WO2017043362A1 - 高周波フロントエンド回路、通信装置 - Google Patents

高周波フロントエンド回路、通信装置 Download PDF

Info

Publication number
WO2017043362A1
WO2017043362A1 PCT/JP2016/075263 JP2016075263W WO2017043362A1 WO 2017043362 A1 WO2017043362 A1 WO 2017043362A1 JP 2016075263 W JP2016075263 W JP 2016075263W WO 2017043362 A1 WO2017043362 A1 WO 2017043362A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
filter
frequency
variable
communication
Prior art date
Application number
PCT/JP2016/075263
Other languages
English (en)
French (fr)
Inventor
帯屋秀典
堀田篤
森弘嗣
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680052154.2A priority Critical patent/CN107949988B/zh
Publication of WO2017043362A1 publication Critical patent/WO2017043362A1/ja
Priority to US15/915,545 priority patent/US10476535B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to a high-frequency front-end circuit that performs wireless communication.
  • Patent Document 1 describes a system that performs wireless communication using a TV white space.
  • Wireless communication using a TV white space is a technology that releases a frequency band used for television broadcasting and uses that frequency band for wireless communication.
  • Communication channel is used for wireless communication.
  • the wireless communication device performs wireless communication by using an empty communication channel in a television broadcast communication band assigned by the database.
  • the channel used in television broadcasting varies depending on the region. For this reason, the vacant channel and the channel used vary.
  • the bandwidth of the frequency band of each television broadcast communication channel is 6 MHz or 8 MHz, and the bandwidth between the communication channels is about 0.5 to 1 MHz. The bandwidth between each communication channel is narrow.
  • an object of the present invention is to devise a filter configuration, for example, as in the wireless communication system using the TV white space, while the vacant channel and the use channel are fluctuating and the frequency band of each communication channel is changed.
  • the present invention relates to a high frequency for performing wireless communication by selecting a use channel from among unused communication channels of a plurality of communication channels in a communication band constituted by a plurality of communication channels within a specific frequency band used in the system.
  • This relates to the front-end circuit and has the following characteristics.
  • the high frequency front end circuit includes a fixed filter and a variable filter. Fixed filters attenuate high frequency signals outside the specific frequency band used in the system.
  • the variable filter attenuates a high-frequency signal of an unnecessary wave within a specific frequency band that changes according to a use channel.
  • the high frequency front end circuit of the present invention preferably has the following configuration.
  • the system is a wireless communication system using a TV white space.
  • the specific frequency band is a frequency band used in television broadcasting.
  • the communication channel is a channel used for television broadcasting.
  • This configuration shows a mode in which the frequency band of the communication channel is narrow and the frequency interval between adjacent communication channels is narrow. In such a mode, the unnecessary wave signal is attenuated more effectively.
  • variable filter passes a high-frequency signal in the frequency band in the use channel and attenuates a high-frequency signal in the frequency band of the close communication channel within three communication channels from the use channel. Is preferred.
  • This configuration effectively attenuates unwanted wave signals in the frequency band close to the channel used.
  • the fixed filter is preferably a fixed-frequency LC filter
  • the variable filter is preferably a variable-frequency elastic wave resonator filter.
  • an LC filter is used for a fixed filter that requires a wide passband and an attenuation band
  • an elastic wave resonator filter is used for a variable filter that requires a narrow passband and a steep attenuation characteristic.
  • the high frequency front end circuit of the present invention preferably has the following configuration.
  • the high-frequency front end circuit includes a transmission side circuit, a reception side circuit, an antenna side circuit, and a branching circuit.
  • the transmission side circuit transmits a transmission signal using the use channel.
  • the reception side circuit transmits a reception signal using the use channel.
  • the antenna side circuit transmits a transmission signal and a reception signal.
  • the branching circuit connects the transmission side circuit, the reception side circuit, and the antenna side circuit.
  • the fixed filter is provided in the antenna side circuit.
  • the variable filter is provided in the transmission side circuit or the transmission side circuit and the reception side circuit.
  • the high-frequency signal of the use channel passes with low loss, and the high-frequency signal in the frequency band other than the use channel in the communication band and the frequency band outside the communication band is effective. Can be attenuated.
  • the high-frequency front-end circuit according to the present invention is preferably composed of a frequency variable LC filter, and further includes a second variable filter that attenuates a frequency that generates an IMD within a specific frequency band.
  • the second variable filter is provided between the fixed filter and the demultiplexing circuit or between the demultiplexing circuit and the variable filter.
  • This configuration can suppress the increase in the circuit configuration of the high-frequency front-end circuit as much as possible while providing the function of the second variable filter.
  • the high frequency front end circuit of the present invention may have the following configuration.
  • Variable filter information including information related to high-frequency signals of unnecessary waves within a specific frequency band is included in communication signals transmitted and received by an antenna.
  • the variable filter attenuates an unnecessary high-frequency signal in a specific frequency band based on the variable filter information.
  • information for setting the variable filter may be obtained by another communication system, and an increase in the configuration of the high-frequency front-end circuit can be suppressed.
  • the high frequency front end circuit of the present invention preferably has the following configuration.
  • the high frequency front end circuit includes a detection unit and a determination unit.
  • the detection unit detects the reception levels of the plurality of free communication channels.
  • the determination unit selects a free communication channel having the highest reception level among the detected plurality of reception levels as a use channel.
  • This configuration enables more reliable wireless communication.
  • the high frequency front end circuit of the present invention may have the following configuration.
  • the transmission side circuit includes an amplification circuit that amplifies the transmission signal.
  • the amplification circuit preferably includes a first amplification element that amplifies the transmission signal and a second amplification element that amplifies the signal amplified by the first amplification element.
  • the amplifier circuit is composed of two-stage amplifier elements, a high-output transmission signal with suppressed distortion is output.
  • the amplifier circuit further includes an interstage filter connected between the first amplifier element and the second amplifier element for attenuating the harmonic distortion signal of the transmission signal. Is preferred.
  • the high frequency front end circuit of the present invention preferably has the following configuration.
  • a plurality of second amplifying elements are provided for different frequency bands.
  • the amplifying circuit further includes an interstage switch that selects at least one of a plurality of second amplifying elements provided for each frequency band and connects to the first amplifying element according to a use channel. .
  • an amplifying element corresponding to the channel used is selected, so that the transmission signal can be amplified more efficiently.
  • the high frequency front end circuit of the present invention preferably has the following configuration.
  • the variable filter includes an input terminal, an output terminal, a series arm resonance circuit, and first and second parallel arm resonance circuits.
  • the series arm resonance circuit is connected in series between the input terminal and the output terminal.
  • the first parallel arm resonance circuit is a circuit having one end of the series arm resonance circuit and a ground potential at both ends.
  • the second parallel arm resonance circuit is a circuit having the other end of the series arm resonance circuit and the ground potential at both ends.
  • the series arm resonance circuit includes a fixed capacitor having a fixed capacitance.
  • the series arm resonance circuit and the first and second parallel arm resonance circuits each include a variable capacitor, an inductor, and an acoustic wave resonator.
  • the variable capacitor, the inductor, and the elastic wave resonator in the series arm resonance circuit are connected in parallel.
  • the variable capacitor, the inductor, and the elastic wave resonator in the first and second parallel arm resonance circuits are connected in series.
  • the fixed capacitor has a lower elastic wave resonator of the impedance of the elastic wave resonator of the first parallel arm resonance circuit and the impedance of the elastic wave resonator of the second parallel arm resonance circuit. It is connected to the parallel arm resonator side provided.
  • This configuration can improve the filter characteristics, particularly the attenuation characteristics, of the variable filter.
  • the high-frequency front end circuit of the present invention preferably has the following configuration.
  • the second variable filter includes an input terminal, an output terminal, a first series arm LC filter circuit, and first and second parallel arm LC filter circuits.
  • the first series arm LC filter circuit is connected between the input terminal and the output terminal.
  • the first parallel arm LC filter circuit is a circuit having one end of the first series arm LC filter circuit and a ground potential at both ends.
  • the second parallel arm LC filter circuit is a circuit having the other end of the first series arm LC filter circuit and the ground potential at both ends.
  • the first and second parallel arm LC filter circuits include a variable capacitor and an inductor connected in series.
  • the first series arm LC filter circuit includes a fixed capacitor, an LC series circuit, and an LC parallel circuit.
  • the fixed capacitor is connected in parallel to the LC series circuit.
  • the LC series circuit includes an input terminal and an output terminal at both ends, and a fixed capacitor and an inductor connected in series.
  • the LC parallel circuit includes a variable capacitor and an inductor connected in parallel. The inductor included in the LC series circuit is directly connected to the output terminal or is connected to the output terminal via another inductor.
  • This configuration can improve the filter characteristics, particularly the attenuation characteristics, of the second variable filter.
  • the present invention also relates to a communication device, and the communication device includes any one of the high-frequency front-end circuits described above, and performs voice communication or data communication using a communication signal wirelessly communicated by the high-frequency front-end circuit. Is running.
  • high-quality communication for example, high data transfer speed and high voice quality
  • wireless communication when wireless communication is performed using a selected communication channel in a communication band constituted by a plurality of communication channels, wireless communication can be reliably performed using the selected communication channel.
  • FIG. 1 is a functional block diagram of a high-frequency front-end circuit according to the first embodiment of the present invention.
  • the high-frequency front end circuit 10 includes an antenna ANT, an antenna matching circuit 20, a frequency fixed filter 30, a frequency variable LC filter 40, a demultiplexing circuit 50, frequency variable filters 61 and 62, a transmission side amplification circuit 71, a reception side amplification circuit 72, A signal processing unit 80, a transmission circuit 91, and a reception circuit 92 are provided.
  • the signal processing unit 80 includes a transmission signal generation unit 801, a demodulation unit 802, and a channel determination unit 810.
  • the frequency fixed filter 30 corresponds to the “fixed filter” of the present invention.
  • the frequency variable LC filter 40 corresponds to the “second variable filter” of the present invention.
  • the frequency variable filters 61 and 62 correspond to the “variable filter” of the present invention.
  • the high frequency front end circuit 10 only needs to include at least the frequency fixed filter 30 and the frequency variable filter 61.
  • the demultiplexing circuit 50, the frequency variable filter 62, the transmission side amplification circuit 71, the reception side amplification circuit 72, and the signal processing unit 80 can omit some or all of these components.
  • the antenna ANT is connected to the antenna matching circuit 20.
  • the antenna matching circuit 20 is connected to the frequency fixed filter 30.
  • the antenna matching circuit 20 may be a fixed matching circuit or a variable matching circuit.
  • the frequency fixed filter 30 is connected to the frequency variable LC filter 40.
  • the frequency variable LC filter 40 is connected to the antenna side terminal of the branching circuit 50.
  • the transmission side terminal of the branching circuit 50 is connected to the frequency variable filter 61.
  • the variable frequency filter 61 is connected to the transmission side amplification circuit 71.
  • the transmission side amplification circuit 71 is connected to the transmission circuit 91.
  • the transmission circuit 91 is connected to the transmission signal generation unit 801 of the signal processing unit 80.
  • the receiving side terminal of the branching circuit 50 is connected to the frequency variable filter 62.
  • the frequency variable filter 62 is connected to the reception side amplification circuit 72.
  • the reception side amplification circuit 72 is connected to the reception circuit 92.
  • the reception circuit 92 is connected to the demodulation unit 802 of the signal processing unit 80.
  • the branch circuit 50 to the antenna ANT side corresponds to the “antenna side circuit” of the present invention
  • the branch circuit 50 to the transmission circuit 91 side corresponds to the “transmission side circuit” of the present invention
  • the branch circuit 50 to the reception circuit 92 side This corresponds to the “receiving circuit” of the present invention.
  • the high-frequency front end circuit 10 transmits and receives high-frequency signals using an empty communication channel in a communication band constituted by a plurality of communication channels.
