is a step of reacting the first reaction solution and the second reaction solution to obtain a silver powder, wherein the first reaction solution produced by the reaction solution production step (S21) The second reaction solution may be slowly added dropwise or the reaction may be carried out in a batch. Preferably, the particles are added in a batch and further stirred for 5 minutes to 10 minutes to grow the particles in the mixed solution, so that the reduction reaction can be terminated in a short period of time to prevent agglomeration of the particles and increase dispersibility.
본 발명의 일실시예에 따른 정제단계(S3)는 은 염 환원단계(S2)를 통해 은 입자 석출 반응을 완료한 후 수용액 또는 슬러리 내에 분산되어 있는 은 분말을 여과 등을 이용하여 분리하고 세척하는 단계(S31)를 포함한다. 더욱 구체적으로는 은 분말 분산액 중의 은 입자를 침강시킨 후, 분산액의 상등액을 버리고 원심분리기를 이용하여 여과하고, 여재를 순수로 세정한다. 세척을 하는 과정은 분말을 세척한 세척수를 완전히 제거를 해야 이루어 진다. 선택적으로 여과 전에 반응 완료 용액에 상기 언급된 분산제를 첨가하여 은 분말의 응집을 방지하는 것도 가능하다. In the refining step S3 according to an embodiment of the present invention, the silver powder dispersed in the aqueous solution or slurry is separated and washed by filtration after completing the silver particle precipitation reaction through the silver salt reducing step S2 Step S31. More specifically, after precipitating silver particles in the silver powder dispersion, the supernatant of the dispersion is discarded, filtered using a centrifugal separator, and the filter material is washed with pure water. The process of washing is done by completely removing the washing water from which the powder is washed. It is also possible to prevent agglomeration of the silver powder by optionally adding the above-mentioned dispersant to the reaction-completed solution before filtration.
또한 본 발명의 일실시예에 따른 정제단계(S3)는 세척 후 건조 및 해쇄단계(S34)를 더 포함할 수 있다.Further, the purification step S3 according to an embodiment of the present invention may further include a post-cleaning drying and decoloring step (S34).
본 발명의 일실시예에 따른 표면처리단계(S4)는 상기 단계를 통해 제조된 은 분말뿐만 아니라 일반적인 방법이나 종래의 방법으로 제조되는 은 분말에 범용적으로 처리될 수 있는 방법이다. 표면처리단계(S4)는 음이온계 계면활성제를 포함하는 제1 처리제와 지방산 또는 지방산염을 포함하는 제2 처리제를 이용하여 은 분말을 표면처리함으로써 제조되는 은 분말을 포함하는 도전성 페이스트의 유변물성을 제어할 수 있다. The surface treatment step S4 according to an embodiment of the present invention is a method that can be generally applied to the silver powder produced by the general method or the conventional method as well as the silver powder prepared through the above step. The surface treatment step S4 is a step of treating the rheological properties of the conductive paste including the silver powder prepared by surface treatment of the silver powder using the first treatment agent containing the anionic surfactant and the second treatment agent containing the fatty acid or the fatty acid salt Can be controlled.
표면처리단계(S4)는 제1 처리제를 이용한 제1 표면처리단계(S41) 및 제2 처리제를 이용한 제2 표면처리단계(S42)를 포함한다.The surface treatment step S4 includes a first surface treatment step S41 using the first treatment agent and a second surface treatment step S42 using the second treatment agent.
제1 표면처리단계(S41)는 은 분말의 친수 표면을 소수화하는 단계로서, 용제에 은 분말을 분산시키고 음이온계 계면활성제를 포함하는 제1 처리제를 넣고 혼합 교반하여 은 분말에 코팅시키는 단계이다. The first surface treatment step (S41) is a step of hydrophobizing the hydrophilic surface of the silver powder. The silver powder is dispersed in a solvent, and a first treatment agent containing an anionic surfactant is added and mixed and stirred to coat the silver powder.
제1 처리제는 방향족 알코올 포스페이트(Aromatic alcohol phosphate), 지방족 알코올 포스페이트(Fatty alcohol phosphate), 디알킬 설포석시네이트(Dialkyl sulfosuccinate) 및 폴리펩티드(Polypeptide)로 구성되는 군에서 선택되는 어느 1종 이상을 포함한다. 바람직하게는 지방족 알코올 포스페이트를 포함하는 것이 좋다. The first treatment agent includes at least one selected from the group consisting of aromatic alcohol phosphate, fatty alcohol phosphate, dialkyl sulfosuccinate, and a polypeptide. do. Preferably an aliphatic alcohol phosphate.
용제는 물, 에탄올, 이소프로필알코올, 에틸렌글리콜 헥실에테르, 디에틸렌글리콜, 부틸에테르 프로필렌글리콜, 프로필에테르 등을 사용할 수 있으며, 바람직하게는 물을 사용한다.As the solvent, water, ethanol, isopropyl alcohol, ethylene glycol hexyl ether, diethylene glycol, butyl ether, propylene glycol, propyl ether and the like can be used, and water is preferably used.
제1 표면처리단계(S41)는 은 분말의 표면에 제2 처리제가 더욱 잘 코팅되도록 하기 위하여 제1 처리제로 1차 처리하는 단계로서, 용제에 은 분말을 넣어 분산시킨 은 분말 분산액을 제조하고, 용제에 제1 처리제를 넣고 교반하여 제1 코팅액을 제조한 후, 상기 은 분말 분산액에 제1 코팅액을 넣고 혼합 교반하는 단계이다. The first surface treatment step (S41) is a step of first treating the surface of the silver powder with the first treatment agent so as to coat the second treatment agent more effectively. The silver powder dispersion is prepared by dispersing silver powder in a solvent, A first treatment agent is added to a solvent and stirred to prepare a first coating solution, and then the first coating solution is added to the silver powder dispersion, followed by mixing and stirring.
은 분말 분산액은 은 분말 질량 대비 2 내지 5배 질량의 용제에 은 분말을 넣은 후 교반기를 이용하여 2000 내지 5000rpm으로 10 내지 30분간 교반하여 얻는다. 바람직하게는 3000 내지 4000rpm으로 15 내지 25분간 교반하여 은 분말 분산액을 얻는 것이 좋다. Silver powder is obtained by adding silver powder to a solvent having a mass of 2 to 5 times the mass of the silver powder and agitating the powder at 2000 to 5000 rpm for 10 to 30 minutes using a stirrer. Preferably 3000 to 4000 rpm, for 15 to 25 minutes to obtain a silver powder dispersion.
제1 코팅액은 제1 처리제 질량 대비 5 내지 20배 질량의 용제에 제1 처리제를 넣은 후 초음파로 5 내지 20분간 교반하여 제조한다. The first coating liquid is prepared by placing the first treating agent in a solvent having a mass of 5 to 20 times the mass of the first treating agent, and then stirring the mixture with ultrasonic waves for 5 to 20 minutes.
상기 제조된 은 분말 분산액에 제1 코팅액을 넣고 교반기를 이용하여 2000 내지 5000rpm으로 10 내지 30분간 교반하여 제1 표면처리한다. 이때 은 분말 100 중량부에 대하여 제1 처리제가 0.1 내지 2 중량부로 처리되도록 은 분말 분산액 및 제1 코팅액을 첨가한다. 0.1 중량부 미만으로 처리하는 경우 은 분말 표면에 흡착되는 제1 표면처리제 양이 적어 본 발명에서 목적으로 하는 낮은 칙소비를 갖는 도전성 페이스트의 제조가 어렵다는 문제가 있고, 2 중량부 초과하여 처리하는 경우 표면처리 공정에서 과량의 거품이 발생하여 작업성이 나쁘고, 은 분말 표면에 과량의 표면처리제가 흡착되어 제조되는 전극의 전기 전도성을 저하시킬 수 있는 문제점이 있다. 바람직하게는 은 분말 100 중량부에 대하여 제1 처리제를 0.5 내지 1.5 중량부 처리하는 것이 좋다. The first coating liquid is added to the silver powder dispersion prepared above, and the mixture is stirred at 2000 to 5000 rpm for 10 to 30 minutes using a stirrer to perform a first surface treatment. At this time, the silver powder dispersion and the first coating solution are added so that the first treating agent is treated with 0.1 to 2 parts by weight per 100 parts by weight of the powder. When the amount of the first surface treatment agent is less than 0.1 part by weight, the amount of the first surface treatment agent adsorbed on the surface of the powder is so small that there is a problem in that it is difficult to produce a conductive paste having a low consumption, Excessive bubbles are generated in the surface treatment process and the workability is poor and there is a problem that the electrical conductivity of the electrode manufactured by adsorbing an excessive amount of the surface treatment agent on the surface of the silver powder may be deteriorated. Preferably, 0.5 to 1.5 parts by weight of the first treatment agent is applied to 100 parts by weight of the silver powder.
