WO2017043571A1 - 断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置 - Google Patents

断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置 Download PDF

Info

Publication number
WO2017043571A1
WO2017043571A1 PCT/JP2016/076443 JP2016076443W WO2017043571A1 WO 2017043571 A1 WO2017043571 A1 WO 2017043571A1 JP 2016076443 W JP2016076443 W JP 2016076443W WO 2017043571 A1 WO2017043571 A1 WO 2017043571A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
pipe
axial force
stress
bending
Prior art date
Application number
PCT/JP2016/076443
Other languages
English (en)
French (fr)
Inventor
正蔵 岸
圭太 小田
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2017043571A1 publication Critical patent/WO2017043571A1/ja
Priority to US15/916,773 priority Critical patent/US20180209869A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/024Laying or reclaiming pipes on land, e.g. above the ground
    • F16L1/028Laying or reclaiming pipes on land, e.g. above the ground in the ground
    • F16L1/036Laying or reclaiming pipes on land, e.g. above the ground in the ground the pipes being composed of sections of short length

Definitions

  • the present invention relates to a behavior estimation method for a cross-fault buried pipe and a behavior estimation device for a cross-fault buried pipe.
  • the pipe embedded in the ground is a pipe in which a plurality of pipes 1 are joined via an earthquake-resistant joint, such as an earthquake-resistant joint ductile iron pipe,
  • an earthquake-resistant joint such as an earthquake-resistant joint ductile iron pipe
  • FIG. 1 (c) shows the expansion / contraction behavior of the joint portion of an NS type ductile iron pipe, which is an example of such an earthquake-resistant joint ductile iron pipe.
  • the upper row shows the standard state
  • the middle row shows the contracted state
  • the lower row shows the extended state.
  • reference numeral 2 denotes a receiving port
  • reference numeral 3 denotes an insertion opening
  • reference numeral 4 denotes a rubber ring
  • reference numeral 5 denotes a lock ring.
  • the expansion / contraction amount of the seismic joint is ⁇ 1% of the pipe length
  • the pulling strength is 3D (kN)
  • D is the nominal diameter mm
  • the allowable bending angle ⁇ is 4 °
  • the maximum allowable bending angle ⁇ is 8 °. is there.
  • Patent Document 1 as a maintenance management method that can evaluate the soundness of uneven settlement of piping systems including mechanical joints, the subsidence distribution of the ground is measured along the underground pipe line with mechanical joints. Then, the local relative subsidence amount ⁇ r and the length L of the generation range are obtained from the subsidence distribution, and the maximum bending angle ⁇ max of the mechanical joint included in the generation range is set to ⁇ max ⁇ 2 arctan (2 ⁇ r / L). A maintenance method for evaluating the soundness of the piping system by comparing the angle ⁇ max with the allowable bending angle of the mechanical joint has been proposed.
  • the bending angle of the mechanical joint is calculated based on the ground subsidence distribution measured on the ground surface, and the calculated bending angle is compared with the allowable bending angle. Therefore, the soundness of the existing piping system can be evaluated.
  • an object of the present invention is to provide a method for estimating the behavior of a cross-fault buried conduit and a device for estimating the behavior of a cross-fault buried conduit, which are simple but accurate without using a large-scale simulation device.
  • the first characteristic configuration of the behavior estimation method of the cross-fault buried pipe according to the present invention is the behavior of the cross-fault buried pipe as described in claim 1 of the claims.
  • a third step for determining the bending angle ⁇ of the tube at the position includes, a bending performance evaluation step for evaluating the bending property based on whether the bending angle theta obtained in the third step falls within the allowable bending angle theta a.
  • the first step all of the minimum number N of seismic joints on one side from the fault plane necessary to absorb the fault displacement H in the direction perpendicular to the pipe axis is the allowable bending angle regardless of the fault displacement in the pipe axis direction.
  • the minimum number N of seismic joints is obtained based on the equation [Equation 1]
  • the bending range L 0 in the tube axis direction at that time is obtained by the equation [Equation 2].
  • the second step it is assumed that the relative displacement y between the pipe and the ground is distributed linearly around the fault plane, and the relative relationship between the pipe and the ground is calculated by an equation [Formula 3] according to a ground spring model perpendicular to the predetermined pipe axis.
  • a load p (y) received by the tube with respect to the displacement y is calculated as a trapezoidal distribution load.
  • the bending moment distribution at each joint position with respect to the trapezoidal distribution load is obtained by the mathematical formula [Equation 4], and the bending angle ⁇ of the pipe at each joint position is obtained according to the joint rotary spring model.
  • the bending performance evaluation step the calculated bending angle theta is Flexibility is assessed by whether falls within the allowable bending angle theta a. In other words, the bending resistance is evaluated only by the fault displacement amount H in the direction perpendicular to the pipe axis with respect to various fault displacements having different fault displacement amounts in the pipe axis direction.
  • the second feature configuration includes a tube on a fault plane that is half the fault displacement amount in the tube axis direction of the fault displacement amount.
  • the relative displacement amount X g of the ground, the joint expansion amount ⁇ , the relative displacement amount y (x) between the pipe and the ground at the position x in the tube axis direction defined by the mathematical formula [Equation 5], and the mathematical formula 6] A ground spring in the tube axis direction defined by spring constants k 1 and k 2 (k 1 > k 2 ) with a predetermined relative displacement ⁇ g as a boundary with respect to the influence range X in the tube axis direction defined in 6].
  • the axial force f (y) is calculated based on the mathematical formula [Formula 7] corresponding to the ground spring model in the tube axis direction.
  • the axis from the tomographic plane to the influence range X in the tube axis direction is calculated.
  • An axial force f max obtained by integrating the force f (y) is calculated.
  • the axial force evaluation step the axial force is evaluated based on whether or not the axial force f max falls within a predetermined reference value. That is, ⁇ force performance is evaluated only by the fault displacement amount X g in the tube axis direction with respect to the fault displacement amount of the tube axis direction perpendicular variety of different fault displacement.
  • a large displacement absorbing unit-compatible axial force evaluation step for evaluating the axial force based on whether or not the axial force fmax obtained in the seventh step falls within a predetermined
  • the position where the bending angle ⁇ obtained in the third step is equal to or smaller than the predetermined angle threshold ⁇ t is the joint expansion / contraction.
  • the axial force f is calculated based on the equation [Equation 10] with respect to the influence range X in the tube axis direction defined by the equation [Equation 9]. max is calculated.
  • the axial force resistance performance is evaluated based on whether or not the axial force f max obtained in the seventh step falls within a predetermined reference value.
  • the stress obtained by the sum of the axial stress ⁇ a calculated from the axial force f max and the cross-sectional area A of the tube and the bending stress ⁇ b calculated from the bending moment M and the cross-sectional modulus Z of the tube is allowed. It is evaluated whether it falls within the value.
  • the fifth feature configuration includes a simple analysis execution step for executing the behavior estimation method for a cross-fault buried pipe having any one of the first to fourth feature configurations described above. And a detailed analysis execution step for executing a structural analysis method using a finite element method after a predetermined evaluation is obtained in the simple analysis execution step.
  • the characteristic configuration of the cross-fault buried pipe behavior estimating device is the behavior cross-fault buried pipe behavior estimating device according to any one of the first to fourth aspects described above.
  • a behavior estimation calculation unit that executes a behavior estimation method of a cross-fault buried pipe having a characteristic configuration, a condition input unit that sets calculation conditions by the behavior estimation calculation unit, and a calculation result by the behavior estimation calculation unit are stored It is in the point provided with the memory
  • a cross-fault buried pipe behavior estimation method and a cross-fault buried pipe behavior estimation apparatus that are simple but accurate without using a large-scale simulation apparatus. can do.
  • FIG. 1 (a) is an explanatory diagram of the behavior of a pipe joined by a seismic joint during subsidence
  • Fig. 1 (b) is an explanatory diagram of the behavior when the ground cracks
  • Fig. 1 (c) is an explanatory diagram of expansion and contraction operation of the seismic joint. It is.
  • FIG. 2 is an explanatory diagram of the axial force and the joint bending angle at which the fault acts on the pipeline.
  • 3A is an explanatory diagram of the joint spring and the ground spring
  • FIGS. 3B to 3D are explanatory diagrams of the joint spring model
  • FIGS. 3E and 3F are diagrams of the ground spring model.
  • FIG. 4 is an explanatory view of a simulation result showing a state of bending from a joint near the fault.
  • FIG. 5A is an explanatory diagram of a joint rotary spring model used in the joint bending angle behavior estimation method
  • FIG. 5B is a pipe explanatory diagram showing a pipe bending range L 0 with respect to the fault displacement H.
  • FIG. 6A is an explanatory diagram of a ground spring model in the direction perpendicular to the pipe axis used in the joint bending angle behavior estimation method
  • FIG. 6B is an explanatory diagram of the distribution of relative displacement y between the pipe and the ground
  • FIG. (c) is explanatory drawing of distribution of the load p (y) applied to a pipe line.
  • FIG. 7A is an explanatory diagram of the joint rotation spring as a result of estimation by the behavior estimation method of the present invention
  • FIG. 7B is a distribution of joint bending angles by comparing the estimation result of the behavior estimation method of the present invention and the FEM analysis result.
  • FIG. 8 is an explanatory diagram of FEM analysis results showing that the axial force-tube axis direction ground displacement curves match even when the fault crossing angles are different.
  • FIG. 9A is an explanatory diagram showing a state in which the joint is compressed by the fault displacement
  • FIG. 9B is an explanatory diagram showing the relative displacement of the ground and the pipe symmetrically with respect to the fault plane
  • FIG. 9C is an explanatory diagram of the joint rotation spring as a result of estimation by the behavior estimation method of the present invention.
  • FIG. 10A is an explanatory diagram of the relative displacement y (x) between the pipe and the ground
  • FIG. 10B is an explanatory diagram of a pipe axial ground spring model used for estimating the axial force
  • FIG. 10C It is explanatory drawing of the bending angle distribution of a coupling.
  • FIG. 11 is an explanatory diagram of an axial force characteristic in which the estimation result by the behavior estimation method of the present invention is compared with the FEM analysis result.
  • FIG. 12A is an explanatory diagram of the relative displacement amount y (x) between the pipe and the ground when the large displacement support unit is used
  • FIG. 12B is an explanatory diagram of the influence range X of the axial force.
  • FIG. 13A and FIG. 13B are explanatory diagrams of a method for calculating the influence range X of the axial force.
  • FIG. 14 is an explanatory diagram of an axial force characteristic in which the estimation result by the behavior estimation method of the present invention and the FEM analysis result are compared in the case of using a large displacement support unit.
  • FIG. 15 is a functional block configuration diagram of a behavior estimation device for a fault crossing buried pipeline.
  • FIG. 16 is an explanatory view of an analysis condition input screen of the behavior estimation device for a fault crossing buried pipeline.
  • FIG. 17 is an explanatory view of an analysis result display screen of the behavior estimation device for a cross-fault buried pipe, the left is an explanatory view of a display screen showing a comprehensive evaluation result, and the right is a pipe using only a straight pipe. It is explanatory drawing of the display screen which shows the axial force evaluation result of this, and the axial force evaluation result of the pipe line incorporating the large displacement corresponding
  • FIG. 18 is an explanatory diagram of an analysis result display screen of the behavior estimation device for a cross fault embedded pipe, the left is an explanatory diagram of a display screen showing a bending angle evaluation result, and the right is a display screen showing a stress evaluation result It is explanatory drawing of.
  • FIG. 19 is a flowchart showing the procedure of the method of estimating the behavior of the crossing fault pipeline.
  • an NS-type ductile iron pipe as an example of a seismic joint ductile iron pipe as an example.
  • a long pipe line is constituted by a plurality of straight pipes by inserting an insertion opening of another straight pipe into a receiving port formed at one end of the straight pipe through a retaining mechanism.
  • this invention is applicable not only to NS type
