WO2017041248A1 - 一种数据处理方法、基站以及终端设备 - Google Patents

一种数据处理方法、基站以及终端设备 Download PDF

Info

Publication number
WO2017041248A1
WO2017041248A1 PCT/CN2015/089252 CN2015089252W WO2017041248A1 WO 2017041248 A1 WO2017041248 A1 WO 2017041248A1 CN 2015089252 W CN2015089252 W CN 2015089252W WO 2017041248 A1 WO2017041248 A1 WO 2017041248A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving sequence
terminal device
decoding
system information
base station
Prior art date
Application number
PCT/CN2015/089252
Other languages
English (en)
French (fr)
Inventor
田春长
陈帆
蔺同宇
望育梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/089252 priority Critical patent/WO2017041248A1/zh
Priority to CN201580065157.5A priority patent/CN107005349B/zh
Publication of WO2017041248A1 publication Critical patent/WO2017041248A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/164Feedback from the receiver or from the transmission channel

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a data processing method, a base station, and a terminal device.
  • LTE Long Term Evolution
  • video services are developing rapidly, and video services have large bit rate characteristics, and video traffic will become the main data source for future mobile networks.
  • the video original data sequence needs to be compressed and encoded before the network transmission.
  • the main video compression coding standard is H.264/Advanced Video Coding (AVC) or Scalable Video Coding (SVC).
  • AVC Advanced Video Coding
  • SVC Scalable Video Coding
  • the Group Of Pictures (GOP) is the smallest coding unit, and the data between the GOPs is independent of each other, that is, the video image can be reconstructed and reconstructed independently according to the received data at the receiving end, within the GOP.
  • There are correlations between video frames which are divided into three types: I, P, and B.
  • the GOP also has encoding control parameters for the decoder, where the I frame is an internally encoded frame and can be independently decoded.
  • a frame is a forward-predicted frame that depends on an I-frame to decode.
  • a B-frame is a bidirectionally interpolated frame that depends on an I-frame or a P-frame to decode.
  • the extent to which the data packet of the same length (ie, a bit sequence) affects the decoding and reconstruction of the receiving end is different, and the high-to-low order is the encoding control parameter, I frame, P frame, B. frame.
  • SVC is an extended version of H.264/AVC.
  • SVC encodes a video sequence into a data stream containing multiple interdependent layers.
  • the bottom layer is called the base layer (BL), which can restore the most basic quality video.
  • the image, based on the upper layer of the base layer is the Enhancement Layer (EL), which enhances the image quality of the video.
  • BL base layer
  • EL Enhancement Layer
  • all ELs must rely on BL to decode. If there are multiple ELs, the EL in the upper layer needs to rely on the lower layer EL to decode.
  • a corresponding number of sub-layers ie, sub-code streams
  • the video service not only accounts for a large amount of traffic, but also affects the video recovery effect of the receiver at different levels in the video service stream. For example, in the case of the same bit error rate, in the case where the bit error is not the data of the BL and the data of the EL, the recovery effect of the video data is significantly enhanced when the bit error occurs less in the data of the BL. Because the decoding error of the BL data not only causes the data of the BL to be unrecoverable, but also affects the data of the EL even if it is correctly received. However, in the transmission mechanism of the downlink user plane data of the evolved NodeB (eNB) side in the existing LTE access network, the same video is generated by multiplexing in each Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • MAC Media Access Control
  • PDU Protocol Data Unit
  • EEP Equal Error Protection
  • the embodiments of the present invention provide a data processing method, a base station, and a terminal device, which are used to improve the quality of data of high importance received by the receiving end.
  • an embodiment of the present invention provides a data processing method, including:
  • the base station performs channel coding on the first code block CB to obtain a third CB, where the third CB includes: first system information, first path check information, and second path check information;
  • the base station performs channel coding on the second CB to obtain a fourth CB, where the fourth CB includes: second system information, third path check information, and fourth path check information, and data carried by the third CB
  • the importance of the data is greater than the importance of the data carried by the fourth CB, where the first CB and the second CB are two code blocks obtained by the base station after the transport block is segmented by the code block;
  • the base station multiplies a preset coding matrix and the first system information to generate verification information of a linear block code, where the coding matrix and the unit matrix constitute a generation matrix of the linear block code;
  • the base station performs an exclusive-OR calculation on the verification information of the linear block code and the second system information to obtain third system information, and replaces the second system information included in the fourth CB with the third system.
  • Information, the fifth CB is obtained, and the fifth CB includes: third system information, third road school Inspection information and fourth way verification information;
  • the base station sends the third CB to the terminal device, and the base station sends the fifth CB to the terminal device.
  • the method before the base station performs channel coding on the first code block CB to obtain the third CB, the method further includes:
  • the base station performs cyclic redundancy check code CRC processing on the first CB.
  • the method before the base station performs channel coding on the second CB, the method further includes:
  • the base station performs CRC processing on the second CB.
