WO2017043732A1 - 치수측정장치 및 방법 - Google Patents

치수측정장치 및 방법 Download PDF

Info

Publication number
WO2017043732A1
WO2017043732A1 PCT/KR2016/005508 KR2016005508W WO2017043732A1 WO 2017043732 A1 WO2017043732 A1 WO 2017043732A1 KR 2016005508 W KR2016005508 W KR 2016005508W WO 2017043732 A1 WO2017043732 A1 WO 2017043732A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
rangefinder
image
length
measuring
Prior art date
Application number
PCT/KR2016/005508
Other languages
English (en)
French (fr)
Inventor
임충수
허형준
곽성준
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US15/756,489 priority Critical patent/US10619995B2/en
Priority to JP2018508697A priority patent/JP6596149B2/ja
Priority to CN201680052111.4A priority patent/CN107949765A/zh
Priority to EP16844552.6A priority patent/EP3348957A1/en
Publication of WO2017043732A1 publication Critical patent/WO2017043732A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices

Definitions

  • the present invention relates to a dimensional measuring apparatus and method. More specifically, the present invention relates to a dimensional measuring device for measuring the length, width, camber, etc. of two double plate double width members using a rangefinder and an imaging device in a product inspection process of the thick plate manufacturing process, and a dimensional measuring method using the same.
  • Thick plates are roughly 6 mm or more in thickness and are 1-6 m wide and 4-25 m long. In order to automatically measure the length, width, and camber of such a thick plate, a laser plate meter and an imaging device for observing the width direction have been used.
  • the speed of a material such as a thick plate was measured by using a tachometer, and the length was measured by integrating it with time. After acquiring an image with an image pickup device for each measured length, the images were stitched together to measure width and camber.
  • the apparatus and method for measuring the length of the steel sheet are present between two metal detectors 31 and 32 in which the tail end portion of the steel sheet is disposed at the mouth side while the steel sheet is transferred.
  • the camera 39 may acquire the tail image of the steel sheet.
  • the steel plate length between the two metal detectors 31 and 32 is calculated based on the tail end image of the steel plate, and between the second metal detector 32 and the metal detector that detects the tip of the steel plate. Finally, the length of the steel sheet is calculated by summing the distances.
  • based on the traveling direction of the double plate double material may be conveyed in parallel two sheets of double plate double material.
  • any one of the two thick plate double sheets can be transferred in advance.
  • the length measuring apparatus and method of the steel sheet has a problem that it is difficult to measure the width of the material, dimensions of the camber, etc., because the methyl sensing unit is used.
  • the present invention is to solve the above problems, a dimension measuring apparatus and method capable of simultaneously accurately measuring the dimensions (width, camber, length and squareness) of each of the two heavy plate double width material being transported in the heavy plate factory inspection line to provide.
  • the problem is a moving unit for moving two sheets; A plurality of rangefinders installed at predetermined intervals spaced apart from both side surfaces of the material along a traveling direction of the material so as to measure a distance from a side surface of the material; And an image pickup device installed to capture an image between the first and second rangefinders respectively installed at the first and second positions relative to the entry side of the material.
  • the imaging device receives a signal indicating that one of the end portions of the material has passed, and detects the front end portion of the material at an nth distance meter located at an nth position relative to the entry side of the material It may further include a control unit for photographing the material by using.
  • the length of the material can be obtained by the following formula.
  • P length of the material
  • L distance between each rangefinder
  • L ' distance from the second rangefinder to the end of the material
  • n number of rangefinders that detected the material.
  • the distance from the second rangefinder to the tail end of the material can be obtained from an image captured by the imaging device.
  • control unit receives a signal indicating that the first end of any one of the end portion entering the first range meter has passed, and enters the first to the n-th distance meter located at the n-th position relative to the entry side of the material
  • the other end of the material is imaged using the imaging device as the front end of the material is sensed, and the other end of the material is imaged using the imaging device as the other end of the material is detected by the n-th distance meter.
  • the squareness of the tip of the material may be calculated from the image captured by the imaging device.
  • the camber, width, length and right angle of each of the workpieces through the distance information continuously measured by any one of the rangefinder disposed along the longitudinal direction of the workpiece and the image obtained from the image captured by the imaging device Degrees can be measured.
  • the image may be photographed as the front end of the work is detected at each distance meter that is disposed at a predetermined interval after the first distance meter based on a signal for detecting the front end of the work.
  • the object is to move two sheets of material; Measuring a distance from a side surface of the material by using a plurality of rangefinders arranged at predetermined intervals along the transport direction of the material; Imaging the material using an imaging device; And measuring the length, width, camber, and squareness of each of the workpieces using distance information measured by the rangefinder and an image of the workpiece photographed by the imaging device. .
  • the distance information continuously measured by any one of the rangefinders the distance information continuously measured by any one of the rangefinders;
  • the image may be photographed as the front end of the material is detected at each distance meter disposed after the first distance meter based on a signal from which the first distance meter detects the front end of the material.
  • the dimension measuring apparatus can measure the width, camber, length, and squareness of two thick plate double width members simultaneously and accurately using a plurality of rangefinders and an imaging device. .
  • FIG. 1 is a view showing a length measuring apparatus and method of a conventional steel sheet
  • FIG. 2 is a view showing a dimensional measurement device according to an embodiment of the present invention
  • FIG. 3 is a view showing a process of measuring the length of the thick plate double material using a dimension measuring apparatus according to an embodiment of the present invention from the side,
  • Figure 4 is a view from above of the process of measuring the length of the thick plate double width material using a dimensional measuring device according to an embodiment of the present invention
  • FIG. 5 is a view showing another embodiment of measuring the length of each of the two heavy plate double width material having a position difference by using a dimensional measuring device according to an embodiment of the present invention
  • FIG. 6 is a diagram for obtaining gap position information and gap information between two thick plate double width members using an imaging device of a dimensional measuring apparatus according to an exemplary embodiment of the present invention
  • FIG. 7 is a view showing a camber of a thick plate double material
  • FIG. 8 is a view for measuring a camber using a dimensional measurement device according to an embodiment of the present invention
  • FIG. 9 is a view showing the results of measuring the camber using the dimensional measurement apparatus according to an embodiment of the present invention.
  • FIG. 11 is a view showing an image of the distal end portion of the thick plate backing material photographed by the dimensional measuring device according to an embodiment of the present invention
  • FIG. 12 is a view showing an image of the distal end of the thick plate double width material converted by the dimension measuring apparatus according to an embodiment of the present invention
  • FIG. 13 is a view showing a dimension measuring method according to an embodiment of the present invention.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • the dimension measuring device 1 is a moving part 100 for moving two sheets of the material (2), and both sides of the entering material (2) and
  • the apparatus may include a plurality of rangefinders 200, an imaging device 300, and a controller 400 that are arranged to measure a distance of the distances.
  • a thick plate double material may be used as the material 2 to be measured.
  • the plurality of rangefinders 200 may be spaced apart from the material 2 along the traveling direction of the material 2.
  • the moving unit 100 may include a plurality of rollers 110. Then, two sheets of material 2 arranged in parallel by the rotating roller 110 are moved in one direction.
  • the raw material 2 is moved by the moving part 100 and then moved along the entry direction by the roller 110.
  • the thick plate double material is cut into two sheets in the shear line and then conveyed by the roller 110, as shown in FIG. 2, two sheets may be conveyed in parallel by the transfer unit 100.
  • the rangefinder 200 is spaced apart from the workpiece 2 so as to measure the distance between the side of the workpiece 2 and the rangefinder 200.
  • the laser rangefinder may be used as the rangefinder 200.
  • the distance meter 200 is spaced apart from the work 2 based on the entry direction of the work material and installed on the left side of the work side distance meter part WS installed on the right side.
  • the drive side rangefinder part DS may be divided.
  • the work side rangefinder part WS and the drive side rangefinder part DS may be installed to face each other with the material 2 introduced therebetween. That is, each of the rangefinders 200 installed in the work side rangefinder part WS and the drive side rangefinder part DS may be installed to face each other at a predetermined interval C, as shown in FIG. 2. .
  • the rangefinder 200 installed in each of the work side rangefinder part WS and the drive side rangefinder part DS may be installed at a plurality of predetermined distances L along the entry direction of the material 2. have.
  • the rangefinder 200 of each of the work side rangefinder part WS and the drive side rangefinder part DS is divided into first, second, third .... nth with respect to the entry side of the workpiece 2.
  • Rangefinder 200 may be installed.
  • the imaging apparatus 300 may be spaced apart from the upper portion of the moving part 100 so as to image the raw material 2 when the raw material 2 moves.
  • the imaging apparatus 300 may be a camera installed to capture an image between the first and second rangefinders.
  • the imaging device 300 may be installed to capture a camera image acquisition range (IA, Image Area) between the first and second rangefinders.
  • IA camera image acquisition range
  • the imaging apparatus 300 of the present invention is installed to capture a camera image acquisition range (IA, Image Area) between the first and second rangefinders, but is limited thereto.
  • the plurality of pieces may be spaced apart at predetermined intervals along the conveying direction of the raw material 2. Accordingly, the plurality of imaging devices 300 may image the entire area of the material 2 to be conveyed.
  • the controller 400 may control the rangefinder 200 and the imaging apparatus 300.
