WO2017043541A1 - 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法 - Google Patents

接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2017043541A1
WO2017043541A1 PCT/JP2016/076333 JP2016076333W WO2017043541A1 WO 2017043541 A1 WO2017043541 A1 WO 2017043541A1 JP 2016076333 W JP2016076333 W JP 2016076333W WO 2017043541 A1 WO2017043541 A1 WO 2017043541A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding
copper
copper paste
particles
copper particles
Prior art date
Application number
PCT/JP2016/076333
Other languages
English (en)
French (fr)
Inventor
石川 大
祐貴 川名
千絵 須鎌
偉夫 中子
芳則 江尻
蔵渕 和彦
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US15/757,896 priority Critical patent/US11040416B2/en
Priority to EP16844402.4A priority patent/EP3348337B1/en
Priority to SG11201801844XA priority patent/SG11201801844XA/en
Priority to MYPI2018700890A priority patent/MY189237A/en
Priority to KR1020187009672A priority patent/KR102509767B1/ko
Priority to EP20162724.7A priority patent/EP3702072A1/en
Priority to CN201680051483.5A priority patent/CN107921540B/zh
Priority to JP2017539199A priority patent/JP6819598B2/ja
Publication of WO2017043541A1 publication Critical patent/WO2017043541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40491Connecting portions connected to auxiliary connecting means on the bonding areas being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a bonding copper paste, a method for manufacturing a bonded body using the same, a method for manufacturing a semiconductor device, and a bonded body and a semiconductor device.
  • Patent Document 1 proposes a technique for sintering silver nanoparticles at a low temperature to form a sintered silver layer. It is known that such sintered silver has high connection reliability with respect to the power cycle (Non-Patent Document 1).
  • Patent Document 2 discloses a bonding paste containing cupric oxide particles and a reducing agent as a bonding material for bonding a semiconductor element and an electrode.
  • Patent Document 3 listed below discloses a bonding material including copper nanoparticles and copper microparticles or copper submicroparticles, or both.
  • thermocompression process involving pressurization Since the method described in Patent Document 1 requires densification of the sintered silver layer in order to obtain high connection reliability, a thermocompression process involving pressurization is required. When performing a thermocompression bonding process involving pressurization, there are problems such as a decrease in production efficiency and a decrease in yield. Furthermore, when silver nanoparticles are used, a significant increase in material cost due to silver becomes a problem.
  • Patent Document 2 avoids volume shrinkage during the reduction from copper oxide to copper by a thermocompression process.
  • the thermocompression process has the problems described above.
  • the method described in Patent Document 3 performs sintering without applying pressure, it is still not sufficient for practical use in the following points. That is, the copper nanoparticles need to be modified with a protective agent to suppress oxidation and improve dispersibility.
  • the copper nanoparticles have a large specific surface area, in a bonding material mainly composed of copper nanoparticles, The amount of the surface protective agent tends to increase.
  • the amount of the dispersion medium tends to increase in order to ensure dispersibility. Therefore, the bonding material described in Patent Document 3 has a large proportion of the surface protective agent or the dispersion medium for storage stability such as storage and coating, and the volumetric shrinkage during sintering tends to increase.
  • the density after sintering tends to decrease, and it is difficult to ensure the strength of the sintered body.
  • the present invention is a bonding copper paste containing metal particles and a dispersion medium, wherein the metal particles have a volume average particle diameter of 0.12 ⁇ m or more and 0.8 ⁇ m or less, and a maximum diameter is 1 to 20 ⁇ m, flaky micro copper particles having an aspect ratio of 4 or more, and included in the metal particles, the maximum diameter is 1 ⁇ m to 20 ⁇ m and the aspect ratio is less than 2
  • a bonding copper paste having a content of 50% by mass or less based on the total amount of flaky micro-copper particles is provided.
  • the bonding copper paste of the present invention sufficient bonding strength can be obtained even when bonding without pressure is performed.
  • the reason why such an effect is obtained is that the specific sub-micro copper particles and the specific flaky micro-copper particles are contained, and the content of the micro-copper particles having an aspect ratio of 2 or less is limited.
  • the flaky micro copper particles in the bonding copper paste are easily oriented substantially parallel to the bonding surface, and sufficient sinterability can be obtained and volume shrinkage during sintering can be sufficiently suppressed. It is conceivable that the strength of the sintered body is ensured and the bonding force with the adherend surface is improved.
  • the bonding copper paste of the present invention can obtain the above-described effects by the sub-micro copper particles and the micro-copper particles, it is cheaper than the bonding material mainly composed of expensive copper nanoparticles and It has the advantage that it can be supplied stably. Thereby, for example, when manufacturing a joined body such as a semiconductor device, it is possible to further improve the production stability.
  • flakes include flat shapes such as plates and scales.
  • aspect ratio means the long side / thickness of a particle.
  • the bonding copper paste of the present invention may be used for pressureless bonding.
  • “non-pressurized” means a state in which a pressure of 0.01 MPa or less is received in addition to the self-weight of the members to be joined or the self-weight.
  • the content of the sub-micro copper particles is 20% by mass or more and 90% by mass or less based on the total of the mass of the sub-micro copper particles and the mass of the flaky micro-copper particles. 1 mass% or more and 90 mass% or less may be sufficient based on the total mass of a metal particle. If the sub-micro copper particles and the flaky micro-copper particles are within the above ranges, it becomes easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste, and the bonding copper paste is used as a semiconductor element. When used for bonding, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the bonding copper paste of the present invention may include at least one metal particle selected from the group consisting of nickel, silver, gold, palladium, and platinum.
  • the bonding copper paste further contains the above metal particles, a sintered body in which multiple types of metals are dissolved or dispersed can be obtained, so that the mechanical properties such as yield stress and fatigue strength of the sintered body are improved. Connection reliability is easy to improve.
  • the present invention also provides a laminated body in which the first member, the bonding copper paste, and the second member are laminated in this order on the direction in which the weight of the first member acts. Is provided with the process of sintering in the state which received the self weight of the 1st member, or the self weight of the 1st member, and the pressure of 0.01 Mpa or less.
  • a bonded body in which members are bonded to each other with a sufficient bonding force by pressureless bonding can be manufactured by using the bonding copper paste.
  • the present invention also provides a laminated body in which the first member, the bonding copper paste, and the second member are laminated in this order on the direction in which the weight of the first member acts.
  • a method for manufacturing a semiconductor device is provided.
  • a semiconductor device having excellent die shear strength can be manufactured by pressureless bonding. Further, the semiconductor device manufactured by the method for manufacturing a semiconductor device of the present invention can be excellent in connection reliability.
  • the present invention also provides a joined body comprising a first member, a second member, and a sintered body of the joining copper paste for joining the first member and the second member.
  • the first member and the second member are joined via a copper sintered body having a sufficient joining force.
  • the joined body of this invention can become the thing excellent in the heat dissipation of a member by providing the sintered compact of copper excellent in thermal conductivity.
  • At least one of the first member and the second member includes at least one metal selected from the group consisting of copper, nickel, silver, gold, and palladium on a surface in contact with the sintered body. You may go out. In this case, adhesion between at least one of the first member and the second member and the sintered body can be further improved.
  • the present invention also comprises a first member, a second member, and a sintered body of the joining copper paste for joining the first member and the second member, the first member and the first member
  • a semiconductor device in which at least one of the two members is a semiconductor element.
  • the semiconductor device of the present invention has sufficient die shear strength by providing a copper sintered body having sufficient bonding strength and high thermal conductivity and melting point, excellent connection reliability, and power cycle resistance. Can also be excellent.
  • the present invention it is possible to provide a bonding copper paste capable of obtaining sufficient bonding strength even when bonding is performed without applying pressure.
  • the present invention can further provide a method for manufacturing a bonded body and a method for manufacturing a semiconductor device using the bonding copper paste, and a bonded body and a semiconductor device.
  • 3 is an SEM image showing flaky micro copper particles MA-C025. It is a schematic cross section which shows an example of the joined body manufactured using the copper paste for joining of this embodiment. It is a schematic cross section which shows an example of the semiconductor device manufactured using the copper paste for joining of this embodiment. It is a schematic cross section which shows an example of the semiconductor device manufactured using the copper paste for joining of this embodiment. It is a schematic cross section which shows an example of the semiconductor device manufactured using the copper paste for joining of this embodiment. It is a schematic cross section which shows an example of the semiconductor device manufactured using the copper paste for joining of this embodiment. It is a schematic cross section which shows an example of the semiconductor device manufactured using the copper paste for joining of this embodiment. It is a schematic cross section which shows an example of the semiconductor device manufactured using the copper paste for joining of this embodiment.
  • FIG. 1 is a SEM image showing a cross-sectional morphology of the bonding copper paste of Example 1.
  • FIG. 6 is a SEM image showing a cross-sectional morphology of the bonding copper paste of Example 4.
  • FIG. 6 is a SEM image showing a cross-sectional morphology of a bonding copper paste of Example 6.
  • FIG. 4 is a SEM image showing a cross section of a sintered body in a joined body using the joining copper paste of Example 2.
  • FIG. 4 is a SEM image which shows the cross section of the sintered compact in the joined body using the copper paste for joining of Example 4.
  • FIG. 6 It is a SEM image which shows the cross section of the sintered compact in the joined body using the copper paste for joining of Example 6.
  • FIG. 1 It is a SEM image which shows the cross section of the sintered compact in the joined body using the copper paste for joining of the comparative example 3.
  • FIG. 1 It is a SEM image which shows the cross section of the sintered compact in the joined body using the copper paste for joining of the comparative example 4.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments.
  • the copper paste for bonding of this embodiment is a copper paste for bonding containing metal particles and a dispersion medium, and the metal particles include sub-micro copper particles and flaky micro-copper particles.
  • Metal particles examples of the metal particles according to this embodiment include sub-micro copper particles, flaky micro-copper particles, copper particles other than these, and other metal particles.
  • sub-micro copper particles examples include those containing copper particles having a particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less.
  • copper particles having a volume average particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less are used. it can.
  • the volume average particle diameter of the sub-micro copper particles is 0.12 ⁇ m or more, effects such as suppression of the synthesis cost of the sub-micro copper particles, good dispersibility, and suppression of the use amount of the surface treatment agent are easily obtained.
  • the volume average particle diameter of the sub-micro copper particles is 0.8 ⁇ m or less, an effect that the sinterability of the sub-micro copper particles is excellent is easily obtained.
  • the volume average particle diameter of the sub-micro copper particles may be 0.15 ⁇ m or more and 0.8 ⁇ m or less, 0.15 ⁇ m or more and 0.6 ⁇ m or less, and 0 It may be from 2 ⁇ m to 0.5 ⁇ m, and may be from 0.3 ⁇ m to 0.45 ⁇ m.
  • the volume average particle diameter means a 50% volume average particle diameter.
  • the light scattering particle size It can be determined by a method of measuring with a distribution measuring device (for example, a Shimadzu nanoparticle size distribution measuring device (SALD-7500 nano, manufactured by Shimadzu Corporation)).
  • SALD-7500 nano Shimadzu nanoparticle size distribution measuring device
  • a light scattering particle size distribution analyzer hexane, toluene, ⁇ -terpineol, or the like can be used as a dispersion medium.
  • the sub-micro copper particles can contain 10% by mass or more of copper particles having a particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less. From the viewpoint of the sinterability of the bonding copper paste, the sub-micro copper particles can contain 20% by mass or more and 30% by mass or more of copper particles having a particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less. , 100% by mass.
  • the content ratio of the copper particles having a particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less in the sub-micro copper particles is 20% by mass or more, the dispersibility of the copper particles is further improved, the viscosity is increased, and the paste concentration is decreased. It can be suppressed more.
  • the particle size of the copper particles can be determined by the following method.
  • the particle size of the copper particles can be calculated from an SEM image, for example.
  • the copper particle powder is placed on a carbon tape for SEM with a spatula to obtain a sample for SEM.
  • the sample for SEM is observed with a SEM apparatus at a magnification of 5000 times.
  • a quadrilateral circumscribing the copper particles of this SEM image is drawn by image processing software, and one side thereof is set as the particle size of the particles.
  • the content of the sub-micro copper particles may be 20% by mass or more and 90% by mass or less, 30% by mass or more and 85% by mass or less, and 35% by mass or more based on the total mass of the metal particles. 85 mass% or less may be sufficient, and 40 mass% or more and 80 mass% or less may be sufficient. If the content of the sub-micro copper particles is within the above range, it becomes easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste, and the bonding copper paste can be used for bonding semiconductor elements. When used, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the content of the sub-micro copper particles may be 20% by mass or more and 90% by mass or less based on the total mass of the sub-micro copper particles and the mass of the flaky micro-copper particles. If the content of the sub-micro copper particles is 20% by mass or more, the space between the flaky micro-copper particles can be sufficiently filled, and the bonding strength of the bonded body manufactured by sintering the bonding copper paste. When the bonding copper paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability. If the content of the sub-micro copper particles is 90% by mass or less, volume shrinkage when the bonding copper paste is sintered can be sufficiently suppressed, so that the bonded body manufactured by sintering the bonding copper paste.
  • the semiconductor device When the bonding copper paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the content of the sub-micro copper particles is 30% by mass or more and 85% by mass or less based on the total mass of the sub-micro copper particles and the mass of the flaky micro-copper particles. It may be 35 mass% or more and 85 mass% or less, and may be 40 mass% or more and 80 mass% or less.
  • the shape of the sub-micro copper particles is not particularly limited.
  • Examples of the shape of the sub-micro copper particles include a spherical shape, a lump shape, a needle shape, a flake shape, a substantially spherical shape, and an aggregate thereof.
  • the shape of the sub-micro copper particles may be spherical, substantially spherical, or flaky. From the viewpoint of combustibility, dispersibility, miscibility with flaky microparticles, etc., Alternatively, it may be approximately spherical.
  • the “flakes” include flat shapes such as plates and scales.
  • the sub-micro copper particles may have an aspect ratio of 5 or less or 3 or less from the viewpoints of dispersibility, filling properties, and miscibility with the flaky micro particles.
  • aspect ratio indicates the long side / thickness of a particle. The measurement of the long side and thickness of the particle can be obtained, for example, from the SEM image of the particle.
  • the sub-micro copper particles may be treated with a specific surface treatment agent.
  • the specific surface treatment agent include organic acids having 8 to 16 carbon atoms.
  • the organic acid having 8 to 16 carbon atoms include caprylic acid, methylheptanoic acid, ethylhexanoic acid, propylpentanoic acid, pelargonic acid, methyloctanoic acid, ethylheptanoic acid, propylhexanoic acid, capric acid, methylnonanoic acid, and ethyl.
  • An organic acid may be used individually by 1 type, and may be used in combination of 2 or more type. By combining such an organic acid and the sub-micro copper particles, the dispersibility of the sub-micro copper particles and the detachability of the organic acid during sintering tend to be compatible.
  • the treatment amount of the surface treatment agent may be an amount that adheres to a monolayer to a trilayer on the surface of the sub-micro copper particles. This amount includes the number of molecular layers (n) attached to the surface of the sub-micro copper particles, the specific surface area (A p ) (unit m 2 / g) of the sub-micro copper particles, and the molecular weight (M s ) of the surface treatment agent (M s ) It can be calculated from the unit g / mol), the minimum covering area (S S ) (unit m 2 / piece) of the surface treatment agent, and the Avogadro number (N A ) (6.02 ⁇ 10 23 pieces).
  • the specific surface area of the sub-micro copper particles can be calculated by measuring the dried sub-micro copper particles by the BET specific surface area measurement method.
  • Minimum coverage of the surface treatment agent if the surface treatment agent is a straight-chain saturated fatty acids, is 2.05 ⁇ 10 -19 m 2/1 molecule.
  • calculation from a molecular model, or “Chemistry and Education” Takehiro Ueda, Juno Inafuku, Mori Kaoru, 40 (2), 1992, p114-117) It can be measured by the method described. An example of the method for quantifying the surface treatment agent is shown.
  • the surface treatment agent can be identified by a thermal desorption gas / gas chromatograph mass spectrometer of a dry powder obtained by removing the dispersion medium from the bonding copper paste, whereby the carbon number and molecular weight of the surface treatment agent can be determined.
  • the carbon content of the surface treatment agent can be analyzed by carbon content analysis. Examples of the carbon analysis method include a high frequency induction furnace combustion / infrared absorption method.
  • the amount of the surface treatment agent can be calculated by the above formula from the carbon number, molecular weight, and carbon content ratio of the identified surface treatment agent.
  • the treatment amount of the surface treatment agent may be 0.07% by mass or more and 2.1% by mass or less, may be 0.10% by mass or more and 1.6% by mass or less, and may be 0.2% by mass. It may be 1.1% by mass or less.
  • sub-micro copper particles As the sub-micro copper particles according to the present embodiment, commercially available ones can be used. Examples of commercially available sub-micro copper particles include CH-0200 (manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 0.36 ⁇ m), HT-14 (manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 0. 41 ⁇ m), CT-500 (manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 0.72 ⁇ m), and Tn—Cu100 (manufactured by Taiyo Nippon Sanso Corporation, volume average particle size 0.12 ⁇ m).
  • CH-0200 manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 0.36 ⁇ m
  • HT-14 manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 0. 41 ⁇ m
  • CT-500 manufactured by Mits
  • the flaky micro copper particles include those containing copper particles having a maximum diameter of 1 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 4 or more.
  • the average maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less
  • the aspect ratio is 4
  • the above copper particles can be used. If the average maximum diameter and aspect ratio of the flaky micro-copper particles are within the above ranges, volume shrinkage when the bonding copper paste is sintered can be sufficiently reduced, and the bonding copper paste is sintered. It becomes easy to ensure the joining strength of the joined body. When the bonding copper paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the average maximum diameter of the flaky micro copper particles may be 1 ⁇ m or more and 10 ⁇ m or less, or 3 ⁇ m or more and 10 ⁇ m or less.
  • the measurement of the maximum diameter and the average maximum diameter of the flaky micro copper particles can be obtained from, for example, an SEM image of the particles, and is obtained as a major axis X and an average value Xav of the major axis of the flaky micro copper particles described later.
  • the flaky micro copper particles can contain 50% by mass or more of copper particles having a maximum diameter of 1 ⁇ m or more and 20 ⁇ m or less. From the viewpoint of orientation in the bonded body, reinforcing effect, and filling property of the bonding paste, the flaky micro copper particles can contain 70% by mass or more, and 80% by mass or more of copper particles having a maximum diameter of 1 ⁇ m to 20 ⁇ m. And may be included in an amount of 100% by mass. From the viewpoint of suppressing poor bonding, the flaky micro-copper particles preferably do not contain particles having a size exceeding the bonding thickness, such as particles having a maximum diameter exceeding 20 ⁇ m.
  • the flaky micro copper particles may have an aspect ratio of 4 or more, or 6 or more. If the aspect ratio is within the above range, the flaky micro-copper particles in the bonding copper paste are oriented substantially parallel to the bonding surface, thereby reducing the volume shrinkage when the bonding copper paste is sintered. It can be suppressed, and it becomes easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste. When the bonding copper paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the content of the flaky micro copper particles may be 1% by mass or more and 90% by mass or less, 10% by mass or more and 70% by mass or less, and 20% by mass based on the total mass of the metal particles. It may be 50% by mass or more.
  • the content of the flaky micro copper particles is within the above range, it becomes easy to ensure the bonding strength of the bonded body manufactured by sintering the bonding copper paste.
  • the bonding copper paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the total content of the sub-micro copper particles and the content of the flaky micro-copper particles may be 80% by mass or more based on the total mass of the metal particles. If the total of the content of the sub-micro copper particles and the content of the micro-copper particles is within the above range, the volume shrinkage when the bonding copper paste is sintered can be sufficiently reduced, and the bonding copper paste is sintered. It is easy to ensure the bonding strength of the bonded body manufactured in this manner. When the bonding copper paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability. From the viewpoint of further exerting the above effects, the total content of the sub-micro copper particles and the content of the flaky micro-copper particles may be 90% by mass or more based on the total mass of the metal particles. The mass may be 100% by mass or more.
  • the shape of the flaky micro copper particles according to the present embodiment can also be defined by parameters of a long diameter (maximum diameter) X, a medium diameter Y (width), and a short diameter (thickness) T.
  • the major axis X is the distance between two parallel planes selected so that the distance between the two parallel planes is the maximum among the two parallel planes circumscribing the flaky micro copper particles in the three-dimensional shape of the flaky micro copper particles. is there.
  • the medium diameter Y is perpendicular to the parallel two planes giving the major axis X, and is selected so that the distance between the parallel two planes is the maximum among the two parallel planes circumscribing the flaky micro copper particles. Is the distance.
  • the short diameter T is perpendicular to the parallel two planes giving the major axis X and the parallel two planes giving the medium diameter Y, and the distance between the two parallel planes is the largest of the two parallel planes circumscribing the flaky micro copper particles.
  • the distance between two parallel planes selected to be
  • the average value Xav of the major axis may be 1 ⁇ m or more and 20.0 ⁇ m or less, 1 ⁇ m or more and 10 ⁇ m or less, or 3 ⁇ m or more and 10 ⁇ m or less. If Xav is within the above range, in the joined body manufactured by sintering the joining copper paste, the joining copper paste sintered body is easily formed with an appropriate thickness.
  • Xav / Tav which is the ratio (aspect ratio) of the average value Xav of the major axis to the average value Tav of the minor axis, may be 4.0 or more, may be 6.0 or more, and may be 10.0 or more. There may be. If Xav / Tav is within the above range, the flaky micro copper particles in the bonding copper paste are likely to be oriented substantially parallel to the bonding surface, and the volume shrinkage when the bonding copper paste is sintered. Therefore, it is easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste. When the bonding copper paste is used for bonding semiconductor elements, it is easy to improve the die shear strength and connection reliability of the semiconductor device.
  • Xav / Yav which is the ratio of the average value Xav of the major axis to the average value Yav of the medium diameter, may be 2.0 or less, 1.7 or less, or 1.5 or less. . If Xav / Yav is within the above range, the shape of the flaky micro copper particles becomes flaky particles having a certain area, and the flaky micro copper particles in the bonding copper paste are substantially parallel to the bonding surface. Orientation is facilitated, volume shrinkage when the bonding copper paste is sintered can be suppressed, and it is easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste.
  • the bonding copper paste When the bonding copper paste is used for bonding semiconductor elements, it is easy to improve the die shear strength and connection reliability of the semiconductor device.
  • Xav / Yav exceeds 2.0, it means that the shape of the flaky micro-copper particles approaches an elongated linear shape.
  • Yav / Tav which is the ratio of the average value Yav of the medium diameter to the average value Tav of the short diameter, may be 2.5 or more, 4.0 or more, or 8.0 or more Good. If Yav / Tav is within the above range, the flaky micro copper particles in the bonding copper paste are likely to be oriented substantially parallel to the bonding surface, and the volume shrinkage when the bonding copper paste is sintered. Therefore, it is easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste. When the bonding copper paste is used for bonding semiconductor elements, it is easy to improve the die shear strength and connection reliability of the semiconductor device.