  • the method before the base station sends the third CB to a terminal device, and before the base station sends the fifth CB to a terminal device, the method also includes:
  • the base station performs rate matching and interleaving coding on the third CB, and the base station performs rate matching, interleaving coding on the fifth CB, and then performs a third CB after the interleaving coding and a fifth CB after the interleaving coding is completed.
  • the CB performs code block cascading and data modulation.
  • an embodiment of the present invention further provides a data processing method, including:
  • the terminal device Receiving, by the terminal device, the third code block CB sent by the base station, to obtain a third CB receiving sequence, where the third CB receiving sequence includes: a first system information receiving sequence, a first path check information receiving sequence, and a second path check Information receiving sequence;
  • the fifth CB sent by the base station, to obtain a fifth CB receiving sequence
  • the fifth CB receiving sequence includes: a third system information receiving sequence, a third channel check information receiving sequence, and a fourth path Verifying the information receiving sequence
  • the terminal device After the terminal device obtains the third CB receiving sequence, the terminal device performs channel decoding on the third CB receiving sequence to obtain a third CB decoding result;
  • the terminal device multiplies the third CB decoding result and the preset coding matrix to obtain a system information recovery sequence, and performs an exclusive-OR calculation on the system information recovery sequence and the third system information receiving sequence, Obtaining a second system information receiving sequence, replacing the third system information receiving sequence included in the fifth CB receiving sequence with the second system information receiving sequence, to obtain a fourth CB receiving sequence, where the fourth CB receiving sequence
  • the method includes: the second system information receiving sequence, the third channel check information receiving sequence, and the fourth path verifying information receiving sequence;
  • the terminal device performs channel decoding on the fourth CB receiving sequence to obtain a fourth CB decoding result.
  • the method further includes :
  • the terminal device fails to perform channel decoding on the third CB receiving sequence, the terminal device performs an exclusive-OR calculation on the third system information receiving sequence and the fourth CB decoding result to generate a linear block code.
  • Auxiliary verification information
  • the terminal device uses the auxiliary check information and the third CB decoding result as an input of a linear block code decoder, and acquires a third CB correction result output by the linear block code decoder.
  • the terminal device determines whether channel decoding of the third CB receiving sequence is successful, the method also includes:
  • the terminal device If the terminal device successfully performs channel decoding on the third CB receiving sequence, triggering the step of performing: the terminal device multiplies the third CB decoding result and the preset encoding matrix to obtain system information recovery. a sequence, performing an exclusive-OR calculation on the system information recovery sequence and the third system information receiving sequence to obtain a second system information receiving sequence, and replacing the third system information receiving sequence included in the fifth CB receiving sequence with The second system information receiving sequence obtains a fourth CB receiving sequence.
  • the terminal device performs the third system information receiving sequence and the fourth CB decoding result
  • the XOR calculation, before generating the auxiliary verification information of the linear block code the method further includes:
  • the terminal device performs channel decoding on the third CB receiving sequence to obtain a third CB decoding result, where the method is Also includes:
  • the terminal device performs a cyclic redundancy check code CRC check on the third CB decoding result
  • the terminal device If the result of the CRC check is successful, the terminal device outputs the third CB decoding result
  • the terminal device discards the third CB decoding result, or the terminal device notifies the base station to resend the third CB. .
  • the method further includes :
  • the terminal device performs a CRC check on the fourth CB decoding result
  • the terminal device If the result of the CRC check is successful, the terminal device outputs the fourth CB decoding result
  • the terminal device discards the fourth CB decoding result, or the terminal device notifies the base station to resend the fifth CB. .
  • the terminal device receives a third code block CB sent by the base station, to obtain a third CB receiving sequence, where the terminal device receives the sending by the base station
  • the fifth CB obtains the fifth CB receiving sequence, including:
  • the terminal device performs data demodulation on the third CB and the fifth CB sent by the base station, and then performs rate matching and interleaving decoding on the demodulated third CB to obtain a third CB receiving sequence, which is demodulated.
  • the fifth CB performs rate matching and interleaving decoding to obtain a fifth CB receiving sequence.
  • an embodiment of the present invention further provides a base station, including:
  • An encoding module configured to perform channel coding on the first code block CB, to obtain a third CB, where the third CB includes: first system information, first path check information, and second path check information;
  • the CB performs channel coding to obtain a fourth CB, where the fourth CB includes: second system information, third path check information, and fourth path check information, where the data carried by the third CB is more important than the The importance of the data carried by the fourth CB, the first CB and the second CB are two code blocks obtained by the base station after the transport block is segmented by the code block;
  • a verification information calculation module configured to perform a preset coding matrix and the first system information Multiplying, generating check information of the linear block code, the coding matrix and the unit matrix forming a generation matrix of the linear block code;
  • a system information update module configured to perform an exclusive-OR calculation on the verification information of the linear block code and the second system information, to obtain third system information, and replace the second system information included in the fourth CB with The third system information is obtained, and the fifth CB is obtained, where the fifth CB includes: third system information, third path check information, and fourth path check information;
  • a sending module configured to send the third CB to the terminal device, and send the fifth CB to the terminal device.