  • the controller 400 may be electrically connected to the rangefinder 200 and the imaging device 300.
  • control unit 400 receives a signal transmitted including the measurement information measured by the rangefinder 200 and the imaging device 300, and based on the measurement information, the length, width, camber, Shapes such as squareness can be measured.
  • controller 400 may allow the user to recognize the measured value measured using a display device (not shown).
  • the imaging apparatus 300 may be installed to capture an image between the first and second rangefinders.
  • the workpiece 2 positioned on the right side based on the conveying direction of the workpiece 2 is a fix part workpiece 2a
  • the workpiece 2 positioned on the left side of the workpiece 2 is a moving part. The description will be made based on the material 2b.
  • Figure 3 is a view showing the process of measuring the length of the thick plate double width material using a dimension measuring apparatus according to an embodiment of the present invention
  • Figure 4 uses a dimension measuring apparatus according to a preferred embodiment of the present invention To see the process of measuring the length of the heavy plate blasting material from above.
  • FIGS. 3A and 4A are diagrams in which the leading end of the raw material enters the first odometer
  • FIGS. 3B and 4B are views showing before the tail end of the raw material enters the first odometer
  • FIGS. 4C is a view showing after the tail end of the material enters the first rangefinder
  • FIGS. 3D and 4D are diagrams in which the front end portion of the material enters the n-th odometer after the end of the material enters the first rangefinder.
  • the fix part material 2a and the moving part material 2b which are conveyed in parallel, enter the first rangefinder of the dimension measuring device 1. Accordingly, the controller 400 initializes the dimension measuring device 1.
  • the front end portion of the material 2 passes sequentially through the second and third rangefinders of the dimension measuring device 1.
  • the tail end of the work piece 2 passes through the first rangefinder, and the first rangefinder informs the controller 300 that the tail end of the work piece 2 has passed. Send trigger signal.
  • the controller 400 uses the image capture device 300 to detect the material ( 2) is imaged.
  • the length P of the material 2 can be obtained by the following equation (1).
  • P length of the material
  • L distance between each rangefinder
  • L ' distance from the second rangefinder to the end of the material
  • n number of rangefinders that detected the material.
  • FIG. 5 is a view showing another embodiment of measuring the length of each of the two heavy plate double width material having a position difference by using a dimensional measuring device according to an embodiment of the present invention. More specifically, FIG. 5A is a diagram in which the tip portion of the fix part material is detected by the n-th rangefinder, and FIG. 5B is a diagram in which the tip portion of the moving part material is detected by the n-th rangefinder.
  • the fix part material 2a and the moving part material 2b When the fix part material 2a and the moving part material 2b enter, the fixed part material 2a is more than the moving part material 2b, as shown in FIG.
  • the case of entering preferentially will be described as an example.
  • the first rangefinder When the first rangefinder detects the trailing edge of the fix portion raw material 2a, the first rangefinder sends a control signal to the controller 300 indicating that the trailing edge of the workpiece 2 has passed.
  • the controller 400 prepares to detect the front end of the fix part material 2a in the nth rangefinder based on the trigger signal of the first rangemeter.
  • the controller 400 captures the tail end portion of the fix part material 2a using the imaging device 300. Done.
  • the length P1 ((n-2) * L + L1 ') of the fix part material 2a can be obtained by the above equation (1).
  • the controller 400 captures the tail end portion of the moving part material 2b by using the imaging device 300. Done.
  • the length P2 ((n-2) * L + L2 ') of the fix part material 2a can be obtained by the above equation (1).
  • control unit 400 of the dimensional measuring device 1 receives a trigger signal indicating that the first end of the first distance meter has passed any one end of the material 2, the entry side of the material 2 As the front end of the material 2 first entered into the n-th odometer positioned at the n th is detected, the material is captured by the imaging apparatus 300.
  • the dimensional measuring device is configured to capture the other end of the material 2 by using the imaging device.
  • the length of each moving part material 2b can be measured.
  • the dimension measuring device 1 may use the rangefinder 200 and the imaging device 300 to measure the length of each of the moving part material 2b by the fix part material 2a. Accordingly, the dimension measuring device 1 can simultaneously measure the length of each of the fix part material 2a and the moving part material 2b without stopping the material 2, thereby improving productivity.
  • the imaging device 300 of the dimensional measuring device 1 captures the work material 2 as the front end of the work material 2 is detected in each distance meter after the first distance meter based on the trigger signal, and continuously photographed images. An image may be analyzed to measure and verify the length of the measured material 2.
  • the rangefinder 200 of the work side rangefinder part WS and the rangefinder 200 of the drive side rangefinder part DS installed so as to face each other may be installed at a predetermined installation interval C. Accordingly, the installation interval C has a preset value, and the rangefinder 200 of the work side rangefinder part WS and the rangefinder 200 of the drive side rangefinder part DS installed to face each other are formed of a material ( Distance information may be obtained by measuring the distance to the side surface of 2).
  • the imaging device 300 of the dimensional measuring device 1 is based on a trigger signal indicating that the front end of the first distance meter has passed through the first distance meter to the front end portion of the material 2 in each distance meter As is detected, the raw material 2 can be imaged.
  • control unit 400 of the dimension measuring device 1 performs image analysis on a plurality of captured images to obtain a gap G and gap information between the fix part material 2a and the moving part material 2b. ) Positional information (the positional information of the center cut portion) can be secured.
  • the dimensional measuring device 1 includes the distance information of the fix part material 2a and the moving part material 2b measured using the distance meter 200, the position information of the gap G, and the gap G information.
  • the width of each of the fix part material 2a and the moving part material 2b can be obtained by using.
  • the width of the fix part material 2a is the position information of the gap G, the gap G information, and the work side rangefinder part WS in the installation interval C between the rangefinders 200 installed to face each other. It can be obtained using the distance information measured from the side of the rangefinder 200 to the side of the fix part material 2a.
  • the camber of the material 2 may also be calculated from the measurement values of the two rangefinders 200, the position of the center cut portion and the gap G information obtained through image analysis.
  • the camber of the raw material 2 may be defined as a degree of bending of the width based on the conveying direction of the raw material 2, as shown in FIG.
  • one of the rangefinders 200 may detect the line and the end of the workpiece 2 being transferred, and simultaneously measure the position of both sides of the workpiece 2.
  • the camber amount of the entire workpiece 2 can be calculated.
  • the image of the material 2 is continuously photographed using the imaging device 300, and the gap G position information and the gap in the longitudinal direction of the material 2 are analyzed through image analysis.
  • the information can be measured, and together with the distance data on both sides of the material 2, the amount of camber of each of the fix part material 2a and the moving part material 2b can also be measured. Can be.
  • the distance data Dn, Wn, ..., D2, W2 simultaneously measured at the same time as in the case of FIGS. 3D and 4D). It is also possible to simply measure the amount of camber directly using an image obtained by photographing the end portion side of the raw material 2.
  • Figure 11 is an image of the front end of the thick plate backing material photographed by the dimensional measurement device according to an embodiment of the present invention
  • 12 is a view showing the tip image of the thick plate double width material converted by the dimensional measurement apparatus according to an embodiment of the present invention.
  • FIG. 10A is a diagram in which the tip portion of the fix part material is detected by the second rangefinder
  • FIG. 10B is a diagram in which the tip portion of the moving part material is detected by the second distance meter.
  • FIG. 11 and FIG. 12 are the figure which shows the picked-up image which shows the squareness of the fix part raw material 2a, and the converted image (edge part thinning).
  • the first distance meter when the first rangefinder detects the front end of the fix part material 2a, the first distance meter sends a trigger signal to the controller 300 indicating that the front end of the work material 2 has passed.
  • the controller 400 prepares to detect the tip of the fix part material 2a in the second rangefinder based on the trigger signal of the first rangefinder.
  • the controller 400 captures the front end part of the fix part material 2a using the imaging device 300.
  • the dimension measuring device 1 can calculate the squareness by acquiring and converting the tip image of the fix part material 2a, as shown in FIGS. 11 and 12.
  • the controller 400 captures the front end portion of the moving part material 2b by using the imaging device 300. Done.
  • the dimension measuring device 1 may calculate the squareness by acquiring and converting the tip image of the moving part material 2b.
  • the dimension measuring method (S1) comprises the steps of moving two sheets of material (S10); Measuring a distance from a side surface of the material by using a plurality of rangefinders disposed at predetermined intervals along the transport direction of the material (S20); Imaging the material using an imaging device (S30); And measuring the length, width, camber, and squareness of each of the workpieces by using the distance information measured by the rangefinder and the image of the workpiece photographed by the imaging device (S40).
  • step (S40) of measuring the length, width, camber, and squareness of each of the materials distance information continuously measured by any one of the rangefinders 200;
  • the length, width, camber, and squareness of each of the materials 2 may be measured using images continuously acquired by the imaging apparatus 300.
  • the imaging device 300 may be installed to capture an image between the first and second rangefinders respectively installed at the first and the second ranges with respect to the entry side of the material 2.
  • the image may be photographed as the front end portion of the work piece 2 is detected at each rangefinder 200 disposed after the first distance meter based on a signal for detecting the front end portion of the work piece 2 by the first distance meter. have.
  • SYMBOLS 1 Dimension measuring device, 2, Material, 100: Moving part, 200: Rangefinder, 300: Imaging device, 400: Control part, WS: Work side rangefinder part, DS: Drive side rangefinder part