제2 표면처리단계(S42)는 제1 처리제가 코팅된 은 분말의 표면에 제2 처리제가 코팅되도록 제2 처리제로 2차 처리하는 단계로서, 상기 제1 처리제가 코팅된 은 분말을 2배 내지 5배 질량의 용제에 분산시킨 후 제2 처리제를 포함하는 알코올 용액을 첨가하고 교반한 후 여과, 세정 및 건조하여 제2 표면처리된 은 분말을 얻는 단계이다. The second surface treatment step (S42) is a step of secondary treatment with the second treatment agent so that the surface of the silver powder coated with the first treatment agent is coated with the second treatment agent, 5-fold mass of a solvent, adding an alcohol solution containing a second treatment agent, stirring the solution, filtering, washing and drying to obtain a second surface-treated silver powder.
제2 표면처리단계(S42)는 제2 처리제로서 지방산 또는 지방산염을 포함하는 알코올 용액에 은 분말을 넣고 교반한다. 이 때 용액 전체 중량에 대하여 지방산 또는 지방산염이 5 내지 20 wt%로 용해된 알코올 용액을 사용한다. 알코올은 메탄올, 에탄올, n-프로판올, 벤질알코올, 테르피네올(Terpineol) 등을 사용할 수 있으며, 바람직하게는 에탄올을 사용한다.In the second surface treatment step (S42), silver powder is added to an alcohol solution containing a fatty acid or a fatty acid salt as a second treatment agent and stirred. At this time, an alcohol solution in which a fatty acid or a fatty acid salt is dissolved in an amount of 5 to 20 wt% based on the total weight of the solution is used. The alcohol may be methanol, ethanol, n-propanol, benzyl alcohol, terpineol or the like, preferably ethanol.
상기 1차 표면처리된 은 분말이 분산된 용액에 제2 처리제를 포함하는 알코올 용액을 넣고 교반기를 이용하여 2000 내지 5000rpm 10 내지 30분간 교반하여 제2 표면처리한다. 이 때 제1 처리제로 코팅된 은 분말 100 중량부에 대하여 제2 처리제가 0.1 내지 1.0 중량부 혼합되도록 한다. 제2 처리제가 0.1 중량부 미만으로 혼합되는 경우 은 분말 표면에 흡착되는 제2 처리제 양이 적어 분말 간에 응집이 발생하고, 도전성 페이스트 제조 시 비히클과의 낮은 상용성으로 인해 페이스트의 분산성이 저하되어 품질 안정성이 감소하며, 원하는 페이스트의 레올로지 특성을 얻기 어려운 문제가 있고, 1.0 중량부 초과하여 혼합되는 경우, 은 분말 표면에 과량의 표면처리제가 흡착되어 제조되는 전극의 전기 전도성을 저하시킬 수 있는 문제점이 있다. 바람직하게는 은 분말 100 중량부에 대하여 제2 처리제가 0.1 내지 0.5 중량부 혼합되도록 하는 것이 좋다. The alcohol solution containing the second treatment agent is added to the solution in which the primary surface-treated silver powder is dispersed, and the mixture is stirred at 2000 to 5000 rpm for 10 to 30 minutes using a stirrer to perform the second surface treatment. At this time, 0.1 to 1.0 part by weight of the second treating agent is mixed with 100 parts by weight of the silver powder coated with the first treating agent. When the second treating agent is mixed at less than 0.1 part by weight, the amount of the second treating agent adsorbed on the surface of the powder is small and aggregation occurs between the powders, and the dispersibility of the paste is lowered due to low compatibility with the vehicle during the production of the conductive paste There is a problem that it is difficult to obtain the desired rheological characteristics of the paste. When the silver powder is mixed in an amount exceeding 1.0 part by weight, excessive electrical conductivity of the electrode, which is produced by adsorbing excess surface treatment agent on the silver powder surface, There is a problem. Preferably, 0.1 to 0.5 parts by weight of the second treating agent is mixed with 100 parts by weight of the silver powder.
상기 지방산은 라우르산(lauric acid), 미리스틴산(myristic acid), 팔미틴산(palmitic acid), 스테아린산(Stearic Acid), 베헨산(behenic acid), 올레인산(oleic acid), 리놀산(linolic acid) 및 아라키돈산(arachidonic acid)으로 구성되는 군에서 선택되는 적어도 1종 이상을 포함한다. 바람직하게는 스테아린산 또는 올레인산을 사용하는 것이 좋다. The fatty acid may be selected from the group consisting of lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linolic acid, And arachidonic acid. The term " arachidonic acid " It is preferable to use stearic acid or oleic acid.
상기 지방산염은 상기 지방산이 수산화칼슘(calcium hydroxide), 수산화나트륨(sodium hydroxide), 암모니아(ammonia), 메틸아민(methylamine), 디에틸아민(dimethylamine), 트리메틸아민(trimethylamine), 에틸아민(ethylamine), 디에틸아민(diethylamine), 트리에틸아민(triethylamine), 에탄올아민(ethanolamine), 디에탄올아민(diethanolamine) 또는 트리에탄올아민(triethanolamine)과 염을 형성한 지방산염을 포함한다. 바람직하게는 스테아린산 또는 올레인산이 암모니아수와 염을 형성한 암모늄스테아레이트(ammonium stearate) 또는 암모늄올레이트(ammonium oleate)를 사용하는 것이 좋다. The fatty acid may be at least one selected from the group consisting of calcium hydroxide, sodium hydroxide, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, And a fatty acid salt which forms a salt with diethylamine, triethylamine, ethanolamine, diethanolamine or triethanolamine. Preferably, stearic acid or ammonium stearate or ammonium oleate in which oleic acid forms a salt with ammonia water is preferably used.
표면처리단계(S4) 이후에 상기 정제단계(S3)를 한 번 더 거쳐 최종적으로 표면 처리된 은 분말을 얻을 수 있다. After the surface treatment step (S4), the silver powder finally surface-treated through the purification step (S3) once more can be obtained.
본 발명의 일실시예에 따른 은 분말 제조방법에 따라 제조된 은 분말은 평균 입자 크기(D50)가 0.5 내지 5.0 ㎛, 더욱 구체적으로는 1.0 내지 3.0 ㎛이다. 하기 식 1과 같이 1차 표면처리 후 은 분말의 유기물 함량(%)과 1차 표면 처리 전 은 분말의 유기물 함량(%)의 차이로 측정되는 제1 처리제의 흡착량은 0.05~0.2%이며, 하기 식 2와 같이 2차 표면처리 후 은 분말의 유기물 함량(%)과 2차 표면 처리 전(1차 표면 처리 후) 은 분말의 유기물 함량(%)의 차이로 측정되는 제2 처리제의 흡착량은 0.05% 이상이다. The silver powder produced by the silver powder production method according to an embodiment of the present invention has an average particle size (D50) of 0.5 to 5.0 mu m, more specifically 1.0 to 3.0 mu m. The adsorption amount of the first treatment agent, which is measured as the difference between the organic matter content (%) of the silver powder after the first surface treatment and the organic matter content (%) of the powder before the first surface treatment, is 0.05 to 0.2% (%) Of the silver powder after the secondary surface treatment and the adsorption amount of the second treating agent measured by the difference of the organic matter content (%) of the powder before the secondary surface treatment (after the primary surface treatment) Is at least 0.05%.
[식 1][Formula 1]
제1 처리제 흡착량(%) = 1차 표면처리 후 은 분말 유기물 함량(%) 1차 표면처리 전 은 분말 유기물 함량(%)Amount of adsorbed amount of first treating agent (%) = amount of powdered organic matter (%) after first surface treatment Powder organic matter content (%) before first surface treatment
[식 2][Formula 2]
제2 처리제 흡착량(%) = 2차 표면처리 후 은 분말 유기물 함량(%) 2차 표면처리 전 은 분말 유기물 함량(%) (%) = The amount of powdered organic matter (%) after the second surface treatment The content (%) of the powdered organic matter before the second surface treatment
본 발명은 또한 본 발명의 일실시예에 따라 제조되는 은 분말을 포함하는 도전성 페이스트를 제공한다. 도전성 페이스트는 금속 분말 및 유기 비히클을 포함한다. The present invention also provides a conductive paste comprising silver powder prepared according to an embodiment of the present invention. The conductive paste includes a metal powder and an organic vehicle.
