WO2017043247A1 - 遠心機 - Google Patents

遠心機 Download PDF

Info

Publication number
WO2017043247A1
WO2017043247A1 PCT/JP2016/073597 JP2016073597W WO2017043247A1 WO 2017043247 A1 WO2017043247 A1 WO 2017043247A1 JP 2016073597 W JP2016073597 W JP 2016073597W WO 2017043247 A1 WO2017043247 A1 WO 2017043247A1
Authority
WO
WIPO (PCT)
Prior art keywords
bowl
woven fabric
heat insulating
cooling pipe
centrifuge
Prior art date
Application number
PCT/JP2016/073597
Other languages
English (en)
French (fr)
Inventor
二井内 佳能
雄貴 清水
衛 金濱
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Priority to JP2017539076A priority Critical patent/JPWO2017043247A1/ja
Publication of WO2017043247A1 publication Critical patent/WO2017043247A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/02Centrifuges consisting of a plurality of separate bowls rotating round an axis situated between the bowls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating

Definitions

  • the present invention relates to a centrifuge, and is intended to make it possible to contain debris of a rotating body inside a casing of the centrifuge even if the rotating body rotating at high speed causes a centrifugal breakage.
  • a centrifuge injects a sample to be separated (for example, a culture solution or blood) into a tube or bottle, inserts the sample into a rotor, and rotates the rotor at high speed to apply centrifugal force to the sample. Separation and purification.
  • the rotational speed varies depending on the application, and a product group ranging from a low speed (the maximum rotational speed is several thousand revolutions) to a high speed (the maximum rotational speed is 150,000 rpm) is commercially available.
  • the centrifuge even if the rotating body (rotor) is broken, the broken pieces of the rotating body do not jump out of the centrifuge housing, and the centrifuge body does not move more than the specified amount when broken.
  • a centrifuge employs a metal defense cylinder as a protector, and a piece of debris collides with the defense cylinder to deform the defense cylinder or allow slight movement to absorb energy from the pieces.
  • a sufficiently thick protective cylinder is used.
  • a thick armor increases the weight, which increases the total weight of the centrifuge. For example, in a centrifuge with a diameter of the rotating chamber of 40 cm class, there are some centrifuges that weigh only about 50 to 100 kg or more with only a protective cylinder.
  • Patent Document 1 provides a cylindrical reticulated defense cylinder 110 in which fine lines are woven in a reticulated shape on the outer periphery of the bowl 4 to reduce energy consumption and impact force when the rotating body is destroyed.
  • FIG. 5 is a front view of a prior art centrifuge 101, a part of which is shown in a sectional view.
  • the rotating shaft 7a of the driving device 7 such as a motor protrudes from the rotating chamber 2
  • the rotating body 3 into which the sample container 20 is inserted is attached to the rotating shaft 7a and rotated at a high speed. Centrifuge the added sample.
  • the casing 12 is provided with a partition plate 12a that divides the internal space into upper and lower portions, and the bowl 4 is accommodated above the partition plate 12a.
  • An opening is formed in the upper part of the rotating chamber 2, and the rotating chamber 2 is closed by a door 9 that can be opened and closed. While the rotating body 3 is rotating, the closed state is maintained by a lock mechanism (not shown) so that the door 9 cannot be opened and closed.
  • the door locking mechanism has a solenoid actuator (not shown) and is electrically controlled by a controller (also not shown). When the rotator 3 rotates at a high speed, the temperature of the rotator 3 rises due to windage, so that the rotating chamber 2 is cooled so as to keep the temperature constant or to be the input set temperature.
  • the cooling pipe 5 is wound around the outer periphery of the bowl 4 to make an evaporator (evaporator), and the cooling pipe 5 is cooled using a refrigerator (not shown) to lower the temperature of the rotating chamber 2.
  • a heat insulating layer 106 is provided to prevent heat exchange with the outside.
  • a cylindrical protector 108 such as a metal steel pipe is provided in order to contain the fragments of the rotating body inside the centrifuge housing even if the rotating body rotating at high speed causes centrifugal breakage.
  • the heat insulating layer 106 is made by, for example, attaching a cylindrical protector 108 with a predetermined space around the outer periphery of the bowl 4 around which the cooling pipe 5 is wound, and injecting and hardening a foam heat insulating material such as polyurethane into this space.
  • a cylindrical mesh-like defense cylinder 110 knitted in a mesh shape before this injection is disposed near the radial center of the heat insulation layer, and the mesh defense cylinder 110 is located near the center of the radial thickness of the heat insulation layer 106. Configured to be embedded.
  • the cylindrical protector 108 can be made thin, and the centrifuge 101 can be reduced in size and weight. it can.
  • Patent Document 2 is known as another invention that solves the problem of weight increase of the defense cylinder.
  • strengthening fiber is wound around the outer periphery of a cylindrical protector, and it implement
  • JP 2005-349260 A Japanese Utility Model Publication No. 62-91032
  • Patent Document 1 for the formation of the heat insulating layer 6, a heat insulating material of a kind in which a liquid stock solution is reacted and foamed is used, and a net-like defense cylinder is embedded (embedded) in the region to be foamed. That is, the liquid that is expanding due to foaming in the foaming process needs to pass through the mesh of the defense cylinder, so the interval between the stitches is increased. Then, the rigidity as a defense cylinder will become low. On the other hand, it is effective to make the stitches fine in order to increase the rigidity as much as possible. However, if the stitches are fine, there is a problem that it is difficult to maintain the shape and posture of the defense cylinder due to the pressure during foaming.
  • the defense cylinder is pressed against the cooling pipe with the foaming liquid and fixed.
  • the purpose of charging the defense cylinder into the insulation at the upper and lower ends where the cooling pipe is not wound, as shown in FIG. 8, the reticulated defense cylinder 110 is wrinkled and a portion where the foaming liquid does not rotate is generated.
  • a gap 160 leading to the outside could be formed at the upper end 106a of the material, resulting in deterioration of the heat insulation effect and corrosion of the cooling pipe due to condensation. If voids are generated, it is necessary to correct the gap, which increases the manufacturing cost.
  • Patent Document 2 the reinforcement fiber is wound around the outer periphery of the defense cylinder, so that when the broken rotating body collides, the effect of preventing fragments from penetrating the defense cylinder is great. It was found that the effect of improving the rigidity of the entire defense cylinder was not as great as expected. In particular, the effect of preventing the defense cylinder from being deformed into an ellipse is not particularly great.
  • a rotating body containing a sample
  • a driving device having a rotating shaft extending in the vertical direction for driving the rotating body
  • a rotating chamber for housing the rotating body
  • a bowl having an opening for taking in and out the rotating body, a cooling pipe wound around the outer periphery of the bowl, a cooling device for flowing a refrigerant through the cooling pipe, and a heat insulating material disposed on the outer peripheral side of the woven fabric and the bowl
  • a centrifuge equipped with a heat insulating layer formed in the above, a cylindrical protector disposed on the outer peripheral side of the heat insulating layer, and a door that opens and closes the opening of the bowl, a belt-shaped belt woven on the outer periphery of the cooling pipe
  • the woven fabric was wound at least more than once in the circumferential direction.
  • a heat insulating layer is formed so as to fill the foamable heat insulating resin in the space between the outer peripheral side of the bowl and the cooling pipe and the inner peripheral side of the cylindrical protector.
  • the cooling pipe was wound in the circumferential direction of the bowl, and a woven fabric woven with high-strength fibers such as aramid fiber, carbon fiber, and glass fiber was wound in the circumferential direction of the bowl.
  • a wire or high-strength fiber instead of forming a wire such as a steel wire or a stainless steel wire into a cylindrical shape, or forming a cloth woven with a high-strength fiber into a tubular shape and providing it in a heat insulating material, a wire or high-strength fiber A belt-like woven fabric woven using sash was simply wrapped directly around the outer periphery of the cooling pipe, and partially embedded on the innermost peripheral side in the heat insulating material.
  • the woven fabric is wound twice or more around the outer peripheral side of the cooling pipe so that a part of the outer peripheral surface is in close contact with a part of the inner peripheral surface.
  • the width of the woven fabric is preferably shorter than the axial length of the heat insulating layer, and the upper end portion of the woven fabric close to the opening portion side of the rotor is positioned below the end portion on the opening portion side of the heat insulating layer.
  • the woven fabric is preferably made of a non-metallic thin wire and woven so that the warps are oriented in the circumferential direction and the wefts are oriented in the longitudinal direction.
  • a foam material obtained by chemically reacting polyurethane is used as the heat insulating layer.
  • the bowl was manufactured with the metal thin plate, and the heat insulation layer was formed so that it might go around also to the downward side of a bowl.
  • the cooling device is a refrigerator that circulates a refrigerant, and the cooling pipe is a copper pipe that is fixed to the bowl by bonding or welding, or fixed to the bowl by winding a woven cloth. did.