  • the high-frequency front-end circuit 10 transmits and receives high-frequency signals based on TV white space specifications.
  • TV white space a UHF band of television broadcasting, that is, a communication band set from 470 [MHz] to 790 [MHz], each of a plurality of communication channels having a frequency bandwidth of 6 [MHz] A channel in which no television broadcast signal is transmitted is used as an empty communication channel.
  • FIG. 2 is a diagram showing pass characteristics of the high-frequency front-end circuit according to the first embodiment of the present invention.
  • FIG. 2 shows the relationship between the communication band and each communication channel. Note that FIG. 2 shows a case where the communication channel CH64 is a selected channel (an empty communication channel that communicates with the high-frequency front-end circuit 10).
  • the antenna matching circuit 20 performs impedance matching between the antenna ANT and the frequency fixed filter 30 and the circuit on the signal processing unit 80 side.
  • the antenna matching circuit 20 includes an inductor and a capacitor.
  • the element values of the inductor and the capacitor are set so that the reflection loss of the antenna ANT is not more than a desired value in the entire communication band.
  • the fixed frequency filter 30 includes an inductor and a capacitor.
  • the fixed frequency filter 30 is a fixed frequency LC filter.
  • the element values of the inductor and the capacitor are set so that the frequency band of the communication band is in the pass band and the frequency band outside the communication band is in the attenuation band.
  • the frequency fixed filter 30 is configured by a low-pass filter. As shown in the filter characteristic SF30 of FIG. 2, in the frequency fixed filter 30, the frequency band of the communication band is in the pass band, and the frequency band higher than the frequency band of the communication band is in the attenuation band. Thereby, the frequency fixed filter 30 transmits the high frequency signal in the communication band with low loss, and attenuates the high frequency signal outside the communication band.
  • the frequency variable LC filter 40 includes at least a variable capacitor, and further includes at least one inductor and capacitor. That is, the frequency variable LC filter 40 is a frequency variable LC filter.
  • the frequency variable LC filter 40 is a band pass filter. A specific circuit configuration of the frequency variable LC filter 40 will be described later.
  • the frequency variable LC filter 40 changes the pass band and the attenuation band according to the selected channel. At this time, the frequency band of the selected channel is included in the pass band. As shown in the filter characteristic SF40 of FIG. 2, the frequency bandwidth of the pass band of the frequency variable LC filter 40 is wider than the frequency bandwidth of the selected channel. For example, the frequency bandwidth of the pass band of the frequency variable LC filter 40 is about 10 times the frequency bandwidth of the selected channel.
  • the frequency variable LC filter 40 has attenuation poles on both sides of the pass band on the frequency axis. As shown in the filter characteristic SF40 of FIG. 2, there is no frequency band in which the amount of attenuation is significantly reduced in the attenuation range of the frequency variable LC filter 40. Attenuation can be obtained.
  • variable frequency LC filter 40 transmits a high frequency signal in a frequency band for a plurality of channels including the selected channel with low loss, and attenuates a high frequency signal in other frequency bands. Therefore, the frequency variable LC filter 40 can attenuate an unnecessary wave existing at a frequency separated from the frequency of the selected channel in the communication band.
  • the frequency variable LC filter 40 can make the frequency range of the attenuation band wider than the frequency variable filters 61 and 62 using the resonator described later, the communication varies depending on the communication channel (selected channel) to be used. It is effective for attenuation of IMD that can occur in a wide frequency band within the band.
  • the branching circuit 50 includes a circulator, a duplexer, and the like.
  • the demultiplexing circuit 50 outputs a transmission signal (high frequency signal) input from the transmission side terminal to the antenna side terminal, and outputs a reception signal (high frequency signal) input from the antenna side terminal to the reception side terminal.
  • the frequency variable filters 61 and 62 include at least a resonator and a variable capacitor, and further include at least one inductor and capacitor according to filter characteristics. That is, the frequency variable filters 61 and 62 are frequency variable type resonator filters. The frequency variable filters 61 and 62 are band pass filters using the resonance point and antiresonance point of the resonator. Specific circuit configurations of the frequency variable filters 61 and 62 will be described later. Further, since the basic configurations of the frequency variable filters 61 and 62 are the same, the frequency variable filter 61 will be described below.
  • the frequency variable filter 61 changes the pass band and the attenuation band according to the selected channel. At this time, the frequency band of the selected channel is included in the pass band. As shown in the filter characteristic SF61 in FIG. 2, the frequency bandwidth of the pass band of the frequency variable filter 61 is substantially the same as the frequency bandwidth of the selected channel.
  • the frequency variable filter 61 has attenuation poles on both sides of the pass band on the frequency axis. Since the frequency variable filter 61 is a resonator filter, the attenuation characteristic of the passband is steeper than that of the LC filter, as indicated by the filter characteristic SF61 in FIG.
  • the frequency variable filter 61 transmits the high-frequency signal of the selected channel with low loss, and attenuates the high-frequency signal of the adjacent communication channel.
  • the frequency variable filter 61 not only attenuates high-frequency signals of adjacent communication channels, but also adjoins adjacent channels, adjacent channels of adjacent channels, that is, three channels close to the communication channel (in the frequency domain).
  • the specification may attenuate a high-frequency signal in a frequency band of 6 channels in total on the low frequency side and the high frequency side. It should be noted that the width of the frequency band to be attenuated may be appropriately set within this range according to the system specifications.
  • the attenuation range of the frequency variable filter 61 has a frequency band in which the attenuation amount is small in the frequency band opposite to the pass band with reference to the attenuation pole.
  • the variable frequency filter 61, the variable frequency LC filter 40, and the fixed frequency filter 30 are connected in series in the transmission path of the high frequency signal, the frequency variable filter 61 cannot obtain an attenuation amount. Even if it exists, sufficient attenuation can be obtained by the frequency variable LC filter 40 and the frequency fixed filter 30.
  • the high-frequency signal of the selected channel can be transmitted with low loss, and the high-frequency signal in the frequency band other than the selected channel including the adjacent channel can be attenuated. The same effect can be obtained even if the selected channel is switched.
  • the transmission side amplification circuit 71 includes a so-called amplification element. A specific circuit configuration of the transmission side amplifier circuit 71 will be described later.
  • the transmission side amplification circuit 71 amplifies the baseband transmission signal from the transmission signal generation unit 801 converted into the RF signal in the transmission circuit 91 and outputs the amplified signal to the frequency variable filter 61.
  • the reception side amplification circuit 72 includes a so-called LNA (low noise amplifier).
  • the reception side amplification circuit 72 amplifies the reception signal output from the frequency variable filter 62, and converts the RF signal into a baseband signal through the reception circuit 92 (for example, by converting the RF signal into a baseband signal in the reception circuit 92). Output to 802.
  • the channel determination unit 810 of the signal processing unit 80 detects an empty communication channel in the communication band. For example, the channel determination unit 810 acquires a map of empty channels from the outside, and detects an empty channel based on the map. The channel determination unit 810 selects at least one of the free communication channels and sets it as the selected channel. Channel determination section 810 outputs the selected channel to transmission signal generation section 801. The transmission signal generation unit 801 generates a transmission signal with a high-frequency signal having the frequency of the selected channel, and outputs the transmission signal to the transmission side amplifier circuit 71. Although not shown, the channel determination unit 810 outputs the selected channel to the demodulation unit 802. The demodulator 802 demodulates the received signal using a local signal based on the selected channel.
  • acquisition of the map of an empty communication channel may be performed from a circuit outside the high-frequency front end circuit 10, it may be performed by demodulating a communication signal including map information received by the antenna ANT.
  • variable filter information indicating the frequency of unnecessary waves included in the communication band and indicating the attenuation amount necessary for attenuating the frequency to a desired value may be acquired.
  • the channel determination unit 810 may set at least one of the frequency variable LC filter 40 and the frequency variable filters 61 and 62 according to the variable filter information.
  • the signal processing unit 80 also has a circuit configuration that realizes desired functions such as voice communication and data communication using a communication signal wirelessly communicated by the high-frequency front-end circuit 10.
  • the channel determination unit 810 also outputs the selected channel to the frequency variable LC filter 40, the transmission side amplification circuit 71, the frequency variable filter 61, and the frequency variable filter 62.
  • the frequency variable LC filter 40, the frequency variable filter 61, and the frequency variable filter 62 realize the filter characteristics as described above using this selected channel.
  • the transmission side amplification circuit 71 performs amplification processing of the transmission signal using this selected channel.
  • the configuration of the high-frequency front-end circuit 10 of the present embodiment it is selected when wireless communication is performed on a selected communication channel (selected channel) in a communication band constituted by a plurality of communication channels. Wireless communication with low loss can be realized using a channel.
  • the configuration of the high-frequency front-end circuit 10 of the present embodiment is used even in a system where the vacant channel and the used channel are fluctuating and the frequency band of each communication channel and the bandwidth between each communication channel are narrow. Therefore, low-loss wireless communication can be realized in each communication channel.
  • FIG. 3 is a functional block diagram of the high-frequency front-end circuit according to the second embodiment of the present invention.
  • the high-frequency front end circuit 10A according to the present embodiment has a detection unit 90 added to the high-frequency front end circuit 10 according to the first embodiment.
  • Other configurations are the same as those of the high-frequency front-end circuit 10 according to the first embodiment.
  • the detecting unit 90 is connected between the frequency fixed filter 30 and the frequency variable LC filter 40.
  • the detection unit 90 detects the signal level (amplitude level) of each communication channel and outputs it to the channel determination unit 810.
  • the channel determination unit 810 determines a communication channel having the highest signal level as a selected channel among a plurality of empty communication channels.
  • wireless communication can be performed using a communication channel with a high reception level.
  • the detection unit 90 may be installed between the antenna ANT and the demultiplexing circuit 50 as shown in the present embodiment, or a completely separate circuit dedicated to detection may be provided.
  • the detection unit 90 may be disposed in the signal processing unit 80 or in the demodulation unit 802.
  • FIG. 4 is a functional block diagram of a high-frequency front-end circuit according to the third embodiment of the present invention.
  • the high-frequency front end circuit 10B according to the present embodiment differs from the high-frequency front end circuit 10 according to the first embodiment in the connection position of the frequency variable LC filter 40B.
  • the frequency variable LC filter 40B is the same as the frequency variable LC filter 40 according to the first embodiment as a basic configuration.
  • FIG. 5 is a circuit diagram showing a first aspect of the variable frequency LC filter according to the embodiment of the present invention.
  • the frequency variable LC filter 40 includes a first series arm LC filter circuit 41, a first parallel arm LC filter circuit 42, a second parallel arm LC filter circuit 43, and connection terminals P401 and P402.
  • the connection terminal P401 and the connection terminal P402 correspond to the “input terminal” and “output terminal” of the present invention.
  • the first series arm LC filter circuit 41 is connected between the connection terminal P401 and the connection terminal P402.
  • the first parallel arm LC filter circuit 42 is connected between the connection terminal P401 side of the first series arm LC filter circuit 41 and the ground potential.
  • the second parallel arm LC filter circuit 43 is connected between the connection terminal P402 side of the first series arm LC filter circuit 41 and the ground potential.
  • the first series arm LC filter circuit 41 includes capacitors 411 and 413, inductors 412 and 414, and a variable capacitor 415.
  • the capacitor 411 and the inductor 412 are connected in series between the connection terminals P401 and P402. At this time, the inductor 412 is directly connected to the connection terminal P402.
  • the capacitor 413 is connected in parallel to the series resonant circuit of the capacitor 411 and the inductor 412.
  • the inductor 414 and the variable capacitor 415 are connected in parallel. This parallel resonant circuit is connected between a connection point between the capacitor 411 and the inductor 412 and the ground potential.
  • the first parallel arm LC filter circuit 42 includes an inductor 421 and a variable capacitor 422.
  • the series resonance circuit of the inductor 421 and the variable capacitor 422 is connected between the connection terminal P401 side of the first series arm LC filter circuit 41 and the ground potential.
  • the second parallel arm LC filter circuit 43 includes an inductor 431 and a variable capacitor 432.