  • the fault displacement at the fault angle ⁇ is divided into two components of the pipe axis direction and the pipe axis perpendicular direction, and the “joint bending angle”, “axial force” and “stress” are simplified.
  • This is a method and apparatus for estimating and evaluating pipe behavior with respect to fault displacement by calculation.
  • the method and apparatus is a method constructed on the basis of knowledge obtained by modeling a pipe including a joint using a dedicated simulation apparatus for structural analysis and performing FEM analysis. Even if a dedicated simulation apparatus is not used, the method and apparatus can be constructed on a general-purpose personal computer, and the accuracy can be obtained while being simple. Note that the FEM analysis is a structural analysis using a finite element method.
  • FIG. 3A shows a joint spring and ground spring model.
  • the pipe connected by the seismic joint to be analyzed is regarded as a beam (rigid body) on the elastic floor, and the joint and the ground are modeled based on the spring constant obtained from the experiment.
  • FIGS. 3 (e) and 3 (f) show the characteristics of the ground spring.
  • the rotary spring of the joint spring is a joint of the inlet side pipe on the inner surface of the joint part of the inlet side pipe with the pipe axis of the inlet side pipe and the pipe axis of the inlet side pipe bent.
  • An angle ( ⁇ a in FIG. 3C) at which the outer surface comes into contact and is difficult to bend is set. Refers to the angle theta a permissible bending angle, in this embodiment, is set uniformly to 4.0 ° the allowable bending angle.
  • NS type ductile iron pipes with nominal diameters of 75 to 250 have a maximum bending angle of 8 ° that can be bent during an earthquake, and the joint performance is maintained within 8 °.
  • the values of the allowable bending angle and the maximum allowable bending angle are not limited to the values described in the present embodiment, and may be different values depending on the nominal diameter, or may be set to different values depending on the type of the earthquake-resistant joint pipe. It may be.
  • ⁇ Axial springs have different spring constants in the area where the sliding joint part expands and contracts between the pipe and the rubber ring, and in the area where the joint pull-out prevention mechanism works to stop expansion and contraction.
  • the ground spring in the axial direction of the pipe is set by a bilinear model in which the spring constant decreases when the relative displacement between the pipe and the ground exceeds a limit value in consideration of the slip between the pipe and the ground.
  • the ground spring in the direction perpendicular to the pipe axis takes into account the ground reaction force when the pipe moves downward relative to the ground, and considers the collapse of the ground when the pipe moves upward relative to the ground. Is set. Both are set by a bilinear model in which the spring constant decreases when the relative displacement between the pipe and the ground exceeds a limit value.
  • reference signs A, B, C, and D indicate joints sequentially arranged in a direction away from the vicinity of the fault plane on the fixed side of the fault displacement
  • reference signs A ′, B ′, C ′, and D ′ are The joints arranged in order in the direction away from the vicinity of the fault plane on the moving side of the fault displacement are shown.
  • the allowable bending angle ⁇ a defined by the above-described predetermined joint rotation spring model and the effective length L of the tube are perpendicular to the tube axis in the amount of fault displacement.
  • the minimum number of seismic joints N on one side from the fault plane required to absorb the fault displacement amount H is calculated based on the equation [Equation 11], and the bending range L 0 in the tube axis direction at that time is calculated by the equation [ The first step is calculated based on [Equation 12].
  • Joint in the fault plane with the joint bends only all allowable bending angle theta a in the fault influence range represents a step under the assumption that based on the results obtained a result of the FEM analysis of not bent, and.
  • the second step follows a ground spring model perpendicular to the pipe axis defined by spring constants k 1y , k 2y (k 1y > k 2y ) with a predetermined relative displacement ⁇ gy as a boundary as shown in FIG.
  • This is a step of calculating, as a trapezoidal distribution load, a load p (y) received by the tube with respect to the relative displacement y between the tube and the ground as shown in FIG.
  • the bending moment distribution at each joint position is obtained from the bending moment M (x) of the trapezoidal distribution load at the position x in the tube axis direction obtained by the mathematical formula [Equation 14], and FIG.
  • the bending performance evaluation step for evaluating the bending property based on whether the bending angle theta obtained in the third step falls within the allowable bending angle theta a.
  • the bending resistance can be evaluated only with the fault displacement amount H in the direction perpendicular to the pipe axis with respect to various fault displacements having different fault displacement amounts in the pipe axis direction.
  • FIG. 7 (b) shows the FEM analysis results (circles in FIG. 7 (b)) and the analysis results according to the present invention (squares in FIG. 7 (b)). It has been found that the angles are substantially the same, and the effectiveness of the method according to the present invention for simply evaluating the joint bending angle has been proven.
  • FIG. 9A shows the pipelines and joints before the fault displacement by solid lines
  • the lower side of FIG. 9A shows the pipes and joints after the joints are compressed by the fault displacement. It is indicated by a broken line.
  • FIG. 9B under the assumption based on the knowledge obtained by the FEM analysis that the relative displacement in the pipe axis direction between the ground and the pipe is absorbed by compressing each joint portion. Then, the axial force is obtained as follows.
  • the axial force f (y) distribution per unit length is obtained using the ground spring model, and the axial force f (y) is integrated within the range indicated by hatching in the figure.
  • the axial force f max is obtained.
  • FIG. 10 (a), the (b), the relative displacement of the tube and the ground in the fault plane becomes half of the inner tube axis direction of the fault displacement amount of fault displacement amount X g, fitting stretch
  • a fourth step of calculating the axial force f (y) is executed.
  • an axial force evaluation step is performed for evaluating the axial force based on whether or not the axial force f max obtained in the fifth step falls within a predetermined reference value.
  • a predetermined reference value a value set by 3DkN (where D is a nominal diameter) is preferably used. That is, ⁇ force performance is evaluated only by the fault displacement amount X g in the tube axis direction with respect to the fault displacement amount of the tube axis direction perpendicular variety of different fault displacement.
  • the bending angle ⁇ obtained in the third step becomes the predetermined angle threshold ⁇ .
  • a sixth step is executed in which a position equal to or less than t is set as the installation position of the large displacement absorbing unit with the joint expansion / contraction amount (extension / contraction amount of the long joint ring) ⁇ ( ⁇ ⁇ ⁇ ).
  • the large displacement absorbing unit between D-E equal to or less than threshold angle theta t is installed.
  • the large displacement absorption unit is a joint ring for realizing a displacement absorption amount larger than a displacement absorption amount by a normal earthquake-resistant joint, that is, a joint expansion / contraction amount ⁇ , and has a length of 1 to 3 m with receiving ports formed at both ends.
  • This is a seismic joint pipe of a degree.
  • the large displacement absorbing unit is usually incorporated into the pipe line at a pitch of 10 to 100 m.
  • the pipe configuration is such that a straight tube insertion is inserted into each.
  • the angle threshold value ⁇ t is set to an angle sufficiently smaller than the angle ⁇ a at which the moment of the joint rotation spring shown in FIG. It is set the angle threshold theta t to 1 ° from 3.2 ° angle theta a. Note that the angle threshold ⁇ t is not a value limited to 1 °, but may be a value appropriately set in consideration of safety.
  • the range of influence in the axial direction can be narrowed, and the relative displacement amount of the pipe line outside the large displacement absorption unit can be reduced. As a result, the axial force is reduced.
  • the seventh step of calculating the axial force f max based on the mathematical formula [Equation 20] is executed for the influence range X in the tube axis direction defined by the mathematical formula [Equation 19].
  • s is the installation interval of the large displacement absorbing unit
  • N g is the number of large displacement absorbing unit in axial direction of the tube affected range.
  • n 1 is the number of joints from the tomographic plane to the first large displacement absorbing unit.
  • the value of N g , n 1 is a value determined by a ceiling function that converts an arbitrary real number into a maximum integer value.
  • the first half of the expression indicating the influence range X shows a case where the unit is shrunk and the joint between the large displacement absorbing units Ng and Ng + 1 is shrunk (see FIG. 13A).
  • the part shows the case where the unit Ng is contracted (see FIG. 13B).
  • f ab is an axial force generated by the relative displacement of the region a + b shown in FIG.
  • F b is an axial force generated by the relative displacement of the region b.
  • F max is obtained by the axial force f ab subtracting the axial force f b.
  • a large displacement absorbing unit-compatible axial force evaluation step is executed for evaluating the axial force based on whether or not the axial force f max obtained in the seventh step described above falls within a predetermined reference value.
  • a stress evaluation step is performed for evaluating the stress based on whether or not the stress ⁇ obtained in the step falls within a predetermined proof stress.
  • the stress evaluation step the axial stress ⁇ a calculated from the cross-sectional area A in the axial force f max and the tube, the stress determined by the sum of a bending moment M and the section modulus Z bending stress sigma b calculated from the tube tolerance It is evaluated whether or not it falls within the range.
  • the reliability of the simple analysis is ensured by finally executing the FEM analysis.
  • the interval between the large displacement absorption units may be determined in advance by the above-described simple analysis and finally the FEM analysis may be executed. In this way, it is not necessary to repeat the time-consuming FEM analysis many times.
  • a cross-fault buried pipe behavior estimation apparatus 100 is composed of a personal computer or the like in which general-purpose spreadsheet software is installed.
  • a behavior estimation calculation unit 20 to be executed a condition input unit 10 for setting calculation conditions by the behavior estimation calculation unit 20, and a storage unit for storing calculation conditions input by the condition input unit 10 and calculation results by the behavior estimation calculation unit 20 30, and a display unit 40 that displays any of the calculation results stored in the storage unit 30.
  • the condition input unit 10 and the display unit 40 are realized by using a touch panel type liquid crystal display device 110.
  • condition input unit 10 includes, as calculation conditions for simulation, the fault crossing angle ⁇ , the nominal diameter D of the pipe, the outer shape D2, the pipe thickness t, the pipe expansion / contraction amount ⁇ , and the joint expansion / contraction amount ⁇ of the large displacement absorption unit.
  • Pipe length L, span s of large displacement absorption unit, N value, spring constants of various spring models, and the like are input. When these values are input, the bending performance of various spring models and joints is uniquely determined by a predetermined arithmetic expression.
  • FIG. 16 shows an example of a data table displayed on the liquid crystal display device 110.
  • the condition input unit 10 stores the calculation conditions set in the data table in the input value storage area 31 partitioned in the storage unit 30.
  • the behavior estimation calculation unit 20 When the input of various conditions to the condition input unit 10 is completed, the behavior estimation calculation unit 20 is activated.
  • the behavior estimation calculation unit 20 includes a bending performance evaluation unit 21 that performs the bending performance evaluation step described above, a straight pipe axial force evaluation unit 22 that performs the axial force evaluation step described above, and an axial force evaluation step corresponding to the large displacement absorbing unit described above. Is provided with a large displacement absorbing unit-compatible axial force evaluation unit 23 and a stress evaluation unit 24 that executes the above-described stress evaluation step.
  • the behavior estimation calculation unit 20 sets the tomographic displacement amount Xf in accordance with a step interval (0.1 m in the present embodiment) set in advance in the range of 0 m to 4 m with respect to the input fault crossing angle ⁇ , and bends it.
  • the performance evaluation unit 21 is activated. Note that the range of the tomographic displacement amount Xf and the step interval are not particularly limited values, and are values that can be set as appropriate.
  • the bending resistance is evaluated only by the fault displacement amount H in the direction perpendicular to the pipe axis with respect to various fault displacements having different fault displacement amounts in the pipe axis direction.
  • the calculation ends when a negative evaluation result is obtained in the bending performance evaluation step, and when the result to be obtained cannot be obtained, the condition input unit 10 is activated again and the values of the pipe length L and the nominal diameter D are updated. A similar evaluation procedure is executed based on the new calculation conditions.
