WO2017043004A1 - 通信装置および通信方法 - Google Patents

通信装置および通信方法 Download PDF

Info

Publication number
WO2017043004A1
WO2017043004A1 PCT/JP2016/003393 JP2016003393W WO2017043004A1 WO 2017043004 A1 WO2017043004 A1 WO 2017043004A1 JP 2016003393 W JP2016003393 W JP 2016003393W WO 2017043004 A1 WO2017043004 A1 WO 2017043004A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channels
signals
ofdm
payload
Prior art date
Application number
PCT/JP2016/003393
Other languages
English (en)
French (fr)
Inventor
裕幸 本塚
亨宗 白方
坂本 剛憲
誠隆 入江
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to BR112018001998-4A priority Critical patent/BR112018001998B1/pt
Priority to JP2017538848A priority patent/JP6712789B2/ja
Priority to RU2018105681A priority patent/RU2705225C2/ru
Priority to CN201680039472.5A priority patent/CN107710653B/zh
Priority to SG11201800623UA priority patent/SG11201800623UA/en
Priority to KR1020187004340A priority patent/KR102631763B1/ko
Priority to EP16843877.8A priority patent/EP3349378B1/en
Priority to MX2018001438A priority patent/MX2018001438A/es
Publication of WO2017043004A1 publication Critical patent/WO2017043004A1/ja
Priority to US15/893,454 priority patent/US10644899B2/en
Priority to US16/832,969 priority patent/US11005679B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2863Arrangements for combining access network resources elements, e.g. channel bonding
    • H04L12/2865Logical combinations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to a communication device and a communication method using millimeter wave communication.
  • IEEE 802.11 is one of the wireless LAN related standards, including the IEEE802.11n standard (hereinafter referred to as “11n standard”), the IEEE802.11ad standard (hereinafter referred to as “11ad standard”), etc. (for example, see Non-Patent Documents 1 and 2.)
  • the 11n standard is compatible with 2.4GHz and 5GHz, and achieves high throughput exceeding 100Mbps in the MAC layer.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • the 11n standard introduces channel bonding to transmit data by arranging a data field (payload) with a bandwidth of 40 MHz over two adjacent channels having a bandwidth of 20 MHz in order to increase peak throughput. ing.
  • the preamble part (including L-STF, L-LTF, L-SIG, and HT-SIG) is received for each channel so that it can be received by terminals that do not support channel bonding. Placed in.
  • the 11ad standard realizes high-speed communication of up to 7Gbps using multiple 60GHz band millimeter-wave channels.
  • single carrier transmission and OFDM transmission are respectively defined as secondary modulation schemes.
  • a communication standard using carrier aggregation has been proposed as means for further increasing the peak throughput as compared with the 11ad standard.
  • a broadband RF (Radio Frequency) circuit or an analog front-end circuit for example, a D / A converter or an A / D converter
  • carrier aggregation using OFDM transmission requires upsampling processing and filtering processing for each channel as compared to channel bonding, resulting in smaller equipment, lower power consumption, and lower cost (general-purpose). It is difficult to achieve this using the semiconductor technology described above.
  • One aspect of the present disclosure is to provide a communication device and a communication method compliant with the 11ad standard.
  • a communication apparatus performs orthogonal modulation on a preamble signal and a header signal of two adjacent channels used for aggregation transmission, and two single carrier signals shifted respectively to the frequency bands of the two channels
  • a single carrier signal generation unit that generates the OFDM signal of the two channels by performing IFFT processing on the payload signals of the two adjacent channels used for the aggregation transmission together, and
  • An antenna that transmits two single carrier signals and OFDM signals of the two channels is employed.
  • two single-carrier signals that are respectively orthogonally modulated with preamble signals and header signals of two adjacent channels used for aggregation transmission and shifted to the frequency bands of the two channels, respectively.
  • the IFFT processing of the payload signals of the two adjacent channels used for the aggregation transmission together to generate the OFDM signals of the two channels, and the two single carrier signals and the OFDM of the two channels Send a signal.
  • the upsampling process and the filtering process are not required in the aggregation transmission in the communication apparatus and communication method using millimeter wave communication, so that the apparatus can be reduced in size, power consumption, and cost. Can be planned.
  • the figure which shows an example of the spectrum in the aggregation transmission of millimeter wave communication The figure which shows the structural example of the communication apparatus which performs OFDM transmission.
  • the figure which shows the structural example of the communication apparatus which performs OFDM transmission The figure which shows an example of the process with respect to the payload signal S1
  • the figure which shows an example of the process with respect to the payload signal S2 The figure which shows an example of the addition process of the signal of each channel
  • generation process of the OFDM signal which concerns on Embodiment 1 The figure which shows the example of mapping of the payload signal which concerns on Embodiment 1
  • generation process of the OFDM signal which concerns on Embodiment 2 The figure which shows the example of mapping of the payload signal which concerns on Embodiment 2.
  • generation process of the OFDM signal which concerns on Embodiment 2 The figure which shows the structural example of the communication apparatus which has two RF circuits.
  • generation process of the OFDM signal in the channel 1 in the communication apparatus which has two RF circuits The figure which shows an example of the production
  • FIG. The figure which shows an example of the amount of phase rotation with respect to the payload signal S1 which concerns on Embodiment 3.
  • FIG. 4 The figure which shows the structural example of the communication apparatus which concerns on Embodiment 4.
  • FIG. 4 The figure which shows an example of the production
  • FIG. 4 The figure which shows the other structural example of the communication apparatus which concerns on Embodiment 4.
  • FIG. 4 The figure which shows the other structural example of the communication apparatus which concerns on Embodiment 4.
  • FIG. 4 The figure which shows the other structural example of the communication apparatus which concerns on Embodiment 4.
  • FIG. 4 The figure which shows the other structural example of the communication apparatus which concerns on Embodiment 4.
  • FIG. 4 The figure which shows the other structural
  • FIG. 1 shows an example of a spectrum in the aggregation transmission of millimeter wave communication.
  • the channel width between two adjacent channels is set to 2.16 GHz, and the bandwidth of each channel is set to 1.76 GHz.
  • the bandwidth of each channel is set to 1.76 GHz.
  • FIG. 2 is a block diagram illustrating a configuration example until each data is modulated among the components of the communication device 1.
  • the communication device 1 shown in FIG. 2 includes a preamble generation unit 11, scramble units 12 and 15, FEC encoding units 13 and 16, data modulation units 14, 18-1, and 18-2, and a data division unit 17. .
  • FIG. 3 is a block diagram illustrating a configuration example until transmission of a signal generated in the configuration illustrated in FIG. 2 among the configuration units of the communication device 1.
  • the communication apparatus 1 shown in FIG. 3 includes up-samplers 21, 23, 26-1, and 26-2, filters (RRC filters) 22 and 24, OFDM signal generators 25-1 and 25-2, and a low-pass filter 27-1.
  • 27-2, frame generation units 28-1, 28-2, modulation units 29-1, 29-2, addition unit 30, wideband D / A conversion unit 31, wideband radio (RF) processing unit 32, and antenna Take the configuration.
  • FIG. 4 shows the operation of the components (OFDM signal generator 25-1, upsampler 26-1, lowpass filter 27-1, and modulator 29-1) that perform processing on the payload signal S1 shown in FIG.
  • FIG. 5 shows an example, and FIG. 5 shows a configuration unit (OFDM signal generation unit 25-2, upsampling unit 26-2, low-pass filter 27-2, modulation unit 29-2) that performs processing on the payload signal S2 shown in FIG. An example of the operation is shown.
  • FIG. 6 shows an operation example of the adding unit 30 shown in FIG. 4 to 6 show the payload signal S1 and the payload signal S2.
  • the preamble generation unit 11 generates a preamble signal (for example, symbol rate: 1.76 GSps).
  • the scrambler 12 performs scrambling processing on the input header data
  • the FEC (Forward Error Correction) encoding unit 13 performs error correction encoding on the header data
  • the data modulation unit 14 performs encoding.
  • the header data is modulated (for example, symbol rate: 1.76 GSps, ⁇ / 2-BPSK) to generate a header signal.
  • the scrambling unit 15 performs scrambling processing on the input payload data
  • the FEC encoding unit 16 performs error correction encoding on the payload data
  • the data division unit 17 converts the payload data into two channels 1, 2 is divided into payload data 1 and 2 corresponding to 2.
  • the data modulator 18-1 modulates the payload data of channel 1 (for example, symbol rate: 2.64 GSps) to generate a payload signal S1
  • the data modulator 18-2 modulates the payload data of channel 2 ( For example, a symbol rate: 2.64 GSps) and a payload signal S2 are generated.
  • the upsampling unit 21 upsamples the sampling rate for the preamble signal input from the preamble generation unit 11 shown in FIG. 2 by a factor of 3, and the filter 22 performs filtering on the preamble signal after the upsampling. .
  • the up-sampling unit 23 up-samples the sampling rate for the header signal input from the data modulation unit 14 three times, and the filter 24 performs filtering on the header signal after the up-sampling.
  • the filter 22 and the filter 24 are, for example, RRC (Root Raised Cosine) filters.
  • the OFDM signal generation unit 25-1 performs an IFFT process on the payload signal S1 input from the data modulation unit 18-1 shown in FIG. 2 to generate an OFDM signal.
  • the up-sampling unit 26-1 up-samples the sampling rate for the OFDM signal by the payload signal S1 by a factor of 2 (see, for example, (b) in FIG. 4).
  • the low-pass filter 27-1 passes a predetermined band of the OFDM signal by the payload signal S1 after the upsampling (see, for example, (c) in FIG. 4).
  • the up-sampling unit 26-2 up-samples the sampling rate of the OFDM signal by the payload signal S2 by a factor of 2 (see, for example, (b) in FIG. 5).
  • the low-pass filter 27-2 passes a predetermined band of the OFDM signal by the payload signal S2 after upsampling (see, for example, (c) in FIG. 5).
  • the frame generation unit 28-1 generates a frame composed of a preamble signal input from the filter 22, a header signal input from the filter 24, and an OFDM signal based on the payload signal S1 input from the low-pass filter 27-1. To do.
  • the modulation unit 29-1 modulates the channel 1 frame and shifts the center frequency of the channel 1 frame by ⁇ 1.08 GHz (see, for example, (d) in FIG. 4).
  • the frame generation unit 28-2 generates a frame composed of the preamble signal input from the filter 22, the header signal input from the filter 24, and the OFDM signal based on the payload signal S2 input from the low-pass filter 27-2. To do.
  • the modulation unit 29-2 modulates the channel 2 frame, and shifts the center frequency of the channel 2 frame by +1.08 GHz (see, for example, (d) in FIG. 5).
  • the adder 30 receives the channel 1 signal (for example, see FIG. 6A) input from the modulator 29-1, and the channel 2 signal (for example, FIG. 6) input from the modulator 29-2. (Refer to (b) in FIG. 6).
  • the wideband D / A conversion unit 31 performs D / A conversion (for example, symbol rate: 5.28 GSps) on the added signal.
  • the broadband wireless processing unit 32 (high frequency circuit) performs wireless transmission processing on the signal after D / A conversion and has a center frequency (for example, 59.40 GHz in FIG. 1) that is the center of the channel 1 and the channel 2.
  • Generate a signal The generated radio signal is transmitted via an antenna.
  • transmission processing is efficiently performed in 11ad standard OFDM transmission, and the apparatus is reduced in size, power consumption, and cost.
  • the modulation unit 101-1 modulates the preamble signal, and shifts the center frequency of the preamble signal by ⁇ 1.08 GHz. As a result, a preample signal of channel 1 is generated. Modulation section 101-2 modulates the preamble signal and shifts the center frequency of the preamble signal by +1.08 GHz. As a result, a preamp signal for channel 2 is generated. Adder 102 adds the channel 1 preamble signal and channel 2 preamble signal, and outputs the result to frame generator 106.
  • Modulation section 103-1 modulates the header signal and shifts the center frequency of the header signal by -1.08 GHz. As a result, a header signal of channel 1 is generated. Modulation section 103-2 modulates the header signal and shifts the center frequency of the header signal by +1.08 GHz. As a result, a header signal of channel 2 is generated. Adder 104 adds the header signal of channel 1 and the header signal of channel 2 and outputs the result to frame generator 106.
  • single carrier signals preamble signal and header signal