  • the belt-shaped woven fabric is directly wound around the outer periphery of the cooling pipe. Therefore, if the rotating body breaks, the breaking energy is first attenuated by the belt-shaped woven fabric.
  • the thickness of the protector can be reduced without reducing the typical containment capacity, and a small and lightweight centrifuge can be manufactured.
  • the width of the woven fabric is made narrower than the axial height of the heat insulating material so that it is completely embedded in the closed space of the heat insulating material and the bowl, so that the space between the heat insulating material and the heat insulating material where the heat insulating material and the cooling pipe are in contact with the outside air There is no worry about this.
  • the containment ability can be adjusted by changing the number of times of winding the belt-like woven fabric, it is possible to easily cope with the manufacture of a plurality of centrifuges having different containment forces.
  • the basic configuration of the centrifuge 1 is the same as that of the conventional centrifuge 101 described in FIG. 5 except that a belt-shaped woven fabric 10 is wound around the outer periphery of the cooling pipe 5 and a heat insulating layer 6 is formed on the outer side.
  • the same components as those of the conventional centrifuge 101 are denoted by the same reference numerals. In the present specification, description will be made assuming that the vertical direction, radial direction, and circumferential direction are directions shown in the drawing.
  • the centrifuge 1 mounts a rotating body (rotor) 3 into which a sample container 20 is inserted inside a rotating chamber 2 defined by a bowl 4 and rotates the rotating body 7 at a high speed.
  • the rotating body 3, the bowl 4, the cooling pipe 5, the door 9, the driving device 7, and the housing 12 are the same parts as the conventional centrifuge 101 described in FIG.
  • the bowl 4 is preferably configured so that there is no unevenness on the inner surface by pressing or spinning so that a user who handles a pathogenic sample can easily wipe off for sterilization and cleaning, but may have other shapes. The absence of irregularities on the inner surface is also effective for reducing windage loss due to the rotation of the rotating body 3.
  • the material of the bowl 4 is made of stainless steel, aluminum alloy, copper, or other metal that does not easily corrode, and is formed in a bottomed cylindrical shape with a through hole formed in the center of the bottom.
  • a cooling pipe 5 is tightly wound around the outer periphery of the bowl 4 and functions as an evaporator (evaporator) of the cooling device.
  • the cooling pipe 5 is wound a predetermined number of times in the circumferential direction, for example, from the lower side of the bowl for the first time in close contact with the upper side (the winding direction may be from the upper side to the lower side, or other winding methods may be used).
  • Adjacent cooling pipes 5 are wound in a single layer so as to be one layer in the radial direction so as not to overlap in the radial direction, and are fixed to the bowl 4 by bonding, welding or brazing.
  • the cooling pipe 5 is wound around the outer periphery of the bowl 4 and then the woven fabric 10 is tightly wound in the longitudinal direction so that the cooling pipe 5 is fixed to the bowl 4, and adhesion, welding, brazing, etc. are omitted. You may do it.
  • a refrigerant such as chlorofluorocarbon gas is circulated in the cooling pipe 5 using a refrigerator (not shown), and the temperature of the rotating chamber 2 is lowered by cooling the bowl 4 to cool the rotating body 3.
  • the temperature of the rotating chamber 2 correlated with the temperature of the rotating body 3 is measured with a thermistor or the like (not shown), and a control device (not shown) controls the temperature.
  • the control device controls the compressor (not shown) of the refrigerator to be turned on and off according to the measured temperature, and keeps the rotor chamber at a predetermined temperature.
  • a belt-shaped woven fabric 10 woven with high-strength fibers such as aramid fibers, carbon fibers, and glass fibers is wound around the outer peripheral surface of the bowl 4. At this time, a part of the outer peripheral surface of the woven fabric 10 and a part of the inner peripheral surface are brought into close contact with each other, and the woven fabric 10 is wound around the outer peripheral side of the cooling pipe 5 more than once, for example, about 2 to 4 times. Put on.
  • the woven fabric 10 is wound in the longitudinal direction and the outer peripheral surface and the inner peripheral surface are simply overlapped, and when the impact is applied from the inside to the outside and a tensile force is applied in the circumferential direction, the woven fabric 10 Good tightening force due to frictional resistance between each other.
  • the thermal insulation layer 6 is formed by injecting a foam heat insulating material in a form in which the end 10 b in the longitudinal direction of the woven fabric 10 is temporarily fixed in some form.
  • a tape may be attached to the end portion from the outer peripheral side and fixed, or a double-sided tape or the like may be used.
  • a heat insulating layer is provided between the bowl 4 and the cylindrical protector 8 in order to suppress excessive heat input and dew condensation except for the centrifuge of the type in which the entire bowl 4 is disposed in a vacuum chamber. Heat exchange with the outside is prevented.
  • this heat insulating layer there are a method of making a molded product with polystyrene foam and inserting the bowl 4 to which the cooling pipe 5 is attached into a heat insulating material, and a method of winding an independent foam heat insulating foam sheet from above the cooling pipe.
  • a gap is easily generated between the cooling pipe 5 and it is difficult to completely shut off the cooling pipe 5 and the outside air.
  • a mold body (in this case, the cylindrical protector 8 is used as a mold frame) is arranged so as to be spaced apart from the bowl 4.
  • a foam insulation was injected into the space and cured.
  • the foamed heat insulating material is injected after fixing the space so that the bottom of the bowl 4 has a predetermined height with respect to the partition plate 12a, it is not only applied to the outer peripheral side of the bowl 4 but also to the bottom side.
  • the heat insulating layer 6 can be formed without any leakage.
  • a foam heat insulating material what makes polyurethane foam by chemical reaction can be used.
  • the reaction starts in the space and the heat insulating layer 6 is formed.
  • the mesh of the woven fabric 10 wound around the cooling pipe 5 has fine details with increased fiber amount for strength reasons.
  • the foaming liquid does not easily pass through the mesh.
  • the woven fabric 10 is wound so as to be in close contact with the cooling pipe 5, pressure is applied from the outer peripheral side to the inner peripheral side of the woven fabric 10 at the time of filling, and the position of the woven fabric 10 shifts and the shape changes. Therefore, the woven fabric 10 can be maintained in an ideal state.
  • the foam material may not completely penetrate to the inner part of the stitch, and an air layer may remain between the fibers of the woven fabric 10 and the cooling pipe 5.
  • the height (axial length) H i of width (axial length) W is the heat insulating layer 6 of the fabric 10 in the present embodiment, the woven fabric 10 well cooling pipe 5 to the outside air Since it is configured not to touch completely, even if a minute air layer is formed on the stitch portion, the heat insulation effect is not affected.
  • the width W of the woven fabric 10 was made smaller than the height H i of the heat insulating layer 6.
  • the height H b of the bowl 4 is larger than the width W, the height of the heat insulating layer 6 than (axial length) H i has to be smaller.
  • it is important that the upper position (opening position) 4a of the bowl 4 is positioned above the upper position (upper end 6a) of the heat insulating layer 6.
  • the cooling pipe 5 and the woven fabric 10 are completely buried in the heat insulating layer 6, there is no concern that the cooling pipe 5 communicates with the outside air, and good heat insulating performance by the heat insulating material can be expected.
  • the foamed liquid is filled in the state in which the woven fabric 10 is wound directly around the outer periphery of the cooling pipe 5, so that the shape of the woven fabric 10 can be maintained in an ideal circular shape, and the rotating body is damaged by any chance. When the fragments collide, a good impact absorbing effect can be expected from the woven fabric 10.
  • the width W of the fabric 10 in the present embodiment is only a part of the height H p of the height H b or turns of the cooling pipe 5 of the bowl 4 does not correspond, fit the available rotator
  • the width of the woven fabric 10 the length of the corresponding portion in the vertical direction
  • FIG. 2 is a view for explaining the woven fabric 10 of FIG. 1, (1) is a side view, and (2) is a view of the wound woven fabric 10 as viewed from the axial direction.
  • the woven fabric 10 is a fabric formed by weaving high-strength fibers in a band shape, and is arranged, for example, so that the warp yarn 11a is oriented in the circumferential direction and the weft yarn 11b is oriented in the longitudinal direction.
  • the woven fabric 10 is a predetermined flexible cloth material, and the end 10b is cut so as to have a length L wound a predetermined number of times from the tip 10a to the outer peripheral portion of the bowl 4.
  • the woven fabric 10 is preferably configured so that the warp yarns 11a are continuous in the longitudinal direction between the tip 10a and the end 10b. Further, it is preferable that the ends orthogonal to the longitudinal direction, that is, the weft portions of the upper end 10c and the lower end 10d are folded back in the length direction so as to increase the strength as much as possible by reducing the connecting portions of the fibers.
  • the weaving method of the woven fabric 10 is arbitrary, and other weaving methods may be used as long as the weaving method can realize a sufficient tensile strength.