상기 금속 분말로는 본 발명의 일실시예에 따라 표면처리된 은 분말을 사용한다. 금속 분말의 함량은 인쇄 시 형성되는 전극 두께 및 전극의 선저항을 고려할 때 도전성 페이스트 조성물 총 중량을 기준으로 85 내지 95 중량% 포함되는 것이 바람직하다.As the metal powder, a surface-treated silver powder is used according to an embodiment of the present invention. The content of the metal powder is preferably 85 to 95 wt% based on the total weight of the conductive paste composition, considering the thickness of the electrode formed during printing and the line resistance of the electrode.
상기 유기 비히클은 용제에 유기 바인더가 5 내지 15 중량%로 혼합된 것으로서, 도전성 페이스트 조성물 총 중량을 기준으로 5 내지 15 중량% 포함되는 것이 바람직하다. The organic vehicle preferably contains 5 to 15% by weight, based on the total weight of the conductive paste composition, of an organic binder mixed with 5 to 15% by weight of a solvent.
상기 유기 바인더는 셀룰로오스 에스테르계 화합물로 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트 등을 예로 들 수 있으며, 셀룰로오스 에테르 화합물로는 에틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시 플로필 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 메틸 셀룰로오스 등을 예로 들 수 있으며, 아크릴계 화합물로는 폴리 아크릴아미드, 폴리 메타 아크릴레이트, 폴리 메틸 메타 아크릴레이트, 폴리 에틸 메타 아크릴레이트 등을 예로 들 수 있으며, 비닐계로는 폴리비닐 부티랄, 폴리비닐 아세테이트 그리고 폴리비닐 알코올 등을 예로 들 수 있다. 상기 유기 바인더들은 적어도 1종 이상 선택되어 사용될 수 있다. Examples of the organic binder include a cellulose ester compound such as cellulose acetate and cellulose acetate butyrate. Examples of the cellulose ether compound include ethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose , And hydroxyethyl methyl cellulose. Examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate. Examples of the vinyl compound include polyvinyl butyrate Polyvinyl acetate, polyvinyl alcohol, and the like. At least one or more organic binders may be selected and used.
조성물의 희석을 위해 사용되는 용제로서는 메탄올, 에탄올, n-프로판올, 벤질알코올, 테르피네올(Terpineol) 등 의 알코올류; 아세톤, 메틸에틸케톤, 시클로헥사논, 이소포론, 아세틸아세톤 등의 케톤류; N,N-디메틸포름아미드, N,N-디메틸아세트아미드 등의 아미드류; 테트라히드로푸란, 디옥산, 메틸셀로솔브, 디글림, 부틸카르비톨 등의 에테르류; 아세트산 메틸, 아세트산 에틸, 탄산 디에틸, TXIB(1-이소프로필-2,2-디메틸트리메틸렌디이소부티레이트), 아세트산 카르비톨, 아세트산 부틸카르비톨 등의 에스테르류; 디메틸술폭시드, 술포란 등의 술폭시드 및 술폰류; 염화메틸렌, 클로로포름, 사염화탄소, 1,1,2-트리클로로에탄 등의 지방족 할로겐화 탄화수소; 벤젠, 톨루엔, o-크실렌, p-크실렌, m-크실렌, 모노클로로벤젠, 디클로로벤젠 등의 방향족류 등으로 이루어진 화합물 중에서 적어도 1종 이상 선택되어 사용되는 것이 좋다.Examples of the solvent used for diluting the composition include alcohols such as methanol, ethanol, n-propanol, benzyl alcohol and terpineol; Ketones such as acetone, methyl ethyl ketone, cyclohexanone, isophorone, and acetylacetone; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Ethers such as tetrahydrofuran, dioxane, methyl cellosolve, diglyme and butyl carbitol; Esters such as methyl acetate, ethyl acetate, diethyl carbonate, TXIB (1-isopropyl-2,2-dimethyltrimethylene diisobutyrate), acetic acid carbitol and acetic acid butyl carbitol; Sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane; Aliphatic halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, and 1,1,2-trichloroethane; It is preferable to use at least one compound selected from aromatic compounds such as benzene, toluene, o-xylene, p-xylene, m-xylene, monochlorobenzene and dichlorobenzene.
또한 태양전지 전극 형성용으로 사용되는 경우 본 발명에 따른 도전성 페이스트는 금속 분말, 유리 프릿 및 유기 비히클을 포함하여 이루어진다.Also, when used for forming a solar cell electrode, the conductive paste according to the present invention comprises a metal powder, a glass frit, and an organic vehicle.
상기 금속 분말로는 본 발명의 일실시예에 따라 표면처리된 은 분말을 사용한다. 금속 분말의 함량은 인쇄 시 형성되는 전극 두께 및 전극의 선저항을 고려할 때 도전성 페이스트 조성물 총 중량을 기준으로 85 내지 95 중량% 포함하는 것이 바람직하다.As the metal powder, a surface-treated silver powder is used according to an embodiment of the present invention. The content of the metal powder is preferably 85 to 95% by weight based on the total weight of the conductive paste composition, taking into account the electrode thickness formed during printing and the line resistance of the electrode.
상기 유리 프릿의 조성이나 입경, 형상에 있어서 특별히 제한을 두지 않는다. 유연 유리 프릿뿐만 아니라 무연 유리 프릿도 사용 가능하다. 바람직하기로는 유리 프릿의 성분 및 함량으로서, 산화물 환산 기준으로 PbO는 5 ~ 29 mol%, TeO2는 20 ~ 34 mol%, Bi2O3는 3 ~ 20 mol%, SiO2 20 mol% 이하, B2O3 10 mol% 이하, 알칼리 금속(Li, Na, K 등) 및 알칼리 토금속(Ca, Mg 등)은 10 ~ 20 mol%를 함유하는 것이 좋다. 상기 각 성분의 유기적 함량 조합에 의해 전극 선폭 증가를 막고 고면저항에서 접촉저항을 우수하게 할 수 있으며, 단략전류 특성을 우수하게 할 수 있다. The composition, particle diameter and shape of the glass frit are not particularly limited. It is possible to use not only flexible glass frit but also lead-free glass frit. Preferably, the content and content of the glass frit are 5 to 29 mol% of PbO, 20 to 34 mol% of TeO 2 , 3 to 20 mol% of Bi 2 O 3 , 20 mol% or less of SiO 2 , 10 mol% or less of B 2 O 3 , 10 to 20 mol% of an alkali metal (Li, Na, K, etc.) and an alkaline earth metal (Ca, Mg, etc.) By combining the organic components of the above components, it is possible to prevent an increase in the line width of the electrode, to improve the contact resistance in the high-surface resistance, and to improve the short-circuit current characteristic.
유리 프릿의 평균 입경은 제한되지 않으나 0.5 내지 10㎛ 범위 내의 입경을 가질 수 있으며, 평균 입경이 다른 다종이 입자를 혼합하여 사용할 수도 있다. 바람직하기로는 적어도 1종의 유리 프릿은 평균 입경(D50)이 2㎛ 이상 10 ㎛ 이하인 것을 사용하는 것이 좋다. 이를 통해 소 성시 반응성이 우수해지고, 특히 고온에서 n층의 데미지를 최소화할 수 있으며 부착력이 개선되고 개방전압(Voc)을 우수하게 할 수 있다. 또한, 소성시 전극의 선폭이 증가하는 것을 감소시킬 수 있다. The average particle diameter of the glass frit is not limited, but it may have a particle diameter in the range of 0.5 to 10 mu m, and a mixture of various particles having different average particle diameters may be used. Preferably, at least one kind of glass frit has an average particle diameter (D50) of not less than 2 mu m and not more than 10 mu m. As a result, the reactivity at the time of firing can be improved, the damage of the n-layer at the high temperature can be minimized, the adhesion can be improved, and the open-circuit voltage (Voc) can be improved. Also, the increase in the line width of the electrode during firing can be reduced.