  • FIG. 1 is an SEM image showing MA-C025 (manufactured by Mitsui Metal Mining Co., Ltd.) which is an example of flaky micro copper particles.
  • a rectangle circumscribing the flaky micro copper particles 9 of this SEM image is drawn by image processing software, and the long side of the rectangle is the major axis X of the particle and the short side of the rectangle is the medium diameter Y of the particle.
  • This measurement is performed on 50 or more flaky micro copper particles using a plurality of SEM images, and the average value Xav of the long diameter and the average value Yav of the medium diameter are calculated.
  • a method for calculating the short axis T of the flaky micro copper particles from the SEM image is illustrated.
  • a copper paste containing flaky micro copper particles is printed on a copper substrate, and a silicon chip is mounted. This is dried with a hot plate or the like in air at 100 ° C. for 30 minutes to prepare a bonded product in which the copper plate and the silicon chip are weakly bonded with the dried bonding copper paste.
  • the bonded product is cured with an epoxy casting resin, and the cured sample is shaved with abrasive paper to obtain a cross section near the center of the bonded product. This section is subjected to cross section polisher (CP) processing with argon ions to obtain a sample for SEM.
  • CP cross section polisher
  • FIG. 6 is an SEM image of the dried film of the bonding copper paste when the bonding copper paste of Example 6 described later is sandwiched between the chip and the substrate and dried at 100 ° C. for 30 minutes.
  • a circumscribed rectangle is drawn by image processing software, and the short side of the rectangle is defined as the minor axis T of the particle.
  • this measurement is performed on 50 or more flaky micro copper particles, and the average value Tav of the short diameter is calculated.
  • the image processing software is not particularly limited, and for example, Microsoft PowerPoint (manufactured by Microsoft) and ImageJ (manufactured by National Institutes of Health) can be used.
  • the presence or absence of the treatment with the surface treatment agent is not particularly limited.
  • the flaky micro copper particles may be treated with a surface treatment agent.
  • the surface treatment agent may be removed at the time of joining.
  • Examples of such surface treatment agents include aliphatic carboxylic acids such as palmitic acid, stearic acid, arachidic acid, and oleic acid; aromatic carboxylic acids such as terephthalic acid, pyromellitic acid, and o-phenoxybenzoic acid; cetyl alcohol Aliphatic alcohols such as stearyl alcohol, isobornylcyclohexanol and tetraethylene glycol; aromatic alcohols such as p-phenylphenol; alkylamines such as octylamine, dodecylamine and stearylamine; fats such as stearonitrile and deconitrile Group nitriles; Silane coupling agents such as alkylalkoxysilanes; Polymer processing agents such as polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and silicone oligomers.
  • a surface treating agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the treatment amount of the surface treatment agent may be an amount of a monomolecular layer or more on the particle surface.
  • the treatment amount of such a surface treatment agent varies depending on the specific surface area of the flaky micro copper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent.
  • the treatment amount of the surface treatment agent is usually 0.001% by mass or more.
  • the specific surface area of the flaky micro copper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent can be calculated by the method described above.
  • the bonding copper paste is prepared only from the above-mentioned sub-micro copper particles, the volume shrinkage and the sintering shrinkage accompanying the drying of the dispersion medium are large. In joining elements and the like, it is difficult to obtain sufficient die shear strength and connection reliability.
  • the sub-micro copper particles and the flaky micro-copper particles in combination, volume shrinkage when the bonding copper paste is sintered is suppressed, and the bonded body can have sufficient bonding strength.
  • the bonding copper paste is used for bonding semiconductor elements, an effect that the semiconductor device exhibits good die shear strength and connection reliability can be obtained.
  • the maximum diameter contained in the metal particles is 1 ⁇ m or more and 20 ⁇ m or less, and the content of the micro copper particles having an aspect ratio of less than 2 is 1 ⁇ m or more and 20 ⁇ m or less. Based on the total amount of flaky micro copper particles having an aspect ratio of 4 or more, it is preferably 50% by mass or less, and more preferably 30% by mass or less.
  • the flaky micro copper particles in the bonding copper paste are oriented substantially parallel to the bonding surface. Therefore, volume shrinkage when the bonding copper paste is sintered can be more effectively suppressed.
  • the content of the micro copper particles having a maximum diameter of 1 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of less than 2 has a maximum diameter of 1 ⁇ m or more and 20 ⁇ m or less, and the aspect ratio is Based on the total amount of four or more flaky micro copper particles, it may be 20% by mass or less, or 10% by mass or less.
  • flaky micro copper particles As the flaky micro copper particles according to this embodiment, commercially available ones can be used. Examples of commercially available flaky micro copper particles include MA-C025 (Mitsui Metal Mining Co., Ltd., average maximum diameter 4.1 ⁇ m), 3L3 (Fukuda Metal Foil Powder Co., Ltd., volume maximum diameter 7.3 ⁇ m). ) 1110F (Mitsui Metal Mining Co., Ltd., average maximum diameter 5.8 ⁇ m), 2L3 (Fukuda Metal Foil Powder Co., Ltd., average maximum diameter 9 ⁇ m).
  • the micro copper particles to be blended include flaky micro copper particles having a maximum diameter of 1 ⁇ m to 20 ⁇ m, an aspect ratio of 4 or more, and a maximum diameter of 1 ⁇ m to 20 ⁇ m.
  • the content of the micro copper particles having an aspect ratio of less than 2 is 50% by mass or less, preferably 30% by mass or less based on the total amount of the flaky micro copper particles. .
  • the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less
  • the flaky micro copper particles have an aspect ratio of 4 or more
  • the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less.
  • the content of the micro copper particles having a ratio of less than 2 may be 50% by mass or less, preferably 30% by mass or less, based on the total amount of the flaky micro copper particles.
  • metal particles other than copper particles As a metal particle, other metal particles other than submicro copper particle and micro copper particle may be included, for example, particles, such as nickel, silver, gold
  • the other metal particles may have a volume average particle size of 0.01 ⁇ m or more and 10 ⁇ m or less, 0.01 ⁇ m or more and 5 ⁇ m or less, or 0.05 ⁇ m or more and 3 ⁇ m or less. When other metal particles are contained, the content thereof may be less than 20% by mass or less than 10% by mass based on the total mass of the metal particles from the viewpoint of obtaining sufficient bondability. May be. Other metal particles may not be included.
  • the shape of other metal particles is not particularly limited.
  • the sintered body of the copper paste for joining can have sufficient joining strength with respect to a specific adherend by adding multiple types of metal particles.
  • the bonding copper paste is used for bonding semiconductor elements, the die shear strength and connection reliability of the semiconductor device are likely to be improved.
  • the dispersion medium is not particularly limited, and may be volatile.
  • volatile dispersion media include monovalent and polyvalent pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, isobornylcyclohexanol (MTPH), and the like.
  • Dihydric alcohols ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol Butyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol Ethers such as butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether,
  • Examples of mercaptans having an alkyl group having 1 to 18 carbon atoms include ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan, and hexyl mercaptan. And dodecyl mercaptan.
  • Examples of mercaptans having a cycloalkyl group having 5 to 7 carbon atoms include cyclopentyl mercaptan, cyclohexyl mercaptan, and cycloheptyl mercaptan.
  • the content of the dispersion medium may be 5 to 50 parts by mass, where the total mass of the metal particles is 100 parts by mass.
  • the bonding copper paste can be adjusted to a more appropriate viscosity, and it is difficult to inhibit the sintering of the copper particles.
  • wetting additives such as nonionic surfactants and fluorosurfactants; antifoaming agents such as silicone oil; ion trapping agents such as inorganic ion exchangers, etc., are added as appropriate to the copper paste for bonding. May be.
  • the metal particles are sub-micro copper particles having a volume average particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less, preferably 0.15 ⁇ m or more and 0.8 ⁇ m or less.
  • the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less
  • the flaky micro copper particles have an aspect ratio of 4 or more, and the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less, and the aspect ratio is less than 2
  • the copper paste for joining whose content of micro copper particles is 50 mass% or less, Preferably it is 30 mass% or less on the basis of the said flaky micro copper particle whole quantity is mentioned.
  • blends is mentioned.
  • another aspect of the bonding copper paste of the present embodiment includes metal particles and a dispersion medium, and the metal particles have a maximum diameter of 0.12 ⁇ m or more and 0.8 ⁇ m or less, preferably 0.15 ⁇ m or more.
  • Examples include a copper paste for bonding in which the content of micro copper particles having an aspect ratio of less than 2 of 20 ⁇ m or less is 50% by mass or less, preferably 30% by mass or less, based on the total amount of flaky micro copper particles.
  • the maximum diameter of the particles is determined by a method of observing, with a scanning electron microscope (SEM), copper particles as raw materials or dry copper particles obtained by removing volatile components from the bonding copper paste.
  • SEM scanning electron microscope
  • the contents of the sub-micro copper particles and the flaky micro-copper particles in the present embodiment can be the same as the ranges described above.
  • the bonding copper paste can be prepared by mixing the above-mentioned sub-micro copper particles, flaky micro-copper particles, other metal particles, and optional additives in a dispersion medium. You may perform a stirring process after mixing of each component.
  • the bonding copper paste may adjust the maximum particle size of the dispersion by classification operation. At this time, the maximum particle size of the dispersion liquid can be 20 ⁇ m or less, and can also be 10 ⁇ m or less.
  • the bonding copper paste is prepared by mixing sub-micro copper particles, a surface treatment agent and a dispersion medium in advance and performing a dispersion treatment to prepare a dispersion of sub-micro copper particles, and further flaky micro-copper particles and other metal particles. And optional additives may be mixed.
  • a dispersion treatment to prepare a dispersion of sub-micro copper particles, and further flaky micro-copper particles and other metal particles.
  • optional additives may be mixed.
  • the stirring treatment can be performed using a stirrer.
  • the stirrer include a rotation / revolution stirrer, a reiki machine, a twin-screw kneader, a three-roll mill, a planetary mixer, and a thin-layer shear disperser.
  • Classification operation can be performed using, for example, filtration, natural sedimentation, and centrifugation.
  • the filter for filtration include a metal mesh, a metal filter, and a nylon mesh.
  • Examples of the dispersion treatment include a thin layer shear disperser, a bead mill, an ultrasonic homogenizer, a high shear mixer, a narrow gap three-roll mill, a wet super atomizer, a supersonic jet mill, and an ultra high pressure homogenizer.
  • the bonding copper paste may be adjusted to a viscosity suitable for each printing / coating method when molding.
  • the viscosity of the bonding copper paste may be, for example, a Casson viscosity at 25 ° C. of 0.05 Pa ⁇ s to 2.0 Pa ⁇ s, and 0.06 Pa ⁇ s to 1.0 Pa ⁇ s. Also good.
  • the flaky micro copper particles are in contact with the member (interface between the paste layer and the member), It tends to be oriented almost in parallel.
  • the degree of orientation order S can be calculated by equation (1).
  • S 1/2 ⁇ (3 ⁇ cos 2 ⁇ > ⁇ 1) (1)
  • represents an angle formed by the interface and the flaky micro copper particles
  • ⁇ cos 2 ⁇ > represents an average value of a plurality of cos 2 ⁇ values.
  • the degree of orientation order S can be 0.88 or more and 1.00 or less.
  • the degree of orientation order S is within such a range, the flaky micro copper particles in the bonding copper paste are aligned substantially parallel to the bonding surface. Therefore, volume shrinkage when the bonding copper paste is sintered can be suppressed, and it becomes easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste. When used for element bonding, it is easy to improve the die shear strength and connection reliability of the semiconductor device.
  • the orientation order S can be determined from, for example, an SEM image of a dried copper paste for bonding.
  • the bonding copper paste is printed on the copper substrate, and the silicon chip is mounted. This is sintered with a hot plate or the like in air at 100 ° C. for 30 minutes, thereby preparing an adhesive that is weakly bonded to the copper paste for bonding the copper plate and silicon chip by drying.
  • This adhesive is poured with epoxy casting resin so that the entire adhesive is filled and cured. Cut the cast adhesive near the cross section to be observed, grind the cross section by polishing, and perform CP processing to make a sample.
  • the cross section of the sample is observed with a SEM apparatus at a magnification of 5000 times.
  • the angle formed by the major axis of the shape derived from the flaky micro copper particles with the interface is measured using image processing software having an angle measurement function.
  • the orientation order S can be calculated by measuring ⁇ in a shape derived from 50 or more randomly selected flaky micro-copper particles and substituting it into equation (1).
  • the image processing software is not particularly limited, and for example, ImageJ (manufactured by National Institutes of Health) can be used.
  • the degree of orientation order S takes a value from 0 to 1, and is 1 in a completely oriented state and 0 in a completely random state.
  • the bonding copper paste of the present embodiment the above-mentioned sub-micro copper particles and the above-mentioned flaky micro-copper particles are used in combination, and by limiting the content of specific micro-copper particles, good sintering Properties can be obtained, and volume shrinkage during sintering can be suppressed. Therefore, the bonding copper paste of the present embodiment can ensure the bonding force with the member without excessive pressurization, and the bonded body manufactured by sintering the bonding copper paste is sufficient. It can have bonding strength. When the bonding copper paste is used for bonding semiconductor elements, the semiconductor device exhibits good die shear strength and connection reliability. That is, the bonding copper paste of this embodiment may be used as a bonding material for pressureless bonding.
  • the bonding copper paste of this embodiment can obtain the above-described effects by the sub-micro copper particles and the micro-copper particles, it is cheaper than a bonding material mainly composed of expensive copper nanoparticles. And it has the advantage that it can supply stably. Thereby, for example, when manufacturing a joined body such as a semiconductor device, it is possible to further improve the production stability.
  • FIG. 2 is a schematic cross-sectional view showing an example of a joined body manufactured using the joining copper paste of the present embodiment.
  • the joined body 100 of the present embodiment includes the first member 2, the second member 3, and the sintered body 1 of the joining copper paste for joining the first member and the second member. .
  • Examples of the first member 2 and the second member 3 include semiconductor elements such as IGBT, diode, Schottky barrier diode, MOS-FET, thyristor, logic, sensor, analog integrated circuit, LED, semiconductor laser, and transmitter. , Lead frame, ceramic substrate with metal plate (for example, DBC), base material for mounting semiconductor elements such as LED package, metal wiring such as copper ribbon and metal frame, block body such as metal block, power supply member such as terminal, heat dissipation A board, a water cooling board, etc. are mentioned.
  • semiconductor elements such as IGBT, diode, Schottky barrier diode, MOS-FET, thyristor, logic, sensor, analog integrated circuit, LED, semiconductor laser, and transmitter.
  • DBC ceramic substrate with metal plate
  • base material for mounting semiconductor elements such as LED package
  • metal wiring such as copper ribbon and metal frame
  • block body such as metal block
  • power supply member such as terminal, heat dissipation A board, a water cooling board, etc.
  • the first member 2 and the second member 3 may contain metal on the surfaces 4a and 4b that are in contact with the sintered body of the bonding copper paste.
  • the metal include copper, nickel, silver, gold, palladium, platinum, lead, tin, and cobalt.
  • a metal may be used individually by 1 type and may be used in combination of 2 or more type.
  • the surface in contact with the sintered body may be an alloy containing the above metal. Examples of the metal used for the alloy include zinc, manganese, aluminum, beryllium, titanium, chromium, iron, and molybdenum in addition to the above metals.
  • the member containing metal on the surface in contact with the sintered body examples include, for example, a member having various metal plating, a wire, a chip having metal plating, a heat spreader, a ceramic substrate to which a metal plate is attached, and a lead frame having various metal plating. Or the lead frame which consists of various metals, a copper plate, and copper foil are mentioned.
  • the first member 2 may be a metal wiring such as a metal frame, a block body having thermal conductivity and conductivity such as a metal block, or the like.
  • the die shear strength of the joined body may be 10 MPa or more, 15 MPa or more, 20 MPa or more, or 30 MPa from the viewpoint of sufficiently joining the first member and the second member. It may be the above.
  • the die shear strength can be measured using a universal bond tester (4000 series, manufactured by DAGE) or the like.
  • the thermal conductivity of the sintered copper paste for bonding may be 100 W / (m ⁇ K) or more, or 120 W / (m ⁇ K) or more, from the viewpoint of heat dissipation and connection reliability at high temperatures. It may be 150 W / (m ⁇ K) or more.
  • the thermal conductivity can be calculated from the thermal diffusivity, specific heat capacity, and density of the sintered body of the bonding copper paste.
  • the orientation order S of the flaky micro-copper particles in the joined body can be 0.88 or more and 1.00 or less.
  • the degree of orientation order S in the joined body can be calculated by the above-described method using the joined body as an object of analysis instead of an adhesive that is weakly bonded with the dried joining copper paste.
  • the joining copper paste and the second member are arranged in this order on the first member, the direction in which the weight of the first member works.
  • a laminated body is prepared, and the bonding copper paste is sintered in a state where it receives the weight of the first member or the weight of the first member and a pressure of 0.01 MPa or less.
  • the laminate can be prepared, for example, by providing the bonding copper paste of the present embodiment on a necessary portion of the second member and then placing the first member on the bonding copper paste.
  • any method can be used as long as the bonding copper paste can be deposited.
  • Examples of such methods include screen printing, transfer printing, offset printing, jet printing, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, slit coat, letterpress printing, intaglio printing, gravure printing.
  • Printing, stencil printing, soft lithography, bar coating, applicator, particle deposition method, spray coater, spin coater, dip coater, electrodeposition coating, and the like can be used.
  • the thickness of the bonding copper paste may be 1 ⁇ m or more and 1000 ⁇ m or less, 10 ⁇ m or more and 500 ⁇ m or less, 50 ⁇ m or more and 200 ⁇ m or less, 10 ⁇ m or more and 3000 ⁇ m or less, or 15 ⁇ m or more. It may be 500 ⁇ m or less, 20 ⁇ m or more and 300 ⁇ m or less, 5 ⁇ m or more and 500 ⁇ m or less, 10 ⁇ m or more and 250 ⁇ m or less, or 15 ⁇ m or more and 150 ⁇ m or less.
  • the bonding copper paste provided on the second member may be appropriately dried from the viewpoint of suppressing flow during sintering and generation of voids.
  • the gas atmosphere at the time of drying may be air, an oxygen-free atmosphere such as nitrogen or a rare gas, or a reducing atmosphere such as hydrogen or formic acid.
  • the drying method may be drying at room temperature, drying by heating, or drying under reduced pressure.
  • heat drying or reduced pressure drying for example, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic A heating device, a heater heating device, a steam heating furnace, a hot plate press device, or the like can be used.
  • the drying temperature and time may be appropriately adjusted according to the type and amount of the dispersion medium used.
  • the drying temperature and time for example, the drying may be performed at 50 ° C. or higher and 180 ° C. or lower for 1 minute or longer and 120 minutes or shorter.
  • Examples of the method of arranging the first member on the bonding copper paste include a chip mounter, a flip chip bonder, a carbon or ceramic positioning jig.
  • the copper paste for bonding can be sintered by heat-treating the laminate.
  • heat-treating the laminate for example, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, A heater heating device, a steam heating furnace, or the like can be used.
  • the gas atmosphere during sintering may be an oxygen-free atmosphere from the viewpoint of suppressing oxidation of the sintered body, the first member, and the second member.
  • the gas atmosphere at the time of sintering may be a reducing atmosphere from the viewpoint of removing the surface oxides of the copper particles of the bonding copper paste.
  • the oxygen-free atmosphere include introduction of oxygen-free gas such as nitrogen and rare gas, or under vacuum.
  • the reducing atmosphere include pure hydrogen gas, hydrogen and nitrogen mixed gas typified by forming gas, nitrogen containing formic acid gas, hydrogen and rare gas mixed gas, and rare gas containing formic acid gas. Can be mentioned.
  • the maximum temperature reached during the heat treatment may be 250 ° C. or higher and 450 ° C. or lower, from the viewpoint of reducing thermal damage to the first member and the second member and improving the yield, and may be 250 ° C. or higher and 400 ° C. or lower. Or 250 ° C. or more and 350 ° C. or less. If the ultimate temperature is 200 ° C. or higher, the sintering tends to proceed sufficiently when the ultimate temperature holding time is 60 minutes or less.
  • the ultimate temperature holding time may be from 1 minute to 60 minutes, from 1 minute to less than 40 minutes, or from 1 minute to 1 minute from the viewpoint of volatilizing all the dispersion medium and improving the yield. It may be less than 30 minutes.
  • the bonded body can have sufficient bonding strength even when bonding without pressure is performed when the laminate is sintered. That is, sufficient bonding strength in a state in which only the own weight of the first member laminated on the bonding copper paste or the pressure of 0.01 MPa or less, preferably 0.005 MPa or less, in addition to the own weight of the first member. Can be obtained. If the pressure applied during the sintering is within the above range, a special pressurizing device is not required, and the void reduction, die shear strength and connection reliability can be further improved without impairing the yield. Examples of the method for receiving the pressure of the bonding copper paste of 0.01 MPa or less include a method of placing a weight on the first member.
  • the first member and the second member may be a semiconductor element.
  • the semiconductor element include a power module including a diode, a rectifier, a thyristor, a MOS gate driver, a power switch, a power MOSFET, an IGBT, a Schottky diode, and a fast recovery diode, a transmitter, an amplifier, and an LED module.
  • the joined body is a semiconductor device.
  • the obtained semiconductor device can have sufficient die shear strength and connection reliability.
  • FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor device manufactured using the bonding copper paste of this embodiment.
  • a semiconductor device 110 shown in FIG. 3 includes a semiconductor element 8 connected to a lead frame 5a via a sintered body 1 of a bonding copper paste according to this embodiment, and a mold resin 7 for molding them. .
  • the semiconductor element 8 is connected to the lead frame 5 b through the wire 6.
  • a power composed of a diode, a rectifier, a thyristor, a MOS gate driver, a power switch, a power MOSFET, an IGBT, a Schottky diode, a fast recovery diode, and the like.
  • Examples include modules, transmitters, amplifiers, high-brightness LED modules, sensors, and the like.
  • the semiconductor device can be manufactured in the same manner as the manufacturing method of the joined body described above. That is, the method for manufacturing a semiconductor device uses a semiconductor element as at least one of the first member and the second member, and the first member and the copper paste for bonding on the side in which the weight of the first member acts. And a laminated body in which the second member is laminated in this order, and the bonding copper paste is subjected to the weight of the first member or the weight of the first member and the pressure of 0.01 MPa or less.
  • a step of sintering For example, a step of providing a bonding copper paste on the lead frame 5a and arranging and heating the semiconductor element 8 can be mentioned.
  • the obtained semiconductor device can have sufficient die shear strength and connection reliability even when bonding is performed without applying pressure.
  • the semiconductor device of the present embodiment has a sufficient bonding strength, and has a copper sintered body having a high thermal conductivity and a high melting point, thereby having a sufficient die shear strength, excellent connection reliability, and a power cycle. It can be excellent in tolerance.
  • the above method can reduce damage to the semiconductor element when a metal wiring or a block body is bonded to the semiconductor element as the first member.
  • a semiconductor device in which a member such as a metal wiring or a block body is bonded on a semiconductor element will be described below.
  • a first electrode As one embodiment of such a semiconductor device, a first electrode, a semiconductor element electrically connected to the first electrode, and a second electrode electrically connected to the semiconductor element via a metal wiring And an electrode having a sintered body of the bonding copper paste between the semiconductor element and the metal wiring and between the metal wiring and the second electrode.
  • FIG. 4 is a schematic cross-sectional view showing an example of the semiconductor device.
  • a semiconductor device 200 shown in FIG. 4 includes an insulating substrate 21 having a first electrode 22 and a second electrode 24, and a semiconductor bonded on the first electrode 22 by the sintered copper paste 1 for bonding.
  • An element 23 and a metal wiring 25 that electrically connects the semiconductor element 23 and the second electrode 24 are provided.
  • the metal wiring 25 and the semiconductor element 23, and the metal wiring 25 and the second electrode 24 are joined by the sintered body 1 of the joining copper paste.
  • the semiconductor element 23 is connected to the third electrode 26 through a wire 27.
  • the semiconductor device 200 includes a copper plate 28 on the side opposite to the surface on which the electrodes and the like of the insulating substrate 21 are mounted.
  • the structure is sealed with an insulator 29.