  • the series resonance circuit of the inductor 431 and the variable capacitor 432 is connected between the connection terminal P402 side of the first series arm LC filter circuit 41 and the ground potential.
  • FIG. 6 is a graph showing pass characteristics of the frequency variable filter shown in FIG.
  • a filter characteristic having a pass band width of about 100 [MHz] and having attenuation poles on both sides of the pass band can be realized.
  • the attenuation characteristic can be made steep by connecting the inductor 412 of the first series arm LC filter circuit 41 to the connection terminal P402 without passing through the capacitor.
  • the attenuation characteristic can be sharpened by connecting the inductor 412 of the first series arm LC filter circuit 41 directly to the connection terminal P402 or to the connection terminal P402 via another inductor.
  • the frequency characteristic of the capacitor directly connected to the inductor is a characteristic that attenuates the low frequency and passes the high frequency, that is, a characteristic like a high-pass filter.
  • the frequency characteristics of the inductor that is directly connected to the connection terminal attenuates high frequencies and allows low frequencies to pass, that is, characteristics such as a low-pass filter. obtain.
  • the inductor when the inductor is connected to the connection terminal via another inductor, it can be a factor for further improving the high frequency attenuation.
  • FIG. 7 is a circuit diagram showing a second mode of the LC filter type frequency variable filter according to the embodiment of the present invention.
  • the frequency variable LC filter 40A includes series arm LC filter circuits 41A and 42A, a parallel arm LC filter circuit 43A, and connection terminals P401 and P402.
  • the serial arm LC filter circuits 41A and 42A are connected in series between the connection terminal P401 and the connection terminal P402.
  • One end of the series arm LC filter circuit 41A is connected to the connection terminal P401 via the inductor 441A, and the other end is connected to one end of the series arm LC filter circuit 42A.
  • the other end of the series arm LC filter circuit 42A is connected to the connection terminal P402 via the inductor 442A.
  • the parallel arm LC filter circuit 43A is connected between the connection point of the series arm LC filter circuits 41A and 42A and the ground potential.
  • the serial arm LC filter circuit 41A is a parallel resonance circuit of an inductor 411A and a variable capacitor 412A.
  • the series arm LC filter circuit 42A is a parallel resonance circuit of an inductor 421A and a variable capacitor 422A.
  • the parallel arm LC filter circuit 43A includes a series circuit of an inductor 432A and a variable capacitor 433A, and an inductor 431A. The inductor 431A is connected in parallel to this series circuit.
  • the inductor 411A of the series arm LC filter circuit 41A and the inductor 421A of the series arm LC filter circuit 42A are magnetically coupled.
  • FIG. 8 is a graph showing pass characteristics of the frequency variable filter shown in FIG.
  • the frequency variable LC filter 40A by using the frequency variable LC filter 40A, it is possible to realize a filter characteristic having a pass band width of about 100 [MHz] and having attenuation poles on both sides of the pass band.
  • the attenuation characteristics can be sharpened by magnetically coupling the inductor 411A of the series arm LC filter circuit 41A and the inductor 421A of the series arm LC filter circuit 42A.
  • FIG. 9 is a circuit diagram showing a first aspect of the resonator filter type variable frequency filter according to the embodiment of the present invention.
  • the following resonator is a piezoelectric resonator such as a SAW resonator.
  • the frequency variable filter 61 includes a series arm resonance circuit 601, a first parallel arm resonance circuit 602, a second parallel arm resonance circuit 603, and connection terminals P601 and P602.
  • the serial arm resonance circuit 601 is connected between the connection terminal P601 and the connection terminal P602.
  • the first parallel arm resonance circuit 602 is connected between the connection terminal P601 side of the series arm resonance circuit 601 and the ground potential.
  • the second parallel arm resonance circuit 603 is connected between the connection terminal P602 side of the series arm resonance circuit 601 and the ground potential.
  • the series arm resonance circuit 601 includes a capacitor 610, a resonator 611, an inductor 612, and a variable capacitor 613.
  • the resonator 611, the inductor 612, and the variable capacitor 613 are connected in parallel.
  • a capacitor 610 is connected in series to this parallel circuit.
  • This resonance circuit is connected between the connection terminal P601 and the connection terminal P602. At this time, the capacitor 610 is connected to the connection terminal P601, that is, connected to the first parallel arm resonance circuit 602.
  • the first parallel arm resonance circuit 602 includes a resonator 621, an inductor 622, and a variable capacitor 623.
  • the resonator 621, the inductor 622, and the variable capacitor 623 are connected in series. This series resonant circuit is connected between the connection terminal P601 and the ground potential.
  • the second parallel arm resonance circuit 603 includes a resonator 631, an inductor 632, and a variable capacitor 633.
  • the resonator 631, the inductor 632, and the variable capacitor 633 are connected in series. This series resonant circuit is connected between the connection terminal P602 and the ground potential.
  • the series arm resonance circuit filter 601 and the first and second parallel arm resonance circuits 602 and 603 are bandpass filters using the resonance points and antiresonance points of the resonators 611, 621 and 631. Then, by changing the capacitances of the variable capacitors 613, 623, 633, the frequency variable filter 61 functions as a band pass filter in which the pass band changes.
  • the impedance of the resonator 621 is lower than the impedance of the resonator 631.
  • FIG. 10 is a graph showing pass characteristics of the frequency variable filter shown in FIG.
  • a capacitor is connected to the first parallel arm LC filter circuit 602 side of the first series arm LC filter circuit 601, in other words, on the resonance filter side including a resonator having a low impedance.
  • By connecting capacitors it is possible to form attenuation poles having steep attenuation characteristics and large attenuation amounts on both sides of the pass band on the frequency axis. Thereby, the high frequency signal in the frequency band of the adjacent channel of the selected channel can be significantly attenuated.
  • FIG. 11 is a circuit diagram showing a second mode of the resonator filter type frequency variable filter according to the embodiment of the present invention.
  • the frequency variable filter 61A includes resonance circuits 611A, 612A, 613A, 614A, an inductor 615A, a matching circuit 616A, a capacitor 617A, and connection terminals P601, P602.
  • Resonant circuits 611A, 612A, 613A, and 614A are each configured by a series resonant circuit of a resonator, an inductor, and a variable capacitor.
  • connection terminal P601 Between the connection terminal P601 and the connection terminal P602, an inductor 615A, a matching circuit 616A, and a capacitor 617A are connected in this order from the connection terminal P601 side.
  • the resonance circuit 611A is connected between a connection point between the connection terminal P601 and the inductor 615A and the ground potential.
  • the resonance circuit 612A is connected between a connection point between the inductor 615A and the matching circuit 616A and the ground potential.
  • the resonance circuit 613A is connected between a connection point between the matching circuit 616A and the capacitor 617A and the ground potential.
  • the resonance circuit 614A is connected between a connection point between the capacitor 617A and the connection terminal P602 and the ground potential.
  • the high-frequency signal of the selected channel can pass through with low loss, and the high-frequency signal of the adjacent channel can be attenuated.
  • FIG. 12 is a circuit diagram showing a first aspect of the transmission-side amplifier circuit according to the embodiment of the present invention.
  • the transmission side amplification circuit 71 includes a PA control unit 710, a front stage amplification element 711, switches 712 and 714, and a final stage amplification element 713.
  • the final stage amplifying element 713 includes frequency band-specific amplifying elements AE1, AE2, and AE3.
  • the PA control unit 710 performs switch control of the switches 712 and 714 based on the selected channel from the channel determination unit. Further, the PA control unit 710 controls the amplification factors of the previous stage amplification element 711 and the last stage amplification element 713 based on the selected channel.
  • the pre-stage amplifying element 711 amplifies the transmission signal generated by the transmission signal generation unit 801 (see FIG. 1) and outputs the amplified signal to the switch 712.
  • the switch 712 selects any one of the frequency band-specific amplifying elements AE1, AE2, and AE3 and connects it to the output terminal of the previous stage amplifying element 711.
  • the frequency band amplifying elements AE1, AE2, and AE3 divide the communication band into three frequency bands, and one frequency band amplifying element AE1, AE2, and AE3 is assigned to each frequency band.
  • the frequency band amplification element AE1 is assigned to the low frequency band of the communication band
  • the frequency band amplification element AE2 is assigned to the middle frequency band
  • the frequency band amplification element AE3 is assigned to the high frequency band.
  • the frequency band amplifying elements AE1, AE2, and AE3 amplify the transmission signal and output the amplified signal to the switch 714.
  • the switch 714 selects any one of the frequency band-specific amplifying elements AE1, AE2, and AE3 and connects it to the frequency variable filter 61 (see FIG. 1).
  • the occurrence of distortion can be suppressed even if the amplification factor in each frequency band is increased. Therefore, the amplification factor as the transmission side amplifier circuit 71 can be improved. As a result, even if a plurality of filters are arranged downstream of the transmission side amplification circuit 71 in the transmission path of the transmission signal, attenuation due to these filters can be canceled, and transmission of a desired signal strength can be performed in each communication channel of the communication band. A signal can be reliably output.
  • FIG. 13 is a circuit diagram showing a second mode of the transmission side amplifier circuit according to the embodiment of the present invention.
  • the transmission side amplification circuit 71A shown in FIG. 13 is obtained by adding an interstage filter 716 to the transmission side amplification circuit 71 shown in FIG.
  • the interstage filter 716 is connected between the preamplifier element 711 and the switch 712.
  • the interstage filter 716 attenuates at least a part of transmission system noise propagated from the transmission signal generation unit 801 (see FIG. 1) and distortion of the pre-stage amplification element 711.
  • the interstage filter 716 has a circuit configuration shown in FIG. 14, for example.
  • FIG. 14 is a circuit diagram showing an example of an interstage filter of the transmission side amplifier circuit according to the embodiment of the present invention.
  • the interstage filter 716 includes resonance circuits 761 and 762 and connection terminals Ptx1 and Ptx2.
  • the resonance circuit 761 is connected between the connection terminal Ptx1 and the connection terminal Ptx2.
  • the resonance circuit 762 is connected between the connection terminal Ptx1 side of the resonance filter 761 and the ground potential.
  • the resonance circuit 761 includes inductors 7611 and 7612 and a variable capacitor 7613.
  • the inductor 7612 and the variable capacitor 7613 are connected in parallel, and this parallel circuit is connected in series to the inductor 7611.
  • the inductor 7611 is connected to the connection terminal Ptx2, and the parallel circuit of the inductor 7612 and the variable capacitor 7613 is connected to the connection terminal Ptx1.
  • the resonance circuit 762 includes inductors 7621 and 7622 and a variable capacitor 7623.
  • the inductor 7622 and the variable capacitor 7623 are connected in series, and this series circuit is connected in parallel to the inductor 7621.
  • One end of the parallel circuit is connected to the connection terminal Ptx2, and the other end is connected to the ground potential.
  • variable capacitors 7613 and 7623 change the capacitance according to control (control based on the selected channel) from the PA control unit 710A (see FIG. 13).
  • the interstage filter 716 has filter characteristics according to the frequency band-specific amplification elements AE1, AE2, AE3. Therefore, filter characteristics suitable for each communication channel of the communication band can be realized, and distortion of the pre-amplifying element 711 and noise of the transmission system in each communication channel can be appropriately suppressed.
  • noise, distortion, and the like output from the transmission side amplifier circuit 71A can be suppressed, and unnecessary waves included in the transmission signal can be suppressed. Therefore, transmission characteristics as a high-frequency front end circuit can be improved.
  • a mode in which a plurality of final stage amplifying elements are divided and provided for each frequency band is shown.
  • a single final stage amplifying element may amplify the transmission signals of all communication channels.
  • the interstage switch may not be provided.
  • the interstage filter can be omitted if the level of the distortion harmonic signal of the transmission signal is low.
  • FIG. 15 is a functional block diagram of a high-frequency front end circuit according to the fourth embodiment of the present invention.
  • the high-frequency front end circuit 10C according to the present embodiment is different from the high-frequency front end circuit 10 according to the first embodiment in that the frequency variable LC filter 40 is omitted.
  • Other configurations are the same as those of the high-frequency front-end circuit 10 according to the first embodiment.
  • the frequency fixed filter 30 is connected to the branching circuit 50. Even if it is such a structure, the effect similar to 1st Embodiment can be acquired.
  • 10, 10A, 10B, 10C high frequency front end circuit 20: antenna matching circuit 30: fixed frequency filter 40, 40A, 40B: variable frequency LC filter 61, 61A, 62: variable frequency filter 41: first series arm LC filter Circuit 42: first parallel arm LC filter circuit 41A, 42A: series arm LC filter circuit 43: second parallel arm LC filter circuit 43A: parallel arm LC filter circuit 601: series arm resonance circuit 602: first parallel arm Resonance circuit 603: second parallel arm resonance circuits 611A, 612A, 613A, 614A, 761, 762: resonance circuit 50: branching circuit 71, 71A: transmission side amplification circuit 72: reception side amplification circuit 80: signal processing unit 90 : Detection circuit 91: transmission circuit 92: reception circuits 411, 413, 610, 617A: capacitor 411A 412, 414, 421, 421A, 431, 431A, 432A, 441A, 442A, 612, 615A, 622