유리 프릿의 함량은 도전성 페이스트 조성물 총중량을 기준으로 1 내지 5 중량%가 바람직한데, 1 중량% 미만이면 불완전 소성이 이루어져 전기 비저항이 높아질 우려가 있고, 5 중량% 초과하면 은 분말의 소성체 내에 유리 성분이 너무 많아져 전기 비저항이 역시 높아질 우려가 있다.The content of the glass frit is preferably 1 to 5% by weight based on the total weight of the conductive paste composition. If the amount is less than 1% by weight, incomplete firing may occur to increase electrical resistivity. If the amount exceeds 5% by weight, There is a possibility that the electrical resistivity becomes too high due to too much component.
상기 유기 비히클로는 제한되지 않으나 유기 바인더와 용제 등이 포함될 수 있다. 때로는 용제가 생략될 수 있다. 유기 비히클은 제한되지 않으나 도전성 페이스트 조성물 총 중량을 기준으로 1 내지 10 중량%가 바람직하다. The organic vehicle is not limited, but organic binders, solvents, and the like may be included. Solvents may sometimes be omitted. The organic vehicle is not limited, but is preferably 1 to 10% by weight based on the total weight of the conductive paste composition.
유기 비히클은 금속 분말과 유리 프릿 등이 균일하게 혼합된 상태를 유지하는 특성이 요구되며, 예를 들면 스크린 인쇄에 의해 도전성 페이스트가 기재에 도포될 때에, 도전성 페이스트를 균질하게 하여, 인쇄 패턴의 흐려짐 및 흐름을 억제하고, 또한 스크린판으로부터의 도전성 페이스트의 토출성 및 판분리성을 향상시키는 특성이 요구된다. The organic vehicle is required to have a property of keeping the metal powder and the glass frit uniformly mixed. For example, when the conductive paste is applied to the substrate by screen printing, the conductive paste becomes homogeneous, And a property to suppress the flow and to improve the discharging property and the plate separability of the conductive paste from the screen plate.
유기 비히클에 포함되는 유기 바인더는 제한되지 않으나 셀룰로오스 에스테르계 화합물로 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트 등을 예로 들 수 있으며, 셀룰로오스 에테르 화합물로는 에틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시 플로필 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 메틸 셀룰로오스 등을 예로 들 수 있으며, 아크릴계 화합물로는 폴리 아크릴아미드, 폴리 메타 아크릴레이트, 폴리 메틸 메타 아크릴레이트, 폴리 에틸 메타 아크릴레이트 등을 예로 들 수 있으며, 비닐계로는 폴리비닐 부티랄, 폴리비닐 아세테이트 그리고 폴리비닐 알코올 등을 예로 들 수 있다. 상기 유기 바인더들은 적어도 1종 이상 선택되어 사용될 수 있다. The organic binder contained in the organic vehicle is not limited, but examples of the cellulose ester compound include cellulose acetate and cellulose acetate butyrate. Examples of the cellulose ether compound include ethylcellulose, methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose Examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate, and the like. Examples of the acrylic compound include polyacrylamide, polymethacrylate, polymethylmethacrylate, and polyethylmethacrylate And examples of vinyl based ones include polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, and the like. At least one or more organic binders may be selected and used.
조성물의 희석을 위해 사용되는 용제로서는 알파-터피네올, 텍사놀, 디옥틸 프탈레이트, 디부틸 프탈레이트, 시클로헥산, 헥산, 톨루엔, 벤질알코올, 디옥산, 디에틸렌글리콜, 에틸렌 글리콜 모노 부틸 에테르, 에틸렌 글리콜 모노 부틸 에테르 아세테이트, 디에틸렌 글리콜 모노 부틸 에테르, 디에틸렌 글리콜 모노 부틸 에테르 아세테이트 등으로 이루어진 화합물 중에서 적어도 1종 이상 선택되어 사용되는 것이 좋다.Examples of the solvent used for diluting the composition include alpha-terpineol, texanol, dioctyl phthalate, dibutyl phthalate, cyclohexane, hexane, toluene, benzyl alcohol, dioxane, diethylene glycol, ethylene glycol monobutyl ether, ethylene Glycol monobutyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, and the like.
본 발명에 의한 도전성 페이스트 조성물은 필요에 따라 통상적으로 알려져 있는 첨가제, 예를 들면, 분산제, 가소제, 점도 조정제, 계면활성제, 산화제, 금속 산화물, 금속 유기 화합물 등을 더 포함할 수 있다.The conductive paste composition according to the present invention may further contain additives commonly known in the art, for example, dispersants, plasticizers, viscosity regulators, surfactants, oxidizing agents, metal oxides, metal organic compounds and the like.
본 발명은 또한 상기 도전성 페이스트를 기재 위에 도포하고, 건조 및 소성하는 것을 특징으로 하는 태양전지의 전극 형성 방법 및 상기 방법에 의하여 제조된 태양전지 전극을 제공한다. 본 발명의 태양전지 전극 형성방법에서 상기 특성의 은 분말을 포함하는 도전성 페이스트를 사용하는 것을 제외하고, 기재, 인쇄, 건조 및 소성은 통상적으로 태양전지의 제조에 사용되는 방법들이 사용될 수 있음은 물론이다. 일예로 상기 기재는 실리콘 웨이퍼일 수 있다.The present invention also provides a method of forming an electrode of a solar cell and a solar cell electrode produced by the method, wherein the conductive paste is applied on a substrate, followed by drying and firing. In the method for forming a solar cell electrode of the present invention, the methods used for producing substrates, printing, drying, and firing can be generally those used for manufacturing solar cells, except that conductive pastes containing silver powder having the above- to be. For example, the substrate may be a silicon wafer.
제조예 1 은 분말의 제조Production Example 1 is a step for preparing powder
상온의 순수 5150g에 질산은 995g, 암모니아(농도 25%) 1225g 및 질산 (농도 60%) 983g 을 넣고 교반하여 용해시켜 제1 수용액을 조제하였다. 한편 상온의 순수 7800g에 하이드로퀴논 156g을 넣고 교반하여 용해시켜 제2 수용액을 조제하였다. 이어서, 제1 수용액을 교반한 상태로 하고, 이 제1 수용액에 제2 수용액을 일괄 첨가하여, 첨가 종료 후부터 5분간 더 교반하여 혼합액 중에서 입자를 성장시켰다. 그 후 교반을 멈추고, 혼합액 중의 입자를 침강시킨 후, 혼합액의 상등액을 버리고 혼합액을 원심분리기를 이용하여 여과하고, 여재를 순수로 세척하여 평균 입자 크기(D50)가 1.0 내지 3.0μm 인 은 분말을 얻었다. 9950 g of silver nitrate, 1225 g of ammonia (concentration 25%), and 983 g of nitric acid (concentration 60%) were added to 5150 g of pure water at room temperature and dissolved by stirring to prepare a first aqueous solution. Meanwhile, 156 g of pure water at room temperature and 156 g of hydroquinone were added and dissolved by stirring to prepare a second aqueous solution. Subsequently, the first aqueous solution was stirred, and the second aqueous solution was added all at once to the first aqueous solution, and the mixture was further stirred for 5 minutes from the completion of the addition to grow particles in the mixed solution. Thereafter, stirring was stopped, and the particles in the mixed solution were settled. Then, the supernatant of the mixed solution was discarded, the mixed solution was filtered using a centrifugal separator, and the filter material was washed with pure water to obtain a silver powder having an average particle size (D50) .
실시예 및 비교예 은 분말의 표면처리Examples and comparative examples show that the surface treatment of powders
(1) 실시예 1 (1) Example 1
5L 비이커에 DMW(De-Mineralized Water) 2L와 상기 제조예에서 제조된 은 분말 500g을 넣은 후, Homo-mixer를 이용하여 4000rpm에 20분간 은 분말을 분산시켜 은 슬러리를 제조하였다. 한편, 50ml 비이커에 30ml 순수를 넣고, PS-810E(ADEKA社)(Fatty alcohol phosphate) 5g을 투입하여 초음파로 10분간 교반하여 제1 코팅액을 제조하였다. 은 슬러리에 제1 코팅액을 넣고 4000 rpm으로 20분간 교반하여 은 분말을 1차 표면처리한 뒤, 원심분리를 통해 순수로 추가 세척함으로써 1차 코팅된 은 분말을 제조하였다. 2 L of De-Mineralized Water (DMW) and 500 g of the silver powder prepared in the above Preparation Example were placed in a 5 L beaker, and silver powder was dispersed in a homo-mixer at 4000 rpm for 20 minutes to prepare silver slurry. Meanwhile, 30 ml of pure water was added to a 50 ml beaker, 5 g of PS-810E (ADEKA) (Fatty alcohol phosphate) was added thereto, and the mixture was stirred with ultrasonic waves for 10 minutes to prepare a first coating solution. The first coating solution was added to the silver slurry and agitated at 4000 rpm for 20 minutes to perform primary surface treatment of the silver powder, followed by further washing with pure water through centrifugation to prepare a primary coated silver powder.