  • the semiconductor device 200 has one semiconductor element 23 on the first electrode 22, but may have two or more. In this case, the plurality of semiconductor elements 23 can be joined to the metal wiring 25 by the sintered body 1 of the joining copper paste.
  • FIG. 5 is a schematic cross-sectional view showing another example of a semiconductor device.
  • the block body 30 is provided between the semiconductor element 23 and the metal wiring 25, and the semiconductor element 23 and the block body 30, and the block body 30 and the metal wiring 25 are used for bonding.
  • the semiconductor device 200 has the same configuration as that of the semiconductor device 200 shown in FIG. 4 except that it is joined by the sintered body 1 of copper paste.
  • the position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.
  • FIG. 6 is a schematic cross-sectional view showing another example of a semiconductor device.
  • the semiconductor device 220 shown in FIG. 6 is the same as the semiconductor device 220 except that the semiconductor element 23, the block body 30, and the sintered body 1 of the joining copper paste for joining them are further provided on the first electrode 22.
  • 5 has the same configuration as that of the semiconductor device 210 shown in FIG.
  • the semiconductor device 220 has two semiconductor elements on the first electrode 22, but may have three or more. Also in this case, the three or more semiconductor elements 23 can be joined to the metal wiring 25 by the sintered body 1 of the joining copper paste via the block bodies 30 respectively.
  • the position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.
  • the insulating substrate 21 examples include ceramics such as alumina, aluminum nitride, and silicon nitride, high thermal conductive particle / resin composite, polyimide resin, polymaleimide resin, and the like.
  • Examples of the metal constituting the first electrode 22, the second electrode 24, and the third electrode 26 include copper, nickel, silver, gold, palladium, platinum, lead, tin, and cobalt. These metals may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, the electrode may have the alloy containing the said metal in the surface which contact
  • Examples of the metal wiring include a metal frame having a strip shape, a plate shape, a cube shape, a cylindrical shape, an L shape, a U shape, a hemiform shape, and the like.
  • Examples of the material for the metal wiring include silver, copper, iron, aluminum, molybdenum, tungsten, tantalum, niobium, and alloys thereof. These metal wiring surfaces may be coated with nickel, copper, gold, silver or the like by plating, sputtering or the like for oxidation resistance and adhesion.
  • the metal wiring may have a width of 1 ⁇ m to 30 ⁇ m and a thickness of 20 ⁇ m to 5 mm.
  • the block body those excellent in thermal conductivity and conductivity are preferable, and for example, silver, copper, iron, aluminum, molybdenum, tungsten, tantalum, niobium, or an alloy thereof can be used.
  • the surface of the block body may be coated with nickel, copper, gold, silver or the like by plating, sputtering, or the like for oxidation resistance and adhesion. By providing the block body on the semiconductor element, the heat dissipation is further improved.
  • the number of block bodies can be changed as appropriate.
  • Examples of the insulator 29 include silicone gel, polymaleimide resin, polyimide resin, and polyamideimide resin.
  • the semiconductor devices shown in FIGS. 4 to 6 can be used for power modules that require large capacity and high reliability.
  • an insulating substrate including a first electrode and a second electrode is prepared, and a copper paste for bonding, a semiconductor element, and further bonding if necessary are provided on the first electrode.
  • Copper paste, block body, bonding copper paste are provided in this order from the first electrode side, bonding copper paste is provided on the second electrode, bonding copper paste on the semiconductor element or block body, and second The step of arranging metal wiring on the bonding copper paste on the electrode to cross-link these bonding copper pastes, the bonding copper paste, the weight of each member or the weight of each member and 0.01 MPa or less And a step of sintering in a state where the pressure is received.
  • the metal wiring having the bridge portion can be joined without being deformed, and the area on the semiconductor element is smaller than that of the semiconductor element. Even when the members are joined, damage to the semiconductor element can be further reduced.
  • FIG. 7 is a schematic cross-sectional view showing still another example of the semiconductor device.
  • a semiconductor device 300 shown in FIG. 7 includes a first electrode 22, a semiconductor element 23 bonded to the first electrode 22 by the sintered body 1 of the bonding copper paste, the semiconductor element 23, and the second electrode. 24, and a metal wiring 25 that electrically connects to the wiring 24.
  • the metal wiring 25 and the semiconductor element 23, and the metal wiring 25 and the second electrode 24 are joined by the sintered body 1 of the joining copper paste.
  • the semiconductor element 23 is connected to the third electrode 26 through a wire 27.
  • the structure is sealed with a sealing material 31.
  • the semiconductor device 300 has one semiconductor element 23 on the first electrode 22, but may have two or more. In this case, the plurality of semiconductor elements 23 can be joined to the metal wiring 25 by the sintered body 1 of the joining copper paste.
  • FIG. 8 is a schematic cross-sectional view showing another example of a semiconductor device.
  • a block body 30 is provided between the semiconductor element 23 and the metal wiring 25, and the semiconductor element 23 and the block body 30, and the block body 30 and the metal wiring 25 are respectively bonded copper.
  • the semiconductor device 300 has the same configuration as that of the semiconductor device 300 shown in FIG.
  • the position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.
  • FIG. 9 is a schematic cross-sectional view showing another example of a semiconductor device.
  • the semiconductor device 320 shown in FIG. 9 is the same as the semiconductor device 320 except that the semiconductor element 23, the block body 30, and the sintered body 1 of the joining copper paste for joining them are further provided on the first electrode 22. 8 has the same configuration as the semiconductor device 310 shown in FIG.
  • the semiconductor device 320 has two semiconductor elements on the first electrode 22, but may have three or more. Also in this case, the three or more semiconductor elements 23 can be joined to the metal wiring 25 by the sintered body 1 of the joining copper paste via the block bodies 30 respectively.
  • the position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.
  • the first electrode 22 and the second electrode 24 shown in FIGS. 7 to 9 may be a lead frame, a copper plate, a copper / molybdenum sintered body, or the like.
  • sealing material 31 examples include a heat-resistant solid sealing material and a high thermal conductive composite.
  • the sintered copper paste 1 for bonding can be the same as that described in the semiconductor devices 200 to 220.
  • the semiconductor device of the embodiment shown in FIGS. 7 to 9 can be used for a miniaturized power module by adopting a lead frame or the like as the first electrode and the second electrode.
  • Such a semiconductor device can be manufactured in the same manner as the semiconductor device manufacturing method described above.
  • the semiconductor device includes a first heat conductive member, a second heat conductive member, and a semiconductor element disposed between the first heat conductive member and the second heat conductive member.
  • FIG. 10 is a schematic cross-sectional view showing an example of this embodiment.
  • a semiconductor device 400 shown in FIG. 10 includes a first heat conductive member 32, a semiconductor element 23 bonded on the first heat conductive member 32 via a sintered body 1 of bonding copper paste, and a semiconductor element 23.
  • a block body 30 joined on the block body 30 via the bonding copper paste sintered body 1, and a second heat conductive member 33 joined on the block body 30 via the bonding copper paste sintered body 1; .
  • the semiconductor element 23 is connected to the electrode 34 via the wire 35.
  • the space between the first heat conductive member 32 and the second heat conductive member is sealed with a sealing material 31.
  • the semiconductor device 400 includes two semiconductor elements, but may include one or three or more, and the number of block bodies can be changed as appropriate.
  • the position of the block body 30 can be changed as appropriate, and may be provided between the first electrode 22 and the semiconductor element 23, for example.
  • the heat conducting member has both a function of releasing heat generated from the semiconductor element 23 to the outside and a function as an electrode for electrically connecting the semiconductor element to the outside.
  • a heat conducting member for example, copper, aluminum, or an alloy thereof is used.
  • the semiconductor device shown in FIG. 10 can have a double-sided cooling structure with excellent heat dissipation by providing heat conducting members on both sides of the semiconductor element.
  • a bonding copper paste, a semiconductor element, a bonding copper paste, a block body, a bonding copper paste, a second heat conductive member, and a first heat conductive member are formed on the first heat conductive member.
  • a laminated body laminated in this order from the side is prepared, and the copper paste for bonding is manufactured by a method including a step of sintering under the weight of each member or the weight of each member and a pressure of 0.01 MPa or less. be able to.
  • the said laminated body may be laminated
  • a straight line was drawn from end to end of the scale bar at the bottom of the image (scale showing 10 ⁇ m in this example), and the length of the straight line was recorded (3.7 cm in this example). Subsequently, a rectangle was drawn so as to circumscribe the shape derived from the flaky micro copper particles.
  • a 1.81 cm ⁇ 1.37 cm rectangle was drawn on a shape derived from a certain flaky micro copper particle.
  • the long side of the rectangle (1.81 cm in this example) was the long diameter X of the flaky micro copper particles
  • the short side of the rectangle (1.37 cm in this example) was the medium diameter Y of the flaky micro copper particles.
  • the long diameter X and the medium diameter Y were calculated as follows.
  • This operation was repeated without duplication on the shape derived from the flaky micro copper particles on the screen.
  • the shape derived from the flaky micro copper particles protruding from the edge of the screen and having an image cut off was not selected.
  • the shape derived from 50 or more flaky micro copper particles was measured, and the average length measurement result was calculated.
  • the average value Xav of the long diameter and the average value Yav of the medium diameter of the flaky micro copper particles were obtained.
  • an adhesive material was obtained in which the copper plate and the silicon chip were weakly bonded with the dried bonding copper paste.
  • This adhesive is fixed in a cup with a sample clip (Sampklip I, manufactured by Buehler), and an epoxy casting resin (Epomount, manufactured by Refinetech Co., Ltd.) is poured into the cup until the entire adhesive is filled, and is placed in a vacuum desiccator. The mixture was allowed to stand and decompressed for 1 minute to degas. Thereafter, the defoamed adhesive was allowed to stand at room temperature for 10 hours, the epoxy casting resin was cured, and a sample was prepared. The sample was cut in the vicinity of the silicon chip using Refine So Excel (Refine Tech Co., Ltd.).
  • the sample was cut to the vicinity of the center of the adhesive with a polishing apparatus (Refine Polisher HV, manufactured by Refinetech Co., Ltd.) equipped with water-resistant abrasive paper (Carbo Mac paper, manufactured by Refinetech Co., Ltd.).
  • the polished sample was made into a size that could be processed with an ion milling device by scraping off excess epoxy casting resin.
  • an ion milling device IM4000, manufactured by Hitachi High-Technologies Corporation
  • cross-section processing was performed on the sized sample under the conditions of an argon gas flow rate of 0.07 to 0.1 cm 3 / min and a processing time of 120 minutes. This was used as a sample for SEM.
  • This SEM sample was observed with an SEM apparatus (NeoScope JCM-5000, manufactured by JEOL Ltd.) at an applied voltage of 10 kV.
  • the long side of the rectangle (1.79 cm in this example) corresponds to the long diameter X or medium diameter Y of the flaky micro copper particles.
  • the short side (0.36 cm in this example) of the rectangle was defined as the short diameter T of the flaky micro copper particles.
  • the shape derived from 50 or more flaky micro copper particles was measured, and the average length measurement result was calculated. As a result, an average value Tav of the minor axis of the flaky micro copper particles was obtained.
  • the average value Tav of the short diameter the average value Xav of the long diameter obtained from “(1) Calculation of the long diameter and the medium diameter of the flaky micro copper particles”, and the average value Yav of the medium diameter, the flake shape
  • the ratios of long diameter / medium diameter (Xav / Yav), long diameter / short diameter (Xav / Tav) and medium diameter / short diameter (Yav / Tav) in the micro copper particles were calculated.
  • the Measure button in the ROI Manager window was pressed. Since the measured angle is displayed in the Results window, it is saved in a file by [File] ⁇ [Save As].
  • the angle was measured in the same manner.
  • the saved result file was read with Microsoft Excel.
  • the silicon chip was pushed in the horizontal direction at a measurement speed of 500 ⁇ m / s and a measurement height of 100 ⁇ m, and the die shear strength of the joined body was measured.
  • the average value of the measured values of the eight bonded bodies was defined as the die shear strength.
  • the gas was changed to 300 mL / min of hydrogen gas, the temperature was raised to 350 ° C., and sintering treatment was performed for 60 minutes to obtain a sintered body. Thereafter, the argon gas was changed to 0.3 L / min and cooled, and the sintered body was taken out into the air at 50 ° C. or lower.
  • the plate-like sintered body was peeled from the glass plate and polished with a sandpaper (# 800) to obtain a plate-like sample having a size of 10 ⁇ 10 mm 2 and a flat surface. The length, width, and thickness of the plate sample were measured, and the weight of the plate sample was measured. The density of the plate sample was calculated from these values.
  • a joined body was manufactured by the method described in “(5) Measurement of die shear strength”.
  • the manufactured joined body is fixed in a cup with a sample clip (Sampklip I, manufactured by Bühler), and an epoxy casting resin (Epomount, manufactured by Refinetech Co., Ltd.) is poured into the cup until the entire joined body is filled, and inside the vacuum desiccator And deaerated under reduced pressure for 1 minute. Then, it left still at room temperature for 10 hours, the epoxy casting resin was hardened, and the sample was prepared.
  • the sample was cut in the vicinity of the silicon chip using Refine So Excel (Refine Tech Co., Ltd.).
  • test piece for temperature cycling is set in a temperature cycle tester (TSA-72SE-W, manufactured by Espec Corp.), low temperature side: ⁇ 40 ° C., high temperature side: 200 ° C., each step: 15 minutes, defrost cycle:
  • TSA-72SE-W temperature cycle tester
  • low temperature side ⁇ 40 ° C.
  • high temperature side 200 ° C.
  • defrost cycle A temperature cycle connection reliability test was conducted under the conditions of automatic, number of cycles: 300 cycles.
  • an ultrasonic flaw detector Insight Insight-300
  • SAT images of the bonded state of the copper sintered body and the adherend interface before and after the temperature cycle connection reliability test were obtained, and the presence or absence of peeling was examined. A case where 20% by area or more of the joint part was peeled was defined as defective (x).
  • Example 1 As dispersion medium, 0.5 g of ⁇ -terpineol (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5 g of isobornylcyclohexanol (MTPH, manufactured by Nippon Terpene Chemical Co., Ltd.) and HT-14 (Mitsui Metals) as sub-micro copper particles 7 g (manufactured by Mining Co., Ltd.) was mixed in a plastic bottle and treated with an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Co., Ltd.) for 1 minute at 19.6 kHz, 600 W to obtain a dispersion.
  • MTPH isobornylcyclohexanol
  • HT-14 Mitsubishi Metals
  • the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less, the content of the flaky micro copper particles having an aspect ratio of 4 or more, and the maximum diameter is 1 ⁇ m or more and 20 ⁇ m.
  • the content of the micro copper particles having an aspect ratio of less than 2 was converted from the particle size distribution obtained by measurement for 50 or more particles. Based on this converted value, the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less, and the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less based on the total amount of flaky micro copper particles having an aspect ratio of 4 or more.
  • the content ratio of the copper particles was calculated.
  • Example 2 A joining copper paste 2 was obtained in the same manner as in Example 1 except that 3L3 (Fukuda Metal Foil Powder Co., Ltd.) was used as the flaky micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 2.
  • Example 3 A joining copper paste 3 was obtained in the same manner as in Example 1 except that 1110F (manufactured by Mitsui Mining & Smelting Co., Ltd.) was used as the flaky micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 3.
  • Example 4 A joining copper paste 4 was obtained in the same manner as in Example 1 except that TN-Cu100 (manufactured by Taiyo Nippon Sanso Corporation) was used as the sub-micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 4.
  • Example 5 A joining copper paste 5 was obtained in the same manner as in Example 1 except that CH-0200 (Mitsui Metals Mining Co., Ltd.) was used as the sub-micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 5.
  • Example 6 A bonding copper paste 6 was obtained in the same manner as in Example 1 except that CT-500 (manufactured by Mitsui Mining & Smelting Co., Ltd.) was used as the copper particles. Various measurements and analyzes were performed using the bonding copper paste 6.
  • Example 7 A joining copper paste 7 was obtained in the same manner as in Example 1 except that silver particles LM1 (manufactured by Toxen Industries Co., Ltd.) was used as an additive. Various measurements and analyzes were performed using the bonding copper paste 7.
  • Example 8 A joining copper paste 8 was obtained in the same manner as in Example 1 except that nickel particles Ni-HWQ (Fukuda Metal Foil Powder Co., Ltd.) was used as an additive. Various measurements and analyzes were performed using the bonding copper paste 8.
  • Example 9 In the same manner as in Example 1 except that spherical copper particles 1300Y (manufactured by Mitsui Metal Mining Co., Ltd.) were used as micro copper particles having a maximum diameter of 1 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of less than 2. Copper paste 9 was obtained. Various measurements and analyzes were performed using the bonding copper paste 9.
  • spherical copper particles 1300Y manufactured by Mitsui Metal Mining Co., Ltd.
  • Example 1 A bonding copper paste 10 was obtained in the same manner as in Example 1 except that the flaky micro copper particles were not added. Various measurements and analyzes were performed using the bonding copper paste 10.
  • Example 2 A joining copper paste 11 was obtained in the same manner as in Example 1 except that spherical copper particles 1300Y (manufactured by Mitsui Metal Mining Co., Ltd.) were used instead of the flaky micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 11.
  • Example 3 A joining copper paste 12 was obtained in the same manner as in Example 1 except that spherical copper particles 1100Y (Mitsui Metal Mining Co., Ltd.) were used instead of the flaky micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 12.
  • Example 4 A joining copper paste 13 was obtained in the same manner as in Example 1 except that spherical copper particles 1050Y (Mitsui Metal Mining Co., Ltd.) were used instead of the flaky micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 13.
  • Example 5 A joining copper paste 14 was obtained in the same manner as in Example 1 except that spherical copper particles 1020Y (Mitsui Metal Mining Co., Ltd.) were used instead of the flaky micro copper particles. Various measurements and analyzes were performed using the bonding copper paste 14.
  • Tables 1 to 3 show the compositions and test results of Examples and Comparative Examples.
  • the shape of the copper particles used in the examples and comparative examples is as follows.
  • TN-Cu100 50% volume average particle size 0.12 ⁇ m, content of copper particles having a particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less 90 mass% CH-0200: 50% volume average particle size 0.36 ⁇ m, content of copper particles having a particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less 100% by mass CT-500: 50% volume average particle size 0.72 ⁇ m, content of copper particles having a particle size of 0.12 ⁇ m or more and 0.8 ⁇ m or less 80% by mass
  • the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less
  • the maximum diameter is 1 ⁇ m or more
  • (Flake micro copper particles) MA-C025 content of copper particles having an average maximum diameter of 4.1 ⁇ m, an aspect ratio of 7.9, and a maximum diameter of 1 ⁇ m or more and 20 ⁇ m or less of 100% by mass
  • 3L3 content of copper particles having an average maximum diameter of 7.3 ⁇ m, an aspect ratio of 26, and a maximum diameter of 1 ⁇ m to 20 ⁇ m, 100% by mass
  • 1110F content of copper particles having an average maximum diameter of 5.8 ⁇ m, an aspect ratio of 20, and a maximum diameter of 1 ⁇ m to 20 ⁇ m, 100% by mass
  • the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less
  • the content of the flaky micro copper particles having an aspect ratio of 4 or more is 100% by mass
  • the maximum diameter is 1 ⁇ m or more and 20 ⁇ m or less
  • the aspect The content of micro copper particles having a ratio of less than 2 was 0% by mass.
  • said volume average particle diameter was calculated
  • SALD-7500 nano manufactured by Shimadzu Corporation
  • (1) to (5) To measure the 50% volume average particle size.
  • WingSALDII-7500-for Japan V3.1 was started up on the personal computer attached to the measuring device, and the manual was initialized by pressing the manual. After the initialization was completed, the save file name was specified, “Next” was clicked, measurement conditions and particle size distribution calculation conditions were set as follows, and “Next” was clicked.
  • Measurement condition The average number of detection times of diffraction / scattered light (measurement number: 1): 128, measurement number: 1, measurement interval (seconds): 2 ⁇ Measured light absorption range maximum value: 0.2, minimum value: 0 Blank area / measurement area Blank measurement allowable variation maximum value: 150, measurement optimum range (MAX): 45000, measurement optimum range (MIN): 15000 (Particle size distribution calculation conditions) Refractive index selection: reference sample / forward metal / semiconductor, etc.
  • Measurement was performed by selecting “Measurement” from the above screen. The operations (1) to (4) were repeated 4 times and the measurement was performed 4 times. (5) Statistics WingSALDII-7500- for Japan V3. , Click “Open”, select the measured file, WingSALDII-7500-for Japan V3. Measurement data was displayed on the screen. Click “Overlay”, the 50.000% diameter was displayed at the bottom of the screen, and the average value of 4 times was defined as the 50% volume average particle diameter.
  • FIGS. 15 to 18 are SEM images of bonded bodies prepared by sandwiching the bonding copper pastes of Examples 1, 2, 4, and 6 between the chip 12 and the substrate 15 and performing a sintering process at 350 ° C. for 25 minutes. is there. From these figures, it can be seen that the state of the bonding copper paste before sintering is reflected even after sintering. That is, it has a structure in which the shape 14 derived from the non-flaked copper particles fills the gap of the shape 13 derived from the flaky micro copper particles, and the shape 13 derived from the flaky micro copper particles is the chip 12 or the substrate 15. It is oriented substantially parallel to the bonding surface.
  • the bonded body prepared using the bonding copper paste of the present invention is a bonded copper containing only non-flaked copper particles (for example, spherical copper particles) due to the reinforcing effect in which the orientation structure is closely packed as described above. It can have a copper sintered body with higher connection reliability than a sintered body formed from a paste.
  • FIG. 14 is an SEM image of a dried film of the bonding copper paste prepared by sandwiching the bonding copper paste of Comparative Example 4 between the chip and the substrate and performing a heat treatment at 100 ° C. for 30 minutes.
  • the bonding copper paste of Comparative Example 4 is a bonding copper paste containing only non-flaked copper particles 11.
  • 19 and 20 are SEM images of bonded bodies prepared by sandwiching the bonding copper paste of Comparative Examples 3 and 4 between the chip 12 and the substrate 15 and performing a sintering process at 350 ° C. for 25 minutes.
  • the copper paste for bonding prepared using only non-flaky copper particles is sintered in a form close to point contact between non-flaky copper particles, and the adhesion area cannot be secured sufficiently to the adherend surface, etc. Therefore, sufficient joining cannot be secured, and the result of the connection reliability test after joining is not excellent.
  • the thermal stress generated by the difference in thermal expansion coefficient between the bonded members was applied to the bonding layer. Even in this case, it is considered that high connection reliability can be maintained. This is considered that the connection reliability was improved because the orientation structure derived from the flaky micro copper particles hindered the propagation of cracks generated in the sintered body of the copper paste for bonding due to thermal stress.
  • this sintered body is composed of metallic copper connected by metal bonds, it exhibits a high thermal conductivity of 100 W / (m ⁇ K) or more, and promptly dissipates heat when mounting electronic devices that generate large amounts of heat. Is possible.
  • the bonding copper paste according to the present invention even if there is no pressure, it is firmly bonded by metal bonding, so that the material of the adherend surface has bonding strength against copper, nickel, silver and gold.
  • the represented die shear strength can be 20 MPa or more.
  • the bonding copper paste according to the present invention has a very effective property for bonding electronic devices that generate large amounts of heat such as power devices, logic, and amplifiers. For this reason, when the bonding copper paste according to the present invention is applied, higher input power can be allowed and the operation can be performed at a high operating temperature.
  • SYMBOLS 1 Sintered body of copper paste for joining, 2 ... First member, 3 ... Second member, 5a, 5b ... Lead frame, 6 ... Wire, 7 ... Mold resin, 8 ... Semiconductor element, 9 ... Flakes Micro copper particles, 10 ... flaky micro copper particles (unsintered), 11 ... non-flaked micro copper particles (unsintered), 12 ... chip (material: Si, copper), 13 ... flaky micro copper particles Shape derived from (after sintering), 14 ... Shape derived from non-flaked micro copper particles (after sintering), 15 ... Substrate (copper), 100 ... Bonded body, 110 ... Semiconductor device, 21 ...
  • Insulating substrate 22 ... 1st electrode, 23 ... Semiconductor element, 24 ... 2nd electrode, 25 ... Metal wiring, 26 ... 3rd electrode, 27 ... Wire, 28 ... Copper plate, 29 ... Insulator, 30 ... Block body, 31 ... Sealing material 32 ... first heat conducting member 33 ... second Conducting member, 34 ... electrode, 35 ... wire, 200 ... semiconductor device, 210 ... semiconductor device, 220 ... semiconductor device, 300 ... semiconductor device, 310 ... semiconductor device, 320 ... semiconductor device, 400 ... semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本発明の接合用銅ペーストは、金属粒子と、分散媒と、を含み、金属粒子が、体積平均粒径が0.12μm以上0.8μm以下であるサブマイクロ銅粒子と、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子とを含み、且つ、金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、フレーク状マイクロ銅粒子全量を基準として、50質量%以下である。