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 소재 2매를 이동시키는 이동부; 상기 소재의 측면과의 거리를 측정하도록, 상기 소재의 진행 방향을 따라 상기 소재의 양측면과 이격되어 기 설정된 간격으로 설치되는 복수 개의 거리계; 및 상기 소재의 진입 측을 기준으로 첫번째와 두번째에 각각 설치되는 제1 거리계와 제2 거리계 사이를 촬상하게 설치되는 촬상장치를 포함하는 치수측정장치 및 치수측정방법에 관한 것이다.

Description

치수측정장치 및 방법
본 발명은 치수측정장치 및 방법에 관한 것이다. 더욱 상세하게는 후판 제조공정 중 제품 검사 공정에서 거리계와 촬상장치를 이용하여 후판 배폭재 2매의 길이, 폭, 캠버 등을 측정하는 치수측정장치 및 이를 이용한 치수측정방법에 관한 것이다.
후판은 대략적으로 6mm 이상의 두께를 갖고 폭이 1~6m, 길이가 4~25m 사이의 크기를 갖는 소재이다. 이런 후판의 길이와 폭, 캠버(camber)를 자동으로 측정하기 위해서 종래에는 레이저 판속계와 폭방향을 관측하는 촬상장치가 사용되었다.
판속계를 이용하여 후판과 같은 소재의 속도를 측정하고 이를 시간에 따라 적분하여 길이를 측정하고, 이렇게 측정된 일정한 길이마다 촬상장치로 영상을 취득한 후 상기 영상들을 이어 붙여서 폭과 캠버를 측정하였다.
이와 관련된 발명으로는 본 출원인의 대한민국등록특허 제10-0685039호(2007.02.13.)인 '강판의 길이 측정장치 및 방법'이 있다.
도 1을 참조하여 살펴보면, 상기 강판의 길이 측정장치 및 방법은 강판이 이송되는 과정에서 강판의 미단부가 입측에 배치되는 두개의 메탈 감지부(Metal Detector; 31, 32) 사이에 존재하고, 선단부가 또 다른 메탈 감지부를 통해 검출되는 순간에 카메라(39)를 이용하여 강판의 미단부 이미지(Image)를 취득할 수 있다.
그리고, 강판의 미단부 이미지(Image)를 통해 두 개의 메탈 감지부(31, 32) 사이의 강판길이를 산출하고, 두 번째 메탈 감지부(32)와 강판의 선단부를 검출한 메탈 감지부 사이의 거리를 합하여 최종적으로 강판의 길이를 산출한다.
이와 같은 상기 기술은 2매로 구성되는 후판 배폭재의 길이 산출에는 적용이 불가하다.
도 2를 참조하여 살펴보면, 후판 배폭재의 진행방향을 기준으로 후판 배폭재 2매가 병렬로 이송될 수 있다.
그러나, 후판 배폭재는 전단라인에서 2매로 절단된 후 원거리를 이송 롤에 의해 운송될 수 있기 때문에, 후판 배폭재 2매 중 어느 하나가 선행되어 이송될 수 있다.
그에 따라, 후판 배폭재 2매의 선단부 및 미단부의 위치 차이가 발생할 수 있다. 그리고, 상기 강판의 길이 측정장치 및 방법에 기재된 기술과 같이 하나의 강판의 선단부를 검출한 후 미단부를 촬상하여 거리를 측정할 경우 2매 각각의 길이를 측정할 수 없는 문제가 있다.
특히, 상기 강판의 길이 측정장치 및 방법은 메틸 감지부를 이용하기 때문에 소재의 폭, 캠버 등의 치수를 측정하기 어려운 문제가 있다.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 후판 공장 검사라인에서 이송 중인 후판 배폭재 2매 각각의 치수(폭, 캠버, 길이 및 직각도)를 동시에 정확하게 측정할 수 있는 치수측정장치 및 방법을 제공한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제는 본 발명의 바람직한 일실시예에 따라, 소재 2매를 이동시키는 이동부; 상기 소재의 측면과의 거리를 측정하도록, 상기 소재의 진행 방향을 따라 상기 소재의 양측면과 이격되어 기 설정된 간격으로 설치되는 복수 개의 거리계; 및 상기 소재의 진입 측을 기준으로 첫번째와 두번째에 각각 설치되는 제1 거리계와 제2 거리계 사이를 촬상하게 설치되는 촬상장치를 포함하는 치수측정장치에 의하여 달성된다.
상기 제1 거리계가 상기 소재 중 어느 하나의 미단부가 통과하였음을 알리는 신호를 수신하고, 상기 소재의 진입 측을 기준으로 n번째에 위치하는 제n 거리계에 상기 소재의 선단부가 감지됨에 따라 상기 촬상장치를 이용하여 상기 소재를 촬상하는 제어부를 더 포함할 수 있다.
여기서, 상기 소재의 길이는 하기의 수식에 의하여 구해질 수 있다.
P = ((n-2)*L + L')
P : 소재의 길이, L : 각 거리계 간의 거리, L' : 제2 거리계로부터 소재의 미단까지의 거리, n : 소재를 감지한 거리계의 수.
그리고, 상기 제2 거리계에서 상기 소재의 미단까지의 거리는 상기 촬상장치에 의하여 촬상된 이미지로부터 구해질 수 있다.
한편, 상기 제어부는 상기 제1 거리계가 상기 소재 중 먼저 진입하는 어느 하나의 미단부가 통과하였음을 알리는 신호를 수신하고, 상기 소재의 진입 측을 기준으로 n번째에 위치하는 제n 거리계에 먼저 진입된 상기 소재의 선단부가 감지됨에 따라 상기 촬상장치를 이용하여 상기 소재를 촬상하며, 상기 제n 거리계에 상기 소재의 다른 하나의 선단부가 감지됨에 따라 상기 촬상장치를 이용하여 상기 소재의 다른 하나를 촬상할 수 있다.
또한, 상기 제2 거리계가 상기 소재 중 어느 하나의 선단부를 검출함에 따라 상기 촬상장치로부에 촬상된 이미지로부터 상기 소재의 선단부의 직각도를 산출할 수 있다.
한편, 상기 소재의 길이 방향을 따라 배치된 상기 거리계 중 어느 하나에 의하여 연속적으로 측정된 거리 정보와 상기 촬상장치를 통하여 촬상된 이미지로부터 획득된 이미지를 통하여 상기 소재 각각의 캠버, 폭, 길이 및 직각도를 측정할 수 있다.
상기 이미지는 상기 제1 거리계가 상기 소재의 선단부를 검출하는 신호를 기반으로 하여 상기 제1 거리계 이후에 기 설정된 간격으로 배치되는 각 거리계에 상기 소재의 선단부가 검출됨에 따라 촬상될 수 있다.
상기 과제는 본 발명의 바람직한 일실시예에 따라, 소재 2매를 이동시키는 단계; 상기 소재의 이송 방향을 따라 기 설정된 간격으로 배치된 복수 개의 거리계를 이용하여 상기 소재의 측면과의 거리를 측정하는 단계; 촬상장치를 이용하여 상기 소재를 촬상하는 단계; 및 상기 거리계에 의하여 측정된 거리 정보와 상기 촬상장치에 의하여 촬상된 상기 소재의 이미지를 이용하여 상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정하는 단계를 포함하는 치수측정방법에 의하여 달성된다.
상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정하는 단계에서는, 상기 거리계 중 어느 하나에 의하여 연속적으로 측정된 상기 거리 정보와; 상기 소재의 진입 측을 기준으로 첫번째와 두번째에 각각 설치되는 제1 거리계와 제2 거리계 사이를 촬상하게 설치되는 상기 촬상장치를 통하여 연속적으로 획득된 이미지를 이용하여 상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정할 수 있다.