다음으로, 상기 은 분말을 다시 순수 2L에 분산시킨 후, 15ml 에탄올에 용해된 스테아린산 암모늄(ammonium stearate) 용액인 제2 코팅액을 첨가하여 4000rpm으로 20분간 교반하여 은 분말을 2차 표면처리한 뒤, 동일 공정으로 세척함으로써 표면처리된 은 분말을 제조하였다. Next, the silver powder was dispersed again in 2 L of pure water, and then a second coating solution of ammonium stearate solution dissolved in 15 ml of ethanol was added and stirred at 4000 rpm for 20 minutes to subject the silver powder to a second surface treatment, The surface-treated silver powder was prepared by washing with the same process.
이후, 80℃에서 12시간 동안 열풍 건조하고 Jetmill을 통해 해쇄함으로써 은 분말을 완성하였다.Then, it was hot-air dried at 80 DEG C for 12 hours and was shredded through a jet mill to complete a silver powder.
(2) 실시예 2 내지 15, 비교예 1 내지 13(2) Examples 2 to 15 and Comparative Examples 1 to 13
표면처리한 코팅액의 조성을 하기 표 1과 같이 변경한 것 이외에는 실시예 1과 동일한 방법으로 수행하여 표면 처리된 은 분말을 제조하였다. The surface-treated silver powder was prepared in the same manner as in Example 1 except that the composition of the surface-treated coating liquid was changed as shown in Table 1 below.
또한 표면처리를 하지 않은 비교예 1 및 표면처리한 코팅액의 조성을 하기 표 1과 같이 변경한 것 이외에는 실시예 1과 동일한 방법으로 수행하여 표면 처리된 은 분말인 비교예 2 내지 13를 제조하였다. Comparative Examples 2 to 13, which were surface-treated silver powders, were prepared in the same manner as in Example 1 except that the surface treatment was not carried out in Comparative Example 1 and the composition of the surface-treated coating liquid was changed as shown in Table 1 below.
은 분말(g)Silver powder (g) 제1 처리제The first treatment agent 제2 처리제The second treatment agent
성분ingredient 함량(g)Content (g) 성분ingredient 함량(g)Content (g)
실시예1Example 1 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Ammonium stearateAmmonium stearate 1.51.5
실시예2Example 2 500500 Aromatic alcohol phosphateAromatic alcohol phosphate 55 Ammonium stearateAmmonium stearate 1.51.5
실시예3Example 3 500500 Dialkyl sulfosuccinateDialkyl sulfosuccinate 55 Ammonium stearateAmmonium stearate 1.51.5
실시예 4Example 4 500500 PolypeptidePolypeptide 55 Ammonium stearateAmmonium stearate 1.51.5
실시예 5Example 5 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Stearic acidStearic acid 1.51.5
실시예 6Example 6 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Oleic acidOleic acid 1.51.5
실시예 7Example 7 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Ammonium oleateAmmonium oleate 1.51.5
실시예 8Example 8 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Triethanolamine myristateTriethanolamine myristate 1.51.5
실시예 9Example 9 500500 Fatty alcohol phosphateFatty alcohol phosphate 0.50.5 Ammonium stearateAmmonium stearate 1.51.5
실시예 10Example 10 500500 Fatty alcohol phosphateFatty alcohol phosphate 2.52.5 Ammonium stearateAmmonium stearate 1.51.5
실시예 11Example 11 500500 Fatty alcohol phosphateFatty alcohol phosphate 7.57.5 Ammonium stearateAmmonium stearate 1.51.5
실시예 12Example 12 500500 Fatty alcohol phosphateFatty alcohol phosphate 1010 Ammonium stearateAmmonium stearate 1.51.5
실시예 13Example 13 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Ammonium stearateAmmonium stearate 0.50.5
실시예 14Example 14 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Ammonium stearateAmmonium stearate 2.52.5
실시예 15Example 15 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Ammonium stearateAmmonium stearate 55
비교예 1Comparative Example 1 500500 -- -- -- --
비교예 2Comparative Example 2 500500 Polyoxyethylenequaternary ammoniumPolyoxyethylenequaternary ammonium 0.0450.045 Stearic acidStearic acid 3.83.8
비교예 3Comparative Example 3 500500 Stearic acidStearic acid 88 HexadecylamineHexadecylamine 1.81.8
비교예 4Comparative Example 4 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 -- --
비교예 5Comparative Example 5 500500 oleic acidoleic acid 55 -- --
비교예 6Comparative Example 6 500500 -- -- Sodium myristateSodium myristate 2.52.5
비교예 7Comparative Example 7 500500 -- -- Ammonium stearateAmmonium stearate 0.30.3
비교예 8Comparative Example 8 500500 Quaternary ammonium salt(Cirrasol G-265)Quaternary ammonium salt (Cirrasol G-265) 0.50.5 Ammonium stearateAmmonium stearate 0.30.3
비교예 9Comparative Example 9 500500 Polyvinyl PyrrolidonePolyvinyl Pyrrolidone 0.50.5 Ammonium stearateAmmonium stearate 0.30.3
비교예 10Comparative Example 10 500500 Fatty alcohol phosphateFatty alcohol phosphate 0.250.25 Ammonium stearateAmmonium stearate 1.51.5
비교예 11Comparative Example 11 500500 Fatty alcohol phosphateFatty alcohol phosphate 1212 Ammonium stearateAmmonium stearate 1.51.5
비교예 12Comparative Example 12 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Ammonium stearateAmmonium stearate 0.10.1
비교예 13Comparative Example 13 500500 Fatty alcohol phosphateFatty alcohol phosphate 55 Ammonium stearateAmmonium stearate 77
실험예Experimental Example ( ( 1) 은1) 분말의 유기물 흡착량 측정 Measurement of organic substance adsorption amount of powder
표면처리된 은 분말을 세이코 인스트루먼트(Seiko instrument) 회사제 TG/DTA EXART6600을 이용하여, 공기 중, 승온 속도 10℃/min로 상온에서 500℃ 구간의 무게 감량을 측정하여 유기물 함량(Ignition loss)을 측정하였다.The surface-treated silver powder was measured for weight loss at room temperature and 500 ° C at a temperature rising rate of 10 ° C / min in the air using a Seiko Instrument TG / DTA EXART 6600 to determine the ignition loss Respectively.
제조예 2 도전성 페이스트Production Example 2 [
상기 실시예 및 비교예에 따라 표면 처리된 은 분말 89.5 중량%, 유리 프릿 1.92 중량%, 유기 비히클 5.20 중량%, 첨가제 3.38 중량%를 자전공전식 진공 교반 탈포 장치로 혼합한 후 삼본롤을 사용함으로써, 도전성 페이스트를 얻었다.According to the examples and the comparative examples, by using a three roll roll after mixing the surface-treated silver powder with 89.5 wt%, glass frit with 1.92 wt%, organic vehicle with 5.20 wt%, and additive with 3.38 wt% Thereby obtaining a conductive paste.
실험예 (2) 도전성 페이스트의 유변물성(점도) 측정Experimental Example (2) Measurement of Rheological Property (Viscosity) of Conductive Paste
상기 제조예 2에 따라 제조된 도전성 페이스트에 대하여 Brookfield 점도계(HBDVⅡ+Pro)에 의해 25℃에 있어서 전단속도 1rpm, 10rpm 에서의 점도를 측정하여 하기 표 2에 나타내었다. 칙소비는 10rpm 점도(높은 rpm)에 대한 1rpm 점도(낮은 rpm) 점도의 비를 의미한다. The conductive paste prepared in Preparation Example 2 was measured for viscosity at 25 ° C by a Brookfield viscometer (HBDVII + Pro) at a shear rate of 1 rpm at 10 rpm, as shown in Table 2 below. Rick consumption means the ratio of 1 rpm viscosity (low rpm) to 10 rpm viscosity (high rpm).