  • modulation sections 101-1 and 101-2 and modulation sections 103-1 and 103-2 perform quadrature modulation on the preamble signal and header signal of two adjacent channels used for aggregation transmission, respectively.
  • This corresponds to a single carrier signal generation unit that generates two single carrier signals each shifted to a frequency band.
  • the OFDM signal generation unit 105 performs an FFT size larger than the FFT size in the OFDM signal generation units 25-1 and 25-2 shown in FIG. Size) and a faster sampling rate, the IFFT processing of the payload signals S1 and S2 is performed.
  • the OFDM signal generation unit 105 performs IFFT processing on the payload signals S1 and S2 mapped to wideband frequencies (subcarriers).
  • FIG. 8, FIG. 9 and FIG. 10 show an example of a frame format according to the present embodiment.
  • FIG. 8 shows the configuration in the header
  • FIG. 9 shows the configuration in the payload in the case of OFDM transmission
  • FIG. 10 shows an example of OFDM signal generation processing
  • FIG. 11 shows an example of payload signal mapping.
  • the frame of each channel is made up of STF (Short Training Field), CEF (Channel Estimation Field), header (Header), extension header (E-Header), and payload (Payload1 or Payload2). Composed.
  • the header of each channel is assumed to have the same configuration as the 11ad standard. That is, the header is formed by concatenating a plurality of 512-symbol symbol blocks, and single-carrier modulation of 1.76 GSps is performed. As shown in FIG. 8, each symbol block of the header is composed of a GI (Guard Interval) of 64 symbols and a data portion of 448 symbols. Thus, in the single carrier signal, GI is included in the symbol block. This is because the receiver is assumed to perform frequency domain equalization processing using a 512-point FFT circuit.
  • GI Guard Interval
  • the extension header of each channel has the same frame configuration as the header.
  • the payload format of each channel will be described. As shown in FIG. 9, the payload is composed of a CP (Cyclic Prefix) and a data part.
  • CP Cyclic Prefix
  • the OFDM symbol length is 512 samples. This is one of the reasons that it is assumed that the 512-point FFT circuit is shared in the receiver by making it the same size as the symbol block size (512 symbols) of the single carrier signal.
  • the payload format has the same frame format as 11ad, but the subcarrier allocation method and the OFDM signal generation method are different.
  • the subcarrier allocation method and the OFDM signal generation method are different.
  • a subcarrier allocation method and an OFDM signal generation method will be described.
  • FIG. 10 is a diagram illustrating an example of a frame format generation method.
  • the OFDM signal generator 105 divides the data-modulated payload signal S1 and payload signal S2 into predetermined lengths. In FIG. 10, each payload signal is divided into 336 symbols.
  • OFDM signal generation section 105 extracts 336 symbols from payload signal S1 (channel 1 signal) and payload signal S2 (channel 2 signal), respectively, and inserts a zero signal or a pilot signal (a preset known pattern). Then, each signal is mapped to the subcarrier so that the total becomes 1024 subcarriers. As a result, an IFFT input block signal to be input to the IFFT circuit is generated.
  • the payload signal S1 is mapped to the left side of the center of the 1024 subcarriers shown in FIG. 10, that is, the region corresponding to the frequency region lower than the center frequency.
  • the payload signal S2 is mapped to the right side of the center of the 1024 subcarriers shown in FIG. 10, that is, the region corresponding to the frequency region higher than the center frequency.
  • each payload signal is mapped to a subcarrier so as to satisfy the following constraints.
  • FIG. 11 is a diagram for explaining mapping restrictions for the payload signal S1 as an example. Specifically, as shown in FIG. 11, when the payload signal S1 divided into symbol blocks (for example, 336 symbols) is mapped to 1024 subcarriers, centering on a position away from the center by 209 subcarriers, Mapping is performed within a range not exceeding 360 subcarriers including a zero signal or a pilot signal.
  • 209 subcarrier corresponds to 1.07765625 MHz (hereinafter referred to as 1.077 GHz), and is determined as the value closest to 1080 MHz.
  • 360 subcarriers corresponds to a value (1.8 GHz here) set by a preset spectrum restriction per channel. Thereby, the payload signal S1 is arranged around the center frequency of the channel 1 (ch1).
  • the payload signal S2 is also mapped according to the same restrictions as in FIG.
  • the OFDM signal generation unit 105 inputs the IFFT input block signal shown in FIG. 10 to the IFFT circuit and adds a CP to the output signal. Further, a transmission digital baseband signal is obtained by adding a preamble signal and a header signal to the output signal to which the CP is added (see FIG. 9).
  • the transmission digital baseband signal is D / A converted at 5.28 GSps and subjected to radio processing with the center frequency set to 59.40 GHz, thereby having a spectrum shown in FIG. 12 to be described later.
  • a signal is transmitted.
  • FIG. 12 shows an example of the OFDM signal generated by the OFDM signal generation unit 105.
  • the sampling rate is 5.28 GHz.
  • the OFDM signal generation unit 105 sets the center frequency of the OFDM signal based on the payload signal S1 from the center frequency (0 GHz) to the vicinity of ⁇ 1.08 GHz ( ⁇ 1.077 GHz) in the 5.28 GHz band.
  • the allocation of the inputs of the payload signals S1 and S2 in the IFFT process is adjusted so that the center frequency of the OFDM signal based on the payload signal S2 is set from (0 GHz) to around +1.08 GHz (+1.077 GHz).
  • Frame generation section 106 uses channel 1 and channel 2 using the preamble signal input from addition section 102, the header signal input from addition section 104, and the OFDM signal input from OFDM signal generation section 105. Generate a frame.
  • the communication apparatus 100 collectively generates the OFDM signals of the payload signal S1 and the payload signal S2 using the FFT size (1024) that is larger than that in FIG. 3 (FFT size: 512).
  • the apparatus when applying aggregation transmission in 11ad standard OFDM transmission, it is possible to efficiently generate OFDM signals by generating OFDM signals of a plurality of channels together, and Since the upsampling process and the filtering process are not required, the apparatus can be reduced in size, reduced in power consumption, and reduced in cost.
  • FIG. 13 A configuration example of communication apparatus 200 according to the present embodiment will be described using FIG. The configuration and operation of the communication device 200 until each data is modulated are the same as the configuration of the communication device 1 shown in FIG.
  • the same components as those in the first embodiment (FIG. 7) are denoted by the same reference numerals, and the description thereof is omitted.
  • OFDM signal generation section 201 receives payload signal S1 input from data modulation section 18-1 shown in FIG. 2 and data modulation shown in FIG.
  • the payload signals S2 input from the unit 18-2 are collectively subjected to IFFT processing to generate channel 1 and channel 2 OFDM signals.
  • the OFDM signal generation unit 201 has an FFT size larger than the FFT size in the OFDM signal generation units 25-1 and 25-2 shown in FIG.
  • IFFT processing is performed using a suitable sampling rate.
  • the FFT size is different from that in the first embodiment (FFT size 1024 in FIG. 7).
  • FIG. 14 shows an example of the OFDM signal generated by the OFDM signal generation unit 201.
  • the sampling rate is 5.28 GHz.
  • the OFDM signal generation unit 201 sets the center frequency of the OFDM signal based on the payload signal S1 from the center frequency (0 GHz) to -1.08 GHz in the 5.28 GHz band, and +1.08 from the center frequency (0 GHz).
  • the allocation of the inputs of the payload signals S1 and S2 in the IFFT process is adjusted so that the center frequency of the OFDM signal based on the payload signal S2 is set to GHz.
  • OFDM signals of a plurality of channels can be generated collectively without causing a shift in the center frequency of the OFDM signal of each channel.
  • the FFT size of OFDM signal generation section 201 is set so that the frequency bin interval in IFFT processing is a divisor of the center frequency (1.08 GHz) of the OFDM signal arranged in the two channels. It only has to be done.
  • the FFT size of the OFDM signal generation unit 201 may be set so that the frequency bin interval in IFFT processing is a divisor of half of two channel intervals (2.16 GHz shown in FIG. 1).
  • FIG. 15 shows an example of a frame format according to the present embodiment.
  • FIG. 15 shows a structure in the payload in the case of OFDM transmission.
  • each channel frame is composed of STF (Short Training Field), CEF (Channel Estimation Field), header (Header), extension header (E-Header), and payload (Payload 1 or Payload 2).
  • STF Short Training Field
  • CEF Channel Estimation Field
  • Head Head
  • E-Header Extension header
  • payload Payload 1 or Payload 2.
  • the OFDM symbol length is 512 samples. This is one of the reasons that it is assumed that the 512-point FFT circuit is shared in the receiver by making it the same size as the symbol block size (512 symbols) of the single carrier signal.
  • the OFDM symbol length is 528 symbols (samples).
  • the frequency bin interval (subcarrier interval) in IFFT processing when the OFDM signals of channels 1 and 2 are generated together can be set to 5 MHz. That is, the OFDM symbol length is determined so that a value (that is, a divisor) obtained by dividing half (1.08 GHz) of the channel interval (2.16 GHz) between channel 1 and channel 2 by an integer is equal to the subcarrier interval. .
  • a value that is, a divisor
  • FIG. 16 is a diagram illustrating an example of a frame format generation method. Since the frame format in FIG. 16 is similar to that in FIG. 10, a data part (Data) which is a different component will be described.
  • Data data part
  • the OFDM signal generation unit 201 extracts 336 symbols from the payload signal S1 (channel 1 signal) and the payload signal S2 (channel 2 signal), respectively, and inserts a zero signal or a pilot signal (a preset known pattern). Each signal is mapped to a subcarrier so that a total of 1056 subcarriers are obtained. As a result, an IFFT input block signal to be input to the IFFT circuit is generated.
  • the payload signal S1 is mapped to the left side of the center of the 1056 subcarrier shown in FIG. 16, that is, the region corresponding to the frequency region lower than the center frequency.
  • payload signal S2 is mapped to the right side of the center of 1056 subcarriers shown in FIG. 16, that is, the region corresponding to the frequency region higher than the center frequency.
  • each payload signal is mapped to a subcarrier so as to satisfy the following constraints.
  • FIG. 17 is a diagram for explaining mapping restrictions for the payload signal S1 as an example. Specifically, as shown in FIG. 17, when the payload signal S1 divided into symbol blocks (for example, 336 symbols) is mapped to 1056 subcarriers, the position is 216 subcarriers away from the center. Mapping is performed within a range not exceeding 360 subcarriers including a zero signal or a pilot signal.
  • 216 subcarriers corresponds to 1.08 GHz, that is, half of the channel spacing (2.16 GHz), and “360 subcarriers” is a value set by a preset spectrum constraint per channel ( Here, it corresponds to 1.8 GHz).
  • the payload signal S2 is also mapped according to the same restrictions as in FIG.
  • the transmission digital baseband signal is D / A converted at 5.28 GSps and subjected to radio processing with the center frequency set to 59.40 GHz, so that a signal having the spectrum shown in FIG. 1 is obtained. Sent.
  • the signal of the frame format shown in FIG. 15 generated in the communication apparatus 200 is equivalent to the signal transmitted by the communication apparatus having the configuration shown in FIG. Note that “equivalent” means that the transmission digital baseband signals are equal.
  • the communication apparatus of the present embodiment is adapted to aggregation transmission has been described, it can also be applied to channel bonding.
  • a flag for identifying aggregation transmission and channel bonding is added to the header, and in the OFDM signal generation unit 105, in the case of aggregation transmission, block symbols are arranged on subcarriers according to FIG. According to FIG. 18, block symbols may be arranged on subcarriers.
  • channel bonding the frequency region between the channels ch1 and ch2 and the frequency region near the center frequency of each channel can be used for signal transmission, so that the throughput can be improved compared to the aggregation transmission.
  • channel bonding and aggregation transmission can be selected according to the performance of the receiver by using the transmitter of this embodiment. Transmission can be performed by switching the transmission method, and throughput can be improved.
  • the transmitter can determine the performance of the receiver by notifying the transmitter in advance of a bit indicating whether or not the channel bonding is supported.
  • FIG. 19 the same components as those shown in FIG. 3 or FIG. 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • the communication device 2 shown in FIG. 19 performs aggregation transmission using two wireless processing units (RF circuits) 53-1 and 53-2. Also, in the OFDM signal generators 51-1 and 51-2, the FFT size is set to 528 so that an integral multiple of the frequency bin interval (subcarrier interval) is the channel interval.