  • the base station further includes: a CRC processing module, configured by the coding module to perform channel coding on the first code block CB, to obtain a third CB And performing cyclic redundancy check code CRC processing on the first CB.
  • a CRC processing module configured by the coding module to perform channel coding on the first code block CB, to obtain a third CB And performing cyclic redundancy check code CRC processing on the first CB.
  • the base station further includes: a CRC processing module, configured by the coding module to perform channel coding on the second CB, before obtaining the fourth CB, The second CB performs CRC processing.
  • the base station further includes: a multi-stage processing module, configured to send, by the sending module, the third CB to the terminal device, and Before the terminal device sends the fifth CB, performing rate matching and interleaving coding on the third CB, performing rate matching, interleaving coding on the fifth CB, and then performing interlaced coding on the third CB and completing the interleaving.
  • the encoded fifth CB performs code block concatenation and data modulation.
  • the embodiment of the present invention further provides a terminal device, including:
  • a receiving module configured to receive a third code block CB sent by the base station, to obtain a third CB receiving sequence, where the third CB receiving sequence includes: a first system information receiving sequence, a first channel check information receiving sequence, and a first a second channel check information receiving sequence; receiving the fifth CB sent by the base station to obtain a fifth CB receiving sequence, the fifth CB receiving sequence, including: a third system information receiving sequence, and a third channel check information receiving sequence And a fourth way check information receiving sequence;
  • a decoding module configured to perform channel decoding on the third CB receiving sequence after obtaining the third CB receiving sequence, to obtain a third CB decoding result
  • a system information update module configured to multiply the third CB decoding result and a preset coding matrix to obtain a system information recovery sequence, and the system information recovery sequence is different from the third system information receiving sequence Or calculating to obtain a second system information receiving sequence, and the fifth CB receiving sequence
  • the third system information receiving sequence included in the column is replaced by the second system information receiving sequence to obtain a fourth CB receiving sequence, where the fourth CB receiving sequence includes: the second system information receiving sequence, the third road school The information receiving sequence and the fourth path verifying information receiving sequence;
  • the decoding module is further configured to perform channel decoding on the fourth CB receiving sequence to obtain a fourth CB decoding result.
  • the terminal device further includes: a decoding determination module, an auxiliary verification information calculation module, and a correction module, where
  • the decoding judging module is configured to perform channel decoding on the fourth CB receiving sequence by the decoding module, and obtain a fourth CB decoding result, and determine whether to perform channel decoding on the third CB receiving sequence. success;
  • the auxiliary check information calculation module is configured to: if the decoding module fails to perform channel decoding on the third CB receiving sequence, perform the third system information receiving sequence and the fourth CB decoding result XOR calculation, generating auxiliary verification information of the linear block code;
  • the correction module is configured to obtain the third CB correction result output by the linear block code decoder as the input of the linear block code decoder as the input of the auxiliary block check information and the third CB decoding result.
  • the decoding determining module is further configured to: if the decoding module receives the third CB The sequence is successfully decoded by the channel, and the execution of the system information update module is triggered.
  • the terminal device further includes: an iterative determining module, configured to: Performing exclusive-OR calculation on the third system information receiving sequence and the fourth CB decoding result, and determining the number of times of decoding the channel decoding of the third CB receiving sequence before generating the auxiliary check information of the linear block code If the preset number of iterations threshold is exceeded, if the number of times of decoding the channel decoding of the third CB receiving sequence does not exceed the preset number of iterations threshold, the execution of the auxiliary verification information calculation module is triggered.
  • the terminal device further includes: a cyclic redundancy check code CRC processing module, configured by the decoding module to the third CB Receiving a channel for channel decoding, and obtaining a third CB decoding result, performing a cyclic redundancy check code CRC check on the third CB decoding result; if the third CB decoding result is performing CRC check The result is that the verification succeeds, and the third CB decoding result is output; if the third CB decoding result is performed The result of the CRC check is that the check fails, the third CB decoding result is discarded, or the terminal device notifies the base station to resend the third CB.
  • a cyclic redundancy check code CRC processing module configured by the decoding module to the third CB Receiving a channel for channel decoding, and obtaining a third CB decoding result, performing a cyclic redundancy check code CRC check on the third CB decoding result; if the third CB decoding result is performing CRC check The result is
  • the terminal device further includes: a cyclic redundancy check code CRC processing module, configured by the decoding module to the fourth CB
  • the receiving sequence performs channel decoding to obtain a fourth CB decoding result, and performs a CRC check on the fourth CB decoding result; if the fourth CB decoding result performs a CRC check, the verification result is successful.
  • the receiving module is configured to perform data demodulation on the third CB and the fifth CB sent by the base station, and then demodulate the data.