제1 표면처리제 흡착량(%)The amount of adsorption of the first surface treating agent (%) 제2 표면처리제 흡착량(%)Adsorption amount (%) of second surface treating agent 점도(Pas)Viscosity (Pas)
1rpm(Pas)1 rpm (Pas) 10rpm(Pas)10 rpm (Pas) 칙소비Chick consumption
실시예1Example 1 0.160.16 0.060.06 380380 369369 1.031.03
실시예2Example 2 0.190.19 0.080.08 370370 320320 1.161.16
실시예3Example 3 0.080.08 0.190.19 540540 377377 1.431.43
실시예 4Example 4 0.10.1 0.190.19 470470 457457 1.031.03
실시예 5Example 5 0.190.19 0.170.17 380380 443443 0.860.86
실시예 6Example 6 0.080.08 0.120.12 310310 322322 0.960.96
실시예 7Example 7 0.080.08 0.050.05 380380 410410 0.930.93
실시예 8Example 8 0.120.12 0.110.11 390390 400400 0.980.98
실시예 9Example 9 0.060.06 0.140.14 530530 358358 1.481.48
실시예 10Example 10 0.090.09 0.110.11 400400 354354 1.131.13
실시예 11Example 11 0.170.17 0.160.16 430430 464464 0.930.93
실시예 12Example 12 0.060.06 0.20.2 480480 410410 1.171.17
실시예 13Example 13 0.20.2 0.170.17 370370 319319 1.161.16
실시예 14Example 14 0.130.13 0.170.17 410410 498498 0.820.82
실시예 15Example 15 0.080.08 0.20.2 490490 412412 1.191.19
비교예 1Comparative Example 1 -- -- 720720 326326 2.212.21
비교예 2Comparative Example 2 0.010.01 0.170.17 780780 433433 1.801.80
비교예 3Comparative Example 3 0.180.18 0.030.03 600600 340340 1.761.76
비교예 4Comparative Example 4 0.070.07 -- 820820 442442 1.861.86
비교예 5Comparative Example 5 0.080.08 -- 740740 295295 2.512.51
비교예 6Comparative Example 6 -- 0.190.19 620620 300300 2.072.07
비교예 7Comparative Example 7 -- 0.090.09 730730 297297 2.462.46
비교예 8Comparative Example 8 0.110.11 0.050.05 660660 294294 2.242.24
비교예 9Comparative Example 9 0.070.07 0.080.08 840840 334334 2.512.51
비교예 10Comparative Example 10 0.020.02 0.20.2 610610 362362 1.691.69
비교예 11Comparative Example 11 0.30.3 0.170.17 760760 439439 1.731.73
비교예 12Comparative Example 12 0.120.12 0.010.01 780780 253253 3.083.08
비교예 13Comparative Example 13 0.110.11 0.450.45 790790 431431 1.831.83
상기 표 2에 나타나는 것과 같이 본 발명의 실시예에 따라 표면처리된 은 분말을 포함하는 도전성 페이스트의 1rpm 점도는 300 내지 550 Pa·s, 10rpm 점도는 350 내지 500 Pa·s 로서, 칙소비가 0.8 내지 1.5로 나타나 낮은 칙소비를 갖는 것을 알 수 있다. 낮은 칙소비를 갖는 도전성 페이스트의 경우 고속인쇄 및 미세패턴 인쇄에 유리하며, 이는 후술할 미세 전극 패턴의 선폭 퍼짐율 측정 결과에 의해 뒷받침된다. As shown in Table 2, the conductive paste containing the silver powder surface-treated according to the embodiment of the present invention had a viscosity of 300 to 550 Pa · s at 1 rpm and a viscosity of 350 to 500 Pa · s at 10 rpm, ≪ / RTI > to < RTI ID = 0.0 > 1.5, < / RTI > Conductive paste with low consumption is advantageous for high-speed printing and fine pattern printing, which is supported by the results of line width spreading rate measurement of the fine electrode pattern described later.
비교예의 경우 1rpm 점도는 600 내지 850 Pa·s, 10rpm 점도는 250 내지 450 Pa·s로서, 칙소비가 1.69부터 3.08까지 나타나 높은 칙소비를 갖는 것을 알 수 있다. 높은 칙소비를 갖는 도전성 페이스트의 경우 페이스트의 슬립(Slip)성이 감소하고 끈적임(tacky)이 증가하여 인쇄 품질이 저하될 수 있다. In the case of the comparative example, the viscosity at 1 rpm is 600 to 850 Pa · s and the viscosity at 10 rpm is 250 to 450 Pa · s. In the case of the conductive paste having high consumption, the slip property of the paste is decreased and the tacky is increased, so that the print quality may be deteriorated.
실험예 (3) 도전성 페이스트의 인쇄된 전극 패턴 측정Experimental Example (3) Measurement of printed electrode pattern of conductive paste
상기 제조예 2에 따라 제조된 도전성 페이스트를 알루미나 기판 상에 ASYS 회사제 스크린 인쇄기를 이용하여 이격거리 1.5mm, 스퀴지 압력 75N, 인쇄 속도 300mm/s로 하여 무라가미 회사제 360mesh 스크린 제판을 이용하여 40μm 선폭의 패턴을 스크린 인쇄하고, 100℃에서 30분간 건조시켰다. 건조된 전극 패턴의 선폭을 광학현미경을 이용하여 측정하였다.The electroconductive paste prepared in Preparation Example 2 was applied on an alumina substrate using a 360 mesh screen manufactured by Murakami Co., Ltd. with a screen distance of 1.5 mm, a squeegee pressure of 75 N, and a printing speed of 300 mm / The line width pattern was screen printed and dried at 100 DEG C for 30 minutes. The line width of the dried electrode pattern was measured using an optical microscope.
선폭(μm)Line width (μm) 선폭퍼짐율(%)Line width spreading rate (%)
실시예1Example 1 48.548.5 21.321.3
실시예2Example 2 52.952.9 32.332.3
실시예3Example 3 54.754.7 36.836.8
실시예 4Example 4 52.752.7 31.831.8
실시예 5Example 5 50.650.6 26.526.5
실시예 6Example 6 52.452.4 31.031.0
실시예 7Example 7 51.651.6 29.029.0
실시예 8Example 8 49.249.2 23.023.0
실시예 9Example 9 54.454.4 36.036.0
실시예 10Example 10 51.351.3 28.328.3
실시예 11Example 11 51.151.1 27.827.8
실시예 12Example 12 53.853.8 34.534.5
실시예 13Example 13 53.153.1 32.832.8
실시예 14Example 14 49.549.5 23.823.8
실시예 15Example 15 54.254.2 35.535.5
비교예 1Comparative Example 1 65.465.4 63.563.5
비교예 2Comparative Example 2 59.259.2 48.048.0
비교예 3Comparative Example 3 58.658.6 46.546.5
비교예 4Comparative Example 4 63.863.8 59.559.5
비교예 5Comparative Example 5 66.866.8 67.067.0
비교예 6Comparative Example 6 66.866.8 67.067.0
비교예 7Comparative Example 7 65.765.7 64.364.3
비교예 8Comparative Example 8 63.563.5 58.858.8
비교예 9Comparative Example 9 60.760.7 51.851.8
비교예 10Comparative Example 10 57.857.8 44.544.5
비교예 11Comparative Example 11 55.655.6 39.039.0
비교예 12Comparative Example 12 71.171.1 77.877.8
비교예 13Comparative Example 13 61.861.8 54.554.5
상기 표 3에 나타나는 것과 같이 본 발명에 따라 표면처리된 은 분말을 포함한 도전성 페이스트로 미세 전극 패턴을 형성하는 경우 선폭 퍼짐율이 최소 21.3%에서 최대 36.8%로서, 비교예의 선폭 퍼짐율이 최소 44.5%인 것과 비교하였을 때 미세 패턴 형성이 매우 우수한 것을 알 수 있다. 특히 실시예 1, 실시예 7, 실시예 8, 실시예 10, 실시예 11의 경우 선폭 퍼짐율이 30% 이하로서 미세 패턴 형성이 더욱 우수한 것을 알 수 있다.As shown in Table 3, when the fine electrode pattern was formed from the conductive paste containing the silver powder surface-treated according to the present invention, the line width spreading ratio was at least 21.3% and the maximum was 36.8%, and the line width spreading ratio of the comparative example was at least 44.5% It can be seen that the fine pattern formation is excellent. In particular, it can be seen that, in Examples 1, 7, 8, 10, and 11, the line width spreading rate is 30% or less and the fine pattern formation is further superior.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects, and the like illustrated in the above-described embodiments can be combined and modified in other embodiments by those skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.