Description

接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
 本発明は、接合用銅ペースト、それを用いた接合体の製造方法及び半導体装置の製造方法、並びに接合体及び半導体装置に関する。
 半導体装置を製造する際、半導体素子とリードフレーム等(支持部材)とを接合させるため、さまざまな接合材が用いられている。半導体装置の中でも、150℃以上の高温で動作させるパワー半導体、LSI等の接合には、接合材として高融点鉛はんだが用いられてきた。近年、半導体素子の高容量化及び省スペース化により動作温度が高融点鉛はんだの融点近くまで上昇しており、接続信頼性を確保することが難しくなってきている。一方で、RoHS規制強化に伴い、鉛を含有しない接合材が求められている。
 これまでにも、鉛はんだ以外の材料を用いた半導体素子の接合が検討されている。例えば、下記特許文献1には、銀ナノ粒子を低温焼結させ、焼結銀層を形成する技術が提案されている。このような焼結銀はパワーサイクルに対する接続信頼性が高いことが知られている(非特許文献1)。
 更に別の材料として、銅粒子を焼結させ、焼結銅層を形成する技術も提案されている。例えば、下記特許文献2には、半導体素子と電極とを接合するための接合材として、酸化第2銅粒子及び還元剤を含む接合用ペーストが開示されている。また、下記特許文献3には、銅ナノ粒子と、銅マイクロ粒子もしくは銅サブマイクロ粒子、あるいはそれら両方とを含む接合材が開示されている。
特許第4928639号 特許第5006081号 特開2014-167145号公報
R. Khazaka, L. Mendizabal, D. Henry: J. ElecTron. Mater, 43(7), 2014,  2459-2466
 上記特許文献1に記載の方法は、高い接続信頼性を得るには焼結銀層の緻密化が必須であるため、加圧を伴う熱圧着プロセスが必要となる。加圧を伴う熱圧着プロセスを行う場合、生産効率の低下、歩留まりの低下等の課題がある。更に、銀ナノ粒子を用いる場合、銀による材料コストの著しい増加等が問題となる。
 上記特許文献2に記載の方法は、酸化銅から銅に還元する際の体積収縮を熱圧着プロセスにより回避している。しかし、熱圧着プロセスには、上述した課題がある。
 上記特許文献3に記載の方法は、無加圧で焼結を行っているが、以下の点で実用に供するには未だ充分ではない。すなわち、銅ナノ粒子は酸化抑制及び分散性の向上のために保護剤で表面を修飾する必要があるが、銅ナノ粒子は比表面積が大きいため、銅ナノ粒子を主成分とする接合材においては表面保護剤の配合量が増える傾向にある。また、分散性を確保するために分散媒の配合量が増える傾向にある。そのため、上記特許文献3に記載の接合材は、保管、塗工等の供給安定性のため、表面保護剤又は分散媒の割合を多くしており、焼結時の体積収縮が大きくなりやすく、また焼結後の緻密度が低下しやすい傾向にあり焼結体強度の確保が難しい。
 本発明は、無加圧での接合を行う場合であっても充分な接合強度を得ることができる接合用銅ペーストを提供することを目的とする。本発明は更に、接合用銅ペーストを用いる接合体の製造方法及び半導体装置の製造方法、並びに接合体及び半導体装置を提供することも目的とする。
 本発明は、金属粒子と、分散媒と、を含む接合用銅ペーストであって、金属粒子が、体積平均粒径が0.12μm以上0.8μm以下であるサブマイクロ銅粒子と、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子とを含み、且つ、金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、フレーク状マイクロ銅粒子全量を基準として、50質量%以下である、接合用銅ペーストを提供する。
 本発明の接合用銅ペーストによれば、無加圧での接合を行う場合であっても充分な接合強度を得ることができる。このような効果が得られる理由について、上記特定のサブマイクロ銅粒子と、上記特定のフレーク状マイクロ銅粒子とを含有させ、なおかつアスペクト比が2以下のマイクロ銅粒子の含有量を制限することで、接合用銅ペースト内のフレーク状マイクロ銅粒子が接合面に対して略平行に配向しやすくなり、充分な焼結性が得られるとともに焼結時の体積収縮を充分抑制することが可能となり、焼結体強度の確保及び被着面との接合力向上が達成されることが考えられる。また、本発明の接合用銅ペーストは、サブマイクロ銅粒子及びマイクロ銅粒子によって上述した効果を得ることができることから、高価な銅ナノ粒子を主成分とする接合材に比べて、より安価で且つ安定的に供給できるという利点を有する。これにより、例えば、半導体装置等の接合体を製造する場合に生産安定性を一層高めることが可能となる。
 本明細書において、「フレーク状」とは、板状、鱗片状等の平板状の形状を包含する。本明細書において、「アスペクト比」とは、粒子の長辺/厚みを意味する。
 本発明の接合用銅ペーストは無加圧接合用であってもよい。本明細書において、「無加圧」とは、接合する部材の自重、又はその自重に加え、0.01MPa以下の圧力を受けている状態を意味する。
 本発明の接合用銅ペーストは、サブマイクロ銅粒子の含有量が、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、20質量%以上90質量%以下であり、フレーク状マイクロ銅粒子の含有量が、金属粒子の全質量を基準として、1質量%以上90質量%以下であってもよい。サブマイクロ銅粒子及びフレーク状マイクロ銅粒子が上記範囲内であれば、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。
 本発明の接合用銅ペーストは、金属粒子が、ニッケル、銀、金、パラジウム、白金からなる群から選択される少なくとも1種の金属粒子を含んでいてもよい。接合用銅ペーストが上記金属粒子を更に含む場合、複数種の金属が固溶又は分散した焼結体を得ることができるため、焼結体の降伏応力、疲労強度等の機械的な特性が改善され、接続信頼性が向上しやすい。
 本発明はまた、第一の部材、該第一の部材の自重が働く方向側に、上記接合用銅ペースト、及び第二の部材がこの順に積層された積層体を用意し、接合用銅ペーストを、第一の部材の自重、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える、接合体の製造方法を提供する。
 本発明の接合体の製造方法によれば、上記接合用銅ペーストを用いることにより、無加圧接合によって部材同士が充分な接合力で接合された接合体を製造することができる。
 本発明はまた、第一の部材、該第一の部材の自重が働く方向側に、上記接合用銅ペースト、及び第二の部材がこの順に積層された積層体を用意し、接合用銅ペーストを、第一の部材の自重、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備え、第一の部材及び第二の部材の少なくとも一方が半導体素子である、半導体装置の製造方法を提供する。
 本発明の半導体装置の製造方法によれば、上記接合用銅ペーストを用いることにより、無加圧接合によってダイシェア強度に優れた半導体装置を製造することができる。また、本発明の半導体装置の製造方法によって製造される半導体装置は接続信頼性に優れたものになり得る。
 本発明はまた、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する上記接合用銅ペーストの焼結体と、を備える、接合体を提供する。本発明の接合体は、第一の部材及び第二の部材が充分な接合力を有する銅の焼結体を介して接合されている。また本発明の接合体は、熱伝導率に優れた銅の焼結体を備えることにより、部材の放熱性に優れたものになり得る。
 上記接合体において、第一の部材及び第二の部材の少なくとも一方が、焼結体と接する面に、銅、ニッケル、銀、金及びパラジウムからなる群から選択される少なくとも1種の金属を含んでいてもよい。この場合、第一の部材及び第二の部材の少なくとも一方と、焼結体との接着性を更に高めることができる。
 本発明はまた、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する上記接合用銅ペーストの焼結体と、を備え、第一の部材及び第二の部材の少なくとも一方が半導体素子である、半導体装置を提供する。本発明の半導体装置は、充分な接合力を有し、熱伝導率及び融点が高い銅の焼結体を備えることにより、充分なダイシェア強度を有し、接続信頼性に優れるとともに、パワーサイクル耐性にも優れたものになり得る。
 本発明によれば、無加圧での接合を行う場合であっても充分な接合強度を得ることができる接合用銅ペーストを提供することができる。本発明は更に、接合用銅ペーストを用いる接合体の製造方法及び半導体装置の製造方法、並びに接合体及び半導体装置を提供することができる。
フレーク状マイクロ銅粒子MA-C025を示すSEM像である。 本実施形態の接合用銅ペーストを用いて製造される接合体の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 実施例1の接合用銅ペーストの断面モルフォロジーを示すSEM像である。 実施例4の接合用銅ペーストの断面モルフォロジーを示すSEM像である。 実施例6の接合用銅ペーストの断面モルフォロジーを示すSEM像である。 比較例4の接合用銅ペーストの断面モルフォロジーを示すSEM像である。 実施例1の接合用銅ペーストを用いた接合体における焼結体の断面を示すSEM像である。 実施例2の接合用銅ペーストを用いた接合体における焼結体の断面を示すSEM像である。 実施例4の接合用銅ペーストを用いた接合体における焼結体の断面を示すSEM像である。 実施例6の接合用銅ペーストを用いた接合体における焼結体の断面を示すSEM像である。 比較例3の接合用銅ペーストを用いた接合体における焼結体の断面を示すSEM像である。 比較例4の接合用銅ペーストを用いた接合体における焼結体の断面を示すSEM像である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではない。
<接合用銅ペースト>
 本実施形態の接合用銅ペーストは、金属粒子と、分散媒と、を含む接合用銅ペーストであって、金属粒子がサブマイクロ銅粒子及びフレーク状マイクロ銅粒子を含む。
(金属粒子)
 本実施形態に係る金属粒子としては、サブマイクロ銅粒子、フレーク状マイクロ銅粒子、これら以外の銅粒子、その他の金属粒子等が挙げられる。
(サブマイクロ銅粒子)
 サブマイクロ銅粒子としては、粒径が0.12μm以上0.8μm以下の銅粒子を含むものが挙げられ、例えば、体積平均粒径が0.12μm以上0.8μm以下の銅粒子を用いることができる。サブマイクロ銅粒子の体積平均粒径が0.12μm以上であれば、サブマイクロ銅粒子の合成コストの抑制、良好な分散性、表面処理剤の使用量の抑制といった効果が得られやすくなる。サブマイクロ銅粒子の体積平均粒径が0.8μm以下であれば、サブマイクロ銅粒子の焼結性が優れるという効果が得られやすくなる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の体積平均粒径は、0.15μm以上0.8μm以下であってもよく、0.15μm以上0.6μm以下であってもよく、0.2μm以上0.5μm以下であってもよく、0.3μm以上0.45μm以下であってもよい。
 なお、本願明細書において体積平均粒径とは、50%体積平均粒径を意味する。銅粒子の体積平均粒径を求める場合、原料となる銅粒子、又は接合用銅ペーストから揮発成分を除去した乾燥銅粒子を、分散剤を用いて分散媒に分散させたものを光散乱法粒度分布測定装置(例えば、島津ナノ粒子径分布測定装置(SALD-7500nano,株式会社島津製作所製))で測定する方法等により求めることができる。光散乱法粒度分布測定装置を用いる場合、分散媒としては、ヘキサン、トルエン、α-テルピネオール等を用いることができる。
 サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を10質量%以上含むことができる。接合用銅ペーストの焼結性の観点から、サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を20質量%以上含むことができ、30質量%以上含むことができ、100質量%含むことができる。サブマイクロ銅粒子における粒径が0.12μm以上0.8μm以下の銅粒子の含有割合が20質量%以上であると、銅粒子の分散性がより向上し、粘度の上昇、ペースト濃度の低下をより抑制することができる。
 銅粒子の粒径は、下記方法により求めることができる。銅粒子の粒径は、例えば、SEM像から算出することができる。銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。このSEM像の銅粒子に外接する四角形を画像処理ソフトにより作図し、その一辺をその粒子の粒径とする。
 サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、20質量%以上90質量%以下であってもよく、30質量%以上85質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。サブマイクロ銅粒子の含有量が上記範囲内であれば、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。
 サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、20質量%以上90質量%以下であってもよい。サブマイクロ銅粒子の上記含有量が20質量%以上であれば、フレーク状マイクロ銅粒子の間を充分に充填することができ、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。サブマイクロ銅粒子の上記含有量が90質量%以下であれば、接合用銅ペーストを焼結した時の体積収縮を充分に抑制できるため、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、30質量%以上85質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。
 サブマイクロ銅粒子の形状は、特に限定されるものではない。サブマイクロ銅粒子の形状としては、例えば、球状、塊状、針状、フレーク状、略球状及びこれらの凝集体が挙げられる。分散性及び充填性の観点から、サブマイクロ銅粒子の形状は、球状、略球状、フレーク状であってもよく、燃焼性、分散性、フレーク状マイクロ粒子との混合性等の観点から、球状又は略球状であってもよい。本明細書において、「フレーク状」とは、板状、鱗片状等の平板状の形状を包含する。
 サブマイクロ銅粒子は、分散性、充填性、及びフレーク状マイクロ粒子との混合性の観点から、アスペクト比が5以下であってもよく、3以下であってもよい。本明細書において、「アスペクト比」とは、粒子の長辺/厚みを示す。粒子の長辺及び厚みの測定は、例えば、粒子のSEM像から求めることができる。
 サブマイクロ銅粒子は、特定の表面処理剤で処理されていてもよい。特定の表面処理剤としては、例えば、炭素数8~16の有機酸が挙げられる。炭素数8~16の有機酸としては、例えば、カプリル酸、メチルヘプタン酸、エチルヘキサン酸、プロピルペンタン酸、ペラルゴン酸、メチルオクタン酸、エチルヘプタン酸、プロピルヘキサン酸、カプリン酸、メチルノナン酸、エチルオクタン酸、プロピルヘプタン酸、ブチルヘキサン酸、ウンデカン酸、メチルデカン酸、エチルノナン酸、プロピルオクタン酸、ブチルヘプタン酸、ラウリン酸、メチルウンデカン酸、エチルデカン酸、プロピルノナン酸、ブチルオクタン酸、ペンチルヘプタン酸、トリデカン酸、メチルドデカン酸、エチルウンデカン酸、プロピルデカン酸、ブチルノナン酸、ペンチルオクタン酸、ミリスチン酸、メチルトリデカン酸、エチルドデカン酸、プロピルウンデカン酸、ブチルデカン酸、ペンチルノナン酸、ヘキシルオクタン酸、ペンタデカン酸、メチルテトラデカン酸、エチルトリデカン酸、プロピルドデカン酸、ブチルウンデカン酸、ペンチルデカン酸、ヘキシルノナン酸、パルミチン酸、メチルペンタデカン酸、エチルテトラデカン酸、プロピルトリデカン酸、ブチルドデカン酸、ペンチルウンデカン酸、ヘキシルデカン酸、ヘプチルノナン酸、メチルシクロヘキサンカルボン酸、エチルシクロヘキサンカルボン酸、プロピルシクロヘキサンカルボン酸、ブチルシクロヘキサンカルボン酸、ペンチルシクロヘキサンカルボン酸、ヘキシルシクロヘキサンカルボン酸、ヘプチルシクロヘキサンカルボン酸、オクチルシクロヘキサンカルボン酸、ノニルシクロヘキサンカルボン酸等の飽和脂肪酸;オクテン酸、ノネン酸、メチルノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ミリストレイン酸、ペンタデセン酸、ヘキサデセン酸、パルミトレイン酸、サビエン酸等の不飽和脂肪酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸、メチル安息香酸、エチル安息香酸、プロピル安息香酸、ブチル安息香酸、ペンチル安息香酸、ヘキシル安息香酸、ヘプチル安息香酸、オクチル安息香酸、ノニル安息香酸等の芳香族カルボン酸が挙げられる。有機酸は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。このような有機酸と上記サブマイクロ銅粒子とを組み合わせることで、サブマイクロ銅粒子の分散性と焼結時における有機酸の脱離性とを両立できる傾向にある。
 表面処理剤の処理量は、サブマイクロ銅粒子の表面に一分子層~三分子層付着する量であってもよい。この量は、サブマイクロ銅粒子の表面に付着した分子層数(n)、サブマイクロ銅粒子の比表面積(A)(単位m/g)と、表面処理剤の分子量(M)(単位g/mol)と、表面処理剤の最小被覆面積(S)(単位m/個)と、アボガドロ数(N)(6.02×1023個)から算出できる。具体的には、表面処理剤の処理量は、表面処理剤の処理量(質量%)={(n・A・M)/(S・N+n・A・M)}×100%の式に従って算出される。
 サブマイクロ銅粒子の比表面積は、乾燥させたサブマイクロ銅粒子をBET比表面積測定法で測定することで算出できる。表面処理剤の最小被覆面積は、表面処理剤が直鎖飽和脂肪酸の場合、2.05×10-19/1分子である。それ以外の表面処理剤の場合には、例えば、分子モデルからの計算、又は「化学と教育」(上江田捷博、稲福純夫、森巌、40(2),1992,p114-117)に記載の方法で測定できる。表面処理剤の定量方法の一例を示す。表面処理剤は、接合用銅ペーストから分散媒を除去した乾燥粉の熱脱離ガス・ガスクロマトグラフ質量分析計により同定でき、これにより表面処理剤の炭素数及び分子量を決定できる。表面処理剤の炭素分割合は、炭素分分析により分析できる。炭素分分析法としては、例えば、高周波誘導加熱炉燃焼/赤外線吸収法が挙げられる。同定された表面処理剤の炭素数、分子量及び炭素分割合から上記式により表面処理剤量を算出できる。
 表面処理剤の上記処理量は、0.07質量%以上2.1質量%以下であってもよく、0.10質量%以上1.6質量%以下であってもよく、0.2質量%以上1.1質量%以下であってもよい。
 上記サブマイクロ銅粒子は良好な焼結性を有するため、銅ナノ粒子を主に用いた接合材にみられる高価な合成コスト、良好でない分散性、焼結後の体積収縮の低下等の課題を低減することができる。
 本実施形態に係るサブマイクロ銅粒子としては、市販されているものを用いることができる。市販されているサブマイクロ銅粒子としては、例えば、CH-0200(三井金属鉱業株式会社製、体積平均粒径0.36μm)、HT-14(三井金属鉱業株式会社製、体積平均粒径0.41μm)、CT-500(三井金属鉱業株式会社製、体積平均粒径0.72μm)、Tn-Cu100(太陽日酸株式会社製、体積平均粒径0.12μm)が挙げられる。
(フレーク状マイクロ銅粒子)
 フレーク状マイクロ銅粒子としては、最大径が1μm以上20μm以下であり、アスペクト比が4以上の銅粒子を含むものが挙げられ、例えば、平均最大径が1μ以上20μm以下であり、アスペクト比が4以上の銅粒子を用いることができる。フレーク状マイクロ銅粒子の平均最大径及びアスペクト比が上記範囲内であれば、接合用銅ペーストを焼結した際の体積収縮を充分に低減でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏するという観点から、フレーク状マイクロ銅粒子の平均最大径は、1μm以上10μm以下であってもよく、3μm以上10μm以下であってもよい。フレーク状マイクロ銅粒子の最大径及び平均最大径の測定は、例えば、粒子のSEM像から求めることができ、後述するフレーク状マイクロ銅粒子の長径X及び長径の平均値Xavとして求められる。
 フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を50質量%以上含むことができる。接合体内での配向、補強効果、接合ペーストの充填性の観点から、フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を70質量%以上含むことができ、80質量%以上含むことができ、100質量%含むことができる。接合不良を抑制する観点から、フレーク状マイクロ銅粒子は、例えば、最大径が20μmを超える粒子等の接合厚みを超えるサイズの粒子を含まないことが好ましい。
 フレーク状マイクロ銅粒子は、アスペクト比が4以上であってもよく、6以上であってもよい。アスペクト比が上記範囲内であれば、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向することにより、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。
 フレーク状マイクロ銅粒子の含有量は、金属粒子の全質量を基準として、1質量%以上90質量%以下であってもよく、10質量%以上70質量%以下であってもよく、20質量%以上50質量%以下であってもよい。フレーク状マイクロ銅粒子の含有量が、上記範囲内であれば、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。
 サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、80質量%以上であってもよい。サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計が上記範囲内であれば、接合用銅ペーストを焼結した際の体積収縮を充分に低減でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。