여기서, 상기 이미지는 상기 제1 거리계가 상기 소재의 선단부를 검출하는 신호를 기반으로 상기 제1 거리계 이후에 배치되는 각 거리계에 상기 소재의 선단부가 검출됨에 따라 촬상될 수 있다.
상기와 같은 구성을 갖는 본 발명의 일실시예에 따른 치수측정장치는 복수 개의 거리계와 촬상장치를 이용하여 후판 배폭재 2매의 폭, 캠버, 길이 및 직각도를 동시에 개별적으로 정확하게 측정할 수 있다.
도 1은 종래의 강판의 길이 측정장치 및 방법을 나타내는 도면이고,
도 2는 본 발명의 바람직한 일실시예에 따른 치수측정장치를 나타내는 도면이고,
도 3은 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 후판 배폭재의 길이를 측정하는 과정을 측면에서 나타내는 도면이고,
도 4는 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 후판 배폭재의 길이를 측정하는 과정을 위에서 바라보는 도면이고,
도 5는 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 위치 차이가 발생한 후판 배폭재 2매 각각의 길이를 측정하는 다른 실시예를 나타내는 도면이고,
도 6은 본 발명의 바람직한 일실시예에 따른 치수측정장치의 촬상장치를 이용하여 후판 배폭재 2매 사이의 갭 위치 정보 및 갭 정보를 획득하는 도면이고,
도 7은 후판 배폭재의 캠버를 나타내는 도면이고,
도 8은 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 캠버를 측정하는 도면이고,
도 9는 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 캠버를 측정된 결과를 나타내는 도면이고,
도 10은 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 직각도를 측정하는 도면이고,
도 11은 본 발명의 바람직한 일실시예에 따른 치수측정장치에 의하여 촬상된 후판 배폭재의 선단부 이미지를 나타내는 도면이고,
도 12는 본 발명의 바람직한 일실시예에 따른 치수측정장치에 의하여 변환된 후판 배폭재의 선단부 이미지를 나타내는 도면이고,
도 13은 본 발명의 바람직한 일실시예에 따른 치수측정방법을 나타내는 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지게 된다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 2 내지 도 12를 참조하여 살펴보면, 본 발명의 바람직한 일실시예에 따른 치수측정장치(1)는 소재(2) 2매를 이동시키는 이동부(100), 진입되는 소재(2)의 양측면과의 거리를 측정할 수 있게 배치되는 복수 개의 거리계(200), 촬상장치(300) 및 제어부(400)를 포함할 수 있다. 여기서, 측정되는 소재(2)로는 후판 배폭재가 이용될 수 있다. 그리고, 복수 개의 거리계(200)는 소재(2)의 진행 방향을 따라 소재(2)로부터 이격되어 설치될 수 있다.
이동부(100)는, 도 2에 도시된 바와 같이, 다수 개의 롤러(110)를 구비할 수 있다. 그리고, 회전하는 롤러(110)에 의하여 병렬로 배치되어 진입하는 소재(2) 2매는 일 방향으로 이동된다.
즉, 소재(2)는 이동부(100)에 의하여 진입된 후, 롤러(110)에 의하여 진입 방향을 따라 이동하게 된다. 예컨데, 후판 배폭재는 전단라인에서 2매로 절단된 후 롤러(110)에 의해 이송되기 때문에, 도 2에 도시된 바와 같이, 2매가 병렬로 이송부(100)에 의하여 이송될 수 있다.
거리계(200)는 진입되는 소재(2)의 측면과 거리계(200) 사이의 거리를 측정할 수 있도록 소재(2)로부터 이격되어 설치된다. 여기서, 거리계(200)로는 레이저 거리계가 이용될 수 있다.
도 2에 도시된 바와 같이, 거리계(200)는 소재의 진입방향을 기준으로 소재(2)와 이격되어 우측에 설치되는 워크 사이드(Work side) 거리계 파트(WS)와 소재와 이격되어 좌측에 설치되는 드라이브 사이드(Drive side) 거리계 파트(DS)로 구분될 수 있다.
그리고, 워크 사이드 거리계 파트(WS)와 드라이브 사이드 거리계 파트(DS)는 진입되는 소재(2)를 사이에 두고 상호 마주보며 설치될 수 있다. 즉, 워크 사이드 거리계 파트(WS)와 드라이브 사이드 거리계 파트(DS)에 설치되는 각각의 거리계(200)는, 도 2에 도시된 바와 같이, 기 설정된 간격(C)으로 서로 마주보게 설치될 수 있다.
또한, 워크 사이드 거리계 파트(WS)와 드라이브 사이드 거리계 파트(DS) 각각에 설치되는 거리계(200)는 소재(2)의 진입방향을 따라, 복수 개가 기 설정된 간격(L)으로 이격되어 설치될 수 있다.
따라서, 워크 사이드 거리계 파트(WS)와 드라이브 사이드 거리계 파트(DS) 각각의 거리계(200)는 소재(2)의 진입 측을 기준으로 제1, 제2, 제3 ....제n으로 복수 개의 거리계(200)가 설치될 수 있다.
촬상장치(300)는, 소재(2)의 이동시, 소재(2)를 촬상할 수 있도록 이동부(100)의 위쪽에 이격되어 설치될 수 있다. 예를 들어, 촬상장치(300)는 제1 거리계와 제2 거리계 사이를 촬상할 수 있도록 설치되는 카메라일 수 있다.
즉, 촬상장치(300)는 제1 거리계와 제2 거리계 사이의 카메라 영상 취득 범위(IA, Image Area)를 촬상할 수 있게 설치될 수 있다.
도 2에 도시된 바와 같이, 본 발명의 촬상장치(300)는 제1 거리계와 제2 거리계 사이의 카메라 영상 취득 범위(IA, Image Area)를 촬상할 수 있도록 설치된 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니며, 소재(2)의 이송 방향을 따라, 복수 개가 기 설정된 간격으로 이격되어 설치될 수도 있다. 그에 따라, 복수 개의 촬상장치(300)는 이송되는 소재(2)의 전 영역을 촬상할 수도 있다.
제어부(400)는 거리계(200)와 촬상장치(300)를 제어할 수 있다. 이에, 제어부(400)는 거리계(200) 및 촬상장치(300)와 전기적으로 연결될 수 있다.
또한, 제어부(400)는 거리계(200)와 촬상장치(300)로부터 측정된 측정정보를 포함하여 송출되는 신호를 수신하고, 상기 측정정보를 기초로 소재(2) 각각의 길이, 폭, 캠버, 직각도 등의 형상을 측정할 수 있다. 그리고, 제어부(400)는 디스플레이 장치(미도시) 등을 이용하여 측정된 측정치를 사용자에게 인지시킬 수 있다.