  • FIG. 20A and 20B are diagrams illustrating an example of a frame format generation method in the communication device 2 illustrated in FIG.
  • FIG. 20A shows an example of processing for the payload signal S1 in the OFDM signal generation unit 51-1
  • FIG. 20B shows an example of processing for the payload signal S2 in the OFDM signal generation unit 51-2.
  • the OFDM signal generation units 51-1 and 51-2 divide the data-modulated payload signal S1 and payload signal S2 into predetermined lengths. 20A and 20B, each payload signal is divided into 336 symbols.
  • the OFDM signal generators 51-1 and 51-2 extract 336 symbols from the payload signal S 1 (channel 1 signal) and the payload signal S 2 (channel 2 signal), respectively, and zero signals or pilot signals (preset) Each known signal is mapped to subcarriers so that there are a total of 528 subcarriers. As a result, an IFFT input block signal to be input to the IFFT circuit is generated.
  • payload signals S1 and S2 are 180 subcarriers on both sides from the center of 528 subcarriers shown in FIGS. 20A and 20B, that is, 360 subcarriers at the center of 528 subcarriers (that is, due to spectrum constraints per channel). It is mapped within a range of subcarriers corresponding to the set value.
  • the OFDM signal generators 51-1 and 51-2 input the IFFT input block signal shown in FIGS. 20A and 20B to the IFFT circuit, and add CP to the output signal. As a result, two OFDM signals of 2.64 GSps are generated. Further, in the frame generation units 28-1 and 28-2 shown in FIG. 19, a transmission digital baseband signal is obtained by adding a preamble signal and a header signal to the output signal to which the CP is added.
  • the D / A converters 52-1 and 52-2 perform D / A conversion on the transmission digital baseband signal at 2.64 GSps, and the wireless processing units 53-1 and 53-2 perform the center frequency. Are subjected to radio processing set to 58.32 GHz and 60.48 GHz, respectively, so that a signal having the spectrum shown in FIG. 1 is transmitted.
  • the bandwidths set in the D / A conversion units 52-1 and 52-2 and the radio processing units 53-1 and 53-2 are narrower than the configuration shown in FIG. A high quality (low distortion) transmission signal is generated.
  • the configuration of the communication device 2 that performs aggregation transmission using two RF circuits has been described above.
  • the same receiver can receive both the signal transmitted from the communication device 200 shown in FIG. 13 and the signal transmitted from the communication device 2 shown in FIG.
  • the communication device 200 shown in FIG. 13 is compared with the communication device 2 shown in FIG.
  • Transmission of an equivalent frame format is realized by one IFFT circuit, one D / A circuit, and an RF circuit in the communication apparatus 200, whereas in the communication apparatus 2, 2 is transmitted.
  • This is realized by one IFFT circuit, two D / A circuits, and two RF circuits.
  • the communication device 200 can achieve a reduction in circuit scale and power consumption compared to the configuration of the communication device 2.
  • Embodiment 3 OFDM signal generation section 105 of communication apparatus 100 in Embodiment 1 has an FFT size (FFT point) of 1024, and therefore the center frequency is set to 1.077 GHz, which is different from 1.080 GHz.
  • FFT size FFT point
  • the center frequency is set to 1.077 GHz, which is different from 1.080 GHz.
  • a method for adjusting the shift of the center frequency using phase rotation will be described.
  • FIG. 21 is a block diagram illustrating a configuration example of the communication apparatus 300 according to the present embodiment.
  • the same components as those in the first embodiment (FIG. 7) are denoted by the same reference numerals, and the description thereof is omitted.
  • a phase rotation amount setting unit 301, a sign inverting unit 302, and phase rotation units 303-1 and 303-2 are newly added.
  • phase rotation sections 303-1 and 303-2 perform predetermined phase rotation for each symbol block obtained by dividing the payload signal of each channel.
  • the phase rotation amount is set in advance in the phase rotation setting unit 301.
  • the first symbol block (366 symbol block) is rotated by ⁇ radians
  • the second symbol block is rotated by 2 ⁇ radians
  • the nth symbol block is rotated.
  • the amount n ⁇ radians and the amount of rotation increase (n is an integer of 1 or more).
  • the payload signal S2 is rotated in phase by using a rotation amount having an opposite sign to the payload signal S1.
  • the sign inversion processing of the phase rotation amount is performed in the sign inversion unit 302.
  • is determined by the following equation based on the shift amount ⁇ (GHz) of the center frequency, the carrier frequency f, and (OFDM symbol length + CP length) L.
  • the center frequency of the channel 1 (ch1) is used to calculate the shift amount for the payload signal S1
  • the center frequency of the channel 2 (ch2) is used for the payload signal S2.
  • the center frequency of channels 1 and 2 (ch 1 and 2) may be simply used as the carrier frequency f. More simply, 60 GHz may be used as an approximate value of the carrier frequency f.
  • the center frequency of each payload signal can be adjusted to 1.08 GHz even when aggregation transmission is performed using the OFDM signal generation unit 105 with an FFT size of 1024 points.
  • Embodiment 4 OFDM signal generation section 105 of communication apparatus 100 (see FIG. 7) in Embodiment 1 has an FFT size (FFT point) of 1024, and therefore the center frequency is set to 1.077 GHz, which is different from 1.080 GHz.
  • FFT size FFT point
  • this embodiment a method for adjusting the carrier frequency of the broadband RF will be described.
  • FIG. 23 is a block diagram illustrating a configuration example of the communication apparatus 400 according to the present embodiment.
  • the same components as those in the first embodiment (FIG. 7) are denoted by the same reference numerals, and the description thereof is omitted.
  • the operations of modulation sections 101-1a and 101-2a, modulation sections 103-1a and 103-2a, and broadband wireless processing section 401 (RF circuit) are different from those in the first embodiment.
  • channel 1 (ch1) of the two channels is defined as the primary channel.
  • the broadband wireless processing unit 401 adjusts the carrier frequency to a value lower by about 2.3 MHz (59.398 GHz in FIG. 23).
  • about 2.3 MHz corresponds to the shift amount of the center frequency of the primary channel.
  • the two channels are adjusted to a value lower by 2.3 MHz.
  • the center subcarrier is set to 209 subcarriers from the center of 1024 subcarriers for payload signal S1. Although it is set at a position away from the carrier, for the payload signal S2, the center subcarrier is set at a position away from the center of 1024 subcarriers by 210 subcarriers.
  • the modulation units 101-1a, 101-2a, 103-1a, and 103-2a in FIG. 7 is set so as to shift (modulate) in a frequency direction lower by 2.3 MHz than the modulation units 101-1, 101-2, 103-1, and 103-2.
  • the center frequency of the payload signal S1 which is the primary channel, the channel 1 preamble and the channel 1 header signal is adjusted to 1.080 GHz by the adjustment of FIGS. 23, 24A and 24B.
  • the center frequency of the S2, channel 2 preamble, and channel 2 header signal can be adjusted to 1.08047 GHz.
  • the communication apparatus 500 shown in FIG. 26 can generate a signal equivalent to that shown in FIG.
  • the OFDM signal generation unit 105 performs the subcarrier allocation of FIG. 24A and FIG. 24B and adds a frequency conversion unit 501 that shifts the output OFDM signal in a frequency direction lower by 2.3 MHz. It is a configuration. Therefore, FIG. 26 differs from the configuration of FIG. 23 in that the frequency of the broadband RF circuit (broadband wireless processing unit 32) is not changed.
  • the center frequency of the payload signal of the primary channel can be adjusted to 1.08 GHz.
  • the center frequency of the payload signal can be close to 1.08 GHz.
  • the communication apparatus 600 shown in FIG. 27 can generate a signal equivalent to that shown in FIG.
  • the OFDM signal generation units 51-1 and 51-2 perform the subcarrier allocation shown in FIGS. 20A and 20B, and are generated from the payload signal S2 among the output OFDM signals.
  • a frequency conversion unit 601 for shifting the OFDM signal in a frequency direction higher by 0.47 MHz is added. For this reason, in FIG. 27, since the frequency of the RF circuit is equal to the center frequency of each channel, it is possible to transmit the OFDM signal and the single carrier signal with one transmitter.
  • the communication device 600 illustrated in FIG. 27 is equivalent to the signal transmitted from the communication device 400 illustrated in FIG. 23. Therefore, the signal transmitted from the communication device 400 illustrated in FIG. Both signals transmitted from the communication device 600 shown in FIG. 27 can be received.
  • the primary channel in the fourth embodiment may be a primary channel defined in the MAC layer. For example, which channel is the primary channel is notified by a beacon frame transmitted from the access point and other control frames.
  • the primary channel in the fourth embodiment may be fixedly determined.
  • ch1 may be defined as the primary channel.
  • the communication device 1500 shown in FIG. 28 does not support the primary channel among the modulation units 101 and 103 that modulate the preamble signal and the header signal.
  • the modulation frequencies in the modulation units 101-1 and 103-2 were shifted by 0.47 MHz to 1.0847 GHz.
  • the center frequency of the OFDM signal of the payload 2 is shifted in the configuration of FIG. 26, but in the configuration of FIG. 28, the center frequency is also shifted in the preamble and the header as in FIG.
  • the center frequency of the baseband signal of the preamble, header, and payload signal S2 transmitted in ch2 matches, so there is no frequency discontinuity and the receiver can be configured simply. can do.
  • the communication device 1600 shown in FIG. 29 differs from FIG. That is, as in FIG. 27, the center frequency of the OFDM signal of payload 2 is shifted in the configuration of FIG. 29, but in the configuration of FIG. 29, the center frequency is also shifted in the preamble and header as in FIG. Thereby, since the center frequency of the baseband signal of the preamble, header, and payload signal S2 transmitted in ch2 matches, there is no frequency shift discontinuity, and the receiver can have a simple configuration.
  • the communication device 1600 shown in FIG. 29 is equivalent to the signal transmitted from the communication device 1500 shown in FIG. 28, and therefore transmitted from the communication device 1500 shown in FIG. 28 by the same receiver. Both the signal and the signal transmitted from the communication device 1600 shown in FIG. 29 can be received.
  • parameters such as channel bandwidth, channel interval, sampling rate, FFT size, center frequency of each channel are examples, and are not limited to these.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit.
  • the integrated circuit may control each functional block used in the description of the above embodiment, and may include an input terminal and an output terminal. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the communication apparatus orthogonally modulates the preamble signals and header signals of two adjacent channels used for aggregation transmission, and generates two single carrier signals shifted to the frequency bands of the two channels, respectively.
  • a carrier signal generation unit, an OFDM signal generation unit that performs IFFT processing on the payload signals of the two adjacent channels used for the aggregation transmission, and generates the OFDM signals of the two channels; and the two single carriers And an antenna for transmitting the signal and the OFDM signal of the two channels.
  • the OFDM signal generation unit performs IFFT processing using a second FFT size that is larger than the first FFT size used when performing IFFT processing on the payload signals of the two channels individually.
  • the second FFT size is twice the first FFT size.
  • the frequency bin interval in the IFFT processing is a divisor that is a half of the interval between the two channels.
  • the interval between the two channels is 2.16 GHz
  • the sampling rate in the IFFT processing is 5.28 GHz
  • the FFT size is 1056.
  • the interval between the frequency bins in the IFFT processing is a divisor of the center frequency of the OFDM signal arranged in the two channels.
  • the center frequencies of the two channels are +1.08 GHz and -1.08 GHz, respectively, the sampling rate in the IFFT processing is 5.28 GHz, and the FFT size is 1056.
  • the communication method of the present disclosure orthogonally modulates preamble signals and header signals of two adjacent channels used for aggregation transmission, and generates two single carrier signals respectively shifted to the frequency bands of the two channels.
  • IFFT processing is performed on the payload signals of the two adjacent channels used for the aggregation transmission together to generate the OFDM signals of the two channels, and the two single carrier signals and the OFDM signals of the two channels are transmitted. .
  • One embodiment of the present disclosure is suitable for use in a communication device and a communication method compliant with the 11ad standard.