  • the woven fabric 10 may be formed not only by using a plurality of warp yarns 11a and a plurality of weft yarns 11b, but may be formed in a cloth shape by knitting one or several yarns (this book) In the specification, not only weaving but also a fabric or planar structure formed by knitting is described as being included in the definition of “woven fabric”). Further, the woven fabric 10 may be a fabric in which a polymer resin or other reinforcing material is applied or added to the woven fabric. It is also possible to use a woven or knitted metal wire such as a steel wire or a stainless steel wire, that is, a wire mesh extending in a strip shape.
  • a metal member having a large heat capacity is brought into close contact with the outside of the copper cooling pipe 5, which affects the cooling efficiency of the bowl 4. Therefore, a woven fabric using a non-metallic wire knitted with chemical fiber or the like is more preferable than a metallic wire because the heat capacity is small.
  • the length L of the woven fabric 10 is set to a length sufficient to exceed one turn on the outer peripheral side of the cooling pipe 5. For example, as a length of two turns, a part or the entire circumference of the woven cloth 10 is double or more. It was made to become. For this reason, the foaming liquid permeates into the fibers of the inner woven fabric 10 through the gap between the fibers of the outer woven fabric 10 at the time of foaming, and serves to bond the overlapping woven fabric 10. There is no worry of unraveling the overlapping parts due to the collision of the fragments 103a. There is no particular limitation on the upper limit number of times the woven fabric 10 is wound, but if the number of turns is about 2 to 4, it is advantageous in terms of manufacturing and cost.
  • a plurality of woven fabrics 10 may be wound.
  • the ends of the winding ends of the first woven fabric 10 and the second woven fabric 10 are not overlapped with each other. By shifting the position of the part, the woven fabrics 10 can be made difficult to open.
  • FIG. 3 is a view for explaining the state of impact absorption by the woven fabric 10 of FIG. 1, wherein (1) is a view showing a state immediately after the rotating body 103 (103a, 103b) is broken, and (2) FIG. 3 is a diagram showing a state in which the broken rotating body is prevented from moving by the woven fabric 10.
  • the woven fabric 10 that is wound several times with a diameter d and acts as a defense cylinder is disposed at a position that is separated from the rotating body 3 by a predetermined distance.
  • the bowl 4 and the cooling pipe 5 are not shown.
  • the rotating body 3 breaks into two during high-speed rotation and is separated by centrifugal force in the directions of the arrows 21a and 21b of (1), the broken pieces 103a and 103b of the rotating body 3 hit the bowl 4 made of a stainless steel thin plate or the like.
  • This breaks through the cooling pipe 5, which is mainly made of copper pipe, and hits the woven fabric 10. Since the woven fabric 10 is woven with high-strength fibers, the fragments 103a and 103b cannot penetrate the woven fabric 10, and the woven fabric 10 is deformed as shown in (2), and the fragments 103a and 103b are instantaneously formed. The shape is deformed into an ellipse as shown in (2).
  • the force applied to the woven fabric 10 acts to move outward as indicated by arrows 22a and 22b in the same direction and in the opposite direction to the moving direction of the broken piece 103a, and is orthogonal to the moving direction of the broken piece 103a. Then, it acts to move inward as indicated by arrows 23a and 23b.
  • the shape of the woven fabric 10 changes from a circular shape to an elliptical shape, the energy of the fragments 103a and 103b can be received over a wide area. Further, since the woven fabric 10 is deformed while the fibers rub against each other and consumes the tensile energy indicated by the arrows 22a and 22b, the energy consumption time becomes longer, and the impact force can be greatly reduced.
  • the inventors have found that the smaller the diameter d of the woven fabric 10, the more the energy can be attenuated. Further, it has been found that a large amount of energy can be attenuated by securing as much deformation movement space (deformation range) of the woven fabric 10 as possible when absorbing the impact. In order to reduce the diameter of the woven fabric 10, it is conceivable to wind the woven fabric 10 directly around the outer periphery of the bowl 4. However, if the woven fabric 10 is wound between the bowl 4 and the cooling pipe 5, the cooling effect of the bowl 4 by the cooling pipe 5 is remarkably reduced, which is not practical.
  • the woven fabric 10 is wound directly on the outer peripheral side of the cooling pipe 5. Since the woven fabric 10 can adjust the amount of energy of the rotating body that can be absorbed by increasing or decreasing the number of windings, the woven fabric 10 is advantageous for application to the manufacture of a plurality of types of centrifuges.
  • the woven fabric 10 is pulled by the collision with the pieces 103a and 103b of the rotating body 3 so that the whole becomes an elliptic cylinder, and the portion corresponding to the minor axis side of the ellipse tightens the bowl 4. It was deformed to consume destructive energy. Actually, since the woven fabric 10 is deformed while the heat insulating material of the heat insulating layer 6 is deformed, the heat insulating layer 6 can also attenuate the energy of the fragments 103a and 103b. Therefore, the use of the woven fabric 10 provides a good effect of suppressing the breaking energy. If the energy at the time of destruction still cannot be consumed, the energy is used up by colliding with the cylindrical protector 8 provided on the outer periphery of the heat insulating layer 6.
  • FIG. 6 is a diagram for explaining the procedure for performing the centrifugal fracture test, and shows a state in which the inside of the rotating chamber (downward) is viewed from the upper side of the opening of the rotating chamber. 6 and 7, the centrifuge 1 is manufactured so that the rotating body 103 is not destroyed at all. Therefore, a destructive test cannot be performed in a normal state. Therefore, as shown in FIG. 6A, two cuts 103c and 103d are formed so as to extend in the circumferential direction of the rotating body 103 so that the rotating body is intentionally destroyed.
  • the cooling pipe 5 is wound around the outside of the bowl 4, and a heat insulating layer 106 and a cylindrical protector 108 are provided outside the cooling pipe 5.
  • a cylindrical defense cylinder knitted in a net shape is not provided inside the heat insulating layer 106.
  • the rotating body 103 is broken, and the broken piece 103 a breaks through the bowl 4 and the cooling pipe 5, breaks through the heat insulating layer 106, and then strikes the cylindrical protector 108.
  • the cooling pipe 5 is made of, for example, copper, it may be broken as indicated by an arrow 5a.
  • the metallic cylindrical protector 108 such as a steel pipe absorbs the breaking energy of the fragments 103a of the rotating body 103 while being deformed as indicated by the arrow 108a. At this time, it is important to give the cylindrical protector 108 sufficient strength so that the deformed portion as indicated by the arrow 108a does not pierce the housing 12. For this reason, the thickness (diameter thickness) of the cylindrical protector 108 is inevitably increased.
  • the bowl 4, the cooling pipe 5, and the woven fabric 10 indicated by a two-dot chain line are positions before the rotator 3 is broken.
  • the debris 103a destroyed by the destructive test breaks through the bowl 4 and the cooling pipe 5 and strikes the woven fabric 10. Therefore, as shown in FIG. 3, the woven fabric 10 is deformed into an oval shape when viewed from above (distorted). The energy of 103a is absorbed effectively.
  • the bowl 4 ′, the cooling pipe 5 ′, and the woven fabric 10 ′ indicated by solid lines are positions after absorbing the breaking energy.
  • the bowl 4 and the cooling pipe 5 are broken by the broken piece 103a, but the woven fabric 10 wound around the outer side of the cooling pipe 5 is only deformed. Since the strength itself of the woven fabric 10 is sufficient, it cannot be penetrated.
  • the heat insulating layer 6 is compressively deformed at a portion where the woven fabric 10 protrudes, but if the radial thickness 27 of the heat insulating layer 6 is thick, it is a moving space (crusher) for deformation of the woven fabric 10 from a circular shape to an elliptical shape.
  • the heat insulating layer 6 slightly helps to absorb impact energy. Even if the impact energy is stronger and the deformation amount of the woven fabric 10 is large, the woven fabric 10 collides with the cylindrical protector 8 positioned on the outer peripheral side thereof, so that the impact energy is finally changed by the deformation of the cylindrical protector 8. Is absorbed, and damage to the housing 12 is completely prevented.
  • the belt-shaped woven fabric is wound around the outer periphery of the cooling pipe 5, but the same applies even if a plurality of rectangular woven fabrics (the length of the long side is about one round) are shifted and overlapped.
  • the above effect can be expected, and high-strength fibers may be wound densely around the outer periphery of the cooling pipe 5 while being obliquely crossed so as to be wound around a bobbin of a bobbin.
  • the heat insulation layer 6 was integrally formed of the foam including the bottom surface, the bottom surface portion and the bottom surface portion were separately configured, and only the bottom side was molded first, and only the side surface portion corresponding to the upper side portion was formed.
  • the heat insulating layer may be formed so as to be filled with a foaming heat insulating resin.
  • the woven fabric 10 may be attached to an evaporator using a thermoplastic resin such as an epoxy resin, an adhesive, or the like, and then a heat insulating layer may be formed.
  • Centrifuge 103 ... Rotating body, 103a ... Fragment, 106 ... Heat insulation layer, 106a ... (heat insulation layer) ), 108, cylindrical protector, 110, mesh guard, 160, gap, L, length (of woven fabric), W, width (of woven fabric), d, diameter (of rolled woven fabric)