이하, 도 2 및 도 5를 참조하여 소재(2)의 길이를 측정하는 방법에 대하여 살펴보기로 한다. 여기서, 촬상장치(300)는, 도 2에 도시된 바와 같이, 제1 거리계와 제2 거리계 사이를 촬상하도록 설치될 수 있다.
또한, 본 발명을 설명함에 있어서, 소재(2)의 이송 방향을 기준으로 우측에 위치하여 이송되는 소재(2)는 픽스부 소재(2a)로 좌측에 위치하여 이송되는 소재(2)는 무빙부 소재(2b)로 구분하여 설명하기로 한다.
도 3은 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 후판 배폭재의 길이를 측정하는 과정을 측면에서 나타내는 도면이고, 도 4는 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 후판 배폭재의 길이를 측정하는 과정을 위에서 바라보는 도면이다.
좀 더 상세하게는, 도 3a와 도 4a는 소재의 선단부가 제1 거리계에 진입하는 도면이고, 도 3b와 도 4b는 소재의 미단부가 제1 거리계에 진입하기 전을 나타내는 도면이고, 도 3c와 도 4c는 소재의 미단부가 제1 거리계에 진입한 후를 나타내는 도면이고, 도 3d와 도 4d는 소재의 미단부가 제1 거리계에 진입한 후 소재의 전단부가 제n 거리계에 진입하는 도면이다.
도 3a 및 도 4a에 도시된 바와 같이, 병렬로 이송되는 픽스부 소재(2a)와 무빙부 소재(2b)는 상기 치수측정장치(1)의 제1 거리계에 진입하게 된다. 그에 따라, 제어부(400)는 상기 치수측정장치(1)를 초기화한다.
그리고, 도 3b 및 도 4b에 도시된 바와 같이, 소재(2)의 선단부는 상기 치수측정장치(1)의 제2 거리계와 제3 거리계 등을 순차적으로 지나가게 된다.
도 3c 및 도 4c에 도시된 바와 같이, 소재(2)의 미단부 즉, 끝부분이 제1 거리계를 지나게 되고, 제1 거리계는 제어부(300)로 소재(2)의 미단부가 통과하였음을 알리는 트리거 신호를 송출한다.
도 3d 및 도 4d에 도시된 바와 같이, 제1 거리계의 상기 트리거 신호를 기준으로 제n 거리계에서 소재(2)의 선단부가 감지되면, 제어부(400)는 촬상장치(300)를 이용하여 소재(2)를 촬상하게 된다.
그에 따라, 소재(2)의 길이(P)는 하기의 수학식 1에 의하여 구할 수 있다.
Figure PCTKR2016005508-appb-M000001
P : 소재의 길이, L : 각 거리계 간의 거리, L' : 제2 거리계로부터 소재의 미단까지의 거리, n : 소재를 감지한 거리계의 수.
도 5는 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 위치 차이가 발생한 후판 배폭재 2매 각각의 길이를 측정하는 다른 실시예를 나타내는 도면이다. 좀 더 상세하게는, 도 5a는 픽스부 소재의 선단부가 제n 거리계에 의해 검출되는 도면이고, 도 5b는 무빙부 소재의 선단부가 제n 거리계에 의해 검출되는 도면이다.
한편, 도 5를 참조하여, 소재(2) 2매의 선단부 및 미단부의 위치 차이가 발생한 경우, 픽스부 소재(2a)와 무빙부 소재(2b) 각각의 길이를 측정하는 방법에 대하여 살펴보기로 한다. 예컨데, 후판 배폭재는 전단라인에서 2매로 절단된 후 이송 롤에 의해 운송되기 때문에, 픽스부 소재(2a)와 무빙부 소재(2b)의 선단부 및 미단부의 위치 차이는, 도 5에 도시된 바와 같이, 소재(2)의 길이 대비 크지 않다.
선단부 및 미단부에서 소정의 위치 차이가 발생되게 픽스부 소재(2a)와 무빙부 소재(2b)가 진입시, 도 5에 도시된 바와 같이, 픽스부 소재(2a)가 무빙부 소재(2b) 보다 우선적으로 진입하는 경우를 그 예로 하여 살펴보기로 한다.
픽스부 소재(2a)의 미단부를 제1 거리계가 검출하면 제1 거리계는 제어부(300)로 소재(2)의 미단부가 통과하였음을 알리는 트리거 신호를 송출한다. 그리고 제어부(400)는 제1 거리계의 상기 트리거 신호를 기준으로 제n 거리계에서 픽스부 소재(2a)의 선단부를 검출할 수 있도록 준비한다.
그리고, 도 5a에 도시된 바와 같이, WS측 제n 거리계에서 픽스부 소재(2a)의 선단부를 검출하면 제어부(400)는 촬상장치(300)를 이용하여 픽스부 소재(2a)의 미단부를 촬상하게 된다.
그에 따라, 상기 수학식 1에 의하여 픽스부 소재(2a)의 길이(P1=((n-2)*L + L1')를 구할 수 있다.
또한, 도 5b에 도시된 바와 같이, DS측 제n 거리계에서 무빙부 소재(2b)의 선단부를 검출하면 제어부(400)는 촬상장치(300)를 이용하여 무빙부 소재(2b)의 미단부를 촬상하게 된다.
그에 따라, 상기 수학식 1에 의하여 픽스부 소재(2a)의 길이(P2=((n-2)*L + L2')를 구할 수 있다.
따라서, 상기 치수측정장치(1)의 제어부(400)는 상기 제1 거리계가 소재(2) 중 먼저 진입하는 어느 하나의 미단부가 통과하였음을 알리는 트리거 신호를 수신하고, 소재(2)의 진입 측을 기준으로 n번째에 위치하는 제n 거리계에 먼저 진입된 소재(2)의 선단부가 감지됨에 따라 촬상장치(300)를 이용하여 소재를 촬상한다.
그리고, 상기 제n 거리계에 소재(2)의 다른 하나의 선단부가 감지됨에 따라 상기 촬상장치를 이용하여 소재(2) 중 다른 하나의 미단부를 촬상함으로써 상기 치수 측정 장치는 픽스부 소재(2a)가 무빙부 소재(2b) 각각의 길이를 측정할 수 있다.
즉, 상기 치수측정장치(1)는 거리계(200)와 촬상장치(300)를 이용하여 픽스부 소재(2a)가 무빙부 소재(2b) 각각의 길이를 측정할 수 있다. 그에 따라, 상기 치수측정장치(1)는 소재(2)의 멈춤 없이 픽스부 소재(2a)와 무빙부 소재(2b) 각각의 길이를 동시에 측정할 수 있어 생산성을 향상시킬 수 있다.
또한, 상기 치수측정장치(1)의 촬상장치(300)는 상기 트리거 신호를 기반으로 제1 거리계 이후 각 거리계에 소재(2)의 선단부가 검출됨에 따라 소재(2)를 촬상하고 연속 촬상된 이미지를 영상 분석하여 측정된 소재(2)의 길이를 측정 및 검증할 수도 있다.
도 4, 도 6 및 도 7을 참조하여, 상기 치수측정장치(1)가 픽스부 소재(2a)와 무빙부 소재(2b) 각각의 폭 및 캠버를 측정하는 방법에 대하여 살펴보기로 한다.
워크 사이드 거리계 파트(WS)의 거리계(200)와 이와 마주보게 설치되는 드라이브 사이드 거리계 파트(DS)의 거리계(200)는 기 설정된 설치 간격(C)으로 설치될 수 있다. 그에 따라, 설치 간격(C)은 기 설정된 값을 갖게 되고, 워크 사이드 거리계 파트(WS)의 거리계(200)와 이와 마주보게 설치되는 드라이브 사이드 거리계 파트(DS)의 거리계(200)는 각각 소재(2)의 측면까지의 거리를 측정하여 거리 정보를 획득할 수 있다.