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters And Equalizers (AREA)
  • Transceivers (AREA)

Abstract

高周波フロントエンド回路(10)は、周波数固定フィルタ(30)、周波数可変LCフィルタ(40,61)を備え、これらが信号伝送経路において直列に接続されている。周波数固定フィルタ(30)は、通信バンドの周波数帯域内の高周波信号を通過させ、通信バンドの周波数帯域外の高周波信号を減衰させる。周波数可変LCフィルタ(40)は、LCフィルタであり、通信バンドの周波数帯域内における不要波の周波数を減衰させる。周波数可変フィルタ(61)は、共振子フィルタであり、選択チャンネルの周波数帯域の高周波信号を減衰させて、選択チャンネルの隣接通信チャンネルの周波数帯域の高周波信号を減衰させる。

Description

高周波フロントエンド回路、通信装置
 本発明は、無線通信を行う高周波フロントエンド回路に関する。
 現在、無線通信に利用する周波数帯域の有効利用のための技術が各種考案されている。例えば、特許文献1には、TVホワイトスペースを利用して無線通信を行うシステムが記載されている。
 TVホワイトスペースを利用した無線通信とは、テレビジョン放送に使用されていた周波数帯域が開放され、当該周波数帯域を無線通信に利用する技術であり、テレビジョン放送で使用していない空きチャンネル(空き通信チャンネル)を無線通信に利用するものである。無線通信デバイスは、データベースによって割り当てられた、テレビジョン放送の通信バンドにおける空き通信チャンネルを用いて、無線通信を行う。
特開2013-90165号公報
 しかしながら、TVホワイトスペースを利用した無線通信システムでは、テレビジョン放送において使用チャンネルが地域によって変動する。そのため、空きチャンネルや利用チャンネルが変動する。しかも、各テレビジョン放送用の通信チャンネルの周波数帯域の帯域幅は6MHzまたは8MHzであり、各通信チャンネル間の帯域幅は0.5~1MHz程度であり、各通信チャンネルの周波数帯域の帯域幅と各通信チャンネル間の帯域幅は、狭い。
 そのため、例えば、上記TVホワイトスペースのように、空きチャンネル及び利用チャンネルが変動しつつ、かつ、各通信チャンネルの周波数帯域と、各通信チャンネル間の帯域幅が狭いシステムを利用する場合には、フィルタ構成によっては、ノイズによる悪影響受けてしまう、という課題がある。
 したがって、本発明の目的は、フィルタ構成を工夫することにより、例えば、上記TVホワイトスペースを利用した無線通信システムのように、空きチャンネルおよび利用チャンネルが変動しつつ、且つ、各通信チャンネルの周波数帯域と各通信チャンネル間の帯域幅が狭いシステムで使用する特定の周波数帯域の中にある複数の通信チャンネルの空き通信チャンネルを、ノイズが減衰された状態で利用することができる高周波フロントエンド回路を提供することにある。
 この発明は、システムで使用する特定の周波数帯域内にある複数の通信チャンネルによって構成された通信バンドにおいて、複数の通信チャンネルの空き通信チャンネルの中から利用チャンネルを選択して、無線通信を行う高周波フロントエンド回路に関するものであり、次の特徴を有する。高周波フロントエンド回路は、固定フィルタと可変フィルタとを備える。固定フィルタは、システムで使用する特定の周波数帯域外の高周波信号を減衰させる。可変フィルタは、利用チャンネルに応じて変化する、特定の周波数帯域内における不要波の高周波信号を減衰させる。
 この構成では、固定フィルタで特定の周波数帯域外の不要波を減衰させ、可変フィルタで特定の周波数帯域内における不要波を減衰させる。これにより、特定の周波数帯域内における利用チャンネルの高周波信号が減衰されずに通過し、その他の高周波信号(不要波信号)が効果的に減衰される。
 また、この発明の高周波フロントエンド回路では、次の構成であることが好ましい。システムは、TVホワイトスペースを利用した無線通信システムである。特定の周波数帯域は、テレビジョン放送で使用する周波数帯域である。通信チャンネルは、テレビジョン放送で使用するチャンネルである。
 この構成では、通信チャンネルの周波数帯域が狭く、隣接する通信チャンネルとの周波数間隔が狭い態様を示しており、このような態様において不要波信号がより効果的に減衰される。
 また、この発明の高周波フロントエンド回路では、可変フィルタは、利用チャンネルにおける周波数帯域内の高周波信号を通過させて、利用チャンネルから3通信チャンネル以内の近接通信チャンネルの周波数帯域の高周波信号を減衰させることが好ましい。
 この構成では、利用チャンネルに近接する周波数帯域の不要波信号が効果的に減衰される。
 また、この発明の高周波フロントエンド回路では、固定フィルタは周波数固定型のLCフィルタであり、可変フィルタは周波数可変型の弾性波共振子フィルタであることが好ましい。
 この構成では、広い通過帯域および減衰帯域を必要とする固定フィルタにLCフィルタが用いられ、狭い通過帯域と急峻な減衰特性を必要とする可変フィルタに弾性波共振子フィルタが用いられるので、それぞれのフィルタ特性が有効に作用し、総合的に所望とするフィルタ特性を確実且つ正確に実現することが可能になる。
 また、この発明の高周波フロントエンド回路では、次の構成であることが好ましい。高周波フロントエンド回路は、送信側回路、受信側回路、アンテナ側回路、および、分波回路を備える。送信側回路は、利用チャンネルを用いた送信信号を伝送する。受信側回路は、利用チャンネルを用いた受信信号を伝送する。アンテナ側回路は、送信信号と受信信号が伝送する。分波回路は、送信側回路および受信側回路とアンテナ側回路とを接続する。固定フィルタは、アンテナ側回路に備えられている。可変フィルタは、送信側回路、または、送信側回路および受信側回路に備えられている。
 この構成では、送信と受信を共通のアンテナで行う回路において、利用チャンネルの高周波信号を低損失で通過し、通信バンド内の利用チャンネル以外の周波数帯域および通信バンド外の周波数帯域の高周波信号を効果的に減衰することができる。
 また、この発明の高周波フロントエンド回路は、周波数可変型のLCフィルタからなり、特定の周波数帯域内のIMDを発生させる周波数を減衰させる第2の可変フィルタをさらに備えることが好ましい。
 この構成では、通信バンド内の不要波を利用チャンネルに応じて、より効果的に減衰させることができる。
 また、この発明の高周波フロントエンド回路では、第2の可変フィルタは、前記固定フィルタと分波回路との間、または、分波回路と可変フィルタとの間に備えられていることが好ましい。
 この構成では、第2の可変フィルタの機能を備えながら、高周波フロントエンド回路の回路構成が大きくなることを可能な限り抑制することができる。
 また、この発明の高周波フロントエンド回路では、次の構成であってもよい。特定の周波数帯域内における不要波の高周波信号に関する情報を含む可変フィルタ情報は、アンテナで送受信する通信信号に含まれている。可変フィルタは、可変フィルタ情報に基づいて、特定の周波数帯域内における不要波の高周波信号を減衰させる。
 この構成では、可変フィルタを設定するための情報を、別の通信システムで入手してもよく、高周波フロントエンド回路の構成が大きくなることを抑制することができる。
 また、この発明の高周波フロントエンド回路は、次の構成であることが好ましい。高周波フロントエンド回路は、検出部および決定部を備える。検出部は、空き通信チャンネルが複数ある場合に、複数の空き通信チャンネルの受信レベルをそれぞれに検出する。決定部は、検出した複数の受信レベルにうち受信レベルが最も高い空き通信チャンネルを、利用チャンネルに選択する。
 この構成では、より確実な無線通信が可能になる。
 また、この発明の高周波フロントエンド回路は次の構成であってもよい。送信側回路は、送信信号を増幅する増幅回路を備える。増幅回路は、送信信号を増幅する第1の増幅素子と、第1の増幅素子によって増幅された信号を増幅する第2の増幅素子と、を備えることが好ましい。
 この構成では、増幅回路が2段の増幅素子で構成されるため、歪みが抑圧された高出力な送信信号が出力される。
 また、この発明の高周波フロントエンド回路では、増幅回路は、第1の増幅素子と第2の増幅素子との間に接続され、送信信号の高調波歪み信号を減衰させる段間フィルタをさらに備えることが好ましい。
 この構成では、送信信号の歪みがさらに抑制される。
 また、この発明の高周波フロントエンド回路では、次の構成であることが好ましい。第2の増幅素子は、異なる周波数帯域毎に複数備えられている。増幅回路は、利用チャンネルに応じて、周波数帯域毎に備えられた複数の第2の増幅素子の少なくとも1つを選択して、第1の増幅素子に接続する段間スイッチを、さらに備えている。
 この構成では、利用チャンネルに応じた増幅素子が選択されるので、さらに効率の良い送信信号の増幅が可能になる。
 また、この発明の高周波フロントエンド回路では、次の構成であることが好ましい。可変フィルタは、入力端子と、出力端子と、直列腕共振回路と、第1、第2の並列腕共振回路とを備える。直列腕共振回路は、入力端子と出力端子との間に直列接続されている。第1の並列腕共振回路は、直列腕共振回路の一方端と接地電位とを両端にした回路である。第2の並列腕共振回路は、直列腕共振回路の他方端と接地電位とを両端にした回路である。
 直列腕共振回路は、キャパシタンスが固定である固定キャパシタを備える。直列腕共振回路、第1、第2の並列腕共振回路は、それぞれに可変キャパシタ、インダクタ、および、弾性波共振子を備える。直列腕共振回路における可変キャパシタ、インダクタ、および弾性波共振子は、並列接続されている。第1、第2の並列腕共振回路における可変キャパシタ、インダクタ、および弾性波共振子は、直列接続されている。固定キャパシタは、直列腕共振回路において、第1の並列腕共振回路の弾性波共振子のインピーダンスと第2の並列腕共振回路の弾性波共振子のインピーダンスのうち、低い方の弾性波共振子を備える並列腕共振子側に接続されている。
 この構成では、可変フィルタのフィルタ特性、特に減衰特性を改善することができる。
 また、この発明の高周波フロントエンド回路は次の構成であることが好ましい。第2の可変フィルタは、入力端子と、出力端子と、第1の直列腕LCフィルタ回路と、第1、第2の並列腕LCフィルタ回路とを備える。第1の直列腕LCフィルタ回路は、入力端子と出力端子との間に接続されている。第1の並列腕LCフィルタ回路は、第1の直列腕LCフィルタ回路の一方端と接地電位とを両端にした回路である。第2の並列腕LCフィルタ回路は、第1の直列腕LCフィルタ回路の他方端と接地電位とを両端にした回路である。第1、第2の並列腕LCフィルタ回路は、直列接続された可変キャパシタとインダクタとを備える。第1の直列腕LCフィルタ回路は、固定キャパシタ、LC直列回路、および、LC並列回路を備える。固定キャパシタは、LC直列回路に並列接続されている。LC直列回路は、入力端子と出力端子を両端とし、且つ直列接続された固定キャパシタとインダクタとを備える。LC並列回路は、並列接続された可変キャパシタとインダクタとを備える。LC直列回路に含まれるインダクタは、出力端子に直接接続されているか、または、他のインダクタを介して前記出力端子に接続されている。