Abstract

通信装置において、変調部は、アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成する。OFDM信号生成部は、アグリゲーション伝送に用いられる隣り合う2つのチャネルのペイロード信号をまとめてIFFT処理して、2つのチャネルのOFDM信号を生成する。アンテナは、2つのチャネルのOFDM信号を送信する。

Description

通信装置および通信方法
 本開示は、ミリ波通信を用いた通信装置および通信方法に関する。
 IEEE 802.11は、無線LAN関連規格の一つであり、その中に、IEEE802.11n規格(以下、「11n規格」という)や、IEEE802.11ad規格(以下・「11ad規格」という)等がある(例えば、非特許文献1,2を参照)。
 11n規格は、2.4GHzと5GHzに互換性を持ち、MAC層において100Mbpsを上回る高スループットを実現する。11n規格では、二次変調方式として、OFDM(Orthogonal Frequency Division Multiplexing)伝送が規定されている。
 また、11n規格には、ピークスループットを高めるため、20MHzの帯域幅を持つ2つの隣り合うチャネルに渡り、40MHzの帯域幅でデータフィールド(Payload)を配置してデータを送信するチャネルボンディングが導入されている。なお、11n規格では、プリアンブル部分(L-STF, L-LTF, L-SIG, HT-SIGを含む)については、チャネルボンディングに対応していない端末においても受信することができるように、チャネル毎に配置される。
 11ad規格は、60GHz帯ミリ波の複数のチャネルを用いて、最大7Gbpsの高速通信を実現する。11ad規格では、二次変調方式として、シングルキャリア伝送とOFDM伝送がそれぞれ規定されている。また、11ad規格に比べ更にピークスループットを高めるための手段として、チャネルボンディングの他に、キャリアアグリゲーションを用いた通信規格が提案されている。
IEEE Std 802.11TM-2012 IEEE Std 802.11adTM-2012
 キャリアアグリゲーションを行うためには、同時使用チャネル数に応じた広帯域の高周波(RF:Radio Frequency)回路やアナログフロントエンド回路(例えば、D/A変換器、A/D変換器)が必要となる。更に、11ad規格において、OFDM伝送を用いたキャリアアグリゲーションでは、チャネルボンディングと比較して、チャネル毎にアップサンプリング処理およびフィルタリング処理が必要となり、装置の小型化、低消費電力化、低コスト化(汎用の半導体技術を用いて実現する)を図ることが困難となる。
 また、11ad規格のOFDM伝送において、シングルキャリア伝送と同様にチャネル毎にアップサンプリング処理およびフィルタリング処理を行うと、装置の小型化、低消費電力化、低コスト化を図ることが困難となる。
 本開示の一態様は、11ad規格に準拠する通信装置および通信方法を提供することである。
 本開示の一態様に係る通信装置は、アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、前記2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成するシングルキャリア信号生成部と、前記アグリゲーション伝送に用いられる隣り合う前記2つのチャネルのペイロード信号をまとめてIFFT処理して、前記2つのチャネルのOFDM信号を生成するOFDM信号生成部と、前記2つのシングルキャリア信号及び前記2つのチャネルのOFDM信号を送信するアンテナと、を具備する構成を採る。
 本開示の一態様に係る通信方法は、アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、前記2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成し、前記アグリゲーション伝送に用いられる隣り合う前記2つのチャネルのペイロード信号をまとめてIFFT処理し、前記2つのチャネルのOFDM信号を生成し、前記2つのシングルキャリア信号及び前記2つのチャネルのOFDM信号を送信する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、ミリ波通信を用いた通信装置および通信方法におけるアグリゲーション伝送において、アップサンプリング処理およびフィルタリング処理が不要となるので装置の小型化、低消費電力化、低コスト化を図ることができる。
ミリ波通信のアグリゲーション伝送におけるスペクトラムの一例を示す図 OFDM伝送を行う通信装置の構成例を示す図 OFDM伝送を行う通信装置の構成例を示す図 ペイロード信号S1に対する処理の一例を示す図 ペイロード信号S2に対する処理の一例を示す図 各チャネルの信号の加算処理の一例を示す図 実施の形態1に係る通信装置の構成例を示す図 実施の形態1に係るフレームフォーマットの一例を示す図 実施の形態1に係るフレームフォーマットの一例を示す図 実施の形態1に係るOFDM信号の生成処理の一例を示す図 実施の形態1に係るペイロード信号のマッピング例を示す図 実施の形態1に係る通信装置が生成する信号のスペクトラムの一例を示す図 実施の形態2に係る通信装置の構成例を示す図 実施の形態2に係る通信装置が生成する信号のスペクトラムの一例を示す図 実施の形態2に係るフレームフォーマットの一例を示す図 実施の形態2に係るOFDM信号の生成処理の一例を示す図 実施の形態2に係るペイロード信号のマッピング例を示す図 実施の形態2に係るOFDM信号の生成処理の一例を示す図 2つのRF回路を有する通信装置の構成例を示す図 2つのRF回路を有する通信装置におけるチャネル1でのOFDM信号の生成処理の一例を示す図 2つのRF回路を有する通信装置におけるチャネル2でのOFDM信号の生成処理の一例を示す図 実施の形態3に係る通信装置の構成例を示す図 実施の形態3に係るペイロード信号S1に対する位相回転量の一例を示す図 実施の形態3に係るペイロード信号S2に対する位相回転量の一例を示す図 実施の形態4に係る通信装置の構成例を示す図 実施の形態4係るペイロード信号S1のOFDM信号の生成処理の一例を示す図 実施の形態4係るペイロード信号S2によるOFDM信号の生成処理の一例を示す図 実施の形態4に係る通信装置が生成する信号のスペクトラムの一例を示す図 実施の形態4に係る通信装置の他の構成例を示す図 実施の形態4に係る通信装置の他の構成例を示す図 実施の形態4に係る通信装置の他の構成例を示す図 実施の形態4に係る通信装置の他の構成例を示す図
 以下、図面を適宜参照して、本開示の一実施の形態につき、詳細に説明する。
 (本開示に至る経緯)
 ピークスループットを高める方法として、チャネルボンディングの他に、20MHzの帯域幅を持つ隣り合う2つのチャネルを束ねて、40MHzの帯域幅でプリアンブル部分およびデータフィールド(Payload)を配置して信号を送信するアグリゲーション伝送がある。
 図1は、ミリ波通信のアグリゲーション伝送におけるスペクトラムの一例を示す。
 図1では、隣り合う2つのチャネル間のチャネル幅は2.16GHzに定められ、各チャネルの帯域幅は1.76GHzに定められている。以下では、一例として、隣り合う2つのチャネル1およびチャネル2を用いてアグリゲーション伝送を行う場合について説明する。
 [OFDM伝送]
 図2~図6を用いて、OFDM伝送においてアグリゲーション伝送を行う通信装置1の構成および動作の一例について説明する。
 図2は、通信装置1の構成部のうち、各データを変調するまでの構成例を示すブロック図である。図2に示す通信装置1は、プリアンブル生成部11、スクランブル部12,15、FEC符号化部13,16、データ変調部14,18-1、18-2、データ分割部17を含む構成である。
 図3は、通信装置1の構成部のうち、図2に示す構成において生成された信号を送信するまでの構成例を示すブロック図である。図3に示す通信装置1は、アップサンプル部21,23,26-1,26-2、フィルタ(RRCフィルタ)22,24、OFDM信号生成部25-1,25-2、ローパスフィルタ27-1,27-2、フレーム生成部28-1,28-2、変調部29-1,29-2、加算部30、広帯域D/A変換部31、広帯域無線(RF)処理部32、アンテナを含む構成を採る。
 また、図4は、図3に示す、ペイロード信号S1に対する処理を施す構成部(OFDM信号生成部25-1、アップサンプル部26-1、ローパスフィルタ27-1、変調部29-1)の動作例を示し、図5は、図3に示す、ペイロード信号S2に対する処理を施す構成部(OFDM信号生成部25-2、アップサンプル部26-2、ローパスフィルタ27-2、変調部29-2)の動作例を示す。また、図6は、図3に示す加算部30の動作例を示す。なお、図4~図6では、ペイロード信号S1およびペイロード信号S2を示す。
 図2に示す通信装置1において、プリアンブル生成部11は、プリアンブル信号を生成する(例えば、シンボル速度:1.76GSps)。
 スクランブル部12は入力されるヘッダデータに対してスクランブリング処理を施し、FEC(Forward Error Correction)符号化部13はヘッダデータに対して誤り訂正符号化を施し、データ変調部14は符号化後のヘッダデータをデータ変調して(例えば、シンボル速度:1.76GSps、π/2-BPSK)、ヘッダ信号を生成する。
 スクランブル部15は入力されるペイロードデータに対してスクランブリング処理を施し、FEC符号化部16はペイロードデータに対して誤り訂正符号化を施し、データ分割部17は、ペイロードデータを2つのチャネル1,2に対応するペイロードデータ1,2に分割する。データ変調部18-1はチャネル1のペイロードデータを変調して(例えば、シンボル速度:2.64GSps)、ペイロード信号S1を生成し、データ変調部18-2はチャネル2のペイロードデータを変調して(例えば、シンボル速度:2.64GSps)、ペイロード信号S2を生成する。
 図3において、アップサンプル部21は、図2に示すプリアンブル生成部11から入力されるプリアンブル信号に対するサンプリングレートを3倍にアップサンプリングし、フィルタ22はアップサンプリング後のプリアンブル信号に対してフィルタリングを施す。
 アップサンプル部23は、データ変調部14から入力されるヘッダ信号に対するサンプリングレートを3倍にアップサンプリングし、フィルタ24はアップサンプリング後のヘッダ信号に対してフィルタリングを施す。
 フィルタ22およびフィルタ24は、例えば、RRC(Root Raised Cosine)フィルタである。
 OFDM信号生成部25-1は、図2に示すデータ変調部18-1から入力されるペイロード信号S1に対してIFFT処理を施して、OFDM信号を生成する。例えば、図4における(a)に示す例では、OFDM信号生成部25-1は、サンプリングレート=2.64GHz、FFTサイズ=512を用いてIFFT処理を行う。アップサンプル部26-1は、ペイロード信号S1によるOFDM信号に対するサンプリングレートを2倍にアップサンプリングする(例えば、図4における(b)を参照)。ローパスフィルタ27-1は、アップサンプリング後のペイロード信号S1によるOFDM信号の所定の帯域を通過させる(例えば、図4における(c)を参照)。
 OFDM信号生成部25-2は、図2に示すデータ変調部18-2から入力されるペイロード信号S2に対してIFFT処理を施して、OFDM信号を生成する。例えば、図5における(a)に示す例では、OFDM信号生成部25-2は、サンプリングレート=2.64GHz、FFTサイズ=512を用いてIFFT処理を行う。アップサンプル部26-2は、ペイロード信号S2によるOFDM信号に対するサンプリングレートを2倍にアップサンプリングする(例えば、図5における(b)を参照)。ローパスフィルタ27-2は、アップサンプリング後のペイロード信号S2によるOFDM信号の所定の帯域を通過させる(例えば、図5における(c)を参照)。
 フレーム生成部28-1は、フィルタ22から入力されるプリアンブル信号、フィルタ24から入力されるヘッダ信号、および、ローパスフィルタ27-1から入力されるペイロード信号S1によるOFDM信号から構成されるフレームを生成する。変調部29-1は、チャネル1のフレームに対して変調を行い、チャネル1のフレームの中心周波数を-1.08GHzシフト(例えば、図4における(d)を参照)。
 フレーム生成部28-2は、フィルタ22から入力されるプリアンブル信号、フィルタ24から入力されるヘッダ信号、および、ローパスフィルタ27-2から入力されるペイロード信号S2によるOFDM信号から構成されるフレームを生成する。変調部29-2は、チャネル2のフレームに対して変調を行い、チャネル2のフレームの中心周波数を+1.08GHzシフトさせる(例えば、図5における(d)を参照)。