  • the behavior estimation calculation unit 20 sets the fault displacement amount Xf according to a step interval (0.1 m in this embodiment) set in advance in the range of 0 m to 4 m with respect to the input fault crossing angle ⁇ . Then, the straight pipe axial force evaluation unit 22 is activated.
  • the behavior estimation calculation unit 20 sets the fault displacement amount Xf according to a step interval (0.1 m in the present embodiment) set in advance in the range from 0 m to 4 m with respect to the same fault intersection angle ⁇ .
  • the large displacement absorbing unit corresponding axial force evaluating unit 23 is activated.
  • condition input unit 10 is activated again, and the pipe length L, nominal diameter D, unit span s, etc. The value is updated, and the same evaluation procedure is executed based on the new calculation condition.
  • the behavior estimation calculation unit 20 activates the stress evaluation unit 24.
  • the stress evaluation unit 24 is based on the evaluation results obtained by the bending performance evaluation unit 21, the straight pipe axial force evaluation unit 22, and the large displacement absorption unit-compatible axial force evaluation unit 23.
  • a step, a stress calculation step and a stress evaluation step are executed.
  • the stress evaluation result displayed by the display unit 40 is shown on the right side of FIG.
  • the behavior estimation calculation unit 20 performs a comprehensive evaluation of the pipeline model with respect to the set fault crossing angle ⁇ and each fault displacement amount Xf , and displays the result on the display unit 40. .
  • the comprehensive evaluation result is shown on the left side of FIG.
  • the joint performance can be secured up to 1.3 m with respect to the straight pipe model, and the fault displacement with respect to the large displacement absorption unit compatible pipe model. It can be determined at a glance that the joint performance can be secured up to 1.6 m. 17 and 18 are displayed on the same screen so that they can be compared.
  • the pipe diameter D, outer diameter D2, pipe thickness t, pipe expansion / contraction amount ⁇ , large displacement absorption unit are set as calculation conditions for simulation via the condition input unit 10.
  • One of the values such as the joint expansion / contraction amount ⁇ , the pipe length L, the span s, N value of the large displacement absorption unit, and the spring constant of various spring models is updated, and the simulation is performed again.
  • condition input unit 10 is activated again and the same evaluation process is repeated based on the new calculation condition.
  • the amount of fault displacement with respect to the allowable bending angle ⁇ a defined by a predetermined joint rotary spring model and the effective length L of the pipe is calculated based on the formula [Equation 11], and the bending range in the pipe axis at that time
  • the program is also defined by the relative displacement amount X g of the pipe and the ground at the fault plane, which is half the fault displacement amount in the tube axis direction among the fault displacement amounts, the joint expansion / contraction amount ⁇ , and the equation [Equation 15].
  • the axial force f (y) is calculated on the basis of an equation [Equation 17] corresponding to the ground spring model in the tube axis direction defined by the spring constants k 1 and k 2 (k 1 > k 2 ) with g as a boundary.
  • the program is a position where the bending angle ⁇ obtained in the third step is equal to or less than a predetermined angle threshold ⁇ t.
  • a predetermined angle threshold ⁇ t Is set as the installation position of the large displacement absorbing unit with the joint expansion / contraction amount ⁇ , and the influence range X in the tube axis direction defined by the equation [Equation 19] is set based on the equation [Equation 20].
  • Such a program can be realized by using general-purpose spreadsheet software, for example, by using a macro instruction incorporated in advance in the spreadsheet software.
  • the cross-fault buried pipe behavior estimation apparatus 100 executes the bending performance evaluation process when a fault occurs based on the input unit 10 for setting and inputting calculation conditions and the calculation condition input via the input unit 10.
  • the bending performance evaluation unit 21 absorbs the fault displacement amount H in the direction perpendicular to the pipe axis out of the fault displacement amount with respect to the allowable bending angle ⁇ a defined by a predetermined joint rotation spring model and the effective length L of the pipe.
  • the bending performance evaluation unit 21 repeatedly operates the third calculation unit from the first calculation unit until a negative result is obtained in the bending performance evaluation calculation unit for each tomographic displacement amount increased at a predetermined pitch. It is configured.
  • the cross-fault buried pipe behavior estimation device 100 also includes an input unit 10 for setting and inputting calculation conditions, and a simple pipe without a large displacement absorption unit based on the calculation conditions input via the input unit 10.
  • the straight pipe axial force evaluation unit 22 that executes the axial force evaluation process at the time of the fault occurrence on the model, and whether the evaluation result by the straight pipe axial force evaluation unit 22 is a positive evaluation or a negative evaluation.
  • a display unit 40 is provided for display in a tabular form that can be viewed in correspondence with the amount of axial displacement.
  • the straight pipe axial force evaluation unit 22 calculates the relative displacement amount X g of the pipe and the ground at the fault plane, which is a half value of the fault displacement amount in the pipe axis direction among the fault displacement amounts, the joint expansion / contraction amount ⁇ , and the formula [Equation 15].
  • the relative displacement amount y (x) between the pipe and the ground at the position x in the pipe axis direction with respect to the defined tomographic plane is defined with respect to the influence range X in the pipe axis direction defined by the formula [Equation 16].
  • the axial force f (y) is calculated on the basis of an equation [Equation 17] corresponding to the ground spring model in the tube axis direction defined by the spring constants k 1 and k 2 (k 1 > k 2 ) with the relative displacement ⁇ g as a boundary.
  • a fourth calculation section that calculates, in the fifth arithmetic unit, a reference value axial force f max is given determined in the fifth arithmetic unit for calculating the axial force f max at fault location based on equation [equation 18]
  • an axial force evaluation calculation unit that evaluates the axial force based on whether or not it fits.
  • the straight pipe axial force evaluation unit 22 repeatedly operates the fourth calculation unit and the fifth calculation unit until a negative result is obtained in the axial force evaluation calculation unit for each tomographic displacement amount increased at a predetermined pitch. It is configured to let you.
  • the cross-fault buried pipe behavior estimation device includes a composite pipe model including an input unit 10 for setting and inputting calculation conditions and a large displacement absorption unit based on the calculation conditions input via the input unit 10.
  • the evaluation results by the large displacement absorption unit-compatible straight pipe axial force evaluation unit 23 that executes the axial force evaluation process at the time of the fault occurrence and the large displacement absorption unit-compatible straight tube axial force evaluation unit 23 are positive evaluations.
  • a negative evaluation is provided with a display unit 40 that displays in a tabular form that can be viewed in correspondence with the amount of fault displacement in the tube axis direction.
  • the straight pipe axial force evaluation unit 23 corresponding to the large displacement absorbing unit is activated when the straight pipe axial force evaluation unit 22 evaluates that the axial force f max exceeds a predetermined reference value, and is determined by the third calculation unit.
  • a sixth calculation unit for setting a position where the angle theta is equal to or less than a predetermined angle threshold theta t as the installation position of the large displacement absorbing unit of the joint deformation amount delta, large displacement installation interval s of the absorption unit, the tube axis direction effects the range number of units n g, and the joint number n 1 from the fault plane to large displacement absorbing unit of first, with respect to defined the tube axis direction of the influence range X in the formula [formula 19], equation [equation 20 a seventh arithmetic unit for calculating the axial force f max based on], large displacement absorbing unit axial force f max as determined by the seventh computing unit evaluates the axial force based on whether within a predetermined reference value And a
  • the straight pipe axial force evaluating unit 23 corresponding to the large displacement absorbing unit is a sixth calculating unit until a negative result is obtained in the axial force evaluating processing unit corresponding to the large displacement absorbing unit for each fault displacement amount increased at a predetermined pitch.
  • the 7th calculating part is comprised so that it may operate repeatedly.
  • the cross-fault buried pipe behavior estimation apparatus 100 is configured to calculate the axis from the axial force f max calculated by the straight pipe axial force evaluation unit 22 or the straight pipe axial force evaluation unit 23 corresponding to the large displacement absorption unit and the cross-sectional area A of the pipe.
  • a stress evaluation processing unit that evaluates the stress based on whether the stress ⁇ falls within a predetermined proof stress.
  • a display unit 40 that displays whether the evaluation result by the stress evaluation processing unit is a positive evaluation or a negative evaluation in a tabular form that can be visually recognized corresponding to the amount of fault displacement.
  • the behavior estimation apparatus 100 for the cross-fault buried pipe is configured to evaluate the pipe performance model 21 based on the ground displacement in the direction perpendicular to the pipe axis of the fault displacement amount, and the fault displacement amount in the pipe axis direction.
  • the straight pipe axial force evaluation unit 22 and the large displacement absorbing unit-compatible axial force evaluation unit 23 that evaluate the pipeline model based on the ground displacement are configured to be independently executable, and stress evaluation is performed based on the respective evaluation results.
  • the unit 24 is configured to be comprehensively evaluated.
  • the calculation load is extremely light and accurate evaluation can be performed with sufficient calculation speed.
  • the input data display table shown in FIG. 16 is associated with the memory map set in the calculation condition storage area 31 partitioned in the storage unit 30, and the evaluation data display table shown in FIGS. 30 is associated with a memory map set in the calculation result storage area 32 partitioned into 30. Therefore, it is not necessary to set redundant memory areas for calculation and display, and the memory areas can be used efficiently.
  • the behavior of the cross-fault buried pipe is estimated not only for the evaluation of the earthquake resistance of the existing pipe but also for the planned pipe to be laid. As a result, it is possible to design with sufficient safety in mind.
  • FIG. 19 shows a behavior estimation procedure using a cross-fault buried pipe behavior estimation apparatus and a FEM analysis apparatus.
  • the behavior estimation apparatus 100 performs a simple analysis of the bending angle with respect to the standard tube (S1), the result is evaluated (S2), and if it is NG, the pipeline is reviewed (S3), and the bending angle is simply analyzed again. Is done.
  • step S5 If the simple analysis result of the axial force is OK (S5), the simple analysis of the stress is performed (S7), the result is evaluated (S8), and if it is NG, the pipeline is reviewed (S9), and from step S1 again. A simple analysis is performed.
  • the behavior estimation apparatus 100 is used to perform the analysis from step S1 to step S9 repeatedly executed in a short time, and as a result, the reliability is obtained by performing the FEM analysis based on the satisfactory analysis result. It is possible to realize an analysis that sufficiently secures. And since the number of repetitions of the FEM analysis which takes the final time can be greatly reduced, a quicker evaluation work environment can be prepared.
  • the flowchart shown in FIG. 19 shows an example in which the FEM analysis in step S10 is performed after a satisfactory evaluation result is obtained in any of the analyzes in steps S1, S4, and S7.
  • the FEM analysis of step S10 may be executed after a satisfactory evaluation result is obtained by any one simple analysis of S7.
  • the present invention may be configured to evaluate any one of the bending angle and the axial force, or is configured to perform the FEM analysis after evaluating any one of the bending angle and the axial force. It may be.
  • the above description is an explanation of one embodiment of the behavior estimation method of the cross-fault buried pipeline and the behavior estimation apparatus of the cross-fault buried pipeline, and the scope of the present invention is not limited by the description, and the target variable
  • the coefficients of the target variable category are not limited to the types and values described above, and it is needless to say that the design can be appropriately changed within the range where the effects of the present invention are exhibited.
  • Behavior estimating device for fault crossing buried pipeline 10 Condition input unit 20: Behavior estimation calculating unit 30: Storage unit 40: Display unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