 この構成では、第2の可変フィルタのフィルタ特性、特に減衰特性を改善することができる。
 また、この発明は、通信装置に関するものであり、この通信装置は、上述のいずれかに記載の高周波フロントエンド回路を備え、高周波フロントエンド回路で無線通信する通信信号を用いて音声通信またはデータ通信を実行している。
 この構成では、品質の高い通信(例えば、データ転送速度が速い、音声の品質が高い)を実現することができる。
 この発明によれば、複数の通信チャンネルによって構成される通信バンドにおける選択された通信チャンネルで無線通信を行う場合に、選択された通信チャンネルを用いて無線通信を確実に行うことができる。
本発明の第1の実施形態に係る高周波フロントエンド回路の機能ブロック図である。 本発明の第1の実施形態に係る高周波フロントエンド回路の通過特性を示す図である。 本発明の第2の実施形態に係る高周波フロントエンド回路の機能ブロック図である。 本発明の第3の実施形態に係る高周波フロントエンド回路の機能ブロック図である。 本発明の実施形態に係る周波数可変LCフィルタの第1態様を示す回路図である。 図5に示す周波数可変LCフィルタの通過特性を示すグラフである。 本発明の実施形態に係る周波数可変LCフィルタの第2態様を示す回路図である。 図7に示す周波数可変LCフィルタの通過特性を示すグラフである。 本発明の実施形態に係る共振子フィルタ型の周波数可変フィルタの第1態様を示す回路図である。 図9に示す周波数可変フィルタの通過特性を示すグラフである。 本発明の実施形態に係る共振子フィルタ型の周波数可変フィルタの第2態様を示す回路図である。 本発明の実施形態に係る送信側増幅回路の第1態様を示す回路図である。 本発明の実施形態に係る送信側増幅回路の第2態様を示す回路図である。 本発明の実施形態に係る送信側増幅回路の段間フィルタの一例を示す回路図である。 本発明の第4の実施形態に係る高周波フロントエンド回路の機能ブロック図である。
 本発明の第1の実施形態に係る高周波フロントエンド回路について、図を参照して説明する。図1は、本発明の第1の実施形態に係る高周波フロントエンド回路の機能ブロック図である。
 高周波フロントエンド回路10は、アンテナANT、アンテナ整合回路20、周波数固定フィルタ30、周波数可変LCフィルタ40、分波回路50、周波数可変フィルタ61,62、送信側増幅回路71、受信側増幅回路72、信号処理部80、送信回路91、および、受信回路92を備える。信号処理部80は、送信信号生成部801、復調部802、および、チャンネル決定部810を備える。周波数固定フィルタ30が本発明の「固定フィルタ」に対応する。周波数可変LCフィルタ40が本発明の「第2の可変フィルタ」に対応する。周波数可変フィルタ61,62が本発明の「可変フィルタ」に対応する。高周波フロントエンド回路10は、少なくとも、周波数固定フィルタ30と周波数可変フィルタ61を備えていればよい。分波回路50、周波数可変フィルタ62、送信側増幅回路71、受信側増幅回路72、および、信号処理部80は、これらの一部もしくは全部の構成要素を省略することができる。
 アンテナANTは、アンテナ整合回路20に接続されている。アンテナ整合回路20は、周波数固定フィルタ30に接続されている。アンテナ整合回路20は、固定整合回路でもよく、可変整合回路でもよい。周波数固定フィルタ30は、周波数可変LCフィルタ40に接続されている。周波数可変LCフィルタ40は、分波回路50のアンテナ側端子に接続されている。分波回路50の送信側端子は、周波数可変フィルタ61に接続されている。周波数可変フィルタ61は、送信側増幅回路71に接続されている。送信側増幅回路71は、送信回路91に接続されている。送信回路91は、信号処理部80の送信信号生成部801に接続されている。分波回路50の受信側端子は、周波数可変フィルタ62に接続されている。周波数可変フィルタ62は、受信側増幅回路72に接続されている。受信側増幅回路72は、受信回路92に接続されている。受信回路92は、信号処理部80の復調部802に接続されている。分波回路50からアンテナANT側が本発明の「アンテナ側回路」に対応し、分波回路50から送信回路91側が本発明の「送信側回路」に対応し、分波回路50から受信回路92側が本発明の「受信側回路」に対応する。
 高周波フロントエンド回路10は、複数の通信チャンネルによって構成される通信バンドにおいて、空きの通信チャンネルを利用して高周波信号を送受信する。例えば、高周波フロントエンド回路10は、TVホワイトスペースの仕様に基づいて高周波信号を送受信する。TVホワイトスペースの仕様では、テレビジョン放送のUHF帯、すなわち、470[MHz]から790[MHz]の通信バンドに設定した、それぞれに周波数帯域幅が6[MHz]の複数の通信チャンネルの内、テレビジョン放送の信号が伝送されていないチャンネルを空き通信チャンネルとして利用する。
 図2は、本発明の第1の実施形態に係る高周波フロントエンド回路の通過特性を示す図である。図2には、通信バンドと各通信チャンネルとの関係を示している。なお、図2では、通信チャンネルCH64が選択チャンネル(高周波フロントエンド回路10で通信する空き通信チャンネル)である場合を示している。
 アンテナ整合回路20は、アンテナANTと周波数固定フィルタ30から信号処理部80側の回路とのインピーダンス整合を行っている。アンテナ整合回路20は、インダクタおよびキャパシタによって構成されている。例えば、アンテナ整合回路20は、通信バンドの全体において、アンテナANTの反射損失が所望値以下になるように、インダクタおよびキャパシタの素子値が設定されている。
 周波数固定フィルタ30は、インダクタおよびキャパシタによって構成されている。すなわち、周波数固定フィルタ30は、周波数固定型のLCフィルタである。周波数固定フィルタ30は、通信バンドの周波数帯域が通過域内となり、通信バンド外の周波数帯域が減衰域内となるように、インダクタおよびキャパシタの素子値が設定されている。例えば、周波数固定フィルタ30は、低域通過フィルタによって構成されている。図2のフィルタ特性SF30に示すように、周波数固定フィルタ30では、通信バンドの周波数帯域は通過域内となり、通信バンドの周波数帯域よりも高い周波数帯域は減衰域内となっている。これにより、周波数固定フィルタ30は、通信バンド内の高周波信号を低損失に伝送し、通信バンド外の高周波信号を減衰させる。
 周波数可変LCフィルタ40は、少なくとも可変キャパシタを備えており、さらに、インダクタおよびキャパシタを少なくとも1つ備えている。すなわち、周波数可変LCフィルタ40は、周波数可変型のLCフィルタである。周波数可変LCフィルタ40は、帯域通過フィルタである。周波数可変LCフィルタ40の具体的な回路構成は、後述する。
 周波数可変LCフィルタ40は、選択チャンネルに応じて、通過帯域および減衰域を変化させる。この際、選択チャンネルの周波数帯域は、通過帯域に含まれている。図2のフィルタ特性SF40に示すように、周波数可変LCフィルタ40の通過帯域の周波数帯域幅は、選択チャンネルの周波数帯域幅よりも広い。例えば、周波数可変LCフィルタ40の通過帯域の周波数帯域幅は、選択チャンネルの周波数帯域幅の10倍程度である。
 周波数可変LCフィルタ40は、周波数軸上での通過帯域の両側に減衰極を有する。図2のフィルタ特性SF40に示すように、周波数可変LCフィルタ40の減衰域では、減衰量が大幅に小さくなる周波数帯域はなく、通過帯域外では、通信バンド内のどの周波数であっても所定の減衰量を得ることができる。
 これにより、周波数可変LCフィルタ40は、選択チャンネルを含む複数チャンネル分の周波数帯域の高周波信号を低損失に伝送し、それ以外の周波数帯域の高周波信号を減衰させる。したがって、周波数可変LCフィルタ40は、通信バンド内における選択チャンネルの周波数から離間した周波数に存在する不要波を減衰することができる。特に、周波数可変LCフィルタ40は、後述する共振子を用いた周波数可変フィルタ61,62よりも減衰帯域の周波数範囲を広くすることができるので、利用する通信チャンネル(選択チャンネル)によって変化する、通信バンド内の広い周波数帯域で発生し得るIMDの減衰に有効である。
 分波回路50は、サーキュレータ、デュプレクサ等からなる。分波回路50は、送信側端子から入力される送信信号(高周波信号)をアンテナ側端子に出力し、アンテナ側端子から入力された受信信号(高周波信号)を受信側端子に出力する。
 周波数可変フィルタ61,62は、共振子と可変キャパシタを少なくとも備えており、さらに、フィルタ特性に応じてインダクタおよびキャパシタを少なくとも1つ備えている。すなわち、周波数可変フィルタ61,62は、周波数可変型の共振子フィルタである。周波数可変フィルタ61,62は、共振子の共振点と反共振点とを利用した帯域通過フィルタである。周波数可変フィルタ61,62の具体的な回路構成は後述する。また、周波数可変フィルタ61,62の基本構成は同じであるので、以下では周波数可変フィルタ61について説明する。
 周波数可変フィルタ61は、選択チャンネルに応じて、通過帯域および減衰域を変化させる。この際、選択チャンネルの周波数帯域は、通過帯域に含まれている。図2のフィルタ特性SF61に示すように、周波数可変フィルタ61の通過帯域の周波数帯域幅は、選択チャンネルの周波数帯域幅と略同じである。
 周波数可変フィルタ61は、周波数軸上での通過帯域の両側に減衰極を有する。周波数可変フィルタ61は共振子フィルタであるので、図2のフィルタ特性SF61に示すように、通過帯域の減衰特性はLCフィルタよりも急峻である。
 これにより、周波数可変フィルタ61は、選択チャンネルの高周波信号を低損失に伝送し、隣接する通信チャンネルの高周波信号を減衰させる。なお、周波数可変フィルタ61は、隣接する通信チャンネルの高周波信号を減衰させるだけでなく、隣接チャンネルの隣接チャンネル、隣接チャンネルの隣接チャンネルの隣接チャンネル、すなわち、通信チャンネルに近い3チャンネル分(周波数領域の低域側と高域側で合わせて6チャンネル)の周波数帯域の高周波信号を減衰させる仕様であってもよい。なお、この減衰させる周波数帯域の幅は、この範囲内で、システムの仕様に応じて適宜設定すればよい。
 ところで、図2のフィルタ特性SF61に示すように、周波数可変フィルタ61の減衰域では、減衰極を基準にして通過帯域と反対側の周波数帯域では減衰量が小さくなる周波数帯域を有する。しかしながら、高周波信号の伝送経路において、周波数可変フィルタ61、周波数可変LCフィルタ40、および、周波数固定フィルタ30が直列に接続されていることにより、周波数可変フィルタ61によって減衰量が得られない周波数帯域であっても、周波数可変LCフィルタ40および周波数固定フィルタ30によって十分な減衰量を得ることができる。