  • the third CB performs rate matching and interleaving decoding to obtain a third CB receiving sequence, and performs rate matching and interleaving decoding on the demodulated fifth CB to obtain a fifth CB receiving sequence.
  • the base station since the importance of the data carried by the third CB is greater than the importance of the data carried by the fourth CB, the base station obtains the linear group by multiplying the preset coding matrix and the first system information.
  • the verification information of the code is carried in the fourth CB, and the fifth CB is generated.
  • the base station adds a correlation between the third CB and the fourth CB in the fifth CB, and after the terminal device obtains the fifth CB receiving sequence,
  • the second system information receiving sequence can be recovered by using the third system information sequence carried in the fifth CB receiving sequence, so that the unequal error protection for the third CB and the fourth CB can be implemented, so that the bearer is carried under the same network condition.
  • the third CB of the more important data can give stronger error protection and can improve the transmission quality of the third CB from the transmitting end to the receiving end.
  • FIG. 1 is a schematic block diagram of a data processing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of another data processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of physical layer data processing in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing an implementation manner of performing Turbo coding on a code block according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a processing manner of performing code block segmentation on a transport block according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an implementation manner of coding processing of a code block by a base station side according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an implementation manner of decoding a code block by a terminal device according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of decoding processing of a code block by a terminal device according to an embodiment of the present disclosure
  • FIG. 5-a is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 5-b is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 5-c is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • 6-a is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • 6-b is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • 6-c is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • the embodiments of the present invention provide a data processing method, a base station, and a terminal device, which are used to enhance the protection degree of data of high importance and improve the quality of data of high importance received by the receiving end.
  • the terminal device to which the present invention relates may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to the wireless modem, and Various forms of user equipment (User Equipment, UE), mobile station (Mobile station, MS), terminal (terminal) and the like.
  • UE User Equipment
  • MS mobile station
  • terminal terminal devices
  • An embodiment of the data processing method of the present invention is applicable to a channel coding process for data.
  • the data processing method provided by the embodiment of the present invention may include the following steps:
  • the base station performs channel coding on the first code block (CB) to obtain a third CB, where the third CB includes: first system information, first path check information, and second path check information.
  • the base station performs channel coding on the second CB to obtain a fourth CB, where the fourth CB includes: second system information, third path check information, and fourth path check information.
  • the importance of the data carried by the third CB is greater than the importance of the data carried by the fourth CB.
  • the first CB and the second CB are two obtained by the base station after the transport block (TB) is segmented by the code block. Code block.
  • the data processing procedure in the Physical Downlink Shared Channel (PDSCH) of the physical layer is performed on the base station side, where the transport block may be a MAC PDU.
  • the transport block is segmented by the code block, two code blocks are obtained, which are respectively defined as the first CB and the second CB, and the data carried by the first CB is more important than the data carried by the second CB.
  • the importance of the data can indicate the importance of the data through the content of the data itself.
  • the SVC encodes a video sequence as an example. After encoding the video sequence, the first CB and the second CB are obtained. The first CB includes data of the BL, and the second CB includes data of the EL.
  • the decoding error of the BL will affect the decoding of the EL, therefore, the data of the BL is more important than the data of the EL.
  • a two-dimensional image can be decomposed into different frequency components.
  • the low frequency component can be used to describe a wide range of information
  • the high frequency component can be used to describe a specific image detail.
  • the data carried by the first CB can be a low frequency component
  • the data of the second CB is a high frequency component
  • the low frequency component is important. The degree is greater than the importance of the high frequency component.
  • a region where the luminance changes little is mainly a low frequency component
  • a region where the luminance changes sharply is mainly a high frequency component
  • data carried by the first CB may be a low frequency component
  • the data carried by the CB is a high frequency component
  • the importance of the low frequency component is greater than the importance of the high frequency component.
  • the importance of the data may be represented by a specific identifier carried in the code block.
  • the importance of the data carried by the first CB may be determined by the importance identifier carried in the first CB, and the second CB carries the identifier.
  • the importance of the data can be carried through the importance of being carried in the second CB
  • the identifier is determined to be specific, and different data is respectively carried in the first CB and the second CB. If the importance of the data carried by the first CB is greater than the importance of the data carried by the second CB, the first CB may be adopted.
  • the importance identifier carried in the identifier is different from the importance identifier carried in the second CB to indicate the difference in the degree of importance.
  • the importance of the data carried by the first CB is greater than the importance of the data carried by the second CB, and the unequal error may be adopted for the first CB and the second CB in the embodiment of the present invention.
  • Unequal Error Protection (UEP), which can protect the bearer data through the UEP.
  • the first CB with higher degree of importance can be correctly decoded by the receiving end (ie, the terminal device).
  • the base station may obtain two code blocks after the code block is segmented by the code block, which are respectively the first CB and the second CB, and then the base station pairs the two code blocks (ie, the first CB and the second CB) performing channel coding separately, wherein the base station performs channel coding on the first CB to obtain a third CB, and the base station performs channel coding on the second CB to obtain a fourth CB, if the data carried by the first CB is more important than the second The importance of the data carried by the CB, then the two code blocks do not change the importance between the two after the channel coding, so the importance of the data carried by the third CB is greater than the importance of the data carried by the fourth CB. degree.