断層横断埋設管路の挙動推定方法は、許容屈曲角度θ、管の有効長Lに対して、管軸直角方向の断層変位量Hの吸収に必要な耐震継手数N及び管軸方向の屈曲範囲Lを求める第1ステップと、相対変位δgyを境にばね定数k1y,k2yで定義される管軸直角方向の地盤ばねモデルに基づいて管と地盤の相対変位yに対して管の受ける荷重P(y)を求める第2ステップと、台形分布荷重の曲げモーメントから各継手位置の曲げモーメント分布を求め、所定の継手回転ばねモデルに従って各継手の屈曲角度θを求める第3ステップと、屈曲角度θが許容屈曲角度θに収まるか否か評価する屈曲性能評価ステップと、を含む。

Description

断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置
 本発明は、断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置に関する。
 図1(a),(b)に示すように、地盤に埋設された管路が、耐震継手ダクタイル鉄管等、耐震継手を介して複数の管1が接合された管路であれば、地盤沈下や地割れが発生した場合に、一つの継手の伸縮量や屈曲角が限界に達しても、隣の継手が挙動することで大きな地盤変位が吸収される。
 図1(c)には、このような耐震継手ダクタイル鉄管の一例であるNS形ダクタイル鉄管の継手部の伸縮挙動が示されている。上段は標準状態、中段は収縮状態、下段は伸長状態がそれぞれ示されている。図中、符号2は受口、符号3は挿口、符号4はゴム輪、符号5はロックリングを示している。当該耐震継手の伸縮量は管長の±1%であり、引抜耐力は3D(kN)、Dは呼び径mm、配管施工時の許容屈曲角度αは4°、最大許容屈曲角度βは8°である。
 特許文献1には、メカニカル継手を含む配管系の不等沈下に対する健全性の評価が可能な維持管理方法として、メカニカル継手を有する地中埋設配管路に沿って、地盤の沈下分布を地表で計測し、沈下分布から局所的な相対沈下量δrと、その発生範囲の長さLとを求め、発生範囲に含まれるメカニカル継手の最大曲げ角度θmaxをθmax≦2arctan(2δr/L)として、最大曲げ角度θmaxとメカニカル継手の許容曲げ角度とを比較することにより、配管系の健全性を評価する維持管理方法が提案されている。
特開平7-248100号公報
 上述した配管系の健全性を評価する維持管理方法によれば、地表で計測された地盤の沈下分布に基づいてメカニカル継手の曲げ角度を算出し、算出した曲げ角度と許容曲げ角度とを比較することにより既設の配管系の健全性を評価することができる。
 しかし、地震の活動期に入ったといわれている我が国では、断層横断埋設管路の挙動を推定して健全性を評価することの必要性が認識されながら、未だ大掛かりで時間の掛かる有限要素法を用いた構造解析プログラムを実行する専用のシミュレーション装置を用いて評価する方法以外に、実用的な挙動推定方法が無い。また、既設の管路の評価のみならず、これから布設する計画管路に対しても、断層横断埋設管路の挙動を推定して十分な安全性を見込んで設計するために、実用性の高い断層横断埋設管路の挙動推定方法が求められている。
 本発明の目的は、上述した問題点に鑑み、大掛かりなシミュレーション装置を用いることなく、簡易でありながらも精度が得られる断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置を提供する点にある。
 上述の目的を達成するため、本発明による断層横断埋設管路の挙動推定方法の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、断層横断埋設管路の挙動推定方法であって、所定の継手回転ばねモデルで規定される許容屈曲角度θ、管の有効長Lに対して、断層変位量のうち管軸直角方向の断層変位量Hを吸収するのに必要な断層面から片側の最少の耐震継手数Nを数式〔数1〕に基づいて算出するとともに、そのときの管軸方向の屈曲範囲Lを数式〔数2〕に基づいて算出する第1ステップと、
Figure JPOXMLDOC01-appb-M000011

Figure JPOXMLDOC01-appb-M000012

 所定の相対変位δgyを境にばね定数k1y,k2y(k1y>k2y)で定義される管軸直角方向の地盤ばねモデルに従う数式〔数3〕に基づいて、管と地盤の相対変位yに対して管の受ける荷重p(y)を台形分布荷重として算出する第2ステップと、
Figure JPOXMLDOC01-appb-M000013

 数式〔数4〕で求まる管軸方向の位置xでの台形分布荷重の曲げモーメントM(x)から各継手位置の曲げモーメント分布を求め、求めた曲げモーメント分布から前記継手回転ばねモデルに従って各継手位置の管の屈曲角度θを求める第3ステップと、
Figure JPOXMLDOC01-appb-M000014

 前記第3ステップで求めた屈曲角度θが許容屈曲角度θ以内に収まるか否かに基づいて屈曲性能を評価する屈曲性能評価ステップと、を含む点にある。
 第1ステップでは、管軸方向の断層変位量とは無関係に、管軸直角方向の断層変位量Hを吸収するのに必要な断層面から片側の最少の耐震継手数Nの全てが許容屈曲角度θ屈曲するとの仮定の下で、数式〔数1〕に基づいて最少の耐震継手数Nが求められ、そのときの管軸方向の屈曲範囲Lが数式〔数2〕により求められる。
 第2ステップでは、管と地盤の相対変位yが断層面を中心に線形に分布するものと仮定し、所定の管軸直角方向の地盤ばねモデルに従う数式〔数3〕により、管と地盤の相対変位yに対して管の受ける荷重p(y)が台形分布荷重として算出される。
 第3ステップでは、数式〔数4〕により台形分布荷重に対する各継手位置の曲げモーメント分布が求められ、継手回転ばねモデルに従って各継手位置の管の屈曲角度θが求められる。
 屈曲性能評価ステップでは、算出された屈曲角度θが許容屈曲角度θ以内に収まるか否により耐屈曲性能が評価される。即ち、管軸方向の断層変位量が異なる様々な断層変位に対して管軸直角方向の断層変位量Hのみで耐屈曲性能が評価される。
 同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、断層変位量のうち管軸方向の断層変位量の半値となる断層面での管と地盤の相対変位量X、継手伸縮量δ、数式〔数5〕で規定され断層面を基準とする管軸方向の位置xでの管と地盤の相対変位量y(x)、数式〔数6〕で規定される管軸方向の影響範囲Xに対して、所定の相対変位δを境にばね定数k,k(k>k)で定義される管軸方向の地盤ばねモデルに対応した数式〔数7〕に基づいて軸力f(y)を算出する第4ステップと、
Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016

Figure JPOXMLDOC01-appb-M000017

 数式〔数8〕に基づいて断層位置での軸力fmaxを算出する第5ステップと、
Figure JPOXMLDOC01-appb-M000018

 前記第5ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する軸力評価ステップと、を備えている点にある。
 第4ステップでは、管軸方向の地盤ばねモデルに対応した数式〔数7〕に基づいて軸力f(y)が算出され、第5ステップでは、断層面から管軸方向の影響範囲Xまで軸力f(y)を積分した軸力fmaxが算出される。
 そして、軸力評価ステップでは、軸力fmaxが所定の基準値に収まるか否かに基づいて軸力が評価される。即ち、管軸直角方向の断層変位量が異なる様々な断層変位に対して管軸方向の断層変位量Xのみで耐軸力性能が評価される。
 同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記軸力評価ステップで軸力fmaxが所定の基準値を超えると評価されると、前記第3ステップで求めた屈曲角度θが所定の角度閾値θ以下となる位置を継手伸縮量Δの大変位吸収ユニットの設置位置として設定する第6ステップと、大変位吸収ユニットの設置間隔s、管軸方向影響範囲内のユニット数N、及び断層面から一つ目の大変位吸収ユニットまでの継手数nとして、数式〔数9〕で規定される管軸方向の影響範囲Xに対して、数式〔数10〕に基づいて軸力fmaxを算出する第7ステップと、
Figure JPOXMLDOC01-appb-M000020