또한, 상기 치수측정장치(1)의 촬상장치(300)는 상기 제1 거리계가 소재(2)의 선단부가 통과하였음을 알리는 트리거 신호를 기반으로 제1 거리계 이후 각 거리계에 소재(2)의 선단부가 검출됨에 따라 소재(2)를 촬상할 수 있다.
그리고, 상기 치수측정장치(1)의 제어부(400)는 촬상된 복수 개의 이미지를 영상 분석하여 픽스부 소재(2a)와 무빙부 소재(2b) 사이의 갭(G, Gap) 정보 및 갭(G)의 위치정보(중심 절단부의 위치정보)를 확보할 수 있다.
그에 따라, 상기 치수측정장치(1)는 거리계(200)를 이용하여 측정된 픽스부 소재(2a)와 무빙부 소재(2b)의 거리 정보, 갭(G)의 위치 정보 및 갭(G) 정보를 이용하여 픽스부 소재(2a)와 무빙부 소재(2b) 각각의 폭을 구할 수 있다.
예를 들어, 픽스부 소재(2a)의 폭은 서로 마주보게 설치된 거리계(200)간 설치 간격(C)에서 갭(G)의 위치 정보, 갭(G) 정보 및 워크 사이드 거리계 파트(WS)의 거리계(200) 측에서 픽스부 소재(2a)의 측면까지 측정된 거리 정보를 이용하여 구해질 수 있다.
또한, 도 7 내지 도 9를 참조하여 살펴보면, 소재(2)의 캠버의 경우도 양측 거리계(200)의 측정치, 영상분석을 통해 얻어진 중심 절단부 위치 및 갭(G) 정보로부터 산출이 가능하다. 여기서, 소재(2)의 캠버는, 도 7에 도시된 바와 같이, 소재(2)의 이송 방향을 기준으로 폭의 휘어짐 정도로 정의될 수 있다.
거리계(200) 중 어느 하나는, 도 8에 도시된 바와 같이, 이송 중인 소재(2)의 선, 미단부를 검출함과 동시에 소재(2) 양 측면의 위치를 연속적으로 측정할 수 있다.
소재(2)에 대해 길이 방향으로 거리계(200)에 의하여 측정된 양 측면의 거리 데이터를 이용하면, 도 9에 도시된 바와 같이, 소재(2) 전체의 캠버량을 산출할 수 있다.
또한, 상술 된 바와 같이 소재(2)의 이송 중 촬상장치(300)를 이용하여 소재(2)를 연속 촬상하고, 영상 분석을 통해 소재(2)의 길이 방향으로 갭(G) 위치 정보와 갭(G) 정보(갭 변화량)을 측정할 수 있는바, 이와 함께 소재(2)의 양 측면의 거리 데이터를 이용하면 픽스부 소재(2a)와 무빙부 소재(2b) 각각의 캠버량 또한 측정할 수 있다.
또한, 상기 치수측정장치(1)는 캠버량이 정밀하게 측정이 필요하지 않은 경우에는, 도 3d 및 도 4d의 경우와 같은 순간에 동시에 측정된 거리데이터(Dn, Wn,…,D2,W2))와 소재(2) 미단부측을 촬상한 이미지를 이용하여 직접적으로 간단하게 캠버량을 측정하는 것도 가능하다.
도 10은 본 발명의 바람직한 일실시예에 따른 치수측정장치를 이용하여 직각도를 측정하는 도면이고, 도 11은 본 발명의 바람직한 일실시예에 따른 치수측정장치에 의하여 촬상된 후판 배폭재의 선단부 이미지를 나타내는 도면이고, 도 12는 본 발명의 바람직한 일실시예에 따른 치수측정장치에 의하여 변환된 후판 배폭재의 선단부 이미지를 나타내는 도면이다.
좀 더 상세하게는, 도 10a는 픽스부 소재의 선단부가 제2 거리계에 의해 검출되는 도면이고, 도 10b는 무빙부 소재의 선단부가 제2 거리계에 의해 검출되는 도면이다.
이하, 도 10 내지 12를 참조하여, 소재(2)의 선단부의 직각도를 측정하는 방법에 대하여 살펴보기로 한다. 여기서, 도 11 및 도 12는 픽스부 소재(2a)의 직각도를 나타내는 촬상 이미지와 변환 이미지(에지부 세선화)를 나타내는 도면이다.
도 10a를 참조하여 살펴보면, 픽스부 소재(2a)의 선단부를 제1 거리계가 검출하면 제1 거리계는 제어부(300)로 소재(2)의 선단부가 통과하였음을 알리는 트리거 신호를 송출한다. 그리고, 제어부(400)는 제1 거리계의 상기 트리거 신호를 기준으로 제2 거리계에서 픽스부 소재(2a)의 선단부를 검출할 수 있도록 준비한다.
제2 거리계에서 픽스부 소재(2a)의 선단부를 검출하면 제어부(400)는 촬상장치(300)를 이용하여 픽스부 소재(2a)의 선단부를 촬상하게 된다.
그에 따라, 상기 치수측정장치(1)는, 도 11 및 도 12에 도시된 바와 같이, 픽스부 소재(2a)의 선단부 영상을 취득하고 변환하여 직각도를 산출할 수 있다.
또한, 도 10b에 도시된 바와 같이, DS측 제2 거리계에서 무빙부 소재(2b)의 선단부를 검출하면 제어부(400)는 촬상장치(300)를 이용하여 무빙부 소재(2b)의 선단부를 촬상하게 된다. 그리고, 상기 치수측정장치(1)는 무빙부 소재(2b)의 선단부 영상을 취득하고 변환하여 직각도를 산출할 수 있다.
이하, 도 13을 참조하여 본 발명의 바람직한 일실시예에 따른 치수측정방법에 대하여 살펴보기로 한다. 이때, 상기 치수측정장치(1)와 동일한 구성에 대하여는 동일한 번호로 기재될 것인바 이에 대한 상세한 설명은 생략하기로 한다.
상기 치수측정방법(S1)은 소재 2매를 이동시키는 단계(S10); 상기 소재의 이송 방향을 따라 기 설정된 간격으로 배치된 복수 개의 거리계를 이용하여 상기 소재의 측면과의 거리를 측정하는 단계(S20); 촬상장치를 이용하여 상기 소재를 촬상하는 단계(S30); 및 상기 거리계에 의하여 측정된 거리 정보와 상기 촬상장치에 의하여 촬상된 상기 소재의 이미지를 이용하여 상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정하는 단계(S40)를 포함할 수 있다.
상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정하는 단계(S40)에서는, 거리계(200) 중 어느 하나에 의하여 연속적으로 측정된 거리 정보와; 촬상장치(300)에 의해 연속적으로 획득된 이미지를 이용하여 소재(2) 각각의 길이, 폭, 캠버 및 직각도를 측정할 수 있다.
여기서, 촬상장치(300)는 소재(2)의 진입 측을 기준으로 첫번째와 두번째에 각각 설치되는 제1 거리계와 제2 거리계 사이를 촬상하도록 설치될 수 있다.
이때, 상기 이미지는 상기 제1 거리계가 소재(2)의 선단부를 검출하는 신호를 기반으로 상기 제1 거리계 이후에 배치되는 각 거리계(200)에 소재(2)의 선단부가 검출됨에 따라 촬상될 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
<부호의 설명>
1: 치수측정장치, 2: 소재, 100: 이동부, 200: 거리계, 300: 촬상장치, 400: 제어부, WS: 워크 사이드 거리계 파트, DS: 드라이브 사이드 거리계 파트