  • the encoding of the video sequence by SVC is taken as an example
  • the third CB includes: data of BL
  • the fourth CB includes data of EL.
  • the data carried by the third CB may be a low frequency component
  • the data carried by the fourth CB is a high frequency component.
  • the base station may perform channel coding on the code block in multiple manners.
  • the base station may use Turbo coding, and the base station may also use convolutional coding or Hamming coding.
  • the specific coding mode of the specific base station is not limited in the embodiment of the present invention.
  • the channel coding mode may be determined according to the specific application scenario.
  • the specific selection of the channel coding mode does not limit the different codes in the embodiment of the present invention. Block implementation of unequal error protection.
  • the first CB is used as the original code block sequence, and may be subjected to Turbo coding to generate a third CB, where the third CB includes system information and check information, specifically, the third CB.
  • the method includes: first system information, first path check information, and second path check information, where the second CB is used as the original code block sequence, and after Turbo coding, the fourth CB may be generated, and the fourth CB is included in the fourth CB.
  • the fourth CB includes: second system information, third channel verification information, and fourth path verification information.
  • the base station uses Turbo coding as a channel coding example.
  • the station performs the Turbo coding of the first CB and the Turbo coding of the second CB independently, and there is no sequence or logical sequence between the two, and the base station may also adopt convolutional coding, Han.
  • the coding method is used to encode the code block, as long as the following conditions are met: the channel coding method has the system code feature, and the system information of the coded code word does not intersect with the verification information, and can be used in the code in the embodiment of the present invention.
  • the channel coding of the block is used to encode the code block, as long as the following conditions are met: the channel coding method has the system code feature, and the system information of the coded code word does not intersect with the verification information, and can be used in the code in the embodiment of the present invention.
  • the channel coding of the block is used to encode the code block, as long as the following conditions are met: the channel coding method has the system code feature, and the system information of the coded code word
  • the base station performs channel coding on the first CB, and before the third CB is obtained, the data processing method provided by the embodiment of the present invention may further include the following steps:
  • A1 The base station performs Cyclic Redundancy Check (CRC) processing on the first CB.
  • CRC Cyclic Redundancy Check
  • step 102 the base station performs channel coding on the second CB to obtain the fourth CB.
  • the data processing method provided by the embodiment of the present invention may further include the following steps:
  • the base station performs CRC processing on the second CB.
  • the base station may also perform CRC processing on the code block, and CRC is the most commonly used error check code in the field of data communication, and is characterized in that The length of the information field and the check field can be arbitrarily selected.
  • the CRC can implement the data transmission error detection function, perform polynomial calculation on the data, and attach the obtained result to the code block to ensure the correctness and integrity of the data transmission. For specific CRC processing, refer to the prior art.
  • the base station may perform CRC processing on the transport block before performing block segmentation on the transport block to obtain the first CB and the second CB, where the transport block is in the transport block.
  • the CRC check bit is added, and the specific CRC process can be referred to the prior art.
  • the base station multiplies the preset coding matrix and the first system information to generate verification information of the linear block code, where the coding matrix and the unit matrix form a generation matrix of the linear block code.
  • the base station after obtaining the third CB and the fourth CB, performs step 103, and performs step 104 after obtaining the check information of the linear block code.
  • the base station performs an exclusive-OR calculation on the verification information of the linear block code and the second system information, to obtain the third system information, and replaces the second system information included in the fourth CB with the third system information, to obtain the fifth CB.
  • the five CBs include: third system information, third channel verification information, and fourth channel verification information.
  • the base station may obtain the third CB and the fourth CB, where the third CB includes the first system information, and the fourth CB
  • the second system information is included, and then the base station adopts a preset coding matrix and the first A system information is multiplied and calculated to obtain a check information of the linear block code, and the base station performs an exclusive OR calculation on the check information of the linear block code and the second system information to obtain third system information, and then the base station will use the fourth CB.
  • the included second system information is replaced with the third system information, and the fifth CB is obtained.
  • the base station includes the third system information in the fifth CB, and the third system information is the verification information of the linear block code and the second system information.
  • the XOR is calculated. It can be seen from the foregoing step 103 that the check information of the linear block code is the result of multiplying the preset coding matrix and the first system information, so after the base station performs step 103 and step 104, the base station is in the fifth.
  • the correlation between the third CB and the fourth CB is increased in the CB, wherein the third system information included in the fifth CB may indicate the degree of correlation between the third CB and the fourth CB.
  • the base station may use a preset coding matrix for performing correlation calculation on the third CB and the fourth CB, where the preset coding matrix may be an encoding matrix used in multiple coding methods, for example,
  • the preset coding matrix may be an encoding matrix used in an encoding method using a linear block code, and the preset encoding matrix may also use an encoding matrix used in an encoding method of other linear codes, for example, encoding using a cyclic code and a Hamming code.