 これにより、図2の総合フィルタ特性SFtxに示すように、選択チャンネルの高周波信号を低損失に伝送し、隣接チャンネルを含む選択チャンネル以外の周波数帯域の高周波信号を減衰させることができる。これは、選択チャンネルを切り替えても同様の作用効果が得られる。
 送信側増幅回路71は、いわゆる増幅素子を備える。送信側増幅回路71の具体的な回路構成は、後述する。送信側増幅回路71は、送信回路91においてRF信号に変換された送信信号生成部801からのベースバンドの送信信号を増幅して、周波数可変フィルタ61に出力する。受信側増幅回路72は、いわゆるLNA(ローノイズアンプ)を備える。受信側増幅回路72は、周波数可変フィルタ62から出力された受信信号を増幅して、受信回路92を介して(例えば、受信回路92においてRF信号をベースバンドの信号に変換して)、復調部802に出力する。
 信号処理部80のチャンネル決定部810は、通信バンド内の空き通信チャンネルを検出する。例えば、チャンネル決定部810は、外部から空きチャンネルのマップを取得し、当該マップに基づいて空きチャンネルを検出する。チャンネル決定部810は、空き通信チャンネルの少なくとも1つを選択して、選択チャンネルに設定する。チャンネル決定部810は、選択チャンネルを送信信号生成部801に出力する。送信信号生成部801は、選択チャンネルの周波数からなる高周波信号で送信信号を生成し、送信側増幅回路71に出力する。なお、図示していないが、チャンネル決定部810は、選択チャンネルを復調部802に出力する。復調部802は、選択チャンネルに基づくローカル信号によって、受信信号を復調する。
 なお、空き通信チャンネルのマップの取得は、高周波フロントエンド回路10外の回路から行ってもよいが、アンテナANTで受信するマップ情報を含む通信信号を復調して行ってもよい。この際、マップ情報に替えて、通信バンド内に含まれる不要波の周波数を示し、これを所望値まで減衰させるための必要な減衰量等を示した可変フィルタ情報を取得してもよい。チャンネル決定部810は、可変フィルタ情報を取得した場合には、当該可変フィルタ情報に応じて、周波数可変LCフィルタ40および周波数可変フィルタ61,62の少なくとも1つの設定を行えばよい。
 また、信号処理部80は、高周波フロントエンド回路10で無線通信する通信信号を用いて音声通信、データ通信等の所望の機能を実現する回路構成も備えている。
 チャンネル決定部810は、周波数可変LCフィルタ40、送信側増幅回路71、周波数可変フィルタ61、周波数可変フィルタ62にも選択チャンネルを出力する。周波数可変LCフィルタ40、周波数可変フィルタ61、周波数可変フィルタ62は、この選択チャンネルを用いて上述のようなフィルタ特性を実現する。送信側増幅回路71は、この選択チャンネルを用いて送信信号の増幅処理を行う。
 以上のように、本実施形態の高周波フロントエンド回路10の構成を用いることによって、複数の通信チャンネルによって構成される通信バンドにおける選択された通信チャンネル(選択チャンネル)で無線通信を行う場合に、選択チャンネルを用いて、低損失な無線通信を実現できる。特に、空きチャンネルおよび利用チャンネルが変動しつつ、且つ、各通信チャンネルの周波数帯域と各通信チャンネル間の帯域幅が狭いシステムであっても、本実施形態の高周波フロントエンド回路10の構成を用いることによって、各通信チャンネルで低損失な無線通信を実現できる。
 次に、本発明の第2の実施形態に係る高周波フロントエンド回路について、図を参照して説明する。図3は、本発明の第2の実施形態に係る高周波フロントエンド回路の機能ブロック図である。
 本実施形態に係る高周波フロントエンド回路10Aは、第1の実施形態に係る高周波フロントエンド回路10に対して、検出部90を追加している。他の構成は、第1の実施形態に係る高周波フロントエンド回路10と同じである。
 検出部90は、周波数固定フィルタ30と周波数可変LCフィルタ40との間に接続されている。検出部90は、各通信チャンネルの信号レベル(振幅レベル)を検出して、チャンネル決定部810に出力する。
 チャンネル決定部810は、複数の空き通信チャンネルの内、信号レベルが最も高い通信チャンネルを選択チャンネルに決定する。
 このような構成とすることによって、受信レベルが高い通信チャンネルを利用して無線通信を行うことができる。
 なお、検出部90は、本実施形態に示すように、アンテナANTと分波回路50との間に設置してもよいが、全く別の検出専用の回路を設けてもよい。また、検出部90は、信号処理部80の中に配置してもよく、復調部802の中に配置してもよい。
 次に、本発明の第3の実施形態に係る高周波フロントエンド回路について、図を参照して説明する。図4は、本発明の第3の実施形態に係る高周波フロントエンド回路の機能ブロック図である。
 本実施形態に係る高周波フロントエンド回路10Bは、第1の実施形態に係る高周波フロントエンド回路10に対して、周波数可変LCフィルタ40Bの接続位置において異なる。周波数可変LCフィルタ40Bは、基本構成として、第1の実施形態に係る周波数可変LCフィルタ40と同じである。
 このような構成であっても、少なくとも送信信号に対して、第1の実施形態と同様の作用効果を得ることができる。
 次に、各実施形態に係る高周波フロントエンド回路におけるLCフィルタ型の周波数可変フィルタの具体的な構成について説明する。図5は、本発明の実施形態に係る周波数可変LCフィルタの第1態様を示す回路図である。
 周波数可変LCフィルタ40は、第1の直列腕LCフィルタ回路41、第1の並列腕LCフィルタ回路42、第2の並列腕LCフィルタ回路43、および、接続端子P401,P402を備える。接続端子P401および接続端子P402が本発明の「入力端子」および「出力端子」に対応する。
 第1の直列腕LCフィルタ回路41は、接続端子P401と接続端子P402との間に接続されている。第1の並列腕LCフィルタ回路42は、第1の直列腕LCフィルタ回路41の接続端子P401側と接地電位との間に接続されている。第2の並列腕LCフィルタ回路43は、第1の直列腕LCフィルタ回路41の接続端子P402側と接地電位との間に接続されている。
 第1の直列腕LCフィルタ回路41は、キャパシタ411,413、インダクタ412,414、可変キャパシタ415を備える。キャパシタ411とインダクタ412は、接続端子P401,P402間に直列接続されている。この際、インダクタ412は、接続端子P402に直接接続されている。キャパシタ413は、キャパシタ411とインダクタ412の直列共振回路に対して並列接続されている。インダクタ414と可変キャパシタ415は並列接続されている。この並列共振回路は、キャパシタ411とインダクタ412との接続点と接地電位との間に接続されている。
 第1の並列腕LCフィルタ回路42は、インダクタ421と可変キャパシタ422を備える。インダクタ421と可変キャパシタ422との直列共振回路は、第1の直列腕LCフィルタ回路41の接続端子P401側と接地電位との間に接続されている。
 第2の並列腕LCフィルタ回路43は、インダクタ431と可変キャパシタ432を備える。インダクタ431と可変キャパシタ432との直列共振回路は、第1の直列腕LCフィルタ回路41の接続端子P402側と接地電位との間に接続されている。
 このような構成において、可変キャパシタ415,422,432のキャパシタンスを変化させることよって、通過帯域が変化する帯域通過フィルタを実現できる。図6は、図5に示す周波数可変フィルタの通過特性を示すグラフである。図6に示すように、周波数可変LCフィルタ40を用いることによって、通過帯域幅が約100[MHz]であり、通過帯域の両側に減衰極を有するフィルタ特性を実現することができる。特に、図5に示すように、第1の直列腕LCフィルタ回路41のインダクタ412を、キャパシタを介さずに接続端子P402に接続することによって、減衰特性を急峻にできる。
 言い換えると、第1の直列腕LCフィルタ回路41のインダクタ412を、接続端子P402と直接接続する、または他のインダクタを介して接続端子P402と接続することによって、減衰特性を急峻にできる。
 これは、次の理由によるものであると考えられる。
 インダクタと直接接続されるキャパシタの周波数特性は、低周波数を減衰させ、高周波数を通過させる、すなわち高域通過フィルタのような特性であるので、高周波数での減衰を悪化させる要因となる。
 また、接続端子と直接接続されるインダクタの周波数特性は、高周波数を減衰させ、低周波数を通過させる、すなわち低域通過フィルタのような特性であるので、高周波数の減衰を良好にさせる要因となり得る。
 さらに、インダクタを、他のインダクタを介して接続端子に接続する場合には、高周波数の減衰をさらに良好にさせる要因となり得る。
 図7は、本発明の実施形態に係るLCフィルタ型の周波数可変フィルタの第2態様を示す回路図である。
 周波数可変LCフィルタ40Aは、直列腕LCフィルタ回路41A,42A、並列腕LCフィルタ回路43A、および、接続端子P401,P402を備える。直列腕LCフィルタ回路41A,42Aは、接続端子P401と接続端子P402との間に直列接続されている。直列腕LCフィルタ回路41Aの一方端は、インダクタ441Aを介して接続端子P401に接続されており、他方端は、直列腕LCフィルタ回路42Aの一方端に接続されている。直列腕LCフィルタ回路42Aの他方端は、インダクタ442Aを介して接続端子P402に接続されている。並列腕LCフィルタ回路43Aは、直列腕LCフィルタ回路41A,42Aの接続点と接地電位との間に接続されている。
 直列腕LCフィルタ回路41Aは、インダクタ411Aと可変キャパシタ412Aの並列共振回路である。直列腕LCフィルタ回路42Aは、インダクタ421Aと可変キャパシタ422Aの並列共振回路である。並列腕LCフィルタ回路43Aは、インダクタ432Aと可変キャパシタ433Aの直列回路と、インダクタ431Aを備える。インダクタ431Aは、この直列回路に並列接続されている。
 直列腕LCフィルタ回路41Aのインダクタ411Aと直列腕LCフィルタ回路42Aのインダクタ421Aは、磁界結合している。
 このような構成において、可変キャパシタ412A,422A,433Aのキャパシタンスを変化させることよって、通過帯域が変化する帯域通過フィルタを実現できる。図8は、図7に示す周波数可変フィルタの通過特性を示すグラフである。図8に示すように、周波数可変LCフィルタ40Aを用いることによって、通過帯域幅が約100[MHz]であり、通過帯域の両側に減衰極を有するフィルタ特性を実現することができる。特に、図7に示すように、直列腕LCフィルタ回路41Aのインダクタ411Aと直列腕LCフィルタ回路42Aのインダクタ421Aを磁界結合することによって、減衰特性を急峻にできる。
 次に、各実施形態に係る高周波フロントエンド回路における共振子フィルタ型の周波数可変フィルタの具体的な構成について説明する。図9は、本発明の実施形態に係る共振子フィルタ型の周波数可変フィルタの第1態様を示す回路図である。なお、以下の共振子は、例えばSAW共振子等の圧電共振子である。
