WO2017041605A1 - 一种前向纠错fec的补偿控制方法及装置 - Google Patents

一种前向纠错fec的补偿控制方法及装置 Download PDF

Info

Publication number
WO2017041605A1
WO2017041605A1 PCT/CN2016/093995 CN2016093995W WO2017041605A1 WO 2017041605 A1 WO2017041605 A1 WO 2017041605A1 CN 2016093995 W CN2016093995 W CN 2016093995W WO 2017041605 A1 WO2017041605 A1 WO 2017041605A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
ber value
local oscillator
ber
optical power
Prior art date
Application number
PCT/CN2016/093995
Other languages
English (en)
French (fr)
Inventor
吕肖刚
刘国枫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017041605A1 publication Critical patent/WO2017041605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/63Homodyne, i.e. coherent receivers where the local oscillator is locked in frequency and phase to the carrier signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a compensation control method and apparatus for forward error correction FEC.
  • FEC Forward Error Correction
  • 100G signal coherent detection where signal light and local oscillator are at the receiver.
  • the medium coherent mixing after which the output of the difference frequency optical signal is processed and converted to the electrical domain to recover the original signal.
  • the FEC algorithm is then adjusted in a Digital Signal Processing (DSP) to recover the data.
  • DSP Digital Signal Processing
  • the homodyne current is: Wherein, in the receiver, when the signal light is in phase with the local oscillator, the homodyne current is: Where I s (t) is the recovered signal current, R is the response speed of the receiver, P s (t) is the signal optical power, and P L is the local oscillator power. It can be seen that the quality of the recovered signal is related to the power of the signal light and the local oscillator.
  • the change of bit error rate is observed.
  • Pn on the horizontal axis represents the local oscillator power
  • Q on the vertical axis is The Q value of the receiver. It can be seen from Fig. 1 that as the Pn increases, the Q value of the optical receiver is larger, that is, the demodulated signal BER value is smaller.
  • the local oscillator power cannot be increased indefinitely. When the local oscillator power reaches a certain value, the BER is optimal, and the local oscillator power is continuously increased, and the BER will become larger. Because the power of the local oscillator affects the external noise environment, acting on the receiver will cause the signal recovered from the receiver to change, eventually acting in the DSP, thus affecting the size of the BER.
  • the FEC adjustment algorithm has a bottleneck under the condition that the external environment noise is constant.
  • the embodiments of the present invention provide a compensation control method and apparatus for forward error correction FEC, which can optimize the external noise environment and improve signal quality by adjusting the local oscillator optical power.
  • the embodiment of the present invention adopts the following technical solutions:
  • a compensation control method for forward error correction FEC including:
  • the adjustment basis is determined according to the obtained plurality of BER values, and the adjustment basis is sent to a receiving device, so that the receiving device adjusts the current local oscillator power according to the adjustment basis;
  • the BER value after the local oscillator power adjustment is obtained until it is determined that the minimum BER value is obtained.
  • the adjustment basis includes an adjustment direction and a preset adjustment coefficient.
  • the step of determining the adjustment basis according to the obtained plurality of BER values, and transmitting the adjustment basis to a receiving device includes:
  • the adjustment direction of the local oscillator power and the preset adjustment coefficient are sent to a receiving device.
  • the step of acquiring the adjustment direction of the local oscillator optical power according to the relationship between the current BER value B n+1 and the last acquired BER value B n of the current BER value includes:
  • the minimum BER value obtained by the above determination is:
  • a compensation control apparatus for forward error correction FEC including:
  • the first obtaining module is configured to obtain a BER value generated when the FEC algorithm is performed in the process of recovering the original signal after the signal light is coherently mixed with the local oscillator light;
  • the determining module is configured to determine whether the preset communication requirement is met according to the BER value
  • the sending module is configured to: when the determining module determines that the communication requirement is met, determine an adjustment basis according to the obtained plurality of BER values, and send the adjustment basis to a receiving device, so that the receiving device adjusts the current local oscillator according to the adjusting basis.
  • Optical power
  • the second obtaining module is configured to obtain the BER value after the local oscillator optical power adjustment until it is determined that the minimum BER value is obtained.
  • the adjustment basis includes an adjustment direction and a preset adjustment coefficient.
  • the sending module includes:
  • the direction determining unit is configured to obtain an adjustment direction of the local oscillator optical power according to a current BER value B n+1 and a magnitude relationship of the last acquired BER value B n of the current BER value, where n is an integer greater than one;
  • the sending unit is configured to send the adjustment direction of the local oscillator optical power and the preset adjustment coefficient to a receiving device.
  • the direction determining unit is specifically configured to:
  • the adjustment direction of the local oscillator optical power is a positive direction
  • the foregoing second obtaining module includes:
  • a comparing unit configured to compare a size relationship between the current BER value and the previous two obtained BER values of the current BER value
  • the determining unit is set to determine that the minimum BER value obtained when B n-1 ⁇ B n ⁇ B n +1 is B n , where B n-1 is the last acquired BER value of B n .
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction for performing a compensation control method of the forward error correction FEC in the above embodiment.