 加算部30は、変調部29-1から入力されるチャネル1の信号(例えば、図6における(a)を参照)と、変調部29-2から入力されるチャネル2の信号(例えば、図6における(b)を参照)とを加算する(例えば、図6における(c)を参照)。広帯域D/A変換部31は、加算後の信号に対してD/A変換(例えば、シンボル速度:5.28GSps)を行う。広帯域無線処理部32(高周波回路)は、D/A変換後の信号に対して無線送信処理を施し、チャネル1およびチャネル2の中心である中心周波数(例えば、図1では59.40GHz)を有する無線信号を生成する。生成された無線信号は、アンテナを介して送信される。
 以上、OFDM伝送においてアグリゲーション伝送を行う通信装置1の構成例について説明した。
 図3に示す構成では、複数のチャネルに渡ってアグリゲーション伝送が適用される場合、当該複数のチャネルの個数に応じたアップサンプリング処理およびローパスフィルタリング処理(図3に示す点線で囲まれた構成部の処理)が必要となり、装置の規模、消費電力およびコストが増加してしまう。
 一方で、図3に示す構成において、OFDM信号生成部25-1およびOFDM信号生成部25-2でのFFTサイズを2倍の1024に設定した場合、図5における(c)の波形を得ることができるため、ローパスフィルタリング処理が不要となるものの、FFTサイズ=1024の処理をチャネル毎に行うことは非効率である。
 そこで、本開示の一態様では、11ad規格のOFDM伝送において効率良く送信処理を行い、かつ、装置の小型化、低消費電力化、低コスト化を図る。
 (実施の形態1)
 [通信装置の構成]
 図7を用いて、本実施の形態に係る通信装置100の構成例について説明する。なお、通信装置100のうち、各データを変調するまでの構成および動作については、図2に示す通信装置1の構成と同一であるので図示せず、その説明を省略する。また、図7に示す通信装置100において、図3に示す通信装置1と同一の構成には同一の符号を付し、その説明を省略する。
 図7において、変調部101-1は、プリアンブル信号に対して変調を行い、プリアンブル信号の中心周波数を-1.08GHzシフトさせる。これにより、チャネル1のプリアンプル信号が生成される。変調部101-2は、プリアンブル信号に対して変調を行い、プリアンブル信号の中心周波数を+1.08GHzシフトさせる。これにより、チャネル2のプリアンプル信号が生成される。加算部102は、チャネル1のプリアンプル信号とチャネル2のプリアンブル信号とを加算し、フレーム生成部106へ出力する。
 変調部103-1は、ヘッダ信号に対して変調を行い、ヘッダ信号の中心周波数を-1.08GHzシフトさせる。これにより、チャネル1のヘッダ信号が生成される。変調部103-2は、ヘッダ信号に対して変調を行い、ヘッダ信号の中心周波数を+1.08GHzシフトさせる。これにより、チャネル2のヘッダ信号が生成される。加算部104は、チャネル1のヘッダ信号とチャネル2のヘッダ信号とを加算し、フレーム生成部106へ出力する。
 このようにして、2つのチャネルのシングルキャリア信号(プリアンブル信号およびヘッダ信号)が生成される。すなわち、変調部101-1,101-2および変調部103-1,103-2は、アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、当該2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成するシングルキャリア信号生成部に相当する。
 OFDM信号生成部105は、図2に示すデータ変調部18-1から入力されるペイロード信号S1、および、図2に示すデータ変調部18-2から入力されるペイロード信号S2をまとめてIFFT処理して、チャネル1およびチャネル2のOFDM信号を生成する。この際、OFDM信号生成部105は、FFTサイズ=1024およびサンプリングレート=5.28GHzを用いてIFFT処理を行う。
 すなわち、OFDM信号生成部105は、図3に示す、各チャネルのペイロード信号を個別にIFFT処理するOFDM信号生成部25-1、25-2でのFFTサイズよりも大きなFFTサイズ(2倍のFFTサイズ)、および、より高速なサンプリングレートを用いて、ペイロード信号S1、S2のIFFT処理を行う。
 換言すると、OFDM信号生成部105は、広帯域の周波数(サブキャリア)にマッピングされたペイロード信号S1、S2をまとめてIFFT処理する。
 [フレームフォーマット]
 次に、図7に示す構成の通信装置100が用いるフレームフォーマットについて説明する。
 図8、図9及び図10は、本実施の形態に係るフレームフォーマットの一例を示す。また、図8はヘッダ内の構成を示し、図9はOFDM伝送の場合のペイロード内の構成を示し、図10は、OFDM信号の生成処理の一例を示し、図11は、ペイロード信号のマッピング例を示す図である。
 図8及び図9に示すように、各チャネルのフレームは、STF(Short Training Field)、CEF(Channel Estimation Field)、ヘッダ(Header)、拡張ヘッダ(E-Header)およびペイロード(Payload1またはPayload2)から構成される。
 また、図8に示すように、各チャネルのヘッダは、11ad規格と同様の構成を採るものとする。すなわち、ヘッダは、512シンボルのシンボルブロックを複数連結することにより構成され、1.76GSpsのシングルキャリア変調が施される。図8に示すように、ヘッダの各シンボルブロックは、64シンボルのGI(Guard Interval)と448シンボルのデータ部とから構成される。このように、シングルキャリア信号では、シンボルブロックの中にGIが含まれる。これは、受信機において512点FFT回路を用いて周波数領域等化処理を行うことが想定されているためである。
 また、図8に示すように、各チャネルの拡張ヘッダは、ヘッダと同一のフレーム構成を採る。
 次に、各チャネルのペイロードのフォーマットについて説明する。図9に示すように、ペイロードは、CP(Cyclic Prefix)とデータ部とから構成される。
 11ad規格では、OFDMシンボル長は512サンプルである。これは、シングルキャリア信号のシンボルブロックサイズ(512シンボル)と同じサイズにすることで受信機において512点FFT回路を共用することを想定していることが理由の1つである。
 なお、本実施の形態では、Payload部分のフレームフォーマットは11adと同じであるが、サブキャリアの割り当て方法とOFDM信号の生成方法が異なる。以下に、サブキャリアの割り当て方法とOFDM信号の生成方法について、説明する。
 図7に示す通信装置100において、図9に示すOFDM伝送時のフレームフォーマットを生成する方法の一例について説明する。
 図10は、フレームフォーマットの生成方法の一例を示す図である。
 まず、OFDM信号生成部105は、データ変調されたペイロード信号S1およびペイロード信号S2を、予め決められた長さに分割する。図10では、各ペイロード信号は336シンボルに分割されている。
 次いで、OFDM信号生成部105は、ペイロード信号S1(チャネル1の信号)およびペイロード信号S2(チャネル2の信号)から336シンボルをそれぞれ取り出し、ゼロ信号またはパイロット信号(予め設定された既知パターン)を挿入して、合計1024サブキャリアとなるように、各信号をサブキャリアにマッピングする。これにより、IFFT回路に入力されるIFFT入力ブロック信号が生成される。
 この際、ペイロード信号S1は、図10に示す1024サブキャリアの中心よりも左側、すなわち、中心周波数よりも低い周波数領域に相当する領域にマッピングする。一方、ペイロード信号S2は、図10に示す1024サブキャリアの中心よりも右側、すなわち、中心周波数よりも高い周波数領域に相当する領域にマッピングする。
 また、例えば、各ペイロード信号は、以下の制約を満たすようにサブキャリアにマッピングされる。図11は、一例として、ペイロード信号S1に対するマッピングの制約の説明に供する図である。具体的には、図11に示すように、シンボルブロック(例えば、336シンボル)に分割されたペイロード信号S1は、1024サブキャリアにマッピングされる際、中心から209サブキャリア離れた位置を中心として、ゼロ信号またはパイロット信号を含めて360サブキャリアを超えない範囲内にマッピングされる。
 ここで、「209サブキャリア」は、1.07765625MHz(以下、1.077GHzと表記)に相当し、1080MHzに最も近い値として決定される。「360サブキャリア」は、予め設定された1チャネルあたりのスペクトラム制約により設定された値(ここでは、1.8GHz)に相当する。これにより、ペイロード信号S1はチャネル1(ch1)の中心周波数を中心に配置される。
 ペイロード信号S2についても、図11と同様の制約に従ってマッピングされるものとする。
 OFDM信号生成部105は、図10に示すIFFT入力ブロック信号を、IFFT回路に入力し、出力信号にCPを付加する。さらに、CPが付加された出力信号にプリアンブル信号およびヘッダ信号が付加されることで、送信デジタルベースバンド信号が得られる(図9参照)。
 そして、この送信デジタルベースバンド信号に対して、5.28GSpsでD/A変換が行われ、中心周波数が59.40GHzに設定された無線処理が施されることで、後述する図12に示すスペクトラムを有する信号が送信される。
 図12は、OFDM信号生成部105で生成されるOFDM信号の一例を示す。
 図12では、サンプリングレート=5.28GHzである。また、図12では、OFDM信号生成部105は、5.28GHzの帯域において、中心周波数(0GHz)から-1.08GHz付近(-1.077GHz)にペイロード信号S1によるOFDM信号の中心周波数が設定され、中心周波数(0GHz)から+1.08GHz付近(+1.077GHz)にペイロード信号S2によるOFDM信号の中心周波数が設定されるように、IFFT処理におけるペイロード信号S1、S2の入力の割当を調整する。
 そして、フレーム生成部106は、加算部102から入力されるプリアンブル信号、加算部104から入力されるヘッダ信号、および、OFDM信号生成部105から入力されるOFDM信号を用いて、チャネル1およびチャネル2のフレームを生成する。
 このように、通信装置100は、図3(FFTサイズ:512)と比較して大きなFFTサイズ(1024)を用いて、ペイロード信号S1およびペイロード信号S2の双方のOFDM信号をまとめて生成する。
 こうすることで、図3に示す通信装置1では、各チャネルに対するアップサンプリング処理およびローパスフィルタリング処理(図3に示す点線で囲まれた構成部の処理)を行う必要があるのに対して、図7に示す本実施の形態に係る通信装置100では、各チャネルに対するアップサンプリング処理およびローパスフィルタリング処理が不要となる。すなわち、図7に示す通信装置100では、図3に示すアップサンプル部26-1,26-2およびローパスフィルタ27-1,27-2が不要となる。
 このように、本実施の形態によれば、11ad規格のOFDM伝送において、アグリゲーション伝送を適用する際に、複数のチャネルのOFDM信号をまとめて生成することで、効率良くOFDM信号を生成でき、かつ、アップサンプリング処理およびフィルタリング処理が不要となるので装置の小型化、低消費電力化、低コスト化を図ることができる。
 (実施の形態2)
 実施の形態1では、一例として、OFDM信号生成部105(図7)におけるサンプリングレート=5.28GHzとし、FFTサイズ=1024の場合について説明した。
 この場合、IFFT処理の入力の周波数ビンは、5.15625MHz(=5280MHz/1024)間隔となる。各チャネルのOFDM信号の所望の中心周波数(チャネル1,2の中心から±1080MHz)は、この周波数ビンの間隔(サブキャリア間隔)=5.15625MHzの整数倍ではない。つまり、1080MHzを中心とする周波数ビンは存在しない。よって、OFDM信号生成部105では、各チャネルのOFDM信号の中心周波数は、所望の周波数(図1では±1080MHz)からずれてしまう(例えば、図12では±1077.65625MHz)。
 これにより、送信信号の品質劣化(キャリア周波数のオフセット規定を満たせなくなること)の可能性がある。また、送信機または受信機においてこの周波数ずれを補正するための補正回路が必要となり、回路規模および消費電力が増加してしまう。
 そこで、本実施の形態では、各チャネルの中心周波数のずれを発生させることなく、ペイロード信号S1、S2のOFDM信号を生成する方法について説明する。
 [通信装置の構成]