Landscapes

  • Centrifugal Separators (AREA)

Abstract

柔構造の補強繊維と剛構造の防御筒を効率よく組み合わせることにより、製造コストの上昇を抑えた遠心機を提供する。ボウル4の外周側に配置される冷却パイプ5に、高強度繊維などで織った帯状の非金属製の織布10を2~数回程度巻き付ける。外周側には鋼管による筒状プロテクタ8を配置し、ボウル4と筒状プロテクタの間の空間にポリウレタンを化学反応させてなる発泡性の断熱材を充填することにより断熱層6を形成する。この際、織布の幅Wを断熱層の高さHより小さくして織布が断熱材の内部に完全に納まるようにして、冷却パイプと織布が外気に触れないようにした。織布による補強効果により筒状プロテクタを薄くすることができる。

Description

遠心機
本発明は遠心機に関し、高速で回転する回転体が遠心破壊を起こしても、遠心機の筐体内部に回転体の破片を封じ込めることができるようにするものである。
遠心機(遠心分離機)は、分離する試料(例えば、培養液や血液など)をチューブやボトルに注入してロータに挿入し、ロータを高速に回転させることで試料に遠心力を働かせ、試料の分離、精製を行う。回転速度は用途によって異なり、用途に合わせて低速(最高回転速度は数千回転)から高速(最高回転速度は150,000rpm)までの製品群が市販されている。遠心機においては、万一回転体(ロータ)が破損したとしても、回転体の破片が遠心機の筐体の外部に飛び出さないように、また、破損時に遠心機本体が規定量以上移動しないように十分な安全対策が取られている。通常、遠心機ではプロテクタとして金属製の防御筒を採用し、破片を防御筒にて衝突させて、防御筒を変形させたり、僅かな移動を許容することで、破片によるエネルギーを吸収する。破片が衝突した時の衝撃力に耐えうるためには、十分な厚さの防御筒を採用している。ただし厚い防御筒は重量が大きくなるため遠心機の総重量増加の要因になる。例えば、回転室の直径が40cmクラスの遠心機においては、防御筒だけで重さが50~100kg程度、又はそれ以上になるものもある。
これらの問題を解決する手段として、特許文献1にはボウル4の外周に細い線を網状に織った円筒状の網状防御筒110を設け、回転体破壊時のエネルギー消費と衝撃力を緩和する技術が開示されている。ここで図5を用いて特許文献1に示した遠心機101の構造を説明する。図5は従来技術の遠心機101の正面図であり、その一部を断面図にて示したものである。遠心機101は、回転室2にモータ等の駆動装置7の回転軸7aが突出しており、試料容器20を挿入した回転体3を回転軸7aに装着して高速で回転させ、試料容器20に入れられた試料の遠心分離を行う。筐体12は内部空間を上下に分ける仕切り板12aが設けられ、仕切り板12aの上側にはボウル4が収容される。
回転室2の上部は開口部が形成され、回転室2は開閉可能なドア9にて閉鎖される。回転体3の回転中には、ドア9の開閉操作ができないように図示しないロック機構により閉鎖状態が保たれる。ドアのロック機構はソレノイドアクチュエータ(図示せず)を有し、制御器(同じく図示せず)により電気的に制御される。回転体3が高速回転すると風損によって回転体3の温度が上昇するため、その温度を一定に保つため、もしくは入力された設定温度になるように回転室2が冷却される。そのためボウル4の外周に冷却パイプ5を密着するように巻いてエバポレータ(蒸発器)とし、この冷却パイプ5に冷凍機(図示せず)を用いて冷媒を流すことにより回転室2の温度を下げて回転体3を冷却する。ボウル4の外周側であって冷却パイプ5の外側には、余分な入熱や結露を防止するため、断熱層106を設けて外部との熱交換を防止する。断熱層106の外周側には、高速で回転する回転体が遠心破壊を起こしても、遠心機の筐体内部に回転体の破片を封じ込めるために金属鋼管等の筒状プロテクタ108が設けられる。
断熱層106の作り方は、例えば、冷却パイプ5を巻いたボウル4の外周に、所定の空間を持たせて筒状プロテクタ108を取付け、この空間にポリウレタン等の発泡断熱材を注入して固める。特許文献1では、この注入の前に網状に編んだ円筒状の網状防御筒110を断熱層の径方向中央付近に配置し、網状防御筒110が断熱層106の径方向厚さの中央付近に埋め込まれるように構成した。このように金属鋼管等
の筒状プロテクタ108だけでなく、網状防御筒110も併用するようにしたので、筒状プロテクタ108を薄くすることが可能となり、遠心機101の小型、軽量化することができる。
一方、防御筒の重量増加の問題を解決する別の発明として特許文献2が知られている。特許文献2では筒状プロテクタの外周に補強繊維を巻き付けて強度を上げることにより、防御プロテクタの厚みを増すことなく、全体の強度を向上させることを実現している。
特開2005-349260号公報 実開昭62-91032号公報
特許文献1において断熱層6の形成に、液状の原液を反応させて発泡させる種類の断熱材を用い、発泡させる領域内に網状の防御筒を埋め込む(埋没させる)。つまり、発泡過程において発泡により膨張しつつある液体を防御筒の網目に通過させる必要があるため、編目の間隔を大きめにしていた。すると防御筒としての剛性が低くなってしまう。一方、剛性をできるだけ上げるために編み目を細かくことが有効であるが、編み目が細かいと発泡時の圧力で、防御筒の形状や姿勢を維持させるのが難しくなるという問題があった。また、高強度繊維で織った布を筒状に加工して発泡断熱材に仕込む場合、発泡液で防御筒が冷却パイプ側に押し付けられて固定され、一見すると防御筒を断熱材内に仕込む目的は達成できるように思われるが、冷却用のパイプが巻かれていない上下両端部は、図8に示すように網状防御筒110がしわになって発泡液が回らない部分が生じてしまい、断熱材の上端106aに外部に通じる空隙160ができて断熱効果の低下や結露による冷却用パイプ腐食を起こす恐れがあった。空隙が生じてしまうと手直しをする必要があるため、製造コストを上昇させる要因となった。
一方、特許文献2では防御筒の外周に補強繊維を巻くことで、破壊した回転体が衝突した際、破片が防御筒を突き抜けることを防止する効果は大きいが、発明者らの検討では補強繊維による防御筒全体の剛性向上効果は期待するほど大きくないことがわかった。特に、防御筒が楕円形に変形することを防止する効果が格別大きい訳ではない。
本発明の目的は、上記背景に鑑みてなされたもので、回転体の破壊に対して封じ込める能力を落とすことなく、装置の軽量化、小型化を図った遠心機を提供することにある。本発明の他の目的は、柔構造の補強繊維と剛構造の防御筒(筒状プロテクタ)をうまく組み合わせることにより、全体として回転体破壊時の封じ込め能力を高めると共に、製造コストの上昇を抑えた遠心機を提供することにある。