  • the method for compensating and controlling the forward error correction FEC according to the embodiment of the present invention is based on the premise that the value of the BER has met the preset communication requirement, that is, the size of the local oscillator optical power is adjusted on the basis of the reliable transmission that the FEC has achieved.
  • the minimum BER value ie, the optimal BER value
  • the optimal BER value is obtained, that is, the optimal local oscillator power point is found, the external environment noise is optimized, the error correction capability of the FEC algorithm is improved, and the signal quality is improved.
  • Figure 1 is a diagram showing the variation of the Q value of the optical receiver with the local oscillator optical power
  • FIG. 2 is a flow chart showing a method for compensating and controlling a forward error correction FEC according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the structure of a compensation control apparatus for forward error correction FEC according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing the structure of a transmitting module according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a second obtaining module according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing changes in BER value with local oscillator optical power Pn according to an embodiment of the present invention
  • FIG. 7 is a second schematic diagram showing changes in BER value with local oscillator optical power Pn according to an embodiment of the present invention.
  • FIG. 8 is a third schematic diagram showing changes in BER value with local oscillator optical power Pn according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an FEC error correction control feedback system applied to a compensation control method for forward error correction FEC according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing signal flow between an FPGA, a DSP, and a local oscillator unit according to an embodiment of the present invention.
  • a compensation control method for forward error correction FEC is provided.
  • the method firstly generates an FEC algorithm in a process of recovering an original signal after coherent mixing of the signal light and the local oscillator light. a BER value; then, determining whether the preset communication requirement is met according to the BER value; and again, when the communication requirement is met, determining an adjustment basis according to the obtained plurality of the BER values, and transmitting the adjustment basis to a receiving device, so that the receiving device adjusts the current local oscillator power according to the adjustment basis; finally, obtains the BER value after the local oscillator optical power adjustment until it is determined that the minimum BER value is obtained.
  • the compensation control method of the forward error correction FEC optimizes the noise environment of the signal by adjusting the optical power of the local oscillator light on the basis of the FEC error correction capability, and finally achieves the FEC error correction capability.
  • the optimization greatly improves the reliability and accuracy of communication.
  • the method includes:
  • Step S21 Acquire a BER value generated when the FEC algorithm is performed in the process of recovering the original signal after the signal light and the local oscillator light are coherently mixed.
  • the compensation control method of the forward error correction FEC can be executed on a Field-Programmable Gate Array (FPGA).
  • the FPGA control algorithm is implemented by the optical power adjustment algorithm of the local oscillator unit (RX ITLA) of the control unit (MCU) and the DSP reporting BER.
  • the FEC algorithm is adjusted to restore the original signal.
  • the BER value is obtained.
  • the BER value is reported to the FPGA by the DSP.
  • the compensation control method for the forward error correction FEC of the embodiment of the present invention is not limited to being implemented by an FPGA, but may be replaced by other electronic devices having corresponding functions.
  • Step S23 Determine, according to the BER value, whether a preset communication requirement is met.
  • the ultimate goal is to achieve an optimized FEC algorithm, thereby improving the signal quality. Therefore, when performing compensation control on the FEC algorithm, it is necessary to determine whether the requirement of reliable transmission is reached when the FEC algorithm is last performed, that is, whether the BER value calculated in the last FEC algorithm satisfies the preset communication requirement.
  • the preset communication requirements can be obtained through multiple experiments. For example, it is verified by the test that when the BER value is less than e -8 and the communication requirement is met, in step S23, it can be determined whether the acquired BER value is less than e -8 . If the judgment is less than, the process proceeds to step S25. Otherwise, End the process.
  • step S25 when the communication requirement is met, the adjustment basis is determined according to the obtained plurality of the BER values, and the adjustment basis is sent to a receiving device, so that the receiving device adjusts the current local oscillator optical power according to the adjustment basis.
  • the adjustment basis for adjusting the local oscillator optical power is determined according to the obtained BER value, wherein the adjustment basis includes the adjustment direction and the preset adjustment coefficient.
  • the preset adjustment coefficient is set based on the test data after multiple tests. It can also be modified according to the actual situation in the actual implementation process of the compensation control method of the forward error correction FEC according to the embodiment of the present invention.
  • the direction is adjusted and determined by the acquired multiple BER values. Because it is verified by experiments, it is found that the BER value will gradually decrease when the local oscillator optical power is gradually increased from small, but when the local oscillator optical power is increased to a certain extent, the BER value is the smallest. Thereafter, the local oscillator is continuously increased. At the power value, the BER value will become larger. Therefore, by comparing the BER values obtained multiple times, it can be determined To increase the current local oscillator power, it is still necessary to reduce the current local oscillator power.