Claims (14)

  1. 용제에 은 분말을 분산시키고 음이온계 계면활성제를 포함하는 제1 처리제를 넣고 혼합 교반하여 은 분말에 코팅시키는 제1 표면처리단계(S41); 및A first surface treatment step (S41) of dispersing silver powder in a solvent, adding a first treatment agent containing an anionic surfactant, mixing and stirring to coat silver powder; And
    상기 제1 처리제가 코팅된 은 분말의 표면에 지방산 또는 지방산염을 포함하는 제2 처리제가 코팅되도록 표면처리하는 제2 표면처리단계(S42);를 포함하는,And a second surface treatment step (S42) of surface-treating the surface of the silver powder coated with the first treatment agent so as to coat a second treatment agent containing a fatty acid or a fatty acid salt.
    은 분말의 표면처리방법.Silver powder.
  2. 제1항에 있어서,The method according to claim 1,
    상기 음이온계 계면활성제는 방향족 알코올 포스페이트(Aromatic alcohol phosphate), 지방족 알코올 포스페이트(Fatty alcohol phosphate), 디알킬 설포석시네이트(Dialkyl sulfosuccinate) 및 폴리펩티드(Polypeptide)로 구성되는 군에서 선택되는 어느 1종 이상을 포함하는,The anionic surfactant may be at least one selected from the group consisting of Aromatic alcohol phosphate, Fatty alcohol phosphate, Dialkyl sulfosuccinate, and Polypeptide / RTI >
    은 분말의 표면처리방법.Silver powder.
  3. 제1항에 있어서,The method according to claim 1,
    상기 지방산은 라우르산(lauric acid), 미리스틴산(myristic acid), 팔미틴산(palmitic acid), 스테아린산(Stearic Acid), 베헨산(behenic acid), 올레인산(oleic acid), 리놀산(linolic acid) 및 아라키돈산(arachidonic acid)으로 구성되는 군에서 선택되는 적어도 1종 이상을 포함하는,The fatty acid may be selected from the group consisting of lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linolic acid, And at least one member selected from the group consisting of arachidonic acid,
    은 분말의 표면처리방법.Silver powder.
  4. 제1항에 있어서,The method according to claim 1,
    상기 지방산염은 지방산이 수산화칼슘(calcium hydroxide), 수산화나트륨(sodium hydroxide), 암모니아(ammonia), 메틸아민(methylamine), 디에틸아민(dimethylamine), 트리메틸아민(trimethylamine), 에틸아민(ethylamine), 디에틸아민(diethylamine), 트리에틸아민(triethylamine), 에탄올아민(ethanolamine), 디에탄올아민(diethanolamine) 또는 트리에탄올아민(triethanolamine)과 염을 형성한 지방산염을 포함하는,The fatty acid salt may be prepared by dissolving the fatty acid in a solvent selected from the group consisting of calcium hydroxide, sodium hydroxide, ammonia, methylamine, dimethylamine, trimethylamine, ethylamine, Which comprises a fatty acid salt forming a salt with diethylamine, triethylamine, ethanolamine, diethanolamine or triethanolamine,
    은 분말의 표면처리방법.Silver powder.
  5. 제1항에 있어서,The method according to claim 1,
    상기 제1 표면처리단계(S41)는 용제에 은 분말을 넣어 분산시킨 은 분말 분산액을 제조하고, 용제에 상기 제1 처리제를 넣고 교반하여 제1 코팅액을 제조한 후, 상기 은 분말 분산액에 상기 제1 코팅액을 넣고 혼합 교반하는 단계인,In the first surface treatment step (S41), a silver powder dispersion in which silver powder is dispersed in a solvent is prepared, the first treatment agent is added to a solvent and stirred to prepare a first coating solution, 1 coating solution, and mixing and stirring,
    은 분말의 표면처리방법.Silver powder.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제1 표면처리단계(S41)는 은 분말 100 중량부에 대하여 상기 제1 처리제가 0.1 내지 2 중량부로 혼합되도록 은 분말 분산액 및 제1 코팅액을 혼합하는 단계인, Wherein the first surface treatment step (S41) is a step of mixing the silver powder dispersion and the first coating solution so that the first treating agent is mixed with 0.1 to 2 parts by weight with respect to 100 parts by weight of the silver powder,
    은 분말의 표면처리방법.Silver powder.
  7. 제1항에 있어서,The method according to claim 1,
    상기 제2 표면처리단계(S42)는 상기 제1 처리제가 코팅된 은 분말을 용제에 분산시킨 후 제2 처리제를 포함하는 알코올 용액을 첨가하고 교반하는 단계인,The second surface treatment step (S42) is a step of dispersing the silver powder coated with the first treatment agent in a solvent, and then adding and stirring an alcohol solution containing a second treatment agent,
    은 분말의 표면처리방법.Silver powder.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 제2 표면처리단계(S42)는 상기 제1 처리제로 코팅된 은 분말 100 중량부에 대하여 상기 제2 처리제가 0.1 내지 1.0 중량부로 혼합되도록 제2 처리제를 포함하는 알코올 용액을 첨가하는 단계인, Wherein the second surface treatment step (S42) is a step of adding an alcohol solution containing a second treatment agent to 100 parts by weight of the silver powder coated with the first treatment agent so that the second treatment agent is mixed with 0.1 to 1.0 part by weight,
    은 분말의 표면처리방법.Silver powder.
  9. 은 이온, 암모니아(NH3) 및 질산(HNO3)을 포함하는 제1 반응액 및 환원제를 포함하는 제2 반응액을 제조하는 반응액제조단계(S21) 및 제1 반응액 및 제2 반응액을 반응시켜 은 분말을 얻는 석출단계(S22)를 포함하는 은 염 환원단계(S2); 및Silver ions, ammonia (NH 3) and nitric first reaction solution and for producing a second reaction solution containing a reducing agent in the reaction mixture prepared step (S21) and the first reaction solution containing the (HNO 3) and a second reaction mixture A silver salt reducing step (S2) including a precipitation step (S22) for obtaining a silver powder by reacting the silver powder; And
    상기 얻어진 은 분말을 음이온계 계면활성제를 포함하는 제1 처리제를 이용하여 1차 처리하고, 지방산 또는 지방산염을 포함하는 제2 처리제를 이용하여 2차 처리하는 표면처리단계(S4);를 포함하는, And a surface treatment step (S4) of subjecting the obtained silver powder to a primary treatment using a first treatment agent containing an anionic surfactant and a secondary treatment using a second treatment agent including a fatty acid or a fatty acid salt ,
    표면 처리된 은 분말을 제조하는 은 분말 제조방법.A method for producing a silver powder for producing surface-treated silver powder.
  10. 평균 입자 크기(D50)가 1.0 내지 3.0μm 인 은 분말로서,As a silver powder having an average particle size (D50) of 1.0 to 3.0 占 퐉,
    상기 은 분말은 음이온계 계면활성제를 포함하는 제1 처리제를 이용하여 1차 표면처리되고, 지방산 또는 지방산염을 포함하는 제2 처리제를 이용하여 2차 표면처리된 은 분말인,The silver powder is a first surface-treated silver powder using a first treatment agent containing an anionic surfactant, and a second surface-treated silver powder using a second treatment agent containing a fatty acid or a fatty acid salt.
    도전성 페이스트용 은 분말.Silver powder for conductive paste.
  11. 제10항의 도전성 페이스트용 은 분말을 포함하는 금속 분말; 및A metal powder comprising the silver powder for conductive paste according to claim 10; And
    용제 및 유기 바인더를 포함하는 유리 비히클; 을 포함하는,A glass vehicle comprising a solvent and an organic binder; / RTI >
    도전성 페이스트.Conductive paste.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 도전성 페이스트는 25℃에서 점도(Pa·s)를 측정한 경우, When the viscosity (Pa · s) of the conductive paste is measured at 25 ° C,
    10rpm에서 측정된 점도에 대한 1rpm에서 측정된 점도의 비가 0.8 내지 1.5인,The ratio of the viscosity measured at 1 rpm to the viscosity measured at 10 rpm is 0.8 to 1.5,
    도전성 페이스트.Conductive paste.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 도전성 페이스트는 25℃에서 점도(Pa·s)를 측정한 경우, When the viscosity (Pa · s) of the conductive paste is measured at 25 ° C,
    10rpm에서 측정된 점도가 350 내지 500 Pa·s 인,A viscosity measured at 10 rpm of 350 to 500 Pa · s,
    도전성 페이스트. Conductive paste.