 前記第7ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する大変位吸収ユニット対応軸力評価ステップと、を備えている点にある。
 軸力評価ステップで軸力fmaxが所定の基準値を超えると評価されると、第6ステップでは、第3ステップで求めた屈曲角度θが所定の角度閾値θ以下となる位置が継手伸縮量Δの大変位吸収ユニットの設置位置として設定され、第7ステップでは、数式〔数9〕で規定される管軸方向の影響範囲Xに対して、数式〔数10〕に基づいて軸力fmaxが算出される。そして、大変位吸収ユニット対応軸力評価ステップでは、第7ステップで求められた軸力fmaxが所定の基準値に収まるか否かに基づいて耐軸力性能が評価される。
 同第四の特徴構成は、同請求項4に記載した通り、上述の第二または第三の特徴構成に加えて、前記軸力fmaxと管の断面積Aから軸応力σ=fmax/Aを算出する軸応力算出ステップと、前記曲げモーメントMと管の断面係数Zから曲げ応力σ=M/Zを算出する曲げ応力算出ステップと、前記軸応力算出ステップで求めた軸応力σと前記曲げ応力算出ステップで求めた曲げ応力σを加算して応力σ=σ+σを算出する応力算出ステップと、前記応力算出ステップで求めた応力σが所定の耐力に収まるか否かに基づいて応力を評価する応力評価ステップと、を備えている点にある。
 応力評価ステップでは、軸力fmaxと管の断面積Aから算出された軸応力σと、曲げモーメントMと管の断面係数Zから算出された曲げ応力σとの和で求まる応力が許容値に収まるか否かが評価される。
 同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成を備えた断層横断埋設管路の挙動推定方法を実行する簡易解析実行ステップと、前記簡易解析実行ステップで所定の評価が得られた後に、有限要素法を用いた構造解析方法を実行する詳細解析実行ステップと、を備えている点にある。
 短時間で繰り返して実行可能な第一から第四の何れかの特徴構成を備えた断層横断埋設管路の挙動推定方法を実行して、満足の得られた解析結果に基づいて有限要素法を用いた構造解析方法を用いた解析を行なうことで、信頼性を十分に確保した解析が実現でき、時間の掛かる有限要素法を用いた構造解析の繰返し回数を大きく低減できるので、より迅速な評価作業環境が整えられるようになった。
 本発明による断層横断埋設管路の挙動推定装置の特徴構成は、同請求項6に記載した通り、断層横断埋設管路の挙動推定装置であって、上述した第一から第四の何れかの特徴構成を備えた断層横断埋設管路の挙動推定方法を実行する挙動推定演算部と、前記挙動推定演算部による演算条件を設定する条件入力部と、前記挙動推定演算部による演算結果を記憶する記憶部と、前記記憶部に記憶された演算結果の何れかを表示する表示部と、を備えている点にある。
 このような断層横断埋設管路の挙動推定装置を用いることにより、演算時間のかかる有限要素法を用いたシミュレーション演算を行なうことなく、短時間である程度の信頼性のある評価が行なえるようになり、既設管路の耐震性評価、耐震性の高い未設管路の設計が行なえるようになる。
 以上説明した通り、本発明によれば、大掛かりなシミュレーション装置を用いることなく、簡易でありながらも精度が得られる断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置を提供することができる。
図1(a)は耐震継手で接合された管路の地盤沈下時の挙動説明図、図1(b)は同地割れ時の挙動説明図、図1(c)は耐震継手の伸縮動作説明図である。 図2は断層が管路に作用する軸力及び継手屈曲角の説明図である。 図3(a)は継手ばね及び地盤ばねの説明図、図3(b)~図3(d)は継手ばねモデルの説明図、図3(e)及び図3(f)は地盤ばねモデルの特性図である。 図4は断層近傍の継手から屈曲する様子を示したシミュレーション結果の説明図である。 図5(a)は継手屈曲角度の挙動推定方法に用いる継手回転ばねモデルの説明図、図5(b)は断層変位Hに対する管の屈曲範囲Lを示す管路説明図である。 図6(a)は継手屈曲角度の挙動推定方法に用いる管軸直角方向の地盤ばねモデルの説明図、図6(b)は管路と地盤の相対変位yの分布の説明図、図6(c)は管路に掛かる荷重p(y)の分布の説明図である。 図7(a)は本発明の挙動推定方法による推定結果の継手回転ばねの説明図、図7(b)は本発明の挙動推定方法による推定結果とFEM解析結果を対比した継手屈曲角度の分布の説明図である。 図8は断層交差角度が異なっても軸力-管軸方向地盤変位の曲線が一致することを示すFEM解析結果の説明図である。 図9(a)は断層変位により継手が圧縮される状態の説明図、図9(b)は断層面を境に左右対称に地盤と管が相対変位することを示す説明図、図9(c)は単位長さ当たりの軸力分布の説明図である。 図10(a)は管と地盤の相対変位量y(x)の説明図、図10(b)は軸力を推定するために用いる管軸方向地盤ばねモデルの説明図、図10(c)継手の屈曲角度分布の説明図である。 図11は本発明の挙動推定方法による推定結果とFEM解析結果を対比した軸力特性の説明図である。 図12(a)は大変位対応ユニットを用いた場合の管と地盤の相対変位量y(x)の説明図、図12(b)は軸力の影響範囲Xの説明図である。 図13(a),図13(b)は軸力の影響範囲Xの算定方法の説明図である。 図14は大変位対応ユニットを用いた場合の本発明の挙動推定方法による推定結果とFEM解析結果を対比した軸力特性の説明図である。 図15は断層横断埋設管路の挙動推定装置の機能ブロック構成図である。 図16は断層横断埋設管路の挙動推定装置の解析条件入力画面の説明図である。 図17は断層横断埋設管路の挙動推定装置の解析結果表示画面の説明図であり、左方は総合評価結果を示す表示画面の説明図であり、右方は直管のみを用いた管路の軸力評価結果及び大変位対応ユニットを組み込んだ管路の軸力評価結果を示す表示画面の説明図である。 図18は断層横断埋設管路の挙動推定装置の解析結果表示画面の説明図であり、左方は屈曲角度評価結果を示す表示画面の説明図であり、右方は応力評価結果を示す表示画面の説明図である。 図19は断層横断埋設管路の挙動推定方法の手順を示すフローチャートである。
 以下に本発明による断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置を、耐震継手ダクタイル鉄管の一例であるNS形ダクタイル鉄管の直管を例に説明する。直管の一端側に形成された受口に他の直管の挿し口が抜け止め機構を介して挿入されることにより複数の直管により長い管路が構成される。尚、本発明は、NS形ダクタイル鉄管に限らず、耐震継手を介して複数の管が接合される断層横断埋設管路全般に適用できる。
 図2に示すように、本発明は、断層角度φの断層変位を管軸方向と管軸直角方向の二成分に分けて「継手屈曲角」、「軸力」及び「応力」を簡易的に算定することにより、断層変位に対する管路挙動を推定し評価する方法及び装置である。
 当該方法及び装置は、構造解析用の専用のシミュレーション装置を用いて継手部を含む管路をモデル化してFEM解析を行なって得られた知見に基づいて構築された方法であり、そのような高価な専用のシミュレーション装置を用いなくても、汎用のパーソナルコンピュータ上で構築でき、簡易でありながらも精度が得られる方法及び装置となる。尚、FEM解析とは、有限要素法(finite element method)を用いた構造解析のことである。
 以下、順に説明する。
 図3(a)には、継手ばね及び地盤ばねモデルが示されている。解析対象となる耐震継手で接合される管路を弾性床上の梁(剛体)と見なし、実験に基づいて得られたばね定数に基づいて継手及び地盤をモデル化した。
 図3(b)から(d)には継手ばねの特性が示され、図3(e),(f)には地盤ばねの特性が示されている。継手ばねのうちの回転ばねは、受口側の管の管軸と挿口側の管の管軸が屈曲した状態となって受口側の管の継手部内面に挿口側の管の継手部外面が接触して曲がりにくくなる角度(図3(c)のθ)が設定されている。当該角度θを許容屈曲角度といい、本実施形態では、許容屈曲角度を一律に4.0°に設定している。
 呼び径75~250のNS形ダクタイル鉄管は地震時に曲がりうる最大屈曲角度が8°と規定され、8°以内で継手性能が保持される。尚、許容屈曲角度及び最大許容屈曲角度の値は、本実施形態に記載した値に限るものではなく、呼び径により異なる値であってもよいし、耐震継手鉄管の種類により異なる値に設定されていてもよい。
 軸方向ばねは、管とゴム輪が滑り継手部が伸縮する領域、継手の抜け出し防止機構が働き伸縮が止まる領域でそれぞれ異なるばね定数が設定されている。
 地盤ばねのうちの管軸方向地盤ばねは、管と地盤の滑りを考慮して管と地盤の相対変位が限界値を超えるとばね定数が小さくなるバイリニアモデルで設定されている。また、管軸直角方向地盤ばねは、管が地盤に対し相対的に下方へ移動する場合は地盤反力を考慮し、管が地盤に対し相対的に上方へ移動する場合は地盤の崩壊を考慮して設定されている。何れも管と地盤の相対変位が限界値を超えるとばね定数が小さくなるバイリニアモデルで設定されている。
 構造解析プログラムを実行する専用のシミュレーションシステムである3次元骨組構造物非線形動的解析システム「DYNA2E」(伊藤忠テクノソリューションズ株式会社)を用いて、このような継手ばね及び地盤ばねモデルに対して断層位置や管長を変えて所定の断層角及び断層変位に対するFEM解析を行なった結果に基づいて以下の断層横断埋設管路の挙動推定方法が構築されている。
 先ず、管軸直角方向地盤変位による継手屈曲角度の評価方法について説明する。
 図4に示すように、FEM解析の結果、管路に生じる軸力が小さい場合、断層近傍の継手から順に継手が屈曲し、断層変位が吸収されることが判明している。
 図4中、符号A,B,C,Dは、断層変位の固定側で断層面近傍から離隔する方向に順に配置された継手を示し、符号A´,B´,C´,D´は、断層変位の移動側で断層面近傍から離隔する方向に順に配置された継手を示す。
 図5(a),(b)に示すように、上述した所定の継手回転ばねモデルで規定される許容屈曲角度θ、管の有効長Lに対して、断層変位量のうち管軸直角方向の断層変位量Hを吸収するのに必要な断層面から片側の最少の耐震継手数Nを数式〔数11〕に基づいて算出するとともに、そのときの管軸方向の屈曲範囲Lを数式〔数12〕に基づいて算出する第1ステップを実行する。
Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-M000022
 断層の影響範囲にある継手は全て許容屈曲角度θだけ屈曲するとともに断層面にある継手は屈曲しない、とのFEM解析の結果得られた結果に基づく仮定の下でのステップである。
 次に、図6(b)に示すように、管路と地盤の相対変位yは断層面を中心に、安全側への評価が得られるように、線形に分布すると仮定するとともに、断層面位置の相対変位はH/2、断層面からL離れた位置の相対変位は0になるとの仮定の下で、以下の第2ステップを実行する。
 第2ステップは、図6(a)に示すような所定の相対変位δgyを境にばね定数k1y,k2y(k1y>k2y)で定義される管軸直角方向の地盤ばねモデルに従う数式〔数13〕に基づいて、図6(c)に示すような管と地盤の相対変位yに対して管の受ける荷重p(y)を台形分布荷重として算出するステップである。
Figure JPOXMLDOC01-appb-M000023
 次に、数式〔数14〕で求まる管軸方向の位置xでの台形分布荷重の曲げモーメントM(x)から各継手位置の曲げモーメント分布を求め、求めた曲げモーメント分布から図7(a)に示すような継手回転ばねモデルに従って各継手位置の管の屈曲角度θを求める第3ステップを実行する。
Figure JPOXMLDOC01-appb-M000024
 さらに、第3ステップで求めた屈曲角度θが許容屈曲角度θ以内に収まるか否かに基づいて屈曲性能を評価する屈曲性能評価ステップを実行する。その結果、管軸方向の断層変位量が異なる様々な断層変位に対して管軸直角方向の断層変位量Hのみで耐屈曲性能が評価できるようになる。
 図7(b)には、FEM解析の結果(図7(b)の丸印)と、本発明による解析結果(図7(b)の四角印)が示されており、断層近傍の継手屈曲角度は概ね一致することが判明し、簡易的に継手屈曲角度を評価する本発明による方法の有効性が証明されている。
 次に、簡易的な軸力の評価方法について説明する。
 図8に示すように、FEM解析の結果、断層交差角度が異なっても、軸力-管軸方向地盤変位の曲線はほぼ一致することが判明している。図8で、「直管管路」との表記は直管のみで構成された管路モデルを示し、「スパン**m」との表記はスパン**mで大変位吸収ユニットを用いた管路モデルを示す。
 図9(a)の上側には、断層変位前の管路及び継手が実線で示され、図9(a)の下側には、断層変位により継手が圧縮された後の管路及び継手が破線で示されている。図9(b)に示すように、各継手部が圧縮されることにより地盤と管との管軸方向の相対変位が吸収される、とのFEM解析で得られた知見に基づいた仮定の下で、以下のように軸力を求める。
 図9(c)に示すように、地盤ばねモデルを用いて単位長さ当たりの軸力f(y)分布を求め、軸力f(y)を図中ハッチングで示される範囲で積分することにより、軸力fmaxを求める。
 具体的に、図10(a),(b)に示すように、断層変位量のうち管軸方向の断層変位量の半値となる断層面での管と地盤の相対変位量X、継手伸縮量δ、数式〔数15〕で規定され断層面を基準とする管軸方向の位置xでの管と地盤の相対変位量y(x)、数式〔数16〕で規定される管軸方向の影響範囲Xに対して、所定の相対変位δgを境にばね定数k,k(k>k)で定義される管軸方向の地盤ばねモデルに対応した数式〔数17〕に基づいて軸力f(y)を算出する第4ステップを実行する。
Figure JPOXMLDOC01-appb-M000025