 本実施形態に係るフレーク状マイクロ銅粒子の形状は、長径(最大径)X、中径Y(幅)、短径(厚さ)Tというパラメータで規定することもできる。長径Xは、フレーク状マイクロ銅粒子の三次元形状において、フレーク状マイクロ銅粒子に外接する平行二平面のうち、この平行二平面間の距離が最大となるように選ばれる平行二平面の距離である。中径Yは、長径Xを与える平行二平面に直行し、且つ、フレーク状マイクロ銅粒子に外接する平行二平面のうち、この平行二平面間の距離が最大となるように選ばれる平行二平面の距離である。短径Tは、長径Xを与える平行二平面及び中径Yを与える平行二平面に直行し、且つ、フレーク状マイクロ銅粒子に外接する平行二平面のうち、平行二平面間の距離が最大となるように選ばれる平行二平面の距離である。
 長径の平均値Xavは、1μm以上20.0μm以下であってもよく、1μm以上10μm以下であってもよく、3μm以上10μm以下であってもよい。Xavが上記範囲内であれば、接合用銅ペーストを焼結させて製造される接合体において、接合用銅ペーストの焼結体は適切な厚みで形成しやすい。
 短径の平均値Tavに対する長径の平均値Xavの比(アスペクト比)であるXav/Tavは、4.0以上であってもよく、6.0以上であってもよく、10.0以上であってもよい。Xav/Tavが上記範囲内であれば、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向しやすくなり、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。
 中径の平均値Yavに対する長径の平均値Xavの比であるXav/Yavは、2.0以下であってもよく、1.7以下であってもよく、1・5以下であってもよい。Xav/Yavが上記範囲内であれば、フレーク状マイクロ銅粒子の形状がある程度の面積を有するフレーク状の粒子となり、接合用銅ペースト内のフレーク状マイクロ銅粒子が接合面に対して略平行に配向しやすくなり、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。Xav/Yavが2.0を超える場合、フレーク状マイクロ銅粒子の形状が細長い線状に近づくことを意味する。
 短径の平均値Tavに対する中径の平均値Yavの比であるYav/Tavは、2.5以上であってもよく、4.0以上であってもよく、8.0以上であってもよい。Yav/Tavが上記範囲内であれば、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向しやすくなり、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。
 フレーク状マイクロ銅粒子の長径X及び中径YをSEM像から算出する方法を例示する。フレーク状マイクロ銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。図1は、フレーク状マイクロ銅粒子の一例であるMA-C025(三井金属鉱業株式会社製)を示すSEM像である。このSEM像のフレーク状マイクロ銅粒子9に外接する長方形を画像処理ソフトにより作図し、長方形の長辺をその粒子の長径X、長方形の短辺をその粒子の中径Yとする。複数のSEM像を用いて、この測定を50個以上のフレーク状マイクロ銅粒子に対して行い、長径の平均値Xav及び中径の平均値Yavを算出する。
 フレーク状マイクロ銅粒子の短径TをSEM像から算出する方法を例示する。フレーク状マイクロ銅粒子を含む銅ペーストを銅基板上に印刷し、シリコンチップをマウントする。これをホットプレート等により、空気中、100℃、30分の条件で乾燥処理することで、銅板及びシリコンチップが乾燥した接合用銅ペーストによって弱く接着した接合物を調製する。接合物をエポキシ注形樹脂により硬化し、硬化サンプルを研磨紙により削り、接合物の中央付近の断面を出す。この断面をアルゴンイオンによりクロスセクションポリッシャ(CP)加工を行い、SEM用サンプルとする。SEM用サンプルをSEM装置により5000倍で観察する。図6は、後述する実施例6の接合用銅ペーストをチップと基板の間に挟み、100℃、30分の乾燥処理を行った際の接合用銅ペーストの乾燥膜のSEM像である。SEM像のフレーク状マイクロ銅粒子に由来する形状に対し、外接する長方形を画像処理ソフトにより作図し、長方形の短辺をその粒子の短径Tとする。複数のSEM像を用いて、この測定を50個以上のフレーク状マイクロ銅粒子に対して行い、短径の平均値Tavを算出する。
 画像処理ソフトとしては、特に限定されるものではなく、例えば、Microsoft PowerPoint(Microsoft社製)、ImageJ(アメリカ国立衛生研究所製)を用いることができる。
 フレーク状マイクロ銅粒子において、表面処理剤の処理の有無は特に限定されるものではない。分散安定性及び耐酸化性の観点から、フレーク状マイクロ銅粒子は表面処理剤で処理されていてもよい。表面処理剤は、接合時に除去されるものであってもよい。このような表面処理剤としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、オレイン酸等の脂肪族カルボン酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸等の芳香族カルボン酸;セチルアルコール、ステアリルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール;p-フェニルフェノール等の芳香族アルコール;オクチルアミン、ドデシルアミン、ステアリルアミン等のアルキルアミン;ステアロニトリル、デカニトリル等の脂肪族ニトリル;アルキルアルコキシシラン等のシランカップリング剤;ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、シリコーンオリゴマー等の高分子処理剤などが挙げられる。表面処理剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 表面処理剤の処理量は、粒子表面に一分子層以上の量であってもよい。このような表面処理剤の処理量は、フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積により変化する。表面処理剤の処理量は、通常0.001質量%以上である。フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積については、上述した方法により算出することができる。
 上記サブマイクロ銅粒子のみから接合用銅ペーストを調製する場合、分散媒の乾燥に伴う体積収縮及び焼結収縮が大きいため、接合用銅ペーストの焼結時に被着面より剥離しやすくなり、半導体素子等の接合においては充分なダイシェア強度及び接続信頼性が得られにくい。サブマイクロ銅粒子とフレーク状マイクロ銅粒子とを併用することで、接合用銅ペーストを焼結させたときの体積収縮が抑制され、接合体は充分な接合強度を有することができる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示すという効果が得られる。
 本実施形態の接合用銅ペーストにおいて、金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子全量を基準として、50質量%以下が好ましく、30質量%以下とすることがより好ましい。最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量を制限することにより、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向しやすくなり、接合用銅ペーストを焼結させたときの体積収縮をより有効に抑制することができる。これにより、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。このような効果が更に得られやすくなる点で、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子全量を基準として、20質量%以下であってもよく、10質量%以下であってもよい。
 本実施形態に係るフレーク状マイクロ銅粒子としては、市販されているものを用いることができる。市販されているフレーク状マイクロ銅粒子としては、例えば、MA-C025(三井金属鉱業株式会社製、平均最大径4.1μm)、3L3(福田金属箔粉工業株式会社製、体積最大径7.3μm)、1110F(三井金属鉱業株式会社製、平均最大径5.8μm)、2L3(福田金属箔粉工業株式会社製、平均最大径9μm)が挙げられる。
 本実施形態の接合用銅ペーストにおいては、配合するマイクロ銅粒子として、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子を含み、且つ、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、上記フレーク状マイクロ銅粒子全量を基準として、50質量%以下、好ましくは30質量%以下であるマイクロ銅粒子を用いることができる。市販されているフレーク状マイクロ銅粒子を用いる場合、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子を含み、且つ、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、上記フレーク状マイクロ銅粒子全量を基準として、50質量%以下、好ましくは30質量%以下であるものを選定してもよい。
(銅粒子以外のその他の金属粒子)
 金属粒子としては、サブマイクロ銅粒子及びマイクロ銅粒子以外のその他の金属粒子を含んでいてもよく、例えば、ニッケル、銀、金、パラジウム、白金等の粒子を含んでいてもよい。その他の金属粒子は、体積平均粒径が0.01μm以上10μm以下であってもよく、0.01μm以上5μm以下であってもよく、0.05μm以上3μm以下であってもよい。その他の金属粒子を含んでいる場合、その含有量は、充分な接合性を得るという観点から、金属粒子の全質量を基準として、20質量%未満であってもよく、10質量%以下であってもよい。その他の金属粒子は、含まれなくてもよい。その他の金属粒子の形状は、特に限定されるものではない。
 銅粒子以外の金属粒子を含むことで、複数種の金属が固溶又は分散した焼結体を得ることができるため、焼結体の降伏応力、疲労強度等の機械的な特性が改善され、接続信頼性が向上しやすい。また、複数種の金属粒子を添加することで、接合用銅ペーストの焼結体は、特定の被着体に対して充分な接合強度を有することができる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性が向上しやすい。
(分散媒)
 分散媒は特に限定されるものではなく、揮発性のものであってもよい。揮発性の分散媒としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α-テルピネオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類;エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類;エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、γ-ブチロラクトン、炭酸プロピレン等のエステル類;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の酸アミド;シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;炭素数1~18のアルキル基を有するメルカプタン類;炭素数5~7のシクロアルキル基を有するメルカプタン類が挙げられる。炭素数1~18のアルキル基を有するメルカプタン類としては、例えば、エチルメルカプタン、n-プロピルメルカプタン、i-プロピルメルカプタン、n-ブチルメルカプタン、i-ブチルメルカプタン、t-ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンが挙げられる。炭素数5~7のシクロアルキル基を有するメルカプタン類としては、例えば、シクロペンチルメルカプタン、シクロヘキシルメルカプタン及びシクロヘプチルメルカプタンが挙げられる。
 分散媒の含有量は、金属粒子の全質量を100質量部として、5~50質量部であってもよい。分散媒の含有量が上記範囲内であれば、接合用銅ペーストをより適切な粘度に調整でき、また、銅粒子の焼結を阻害しにくい。
(添加剤)
 接合用銅ペーストには、必要に応じて、ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤などを適宜添加してもよい。
 本実施形態の接合用銅ペーストの一態様としては、上記金属粒子が、体積平均粒径が0.12μm以上0.8μm以下、好ましくは0.15μm以上0.8μm以下であるサブマイクロ銅粒子と、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子とを含み、且つ、金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、上記フレーク状マイクロ銅粒子全量を基準として、50質量%以下、好ましくは30質量%以下である接合用銅ペーストが挙げられる。
 上記接合用銅ペーストとしては、
(1)体積平均粒径が0.12μm以上0.8μm以下、好ましくは0.15μm以上0.8μm以下であるサブマイクロ銅粒子と、
(2)平均最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子を含み、且つ、平均最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、フレーク状マイクロ銅粒子全量を基準として、50質量%以下、好ましくは30質量%以下であるマイクロ銅粒子と、
を配合してなるものが挙げられる。
 また、本実施形態の接合用銅ペーストの別の態様としては、金属粒子と、分散媒と、を含み、金属粒子が、最大径が0.12μm以上0.8μm以下、好ましくは0.15μm以上0.8μm以下であるサブマイクロ銅粒子と、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子とを含み、且つ、金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、フレーク状マイクロ銅粒子全量を基準として、50質量%以下、好ましくは30質量%以下である接合用銅ペーストが挙げられる。粒子の最大径は、原料となる銅粒子、又は接合用銅ペーストから揮発成分を除去した乾燥銅粒子を走査型電子顕微鏡(SEM)で観察する方法により求められる。本実施形態におけるサブマイクロ銅粒子及びフレーク状マイクロ銅粒子の含有量は、上述した範囲と同様とすることができる。
(接合用銅ペーストの調製)
 接合用銅ペーストは、上述のサブマイクロ銅粒子、フレーク状マイクロ銅粒子、その他の金属粒子及び任意の添加剤を分散媒に混合して調製することができる。各成分の混合後に、撹拌処理を行ってもよい。接合用銅ペーストは、分級操作により分散液の最大粒径を調整してもよい。このとき、分散液の最大粒径は20μm以下とすることができ、10μm以下とすることもできる。
 接合用銅ペーストは、サブマイクロ銅粒子、表面処理剤、分散媒をあらかじめ混合して、分散処理を行ってサブマイクロ銅粒子の分散液を調製し、更にフレーク状マイクロ銅粒子、その他の金属粒子及び任意の添加剤を混合して調製してもよい。このような手順とすることで、サブマイクロ銅粒子の分散性が向上してフレーク状マイクロ銅粒子との混合性が良くなり、接合用銅ペーストの性能がより向上する。サブマイクロ銅粒子の分散液を分級操作によって凝集物を除去してもよい。
 撹拌処理は、撹拌機を用いて行うことができる。撹拌機としては、例えば、自転公転型攪拌装置、ライカイ機、二軸混練機、三本ロールミル、プラネタリーミキサー、薄層せん断分散機が挙げられる。
 分級操作は、例えば、ろ過、自然沈降、遠心分離を用いて行うことができる。ろ過用のフィルタとしては、例えば、金属メッシュ、メタルフィルター、ナイロンメッシュが挙げられる。
 分散処理としては、例えば、薄層せん断分散機、ビーズミル、超音波ホモジナイザー、ハイシアミキサー、狭ギャップ三本ロールミル、湿式超微粒化装置、超音速式ジェットミル、超高圧ホモジナイザーが挙げられる。
 接合用銅ペーストは、成型する場合には各々の印刷・塗布手法に適した粘度に調整してもよい。接合用銅ペーストの粘度としては、例えば、25℃におけるCasson粘度が0.05Pa・s以上2.0Pa・s以下であってもよく、0.06Pa・s以上1.0Pa・s以下であってもよい。
 本実施形態の接合用銅ペーストは、部材上に又は部材間に、塗布等の方法により設けたときに、フレーク状マイクロ銅粒子が部材との界面(ペースト層と部材との界面)に対し、略平行に配向しやすい。このとき、フレーク状マイクロ銅粒子が界面に対してどれほど水平であるかを、配向秩序度Sによって表すことができる。配向秩序度Sは式(1)により算出することができる。
S=1/2×(3<cosθ>-1)・・・(1)
 式中、θは界面とフレーク状マイクロ銅粒子との成す角度を示し、<cosθ>は複数のcosθの値の平均値を示す。
 配向秩序度Sは、0.88以上1.00以下であることができる。配向秩序度Sがこのような範囲内であれば、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向する。そのため、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。
 配向秩序度Sは、例えば、接合用銅ペーストの乾燥体のSEM像から求めることができる。以下に、配向秩序度SをSEM像から算出する方法を例示する。接合用銅ペーストを銅基板上に印刷し、シリコンチップをマウントする。これをホットプレート等により、空気中、100℃、30分の条件で焼結処理することで、銅板及びシリコンチップが乾燥した接合用銅ペーストによって弱く接着した接着物を調製する。この接着物をエポキシ注形樹脂で接着物全体が埋まるように注ぎ、硬化する。注形した接着物の観察したい断面付近で切断し、研磨で断面を削り、CP加工を行い、サンプルとする。サンプルの断面をSEM装置により5000倍で観察する。得られた断面画像に対し、角度測定機能を有する画像処理ソフトを用いてフレーク状マイクロ銅粒子に由来する形状の長径が界面と成す角度を測定する。無作為に選んだ50個以上のフレーク状マイクロ銅粒子に由来する形状でθを測定し、式(1)に代入することで配向秩序度Sを算出することができる。画像処理ソフトとしては、特に限定されるものではなく、例えば、ImageJ(アメリカ国立衛生研究所製)を用いることができる。配向秩序度Sは0から1の値をとり、完全配向状態で1、完全ランダム状態で0である。
 本実施形態の接合用銅ペーストによれば、上述のサブマイクロ銅粒子と、上述のフレーク状マイクロ銅粒子とを併用し、特定のマイクロ銅粒子の含有量を制限することで、良好な焼結性を得ることができ、更に、焼結時の体積収縮を抑制することができる。そのため、本実施形態の接合用銅ペーストは、過度の加圧をすることなく、部材との接合力を確保することができ、接合用銅ペーストを焼結させて製造される接合体は充分な接合強度を有することができる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す。すなわち、本実施形態の接合用銅ペーストは、無加圧接合用の接合材として用いてもよい。また、本実施形態の接合用銅ペーストによれば、比較的安価な銅粒子を用いることで、製造コストを抑えることができ、大量生産をすることができる。特に、本実施形態の接合用銅ペーストは、サブマイクロ銅粒子及びマイクロ銅粒子によって上述した効果を得ることができることから、高価な銅ナノ粒子を主成分とする接合材に比べて、より安価で且つ安定的に供給できるという利点を有する。これにより、例えば、半導体装置等の接合体を製造する場合に生産安定性を一層高めることが可能となる。
<接合体及び半導体装置>
 以下、図面を参照しながら好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は、図示の比率に限られるものではない。
 図2は、本実施形態の接合用銅ペーストを用いて製造される接合体の一例を示す模式断面図である。本実施形態の接合体100は、第一の部材2と、第二の部材3と、第一の部材と第二の部材とを接合する上記接合用銅ペーストの焼結体1と、を備える。
 第一の部材2及び第二の部材3としては、例えば、IGBT、ダイオード、ショットキーバリヤダイオード、MOS-FET、サイリスタ、ロジック、センサー、アナログ集積回路、LED、半導体レーザー、発信器等の半導体素子、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基材、銅リボン及び金属フレーム等の金属配線、金属ブロック等のブロック体、端子等の給電用部材、放熱板、水冷板などが挙げられる。
 第一の部材2及び第二の部材3は、接合用銅ペーストの焼結体と接する面4a及び4bに金属を含んでいてもよい。金属としては、例えば、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト等が挙げられる。金属は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、焼結体と接する面は、上記金属を含む合金であってもよい。合金に用いられる金属としては、上記金属の他に、亜鉛、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデン等が挙げられる。焼結体と接する面に金属を含む部材としては、例えば、各種金属メッキを有する部材、ワイヤ、金属メッキを有するチップ、ヒートスプレッダ、金属板が貼り付けられたセラミックス基板、各種金属メッキを有するリードフレーム又は各種金属からなるリードフレーム、銅板、銅箔が挙げられる。また、第二の部材3が半導体素子である場合、第一の部材2は、金属フレーム等の金属配線、金属ブロック等の熱伝導性及び導電性を有するブロック体などであってもよい。
 接合体のダイシェア強度は、第一の部材及び第二の部材を充分に接合するという観点から、10MPa以上であってもよく、15MPa以上であってもよく、20MPa以上であってもよく、30MPa以上であってもよい。ダイシェア強度は、万能型ボンドテスタ(4000シリーズ、DAGE社製)等を用いて測定することができる。