 周波数可変フィルタ61は、直列腕共振回路601、第1の並列腕共振回路602、第2の並列腕共振回路603、および、接続端子P601,P602を備える。
 直列腕共振回路601は、接続端子P601と接続端子P602との間に接続されている。第1の並列腕共振回路602は、直列腕共振回路601の接続端子P601側と接地電位との間に接続されている。第2の並列腕共振回路603は、直列腕共振回路601の接続端子P602側と接地電位との間に接続されている。
 直列腕共振回路601は、キャパシタ610、共振子611、インダクタ612、および可変キャパシタ613を備える。共振子611、インダクタ612、および可変キャパシタ613は、並列接続されている。この並列回路にキャパシタ610が直列接続されている。この共振回路は、接続端子P601と接続端子P602との間に接続されている。この際、キャパシタ610は、接続端子P601に接続、すなわち、第1の並列腕共振回路602に接続している。
 第1の並列腕共振回路602は、共振子621、インダクタ622、および可変キャパシタ623を備える。共振子621、インダクタ622、および可変キャパシタ623は、直列接続されている。この直列共振回路は、接続端子P601と接地電位との間に接続されている。
 第2の並列腕共振回路603は、共振子631、インダクタ632、および可変キャパシタ633を備える。共振子631、インダクタ632、および可変キャパシタ633は、直列接続されている。この直列共振回路は、接続端子P602と接地電位との間に接続されている。
 直列腕共振回路フィルタ601、第1、第2の並列腕共振回路602,603は、共振子611,621,631の共振点と反共振点を利用した帯域通過フィルタである。そして、可変キャパシタ613,623,633のキャパシタンスを変化させることよって、周波数可変フィルタ61は、通過帯域が変化する帯域通過フィルタとして機能する。
 共振子621のインピーダンスは、共振子631のインピーダンスよりも低い。
 図10は、図9に示す周波数可変フィルタの通過特性を示すグラフである。図10に示すように、周波数可変フィルタ61を用いることによって、通過帯域幅が約10[MHz]であり、通過帯域の両側に減衰極を有するフィルタ特性を実現することができる。特に、図9に示すように、第1の直列腕LCフィルタ回路601の第1の並列腕LCフィルタ回路602側にキャパシタを接続すること、言い換えれば、インピーダンスが低い共振子を備える共振フィルタ側にキャパシタを接続することによって、周波数軸上の通過帯域の両側に、急峻な減衰特性を有し、減衰量が大きな減衰極を形成することができる。これにより、選択チャンネルの隣接チャンネルの周波数帯域の高周波信号を大幅に減衰させることができる。
 図11は、本発明の実施形態に係る共振子フィルタ型の周波数可変フィルタの第2態様を示す回路図である。
 周波数可変フィルタ61Aは、共振回路611A,612A,613A,614A、インダクタ615A、整合回路616A、キャパシタ617A、および、接続端子P601,P602を備える。共振回路611A,612A,613A,614Aは、それぞれ共振子、インダクタ、および可変キャパシタの直列共振回路によって構成されている。
 接続端子P601と接続端子P602との間には、インダクタ615A、整合回路616A、および、キャパシタ617Aが、接続端子P601側からこの順に接続されている。
 共振回路611Aは、接続端子P601とインダクタ615Aとの接続点と接地電位との間に接続されている。共振回路612Aは、インダクタ615Aと整合回路616Aとの接続点と接地電位との間に接続されている。共振回路613Aは、整合回路616Aとキャパシタ617Aとの接続点と接地電位との間に接続されている。共振回路614Aは、キャパシタ617Aと接続端子P602との接続点と接地電位との間に接続されている。
 このような構成であっても、選択チャンネルの高周波信号を低損失で通過させ、隣接チャンネルの高周波信号を減衰させることができる。
 次に、各実施形態に係る高周波フロントエンド回路における送信側増幅回路の具体的な構成について説明する。図12は、本発明の実施形態に係る送信側増幅回路の第1態様を示す回路図である。
 送信側増幅回路71は、PA制御部710、前段増幅素子711、スイッチ712,714、最終段増幅素子713を備える。最終段増幅素子713は、周波数帯域別増幅素子AE1,AE2,AE3を備える。
 PA制御部710は、チャンネル決定部からの選択チャンネルに基づいて、スイッチ712,714のスイッチ制御を行う。また、PA制御部710は、選択チャンネルに基づいて、前段増幅素子711および最終段増幅素子713の増幅率の制御を行う。
 前段増幅素子711は、送信信号生成部801(図1参照)で生成された送信信号を増幅して、スイッチ712に出力する。
 スイッチ712は、周波数帯域別増幅素子AE1,AE2,AE3のいずれか1つを選択して、前段増幅素子711の出力端に接続する。
 周波数帯域別増幅素子AE1,AE2,AE3は、通信バンドを3つの周波数帯域に区分し、各周波数帯域に周波数帯域別増幅素子AE1,AE2,AE3の1つずつが割り当てられる。例えば、通信バンドの低周波数帯域には周波数帯域別増幅素子AE1が割り当てられ、中周波数帯域には周波数帯域別増幅素子AE2が割り当てられ、高周波数帯域には周波数帯域別増幅素子AE3が割り当てられる。
 周波数帯域別増幅素子AE1,AE2,AE3は、送信信号を増幅して、スイッチ714に出力する。
 スイッチ714は、周波数帯域別増幅素子AE1,AE2,AE3のいずれか1つを選択して、周波数可変フィルタ61(図1参照)に接続する。
 このように、最終段増幅素子を周波数帯域別に分割することによって、各周波数帯域での増幅率を上げても歪みの発生を抑制できる。したがって、送信側増幅回路71としての増幅率を向上できる。これにより、送信信号の伝送経路における送信側増幅回路71よりも後段に複数のフィルタを配置しても、これらのフィルタによる減衰を相殺でき、通信バンドの各通信チャンネルで、所望の信号強度の送信信号を確実に出力することができる。
 図13は、本発明の実施形態に係る送信側増幅回路の第2態様を示す回路図である。図13に示す送信側増幅回路71Aは、図12に示した送信側増幅回路71に対して段間フィルタ716を追加したものである。
 段間フィルタ716は、前段増幅素子711とスイッチ712との間に接続されている。段間フィルタ716は、送信信号生成部801(図1参照)から伝搬する送信系のノイズ、前段増幅素子711の歪みの少なくとも一部を減衰させる。
 段間フィルタ716は、例えば、図14に示す回路構成からなる。図14は、本発明の実施形態に係る送信側増幅回路の段間フィルタの一例を示す回路図である。
 段間フィルタ716は、共振回路761,762、接続端子Ptx1,Ptx2を備える。
 共振回路761は、接続端子Ptx1と接続端子Ptx2との間に接続されている。共振回路762は、共振フィルタ761の接続端子Ptx1側と接地電位との間に接続されている。
 共振回路761は、インダクタ7611,7612と可変キャパシタ7613とを備える。インダクタ7612と可変キャパシタ7613は並列接続されており、この並列回路はインダクタ7611に直列接続されている。インダクタ7611は、接続端子Ptx2に接続されており、インダクタ7612と可変キャパシタ7613の並列回路は、接続端子Ptx1に接続されている。
 共振回路762は、インダクタ7621,7622と可変キャパシタ7623とを備える。インダクタ7622と可変キャパシタ7623は直列接続されており、この直列回路はインダクタ7621に並列接続されている。この並列回路の一方端は、接続端子Ptx2に接続されており、他方端は接地電位に接続されている。
 可変キャパシタ7613,7623は、PA制御部710A(図13参照)からの制御(選択チャンネルに基づく制御)にしたがって、キャパシタンスを変化させる。これにより、段間フィルタ716は、周波数帯域別増幅素子AE1,AE2,AE3に応じたフィルタ特性となる。したがって、通信バンドの各通信チャンネルに対してそれぞれに適するフィルタ特性を実現でき、各通信チャンネルにおける前段増幅素子711の歪み、送信系のノイズを適切に抑制できる。
 これにより、送信側増幅回路71Aから出力されるノイズ、歪み等を抑制でき、送信信号に含まれる不要波を抑制できる。したがって、高周波フロントエンド回路としての送信特性を向上することができる。
 なお、上述の実施形態では、最終段増幅素子を周波数帯域別に分割して複数備える態様を示したが、1つの最終段増幅素子で全ての通信チャンネルの送信信号に対する増幅を行ってもよい。この場合、段間スイッチは備えなくてもよい。また、段間フィルタは、送信信号の歪み高調波信号のレベルが低ければ、省略することも可能である。
 また、上述の各実施形態では、少なくとも送信系の通信信号の伝送経路に3種類のフィルタを備える態様を示したが、次の第4の実施形態に示すように、2種類のフィルタで構成することも可能である。図15は、本発明の第4の実施形態に係る高周波フロントエンド回路の機能ブロック図である。
 本実施形態に係る高周波フロントエンド回路10Cは、第1の実施形態に係る高周波フロントエンド回路10に対して、周波数可変LCフィルタ40を省略した点で異なる。他の構成は、第1の実施形態に係る高周波フロントエンド回路10と同じである。
 この構成では、周波数固定フィルタ30は、分波回路50に接続されている。このような構成であっても、第1の実施形態と同様の作用効果を得ることができる。
10,10A,10B,10C:高周波フロントエンド回路
20:アンテナ整合回路
30:周波数固定フィルタ
40,40A,40B:周波数可変LCフィルタ
61,61A,62:周波数可変フィルタ
41:第1の直列腕LCフィルタ回路
42:第1の並列腕LCフィルタ回路
41A,42A:直列腕LCフィルタ回路
43:第2の並列腕LCフィルタ回路
43A:並列腕LCフィルタ回路
601:直列腕共振回路
602:第1の並列腕共振回路
603:第2の並列腕共振回路
611A,612A,613A,614A,761,762:共振回路
50:分波回路
71,71A:送信側増幅回路
72:受信側増幅回路
80:信号処理部
90:検出回路
91:送信回路
92:受信回路
411,413,610,617A:キャパシタ
411A,412,414,421,421A,431,431A,432A,441A,442A,612,615A,622,632,7611,7612,7621,7622:インダクタ
415,422,432,412A,422A,433A,613,623,633,7613,7623,7623:可変キャパシタ
611,621,631:共振子
616A:整合回路
710,710A:PA制御部
711:前段パワーアンプ
712,714:スイッチ
713:最終段パワーアンプ
716:段間フィルタ
801:送信信号生成部
802:復調部
810:チャンネル決定部
AE1,AE2,AE3:周波数帯域別パワーアンプ
ANT:アンテナ
P401,P402,P601,P602,Ptx1,Ptx2:接続端子