  14. 제10항의 도전성 페이스트용 은 분말을 포함하는 금속 분말;A metal powder comprising the silver powder for conductive paste according to claim 10;
    유리 프릿; 및Glass frit; And
    용제 및 유기 바인더를 포함하는 유기 비히클;을 포함하는 태양전지 전극용 도전성 페이스트.1. A conductive paste for a solar cell electrode, comprising an organic vehicle comprising a solvent and an organic binder.
PCT/KR2018/012184 2017-10-31 2018-10-16 Surface-treated silver powder and preparation method therefor WO2019088509A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020524301A JP6982688B2 (en) 2017-10-31 2018-10-16 Surface-treated silver powder and its manufacturing method
CN201880083265.9A CN111511489B (en) 2017-10-31 2018-10-16 Surface-treated silver powder and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0143177 2017-10-31
KR1020170143177A KR102061720B1 (en) 2017-10-31 2017-10-31 Surface-treated silver powder and method for producing the same

Publications (1)

Publication Number Publication Date
WO2019088509A1 true WO2019088509A1 (en) 2019-05-09

Family

ID=66332084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012184 WO2019088509A1 (en) 2017-10-31 2018-10-16 Surface-treated silver powder and preparation method therefor

Country Status (4)

Country Link
JP (1) JP6982688B2 (en)
KR (1) KR102061720B1 (en)
CN (1) CN111511489B (en)
WO (1) WO2019088509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275584A (en) * 2021-05-20 2021-08-20 苏州星翰新材料科技有限公司 Micro-nano silver powder and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102454264B1 (en) * 2020-03-25 2022-10-14 엘에스니꼬동제련 주식회사 Silver powder for conductive paste with improved viscosity stability and method for producing the same
KR102401091B1 (en) * 2020-11-03 2022-05-23 엘에스니꼬동제련 주식회사 Silver powder for conductive paste with improved elasticity and method for producing the same
CN115070058B (en) * 2022-08-16 2022-11-01 西安锐创微米科技有限公司 Preparation method of high-crystallinity and high-sphericity palladium powder with strong oxidation resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231829A (en) * 1999-02-10 2000-08-22 Toko Inc Dielectric porcelain composition
KR20070085446A (en) * 2004-11-29 2007-08-27 다이니뽄 잉끼 가가꾸 고오교오 가부시끼가이샤 Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
KR20120099587A (en) * 2011-03-01 2012-09-11 도와 일렉트로닉스 가부시키가이샤 Silver-coated glass powder for electrical conduction, method for producing the same, and electrically conductive paste
KR20140093670A (en) * 2011-11-18 2014-07-28 스미토모 긴조쿠 고잔 가부시키가이샤 Silver powder, method for producing silver powder, and conductive paste
KR20170019727A (en) * 2015-08-12 2017-02-22 엘에스니꼬동제련 주식회사 The manufacturing method of silver powder for high temperature sintering conductive paste
KR20170038860A (en) * 2014-07-30 2017-04-07 도와 일렉트로닉스 가부시키가이샤 Silver powder and method for producing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295960A (en) * 1986-06-16 1987-12-23 Toho Chem Ind Co Ltd Electrically conductive coating agent composition
JP4025839B2 (en) * 1996-09-12 2007-12-26 Dowaエレクトロニクス株式会社 Silver powder and method for producing silver powder
JP2000231828A (en) 1999-02-12 2000-08-22 Murata Mfg Co Ltd Conductive paste
JP2005190907A (en) * 2003-12-26 2005-07-14 Mitsui Mining & Smelting Co Ltd Surface treatment metal powder, conductive paste using same, and printed wiring board and chip components obtained by using conductive paste
CN100577328C (en) * 2004-11-29 2010-01-06 大日本油墨化学工业株式会社 Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
JP5139659B2 (en) * 2006-09-27 2013-02-06 Dowaエレクトロニクス株式会社 Silver particle composite powder and method for producing the same
JP2010199034A (en) * 2009-02-27 2010-09-09 Dic Corp Conductive paste for solar cell and manufacturing method therefor
US8574338B2 (en) * 2010-11-17 2013-11-05 E I Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
KR20130035014A (en) * 2011-09-29 2013-04-08 삼성전기주식회사 Method for producing metal particles, ink composition and paste composition produced by the same
JP6389091B2 (en) * 2013-10-01 2018-09-12 Dowaエレクトロニクス株式会社 Silver-coated copper powder, method for producing the same, and conductive paste
JP6029720B2 (en) * 2014-07-31 2016-11-24 Dowaエレクトロニクス株式会社 Silver powder, method for producing the same, and conductive paste
US10272490B2 (en) * 2014-09-29 2019-04-30 Dowa Electronics Materials Co., Ltd. Silver powder, method for producing same, and hydrophilic conductive paste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231829A (en) * 1999-02-10 2000-08-22 Toko Inc Dielectric porcelain composition
KR20070085446A (en) * 2004-11-29 2007-08-27 다이니뽄 잉끼 가가꾸 고오교오 가부시끼가이샤 Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
KR20120099587A (en) * 2011-03-01 2012-09-11 도와 일렉트로닉스 가부시키가이샤 Silver-coated glass powder for electrical conduction, method for producing the same, and electrically conductive paste
KR20140093670A (en) * 2011-11-18 2014-07-28 스미토모 긴조쿠 고잔 가부시키가이샤 Silver powder, method for producing silver powder, and conductive paste
KR20170038860A (en) * 2014-07-30 2017-04-07 도와 일렉트로닉스 가부시키가이샤 Silver powder and method for producing same
KR20170019727A (en) * 2015-08-12 2017-02-22 엘에스니꼬동제련 주식회사 The manufacturing method of silver powder for high temperature sintering conductive paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275584A (en) * 2021-05-20 2021-08-20 苏州星翰新材料科技有限公司 Micro-nano silver powder and preparation method and application thereof
CN113275584B (en) * 2021-05-20 2023-11-14 苏州星翰新材料科技有限公司 Micro-nano silver powder and preparation method and application thereof

Also Published As

Publication number Publication date
CN111511489B (en) 2023-04-21
JP2021501266A (en) 2021-01-14
JP6982688B2 (en) 2021-12-17
KR20190048316A (en) 2019-05-09
CN111511489A (en) 2020-08-07
KR102061720B1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2019088509A1 (en) Surface-treated silver powder and preparation method therefor
WO2017026722A1 (en) Production method for silver powder for high-temperature sintering type of electrically-conductive paste
WO2018080092A1 (en) Silver powder and preparation method therefor
WO2015178696A1 (en) Conductive composition
WO2014182141A1 (en) Copper containing particle and method for manufacturing same
WO2018080090A1 (en) Surface-treated silver powder and method for producing same
WO2021194061A1 (en) Silver powder for conductive paste having improved viscosity stability, and preparation method therefor
WO2020111900A1 (en) Conductive paste for solar cell electrode, and solar cell manufactured using same
WO2020071841A1 (en) Silver powder and method for manufacturing same
WO2019074336A1 (en) Method for preparing silver powder having improved dispersibility
WO2020222542A1 (en) Oxidation stability-improved silver nano powder prepared by wet process and method for preparing same
KR20180078208A (en) Surface treated silver powder and manufacturing method of the same
WO2020138949A2 (en) Spherical silver powder and manufacturing method therefor
WO2018070818A1 (en) Silver powder for solar cell electrode and conductive paste including same
WO2020111903A1 (en) Method for producing silver powder with adjustable shrinkage
WO2020106120A1 (en) Method for preparing monodispersed silver powder
WO2018070817A1 (en) Silver powder for high temperature sintering, and preparation method therefor
WO2019088507A1 (en) Silver powder and method for producing same
WO2022097840A1 (en) Silver powder for conductive paste with excellent elasticity, and preparation method therefor
WO2019088506A1 (en) Surface-treated silver powder and preparation method therefor
WO2019088510A1 (en) Method for producing silver powder
WO2018080091A1 (en) Silver powder and preparation method therefor
WO2010032937A2 (en) Composition for forming conductive metal electrodes and method for preparing same
WO2020111904A1 (en) Silver powder preparation method for controlling degree of agglomeration
WO2019088508A1 (en) Method for producing silver powder, and conductive paste comprising silver powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872135

Country of ref document: EP

Kind code of ref document: A1