 接合用銅ペーストの焼結体の熱伝導率は、放熱性及び高温化での接続信頼性という観点から、100W/(m・K)以上であってもよく、120W/(m・K)以上であってもよく、150W/(m・K)以上であってもよい。熱伝導率は、接合用銅ペーストの焼結体の熱拡散率、比熱容量、及び密度から、算出することができる。
 接合体における、フレーク状マイクロ銅粒子の配向秩序度Sは、0.88以上1.00以下とすることができる。接合体における配向秩序度Sは、乾燥した接合用銅ペーストによって弱く接着した接着物に代えて、接合体を分析対象とし、上述した方法で算出することができる。
 以下、本実施形態の接合用銅ペーストを用いた接合体の製造方法について説明する。
 本実施形態の接合用銅ペーストを用いた接合体の製造方法は、第一の部材、該第一の部材の自重が働く方向側に、上記接合用銅ペースト、及び第二の部材がこの順に積層された積層体を用意し、接合用銅ペーストを、第一の部材の自重、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える。
 上記積層体は、例えば、第二の部材の必要な部分に本実施形態の接合用銅ペーストを設け、次いで接合用銅ペースト上に第一の部材を配置することにより用意することができる。
 本実施形態の接合用銅ペーストを、第二の部材の必要な部分に設ける方法としては、接合用銅ペーストを堆積させられる方法であればよい。このような方法としては、例えば、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、バーコート、アプリケータ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ、電着塗装等を用いることができる。接合用銅ペーストの厚みは、1μm以上1000μm以下であってもよく、10μm以上500μm以下であってもよく、50μm以上200μm以下であってもよく、10μm以上3000μm以下であってもよく、15μm以上500μm以下であってもよく、20μm以上300μm以下であってもよく、5μm以上500μm以下であってもよく、10μm以上250μm以下であってもよく、15μm以上150μm以下であってもよい。
 第二の部材上に設けられた接合用銅ペーストは、焼結時の流動及びボイドの発生を抑制する観点から、適宜乾燥させてもよい。乾燥時のガス雰囲気は大気中であってもよく、窒素、希ガス等の無酸素雰囲気中であってもよく、水素、ギ酸等の還元雰囲気中であってもよい。乾燥方法は、常温放置による乾燥であってもよく、加熱乾燥であってもよく、減圧乾燥であってもよい。加熱乾燥又は減圧乾燥には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整してもよい。乾燥の温度及び時間としては、例えば、50℃以上180℃以下で1分以上120分間以下乾燥させてもよい。
 接合用銅ペースト上に第一の部材を配置する方法としては、例えば、チップマウンター、フリップチップボンダー、カーボン製又はセラミックス製の位置決め冶具が挙げられる。
 積層体を加熱処理することで、接合用銅ペーストの焼結を行うことができる。加熱処理には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
 焼結時のガス雰囲気は、焼結体、第一の部材及び第二の部材の酸化抑制の観点から、無酸素雰囲気であってもよい。焼結時のガス雰囲気は、接合用銅ペーストの銅粒子の表面酸化物を除去するという観点から、還元雰囲気であってもよい。無酸素雰囲気としては、例えば、窒素、希ガス等の無酸素ガスの導入、又は真空下が挙げられる。還元雰囲気としては、例えば、純水素ガス中、フォーミングガスに代表される水素及び窒素の混合ガス中、ギ酸ガスを含む窒素中、水素及び希ガスの混合ガス中、ギ酸ガスを含む希ガス中等が挙げられる。
 加熱処理時の到達最高温度は、第一の部材及び第二の部材への熱ダメージの低減及び歩留まりを向上させるという観点から、250℃以上450℃以下であってもよく、250℃以上400℃以下であってもよく、250℃以上350℃以下であってもよい。到達最高温度が、200℃以上であれば、到達最高温度保持時間が60分以下において焼結が充分に進行する傾向にある。
 到達最高温度保持時間は、分散媒を全て揮発させ、また、歩留まりを向上させるという観点から、1分以上60分以下であってもよく、1分以上40分未満であってもよく、1分以上30分未満であってもよい。
 本実施形態の接合用銅ペーストを用いることにより、積層体を焼結する際、無加圧での接合を行う場合であっても、接合体は充分な接合強度を有することができる。すなわち、接合用銅ペーストに積層した第一の部材による自重のみ、又は第一の部材の自重に加え、0.01MPa以下、好ましくは0.005MPa以下の圧力を受けた状態で、充分な接合強度を得ることができる。焼結時に受ける圧力が上記範囲内であれば、特別な加圧装置が不要なため歩留まりを損なうこと無く、ボイドの低減、ダイシェア強度及び接続信頼性をより一層向上させることができる。接合用銅ペーストが0.01MPa以下の圧力を受ける方法としては、例えば、第一の部材上に重りを載せる方法等が挙げられる。
 上記接合体において、第一の部材及び第二の部材の少なくとも一方は、半導体素子であってもよい。半導体素子としては、例えば、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、LEDモジュール等が挙げられる。このような場合、上記接合体は半導体装置となる。得られる半導体装置は充分なダイシェア強度及び接続信頼性を有することができる。
 図3は、本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。図3に示す半導体装置110は、リードフレーム5a上に、本実施形態に係る接合用銅ペーストの焼結体1を介して接続された半導体素子8と、これらをモールドするモールドレジン7とからなる。半導体素子8は、ワイヤ6を介してリードフレーム5bに接続されている。
 本実施形態の接合用銅ペーストを用いて製造される半導体装置としては、例えば、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、高輝度LEDモジュール、センサー等が挙げられる。
 上記半導体装置は、上述した接合体の製造方法と同様にして製造することができる。すなわち、半導体装置の製造方法は、第一の部材及び第二の部材の少なくとも一方に半導体素子を用い、第一の部材、該第一の部材の自重が働く方向側に、上記接合用銅ペースト、及び第二の部材がこの順に積層された積層体を用意し、接合用銅ペーストを、第一の部材の自重、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える。例えば、リードフレーム5a上に接合用銅ペーストを設け、半導体素子8を配置して加熱する工程が挙げられる。得られる半導体装置は、無加圧での接合を行った場合であっても、充分なダイシェア強度及び接続信頼性を有することができる。本実施形態の半導体装置は、充分な接合力を有し、熱伝導率及び融点が高い銅の焼結体を備えることにより、充分なダイシェア強度を有し、接続信頼性に優れるとともに、パワーサイクル耐性にも優れたものになり得る。
 上記の方法は、第二の部材が半導体素子である場合、第一の部材として金属配線又はブロック体等を半導体素子に接合するときの半導体素子へのダメージを低減することができる。半導体素子上に金属配線又はブロック体等の部材を接合した半導体装置について、以下に説明する。
 係る半導体装置の一実施形態としては、第一の電極と、第一の電極と電気的に接続されている半導体素子と、金属配線を介して半導体素子と電気的に接続されている第二の電極と、を備え、半導体素子と金属配線との間、及び、金属配線と第二の電極との間に、上記接合用銅ペーストの焼結体を有するものが挙げられる。
 図4は、上記の半導体装置の一例を示す模式断面図である。図4に示される半導体装置200は、第一の電極22及び第二の電極24を有する絶縁基板21と、第一の電極22上に上記接合用銅ペーストの焼結体1によって接合された半導体素子23と、半導体素子23と第二の電極24とを電気的に接続する金属配線25とを備える。金属配線25と半導体素子23、及び金属配線25と第二の電極24はそれぞれ接合用銅ペーストの焼結体1によって接合されている。また、半導体素子23は、ワイヤ27を介して第三の電極26に接続されている。半導体装置200は、絶縁基板21の上記電極等が搭載されている面とは反対側に、銅板28を備えている。半導体装置200は、上記構造体が絶縁体29で封止されている。半導体装置200は、第一の電極22上に半導体素子23を1個有しているが、2個以上有していてもよい。この場合、複数ある半導体素子23はそれぞれ接合用銅ペーストの焼結体1によって金属配線25と接合することができる。
 図5は、半導体装置の別の例を示す模式断面図である。図5に示される半導体装置210は、半導体素子23と金属配線25との間にブロック体30が設けられており、半導体素子23とブロック体30、及びブロック体30と金属配線25がそれぞれ接合用銅ペーストの焼結体1によって接合されていること以外は、図4に示される半導体装置200と同様の構成を有する。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
 図6は、半導体装置の別の例を示す模式断面図である。図6に示される半導体装置220は、第一の電極22上に、半導体素子23及びブロック体30並びにこれらを接合する接合用銅ペーストの焼結体1が更に設けられていること以外は、図5に示される半導体装置210と同様の構成を有する。半導体装置220は、第一の電極22上に半導体素子を2個有しているが、3個以上有していてもよい。この場合も、3個以上ある半導体素子23はそれぞれブロック体30を介して接合用銅ペーストの焼結体1によって金属配線25と接合することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
 絶縁基板21としては、例えば、アルミナ、窒化アルミ、窒化珪素等のセラミックス、高熱伝導粒子/樹脂コンポジット、ポリイミド樹脂、ポリマレイミド樹脂などが挙げられる。
 第一の電極22、第二の電極24及び第三の電極26を構成する金属としては、例えば、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト等が挙げられる。これらの金属は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、電極は、接合用銅ペーストの焼結体1と接する面に上記金属を含む合金を有していてもよい。合金に用いられる金属としては、上記金属の他に、亜鉛、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデン等が挙げられる。
 金属配線としては、帯状、板状、立方体状、円筒状、L字状、コ字状、へ字状等の形状を有する金属フレームなどが挙げられる。金属配線の材質としては、例えば、銀、銅、鉄、アルミニウム、モリブデン、タングステン、タンタル、ニオブ、或いはこれらの合金が挙げられる。これら、金属配線表面には、耐酸化及び接着性のために、めっき、スパッタ等でニッケル、銅、金、銀などがコーティングされていてもよい。また、金属配線は、幅が1μm~30μmであってもよく、厚みが20μm~5mmであってもよい。
 ブロック体としては、熱伝導性及び導電性に優れるものが好ましく、例えば、銀、銅、鉄、アルミニウム、モリブデン、タングステン、タンタル、ニオブ、或いはこれらの合金を用いることができる。ブロック体表面には、耐酸化及び接着性のために、めっき、スパッタ等でニッケル、銅、金、銀などがコーティングされていてもよい。半導体素子上にブロック体を設けることで、放熱性が更に向上する。ブロック体の数は適宜変更することができる。
 絶縁体29としては、例えば、シリコーンゲル、ポリマレイミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等が挙げられる。
 図4~6に示される半導体装置は、大容量で高信頼性を要求されるパワーモジュールに用いることができる。
 図4~6に示される半導体装置は、例えば、第一の電極及び第二の電極を備える絶縁基板を用意し、第一の電極上に接合用銅ペースト、半導体素子、必要に応じて更に接合用銅ペースト、ブロック体、接合用銅ペーストを、第一の電極側からこの順に設け、第二の電極上に接合用銅ペーストを設け、半導体素子又はブロック体上の接合用銅ペースト及び第二の電極上の接合用銅ペースト上に、これらの接合用銅ペーストを架橋するように金属配線を配置する工程と、接合用銅ペーストを、各部材の自重又は各部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程とを備える方法により製造することができる。
 このような製造方法によれば、無加圧で半導体装置を製造することができるため、ブリッジ部を有する金属配線を変形することなく接合できることに加え、半導体素子上に半導体素子よりも面積の小さい部材を接合する場合であっても半導体素子に対するダメージをより軽減することができる。
 図7は、半導体装置の更に別の例を示す模式断面図である。図7に示される半導体装置300は、第一の電極22と、第一の電極22上に接合用銅ペーストの焼結体1によって接合された半導体素子23と、半導体素子23と第二の電極24とを電気的に接続する金属配線25とを備える。金属配線25と半導体素子23、及び金属配線25と第二の電極24はそれぞれ接合用銅ペーストの焼結体1によって接合されている。また、半導体素子23は、ワイヤ27を介して第三の電極26に接続されている。半導体装置300は、上記構造体が封止材31で封止されている。半導体装置300は、第一の電極22上に半導体素子23を1個有しているが、2個以上有していてもよい。この場合、複数ある半導体素子23はそれぞれ接合用銅ペーストの焼結体1によって金属配線25と接合することができる。
 図8は、半導体装置の別の例を示す模式断面図である。図8に示す半導体装置310は、半導体素子23と金属配線25との間にブロック体30が設けられており、半導体素子23とブロック体30、及びブロック体30と金属配線25がそれぞれ接合用銅ペーストの焼結体1によって接合されていること以外は、図7に示される半導体装置300と同様の構成を有する。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
 図9は、半導体装置の別の例を示す模式断面図である。図9に示される半導体装置320は、第一の電極22上に、半導体素子23及びブロック体30並びにこれらを接合する接合用銅ペーストの焼結体1が更に設けられていること以外は、図8に示される半導体装置310と同様の構成を有する。半導体装置320は、第一の電極22上に半導体素子を2個有しているが、3個以上有していてもよい。この場合も、3個以上ある半導体素子23はそれぞれブロック体30を介して接合用銅ペーストの焼結体1によって金属配線25と接合することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
 図7~9に示される第一の電極22及び第二の電極24は、リードフレーム、銅板、銅・モリブデン焼結体等であってもよい。
 封止材31としては、例えば、耐熱性固形封止材、高熱伝導コンポジット等が挙げられる。
 接合用銅ペーストの焼結体1は、半導体装置200~220で説明したものと同様にすることができる。
 図7~9に示す実施形態の半導体装置は、第一の電極及び第二の電極としてリードフレーム等を採用することで、小型化したパワーモジュールに用いることができる。このような半導体装置は、上述した半導体装置の製造方法と同様にして製造することができる。
 更に、半導体素子上にブロック体を接合した構造を有する半導体装置の別の実施形態について説明する。
 上記の半導体装置としては、第一の熱伝導部材と、第二の熱伝導部材と、第一の熱伝導部材及び第二の熱伝導部材の間に配置される半導体素子と、を備え、第一の熱伝導部材と半導体素子との間、及び、半導体素子と第二の熱伝導部材との間のうちの少なくとも一方の間に上記接合用銅ペーストの焼結体を有するものが挙げられる。
 図10は、本実施形態の一例を示す模式断面図である。図10に示す半導体装置400は、第一の熱伝導部材32と、第一の熱伝導部材32上に接合用銅ペーストの焼結体1を介して接合された半導体素子23と、半導体素子23上に接合用銅ペーストの焼結体1を介して接合されたブロック体30と、ブロック体30上に接合用銅ペーストの焼結体1を介して接合された第二の熱伝導部材33と、を備える。半導体素子23は、ワイヤ35を介して電極34に接続されている。半導体装置400は、第一の熱伝導部材32と第二の熱伝導部材の間が封止材31で封止されている。半導体装置400は、半導体素子を2個有しているが、1個又は3個以上有していてもよく、ブロック体の数も適宜変更することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
 熱伝導部材は、半導体素子23から発生した熱を外部へ放出する機能、及び半導体素子を外部と電気的に接続するための電極としての機能を併せ持つものである。このような熱伝導部材には、例えば、銅、アルミニウム、又はこれらの合金が用いられる。
 図10に示す半導体装置は、半導体素子の両面側に熱伝導部材を備えることで、放熱性に優れる両面冷却構造を有することができる。このような半導体装置は、第一の熱伝導部材上に接合用銅ペースト、半導体素子、接合用銅ペースト、ブロック体、接合用銅ペースト、第二の熱伝導部材を、第一の熱伝導部材側からこの順に積層した積層体を用意し、接合用銅ペーストを、各部材の自重又は各部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える方法により、製造することができる。なお、上記積層体は、上記とは逆の順に積層されたものであってもよい。
  以下、実施例により本発明を更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
<測定条件>
 各実施例及び比較例における各特性の測定は、以下の方法により行った。
(1)フレーク状マイクロ銅粒子の長径(最大径)及び中径の算出、並びに長径の平均値及び中径の平均値の算出
 フレーク状マイクロ銅粒子を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとした。このSEM用サンプルをSEM装置(Philips社製 ESEM XL30、又は、日本電子株式会社製 NeoScope JCM-5000)により、印加電圧10kVで観察した。得られた2000倍のSEM像をMicrosoft PowerPoint(Microsoft社製)で読み込んだ(読み込み時、画像サイズは高さ17.07cm×幅22.75cmであった)。画像下部のスケールバー(本例では10μmを示すスケール)の端から端に対し、直線を引き、その直線の長さを記録した(本例では3.7cm)。続いて、フレーク状マイクロ銅粒子に由来する形状に外接するように長方形を描画した。あるフレーク状マイクロ銅粒子に由来する形状に対して、1.81cm×1.37cmの長方形を描画した。ここで、長方形の長辺(この例では1.81cm)をフレーク状マイクロ銅粒子の長径X、長方形の短辺(この例では1.37cm)をフレーク状マイクロ銅粒子の中径Yとした。10μmのスケールバーが3.7cmの直線という比率から、次のように長径Xと中径Yを算出した。
長径X=1.81cm×10μm/3.7cm=4.89μm
中径Y=1.37cm×10μm/3.7cm=3.70μm
 この操作を画面上のフレーク状マイクロ銅粒子に由来する形状に対し、重複無く繰り返した。ただし、画面端からはみ出て像が切断されているフレーク状マイクロ銅粒子に由来する形状は選択しなかった。50個以上のフレーク状マイクロ銅粒子に由来する形状を測定し、測長結果の平均を計算した。この結果、フレーク状マイクロ銅粒子の長径の平均値Xav及び中径の平均値Yavを得た。
(2)接合用銅ペーストの断面モルフォロジー観察
 銅板(19×25×3mm)上に厚さ70μmのステンレス板に3×3mm正方形の開口を3行3列有するメタルマスクを載せ、メタルスキージを用いてステンシル印刷により接合用銅ペーストを塗布した。塗布した接合用銅ペースト上に、チタン、ニッケルがこの順で形成され、3×3mmの被着面がニッケルであるシリコンチップ(チップ厚:600μm)を載せ、ピンセットで軽く押さえた。これをホットプレート(アズワン株式会社製、EC HOTPLATE EC-1200N)にセットし、空気中、100℃、30分の条件で乾燥処理した。これにより、銅板及びシリコンチップが乾燥した接合用銅ペーストによって弱く接着した接着物を得た。この接着物をカップ内にサンプルクリップ(Samplklip I、Buehler社製)で固定し、周囲にエポキシ注形樹脂(エポマウント、リファインテック株式会社製)を接着物全体が埋まるまで流し込み、真空デシケータ内に静置して1分間減圧して脱泡した。その後、脱泡した接着物を室温で10時間静置し、エポキシ注形樹脂を硬化し、サンプルを調製した。リファインソーエクセル(リファインテック株式会社製)を用いて、サンプルをシリコンチップ近傍で切断した。耐水研磨紙(カーボマックペーパー、リファインテック株式会社製)をつけた研磨装置(Refine Polisher HV、リファインテック株式会社製)で、サンプルを接着物の中央付近まで削り断面を出した。研磨したサンプルは、余分なエポキシ注形樹脂を削り落とし、イオンミリング装置で加工できるサイズにした。イオンミリング装置(IM4000、株式会社日立ハイテクノロジーズ製)をCP加工モードで用い、アルゴンガス流量0.07~0.1cm/min、処理時間120分の条件で、サイズ加工したサンプルを断面加工してSEM用サンプルとした。このSEM用サンプルをSEM装置(日本電子株式会社製、NeoScope JCM-5000)により、印加電圧10kVで観察した。
(3)フレーク状マイクロ銅粒子の短径の算出
「(2)接合用銅ペーストの断面モルフォロジー観察」で得られた5000倍のSEM像をMicrosoft PowerPoint(Microsoft社製)で読み込んだ(読み込み時、画像サイズは高さ9.9cm×幅11.74cmであった)。画像下部のスケールバー(本例では5μmを示すスケール)の端から端に対し、直線を引き、その直線の長さを記録した(本例では2.5cm)。続いて、フレーク状マイクロ銅粒子に由来する形状に外接するように長方形を描画した。あるフレーク状マイクロ銅粒子に由来する形状に対して、1.79cm×0.36cmの長方形を描画した。ここで、長方形の長辺(この例では1.79cm)はフレーク状マイクロ銅粒子の長径X又は中径Yに相当する。長方形の短辺(この例では0.36cm)をフレーク状マイクロ銅粒子の短径Tとした。5μmのスケールバーが2.5cmの直線という比率から、次のように短径Tを算出した。