  • the current BER value is B n+1
  • the last acquired BER value of the current BER value is B n , where n is an integer greater than 1, and when B n ⁇ B n+1 , the present If the direction of adjustment of the vibrating power is positive, the current local oscillator power needs to be increased. When B n ⁇ B n+1 , the direction of the local oscillator optical power is reversed, and then the current need to be reduced. Local vibration power.
  • the adjustment basis is sent to a receiving device, and the receiving device first receives the adjustment basis of the local oscillator optical power; and then adjusts the current local oscillator optical power according to the adjustment basis.
  • the receiving device may be a local oscillator unit as shown in FIG. That is, the local oscillator light and the signal light emitted by the local oscillator unit are received by the coherent receiver together, and after coherent mixing in the coherent receiver, converted into four electrical signals to the DSP for processing. After the FPC algorithm is adjusted internally, the BER value is reported to the FPGA. After the FPGA determines that the preset communication requirements are met, the FPGA determines the adjustment basis according to the reported BER value, and sends the adjustment basis to the local oscillator unit. The vibrating unit adjusts the local oscillator optical power according to the adjustment basis.
  • the receiving device that receives the adjustment basis and performs the local oscillator optical power adjustment is not limited to the local oscillator unit, and other electronic devices having the same functions as the local vibrating unit can be replaced.
  • the current local oscillator power is increased according to the adjustment coefficient; when the adjustment direction is a reverse direction, the current local oscillator is decreased according to the adjustment coefficient. power.
  • the local oscillator unit can report the adjusted local oscillator optical power to the FPGA after adjusting the current local oscillator optical power according to the adjustment basis.
  • the compensation control method of the forward error correction FEC is implemented on the basis of not modifying the hardware structure and not modifying the error correction algorithm of the FEC itself, and the implementation is convenient and fast, and does not affect other originals. design.
  • Step S27 Obtain a BER value after the local oscillator optical power adjustment until it is determined that the minimum value is obtained.
  • the BER value is up.
  • each time the local oscillator optical power is adjusted a BER value is acquired, and in order to find the minimum BER value in the adjustment process, in step S27, After obtaining the current BER value once, the current BER value is compared with the previous two obtained BER values of the current BER value.
  • the DSP performs the FPC algorithm adjustment
  • the BER value is reported to the FPGA
  • the FPGA internally compares B n-1 , B n , and B n+1 to obtain the local oscillator optical power.
  • the direction is adjusted, and the adjustment direction and the preset adjustment coefficient are sent to the local oscillator unit, so that the local oscillator unit performs the adjustment of the local oscillator optical power until the FPGA determines that the minimum BER value is obtained.
  • a compensation control apparatus for forward error correction FEC is further provided.
  • the apparatus 400 includes:
  • the first obtaining module 401 is configured to acquire an error ratio BER value generated when the FEC algorithm is performed in the process of recovering the original signal after the signal light is coherently mixed with the local oscillator light;
  • the determining module 403 is configured to determine, according to the BER value, whether the preset communication requirement is met;
  • the sending module 405 is configured to: when the determining module determines that the communication requirement is met, obtain Taking a plurality of the BER values to determine an adjustment basis, and transmitting the adjustment basis to a receiving device, so that the receiving device adjusts the current local oscillator optical power according to the adjustment basis;
  • the second obtaining module 407 is configured to obtain the BER value after the local oscillator optical power adjustment until it is determined that the minimum BER value is obtained.
  • the adjustment basis includes an adjustment direction and a preset adjustment coefficient.
  • the sending module 405 includes:
  • the direction determining unit 4051 is configured to obtain an adjustment direction of the local oscillator optical power according to the current BER value B n+1 and the magnitude relationship of the last acquired BER value B n of the current BER value, where n is greater than 1.
  • the sending unit 4052 is configured to send the adjustment direction of the local oscillator optical power and the preset adjustment coefficient to a receiving device.
  • the direction determining unit 4051 is specifically configured to:
  • the second obtaining module 407 includes:
  • the comparing unit 4071 is configured to compare the magnitude relationship between the current BER value and the BER value acquired by the previous two times of the current BER value;
  • the determining unit 4072 is configured to determine that the minimum BER value obtained when B n-1 ⁇ B n ⁇ B n +1 is B n , where B n-1 is the last acquired BER value of B n .
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the compensation control method for the forward error correction FEC is based on the premise that the value of the BER has met the preset communication requirement, that is, the basis for the reliable transmission that the FEC has reached.
  • the minimum BER value ie, the optimal BER value
  • the external environmental noise is optimized, and the error correction capability of the FEC algorithm is improved. , which in turn improves signal quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供了一种前向纠错FEC的补偿控制方法及装置,该方法包括:获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的误码比BER值;依据BER值,判断是否满足预设的通信要求;当满足通信要求时,根据获取的多个BER值确定调节依据,并将调节依据发送给一接收设备,使得接收设备按照调节依据调节当前本振光功率;获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。本发明实施例的方案,通过对本振光功率的调节,使BER值得到优化,从而使通信性能得到改善。