  • the matrix acts as a preset encoding matrix.
  • the third system information included in the fifth CB may represent a correlation introduced between the third CB and the fourth CB, and the third system information may be used by the receiving end (ie, the terminal device).
  • the channel decoding of the code block improves the decoding success rate of the third CB.
  • the preset coding matrix is an encoding matrix of a linear block code
  • the coding matrix and the unit matrix form a generation matrix of a linear block code
  • the unit matrix is a main diagonal line from the upper left corner to the lower right corner.
  • the elements are all 1, except that the square matrix is all 0.
  • the system information included in the third CB is the first system information, and the base station multiplies the coding matrix and the first system information to generate the verification information of the linear block code.
  • the base station performs an exclusive-OR calculation on the check information of the linear block code and the second system information to obtain third system information, where the third system information is carried in the fifth CB, that is, the base station calculates to represent the third
  • the third system information of the correlation between the CB and the fourth CB is then carried by the fifth CB, and since the third CB is of higher importance than the fourth CB, it can be carried by the fifth CB.
  • the third system information does not affect the third CB obtained by the base station, and the third system information carried in the fifth CB can be used for the channel decoding of the third CB by the receiving end, so that the decoding of the third CB can be improved. to make Rate.
  • the base station sends a third CB to the terminal device, and the base station sends the fifth CB to the UE.
  • the third system information is determined by the fifth CB.
  • the base station sends a third CB to the terminal device, and sends a fifth CB to the terminal device.
  • the base station sends the third CB to the terminal device, and the fifth CB is transmitted through the underlying physical link between the base station and the terminal device.
  • the specific transmission process of the third CB and the fifth CB may refer to the prior art. The description of the embodiments of the invention will not be repeated.
  • the data processing method provided by the embodiment of the present invention may further include the following steps:
  • the base station performs rate matching and interleaving coding on the third CB, and the base station performs rate matching and interleaving coding on the fifth CB, and then performs code block cascading on the third CB after the interleave coding is completed and the fifth CB after the interleave coding is completed. And data modulation.
  • the base station may perform rate matching and interleaving coding on the third CB, and the base station performs rate matching and interleaving coding on the fifth CB, and then Performing code block cascading and data modulation on the third CB after the completion of the interleave coding and the fifth CB after the completion of the interleave coding, after the base station completes the multi-stage processing described above, the base station sends the third CB to the terminal device, and the terminal The device sends a fifth CB.
  • the rate matching means that the bits on the transmission channel are retransmitted or punctured to match the carrying capacity of the physical channel, and the bit rate required by the transmission format is reached during channel mapping.
  • Interlace coding is a communication technology that improves the fading of mobile communication signals in an actual mobile communication environment. It will cause bursty errors in digital signal transmission. Interleaving coding techniques can be used to discretize and correct such sudden errors and improve mobile communication. Transmission characteristics.
  • the code block cascade is to sequentially cascade the third CB and the fifth CB to output the third CB and the fifth CB.
  • Data modulation is a technique of transforming a baseband signal into a transmission signal.
  • the base station performs channel coding on the first CB and the second CB obtained after the transmission block is subjected to the code block segmentation, and obtains data carried by the third CB and the fourth CB, and the third CB.
  • the importance of the data is greater than the importance of the data carried by the fourth CB.
  • the third CB includes the first system information, the first path check information, and the second path check information.
  • the fourth CB includes: the second system information, the third path.
  • the base station multiplies the preset coding matrix and the first system information to generate check information of the linear block code, and the coding matrix and the unit matrix constitute the generation of the linear block code a matrix, the base station performs an exclusive-OR calculation on the verification information of the linear block code and the second system information, to obtain the third system information, and replaces the second system information included in the fourth CB with the third system information, to obtain the Five CB, the fifth CB includes: the third system information, the third road school And the fourth channel check information, the base station sends a third CB to the terminal device, and the base station sends the fifth CB to the UE.
  • the base station carries the verification information of the obtained linear block code by multiplying the preset coding matrix and the first system information.
  • the fifth CB is generated, and the base station adds a correlation between the third CB and the fourth CB in the fifth CB, and the terminal device can receive the fifth CB after obtaining the fifth CB receiving sequence.
  • the third system information sequence carried in the sequence recovers the second system information receiving sequence, so that the unequal error protection for the third CB and the fourth CB can be realized, so that the data with higher importance is carried under the same network condition.
  • the third CB gives stronger error protection and can improve the transmission quality of the third CB from the transmitting end to the receiving end.
  • the foregoing embodiment describes the data processing method provided by the embodiment of the present invention from the base station side, and then describes the data processing method provided by the embodiment of the present invention from the terminal device side.
  • the data provided by the embodiment of the present invention is shown in FIG.