本願において開示される発明のうち代表的なものの特徴を説明すれば次の通りである。本発明の一つの特徴によれば、試料を入れた回転体(ロータ)と、回転体を駆動させるための鉛直方向に延びる回転軸を有する駆動装置と、回転体を収容する回転室を形成して回転体を出し入れする開口部を上面に有するボウルと、ボウルの外周に巻かれた冷却パイプと、冷却パイプに冷媒を流すための冷却装置と、織布とボウルの外周側に配置され断熱材で形成された断熱層と、断熱層の外周側に配置された筒状プロテクタと、ボウルの開口部を開閉するドアと、を備えた遠心機において、冷却パイプの外周に、線材で織った帯状の織布を周方向に少なくとも一重より多く巻き付けた。その後に、ボウル及び冷却パイプの外周側と、筒状プロテクタの内周側との空間内に発泡性の断熱樹脂を満たすようにして断熱層を形成する。ここで、冷却パイプはボウルの周方向に巻かれ、織布として、アラミド繊維や炭素繊維、ガラス繊維などの高強度繊維を織られたものをボウルの周方向に巻きつけた。本発明では、鋼線やステンレス鋼線などの線を網状に織って筒状にしたり、高強度繊維で織った布を筒状に形成して断熱材内に設ける代わりに、線材または高強度繊維を使って織った帯状の織布を冷却パイプの外周に直接巻きつけるだけにして、断熱材内の最内周側に部分的に埋め込むようにした。
本発明の他の特徴によれば、織布は、外周面の一部と内周面の一部を密着させるようにして、冷却パイプの外周側に二重以上巻くようにした。織布の巻く回数を変えることで簡単に回転体の破壊に対する封じ込め能力を変えることが可能となる。織布の幅は断熱層の軸方向長さより短くすると好ましく、ロータの開口部側に近い織布の上側端部は、断熱層の開口部側の端部よりも下方に位置するようにした。このように帯状の織布の幅を断熱材の軸方向高さより小さくすることで、巻き付けた織布を確実に断熱材の中に閉じ込めることができるので、冷却パイプが直接外気と通じる心配が無い。尚、織布は非金属製の細めの線材を用いて、経糸が周方向に,緯糸が縦方向に向くように織って可撓性の布材とすると良い。
本発明のさらに他の特徴によれば、断熱層としてポリウレタンを化学反応させてなる発泡材を用いるようにした。また、ボウルは金属製の薄板により製造され、断熱層はボウルの下方側にも回り込むように形成した。冷却装置は、冷媒を循環させる冷凍機であって、冷却パイプは銅製のパイプであって、ボウルに接着または溶接にて固定するか、又は、織布を巻きつけることによりボウルに固定するようにした。
本発明によれば帯状の織布を直接冷却パイプ外周に巻きつけるようにしたので、万一回転体が破壊した場合、最初に帯状の織布にて破壊エネルギーを減衰させるので、遠心機の全体的な封じ込め能力を落とすことなく、プロテクタの厚さを薄くすることができ、小型軽量な遠心機を製造することができる。また、織布の幅を断熱材の軸方向高さより狭くして、断熱材とボウルによる閉空間の内部に完全に埋め込むようにしたので、断熱材及び冷却パイプが外気と接触する断熱材の隙間が生じる心配もない。さらに、帯状の織布を巻く回数を変えることで、封じ込め能力を調整することが可能となるので、要求される封じ込め力の異なる複数の遠心分離機の製造に容易に対応することができる。
本発明の実施例に係る遠心機1の全体を示す正面図であり、一部を断面図にて示す。 図1の織布10の形状と巻き方を説明するための図である。 図1の織布10による衝撃吸収状況を説明するための図である。 本発明になる遠心機において、回転体が破壊し破片が冷却パイプ外周に巻いた帯状の織布に衝突したときの挙動を説明する図である。 従来の遠心機101の全体を示す正面図であって、一部を断面図にて示した図である。 回転体に溝加工を施して遠心破壊テストを行う際の手順を説明するための図であって、回転室の開口部上側から回転室側を見た状態を示す図である。 従来の遠心機101において、回転体が破壊し破片が防御筒に衝突したときの挙動を説明する図である。 従来の遠心機101の製造時に、網状防御筒を介在させて発泡断熱させた時の上端面の状態を説明する部分図である。
以下、本発明の実施例を図面に基づいて説明する。遠心機1の基本構成は図5で説明した従来の遠心機101と同様であり、異なる点は、帯状の織布10を冷却パイプ5の外周に巻き、さらにその外側に断熱層6を形成した点にある。従来の遠心機101と同じ構成部品には、同じ参照番号を付している。尚、本明細書においては、上下の方向、径方向、周方向は図中に示す方向であるとして説明する。
遠心機1は、ボウル4にて画定される回転室2の内部で試料容器20を挿入した回転体(ロータ)3を回転軸7aに装着して高速で回転させる。回転体3、ボウル4、冷却パイプ5、ドア9、駆動装置7、筐体12は図5で説明した従来の遠心機101と同一部品であり、変更はない。ボウル4は、例えば病原性試料を扱う使用者が滅菌、清掃のためふき取り易いよう、プレスもしくはスピニング成形で内表面に凹凸が無いように構成すると好ましいが、その他の形状であっても良い。内表面に凹凸が無いことは、回転体3の回転による風損を減らすためにも効果的である。ボウル4の材質はステンレス、アルミニウム合金、又は銅製等の腐食しにくい金属製であって、底部中央に貫通穴の形成された底付きの円筒状に形成される。ボウル4の外周には冷却パイプ5が密着して巻かれ、冷却装置のエバポレータ(蒸発器)として機能する。冷却パイプ5は、例えばボウルの下側から巻き初めて上側に密着させながら周方向に所定回数巻かれる(巻く方向は上側から下側に向けて巻く方法でも良いし、その他の巻き方でも良い)。隣接する冷却パイプ5は径方向に重なり合わないようにして、径方向に一層となるように1重巻きとされ、ボウル4に対して接着または溶接やロー付にて固定される。尚、冷却パイプ5をボウル4の外周に巻いた後に織布10を長手方向にきつく巻くことにより冷却パイプ5をボウル4に対して固定するように構成し、接着、溶接、ロー付等を省略しても良い。
冷却パイプ5には冷凍機(図示せず)を用いてフロンガスなどの冷媒が循環され、ボウル4を冷却することにより回転室2の温度を下げて、回転体3を冷却する。回転体3の温度を一定に保つために、回転体3の温度と相関関係がある回転室2の温度をサーミスタなど(図示せず)で測定し、制御装置(図示せず)が温度制御を行う。制御装置は、測定された温度に応じて冷凍機のコンプレッサ(図示せず)をON-OFFさせるように制御して、ロータ室内を所定の温度に保つ。尚、冷凍機の代わりに冷却水を流したり、ペルチェ素子による電子冷却を使ってボウル4の温度を制御し、回転体3を一定温度に保つ方法もある。
ボウル4の外周面には、アラミド繊維や炭素繊維、ガラス繊維などの高強度繊維で織った帯状の織布10が巻かれる。この際、織布10の外周面の一部と内周面の一部を密着させるようにして、冷却パイプ5の外周側に織布10を1回よりも多く、例えば2~4回程度巻きつける。通常、織られた織布10は、長手方向に巻いてその外周面と内周面を重ねるだけで、内側から外側への衝撃が掛かって周方向に引っ張り力がかかった際に、織布10同士の摩擦抵抗により良好な締め付け力を示す。本実施例では、織布10を冷却パイプ5の外周側に巻いた後に、織布10の長手方向の末端10bを何らかの形で仮固定した形で、発泡断熱材を注入して断熱層6を形成する。仮固定の仕方は、端部に外周側からテープを貼って固定したり、両面テープ等を用いたりしても良い。