Figure JPOXMLDOC01-appb-M000026

Figure JPOXMLDOC01-appb-M000027
 次に、数式〔数18〕に基づいて断層位置での軸力fmaxを算出する第5ステップを実行する。
Figure JPOXMLDOC01-appb-M000028
 さらに、第5ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する軸力評価ステップを実行する。所定の基準値は、3DkN(ここに、Dは呼び径である。)により設定される値が好適に用いられる。即ち、管軸直角方向の断層変位量が異なる様々な断層変位に対して管軸方向の断層変位量Xのみで耐軸力性能が評価される。
 図11に示すように、断層角45°,60°に対するFEM解析の結果(図11中、一点鎖線及び二点鎖線で示されている)と、本発明による方法を採用した結果(図11中、実線で示されている)とを対比すると、低軸力時には曲線はほぼ一致し軸力3DkN付近で安全側に評価できることが証明された。
 上述した軸力評価ステップで、軸力fmaxが所定の基準値を超えると評価されると、図10(c)に示すように、第3ステップで求めた屈曲角度θが所定の角度閾値θ以下となる位置を継手伸縮量(長尺継ぎ輪の伸縮量)Δ(δ<<Δ)の大変位吸収ユニットの設置位置として設定する第6ステップを実行する。図10(c)では、角度閾値θ以下となるD-E間に大変位吸収ユニットが設置される。
 大変位吸収ユニットとは、通常の耐震継手による変位吸収量つまり管継手伸縮量δよりも大きな変位吸収量を実現するための継ぎ輪であり、両端に受口が形成された長さ1~3m程度の耐震継手管である。大変位吸収ユニットを効果的に機能させるために、通常10~100mのピッチで管路に組み込まれる。尚、大変位吸収ユニットは両端に受口が形成されるため、それぞれに直管の挿口が挿入されるような管路構成となる。
 管軸直角方向の変位の影響を受けた範囲、つまり継手が屈曲した範囲を挟むように、大変位対応ユニットを設ける必要がある。そこで、具体的に角度閾値θは安全を考慮して、図7(a)に示す継手回転ばねのモーメントが非常に大きくなる角度θよりも十分に小さな角度に設定され、本実施形態では、角度θの3.2°に対して角度閾値θを1°に設定されている。尚、角度閾値θは1°に制限される値ではなく、安全を考慮して適宜設定される値であればよい。
 図12(a)に示すように、大変位吸収ユニットを用いることにより、軸方向の影響範囲を狭めることができ、大変位吸収ユニットの外側の管路の相対変位量を低減することができ、これにより軸力が低減するようになる。
 さらに、数式〔数19〕で規定される管軸方向の影響範囲Xに対して、数式〔数20〕に基づいて軸力fmaxを算出する第7ステップを実行する。数式〔数19〕で、sは大変位吸収ユニットの設置間隔、Nは管軸方向影響範囲内の大変位吸収ユニットの数である。
Figure JPOXMLDOC01-appb-M000029
 数式〔数19〕で、nは断層面から一つ目の大変位吸収ユニットまでの継手数である。N,nの値は、任意の実数に対して最大の整数値に変換する天井関数で定まる値である。また、影響範囲Xを示す式の前半部はユニットが縮み切っており、大変位吸収ユニットNとN+1の間の継手が縮んでいる場合(図13(a)参照)を示し、後半部はユニットNが縮んでいる場合(図13(b)参照)を示す。
Figure JPOXMLDOC01-appb-M000030
 fabは図12(b)に示す領域a+bの相対変位によって生じる軸力である。また、fは領域bの相対変位によって生じる軸力である。軸力fabから軸力fを減算することによりfmaxが求まる。
 上述した第7ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する大変位吸収ユニット対応軸力評価ステップが実行される。
 図14に示すように、FEM解析と上述の軸力の解析結果とはほぼ一致することが判明している。
 さらに、軸力fmaxと管の断面積Aから軸応力σ=fmax/Aを算出する軸応力算出ステップと、曲げモーメントMと管の断面係数Zから曲げ応力σ=M/Zを算出する曲げ応力算出ステップと、軸応力算出で求めた軸応力σと曲げ応力算出で求めた曲げ応力σを加算して応力σ=σ+σを算出する応力算出ステップと、応力算出ステップで求めた応力σが所定の耐力に収まるか否かに基づいて応力を評価する応力評価ステップとが実行される。
 応力評価ステップでは、軸力fmaxと管の断面積Aから算出された軸応力σaと、曲げモーメントMと管の断面係数Zから算出された曲げ応力σとの和で求まる応力が許容値に収まるか否かが評価される。
 このような簡易的な解析を行なって管路を見直した後に、最終的にFEM解析を実行することにより、簡易解析の信頼性が担保される。大変位吸収ユニットを付加する場合には、予め上述した簡易解析で大変位吸収ユニットの間隔を定めて最終的にFEM解析を実行すればよい。このようにすれば、時間の掛かるFEM解析を多数回繰り返す必要が無くなる。
 図15に示すように、本発明による断層横断埋設管路の挙動推定装置100は、汎用の表計算ソフトウェアがインストールされたパーソナルコンピュータ等で構成され、上述した断層横断埋設管路の挙動推定方法を実行する挙動推定演算部20と、挙動推定演算部20による演算条件を設定する条件入力部10と、条件入力部10で入力された演算条件及び挙動推定演算部20による演算結果を記憶する記憶部30と、記憶部30に記憶された演算結果の何れかを表示する表示部40と、を備えて構成されている。条件入力部10と表示部40とがタッチパネル式の液晶表示装置110を用いて実現されている。
 詳述すると、条件入力部10には、シミュレーション用の演算条件として断層交差角φ、管の呼び径D、外形D2、管厚t、管継手伸縮量δ、大変位吸収ユニットの継手伸縮量Δ、管長L、大変位吸収ユニットのスパンs、N値、各種ばねモデルのばね定数等が入力される。これらの値が入力されると、各種ばねモデルや継手の曲げ性能は所定の演算式により一意に定まる。
 液晶表示装置110に表示されるデータテーブルの該当欄にカーソルを移動させた後にキーボード等を介して入力することによりこれら演算条件が設定入力される。図16には、液晶表示装置110に表示されるデータテーブルの例が示されている。
 条件入力部10は、データテーブルに設定された演算条件を記憶部30に区画された入力値格納領域31に格納する。
 条件入力部10への各種の条件の入力が終了すると挙動推定演算部20が起動される。挙動推定演算部20は、上述した屈曲性能評価ステップを実行する屈曲性能評価部21、上述した軸力評価ステップを実行する直管軸力評価部22、上述した大変位吸収ユニット対応軸力評価ステップを実行する大変位吸収ユニット対応軸力評価部23、上述した応力評価ステップを実行する応力評価部24を備えている。
 挙動推定演算部20は、入力された断層交差角φに対して、0mから4mの範囲で予め設定されたきざみ間隔(本実施形態では0.1m)に従って断層変位量Xを設定して屈曲性能評価部21を起動する。尚、断層変位量Xの範囲及びきざみ間隔は特に限定される値ではなく、適宜設定可能な値である。
 屈曲性能評価部21は、設定された断層交差角φ及び各断層変位量Xに基づいて、数式(H=X・sinφ)に基づいて管軸直角方向の地盤変位量H、その半値H/2を算出して、上述した第1ステップから第3ステップ及び屈曲性能評価ステップを繰返し実行し、その結果を演算結果格納領域に格納する。
 図18の左側に表示部40によって表示された屈曲性能評価結果が示されている。つまり、管軸方向の断層変位量が異なる様々な断層変位に対して管軸直角方向の断層変位量Hのみで耐屈曲性能が評価される。
 屈曲性能評価ステップにより否定的な評価結果が出た時点で演算は終了し、求める結果が得られない場合には、条件入力部10が再度起動されて管長Lや呼び径Dの値が更新され、新たな演算条件に基づいて同様の評価手順が実行される。
 同様に、挙動推定演算部20は、入力された断層交差角φに対して、0mから4mの範囲で予め設定されたきざみ間隔(本実施形態では0.1m)に従って断層変位量Xfを設定して直管軸力評価部22を起動する。
 直管軸力評価部22は、設定された断層交差角φ及び各断層変位量Xに基づいて、数式(X=X・cosφ)に基づいて管軸方向の地盤変位量Xを算出して、上述した第4ステップ、第5ステップ及び軸力評価ステップを繰返し実行し、その結果を演算結果格納領域に格納する。
 軸力評価ステップで、想定される断層変位量Xに到るまでの間で軸力fmaxが所定の基準値を超えると評価されると、以後の一連の軸力評価ステップは中止される。
 その後、挙動推定演算部20は、同じく入力された断層交差角φに対して、0mから4mの範囲で予め設定されたきざみ間隔(本実施形態では0.1m)に従って断層変位量Xfを設定して大変位吸収ユニット対応軸力評価部23を起動する。
 大変位吸収ユニット対応軸力評価部23は、設定された断層交差角φ及び各断層変位量Xに基づいて、数式(X=X・cosφ)に基づいて管軸方向の地盤変位量Xを算出して、大変位吸収ユニットが組み込まれた管路モデルに対して、上述の第6ステップ、第7ステップ及び大変位吸収ユニット対応軸力評価ステップを実行する。
 図17の右側に表示部40によって表示された直管軸力評価結果及び大変位吸収ユニット対応軸力評価結果が示されている。つまり、管軸直角方向の断層変位量が異なる様々な断層変位に対して管軸方向の断層変位量Xのみで耐軸力性能が評価される。
 直管軸力評価結果及び大変位吸収ユニット対応軸力評価結果が、求める性能に見合わない場合には、条件入力部10が再度起動されて管長Lや呼び径D、ユニットのスパンs等の値が更新され、新たな演算条件に基づいて同様の評価手順が実行される。
 最後に、挙動推定演算部20は、応力評価部24を起動する。応力評価部24は、屈曲性能評価部21、直管軸力評価部22及び大変位吸収ユニット対応軸力評価部23により得られた評価結果に基づいて、上述した軸応力算出ステップ、曲げ応力算出ステップ、応力算出ステップ及び応力評価ステップが実行される。図18の右側に表示部40によって表示された応力評価結果が示されている。
 挙動推定演算部20は、応力評価部24による評価が終了すると、設定された断層交差角φ及び各断層変位量Xに対する管路モデルの総合評価を行ない、その結果を表示部40に表示する。図17の左側に総合評価結果が示されている。この例では、断層交差角50°のとき、直管の管路モデルに対して断層変位量が1.3m迄は継手性能が確保でき、大変位吸収ユニット対応管路モデルに対して断層変位量が1.6m迄は継手性能が確保できることが一目瞭然で判断できるようになる。図17及び図18は、同一画面に対比可能に表示される。
 更に大きな断層変位量に対応するためには、条件入力部10を介して、シミュレーション用の演算条件として管の呼び径D、外形D2、管厚t、管継手伸縮量δ、大変位吸収ユニットの継手伸縮量Δ、管長L、大変位吸収ユニットのスパンs、N値、各種ばねモデルのばね定数等の何れかの値を更新して、再度シミュレーションを行なうことになる。
 表示部40に表示された結果に基づいて、求める性能に見合わないと判断される場合には、条件入力部10が再度起動されて新たな演算条件に基づいて同様の評価処理が繰り返される。
 このような断層横断埋設管路の挙動推定装置100を用いることにより、演算時間が非常に長くなる有限要素法を用いたシミュレーション演算を行なうことなく、短時間である程度の信頼性のある評価が行なえるようになり、既設管路の耐震性評価、耐震性の高い未設管路の設計が行なえるようになる。