  • the processing method can include the following steps:
  • the terminal device receives the third CB sent by the base station, and obtains a third CB receiving sequence, where the third CB receiving sequence includes: a first system information receiving sequence, a first path check information receiving sequence, and a second path check information receiving. sequence.
  • the terminal device receives the fifth CB sent by the base station, and obtains a fifth CB receiving sequence, and the fifth CB receiving sequence includes: a third system information receiving sequence, a third channel check information receiving sequence, and a fourth path verifying information receiving. sequence.
  • the base station sends the third CB and the fifth CB to the terminal device by using the physical link between the base station and the terminal device, and the terminal device separately receives the third CB and the fifth CB sent by the base station, and the terminal The device can obtain the third CB receiving sequence and the fifth CB receiving sequence. Since the base station includes the third system information in the fifth CB, the terminal device can obtain the third system information receiving sequence when receiving the fifth CB. The third system information receiving sequence can be used to represent the correlation between the third CB and the fourth CB.
  • the importance of the data carried by the third CB is greater than the importance of the data carried by the fourth CB, and therefore, the importance of the data carried by the third CB receiving sequence for the terminal device side. Greater than the importance of the data carried by the fifth CB receiving sequence.
  • the terminal device receives the third code block CB sent by the base station to obtain a third CB receiving sequence, and the terminal device receives the fifth CB sent by the base station to obtain a fifth CB receiving sequence. It can include the following steps:
  • the terminal device performs data demodulation on the third CB and the fifth CB sent by the base station, and then performs rate matching and interleaving decoding on the demodulated third CB to obtain a third CB receiving sequence, and performs demodulation on the fifth CB. Rate matching and interleaving decoding yield a fifth CB reception sequence.
  • the terminal device when the terminal device receives the data stream sent by the base station through the underlying physical link, the data stream includes the third CB and the fifth CB sent by the base station, and the terminal device first sends the data to the base station.
  • the terminal device After the third CB and the fifth CB perform data demodulation, the terminal device separates different code block streams, and the terminal device performs rate matching and interleaving decoding on the demodulated third CB to obtain a third CB receiving sequence, and the terminal device pairs
  • the demodulated fifth CB performs rate matching and interleaving decoding to obtain a fifth CB receiving sequence.
  • the base station side performs rate matching, interleaving coding, code block concatenation, and data modulation on the third CB and the fifth CB.
  • the terminal device side also needs the third CB and the fifth CB to perform multi-stage processing opposite to the base station side, and the specific processing procedure can refer to the prior art.
  • the terminal device After obtaining the third CB receiving sequence, the terminal device performs channel decoding on the third CB receiving sequence to obtain a third CB decoding result.
  • the terminal device after the terminal device obtains the third CB receiving sequence in step 201, the terminal device performs step 203 to perform channel decoding on the third CB receiving sequence to obtain a third CB decoding result, which needs to be explained.
  • the channel decoding performed on the terminal device side is the two channel processing procedures opposite to the channel coding performed by the base station side in the foregoing embodiment. Therefore, which channel coding mode is adopted by the base station side, and needs to be adopted on the terminal device side.
  • Corresponding channel decoding mode for example, the base station uses Turbo coding for channel coding of the code block, and the terminal device needs to use Turbo decoding for channel decoding of the code block.
  • the terminal device needs Convolutional decoding or Hamming decoding is used to complete channel decoding for the third CB.
  • the specific decoding mode of the specific terminal device is not limited in the embodiment of the present invention.
  • the channel decoding mode may be determined according to the specific application scenario.
  • the specific selection of the channel decoding mode does not limit the embodiment of the present invention. Unequal error protection for different code blocks.
  • the terminal device multiplies the third CB decoding result and the preset coding matrix to obtain a system information recovery sequence, and performs an exclusive OR calculation on the system information recovery sequence and the third system information receiving sequence to obtain the second system information receiving. a sequence, the third system information receiving sequence included in the fifth CB receiving sequence is replaced with the second system information receiving sequence, to obtain a fourth CB receiving sequence, where the fourth CB receiving sequence includes: the second system information receiving sequence, the third channel The verification information receiving sequence and the fourth verification information receiving sequence.
  • the third system information received by the base station in the fifth CB is included in the fifth CB receiving sequence, so that the third system information receiving sequence obtained by the terminal device side can also be used to represent the third CB and
  • the correlation between the fourth CB, after the terminal device acquires the third CB decoding result, the terminal device may multiply the third CB decoding result and the encoding matrix preset by the terminal device side to obtain system information.
  • the information recovery sequence is used for restoring the third system information receiving sequence in the fifth CB receiving sequence, and performing an exclusive-OR calculation on the system information recovery sequence and the third system information receiving sequence to obtain the second system information receiving sequence, and then the fifth The third system information receiving sequence included in the CB receiving sequence is replaced with the second system information receiving sequence, and the terminal device may obtain Receiving a fourth sequence of CB, CB receiving the fourth sequence comprising: receiving second system information sequence, a third passage check information received sequence and a fourth passage check information received sequence.