Claims (15)

  1.  システムで使用する特定の周波数帯域内にある複数の通信チャンネルによって構成された通信バンドにおいて、前記複数の通信チャンネルの空き通信チャンネルの中から利用チャンネルを選択して、無線通信を行う高周波フロントエンド回路であって、
     前記システムで使用する特定の周波数帯域外の高周波信号を減衰させる固定フィルタと、
     前記利用チャンネルに応じて変化する、前記特定の周波数帯域内における不要波の高周波信号を減衰させる可変フィルタと、
     を備える、高周波フロントエンド回路。
  2.  前記システムは、TVホワイトスペースを利用した無線通信システムであり、
     前記特定の周波数帯域は、テレビジョン放送で使用する周波数帯域であり、
     前記通信チャンネルは、前記テレビジョン放送で使用するチャンネルである、
     請求項1に記載の高周波フロントエンド回路。
  3.  前記可変フィルタは、前記利用チャンネルにおける周波数帯域内の高周波信号を通過させて、前記利用チャンネルから3通信チャンネル以内の近接通信チャンネルの周波数帯域の高周波信号を減衰させる、請求項2に記載の高周波フロントエンド回路。
  4.  前記固定フィルタは、周波数固定型のLCフィルタであり、
     前記可変フィルタは、周波数可変型の弾性波共振子フィルタである、
     請求項2または請求項3に記載の高周波フロントエンド回路。
  5.  前記利用チャンネルを用いた送信信号を伝送する送信側回路と、
     前記利用チャンネルを用いた受信信号を伝送する受信側回路と、
     前記送信信号と前記受信信号が伝送するアンテナ側回路と、
     前記送信側回路および前記受信側回路と前記アンテナ側回路とを接続する分波回路と、を備え、
     前記固定フィルタは、前記アンテナ側回路に備えられ、
     前記可変フィルタは、前記送信側回路、または、前記送信側回路および前記受信側回路に備えられている、
     請求項2乃至請求項4のいずれか1項に記載の高周波フロントエンド回路。
  6.  周波数可変型のLCフィルタからなり、前記特定の周波数帯域内のIMDを減衰させる第2の可変フィルタを、さらに備える、
     請求項5に記載の高周波フロントエンド回路。
  7.  前記第2の可変フィルタは、前記固定フィルタと前記分波回路との間、または、前記分波回路と前記可変フィルタとの間に備えられている、
     請求項6に記載の高周波フロントエンド回路。
  8.  前記特定の周波数帯域内における不要波の高周波信号に関する情報を含む可変フィルタ情報は、前記アンテナで送受信する通信信号に含まれており、
     前記可変フィルタは、前記可変フィルタ情報に基づいて、前記特定の周波数帯域内における不要波の高周波信号を減衰させる、
     請求項2乃至請求項7のいずれかに記載の高周波フロントエンド回路。
  9.  前記空き通信チャンネルが複数ある場合に、複数の空き通信チャンネルの受信レベルをそれぞれに検出する検出部と、
     検出した複数の受信レベルにうち受信レベルが最も高い空き通信チャンネルを、前記利用チャンネルに選択する決定部と、
     を備える、請求項5乃至請求項8のいずれか1項に記載の高周波フロントエンド回路。
  10.  前記送信側回路は、前記送信信号を増幅する増幅回路を備え、
     前記増幅回路は、
     前記送信信号を増幅する第1の増幅素子と、
     前記第1の増幅素子によって増幅された信号を増幅する第2の増幅素子と、
     を備える、請求項5乃至請求項9のいずれか1項に記載の高周波フロントエンド回路。
  11.  前記増幅回路は、
     前記第1の増幅素子と前記第2の増幅素子との間に接続され、前記送信信号の高調波歪み信号を減衰させる段間フィルタをさらに備える、
     請求項10に記載の高周波フロントエンド回路。
  12.  前記第2の増幅素子は、異なる周波数帯域毎に複数備えられており、
     前記増幅回路は、
     前記利用チャンネルに応じて、前記周波数帯域毎に備えられた複数の第2の増幅素子の少なくとも1つを選択して、前記第1の増幅素子に接続する段間スイッチを、さらに備える、
     請求項10または請求項11に記載の高周波フロントエンド回路。
  13.  前記可変フィルタは、
     入力端子と、
     出力端子と、
     前記入力端子と前記出力端子との間に直列接続された直列腕共振回路と、
     前記直列腕共振回路の一方端と接地電位とを両端にした回路である第1の並列腕共振回路と、
     前記直列腕共振回路の他方端と前記接地電位とを両端にした回路である第2の並列腕共振回路と、
     を備え、
     前記直列腕共振回路は、キャパシタンスが固定である固定キャパシタを備え、
     前記直列腕共振回路、前記第1の並列腕共振回路、および、前記第2の並列腕共振回路は、それぞれに可変キャパシタ、インダクタ、および、弾性波共振子を備え、
     前記直列腕共振回路における可変キャパシタ、インダクタ、および弾性波共振子は、並列接続されており、
     前記第1の並列腕共振回路および第2の並列腕共振回路における可変キャパシタ、インダクタ、および弾性波共振子は、直列接続されており、
     前記固定キャパシタは、前記直列腕共振回路において、前記第1の並列腕共振回路の弾性波共振子のインピーダンスと前記第2の並列腕共振回路の弾性波共振子のインピーダンスのうち、低い方の弾性波共振子を備える並列腕共振子側に接続されている、
     請求項2乃至請求項12のいずれか1項に記載の高周波フロントエンド回路。
  14.  前記第2の可変フィルタは、
     入力端子と、
     出力端子と、
     前記入力端子と前記出力端子との間に接続された第1の直列腕LCフィルタ回路と、
     前記第1の直列腕LCフィルタ回路の一方端と接地電位とを両端にした回路である、第1の並列腕LCフィルタ回路と、
     前記第1の直列腕LCフィルタ回路の他方端と接地電位とを両端にした回路である、第2の並列腕LCフィルタ回路と、
     を備え、
     前記第1の並列腕LCフィルタ回路および前記第2の並列腕LCフィルタ回路は、直列接続された可変キャパシタとインダクタとを備え、
     前記第1の直列腕LCフィルタ回路は、固定キャパシタ、LC直列回路、および、LC並列回路を備え、
     前記固定キャパシタは、前記LC直列回路に並列接続されており、
     前記LC直列回路は、前記入力端子と前記出力端子を両端とし、且つ直列接続された固定キャパシタとインダクタとを備え、
     前記LC並列回路は、並列接続された可変キャパシタとインダクタとを備え、
     前記LC直列回路に含まれるインダクタは、前記出力端子に直接接続されているか、または、他のインダクタを介して前記出力端子に接続されている、
     請求項6または請求項7に記載の高周波フロントエンド回路。
  15.  請求項1乃至請求項14のいずれか1項に記載の高周波フロントエンド回路を備え、
     前記高周波フロントエンド回路で無線通信する通信信号を用いて音声通信またはデータ通信を実行する、通信装置。
PCT/JP2016/075263 2015-09-09 2016-08-30 高周波フロントエンド回路、通信装置 WO2017043362A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680052154.2A CN107949988B (zh) 2015-09-09 2016-08-30 高频前端电路、通信装置
US15/915,545 US10476535B2 (en) 2015-09-09 2018-03-08 High-frequency front end circuit and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015177146 2015-09-09
JP2015-177146 2015-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/915,545 Continuation US10476535B2 (en) 2015-09-09 2018-03-08 High-frequency front end circuit and communication apparatus

Publications (1)

Publication Number Publication Date
WO2017043362A1 true WO2017043362A1 (ja) 2017-03-16

Family

ID=58239558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075263 WO2017043362A1 (ja) 2015-09-09 2016-08-30 高周波フロントエンド回路、通信装置

Country Status (3)

Country Link
US (1) US10476535B2 (ja)
CN (1) CN107949988B (ja)
WO (1) WO2017043362A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043154A1 (ja) * 2015-09-09 2017-03-16 株式会社村田製作所 周波数可変フィルタ、高周波フロントエンド回路
CN109756243B (zh) * 2018-12-27 2021-05-18 深圳市有方科技股份有限公司 天线检测装置及天线检测方法
JP2020167449A (ja) * 2019-03-28 2020-10-08 株式会社村田製作所 フロントエンド回路および通信装置
CN110661508A (zh) * 2019-09-17 2020-01-07 天津大学 一种双工器、多工器、高频前端电路以及通信装置
US20220029646A1 (en) * 2020-07-27 2022-01-27 Corning Research & Development Corporation Radio frequency transceiver filter circuit having inter-stage impedance matching

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217127A (ja) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd 受信装置
JP2010130328A (ja) * 2008-11-27 2010-06-10 Alps Electric Co Ltd テレビジョン放送受信回路
US20140285286A1 (en) * 2013-03-15 2014-09-25 Wispry, Inc. Tunable filter systems, devices, and methods
WO2014192754A1 (ja) * 2013-05-28 2014-12-04 株式会社村田製作所 チューナブルフィルタ
WO2015119179A1 (ja) * 2014-02-10 2015-08-13 株式会社村田製作所 可変フィルタ回路および無線通信装置
WO2016076093A1 (ja) * 2014-11-11 2016-05-19 株式会社村田製作所 フィルタ回路、rfフロントエンド回路、および、通信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675438B2 (ja) * 2002-10-31 2005-07-27 松下電器産業株式会社 高周波受信装置
EP1774620B1 (en) 2004-06-23 2014-10-01 Peregrine Semiconductor Corporation Integrated rf front end
US20080152049A1 (en) * 2006-12-08 2008-06-26 Texas Instruments Deutschland Gmbh Digital audio broadcast receiver
US20100124290A1 (en) * 2008-11-19 2010-05-20 Kablotsky Joshua A Digital Signal Transmission for Wireless Communication
US8149050B2 (en) 2009-11-13 2012-04-03 Qualcomm, Incorporated Cascaded amplifiers with transformer-based bypass mode
US8711993B2 (en) * 2010-12-10 2014-04-29 Honeywell International Inc. Wideband multi-channel receiver with fixed-frequency notch filter for interference rejection
JP2013090165A (ja) 2011-10-19 2013-05-13 National Institute Of Information & Communication Technology Tv帯域へのチャネル割り当てシステム
US20130156074A1 (en) * 2011-12-14 2013-06-20 Aviacomm Inc. Wideband rf front-end
KR101916554B1 (ko) * 2013-12-27 2018-11-07 가부시키가이샤 무라타 세이사쿠쇼 고주파 필터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217127A (ja) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd 受信装置
JP2010130328A (ja) * 2008-11-27 2010-06-10 Alps Electric Co Ltd テレビジョン放送受信回路
US20140285286A1 (en) * 2013-03-15 2014-09-25 Wispry, Inc. Tunable filter systems, devices, and methods
WO2014192754A1 (ja) * 2013-05-28 2014-12-04 株式会社村田製作所 チューナブルフィルタ
WO2015119179A1 (ja) * 2014-02-10 2015-08-13 株式会社村田製作所 可変フィルタ回路および無線通信装置
WO2016076093A1 (ja) * 2014-11-11 2016-05-19 株式会社村田製作所 フィルタ回路、rfフロントエンド回路、および、通信装置

Also Published As

Publication number Publication date
CN107949988A (zh) 2018-04-20
US10476535B2 (en) 2019-11-12
US20180198474A1 (en) 2018-07-12
CN107949988B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2017043362A1 (ja) 高周波フロントエンド回路、通信装置
JP6965581B2 (ja) 高周波モジュール及び通信装置
US9374056B2 (en) Multiband RF device
US11336238B2 (en) High-frequency module and communication apparatus
CN108028635B (zh) 频率可变lc滤波器、高频前端电路
US10700659B2 (en) Multiplexer, radio-frequency front end circuit, and communication terminal
JP6451745B2 (ja) フィルタ回路、rfフロントエンド回路、および、通信装置
US10439582B2 (en) Variable-frequency LC filter, high-frequency frontend module, and communication apparatus
KR102086939B1 (ko) 주파수 가변 필터, rf 프론트 엔드 회로 및 통신 단말기
US10566950B2 (en) Variable frequency filter and high-frequency front end circuit
CN108476035B (zh) 高频前端电路、通信装置
KR102323572B1 (ko) 수신밴드 가변 필터링 기능을 갖는 다중밴드 고주파 송신 장치
WO2017068852A1 (ja) 高周波フロントエンド回路、不要波抑制方法
KR101609637B1 (ko) 필터 장치
CN108270415B (zh) 利用baw谐振器的并联谐振的带通滤波器
JPWO2017069048A1 (ja) 周波数可変フィルタ、rfフロントエンド回路、通信装置
JP2009159387A (ja) 無線送信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16844223

Country of ref document: EP

Kind code of ref document: A1