 図13を用いて、本実施の形態に係る通信装置200の構成例について説明する。なお、通信装置200のうち、各データを変調するまでの構成および動作については、図2に示す通信装置1の構成と同一であるので図示せず、その説明を省略する。また、図13に示す通信装置200において、実施の形態1(図7)と同一の構成には同一の符号を付し、その説明を省略する。
 具体的には、通信装置200において、OFDM信号生成部201は、実施の形態1と同様、図2に示すデータ変調部18-1から入力されるペイロード信号S1、および、図2に示すデータ変調部18-2から入力されるペイロード信号S2をまとめてIFFT処理して、チャネル1およびチャネル2のOFDM信号を生成する。この際、OFDM信号生成部201は、FFTサイズ=1056およびサンプリングレート=5.28GHzを用いてIFFT処理を施して、OFDM信号を生成する。すなわち、OFDM信号生成部201は、図3に示す、各チャネルのペイロード信号を個別にIFFT処理するOFDM信号生成部25-1、25-2でのFFTサイズよりも大きなFFTサイズ、および、より高速なサンプリングレートを用いてIFFT処理を行う。
 ただし、OFDM信号生成部201では、実施の形態1(図7ではFFTサイズ1024)と比較して、FFTサイズが異なる。
 この場合、OFDM信号生成部201におけるIFFT処理の入力の周波数ビンは、5MHz(=5280MHz/1056)間隔となる。すなわち、各チャネルのOFDM信号の所望の中心周波数(チャネル1,2の中心から±1080MHz)は、この周波数ビンの間隔=5MHzの整数倍である。よって、1080MHzを中心とする周波数ビンが存在するので、OFDM信号生成部201では、各チャネルのOFDM信号の中心周波数を、所望の周波数に設定することができる。
 図14は、OFDM信号生成部201で生成されるOFDM信号の一例を示す。
 図14では、サンプリングレート=5.28GHzである。また、図14では、OFDM信号生成部201は、5.28GHzの帯域において、中心周波数(0GHz)から-1.08GHzにペイロード信号S1によるOFDM信号の中心周波数が設定され、中心周波数(0GHz)から+1.08GHzにペイロード信号S2によるOFDM信号の中心周波数が設定されるように、IFFT処理におけるペイロード信号S1、S2の入力の割当を調整する。
 こうすることで、本実施の形態によれば、各チャネルのOFDM信号の中心周波数のずれを発生させることなく、複数のチャネルのOFDM信号をまとめて生成することができる。これにより、送信信号の品質劣化、回路規模および消費電力が増加を防ぐことができる。
 なお、本実施の形態において、IFFT処理における周波数ビンの間隔が2つのチャネルに配置されるOFDM信号の中心周波数(1.08GHz)の約数になるように、OFDM信号生成部201のFFTサイズが設定されればよい。換言すると、IFFT処理における周波数ビンの間隔が2つのチャネル間隔(図1に示す2.16GHz)の半数の約数になるように、OFDM信号生成部201のFFTサイズが設定されればよい。
 [フレームフォーマット]
 次に、図13に示す構成の通信装置200が用いるフレームフォーマットについて説明する。
 図15は、本実施の形態に係るフレームフォーマットの一例を示す。図15はOFDM伝送の場合のペイロード内の構成を示す。
 図15に示すように、各チャネルのフレームは、STF(Short Training Field)、CEF(Channel Estimation Field)、ヘッダ(Header)、拡張ヘッダ(E-Header)およびペイロード(Payload1またはPayload2)から構成される。なお、STF、CEF、ヘッダ、拡張ヘッダについては、図8と同じ構成であるため、説明を省略する。
 以下、各チャネルのペイロードのフォーマットについて説明する。
 11ad規格では、OFDMシンボル長は512サンプルである。これは、シングルキャリア信号のシンボルブロックサイズ(512シンボル)と同じサイズにすることで受信機において512点FFT回路を共用することを想定していることが理由の1つである。
 一方、本実施の形態では、図15に示すように、OFDMシンボル長を528シンボル(サンプル)とする。これにより、上述したように、チャネル1,2のOFDM信号をまとめて生成する際のIFFT処理における周波数ビンの間隔(サブキャリア間隔)を5MHzにすることができる。すなわち、チャネル1とチャネル2とのチャネル間隔(2.16GHz)の半分(1.08GHz)を整数で除した値(つまり、約数)がサブキャリア間隔と等しくなるように、OFDMシンボル長は決定される。上記の関係は、以下の計算式で表される。
 サブキャリア間隔=サンプルレート/OFDMシンボル長
 (計算例) 5MHz=  2640MSps /  528サンプル
 チャネル間隔の半分/216(適当な整数)=サブキャリア間隔
 (計算例)1080MHz /216      = 5MHz
 次に、図13に示す通信装置200において、図15に示すOFDM伝送時のフレームフォーマットを生成する方法の一例について説明する。
 図16は、フレームフォーマットの生成方法の一例を示す図である。なお、図16は、図10に類似したフレームフォーマットであるため、異なる構成要素であるデータ部(Data)について説明する。
 OFDM信号生成部201は、ペイロード信号S1(チャネル1の信号)およびペイロード信号S2(チャネル2の信号)から336シンボルをそれぞれ取り出し、ゼロ信号またはパイロット信号(予め設定された既知パターン)を挿入して、合計1056サブキャリアとなるように、各信号をサブキャリアにマッピングする。これにより、IFFT回路に入力されるIFFT入力ブロック信号が生成される。
 この際、ペイロード信号S1は、図16に示す1056サブキャリアの中心よりも左側、すなわち、中心周波数よりも低い周波数領域に相当する領域にマッピングする。一方、ペイロード信号S2は、図16に示す1056サブキャリアの中心よりも右側、すなわち、中心周波数よりも高い周波数領域に相当する領域にマッピングする。
 また、例えば、各ペイロード信号は、以下の制約を満たすようにサブキャリアにマッピングされる。図17は、一例として、ペイロード信号S1に対するマッピングの制約の説明に供する図である。具体的には、図17に示すように、シンボルブロック(例えば、336シンボル)に分割されたペイロード信号S1は、1056サブキャリアにマッピングされる際、中心から216サブキャリア離れた位置を中心として、ゼロ信号またはパイロット信号を含めて360サブキャリアを超えない範囲内にマッピングされる。
 ここで、「216サブキャリア」は、1.08GHz、すなわち、チャネル間隔(2.16GHz)の半分に相当し、「360サブキャリア」は、予め設定された1チャネルあたりのスペクトラム制約により設定された値(ここでは、1.8GHz)に相当する。
 ペイロード信号S2についても、図17と同様の制約に従ってマッピングされるものとする。
 そして、この送信デジタルベースバンド信号に対して、5.28GSpsでD/A変換が行われ、中心周波数が59.40GHzに設定された無線処理が施されることで、図1に示すスペクトラムを有する信号が送信される。
 ここで、通信装置200において生成される、図15に示すフレームフォーマットの信号は、後述する図19に示す構成の通信装置で送信される信号と同等のものである。なお、「同等」とは、送信デジタルベースバンド信号が等しいという意味である。
 なお、本実施の形態の通信装置がアグリゲーション伝送に適応する場合について説明したが、チャネルボンディングにも適応することができる。例えば、ヘッダにアグリゲーション伝送とチャネルボンディングとを識別するフラグを追加して、OFDM信号生成部105において、アグリゲーション伝送の場合は、図16に従って、サブキャリアにブロックシンボルを配置し、チャネルボンディングの場合は、図18に従って、サブキャリアにブロックシンボルを配置すればよい。
 チャネルボンディングでは、チャネルch1、ch2間の周波数領域、及び、各チャネルの中心周波数付近の周波数領域を信号の送信に用いることができるため、アグリゲーション伝送に比べてスループットを向上させることができる。しかし、チャネルボンディング信号を受信できる受信機は限られるため、本実施の形態の送信機を用いることで、受信機の性能に応じて、チャネルボンディングとアグリゲーション伝送とが選択可能となるため、最適な送信方法を切り替えて送信することができ、スループットを向上させることができる。
 ここで、受信機の性能は、チャネルボンディングに対応するかどうかを示すビットを、あらかじめ送信機に通知しておくことで、送信機は性能を判断できる。
 以下、図19に示す通信装置2の構成について説明する。図19において、図3または図7に示す構成と同一の構成には同一の符号を付し、その説明を省略する。
 図19に示す通信装置2は、2つの無線処理部(RF回路)53-1,53-2を用いてアグリゲーション伝送を行う。また、OFDM信号生成部51-1、51-2では、周波数ビンの間隔(サブキャリア間隔)の整数倍がチャネル間隔となるように、FFTサイズ=528に設定されている。
 図20A、図20Bは、図19に示す通信装置2におけるフレームフォーマットの生成方法の一例を示す図である。図20Aは、OFDM信号生成部51-1におけるペイロード信号S1に対する処理の一例を示し、図20Bは、OFDM信号生成部51-2におけるペイロード信号S2に対する処理の一例を示す。
 OFDM信号生成部51-1,51-2は、データ変調されたペイロード信号S1およびペイロード信号S2を、予め決められた長さに分割する。図20Aおよび図20Bでは、各ペイロード信号は336シンボルに分割されている。
 次いで、OFDM信号生成部51-1,51-2は、ペイロード信号S1(チャネル1の信号)およびペイロード信号S2(チャネル2の信号)から336シンボルをそれぞれ取り出し、ゼロ信号またはパイロット信号(予め設定された既知パターン)を挿入して、合計528サブキャリアとなるように、各信号をサブキャリアにマッピングする。これにより、IFFT回路に入力されるIFFT入力ブロック信号が生成される。
 この際、ペイロード信号S1、S2は、図20Aおよび図20Bに示す528サブキャリアの中心から両側に180サブキャリア、すなわち、528サブキャリアの中心の360サブキャリア(つまり、1チャネルあたりのスペクトラム制約により設定された値に相当するサブキャリア)の範囲内にマッピングされる。
 OFDM信号生成部51-1,51-2は、図20Aおよび図20Bに示すIFFT入力ブロック信号を、IFFT回路に入力し、出力信号にCPを付加する。これにより、2.64GSpsの2系統のOFDM信号が生成される。さらに、図19に示すフレーム生成部28-1,28-2において、CPが付加された出力信号にプリアンブル信号およびヘッダ信号が付加されることで、送信デジタルベースバンド信号が得られる。
 そして、この送信デジタルベースバンド信号に対して、D/A変換部52-1,52-2において2.64GSpsでD/A変換が行われ、無線処理部53-1,53-2において、中心周波数がそれぞれ58.32GHz、60.48GHzに設定された無線処理が施されることで、図1に示すスペクトラムを有する信号が送信される。図19に示す構成では、D/A変換部52-1,52-2および無線処理部53-1,53-2に設定される帯域幅が、図13に示す構成と比較して狭いので、高品質の(歪の小さい)送信信号が生成される。
 以上、2つのRF回路を用いてアグリゲーション伝送を行う通信装置2の構成について説明した。
 すなわち、同一の受信機によって、図13に示す通信装置200から送信される信号および図19に示す通信装置2から送信される信号の双方とも受信することができる。
 ここで、図13に示す通信装置200と、図19に示す通信装置2とを比較する。
 同等のフレームフォーマット(例えば、図15を参照)の送信は、通信装置200では、1つのIFFT回路、1つのD/A回路、RF回路によって実現されるのに対して、通信装置2では、2つのIFFT回路、2つのD/A回路、2つのRF回路によって実現される。
 つまり、通信装置200は、通信装置2の構成と比較して、回路規模の小型化を図ることができ、消費電力を低くすることができる。
 (実施の形態3)
 実施の形態1における通信装置100(図7を参照)のOFDM信号生成部105は、FFTサイズ(FFTポイント)が1024であるために、中心周波数が、1.080GHzと異なる1.077GHzに設定される。これに対して、本実施の形態では、位相回転を用いて、中心周波数のずれを調整する方法について説明する。
 図21は、本実施の形態に係る通信装置300の構成例を示すブロック図である。なお、図21において、実施の形態1(図7)と同一の構成には同一の符号を付し、その説明を省略する。具体的には、図21では、位相回転量設定部301、符号反転部302、位相回転部303-1,303-2が新たに追加されている。