遠心機においては、ボウル4全体が真空槽内に配置されるタイプの遠心機を除いて、余分な入熱や結露を抑制するため、ボウル4と筒状プロテクタ8の間に断熱層を設けて外部との熱交換を防いでいる。この断熱層の作り方として、発泡スチロールで成型品を作り、冷却パイプ5の取り付けられたボウル4を成形した断熱材にはめ込む方法や、独立発泡系断熱フォームシートを冷却パイプの上から巻く方法がある。しかしながら、これらの方法では冷却パイプ5との間に隙間が生じやすく、冷却パイプ5と外気とを完全に遮断することが困難である。そこで、本実施例では冷却パイプ5を巻いたボウル4の外周側において、ボウル4と一定の距離を隔てるように型枠体(ここでは筒状プロテクタ8を型枠として利用)を配置し、この空間内に発泡断熱材を注入して硬化させるようにした。この際、ボウル4の底部が仕切り板12aに対して所定の高さとなるように空間を有する様に固定してから発泡断熱材を注入すれば、ボウル4の外周側だけでなく底面側にももれなく断熱層6を形成することができる。発泡断熱材の一例としては、ポリウレタンを化学反応させて発泡させるものを用いることができる。
発泡断熱材を注入すると空間内で反応が始まり、断熱層6が形成されていくが、冷却パイプ5に巻かれた織布10の網目は強度上の理由から繊維量を多くした細かい目になっており、発泡液が容易に網目を通りぬけない。しかしながら、織布10は冷却パイプ5に密着するように巻かれているので充填時に織布10の外周側から内周側への圧力が掛かり、織布10の位置がずれて形状が変化してしまう恐れがなく、織布10を理想的な状態に維持させることができる。尚、織布10の織目が細かいと発泡材が編目の内部部分まで完全に浸透せずに、織布10の繊維と冷却パイプ5の間には空気層が残る場合がある。しかしながら、本実施例では織布10の幅(軸方向長さ)Wが断熱層6の高さ(軸方向長さ)Hの関係から、冷却パイプ5だけでなく織布10は外気には完全に触れないように構成したので、編目部分に微小の空気層ができても断熱効果には影響がない。
織布10の幅Wは、断熱層6の高さHよりも小さくなるようにした。また、ボウル4の高さHは、幅Wより大きいが、断熱層6の高さ(軸方向長さ)Hよりは小さくなるようにした。但し、ボウル4の上側位置(開口部の位置)4aは、断熱層6の上側位置(上端6a)よりも上側に位置するように配置することが重要である。このように織布10の幅Wや巻きつける位置を決定することにより、織布10の上下に発泡液が十分に回りこむことになり、断熱層6の上端6a付近と、下方側(下面側)では発泡断熱材がボウル4と良好に密着する。さらに、冷却パイプ5と織布10は完全に断熱層6の中に埋没されることになるため、冷却パイプ5が外気と通じる隙間が生じる心配もなく、断熱材による良好な断熱性能を期待できる。以上のように、織布10を冷却パイプ5の外周側に直接巻いた状態で発泡液を充填するので、織布10の形状を理想的な円形に保つことができ、万一回転体が破損してその破片が衝突したときに、織布10により良好な衝撃吸収効果を期待できる。尚、本実施例で織布10の幅Wはボウル4の高さH又は冷却パイプ5の巻き部分の高さHの一部にしか対応していないが、使用可能な回転体に合わせて織布10の幅(上下方向の対応部分の長さ)を決めるようにすれば、破壊された回転体の破片が織布10に衝突することなく外周側に飛び出してしまうことを防止できる。
図2は、図1の織布10を説明するための図であり、(1)は側面図、(2)は巻いた後の織布10を軸方向から見た図を示す。織布10は高強度繊維を帯状に織って布状にしたものであり、例えば、経糸11aが周方向に、緯糸11bが縦方向に向くように配置される。織布10は所定の可撓性の布材であり、先端10aからボウル4の外周部分に所定回数分巻いた長さLとなるように末端10bをカットする。ここで、織布10は、先端10aから末端10bの間の長手方向においては経糸11aが連続するようにすると良い。また、長手方向と直交する端部、即ち、上端10cと下端10dの緯糸部分は長さ方向に折り返すようにして、繊維同士の接続部分を少なくしてできるだけ強度を高めると好ましい。織布10の織り方は任意であり、十分な引っ張り強度を実現できる織り方であれば他の織り方でも良い。尚、織布10を複数の経糸11aと複数の緯糸11bを用いて形成するだけでなく、1本又は数本の糸を編み込むようにして布状に形成したようなものであっても良い(本明細書では、織るだけでなく、編んで形成した布状又は平面状の構成物も「織布」という定義に含まれるとして説明している)。さらに、織布10は織り込んだ布に高分子樹脂やその他の補強材を塗布又は付加したものであっても良い。織布10として鋼線やステンレス鋼線などの金属線を織ったり編んだりしたもの、即ち帯状に延びる金網を用いることも可能である。しかしながら、金属製の織布10を用いると銅製の冷却パイプ5の外側に熱容量の大きい金属部材が密接されることになり、ボウル4への冷却効率に影響する。よって、金属製の線材より化学繊維等で編まれた非金属の線材を使った織布の方が、熱容量が小さく、より好ましい。
織布10の長さLは、冷却パイプ5の外周側の一巻き分を越えるのに十分な長さとし、例えば二巻き分の長さとして、織布10の一部または全周が二重以上となるようにした。このため、発泡時に発泡液が外側の織布10の繊維の隙間から内側の織布10の繊維に滲み込み、重なっている織布10を接着する役目を果たすため、衝撃吸収時に回転体3の破片103aの衝突で重なっている箇所が解ける心配もない。尚、織布10を巻き付ける上限回数に特に制限はないが、2~4回程度の巻数とすると製造上もコスト上も有利である。また、複数枚の織布10を巻きつけても良く、その場合には例えば、一枚目の織布10と二枚目の織布10の巻き終わりの端部が重ならないように互いの端部の位置をずらすようにすることで、織布10同士が開き難くできる。
図3は、図1の織布10による衝撃吸収状況を説明するための図であり、(1)は回転体103(103a、103b)が破壊した直後の状態を示す図であり、(2)は破壊した回転体が織布10によってその移動が阻止される状態を示す図である。図3(1)にて示すように、直径dにて数回巻かれて防御筒として作用する織布10は、回転体3に対して所定の距離を隔てる位置に配置される。ここでは、ボウル4と冷却パイプ5の図示は省略されている。回転体3が高速回転中に2つに割れて(1)の矢印21aと21bの方向に遠心力にて離れたら、回転体3の破片103a、103bはステンレスの薄板等でできたボウル4に当たってこれを突き破り、主に銅パイプで作られている冷却パイプ5も突き破って織布10に当たる。織布10は高強度繊維で織り込まれているので、破片103a、103bは織布10を突き抜けることができずに、(2)に示すように織布10が変形し、瞬時に破片103a、103bの形状に倣って(2)のように楕円形に変形する。この際、織布10に加わる力は破片103aの移動方向に対して同方向及び反対方向では矢印22a、22bのように外側に移動するように作用し、破片103aの移動方向に対して直交方向では矢印23a、23bのように内側に移動するように作用する。このように、織布10の形状が円形から楕円形に変化することによって、広い面積で破片103a、103bのエネルギーを受けることができる。また、織布10は繊維と繊維が擦れ合って矢印22aと22bの引っ張りエネルギーを消費しながら変形するため、エネルギー消費時間が長くなり、衝撃力を大幅に緩和することが可能となる。