Claims (11)

  1. 소재 2매를 이동시키는 이동부;
    상기 소재의 측면과의 거리를 측정하도록, 상기 소재의 진행 방향을 따라 상기 소재의 양측면과 이격되어 기 설정된 간격으로 설치되는 복수 개의 거리계; 및
    상기 소재의 진입 측을 기준으로 첫번째와 두번째에 각각 설치되는 제1 거리계와 제2 거리계 사이를 촬상하게 설치되는 촬상장치를 포함하는 치수측정장치.
  2. 제1항에 있어서,
    상기 제1 거리계가 상기 소재 중 어느 하나의 미단부가 통과하였음을 알리는 신호를 수신하고, 상기 소재의 진입 측을 기준으로 n번째에 위치하는 제n 거리계에 상기 소재의 선단부가 감지됨에 따라 상기 촬상장치를 이용하여 상기 소재를 촬상하는 제어부를 더 포함하는 치수측정장치
  3. 제2항에 있어서,
    상기 소재의 길이는 하기의 수식에 의하여 구해지는 것을 특징으로 하는 치수측정장치.
    P = ((n-2)*L + L')
    P : 소재의 길이, L : 각 거리계 간의 거리, L' : 제2 거리계로부터 소재의 미단까지의 거리, n : 소재를 감지한 거리계의 수.
  4. 제3항에 있어서,
    상기 제2 거리계에서 상기 소재의 미단까지의 거리는 상기 촬상장치에 의하여 촬상된 이미지로부터 구해지는 것을 특징으로 하는 치수측정장치.
  5. 제2항에 있어서,
    상기 제어부는 상기 제1 거리계가 상기 소재 중 먼저 진입하는 어느 하나의 미단부가 통과하였음을 알리는 신호를 수신하고,
    상기 소재의 진입 측을 기준으로 n번째에 위치하는 제n 거리계에 먼저 진입된 상기 소재의 선단부가 감지됨에 따라 상기 촬상장치를 이용하여 상기 소재를 촬상하며,
    상기 제n 거리계에 상기 소재의 다른 하나의 선단부가 감지됨에 따라 상기 촬상장치를 이용하여 상기 소재의 다른 하나를 촬상하는 치수측정장치.
  6. 제1항에 있어서,
    상기 제2 거리계가 상기 소재 중 어느 하나의 선단부를 검출함에 따라 상기 촬상장치로부에 촬상된 이미지로부터 상기 소재의 선단부의 직각도를 산출하는 치수측정장치.
  7. 제1항에 있어서,
    상기 소재의 길이 방향을 따라 배치된 상기 거리계 중 어느 하나에 의하여 연속적으로 측정된 거리 정보와 상기 촬상장치를 통하여 촬상된 이미지로부터 획득된 이미지를 통하여 상기 소재 각각의 캠버, 폭, 길이 및 직각도를 측정하는 것을 특징으로 하는 치수측정장치.
  8. 제7항에 있어서,
    상기 이미지는 상기 제1 거리계가 상기 소재의 선단부를 검출하는 신호를 기반으로 하여 상기 제1 거리계 이후에 기 설정된 간격으로 배치되는 각 거리계에 상기 소재의 선단부가 검출됨에 따라 촬상되는 것을 특징으로 하는 치수측정장치.
  9. 소재 2매를 이동시키는 단계;
    상기 소재의 이송 방향을 따라 기 설정된 간격으로 배치된 복수 개의 거리계를 이용하여 상기 소재의 측면과의 거리를 측정하는 단계;
    촬상장치를 이용하여 상기 소재를 촬상하는 단계; 및
    상기 거리계에 의하여 측정된 거리 정보와 상기 촬상장치에 의하여 촬상된 상기 소재의 이미지를 이용하여 상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정하는 단계를 포함하는 치수측정방법.
  10. 제9항에 있어서,
    상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정하는 단계에서는,
    상기 거리계 중 어느 하나에 의하여 연속적으로 측정된 상기 거리 정보와;
    상기 소재의 진입 측을 기준으로 첫번째와 두번째에 각각 설치되는 제1 거리계와 제2 거리계 사이를 촬상하게 설치되는 상기 촬상장치를 통하여 연속적으로 획득된 이미지를 이용하여 상기 소재 각각의 길이, 폭, 캠버 및 직각도를 측정하는 치수측정방법.
  11. 제10항에 있어서,
    상기 이미지는 상기 제1 거리계가 상기 소재의 선단부를 검출하는 신호를 기반으로 상기 제1 거리계 이후에 배치되는 각 거리계에 상기 소재의 선단부가 검출됨에 따라 촬상되는 것을 특징으로 하는 치수측정방법.
PCT/KR2016/005508 2015-09-10 2016-05-25 치수측정장치 및 방법 WO2017043732A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/756,489 US10619995B2 (en) 2015-09-10 2016-05-25 Dimension measuring device and method
JP2018508697A JP6596149B2 (ja) 2015-09-10 2016-05-25 寸法測定装置および方法
CN201680052111.4A CN107949765A (zh) 2015-09-10 2016-05-25 尺寸测定装置以及方法
EP16844552.6A EP3348957A1 (en) 2015-09-10 2016-05-25 Dimension measuring device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0128223 2015-09-10
KR1020150128223A KR101752801B1 (ko) 2015-09-10 2015-09-10 치수측정장치 및 방법