 即ち、汎用のコンピュータを断層横断埋設管路の挙動推定装置として機能させるために、所定の継手回転ばねモデルで規定される許容屈曲角度θ、管の有効長Lに対して、断層変位量のうち管軸直角方向の断層変位量Hを吸収するのに必要な断層面から片側の最少の耐震継手数Nを数式〔数11〕に基づいて算出するとともに、そのときの管軸方向の屈曲範囲Lを数式〔数12〕に基づいて算出する第1ステップと、所定の相対変位δgyを境にばね定数k1y,k2y(k1y>k2y)で定義される管軸直角方向の地盤ばねモデルに従う数式〔数13〕に基づいて、管と地盤の相対変位yに対して管の受ける荷重p(y)を台形分布荷重として算出する第2ステップと、数式〔数14〕で求まる管軸方向の位置xでの台形分布荷重の曲げモーメントM(x)から各継手位置の曲げモーメント分布を求め、求めた曲げモーメント分布から前記継手回転ばねモデルに従って各継手位置の管の屈曲角度θを求める第3ステップと、前記第3ステップで求めた屈曲角度θが許容屈曲角度θ以内に収まるか否かに基づいて屈曲性能を評価する屈曲性能評価ステップと、をコンピュータに実行させるためのプログラムがインストールされている。
 当該プログラムは、また、断層変位量のうち管軸方向の断層変位量の半値となる断層面での管と地盤の相対変位量X、継手伸縮量δ、数式〔数15〕で規定され断層面を基準とする管軸方向の位置xでの管と地盤の相対変位量y(x)、数式〔数16〕で規定される管軸方向の影響範囲Xに対して、所定の相対変位δgを境にばね定数k,k(k>k)で定義される管軸方向の地盤ばねモデルに対応した数式〔数17〕に基づいて軸力f(y)を算出する第4ステップと、数式〔数18〕に基づいて断層位置での軸力fmaxを算出する第5ステップと、前記第5ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する軸力評価ステップと、を備えている。
 さらに、当該プログラムは、前記軸力評価ステップで軸力fmaxが所定の基準値を超えると評価されると、前記第3ステップで求めた屈曲角度θが所定の角度閾値θ以下となる位置を継手伸縮量Δの大変位吸収ユニットの設置位置として設定する第6ステップと、数式〔数19〕で規定される管軸方向の影響範囲Xに対して、数式〔数20〕に基づいて軸力fmaxを算出する第7ステップと、前記第7ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する大変位吸収ユニット対応軸力評価ステップと、を備えている。
 さらにまた、当該プログラムは、前記軸力fmaxと管の断面積Aから軸応力σ=fmax/Aを算出する軸応力算出ステップと、前記曲げモーメントMと管の断面係数Zから曲げ応力σ=M/Zを算出する曲げ応力算出ステップと、前記軸応力算出で求めた軸応力σと前記曲げ応力算出で求めた曲げ応力σを加算して応力σ=σ+σを算出する応力算出ステップと、前記応力算出ステップで求めた応力σが所定の耐力に収まるか否かに基づいて応力を評価する応力評価ステップと、を備えている。
 このようなプログラムは、汎用の表計算ソフトを用いて実現でき、例えば表計算ソフトに予め組み込まれているマクロ命令を用いて実現することができる。
 即ち、断層横断埋設管路の挙動推定装置100は、演算条件を設定入力する入力部10と、入力部10を介して入力された演算条件に基づいて断層発生時の屈曲性能評価処理を実行する屈曲性能評価部21と、屈曲性能評価部21による評価結果が肯定的評価であるか否定的評価であるかを管軸直角方向の断層変位量に対応して視認可能な表形式で表示する表示部40を備えている。
 屈曲性能評価部21は、所定の継手回転ばねモデルで規定される許容屈曲角度θ、管の有効長Lに対して、断層変位量のうち管軸直角方向の断層変位量Hを吸収するのに必要な断層面から片側の最少の耐震継手数Nを数式〔数11〕に基づいて算出するとともに、そのときの管軸方向の屈曲範囲Lを数式〔数12〕に基づいて算出する第1演算部と、所定の相対変位δgyを境にばね定数k1y,k2y(k1y>k2y)で定義される管軸直角方向の地盤ばねモデルに従う数式〔数13〕に基づいて、管と地盤の相対変位yに対して管の受ける荷重p(y)を台形分布荷重として算出する第2演算部と、数式〔数14〕で求まる管軸方向の位置xでの台形分布荷重の曲げモーメントM(x)から各継手位置の曲げモーメント分布を求め、求めた曲げモーメント分布から継手回転ばねモデルに従って各継手位置の管の屈曲角度θを求める第3演算部と、第3演算部で求めた屈曲角度θが許容屈曲角度θ以内に収まるか否かに基づいて屈曲性能を評価する屈曲性能評価演算部とを備えている。
 そして、屈曲性能評価部21は、所定ピッチで増大させた各断層変位量に対して、屈曲性能評価演算部で否定的な結果が出るまで第1演算部から第3演算部を繰返し動作させるように構成されている。
 また、断層横断埋設管路の挙動推定装置100は、演算条件を設定入力する入力部10と、入力部10を介して入力された演算条件に基づいて、大変位吸収ユニットを備えない単純管路モデルに対して、断層発生時の軸力評価処理を実行する直管軸力評価部22と、直管軸力評価部22による評価結果が肯定的評価であるか否定的評価であるかを管軸方向の断層変位量に対応して視認可能な表形式で表示する表示部40を備えている。
 直管軸力評価部22は、断層変位量のうち管軸方向の断層変位量の半値となる断層面での管と地盤の相対変位量X、継手伸縮量δ、数式〔数15〕で規定され断層面を基準とする管軸方向の位置xでの管と地盤の相対変位量y(x)、数式〔数16〕で規定される管軸方向の影響範囲Xに対して、所定の相対変位δを境にばね定数k,k(k>k)で定義される管軸方向の地盤ばねモデルに対応した数式〔数17〕に基づいて軸力f(y)を算出する第4演算部と、数式〔数18〕に基づいて断層位置での軸力fmaxを算出する第5演算部と、第5演算部で求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する軸力評価演算部とを備えている。
 そして、直管軸力評価部22は、所定ピッチで増大させた各断層変位量に対して、軸力評価演算部で否定的な結果が出るまで第4演算部及び第5演算部を繰返し動作させるように構成されている。
 さらに、断層横断埋設管路の挙動推定装置は、演算条件を設定入力する入力部10と、入力部10を介して入力された演算条件に基づいて、大変位吸収ユニットを備えた複合管路モデルに対して、断層発生時の軸力評価処理を実行する大変位吸収ユニット対応直管軸力評価部23と、大変位吸収ユニット対応直管軸力評価部23による評価結果が肯定的評価であるか否定的評価であるかを管軸方向の断層変位量に対応して視認可能な表形式で表示する表示部40を備えている。
 大変位吸収ユニット対応直管軸力評価部23は、直管軸力評価部22で軸力fmaxが所定の基準値を超えると評価されるときに起動され、第3演算部で求めた屈曲角度θが所定の角度閾値θ以下となる位置を継手伸縮量Δの大変位吸収ユニットの設置位置として設定する第6演算部と、大変位吸収ユニットの設置間隔s、管軸方向影響範囲内のユニット数N、及び断層面から一つ目の大変位吸収ユニットまでの継手数nとして、数式〔数19〕で規定される管軸方向の影響範囲Xに対して、数式〔数20〕に基づいて軸力fmaxを算出する第7演算部と、第7演算部で求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する大変位吸収ユニット対応軸力評価処理部とを備えている。
 大変位吸収ユニット対応直管軸力評価部23は、所定ピッチで増大させた各断層変位量に対して、大変位吸収ユニット対応軸力評価処理部で否定的な結果が出るまで第6演算部及び第7演算部を繰返し動作させるように構成されている。
 さらに、断層横断埋設管路の挙動推定装置100は、直管軸力評価部22または大変位吸収ユニット対応直管軸力評価部23により算出された軸力fmaxと管の断面積Aから軸応力σ=fmax/Aを算出する軸応力算出部と、屈曲性能評価部21により算出された曲げモーメントMと管の断面係数Zから曲げ応力σ=M/Zを算出する曲げ応力算出部と、軸応力算出部で求めた軸応力σと曲げ応力算出部で求めた曲げ応力σを加算して応力σ=σ+σを算出する応力算出部と、応力算出部で求めた応力σが所定の耐力に収まるか否かに基づいて応力を評価する応力評価処理部とを備えている。
 そして、応力評価処理部による評価結果が肯定的評価であるか否定的評価であるかを断層変位量に対応して視認可能な表形式で表示する表示部40をさらに備えている。
 このように、断層横断埋設管路の挙動推定装置100は、断層変位量の管軸直角方向の地盤変位に基づいて管路モデルを評価する屈曲性能評価部21、断層変位量の管軸方向の地盤変位に基づいて管路モデルを評価する直管軸力評価部22及び大変位吸収ユニット対応軸力評価部23が、それぞれ独立して実行可能に構成され、それぞれの評価結果に基づいて応力評価部24により総合評価されるように構成されている。
 そのため、断層角度φに沿った断層変位量に基づいて複雑な演算式で評価するFEM解析に比べて、演算負荷が極めて軽くなり、十分な演算速度で精度のよい評価が可能になる。
 図16に示した入力データ表示テーブルは、記憶部30に区画された演算条件格納領域31に設定されたメモリマップと対応付けられ、図17、図18に示した評価データ表示テーブルは、記憶部30に区画された演算結果格納領域32に設定されたメモリマップと対応付けられている。従って、演算及び表示に必要なメモリ領域を重複して設定する必要がなく、メモリ領域を効率的に使用できる。
 この様な断層横断埋設管路の挙動推定装置100を用いると、既設の管路の耐震性の評価のみならず、これから布設する計画管路に対しても、断層横断埋設管路の挙動を推定して十分な安全性を見込んで設計することができるようになる。
 図19には、断層横断埋設管路の挙動推定装置及びFEM解析装置を用いた挙動推定手順が示されている。先ず、挙動推定装置100により定尺管に対する屈曲角度の簡易解析が行なわれ(S1)、結果が評価され(S2)、NGであるなら管路を見直して(S3)、再度屈曲角度の簡易解析が行なわれる。
 屈曲角度の簡易解析結果がOKなら(S2)、軸力の簡易解析が行なわれ(S4)、結果が評価され(S5)、NGであるなら管路を見直して(S6)、再度軸力の簡易解析が行なわれる。
 軸力の簡易解析結果がOKなら(S5)、応力の簡易解析が行なわれ(S7)、結果が評価され(S8)、NGであるなら管路を見直して(S9)、再度ステップS1からの簡易解析が行なわれる。
 応力の簡易解析結果がOKなら(S8)、FEM解析が行なわれ(S10)、結果が評価され、NGなら(S11)、管路を見直して再度FEM解析が行なわれる(S10)。OKなら解析を終了する。このように、挙動推定装置100を用いて、短時間で繰り返して実行されるステップS1からステップS9の解析を行なった結果、満足の得られた解析結果に基づいてFEM解析を行なうことで信頼性を十分に確保した解析が実現できる。そして、最終の時間の掛かるFEM解析の繰返し回数を大きく低減できるので、より迅速な評価作業環境が整えられるようになった。
 図19に示したフローチャートでは、ステップS1,S4,S7の各解析の何れでも満足できる評価結果が得られた後にステップS10のFEM解析を実行する例が示されているが、ステップS1,S4,S7の何れか一つの簡易解析で満足できる評価結果が得られた後にステップS10のFEM解析を実行するように構成されていてもよい。つまり、本発明は、屈曲角度、軸力の何れか一つを評価するものであってもよいし、屈曲角度、軸力の何れか一つを評価した後にFEM解析を実行するように構成されていてもよい。
 上述した説明は、断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置の一実施形態の説明であり、該記載により本発明の範囲が限定されるものではなく、目的変量及び目的変量のカテゴリの係数が上述した種類及び数値に限るものではなく、本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。
100:断層横断埋設管路の挙動推定装置
10:条件入力部
20:挙動推定演算部
30:記憶部
40:表示部
 