 なお、周波数シフト方法(時間領域信号に位相回転をかける方法)が知られているが、2つのチャネル1,2(ch1、ch2)に対して独立して周波数シフトさせることは困難である。
 このため、通信装置300では、OFDM信号生成部105の前段において、位相回転部303-1,303-2が、各チャネルのペイロード信号を分割したシンボルブロック毎に予め定めた位相回転を行う。位相回転量は、位相回転設定部301において予め設定されている。
 例えば、図22Aに示すように、ペイロード信号S1では、第1のシンボルブロック(366シンボルブロック)は回転量φラジアン、第2のシンボルブロックは回転量2φラジアン、…、第nのシンボルブロックは回転量nφラジアンと、回転量が増加する(nは1以上の整数)。
 一方、図22Bに示すように、ペイロード信号S2は、ペイロード信号S1とは、逆符号の回転量を用いて位相回転される。位相回転量の符号反転処理は、符号反転部302において行われる。
 ここで、φは、中心周波数のずれ量Δ(GHz)とキャリア周波数fと、(OFDMシンボル長+CP長) Lにより、次式で定められる。
 φ=(Δ / f) * L * 2π [rad]
 計算例
 Δ=1080MHz -(5280MHz/1024*209) = 2.34375 MHz
 f = 60GHz 
 L = 512+128 = 640
 φ= 0.05π
 これにより、OFDMシンボルとCPをあわせた640サンプルの時間領域信号の、中心に位置するサンプル(例えば第320番サンプル)に与えるべき位相回転を、640サンプル全てに均一に与えることになる。これにより、図14のスペクトラムと等しくはならないものの、OFDM受信機における受信信号誤差が軽減され、信号の品質を高めることができる。時間領域信号に位相回転をかける従来の方法と異なり、チャネルch1、ch2を独立して近似的に周波数シフトすることができる。
 なお、キャリア周波数fとしては、ペイロード信号S1用のずれ量を計算するにはチャネル1(ch1)の中心周波数を用いて、ペイロード信号S2用にはチャネル2(ch2)の中心周波数を用いるのが最も正確である。ただし、キャリア周波数fとしては、簡易的にチャネル1,2(ch1,2)の中心周波数を用いてもよい。さらに簡易に、キャリア周波数fの近似値として60GHzを用いてもよい。
 以上の構成により、FFTサイズが1024ポイントのOFDM信号生成部105を用いてアグリゲーション伝送を行う場合であっても、各ペイロード信号の中心周波数を1.08GHzに調整することができる。
 (実施の形態4)
 実施の形態1における通信装置100(図7を参照)のOFDM信号生成部105は、FFTサイズ(FFTポイント)が1024であるために、中心周波数が、1.080GHzと異なる1.077GHzに設定される。これに対して、本実施の形態では、広帯域RFのキャリア周波数を調整する方法について説明する。
 図23は、本実施の形態に係る通信装置400の構成例を示すブロック図である。なお、図23において、実施の形態1(図7)と同一の構成には同一の符号を付し、その説明を省略する。具体的には、図23では、変調部101-1a,101-2a、変調部103-1a,103-2a、および広帯域無線処理部401(RF回路)の動作が実施の形態1と異なる。
 また、図23では、2つのチャネルのうち、チャネル1(ch1)をプライマリチャネルと定義する。プライマリチャネルの中心周波数を正確に設定するために、広帯域無線処理部401は、キャリア周波数を約2.3MHz低い値(図23では59.398GHz)に調整する。ここで、約2.3MHzとは、プライマリチャネルの中心周波数のずれ量に相当する。
 なお、広帯域無線処理部401において、キャリア周波数を調整すると、2つのチャネルが2.3MHz低い値に調整される。
 このため、図24Aおよび図24Bに示すように、チャネル1,2(ch1, ch2)の中心をなるべく近づけるため、ペイロード信号S1に対しては、中心のサブキャリアを1024サブキャリアの中心から209サブキャリア離れた位置に設定されるが、ペイロード信号S2に対しては、中心のサブキャリアを1024サブキャリアの中心から210サブキャリア離れた位置に設定される。
 また、プリアンブル信号、ヘッダ信号を、調整後のペイロード信号S1、S2と同じ周波数において、送信するために、図23における変調部101-1a、101-2a、103-1a、103-2aは、図7における変調部101-1、101-2、103-1、103-2と比較して、2.3MHz低い周波方向にシフト(変調)するように設定する。
 図23、図24A及び図24Bの調整によって、図25に示すように、プライマリチャネルであるペイロード信号S1、チャネル1のプリアンブ及びチャネル1のヘッダ信号は、中心周波数が1.080GHzに調整され、ペイロード信号S2、チャネル2のプリアンブ及びチャネル2のヘッダ信号は、中心周波数は、1.08047GHzに調整することができる。
 また、他の方法として、図26に示す通信装置500は、図23と同等の信号を生成することができる。図26は、図23と同様に、OFDM信号生成部105において、図24A及び図24Bのサブキャリア割り当てを行い、出力されたOFDM信号を2.3MHz低い周波数方向にシフトする周波数変換部501を追加した構成である。このため、図26は、図23の構成と異なり、広帯域RF回路(広帯域無線処理部32)の周波数を変更しない形態である。
 以上の構成により、FFTサイズが1024ポイントのOFDM信号生成部105を用いてアグリゲーション伝送を行う場合であっても、プライマリチャネルのペイロード信号の中心周波数を1.08GHzに調整でき、プライマリチャネル以外のチャネルのペイロード信号の中心周波数を1.08GHzに近づけることができる。
 また、他の方法として、図27に示す通信装置600は、図23と同等の信号を生成することができる。図27は、図19と同様に、OFDM信号生成部51-1、51-2において、図20A及び図20Bに示すサブキャリア割り当てを行い、出力されたOFDM信号のうちペイロード信号S2から生成されたOFDM信号を0.47MHz高い周波数方向にシフトする周波数変換部601を追加した構成である。このため、図27は、RF回路の周波数はそれぞれ、各チャネルの中心周波数に等しいため、OFDM信号の送信とシングルキャリア信号の送信とを1つの送信機で行うことが可能となる。
 前述の通り、図27に示す通信装置600は、図23に示す通信装置400から送信される信号と同等であるから、同一の受信機によって、図23に示す通信装置400から送信される信号および図27に示す通信装置600から送信される信号の双方とも受信することができる。
 なお、実施の形態4におけるプライマリチャネルとは、MACレイヤにおいて規定されるプライマリチャネルであってよい。例えば、アクセスポイントから送信されるビーコンフレーム及びその他の制御用フレームによって、どのチャネルがプライマリチャネルであるかが通知される。
 また、実施の形態4におけるプライマリチャネルは、固定的に定められても良い。例えば、ch1をプライマリチャネルと定めても良い。
 また、図28に示す通信装置1500は、図26と同様にOFDM信号に周波数変換部501を適用したことに加え、プリアンブル信号およびヘッダ信号を変調する変調部101、103のうちプライマリチャネルに対応しない変調部101‐1、103‐2における変調周波数を0.47MHzずらし、1.0847GHzとした。
 すなわち、図25に示したように、図26の構成ではペイロード2のOFDM信号の中心周波数をシフトしたが、図28の構成では、プリアンブル及びヘッダにおいても中心周波数が図25と同様にシフトする。これにより、図28の構成では、ch2にて送信されるプリアンブル、ヘッダ、ペイロード信号S2のベースバンド信号の中心周波数が一致するため、周波数ずれの不連続点がなく、受信機を簡易な構成とすることができる。
 また、図29に示す通信装置1600は、図27は異なり周波数変換部602をフレーム生成部28より後段に配置した。すなわち、図27と同様に、図29の構成ではペイロード2のOFDM信号の中心周波数をシフトしたが、図29構成では、プリアンブル及びヘッダにおいても中心周波数が図25と同様にシフトする。これにより、ch2にて送信されるプリアンブル、ヘッダ、ペイロード信号S2のベースバンド信号の中心周波数が一致するため、周波数ずれの不連続点がなく、受信機を簡易な構成とすることができる。
 また、前述の通り、図29に示す通信装置1600は、図28に示す通信装置1500から送信される信号と同等であるから、同一の受信機によって、図28に示す通信装置1500から送信される信号および図29に示す通信装置1600から送信される信号の双方とも受信することができる。
 以上、本開示の各実施の形態について説明した。
 なお、上記実施の形態において、チャネル帯域幅、チャネル間隔、サンプリングレート、FFTサイズ、各チャネルの中心周波数などのパラメータは一例であって、これらに限定されるものではない。
 また、上記実施の形態では、本開示の一態様をハードウェアで構成する場合を例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアで実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力端子と出力端子を備えてもよい。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示の通信装置は、アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、前記2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成するシングルキャリア信号生成部と、前記アグリゲーション伝送に用いられる隣り合う前記2つのチャネルのペイロード信号をまとめてIFFT処理して、前記2つのチャネルのOFDM信号を生成するOFDM信号生成部と、前記2つのシングルキャリア信号及び前記2つのチャネルのOFDM信号を送信するアンテナと、を具備する構成を採る。
 本開示の通信装置において、前記OFDM信号生成部は、前記2つのチャネルのペイロード信号を個別にIFFT処理する場合に用いる第1のFFTサイズよりも大きな第2のFFTサイズを用いてIFFT処理を行う。
 本開示の通信装置において、前記第2のFFTサイズは、前記第1のFFTサイズの2倍である。
 本開示の通信装置において、前記IFFT処理における周波数ビンの間隔は、前記2つのチャネル間隔の半分の約数である。
 本開示の通信装置において、前記2つのチャネルの間隔が2.16GHzであり、前記IFFT処理における、サンプリングレートが5.28GHzであり、FFTサイズが1056である。
 本開示の通信装置において、前記IFFT処理における周波数ビンの間隔は、前記2つのチャネルに配置されるOFDM信号の中心周波数の約数である。
 本開示の通信装置において、前記2つのチャネルの中心周波数がそれぞれ+1.08GHz、-1.08GHzであり、前記IFFT処理における、サンプリングレートが5.28GHzであり、FFTサイズが1056である。
 本開示の通信方法は、アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、前記2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成し、前記アグリゲーション伝送に用いられる隣り合う前記2つのチャネルのペイロード信号をまとめてIFFT処理し、前記2つのチャネルのOFDM信号を生成し、前記2つのシングルキャリア信号及び前記2つのチャネルのOFDM信号を送信する。
 本開示の一態様は、11ad規格に準拠する通信装置および通信方法に用いるに好適である。
 2,100,200,300,400,500,600,1500,1600 通信装置
 11 プリアンブル生成部
 12,15 スクランブル部
 13,16 FEC符号化部
 14,18-1,18-2 データ変調部
 17 データ分割部
 21,23 アップサンプル部
 22,24 RRCフィルタ
 31 広帯域D/A変換部
 32,401 広帯域無線処理部
 101-1,101-2,101-1a,101-2a,103-1,103-2,103-1a,103-2a 変調部
 102,104 加算部
 51-1,51-2,105,201 OFDM信号生成部
 28-1,28-2,106 フレーム生成部
 301 位相回転量設定部
 302 符号反転部
 303-1,303-2 位相回転部
 501,601,602 周波数変換部