この織布10を用いた衝撃吸収過程を発明者らが検討した結果、織布10の直径dが小さい方が大きなエネルギーを減衰できることを見いだした。また、衝撃吸収時の織布10の変形移動空間(変形範囲)をできるだけ多く確保した方が、大きなエネルギーを減衰できることを見いだした。織布10の直径を小さくするためには、織布10をボウル4の外周に直接巻くことが考えられる。しかしながら、ボウル4と冷却パイプ5の間に織布10を巻いてしまうと冷却パイプ5によるボウル4の冷却効果を著しく低下させるので実用的ではない。よって、本実施例では冷却パイプ5の外周側に直接織布10を巻くようにした。織布10は、巻く回数の増減によって、吸収できる回転体のエネルギーの大きさを調整できるので、複数機種の遠心機の製造に適用するのに有利である。
以上説明したように、本実施例では回転体3の破片103a、103bとの衝突により織布10が引っ張られて全体が楕円筒状になり、楕円の短径側にあたる箇所がボウル4を締め付けて変形させて、破壊エネルギーを消費するようにした。実際には、織布10は断熱層6の断熱材を変形させながら変形することになるので、断熱層6でも破片103a、103bのエネルギーを減衰できることになる。よって織布10を用いたことにより良好な破壊エネルギーの抑制効果が得られる。それでも破壊時のエネルギーを消費し切れない場合は、断熱層6の外周に設けられた筒状プロテクタ8に衝突させて、エネルギーを使い切ることになる。
次に、本発明になる遠心機において、回転体が破壊し破片が冷却パイプ5の外周に巻いた帯状の織布に衝突したときの挙動を説明する。本実施例の挙動を説明する前に、比較のために、従来の遠心機101における破壊エネルギーの吸収状態を図6及び図7を用いて説明する。
図6は遠心破壊テストを行う際の手順を説明するための図であり、回転室の開口部上側から回転室内部方向(下方向)を見た状態を示す。図6及び図7では、遠心機1においては、回転体103が絶対破壊しないように製造をするため、通常の状態で破壊試験を行うことはできない。そこで図6(1)のように回転体103の周方向に延びるように2つの切り込み103c、103dを入れて、回転体をわざと破壊させるようにした。ボウル4の外側には、冷却パイプ5が巻かれ、その外側には断熱層106と筒状プロテクタ108が設けられる。回転体103を回転方向に回転させて、駆動装置7の最高回転数(又は破壊試験を行う所定回転数)において、(2)のように回転体103が破壊されると2つの破片103a、103bに分離し、遠心力によってこれらは矢印25a、25bの方向に急激に移動する。この際、破片103a、103bには矢印26の方向の回転力も加わっているため、回転力と径方向外側への遠心力の合力方向に向けて破片103a、103bが飛び出すように分離する。この後の状況を示すのが図7である。
図7に示す従来の遠心機においては断熱層106の内部に網状に編んだ円筒状の防御筒は設けられていない。この場合、回転体103が破壊して破片103aがボウル4と冷却パイプ5を突き破り、断熱層106をも突き破った後に筒状プロテクタ108に突き当たる。冷却パイプ5は例えば銅製であるので、矢印5aのように破断することもある。しかしながら、鋼管等の金属製の筒状プロテクタ108は、矢印108aのように変形しながらも回転体103の破片103aの破壊エネルギーを吸収する。この際、矢印108aのように変形した部分が筐体12を突き破らないように筒状プロテクタ108に十分な強度を持たせることが重要である。そのため筒状プロテクタ108の肉厚(径方向の厚さ)はどうしても厚くなってしまう。
次に本実施例における遠心機において、回転体が破壊したときの状況を図4にて説明する。図4において、二点鎖線で示したボウル4、冷却パイプ5、織布10が、回転体3の破壊前の位置である。破壊試験によって破壊された破片103aは、ボウル4と冷却パイプ5を突き破り織布10に突き当たるので、図3で示したように織布10は上面視で楕円形に変形する(ゆがむ)ことにより破片103aのエネルギーを効果的に吸収する。図4において実線で示したボウル4’、冷却パイプ5’、織布10’が破壊エネルギーを吸収した後の位置となる。図4からわかるようにボウル4と冷却パイプ5は破片103aによって破断されるが、その冷却パイプ5の外側に巻かれた織布10は形が変形するだけである。織布10の強度自体は十分にあるため貫通させるまでには至らない。
断熱層6は織布10が突出する部分において圧縮変形するが、断熱層6の径方向厚さ27が厚ければそれが織布10の円形から楕円形への変形のための移動スペース(クラッシャブルゾーン)になる上に、僅かではあるが断熱層6が衝撃エネルギーを吸収するのに役立つ。衝撃エネルギーがさらに強くて織布10の変形量が大きいとしても、織布10がその外周側に位置する筒状プロテクタ8に衝突するので、筒状プロテクタ8が変形することによって最終的に衝撃エネルギーが吸収され、筐体12へのダメージが完全に防止される。このように、織布10を設けることにより、破壊エネルギーの一部または全部を織布10で消費するようにできるため、筒状プロテクタ8だけで破壊エネルギーを吸収する際に比べて、筒状プロテクタ8の肉厚(径方向の厚さ)を大幅に薄くすることができた。また、破片が織布10を突き破って筒状プロテクタ8に衝突するとしても、織布10を破るまでに時間を消費する(力積が下がる)ことと、エネルギーをそれなりに消費するため、織布10を巻いた効果が十分得られる。この結果、従来は非常に重かった筒状プロテクタ8の軽量化が可能となり、遠心機1全体の軽量化と小型化を実現できた。
以上、本発明を実施例に基づいて説明したが、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。例えば、上述の実施例では帯状の織布を冷却パイプ5の外周に巻く構成としたが、長方形の織布(長辺の長さは1周程度)を複数枚ずらしながら重ねて巻いても同様の効果が期待できるし、高強度の繊維を糸巻のボビンに巻くように、斜めに交差させながら冷却パイプ5の外周に密状態に巻いても良い。また、断熱層6は底面も含めて発泡体の一体成形としたが、底面部分と底面部分を別々に構成して、底側だけを先に成形加工して、その上側部分にあたる側面部分だけを発泡性の断熱樹脂で満たすようにして断熱層を形成しても良い。さらに、織布10はエポキシ樹脂等の熱可塑性樹脂や接着剤等を使用してエバポレータに貼り付け、その後に断熱層を形成するようにしても良い。
1…遠心機、2…回転室、3…回転体(ロータ)、4…ボウル、5…冷却パイプ、6…断熱層、7…駆動装置、7a…回転軸、8…筒状プロテクタ、9…ドア、10…織布、10a…(織布の)先端、10b…(織布の)末端、10c…(織布の)上端、10d…(織布の)下端、11a…(織布の)経糸、11b…(織布の)緯糸、12…筐体、12a…仕切り板、20…試料容器、101…遠心機、103…回転体、103a…破片、106…断熱層、106a…(断熱層の)上端、108…筒状プロテクタ、110…網状防御筒、160…空隙、L…(織布の)長さ、W…(織布の)幅、d…(巻いた織布の)直径 