短径T=0.36cm×5μm/2.5cm=0.72μm
 この操作を画面上のフレーク状マイクロ銅粒子に由来する形状に対し、重複無く繰り返した。ただし、画面端からはみ出て像が切断されているフレーク状マイクロ銅粒子は選択しなかった。50個以上のフレーク状マイクロ銅粒子に由来する形状を測定し、測長結果の平均を計算した。この結果、フレーク状マイクロ銅粒子の短径の平均値Tavを得た。この短径の平均値Tavと、「(1)フレーク状マイクロ銅粒子の長径及び中径の算出」より得られた長径の平均値Xavと、中径の平均値Yavとを用いて、フレーク状マイクロ銅粒子における長径/中径(Xav/Yav)、長径/短径(Xav/Tav)、中径/短径(Yav/Tav)の比をそれぞれ算出した。
(4)接合用銅ペーストの配向秩序度の算出
 「(2)接合用銅ペーストの断面モルフォロジー観察」で得られた5000倍のSEM像をImageJ(アメリカ国立衛生研究所製)で読み込んだ。SEM像としては、基板又はシリコンチップと接合用銅ペーストとの界面が写っているものを用いた。[T]キーを押してROI Managerウインドウを表示し、Show Allのチェックボックスにチェックを入れた。メインウインドウからStraight Lineを選択した。画像上のフレーク状マイクロ銅粒子の断面の端から端までをクリック→ドラッグでラインを引き、[T]キーを押してROI Managerウインドウに登録した。この操作を画面上のフレーク状マイクロ銅粒に由来する形状に対し、重複無く繰り返した。ただし、画面端からはみ出て像が切断されているフレーク状マイクロ銅粒に由来する形状は選択しなかった。次に、ROI Managerウインドウ内のMeasureボタンを押した。計測された角度がResultsウインドウに表示されるので、[File]→[Save As]でファイルにセーブした。基板又はシリコンチップと接合用銅ペーストとの界面が画像に対し水平からずれている場合には、同様にしてその角度を計測した。セーブされた結果のファイルをMicrosoft Excelで読み込んだ。基板又はシリコンチップと接合用銅ペーストとの界面が画像に対し水平からずれている場合には、測定された各角度データから接合界面の角度を減算した。各角度データθに対しcosθを求め、その平均値<cosθ>を算出し、S=1/2×(3<cosθ>-1)に代入して配向秩序度Sを算出した。
(5)ダイシェア強度の測定
 銅板(19×25×3mm)上に厚さ70μmのステンレス板に3×3mm正方形の開口を3行3列有するメタルマスクを載せ、メタルスキージを用いてステンシル印刷により接合用銅ペーストを塗布した。塗布した接合用銅ペースト上に、チタン、ニッケルがこの順で形成され、3×3mmの被着面がニッケルであるシリコンチップ(チップ厚:600μm)を載せ、ピンセットで軽く押さえた。これをチューブ炉(株式会社エイブイシー製)にセットし、アルゴンガスを1L/minで流して空気をアルゴンガスに置換した。その後、水素ガスを300mL/minで流しながら昇温10分、350℃、10分の条件で焼結処理して銅板とシリコンチップを銅焼結体で接合した接合体を得た。その後、アルゴンガスを0.3L/minに換えて冷却し、50℃以下で接合体を空気中に取り出した。
 接合体の接着強度は、ダイシェア強度により評価した。1kNのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ100μmでシリコンチップを水平方向に押し、接合体のダイシェア強度を測定した。8個の接合体の測定した値の平均値をダイシェア強度とした。
(6)焼結体の密度
 厚さ1mmのテフロン(登録商標)板に15×15mmの開口を設けた。ガラス板上にこのテフロン(登録商標)板を置き、開口部に接合用銅ペーストを充填し、メタルスキージで開口から溢れた銅ペーストを除去した。テフロン(登録商標)板をはずし、チューブ炉にセットし、アルゴンガスを0.3L/minで流しながら、150℃に加熱して1時間保持して分散媒を除去した。そのまま、ガスを水素ガス300mL/minに換え、350℃に昇温して60分焼結処理して、焼結体を得た。その後、アルゴンガスを0.3L/minに換えて冷却し、50℃以下で焼結体を空気中に取り出した。板状の焼結体をガラス板から剥離し、紙やすり(800番)で研磨して10×10mmのサイズで表面が平坦な板状サンプルを得た。板状サンプルの縦、横、厚みの寸法を測定し、板状サンプルの重量を測定した。これらの値から板状サンプルの密度を算出した。
(7)接合体の断面モルフォロジー観察
 「(5)ダイシェア強度の測定」に記載の方法で接合体を製造した。製造した接合体をカップ内にサンプルクリップ(Samplklip I、Buehler社製)で固定し、周囲にエポキシ注形樹脂(エポマウント、リファインテック株式会社製)を接合体全体が埋まるまで流し込み、真空デシケータ内に静置して1分間減圧して脱泡した。その後、室温で10時間静置し、エポキシ注形樹脂を硬化し、サンプルを調製した。リファインソーエクセル(リファインテック株式会社製)を用いて、サンプルをシリコンチップ近傍で切断した。耐水研磨紙(カーボマックペーパー、リファインテック株式会社製)をつけた研磨装置(Refine Polisher HV、リファインテック株式会社製)で接合体の中央付近まで削り断面を出した。研磨したサンプルは、余分なエポキシ注形樹脂を削り落とし、イオンミリング装置で加工できるサイズにした。イオンミリング装置(IM4000、株式会社日立ハイテクノロジーズ製)をCP加工モードで用い、アルゴンガス流量0.07~0.1cm3/min、処理時間120分の条件で、サイズ加工したサンプルを断面加工してSEM用サンプルとした。このSEM用サンプルをSEM装置(日本電子株式会社製、NeoScope JCM-5000)により、銅焼結体断面を印加電圧10kVで観察した。
(8)焼結体の配向秩序度の算出
 「(7)接合体の断面モルフォロジー観察」で得られた5000倍のSEM像をImageJ(アメリカ国立衛生研究所製)で読み込んだ。SEM像としては、基板又はシリコンチップと接合用銅ペーストの界面が写っているものを用いた。「(4)接合用銅ペーストの配向秩序度の算出」と同様の手順で、接合体の配向秩序度Sを算出した。
(9)熱伝導率
 「(6)焼結体の密度」で作製した板状サンプルを用い、熱拡散率をレーザーフラッシュ法(LFA467、ネッチ社製)で測定した。この熱拡散率と、示差走査熱量測定装置(DSC8500、パーキンエルマー社製)で得られた比熱容量と、「(6)焼結体の密度」で求めた密度との積により、25℃における焼結体の熱伝導率[W/(m・K)]を算出した。
(10)温度サイクル接続信頼性試験
 「(5)ダイシェア強度の測定」と同様にして、銅板(19×25×3mm)と3×3mmの被着面がニッケルであるシリコンチップ(チップ厚:600μm)とを銅焼結体で接合した接合体を得た。接合体上にシリコーン樹脂(SE1880、東レ・ダウコーニング株式会社製)をシリコンチップが覆われるようにスポイトでコートし、減圧デシケータ内で3分脱泡した。脱泡後、70℃にした温風循環オーブン内に30分、150℃にした温風循環オーブン内に60分保持することで硬化し、温度サイクル用試験片を得た。この温度サイクル用試験片を温度サイクル試験機(TSA-72SE-W、エスペック株式会社製)にセットし、低温側:-40℃、高温側:200℃、各ステップ:15分、除霜サイクル:自動、サイクル数:300サイクルの条件で温度サイクル接続信頼性試験を実施した。超音波探傷装置(インサイト Insight-300)を用い、温度サイクル接続信頼性試験前後の銅焼結体及び被着体界面の接合状態のSAT像を得て、剥離の有無を調べた。接合部の20面積%以上が剥離した場合を不良(×)とした。
(実施例1)
 分散媒としてα-テルピネオール(和光純薬工業株式会社製)0.5g及びイソボルニルシクロヘキサノール(MTPH、日本テルペン化学株式会社製)0.5gと、サブマイクロ銅粒子としてHT-14(三井金属鉱業株式会社製)7gとをポリ瓶に混合し、超音波ホモジナイザー(US-600、日本精機株式会社製)により19.6kHz、600W、1分処理し分散液を得た。この分散液に、フレーク状マイクロ銅粒子としてMA-C025(三井金属鉱業株式会社製)3gを添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。ポリ瓶を密栓し、自転公転型攪拌装置(Planetry Vacuum Mixer ARV-310、株式会社シンキー製)を用いて、2000rpmで2分間撹拌し、減圧下、2000rpmで2分間撹拌して接合用銅ペースト1を得た。この接合用銅ペースト1を用いて、各種の測定及び分析を行った。
 なお、上記で用いたサブマイクロ銅粒子及びフレーク状マイクロ銅粒子における、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子の含有量、及び最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、50個以上の粒子について、測定して得られた粒子径分布から換算した。この換算値に基づき、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子全量を基準とした、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有割合を算出した。
(実施例2)
 フレーク状マイクロ銅粒子として3L3(福田金属箔粉工業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト2を得た。接合用銅ペースト2を用いて、各種の測定及び分析を行った。
(実施例3)
 フレーク状マイクロ銅粒子として1110F(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト3を得た。接合用銅ペースト3を用いて、各種の測定及び分析を行った。
(実施例4)
 サブマイクロ銅粒子としてTN-Cu100(太陽日酸株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト4を得た。接合用銅ペースト4を用いて、各種の測定及び分析を行った。
(実施例5)
 サブマイクロ銅粒子としてCH-0200(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト5を得た。接合用銅ペースト5を用いて、各種の測定及び分析を行った。
(実施例6)
 銅粒子としてCT-500(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト6を得た。接合用銅ペースト6を用いて、各種の測定及び分析を行った。
(実施例7)
 添加剤として銀粒子LM1(トクセン工業株式会製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト7を得た。接合用銅ペースト7を用いて、各種の測定及び分析を行った。
(実施例8)
 添加剤としてニッケル粒子Ni-HWQ(福田金属箔粉工業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト8を得た。接合用銅ペースト8を用いて、各種の測定及び分析を行った。
(実施例9)
 最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子として、球状銅粒子1300Y(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト9を得た。接合用銅ペースト9を用いて、各種の測定及び分析を行った。
(比較例1)
 フレーク状マイクロ銅粒子を添加しなかったこと以外は、実施例1と同様の方法により、接合用銅ペースト10を得た。接合用銅ペースト10を用いて、各種の測定及び分析を行った。
(比較例2)
 フレーク状マイクロ銅粒子の代わりに球状銅粒子1300Y(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト11を得た。接合用銅ペースト11を用いて、各種の測定及び分析を行った。
(比較例3)
 フレーク状マイクロ銅粒子の代わりに球状銅粒子1100Y(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト12を得た。接合用銅ペースト12を用いて、各種の測定及び分析を行った。
(比較例4)
 フレーク状マイクロ銅粒子の代わりに球状銅粒子1050Y(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト13を得た。接合用銅ペースト13を用いて、各種の測定及び分析を行った。
(比較例5)
 フレーク状マイクロ銅粒子の代わりに球状銅粒子1020Y(三井金属鉱業株式会社製)を用いたこと以外は、実施例1と同様の方法により、接合用銅ペースト14を得た。接合用銅ペースト14を用いて、各種の測定及び分析を行った。
 実施例及び比較例の組成及び試験結果を表1~3に示す。
 実施例及び比較例で用いた銅粒子の形状は以下の通りである。
(サブマイクロ銅粒子)
HT-14:50%体積平均粒径0.36μm、粒径が0.12μm以上0.8μm以下の銅粒子の含有量100質量%
TN-Cu100:50%体積平均粒径0.12μm、粒径が0.12μm以上0.8μm以下の銅粒子の含有量90質量%
CH-0200:50%体積平均粒径0.36μm、粒径が0.12μm以上0.8μm以下の銅粒子の含有量100質量%
CT-500:50%体積平均粒径0.72μm、粒径が0.12μm以上0.8μm以下の銅粒子の含有量80質量%
 上記サブマイクロ銅粒子において、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子の含有量、及び最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、いずれも0質量%であった。
(フレーク状マイクロ銅粒子)
MA-C025:平均最大径4.1μm、アスペクト比7.9、最大径が1μm以上20μm以下の銅粒子の含有量100質量%
3L3:平均最大径7.3μm、アスペクト比26、最大径が1μm以上20μm以下の銅粒子の含有量100質量%
1110F:平均最大径5.8μm、アスペクト比20、最大径が1μm以上20μm以下の銅粒子の含有量100質量%
 上記フレーク状マイクロ銅粒子において、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子の含有量は100質量%であり、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は0質量%であった。
(マイクロ銅粒子)
1300Y:平均最大径3.3μm、アスペクト比1
 なお、上記の体積平均粒径は下記の方法で求めた。
(50%体積平均粒径)
 島津ナノ粒子径分布測定装置(SALD-7500nano、株式会社島津製作所製)と付属のソフトウェア(WingSALDII-7500- for Japanese V3.、株式会社島津製作所製)を用いて、以下の(1)~(5)に従って50%体積平均粒径を測定した。
(1)ソフトウェアの設定
 測定装置付属のパソコンでWingSALDII-7500- for Japanese V3.1を起動し,マニュアルを押し装置の初期化を行った。初期化が終わった後に、保存ファイル名を指定し「次へ」をクリックし、測定条件及び粒子径分布計算条件を以下のように設定し、「次へ」をクリックした。
(測定条件)
・回折/散乱光の検出
平均回数(測定回数:1):128、測定回数:1、測定間隔(秒):2
・測定吸光範囲
最大値:0.2、最小値:0
・ブランク領域/測定領域
ブランク測定許容変動最大値:150、測定最適範囲(MAX):45000、測定最適範囲(MIN):15000
(粒子径分布計算条件)
屈折率の選択:参照試料/順金属/半導体等(固体値)
サンプルの物質:4 Copper(銅)
屈折率の選択:1.18-2.21、「側方/後方センサを評価する」にチェックを入れた
(2)ブランク測定
 島津ナノ粒子径分布測定装置SALD-7500nano用回分セル(SALD-BC75、株式会社島津製作所製)をSALD-7500nanoに取り付けて測定を行った。SALD-BC75に付属のロート付き回分セル(部品番号S347-61030-41、株式会社島津製作所製、以下「回分セル」という。)内にα-テルピネオール(和光純薬工業株式会社製)を回分セルの2つの標線の間に収まるようにスポイトで滴下した。WingSALDII-7500- for Japanese V3.の画面上から「診断」、「調整」を選択し、位置センサー出力が装置許容範囲内であることを確認した。「キャンセル」をクリックし元の画面に戻り、ブランク測定を選択し測定を行った。
(3)測定溶液の調製
 SALD-BC75に付属の回分セルホルダ(部品番号S347-62301、株式会社島津製作所製)のかくはんレバー上に測定したい接合用銅ペーストを2mg載せ、ロート付き回分セルにセットした。次に、WingSALDII-7500- for Japanese V3.の画面上から「スターラ」を選択し、15分間撹拌を行った。
(4)測定
 撹拌後、WingSALDII-7500- for Japanese V3.の画面上から「測定」を選択し測定を行った。(1)~(4)の操作を4回繰り返し、4回測定した。
(5)統計
 WingSALDII-7500- for Japanese V3.を起動し、「開く」をクリックし、測定したファイルを選択し、WingSALDII-7500- for Japanese V3.の画面上に測定データを表示した。「重ね描き」をクリックし、画面下段に50.000%径を表示し、4回の平均値を50%体積平均粒径とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3から、「(5)ダイシェア強度の測定」に記載されているとおり、実施例の接合用銅ペーストを用いた接合体は、接合体の製造時に、特別な加圧をすることなくチップの自重による圧力のみで、良好なダイシェア強度、熱伝導率及び接続信頼性を有することが分かる。一方、フレーク状マイクロ銅粒子を含まない比較例の接合用銅ペーストを用いた接合体は、接合体の製造時に加圧をしない場合、チップ及び基板を充分に接合できなかった。
(断面モルフォロジー観察)
 図11~13は、実施例1、4及び6の接合用銅ペーストをチップ12と基板との間に挟み、100℃、30分の熱処理を行い調製した接合用銅ペーストの乾燥膜のSEM像である。接合用銅ペースト中で、フレーク状マイクロ銅粒子10の隙間を非フレーク状銅粒子11(サブマイクロ銅粒子)が埋める構造をとっている。これらの接合用銅ペーストは、特定の平均最大径及びアスペクト比を有することで、基板上に印刷塗布する際のせん断力、又は、チップ12をマウントした際の微小な圧力によって、フレーク状マイクロ銅粒子10がチップ12又は基板との界面に対して略平行となるように配向しやすい。
 図15~18は、実施例1、2、4及び6の接合用銅ペーストをチップ12と基板15の間に挟み、350℃、25分の焼結処理を行い調製した接合体のSEM像である。これらの図から、焼結後においても、焼結前の接合用銅ペーストの状態を反映していることが分かる。すなわち、フレーク状マイクロ銅粒子に由来する形状13の隙間を非フレーク状銅粒子に由来する形状14が埋める構造をとっており、フレーク状マイクロ銅粒子に由来する形状13は、チップ12又は基板15の接合面に対して、略平行に配向している。本発明の接合用銅ペーストを用いて調製された接合体は、上記のような配向構造が密に詰った補強効果により、非フレーク状の銅粒子(例えば球状の銅粒子)のみを含む接合銅ペーストから形成した焼結体よりも、接続信頼性の高い銅焼結体を有することができる。
 図14は、比較例4の接合用銅ペーストをチップと基板の間に挟み、100℃、30分の熱処理を行い調製した接合用銅ペーストの乾燥膜のSEM像である。比較例4の接合用銅ペーストは非フレーク状銅粒子11のみを含む接合用銅ペーストである。図19及び20は、比較例3及び4の接合用銅ペーストをチップ12と基板15の間に挟み、350℃、25分の焼結処理を行い調製した接合体のSEM像である。非フレーク状銅粒子のみを用いて調製した接合用銅ペーストは、非フレーク状銅粒子同士が点接触に近い形で焼結すること、被着面に対して接着面積を充分に確保できないこと等のため、充分な接合が確保できず、また接合後の接続信頼性試験の結果にも優れない。
 以上の結果から、本発明に係る接合用銅ペーストによって形成された焼結体を接合層として有する電子デバイスでは、接合された部材間の熱膨張率差で生じた熱応力が接合層にかかった場合でも、高い接続信頼性を維持できると考えられる。これは、熱応力で接合用銅ペーストの焼結体に生じる亀裂の伝播をフレーク状マイクロ銅粒子に由来する配向構造が阻害するため接続信頼性が高まったと考えられる。また、この焼結体は金属結合で繋がった金属銅で構成されていることから、100W/(m・K)以上の高い熱伝導率が発現し、発熱の大きな電子デバイスの実装において速やかな放熱が可能である。また、本発明に係る接合用銅ペーストによれば、無加圧であっても金属結合で強固に接合されるため、被着面の材質が銅、ニッケル、銀、金に対し、接合強度を表すダイシェア強度を20MPa以上とすることができる。このように、本発明に係る接合用銅ペーストは、パワーデバイス、ロジック、アンプ等の発熱の大きな電子デバイスの接合に非常に有効な性質を有している。そのため、本発明に係る接合用銅ペーストを適用した場合には、より高い投入電力が許容でき、高い動作温度で動作させることが可能となる。
1…接合用銅ペーストの焼結体、2…第一の部材、3…第二の部材、5a、5b…リードフレーム、6…ワイヤ、7…モールドレジン、8…半導体素子、9…フレーク状マイクロ銅粒子、10…フレーク状マイクロ銅粒子(未焼結)、11…非フレーク状マイクロ銅粒子(未焼結)、12…チップ(材質:Si、銅)、13…フレーク状マイクロ銅粒子に由来する形状(焼結後)、14…非フレーク状マイクロ銅粒子に由来する形状(焼結後)、15…基板(銅)、100…接合体、110…半導体装置、21…絶縁基板、22…第一の電極、23…半導体素子、24…第二の電極、25…金属配線、26…第三の電極、27…ワイヤ、28…銅板、29…絶縁体、30…ブロック体、31…封止材、32…第一の熱伝導部材、33…第二の熱伝導部材、34…電極、35…ワイヤ、200…半導体装置、210…半導体装置、220…半導体装置、300…半導体装置、310…半導体装置、320…半導体装置、400…半導体装置。