Claims (8)

  1.  アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、前記2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成するシングルキャリア信号生成部と、
     前記アグリゲーション伝送に用いられる隣り合う前記2つのチャネルのペイロード信号をまとめてIFFT処理して、前記2つのチャネルのOFDM信号を生成するOFDM信号生成部と、
     前記2つのシングルキャリア信号及び前記2つのチャネルのOFDM信号を送信するアンテナと、
     を具備する通信装置。
  2.  前記OFDM信号生成部は、前記2つのチャネルのペイロード信号を個別にIFFT処理する場合に用いる第1のFFTサイズよりも大きな第2のFFTサイズを用いてIFFT処理を行う、
     請求項1に記載の通信装置。
  3.  前記第2のFFTサイズは、前記第1のFFTサイズの2倍である、
     請求項2に記載の通信装置。
  4.  前記IFFT処理における周波数ビンの間隔は、前記2つのチャネル間隔の半分の約数である、
     請求項1に記載の通信装置。
  5.  前記2つのチャネルの間隔が2.16GHzであり、
     前記IFFT処理における、サンプリングレートが5.28GHzであり、FFTサイズが1056である、
     請求項1に記載の通信装置。
  6.  前記IFFT処理における周波数ビンの間隔は、前記2つのチャネルに配置されるOFDM信号の中心周波数の約数である、
     請求項1に記載の通信装置。
  7.  前記2つのチャネルの中心周波数がそれぞれ+1.08GHz、-1.08GHzであり、
     前記IFFT処理における、サンプリングレートが5.28GHzであり、FFTサイズが1056である、
     請求項1に記載の通信装置。
  8.  アグリゲーション伝送に用いられる隣り合う2つのチャネルのプリアンブル信号及びヘッダ信号をそれぞれ直交変調し、前記2つのチャネルの周波数帯域にそれぞれシフトされた2つのシングルキャリア信号を生成し、
     前記アグリゲーション伝送に用いられる隣り合う前記2つのチャネルのペイロード信号をまとめてIFFT処理し、前記2つのチャネルのOFDM信号を生成し、
     前記2つのシングルキャリア信号及び前記2つのチャネルのOFDM信号を送信する、
     通信方法。
PCT/JP2016/003393 2015-09-10 2016-07-20 通信装置および通信方法 WO2017043004A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112018001998-4A BR112018001998B1 (pt) 2015-09-10 2016-07-20 Aparelho de transmissão, método de transmissão, aparelho de recepção e método de recepção
JP2017538848A JP6712789B2 (ja) 2015-09-10 2016-07-20 通信装置および通信方法
RU2018105681A RU2705225C2 (ru) 2015-09-10 2016-07-20 Устройство передачи, способ передачи, устройство приема и способ приема
CN201680039472.5A CN107710653B (zh) 2015-09-10 2016-07-20 通信装置和通信方法
SG11201800623UA SG11201800623UA (en) 2015-09-10 2016-07-20 Communication apparatus and communication method
KR1020187004340A KR102631763B1 (ko) 2015-09-10 2016-07-20 송신 장치, 송신 방법, 수신 장치, 및 수신 방법
EP16843877.8A EP3349378B1 (en) 2015-09-10 2016-07-20 Communication apparatus and communication method
MX2018001438A MX2018001438A (es) 2015-09-10 2016-07-20 Aparato de transmision, metodo de transmision, aparato de recepcion y metodo de recepcion.
US15/893,454 US10644899B2 (en) 2015-09-10 2018-02-09 Transmission apparatus, transmission method, reception apparatus and reception method
US16/832,969 US11005679B2 (en) 2015-09-10 2020-03-27 Transmission apparatus and transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-178812 2015-09-10
JP2015178812 2015-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/893,454 Continuation US10644899B2 (en) 2015-09-10 2018-02-09 Transmission apparatus, transmission method, reception apparatus and reception method

Publications (1)

Publication Number Publication Date
WO2017043004A1 true WO2017043004A1 (ja) 2017-03-16

Family

ID=58239345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003393 WO2017043004A1 (ja) 2015-09-10 2016-07-20 通信装置および通信方法

Country Status (10)

Country Link
US (2) US10644899B2 (ja)
EP (1) EP3349378B1 (ja)
JP (3) JP6712789B2 (ja)
KR (1) KR102631763B1 (ja)
CN (2) CN110086477B (ja)
BR (1) BR112018001998B1 (ja)
MX (1) MX2018001438A (ja)
RU (1) RU2705225C2 (ja)
SG (1) SG11201800623UA (ja)
WO (1) WO2017043004A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007241A (ja) * 2016-07-07 2018-01-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置、送信方法及び受信方法
CN109995486A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 数据传输的方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10291455B2 (en) * 2015-12-16 2019-05-14 Arris Enterprises Llc DOCSIS 3.1 standard signal generation
ES2770129T3 (es) * 2016-02-29 2020-06-30 Panasonic Ip Corp America Dispositivo de transmisión y procedimiento de transmisión
US10863334B2 (en) * 2017-11-08 2020-12-08 Qualcomm Incorporated Non-orthogonal multiple access techniques for narrowband internet of things and machine type communication
FR3084227B1 (fr) * 2018-07-23 2021-09-10 Mohamed Tlich Modem radio micro-ondes multi-canaux base sur une modulation multi-porteuses
JP2020022118A (ja) * 2018-08-02 2020-02-06 ソニーセミコンダクタソリューションズ株式会社 受信装置、通信システム、および、受信装置の制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322575A1 (en) * 2012-06-04 2013-12-05 Sequans Communications Method and User Equipment for Carrier Aggregation
JP2015139140A (ja) * 2014-01-23 2015-07-30 株式会社国際電気通信基礎技術研究所 無線通信システム、無線通信装置および無線通信方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512173B2 (ja) * 2001-01-18 2004-03-29 松下電器産業株式会社 ピーク電力抑圧装置およびピーク電力抑圧方法
KR100621432B1 (ko) * 2004-04-21 2006-09-08 삼성전자주식회사 복수의 송신 안테나들을 사용하는 다중셀 직교 주파수분할 다중 방식 통신시스템에서 채널 추정 장치 및 방법
US20080107200A1 (en) * 2006-11-07 2008-05-08 Telecis Wireless, Inc. Preamble detection and synchronization in OFDMA wireless communication systems
WO2009062115A2 (en) * 2007-11-09 2009-05-14 Zte U.S.A., Inc. Flexible ofdm/ofdma frame structure for communication systems
KR100917201B1 (ko) * 2007-12-11 2009-09-16 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
KR100917199B1 (ko) * 2007-12-12 2009-09-15 엘지전자 주식회사 신호 송수신 방법 및 신호 송수신 장치
WO2009104515A1 (ja) * 2008-02-18 2009-08-27 シャープ株式会社 中継装置、通信システム、及び通信方法
CN102100103B (zh) 2008-06-19 2014-01-22 华为技术有限公司 无线通信系统中载波聚合的改进方法和设备
US8509324B2 (en) * 2008-07-08 2013-08-13 Qualcomm Incorporated Methods and systems for reducing PAPR of an OFDM signal
US8982750B2 (en) * 2009-01-16 2015-03-17 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
US8711771B2 (en) * 2009-03-03 2014-04-29 Qualcomm Incorporated Scalable header extension
KR101653022B1 (ko) * 2009-05-29 2016-08-31 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 단말 장치, 기지국 장치, 송신 방법, 수신 방법, 및 집적 회로
US8995291B2 (en) * 2011-06-10 2015-03-31 Qualcomm Incorporated Tracking loop design for unicast and multicast/broadcast signals
EP2730141B1 (en) * 2011-07-08 2017-10-04 Intel Corporation Wireless device and method for wireless channel access
US9788327B2 (en) * 2011-11-14 2017-10-10 Qualcomm Incorporated Methods and apparatus for reducing interference in a heterogeneous network
US9232478B2 (en) * 2012-03-02 2016-01-05 Qualcomm Incorporated Frequency scan method for determining the system center frequency for LTE TDD
RU2628013C2 (ru) * 2013-05-08 2017-08-14 ЭлДжи ЭЛЕКТРОНИКС ИНК. Устройство для передачи широковещательных сигналов, устройство для приема широковещательных сигналов, способ передачи широковещательных сигналов и способ приема широковещательных сигналов
US9960877B2 (en) * 2015-04-30 2018-05-01 Inten IP Corporation Apparatus, system and method of beamforming
US10244531B2 (en) * 2015-09-03 2019-03-26 Qualcomm Incorporated Re-channelization of sub-carriers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322575A1 (en) * 2012-06-04 2013-12-05 Sequans Communications Method and User Equipment for Carrier Aggregation
JP2015139140A (ja) * 2014-01-23 2015-07-30 株式会社国際電気通信基礎技術研究所 無線通信システム、無線通信装置および無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TERUO KAWAMURA ET AL.: "Experimental Evaluations for Radio Access Technologies in LTE-Advanced", IEICE TECHNICAL REPORT. RSC, RADIO COMMUNICATION SYSTEMS, vol. 111, no. 289, 9 November 2011 (2011-11-09), pages 149 - 154, XP009504937 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007241A (ja) * 2016-07-07 2018-01-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置、送信方法及び受信方法
CN109995486A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 数据传输的方法和装置
CN109995486B (zh) * 2017-12-29 2021-10-22 华为技术有限公司 数据传输的方法和装置

Also Published As

Publication number Publication date
US11005679B2 (en) 2021-05-11
BR112018001998A2 (ja) 2018-09-11
BR112018001998B1 (pt) 2023-12-19
US20200228370A1 (en) 2020-07-16
JP6712789B2 (ja) 2020-06-24
EP3349378B1 (en) 2021-11-03
MX2018001438A (es) 2018-04-20
EP3349378A4 (en) 2018-10-03
KR102631763B1 (ko) 2024-01-30
CN107710653A (zh) 2018-02-16
CN107710653B (zh) 2019-05-31
KR20180052606A (ko) 2018-05-18
CN110086477B (zh) 2021-01-29
SG11201800623UA (en) 2018-02-27
JP7167087B2 (ja) 2022-11-08
RU2018105681A3 (ja) 2019-10-10
CN110086477A (zh) 2019-08-02
US20180167230A1 (en) 2018-06-14
RU2018105681A (ru) 2019-10-10
JP2022191498A (ja) 2022-12-27
RU2705225C2 (ru) 2019-11-06
US10644899B2 (en) 2020-05-05
EP3349378A1 (en) 2018-07-18
JPWO2017043004A1 (ja) 2018-06-28
JP2020141418A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
JP7167087B2 (ja) 送信装置および送信方法
US9712363B2 (en) Transmitting circuit, transceiver, communication system, and method for transmitting data
CN111865861B (zh) 在wb sc、聚合sc、重复sc、ofdm传输帧中发送数据有效载荷的系统和方法
US8989088B2 (en) OFDM signal processing in a base transceiver system
US10917278B2 (en) Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
US9397802B2 (en) Cyclic shift delay techniques for WLAN multi-radio devices
US11700159B2 (en) Reception apparatus and reception method
EP3371912A1 (en) System and method for encoding and decoding header data portion of a frame
KR20090113915A (ko) 무선 통신 시스템
JP2022507999A (ja) 高エネルギ効率スペクトル・フィルタリングによる超高速データ・レート・デジタルmm波送信機
TW202203676A (zh) 具有減少的峰均功率比的長訓練欄位
WO2023154084A1 (en) Apparatus, system, and method of channel sounding over a wide channel bandwidth
US10708012B1 (en) Wideband subcarrier wireless transceiver circuits and systems
EP2858292A1 (en) Method and system for OFDM data distribution
WO2018027165A1 (en) Ofdm-based implementation of block-wise single carrier waveform (bwsc)
WO2023185973A1 (zh) 通信方法以及相关装置
US8861638B2 (en) Transmitter with reduced peak-to-mean amplitude ratio
JP6421345B2 (ja) 無線通信システム、無線通信装置および無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538848

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201800623U

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/001438

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20187004340

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018001998

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018105681

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112018001998

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180130