Publications (1)

Publication Number Publication Date
WO2017043732A1 true WO2017043732A1 (ko) 2017-03-16

Family

ID=58240921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005508 WO2017043732A1 (ko) 2015-09-10 2016-05-25 치수측정장치 및 방법

Country Status (6)

Country Link
US (1) US10619995B2 (ko)
EP (1) EP3348957A1 (ko)
JP (1) JP6596149B2 (ko)
KR (1) KR101752801B1 (ko)
CN (1) CN107949765A (ko)
WO (1) WO2017043732A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337704A (zh) * 2018-12-19 2020-06-26 中车唐山机车车辆有限公司 一种测速系统及测速方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563136B1 (ko) 2022-10-26 2023-08-03 (주)이원시스템 강판의 휨 상태 및 치수 측정이 가능한 수직형 강판 측정장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685039B1 (ko) * 2005-10-11 2007-02-20 주식회사 포스코 강판의 길이 측정장치 및 방법
US20100232923A1 (en) * 2008-03-12 2010-09-16 Doerner Reiner Device and method for aligning the position of plate-shaped parts
KR20130036864A (ko) * 2011-10-05 2013-04-15 주식회사 포스코 연주 슬라브의 길이측정장치
JP2013178103A (ja) * 2012-02-28 2013-09-09 Hitachi High-Technologies Corp パターン寸法測定装置、及びコンピュータプログラム
JP2014202597A (ja) * 2013-04-04 2014-10-27 新日鐵住金株式会社 鋼板の寸法測定支援システム及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114105A (ja) 1984-11-09 1986-05-31 Mitsubishi Electric Corp 長さ計測装置
JPS6340804A (ja) * 1986-08-05 1988-02-22 Sumitomo Metal Ind Ltd キヤンバ計測方法及び装置
CN1006328B (zh) * 1988-01-31 1990-01-03 冶金工业部攀枝花钢铁公司自动化部 钢坯测长装置
JPH06147836A (ja) * 1992-11-13 1994-05-27 Nkk Corp シート寸法測定装置
US5699161A (en) * 1995-07-26 1997-12-16 Psc, Inc. Method and apparatus for measuring dimensions of objects on a conveyor
CN1369688A (zh) * 2001-02-16 2002-09-18 中国地震局地震研究所 型钢在线自动测长方法及其测长仪
CN103727876B (zh) * 2013-12-20 2016-04-06 西安理工大学 基于平行激光线的带材宽度及中心测量系统和方法
CN104634261B (zh) * 2014-12-05 2017-05-03 浙江理工大学 基于线激光源的中厚板形貌检测系统及其方法
KR101621882B1 (ko) * 2014-12-09 2016-05-17 주식회사 포스코 강판 형상 측정장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685039B1 (ko) * 2005-10-11 2007-02-20 주식회사 포스코 강판의 길이 측정장치 및 방법
US20100232923A1 (en) * 2008-03-12 2010-09-16 Doerner Reiner Device and method for aligning the position of plate-shaped parts
KR20130036864A (ko) * 2011-10-05 2013-04-15 주식회사 포스코 연주 슬라브의 길이측정장치
JP2013178103A (ja) * 2012-02-28 2013-09-09 Hitachi High-Technologies Corp パターン寸法測定装置、及びコンピュータプログラム
JP2014202597A (ja) * 2013-04-04 2014-10-27 新日鐵住金株式会社 鋼板の寸法測定支援システム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348957A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337704A (zh) * 2018-12-19 2020-06-26 中车唐山机车车辆有限公司 一种测速系统及测速方法

Also Published As

Publication number Publication date
JP2018523829A (ja) 2018-08-23
CN107949765A (zh) 2018-04-20
JP6596149B2 (ja) 2019-10-23
EP3348957A4 (en) 2018-07-18
EP3348957A1 (en) 2018-07-18
US10619995B2 (en) 2020-04-14
US20190170504A1 (en) 2019-06-06
KR101752801B1 (ko) 2017-06-30
KR20170030820A (ko) 2017-03-20

Similar Documents

Publication Publication Date Title
WO2017043732A1 (ko) 치수측정장치 및 방법
JPH059604Y2 (ko)
WO2018146659A1 (ko) 검사 장치
WO2016060499A1 (ko) 약품 하이브리드 검사시스템 및 검사방법
WO2012115389A2 (ko) 슬리팅 장치
CN1844899A (zh) 检测宽物品的方法
WO2019009465A1 (ko) 스프링 비전 검사장치 및 검사방법
WO2019022551A1 (ko) 광학필름 결함 검출 장치 및 광학필름 결함 검출 방법
KR20190116403A (ko) 띠상체의 사행량 측정 방법 및 장치 그리고 띠상체의 사행 이상 검출 방법 및 장치
CN116952838A (zh) 一种基于机器视觉的板材表面图像采集装置
WO2011031117A2 (ko) 파우치형 전지 내의 이물질 검출장치 및 방법
WO2022154362A1 (ko) 전지 제조용 코팅 롤의 진원도 측정장치 및 측정방법
WO2020130209A1 (ko) 영상 처리를 이용한 차량 속도 측정 방법 및 장치
WO2014209043A1 (ko) 이미지 획득 방법 및 이를 이용한 이미지 획득 장치
KR101621882B1 (ko) 강판 형상 측정장치
JPH0792111A (ja) 欠陥深さ位置検出装置及びその方法
WO2016021856A1 (ko) 용지정렬부가 구비된 투표용지 스캔장치
WO2022169238A1 (ko) 라미네이션 장치 및 라미네이션 장치의 불량 전극 셀 조립체 배출방법
JPH07167632A (ja) クロップ形状測定装置
JPH11281329A (ja) 長尺物体の測長装置
JP5055095B2 (ja) 測定装置及び測定方法
WO2023113485A1 (ko) 전극시트 커팅장치 및 커팅방법
WO2017179786A1 (ko) 동작 인식 센서를 이용한 3차원 입력 장치, 방법 및 시스템
WO2012105727A1 (en) Device, system and method for calibration of camera and laser sensor
WO2019013371A1 (ko) 부피 및 중량 자동 측정 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018508697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016844552

Country of ref document: EP