Description

一种前向纠错FEC的补偿控制方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种前向纠错FEC的补偿控制方法及装置。
背景技术
在密集波分复用系统中,前向纠错(Forward Error Correction,FEC)技术在实现信息可靠传输起到关键性作用,特别是在100G信号相干检测中,信号光与本振光在接收机中相干混频,之后输出的差频光信号经处理后转换到电域恢复原始信号。之后在数字信号处理器(Digital Signal Processing,DSP)中进行FEC算法调整,从而恢复数据。光纤通信中的FEC经历了从经典硬判决,到级联码再到目前100G相干技术的出现使得软判决成为演进的方向。
其中,在接收机中,当信号光跟本振光相位一致时,有零差电流为:
Figure PCTCN2016093995-appb-000001
其中,Is(t)为恢复出来的信号电流,R为接收机的响应速度,Ps(t)为信号光功率,PL为本振光功率。由此可知,最终恢复出来的信号质量跟信号光和本振光的功率有关。
经验证发现,通过调节接收机本振光功率的大小,观察误码比(Bit Error Rate,BER)的变化,如图1所示,横轴的Pn表示本振光功率,纵轴的Q为接收机的Q值。由图1可知,随着Pn的增加,光接收机Q值越大,即解调的信号BER值就越小。但是本振光功率不能无限增大,当本振光功率达到某值时,BER达到最优,继续增大本振光功率,BER反而会变大。因为本振光功率的大小会影响外部噪声环境,作用于接收机中,会使从接收机恢复出来的信号产生变化,最终作用在DSP中,从而影响BER的大小。
然而,目前100G中的FEC判决算法却无法对外部的噪声环境进行优 化,即在外部环境噪声不变的条件下,FEC调节算法会有一个瓶颈点。
发明内容
为了克服相关技术中存在的上述问题,本发明实施例提供了一种前向纠错FEC的补偿控制方法及装置,能够通过调节本振光功率,优化外部噪声环境,提升信号质量。
为了解决上述技术问题,本发明实施例采用如下技术方案:
依据本发明实施例的一个方面,提供了一种前向纠错FEC的补偿控制方法,包括:
获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的BER值;
依据上述BER值,判断是否满足预设的通信要求;
当满足通信要求时,根据获取的多个上述BER值确定调节依据,并将上述调节依据发送给一接收设备,使得上述接收设备按照上述调节依据调节当前本振光功率;
获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。
其中,上述方案中,上述调节依据包括调节方向和预设调节系数。
其中,上述方案中,上述根据获取的多个上述BER值确定调节依据,并将上述调节依据发送给一接收设备的步骤包括:
根据当前BER值Bn+1以及上述当前BER值的上一次获取的BER值Bn的大小关系,获取本振光功率的调节方向,其中,n为大于1的整数;
将上述本振光功率的调节方向和预设调节系数发送给一接收设备。
其中,上述方案中,上述根据当前BER值Bn+1以及上述当前BER值的上一次获取的BER值Bn的大小关系,获取本振光功率的调节方向的步骤包括:
若Bn≥Bn+1,则上述本振光功率的调节方向为正方向;
若Bn≤Bn+1,则上述本振光功率的调节方向为反方向。
其中,上述方案中,上述确定获取到最小的BER值为:
比较上述当前BER值与上述当前BER值的前两次获取的BER值的大小关系;
当Bn-1≥Bn≤Bn+1时,确定最小的BER值为Bn,其中,Bn-1为Bn的上一次获取的BER值。
依据本发明实施例的另一个方面,还提供了一种前向纠错FEC的补偿控制装置,包括:
第一获取模块,设置为获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的BER值;
判断模块,设置为依据上述BER值,判断是否满足预设的通信要求;
发送模块,设置为当上述判断模块判断满足通信要求时,根据获取的多个上述BER值确定调节依据,并将上述调节依据发送给一接收设备,使得上述接收设备按照上述调节依据调节当前本振光功率;
第二获取模块,设置为获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。
其中,上述方案中,上述调节依据包括调节方向和预设调节系数。
其中,上述方案中,上述发送模块包括:
方向确定单元,设置为根据当前BER值Bn+1以及上述当前BER值的上一次获取的BER值Bn的大小关系,获取本振光功率的调节方向,其中,n为大于1的整数;
发送单元,设置为将上述本振光功率的调节方向和预设调节系数发送给一接收设备。
其中,上述方案中,上述方向确定单元具体设置为:
若Bn≥Bn+1,则上述本振光功率的调节方向为正方向;
若Bn≤Bn+1,则上述本振光功率的调节方向为反方向。
其中,上述方案中,上述第二获取模块包括:
比较单元,设置为比较上述当前BER值与上述当前BER值的前两次获取的BER值的大小关系;