Claims (6)

  1.  断層横断埋設管路の挙動推定方法であって、
     所定の継手回転ばねモデルで規定される許容屈曲角度θ、管の有効長Lに対して、断層変位量のうち管軸直角方向の断層変位量Hを吸収するのに必要な断層面から片側の最少の耐震継手数Nを数式〔数1〕に基づいて算出するとともに、そのときの管軸方向の屈曲範囲Lを数式〔数2〕に基づいて算出する第1ステップと、
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002

     所定の相対変位δgyを境にばね定数k1y,k2y(k1y>k2y)で定義される管軸直角方向の地盤ばねモデルに従う数式〔数3〕に基づいて、管と地盤の相対変位yに対して管の受ける荷重p(y)を台形分布荷重として算出する第2ステップと、
    Figure JPOXMLDOC01-appb-M000003

     数式〔数4〕で求まる管軸方向の位置xでの台形分布荷重の曲げモーメントM(x)から各継手位置の曲げモーメント分布を求め、求めた曲げモーメント分布から前記継手回転ばねモデルに従って各継手位置の管の屈曲角度θを求める第3ステップと、
    Figure JPOXMLDOC01-appb-M000004

     前記第3ステップで求めた屈曲角度θが許容屈曲角度θ以内に収まるか否かに基づいて屈曲性能を評価する屈曲性能評価ステップと、
    を含む断層横断埋設管路の挙動推定方法。
  2.  断層変位量のうち管軸方向の断層変位量の半値となる断層面での管と地盤の相対変位量X、継手伸縮量δ、数式〔数5〕で規定され断層面を基準とする管軸方向の位置xでの管と地盤の相対変位量y(x)、数式〔数6〕で規定される管軸方向の影響範囲Xに対して、所定の相対変位δを境にばね定数k,k(k>k)で定義される管軸方向の地盤ばねモデルに対応した数式〔数7〕に基づいて軸力f(y)を算出する第4ステップと、
    Figure JPOXMLDOC01-appb-M000005

    Figure JPOXMLDOC01-appb-M000006

    Figure JPOXMLDOC01-appb-M000007

     数式〔数8〕に基づいて断層位置での軸力fmaxを算出する第5ステップと、
    Figure JPOXMLDOC01-appb-M000008

     前記第5ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する軸力評価ステップと、
    を備えている請求項1記載の断層横断埋設管路の挙動推定方法。
  3.  前記軸力評価ステップで軸力fmaxが所定の基準値を超えると評価されると、前記第3ステップで求めた屈曲角度θが所定の角度閾値θ以下となる位置を継手伸縮量Δの大変位吸収ユニットの設置位置として設定する第6ステップと、
     大変位吸収ユニットの設置間隔s、管軸方向影響範囲内のユニット数N、及び断層面から一つ目の大変位吸収ユニットまでの継手数nとして、数式〔数9〕で規定される管軸方向の影響範囲Xに対して、数式〔数10〕に基づいて軸力fmaxを算出する第7ステップと、
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010

     前記第7ステップで求めた軸力fmaxが所定の基準値に収まるか否かに基づいて軸力を評価する大変位吸収ユニット対応軸力評価ステップと、
    を備えている請求項2記載の断層横断埋設管路の挙動推定方法。
  4.  前記軸力fmaxと管の断面積Aから軸応力σ=fmax/Aを算出する軸応力算出ステップと、
     前記曲げモーメントMと管の断面係数Zから曲げ応力σ=M/Zを算出する曲げ応力算出ステップと、
     前記軸応力算出ステップで求めた軸応力σと前記曲げ応力算出ステップで求めた曲げ応力σを加算して応力σ=σ+σを算出する応力算出ステップと、
     前記応力算出ステップで求めた応力σが所定の耐力に収まるか否かに基づいて応力を評価する応力評価ステップと、
    を備えている請求項2または3記載の断層横断埋設管路の挙動推定方法。
  5.  請求項1から4の何れかに記載の断層横断埋設管路の挙動推定方法を実行する簡易解析実行ステップと、
     前記簡易解析実行ステップで所定の評価が得られた後に、有限要素法を用いた構造解析方法を実行する詳細解析実行ステップと、
    を備えている断層横断埋設管路の挙動推定方法。
  6.  断層横断埋設管路の挙動推定装置であって、
     請求項1から4の何れかに記載の断層横断埋設管路の挙動推定方法を実行する挙動推定演算部と、
     前記挙動推定演算部による演算条件を設定する条件入力部と、
     前記挙動推定演算部による演算結果を記憶する記憶部と、
     前記記憶部に記憶された演算結果の何れかを表示する表示部と、
    を備えている断層横断埋設管路の挙動推定装置。
PCT/JP2016/076443 2015-09-09 2016-09-08 断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置 WO2017043571A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/916,773 US20180209869A1 (en) 2015-09-09 2018-03-09 Behavior estimation method for fault-crossing underground pipeline and behavior estimation device for fault-crossing underground pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015177923A JP6502803B2 (ja) 2015-09-09 2015-09-09 断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置
JP2015-177923 2015-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/916,773 Continuation-In-Part US20180209869A1 (en) 2015-09-09 2018-03-09 Behavior estimation method for fault-crossing underground pipeline and behavior estimation device for fault-crossing underground pipeline

Publications (1)

Publication Number Publication Date
WO2017043571A1 true WO2017043571A1 (ja) 2017-03-16

Family

ID=58239801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076443 WO2017043571A1 (ja) 2015-09-09 2016-09-08 断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置

Country Status (3)

Country Link
US (1) US20180209869A1 (ja)
JP (1) JP6502803B2 (ja)
WO (1) WO2017043571A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504582A (zh) * 2020-04-07 2020-08-07 上海卫星工程研究所 新型柔性电缆刚度测定方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801644B2 (en) * 2019-01-28 2020-10-13 Caterpillar Inc. Pipelaying guidance
CN110991009B (zh) * 2019-11-11 2023-05-23 宁波大学 一种埋地管线下方土体流失对管线受力形变的确定方法
CN112923129B (zh) * 2021-01-21 2022-10-14 四川石油天然气建设工程有限责任公司 油气管道对接式拖管施工工艺及系统
CN115130259B (zh) * 2022-06-24 2023-10-03 武汉大学 跨断层管道接口轴向位移预测、模型构建方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248100A (ja) * 1994-03-11 1995-09-26 Osaka Gas Co Ltd 配管系の不等沈下に対する維持管理方法
JP2003177067A (ja) * 2001-12-12 2003-06-27 Tokyo Gas Co Ltd 配管網耐震強度解析方法および配管網耐震強度解析装置
JP2005351429A (ja) * 2004-06-14 2005-12-22 Kubota Corp パイプ・イン・パイプ工法の設計方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO334481B1 (no) * 2009-01-30 2014-03-17 Statoilhydro Asa Fremgangsmåte og anordning for måling av tykkelse av en materialavsetning på en innervegg av en rørstruktur
JP5870158B2 (ja) * 2014-06-13 2016-02-24 株式会社クボタ 管路構造および管路構造用プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248100A (ja) * 1994-03-11 1995-09-26 Osaka Gas Co Ltd 配管系の不等沈下に対する維持管理方法
JP2003177067A (ja) * 2001-12-12 2003-06-27 Tokyo Gas Co Ltd 配管網耐震強度解析方法および配管網耐震強度解析装置
JP2005351429A (ja) * 2004-06-14 2005-12-22 Kubota Corp パイプ・イン・パイプ工法の設計方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504582A (zh) * 2020-04-07 2020-08-07 上海卫星工程研究所 新型柔性电缆刚度测定方法及系统

Also Published As

Publication number Publication date
JP6502803B2 (ja) 2019-04-17
US20180209869A1 (en) 2018-07-26
JP2017053725A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2017043571A1 (ja) 断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置
Sarvanis et al. Analytical model for the strain analysis of continuous buried pipelines in geohazard areas
Karamitros et al. An analytical method for strength verification of buried steel pipelines at normal fault crossings
Karamitros et al. Stress analysis of buried steel pipelines at strike-slip fault crossings
Firoozabad et al. Failure criterion for steel pipe elbows under cyclic loading
Vedeld et al. Free vibrations of free spanning offshore pipelines
CN104933269B (zh) 一种油气管道穿越地震断层的设计方法
Wang et al. Strain analysis of buried steel pipelines across strike-slip faults
JP6570861B2 (ja) 断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置
Lukasiewicz et al. Calculation of strains in dents based on high resolution in-line caliper survey
Dvorkin et al. Finite element models in the steel industry: Part II: Analyses of tubular products performance
Sorour et al. Limit load analysis of thick-walled as-fabricated pipe bends under in-plane moment loading and internal pressure
Wu et al. The comparison of dented pipeline displacement calculation methods
Valsamis et al. Analytical methodology for the verification of buried steel pipelines with flexible joints crossing strike-slip faults
Ghodhbani et al. A four-equation friction model for water hammer calculation in quasi-rigid pipelines
Gao et al. Strain-based models for dent assessment: a review
Lu et al. Flexible riser tensile armour stress assessment in the bend stiffener region
Liu et al. Strain prediction for X80 steel pipeline subjected to strike-slip fault under compression combined with bending
Li et al. Deformation analysis of buried subsea pipeline under different pressure-reverse​ fault displacement loading paths
Azim An analytical investigation on bolt tension of a flanged steel pipe joint subjected to bending moments
Gantes et al. Numerical analysis of buried steel pipelines
Zheng et al. A finite difference-based approach for strain demand prediction of inelastic pipes subjected to permanent ground displacements
Sarvanis et al. Soil-pipe interaction models for the simulation of buried steel pipeline behaviour against geohazards
Lukassen et al. Comparison between stress obtained by numerical analysis and in-situ measurements on a flexible pipe subjected to in-plane bending test
Onuki et al. Theoretical Formula for Determining the Maximum Straight Length of a Buried Pipeline That Can Prevent Seismic Buckling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844432

Country of ref document: EP

Kind code of ref document: A1