Claims (9)

  1.  金属粒子と、分散媒と、を含む接合用銅ペーストであって、
     前記金属粒子が、体積平均粒径が0.12μm以上0.8μm以下であるサブマイクロ銅粒子と、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子とを含み、且つ、前記金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、前記フレーク状マイクロ銅粒子全量を基準として、50質量%以下である、接合用銅ペースト。
  2.  無加圧接合用である、請求項1に記載の接合用銅ペースト。
  3.  前記サブマイクロ銅粒子の含有量が、前記サブマイクロ銅粒子の質量及び前記フレーク状マイクロ銅粒子の質量の合計を基準として、20質量%以上90質量%以下であり、前記フレーク状マイクロ銅粒子の含有量が、前記金属粒子の全質量を基準として、1質量%以上90質量%以下である、請求項1又は2に記載の接合用銅ペースト。
  4.  前記金属粒子が、ニッケル、銀、金、パラジウム、白金からなる群から選択される少なくとも1種の金属粒子を含む、請求項1~3のいずれか一項に記載の接合用銅ペースト。
  5.  第一の部材、該第一の部材の自重が働く方向側に、請求項1~4のいずれか一項に記載の接合用銅ペースト、及び第二の部材がこの順に積層されている積層体を用意し、前記接合用銅ペーストを、前記第一の部材の自重、又は前記第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える、接合体の製造方法。
  6.  第一の部材、該第一の部材の自重が働く方向側に、請求項1~4のいずれか一項に記載の接合用銅ペースト、及び第二の部材がこの順に積層されている積層体を用意し、前記接合用銅ペーストを、前記第一の部材の自重、又は前記第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備え、
     前記第一の部材及び前記第二の部材の少なくとも一方が半導体素子である、半導体装置の製造方法。
  7.  第一の部材と、第二の部材と、前記第一の部材と前記第二の部材とを接合する請求項1~4のいずれか一項に記載の接合用銅ペーストの焼結体と、を備える、接合体。
  8.  前記第一の部材及び第二の部材の少なくとも一方が、前記焼結体と接する面に、銅、ニッケル、銀、金及びパラジウムからなる群から選択される少なくとも1種の金属を含む、請求項7に記載の接合体。
  9.  第一の部材と、第二の部材と、前記第一の部材と前記第二の部材とを接合する請求項1~4のいずれか一項に記載の接合用銅ペーストの焼結体と、を備え、
     前記第一の部材及び前記第二の部材の少なくとも一方が半導体素子である、半導体装置。
PCT/JP2016/076333 2015-09-07 2016-09-07 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法 WO2017043541A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/757,896 US11040416B2 (en) 2015-09-07 2016-09-07 Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
EP16844402.4A EP3348337B1 (en) 2015-09-07 2016-09-07 Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
SG11201801844XA SG11201801844XA (en) 2015-09-07 2016-09-07 Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
MYPI2018700890A MY189237A (en) 2015-09-07 2016-09-07 Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
KR1020187009672A KR102509767B1 (ko) 2015-09-07 2016-09-07 접합용 구리 페이스트, 접합체의 제조 방법 및 반도체 장치의 제조 방법
EP20162724.7A EP3702072A1 (en) 2015-09-07 2016-09-07 Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
CN201680051483.5A CN107921540B (zh) 2015-09-07 2016-09-07 接合用铜糊料、接合体的制造方法及半导体装置的制造方法
JP2017539199A JP6819598B2 (ja) 2015-09-07 2016-09-07 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-176070 2015-09-07
JP2015176070 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043541A1 true WO2017043541A1 (ja) 2017-03-16

Family

ID=58239930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076333 WO2017043541A1 (ja) 2015-09-07 2016-09-07 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法

Country Status (9)

Country Link
US (1) US11040416B2 (ja)
EP (2) EP3348337B1 (ja)
JP (3) JP6819598B2 (ja)
KR (1) KR102509767B1 (ja)
CN (2) CN107921540B (ja)
MY (1) MY189237A (ja)
SG (2) SG10201913440TA (ja)
TW (1) TWI745302B (ja)
WO (1) WO2017043541A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381738B1 (ja) * 2017-05-31 2018-08-29 ニホンハンダ株式会社 ペースト状金属粒子組成物、接合方法および電子装置の製造方法
JP2019056158A (ja) * 2017-09-22 2019-04-11 日亜化学工業株式会社 電子部品の接合方法および接合体の製造方法
EP3703140A4 (en) * 2017-10-24 2021-08-04 Hitachi Chemical Co., Ltd. METHOD FOR MANUFACTURING A THERMOELECTRIC CONVERSION MODULE, THERMOELECTRIC CONVERSION MODULE, AND BINDING AGENT FOR A THERMOELECTRIC CONVERSION MODULE
EP3770950A4 (en) * 2018-03-23 2022-02-16 Mitsubishi Materials Corporation METHOD FOR MANUFACTURING MODULE MOUNTED ON ELECTRONIC COMPONENT

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3852507A4 (en) * 2018-09-14 2021-11-10 Showa Denko Materials Co., Ltd. ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING THE ELECTRONIC COMPONENT
US20220118546A1 (en) 2019-03-29 2022-04-21 Mitsui Mining & Smelting Co., Ltd. Composition for pressure bonding, and bonded structure of conductive bodies and production method therefor
WO2020208739A1 (ja) * 2019-04-10 2020-10-15 新電元工業株式会社 半導体装置
CN110060973B (zh) * 2019-04-24 2021-07-30 深圳第三代半导体研究院 一种纳米金属膜模块制备方法及其基板制备方法
CN114502301A (zh) * 2019-09-30 2022-05-13 昭和电工材料株式会社 接合用铜糊料、接合体的制造方法及接合体
WO2021066026A1 (ja) * 2019-09-30 2021-04-08 昭和電工マテリアルズ株式会社 接合用銅ペースト、接合体の製造方法及び接合体
TW202140691A (zh) * 2020-04-07 2021-11-01 日商昭和電工材料股份有限公司 銅糊、毛細結構的形成方法及熱管
CN114334221B (zh) * 2022-01-10 2024-02-09 珠海方正科技多层电路板有限公司 一种塞孔铜浆及其制备方法、印刷线路板
CN116153860B (zh) * 2023-04-10 2023-07-18 之江实验室 晶圆级铜铜凸点互连结构及其键合方法
CN116189960B (zh) * 2023-04-19 2024-02-27 佛山科学技术学院 一种可低温烧结银铜复合导电浆料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200734A (ja) * 2004-01-19 2005-07-28 Dowa Mining Co Ltd フレーク状銅粉およびその製造法
WO2008062548A1 (en) * 2006-11-24 2008-05-29 Nihon Handa Co., Ltd. Pasty metal particle composition and method of joining
JP2013247060A (ja) * 2012-05-29 2013-12-09 Harima Chemicals Group Inc 導電性金属厚膜形成用材料および導電性金属厚膜の形成方法
JP2014167145A (ja) * 2013-02-28 2014-09-11 Osaka Univ 接合材
JP2014222619A (ja) * 2013-05-14 2014-11-27 Dowaエレクトロニクス株式会社 導電膜
WO2015098658A1 (ja) * 2013-12-24 2015-07-02 Dic株式会社 金属ナノ粒子を含有する接合用材料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928639B1 (ja) 1969-06-17 1974-07-27
JPS506081B1 (ja) 1970-12-09 1975-03-11
JP4145127B2 (ja) 2002-11-22 2008-09-03 三井金属鉱業株式会社 フレーク銅粉及びそのフレーク銅粉の製造方法並びにそのフレーク銅粉を用いた導電性ペースト
JP5006081B2 (ja) 2007-03-28 2012-08-22 株式会社日立製作所 半導体装置、その製造方法、複合金属体及びその製造方法
JP4928639B2 (ja) 2010-03-15 2012-05-09 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
CN102812520B (zh) * 2010-03-18 2016-10-19 古河电气工业株式会社 导电性糊料和由该糊料得到的导电连接部件
JP4795483B1 (ja) 2010-04-12 2011-10-19 ニホンハンダ株式会社 金属製部材接合体の製造方法および金属製部材接合体
WO2013114930A1 (ja) * 2012-01-31 2013-08-08 株式会社村田製作所 金属端子接合用導電ペースト、金属端子付き電子部品およびその製造方法
JP5598739B2 (ja) * 2012-05-18 2014-10-01 株式会社マテリアル・コンセプト 導電性ペースト
JP6032110B2 (ja) 2013-04-17 2016-11-24 株式会社豊田中央研究所 金属ナノ粒子材料、それを含有する接合材料、およびそれを用いた半導体装置
US9799421B2 (en) * 2013-06-07 2017-10-24 Heraeus Precious Metals North America Conshohocken Llc Thick print copper pastes for aluminum nitride substrates
JP6303392B2 (ja) * 2013-10-22 2018-04-04 日立化成株式会社 銀ペースト及びそれを用いた半導体装置、並びに銀ペーストの製造方法
JP2015142059A (ja) * 2014-01-30 2015-08-03 株式会社日立製作所 パワー半導体モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200734A (ja) * 2004-01-19 2005-07-28 Dowa Mining Co Ltd フレーク状銅粉およびその製造法
WO2008062548A1 (en) * 2006-11-24 2008-05-29 Nihon Handa Co., Ltd. Pasty metal particle composition and method of joining
JP2013247060A (ja) * 2012-05-29 2013-12-09 Harima Chemicals Group Inc 導電性金属厚膜形成用材料および導電性金属厚膜の形成方法
JP2014167145A (ja) * 2013-02-28 2014-09-11 Osaka Univ 接合材
JP2014222619A (ja) * 2013-05-14 2014-11-27 Dowaエレクトロニクス株式会社 導電膜
WO2015098658A1 (ja) * 2013-12-24 2015-07-02 Dic株式会社 金属ナノ粒子を含有する接合用材料

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381738B1 (ja) * 2017-05-31 2018-08-29 ニホンハンダ株式会社 ペースト状金属粒子組成物、接合方法および電子装置の製造方法
JP2018206532A (ja) * 2017-05-31 2018-12-27 ニホンハンダ株式会社 ペースト状金属粒子組成物、接合方法および電子装置の製造方法
JP2019056158A (ja) * 2017-09-22 2019-04-11 日亜化学工業株式会社 電子部品の接合方法および接合体の製造方法
US10875127B2 (en) 2017-09-22 2020-12-29 Nichia Corporation Method for bonding electronic component and method for manufacturing bonded body
EP3703140A4 (en) * 2017-10-24 2021-08-04 Hitachi Chemical Co., Ltd. METHOD FOR MANUFACTURING A THERMOELECTRIC CONVERSION MODULE, THERMOELECTRIC CONVERSION MODULE, AND BINDING AGENT FOR A THERMOELECTRIC CONVERSION MODULE
EP3770950A4 (en) * 2018-03-23 2022-02-16 Mitsubishi Materials Corporation METHOD FOR MANUFACTURING MODULE MOUNTED ON ELECTRONIC COMPONENT

Also Published As

Publication number Publication date
KR20180050714A (ko) 2018-05-15
TW201718442A (zh) 2017-06-01
EP3702072A1 (en) 2020-09-02
US11040416B2 (en) 2021-06-22
JP7396398B2 (ja) 2023-12-12
CN107921540B (zh) 2020-03-03
JP2022130365A (ja) 2022-09-06
JP2021064612A (ja) 2021-04-22
EP3348337A1 (en) 2018-07-18
JP7232236B2 (ja) 2023-03-02
US20200108471A1 (en) 2020-04-09
EP3348337A4 (en) 2019-05-15
MY189237A (en) 2022-01-31
SG10201913440TA (en) 2020-03-30
KR102509767B1 (ko) 2023-03-14
EP3348337B1 (en) 2020-06-10
JP6819598B2 (ja) 2021-01-27
SG11201801844XA (en) 2018-04-27
CN111230125A (zh) 2020-06-05
TWI745302B (zh) 2021-11-11
CN107921540A (zh) 2018-04-17
JPWO2017043541A1 (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
JP7232236B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP7192842B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP7056724B2 (ja) 接合体及び半導体装置
KR102379883B1 (ko) 접합용 구리 페이스트, 접합체의 제조 방법 및 반도체 장치의 제조 방법
JP7251470B2 (ja) 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
JP7468358B2 (ja) 接合体及び半導体装置の製造方法、並びに接合用銅ペースト
JP2021127506A (ja) 接合用金属ペースト、接合体、半導体装置、及び接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539199

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201801844X

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009672

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016844402

Country of ref document: EP