确定单元,设置为当Bn-1≥Bn≤Bn+1时,确定获取到最小的BER值为Bn,其中,Bn-1为Bn的上一次获取的BER值。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的前向纠错FEC的补偿控制方法。
本发明实施例的有益效果是:
本发明实施例的前向纠错FEC的补偿控制方法,建立在BER的值已经满足预设通信要求的前提下,即针对FEC已经达到的可靠传输的基础上,通过调节本振光功率的大小,获得最小的BER值(即最优的BER值),即找到最优的本振光功率点,优化了外部环境噪声,提高了FEC算法的纠错能力,进而提高了信号质量。
附图说明
图1表示光接收机的Q值随本振光功率变化示意图;
图2表示本发明实施例的前向纠错FEC的补偿控制方法流程示意图;
图3表示本发明实施例的前向纠错FEC的补偿控制装置的结构框图;
图4表示本发明实施例的发送模块的结构框图;
图5表示本发明实施例的第二获取模块的结构框图;
图6表示本发明实施例中BER值随本振光功率Pn的变化示意图之一;
图7表示本发明实施例中BER值随本振光功率Pn的变化示意图之二;
图8表示本发明实施例中BER值随本振光功率Pn的变化示意图之三;
图9表示本发明实施例的前向纠错FEC的补偿控制方法所应用的FEC纠错控制反馈系统构架示意图;
图10表示本发明实施例所涉及的FPGA、DSP及本振光单元之间的信号流向示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例一
依据本发明实施例的一个方面,提供了一种前向纠错FEC的补偿控制方法,该方法首先,获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的BER值;接着,依据所述BER值,判断是否满足预设的通信要求;再次,当满足通信要求时,根据获取的多个所述BER值确定调节依据,并将所述调节依据发送给一接收设备,使得所述接收设备按照所述调节依据调节当前本振光功率;最后,获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。
因此,本发明实施例的前向纠错FEC的补偿控制方法,在FEC纠错能力已经有效的基础上,通过调节本振光的光功率,优化信号的噪声环境,最终达到对FEC纠错能力的优化,大大提高了通信的可靠性和准确性。
如图2所示,该方法包括:
步骤S21、获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的BER值。
本发明实施例的前向纠错FEC的补偿控制方法,可在现场可编程门阵列(Field-Programmable Gate Array,FPGA)上执行。通过FPGA控制算法,配合控制单元(MCU)的本振光单元(RX ITLA)的光功率调节算法以及DSP上报BER来实现。
即,如图9所示,从本振光单元发出的本振光和信号光一同进入相干接收机中进行相干混频,转换为四路电信号后,进入到DSP中,DSP内 部进行FEC算法调整,恢复原始信号。其中,在进行FEC算法的过程中,会获得BER值。该BER值是通过DSP上报给FPGA的。
当然,可以理解的是,对于本发明实施例的前向纠错FEC的补偿控制方法,并不仅仅局限于通过FPGA来实现,还可通过其他具有相应功能的电子器件来代替。
步骤S23、依据所述BER值,判断是否满足预设的通信要求。
本发明实施例的前向纠错FEC的补偿控制方法,最终目的是达到优化FEC算法,进而提高信号质量的效果。因而,在对FEC算法进行补偿控制时,需要判断上一次进行FEC算法时,是否到达了可靠传输的要求,即判断上一次FEC算法中计算的BER值是否满足预设的通信要求。
其中,对于预设的通信要求,可通过多次试验获得。例如,通过试验验证,当BER值小于e-8时,满足通信要求,则在步骤S23中,即可判断获取的BER值是否小于e-8,经判断小于时,可进行到步骤S25,否则结束流程。
步骤S25、当满足通信要求时,根据获取的多个所述BER值确定调节依据,并将所述调节依据发送给一接收设备,使得所述接收设备按照所述调节依据调节当前本振光功率。
本发明实施例的前向纠错FEC的补偿控制方法中,会根据获取的BER值确定调节本振光功率的调节依据,其中,该调节依据包括调节方向和预设调节系数。
其中,预设调节系数是根据多次试验后的试验数据设定的。也可在本发明实施例的前向纠错FEC的补偿控制方法的实际实施过程中,针对实际情况进行修改。
此外,调节方向,则通过获取的多个BER值进行确定。因为通过试验验证,发现:本振光功率由小逐渐增大时,BER值会逐渐变小,但是当本振光功率增大到一定程度时,BER值最小,此后,继续增大本振光功率值时,BER值却会变大。因此,通过比较多次获得的BER值可以确定需 要增大当前本振光功率,还是需要减小当前本振光功率。
具体地,若当前BER值为Bn+1,当前BER值的上一次获取的BER值为Bn,其中,n为大于1的整数,则当Bn≥Bn+1时,所述本振光功率的调节方向为正方向,则后续需要增大当前本振光功率;当Bn≤Bn+1时,所述本振光功率的调节方向为反方向,则后续需要减小当前本振光功率。
当步骤S25中确定调节依据后,会将该调节依据发送给一接收设备,该接收设备首先,接收本振光功率的调节依据;然后,根据所述调节依据调节当前本振光功率。