Claims (8)

  1. 試料を入れた回転体と、前記回転体を駆動させるための回転軸を有する駆動装置と、前記回転体を収容する回転室を形成して前記回転体を出し入れする開口部を上面に有するボウルと、前記ボウルの外周に巻かれた冷却パイプと、前記冷却パイプに冷媒を流すための冷却装置と、前記冷却パイプと前記ボウルの外周側に配置され断熱材で形成された断熱層と、前記断熱層の外周側に配置された筒状プロテクタと、前記ボウルの開口部を開閉するドアと、を備えた遠心機において、前記冷却パイプの外周に、線材を織った帯状の織布を周方向に少なくとも一重より多く巻き付け、前記織布の外周側と前記筒状プロテクタの内周側の空間を発泡性の断熱樹脂で満たすようにして前記断熱層を形成することを特徴とする遠心機。
  2. 前記冷却パイプは前記ボウルの周方向に巻かれ、前記織布は、アラミド繊維や炭素繊維、ガラス繊維などの高強度繊維を織ったものを前記ボウルの周方向に巻かれることを特徴とする請求項1に記載の遠心機。
  3. 前記織布は、外周面の一部と内周面の一部を密着させるようにして、前記冷却パイプの外周側に二重以上巻かれることを特徴とする請求項2に記載の遠心機。
  4. 前記織布の幅は前記断熱層の軸方向長さより短く、前記織布の前記開口部側の端部が、前記断熱層の前記開口部側の端部よりも下方に位置するようにしたことを特徴とする請求項1から3のいずれか一項に記載の遠心機。
  5. 前記織布は経糸が周方向に,緯糸が縦方向に向くように織られた非金属製の可撓性の布材であることを特徴とする請求項4に記載の遠心機。
  6. 前記断熱層は、ポリウレタンを化学反応させてなる発泡材であることを特徴とする請求項1から5のいずれか一項に記載の遠心機。
  7. 前記ボウルは金属製の薄板により製造され、前記断熱層は前記ボウルの下方側にも回り込むように形成されることを特徴とする請求項1から6のいずれか一項に記載の遠心機。
  8. 前記冷却装置は、フロンガスなどの冷媒を循環させる冷凍機であって、前記冷却パイプは銅製のパイプであって、前記ボウルに接着または溶接にて固定されるか、又は、前記織布を巻きつけることにより前記ボウルに固定されることを特徴とする請求項1から7のいずれか一項に記載の遠心機。
PCT/JP2016/073597 2015-09-11 2016-08-10 遠心機 WO2017043247A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017539076A JPWO2017043247A1 (ja) 2015-09-11 2016-08-10 遠心機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015178995 2015-09-11
JP2015-178995 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043247A1 true WO2017043247A1 (ja) 2017-03-16

Family

ID=58239632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073597 WO2017043247A1 (ja) 2015-09-11 2016-08-10 遠心機

Country Status (2)

Country Link
JP (1) JPWO2017043247A1 (ja)
WO (1) WO2017043247A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038734B (zh) * 2019-04-27 2020-12-25 济南和合医学检验有限公司 高速离心方式对血浆、血小板等血液成分的分层方法
CN110064529B (zh) * 2019-04-27 2021-01-22 邵明秀 一种自动分装式医用血液离心机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4319415Y1 (ja) * 1964-09-18 1968-08-13
JPS5287575A (en) * 1976-01-16 1977-07-21 Hitachi Constr Mach Co Ltd Protecting device device for high speed revolution body
JP2005349260A (ja) * 2004-06-08 2005-12-22 Hitachi Koki Co Ltd 遠心機
JP2013538673A (ja) * 2010-09-01 2013-10-17 エッペンドルフ アクチエンゲゼルシャフト 遠心分離機ボウル用発泡体成形シェル、遠心分離機ボウル、遠心分離機のボウルを包む熱絶縁体を造る方法、および遠心分離機
JP2014205083A (ja) * 2013-04-10 2014-10-30 あおい精機株式会社 遠心分離装置
WO2015198984A1 (ja) * 2014-06-27 2015-12-30 日立工機株式会社 遠心機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4319415Y1 (ja) * 1964-09-18 1968-08-13
JPS5287575A (en) * 1976-01-16 1977-07-21 Hitachi Constr Mach Co Ltd Protecting device device for high speed revolution body
JP2005349260A (ja) * 2004-06-08 2005-12-22 Hitachi Koki Co Ltd 遠心機
JP2013538673A (ja) * 2010-09-01 2013-10-17 エッペンドルフ アクチエンゲゼルシャフト 遠心分離機ボウル用発泡体成形シェル、遠心分離機ボウル、遠心分離機のボウルを包む熱絶縁体を造る方法、および遠心分離機
JP2014205083A (ja) * 2013-04-10 2014-10-30 あおい精機株式会社 遠心分離装置
WO2015198984A1 (ja) * 2014-06-27 2015-12-30 日立工機株式会社 遠心機

Also Published As

Publication number Publication date
JPWO2017043247A1 (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP4586426B2 (ja) 遠心機
AU2006317921B2 (en) Vacuum insulation panel and insulation structure of refrigerator using the same
WO2017043247A1 (ja) 遠心機
US20130115407A1 (en) Vacuum insulation material and insulation structure for refrigerator cabinet having the same
EP2472164A1 (en) Vacuum heat insulating material, heat insulating box, refrigerator, freezing/air-conditioning device, hot-water supply device, apparatus, and method for manufacturing vacuum heat insulating material
US20140216094A1 (en) Outdoor unit
CN103038456B (zh) 碎块容纳组件和用于向涡轮添加碎块容纳组件的方法
US20110174410A1 (en) fiber-reinforced thermoplastic pipe
WO2010116719A1 (ja) 真空断熱材とそれを備える機器
JPH04231625A (ja) 発射体シールド
US9266642B2 (en) Steel wrapped pressure vessel
WO2012074815A2 (en) Breather layer for exhausting permeate from pressure vessels
JP2006275223A (ja) 圧力容器とその製造方法ならびに圧力容器の損傷検出方法と損傷検出装置
KR20100026993A (ko) 진공 단열재 및 이것을 사용한 단열 상자체 및 냉장고
KR20140013888A (ko) 진공 단열재, 냉장고, 진공 단열재를 사용한 기기
EP2782796A1 (en) Improvements relating to air-bag fabrics
JP5183705B2 (ja) 空気調和機
JP5851212B2 (ja) 断熱材およびこれを備えた冷凍機器の製造方法
JP2003314786A (ja) 真空断熱材、並びに真空断熱材を用いた冷凍機器及び冷温機器
KR101350009B1 (ko) 내압용 호스
JP6044788B2 (ja) 反応装置
CN1888778B (zh) 泡菜冰箱的内部机壳增强结构
US20210222812A1 (en) Pipe with sound absorber, refrigeration cycle apparatus, and method for mounting sound absorber
JP2017206795A (ja) 紡糸ノズル
KR20140043300A (ko) 극저온 요소를 위한 단열재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844111

Country of ref document: EP

Kind code of ref document: A1