其中,该接收设备可为如图9所示的本振光单元。即由本振光单元发出的本振光和信号光一同由相干接收机接收,并在相干接收机中相干混频后,转换为四路电信号到DSP中进行处理。DSP内部进行FPC算法调整后,上报此时的BER值到FPGA,FPGA判断确定满足预设通信要求后,根据上报的BER值确定调节依据,并将调节依据下发给本振光单元,使得本振光单元依据调节依据进行本振光功率的调节。
当然,可以理解的是,其中接收调节依据并进行本振光功率调节的接收设备,并不局限于本振光单元,其他与本振光单元具有同样功能的电子器件均可替代。
其中,当所述调节方向为正方向时,按照所述调节系数增大所述当前本振光功率;当所述调节方向为反方向时,按照所述调节系数减小所述当前本振光功率。
进一步地,为了使得FPGA一侧方便针对本振光功率进行某些运算或处理,本振光单元可在依据调节依据,调节当前本振光功率之后,将调节后的本振光功率上报给FPGA。
因此,本发明实施例的前向纠错FEC的补偿控制方法,是在不对硬件结构对任何修改,不对FEC本身纠错算法做更改的基础上实施,实现方便快捷,并且不会影响到其他原始设计。
步骤S27、获取本振光功率调节之后的BER值,直到确定获取到最小 的BER值为止。
本发明实施例的前向纠错FEC的补偿控制方法中,每调节一次本振光功率,就会获取一次BER值,为了能够找到调节过程中最小的BER值,在步骤S27中,会在每一次获取当前BER值后,将当前BER值与当前BER值的前两次获取的BER值进行比较。
具体地,若当前BER值为Bn+1,当前BER值的上一次获取的BER值为Bn,Bn的上一次获取的BER值为Bn-1,则如图6所示,当Bn-1≥Bn≥Bn+1时,说明在调节本振光功率的过程中,BER值处于减小的趋势,需要继续按照上一次的调节方向继续进行调节,并继续获取本振光功率调节之后的BER值;如图7所示,当Bn-1≤Bn≤Bn+1时,说明在调节本振光功率的过程中,BER值处于增大的趋势,需要改变调节方向,并继续获取本振光功率调节之后的BER值;如图8所示,当Bn-1≥Bn≤Bn+1时,可以确定在以预设调节系数进行调节的情况下的,最小BER值为Bn,即获得最优BER值,并找到了本振光功率的最佳功率点Pm。
综上所述,如图10所示,当DSP进行FPC算法调整后,将BER值上报给FPGA,FPGA内部对Bn-1、Bn及Bn+1进行比较,获得本振光功率的调节方向,并将调节方向和预设调节系数发送给本振光单元,使得本振光单元进行本振光功率的调节,直到FPGA确定获取到最小的BER值为止。
实施例二
依据本发明实施例的另一个方面,还提供了一种前向纠错FEC的补偿控制装置,如图3所示,该装置400包括:
第一获取模块401,设置为获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的误码比BER值;
判断模块403,设置为依据所述BER值,判断是否满足预设的通信要求;
发送模块405,设置为当所述判断模块判断满足通信要求时,根据获 取的多个所述BER值确定调节依据,并将所述调节依据发送给一接收设备,使得所述接收设备按照所述调节依据调节当前本振光功率;
第二获取模块407,设置为获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。
可选地,所述调节依据包括调节方向和预设调节系数。
可选地,如图4所示,所述发送模块405包括:
方向确定单元4051,设置为根据当前BER值Bn+1以及所述当前BER值的上一次获取的BER值Bn的大小关系,获取本振光功率的调节方向,其中,n为大于1的整数;
发送单元4052,设置为将所述本振光功率的调节方向和预设调节系数发送给一接收设备。
可选地,所述方向确定单元4051具体设置为:
若Bn≥Bn+1,则所述本振光功率的调节方向为正方向;
若Bn≤Bn+1,则所述本振光功率的调节方向为反方向。
可选地,如图5所示,所述第二获取模块407包括:
比较单元4071,设置为比较所述当前BER值与所述当前BER值的前两次获取的BER值的大小关系;
确定单元4072,设置为当Bn-1≥Bn≤Bn+1时,确定获取到最小的BER值为Bn,其中,Bn-1为Bn的上一次获取的BER值。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的误码比BER值;
S2,依据BER值,判断是否满足预设的通信要求;
S3,当满足通信要求时,根据获取的多个BER值确定调节依据,并将调节依据发送给一接收设备,使得接收设备按照调节依据调节当前本振光功率;
S4,获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它C来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的前向纠错FEC的补偿控制方法,建立在BER的值已经满足预设通信要求的前提下,即针对FEC已经达到的可靠传输的基础 上,通过调节本振光功率的大小,获得最小的BER值(即最优的BER值),即找到最优的本振光功率点,优化了外部环境噪声,提高了FEC算法的纠错能力,进而提高了信号质量。

Claims (10)

  1. 一种前向纠错FEC的补偿控制方法,包括:
    获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的误码比BER值;
    依据所述BER值,判断是否满足预设的通信要求;
    当满足通信要求时,根据获取的多个所述BER值确定调节依据,并将所述调节依据发送给一接收设备,使得所述接收设备按照所述调节依据调节当前本振光功率;
    获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。
  2. 如权利要求1所述的方法,其中,所述调节依据包括调节方向和预设调节系数。
  3. 如权利要求2所述的方法,其中,所述根据获取的多个所述BER值确定调节依据,并将所述调节依据发送给一接收设备的步骤包括:
    根据当前BER值Bn+1以及所述当前BER值的上一次获取的BER值Bn的大小关系,获取本振光功率的调节方向,其中,n为大于1的整数;
    将所述本振光功率的调节方向和预设调节系数发送给一接收设备。
  4. 如权利要求3所述的方法,其中,所述根据当前BER值Bn+1以及所述当前BER值的上一次获取的BER值Bn的大小关系,获取本振光功率的调节方向的步骤包括:
    若Bn≥Bn+1,则所述本振光功率的调节方向为正方向;
    若Bn≤Bn+1,则所述本振光功率的调节方向为反方向。
  5. 如权利要求4所述的方法,其中,所述确定获取到最小的BER值为:
    比较所述当前BER值与所述当前BER值的前两次获取的BER值的大小关系;
    当Bn-1≥Bn≤Bn+1时,确定最小的BER值为Bn,其中,Bn-1为Bn的上一次获取的BER值。
  6. 一种前向纠错FEC的补偿控制装置,包括:
    第一获取模块,设置为获取信号光与本振光相干混频之后在恢复原始信号的过程中进行FEC算法时产生的误码比BER值;
    判断模块,设置为依据所述BER值,判断是否满足预设的通信要求;
    发送模块,设置为当所述判断模块判断满足通信要求时,根据获取的多个所述BER值确定调节依据,并将所述调节依据发送给一接收设备,使得所述接收设备按照所述调节依据调节当前本振光功率;
    第二获取模块,设置为获取本振光功率调节之后的BER值,直到确定获取到最小的BER值为止。
  7. 如权利要求6所述的装置,其中,所述调节依据包括调节方向和预设调节系数。
  8. 如权利要求7所述的装置,其中,所述发送模块包括:
    方向确定单元,设置为根据当前BER值Bn+1以及所述当前BER值的上一次获取的BER值Bn的大小关系,获取本振光功率的调节方向,其中,n为大于1的整数;
    发送单元,设置为将所述本振光功率的调节方向和预设调节系数发送给一接收设备。
  9. 如权利要求8所述的装置,其中,所述方向确定单元具体设置为:
    若Bn≥Bn+1,则所述本振光功率的调节方向为正方向;
    若Bn≤Bn+1,则所述本振光功率的调节方向为反方向。
  10. 如权利要求9所述的装置,其中,所述第二获取模块包括:
    比较单元,设置为比较所述当前BER值与所述当前BER值的前两次获取的BER值的大小关系;
    确定单元,设置为当Bn-1≥Bn≤Bn+1时,确定获取到最小的BER值为Bn,其中,Bn-1为Bn的上一次获取的BER值。
PCT/CN2016/093995 2015-09-07 2016-08-08 一种前向纠错fec的补偿控制方法及装置 WO2017041605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510562504.7A CN106506095A (zh) 2015-09-07 2015-09-07 一种前向纠错fec的补偿控制方法及装置
CN201510562504.7 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017041605A1 true WO2017041605A1 (zh) 2017-03-16

Family

ID=58240608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093995 WO2017041605A1 (zh) 2015-09-07 2016-08-08 一种前向纠错fec的补偿控制方法及装置

Country Status (2)

Country Link
CN (1) CN106506095A (zh)
WO (1) WO2017041605A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867418A (zh) * 2009-04-16 2010-10-20 华为技术有限公司 一种光信号的接收方法、光信号接收装置和光传输系统
CN102386969A (zh) * 2010-09-02 2012-03-21 中兴通讯股份有限公司 一种光通信系统接收性能优化方法及装置
CN103616674A (zh) * 2013-12-18 2014-03-05 黑龙江大学 光电探测器的最佳本振光功率的测量方法
CN104009807A (zh) * 2014-03-14 2014-08-27 中国科学院上海光学精密机械研究所 利用通道切换实现相干光通信的解调装置和解调方法
WO2014146236A1 (zh) * 2013-03-18 2014-09-25 华为技术有限公司 相干光通信的装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867418A (zh) * 2009-04-16 2010-10-20 华为技术有限公司 一种光信号的接收方法、光信号接收装置和光传输系统
CN102386969A (zh) * 2010-09-02 2012-03-21 中兴通讯股份有限公司 一种光通信系统接收性能优化方法及装置
WO2014146236A1 (zh) * 2013-03-18 2014-09-25 华为技术有限公司 相干光通信的装置和方法
CN103616674A (zh) * 2013-12-18 2014-03-05 黑龙江大学 光电探测器的最佳本振光功率的测量方法
CN104009807A (zh) * 2014-03-14 2014-08-27 中国科学院上海光学精密机械研究所 利用通道切换实现相干光通信的解调装置和解调方法

Also Published As

Publication number Publication date
CN106506095A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5573627B2 (ja) 光デジタルコヒーレント受信器
US11283528B2 (en) Digital coherent receiver and digital coherent receiving method
KR101995651B1 (ko) 스타일러스의 목표 작동 주파수를 결정하는 방법 및 터치 스크린, 스타일러스
WO2018040258A1 (zh) 基站信号发射功率的调整方法、装置、设备及存储介质
AU2016208339A1 (en) Context-based dynamic policy system for mobile devices and supporting network infrastructure
CN103546710A (zh) Hdmi信号调整方法及hdmi信号接收设备、发送设备和处理系统
US20160277223A1 (en) Carrier frequency offset processing method and apparatus and receiver
CN112448772A (zh) 自动调节补偿参数的方法和装置
WO2015042854A1 (zh) 一种调整发送功率的方法和装置
US8611764B2 (en) Optical receiver module
JP2004289820A (ja) 光学システムの性能を評価する方法及び装置
US20170063519A1 (en) Transmitter, receiving device, and frequency offset correction method
EP3317989B1 (en) Interleaving information for media data
WO2013051244A1 (ja) 信号処理装置及び信号処理方法
WO2017041605A1 (zh) 一种前向纠错fec的补偿控制方法及装置
RU2463708C1 (ru) Способ и устройство для оптимизации уровня порога принятия решения для оптического приемника
WO2015164007A1 (en) Systems and methods for gain and offset control
WO2023159886A1 (zh) 一种概率整形qam动态均衡及数字信号处理方法
CN102386969A (zh) 一种光通信系统接收性能优化方法及装置
KR102030036B1 (ko) 신호 처리 메커니즘을 가지는 무선 통신 시스템 및 동작 방법
JP5414915B2 (ja) 光通信装置
US20170286250A1 (en) Signal Compensation Method and Device
WO2017070826A1 (zh) 一种时钟性能监控系统、方法及装置
US8351800B2 (en) Optical receiver and clock generation method
US20170373785A1 (en) Receiving device and local light control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843543

Country of ref document: EP

Kind code of ref document: A1