  • the base station side uses the preset coding matrix and the first system information to perform multiplication to generate the verification information of the linear block code, and the terminal device also needs to use the channel decoding for the fifth CB reception sequence.
  • the same coding matrix is used to complete the channel decoding.
  • the third CB decoding result is a decoding result of the third CB sent by the terminal device to the base station.
  • the base station side separately sends the third CB, but does not independently transmit the first CB.
  • the fourth CB replaces the second system information in the fourth CB with the third system information, and obtains the fifth CB, and the base station side transmits the fifth CB.
  • the channel decoding of the third CB receiving sequence by the terminal device side is performed independently, so the third CB decoding result calculated by the terminal device is not affected by the error generated during the fifth CB transmission. Since the third system information for indicating the correlation between the third CB and the fourth CB is carried in the fifth CB, the third system information receiving sequence in the fifth CB receiving sequence obtained by the terminal device may also be used for The error generated during the three CB transmission process is corrected, as described in the following embodiments.
  • the present invention since the importance of the data carried by the fourth CB is not as high as the data carried by the third CB, even if the transmission error of the third CB affects the reception of the fifth CB, the error effect is relatively small, so the present invention
  • only the third system information indicating the correlation between the third CB and the fourth CB is carried in the fifth CB, and the correlation between the third CB and the fourth CB is not added in the third CB, thereby Unequal error protection for the third CB and the fourth CB can be achieved.
  • the terminal device performs channel decoding on the fourth CB receiving sequence to obtain a fourth CB decoding result.
  • the terminal device after the terminal device obtains the fourth CB receiving sequence by using the foregoing step 204, the terminal device performs step 205 to perform channel decoding on the fourth CB receiving sequence to obtain a fourth CB decoding result, which needs to be explained.
  • the channel decoding performed on the terminal device side is the two channel processing procedures opposite to the channel coding performed by the base station side in the foregoing embodiment. Therefore, which channel coding mode is adopted by the base station side, and needs to be adopted on the terminal device side.
  • Corresponding channel decoding mode For example, the base station uses Turbo coding for channel coding of the code block, and the terminal device needs to use Turbo decoding for channel decoding of the code block.
  • the terminal device needs to use convolutional decoding or Han. Decoding to complete channel decoding for the third CB.
  • the specific decoding mode of the specific terminal device is not limited in the embodiment of the present invention.
  • the channel decoding mode may be determined according to the specific application scenario.
  • the specific selection of the channel decoding mode does not limit the embodiment of the present invention. Unequal error protection for different code blocks.
  • the data processing method provided by the embodiment of the present invention may further include the following steps:
  • the terminal device performs CRC check on the fourth CB decoding result.
  • the terminal device If the result of the CRC check on the fourth CB decoding result is that the verification is successful, the terminal device outputs a fourth CB decoding result.
  • the terminal device discards the fourth CB decoding result, or the terminal device notifies the base station to resend the fifth CB.
  • the terminal device may perform CRC check on the fourth CB decoding result, and if the CRC check succeeds, the fourth CB translation may be output.
  • the result of the code if the result of the CRC check of the fourth CB decoding result is a verification failure, it indicates that the base station has a transmission error during the process of transmitting the fourth CB, and the terminal device cannot correctly decode the fourth CB receiving sequence, and the terminal device
  • the fourth CB decoding result may be discarded, or the base station side may be notified to resend the fifth CB.
  • the data processing method provided by the embodiment of the present invention may further include The following steps:
  • the terminal device determines whether channel decoding is performed on the third CB receiving sequence.
  • the terminal device fails to perform channel decoding on the third CB receiving sequence, the terminal device is in the third Performing exclusive-OR calculation on the system information receiving sequence and the fourth CB decoding result, and generating auxiliary verification information of the linear block code;
  • the terminal device uses the auxiliary check information and the third CB decoding result as input of the linear block code decoder to obtain a third CB correction result output by the linear block code decoder.
  • the terminal device performs channel decoding on the third CB receiving sequence, and after obtaining the third CB decoding result, the terminal device may perform channel decoding on the third CB receiving sequence to determine whether the decoding is successful. For example, the terminal device may determine whether the third CB receiving sequence is successfully decoded by using a CRC check. If the third CB receiving sequence is successfully decoded, the third CB decoding result is directly output. If the terminal device fails to perform channel decoding on the third CB receiving sequence, step C2 is performed, and the fifth CB receiving sequence received by the terminal device includes a third system information receiving sequence, where the third system information receiving sequence can be used.
  • the terminal device performs an exclusive-OR calculation on the third system information receiving sequence and the fourth CB decoding result, and generates auxiliary verification information of the linear block code, and the terminal device further performs the auxiliary verification information and
  • the third CB decoding result is used as an input of the linear block code decoder to obtain a third CB correction result output by the linear block code decoder, and the supervised matrix of the linear packet decoder is the generation matrix of the linear block code.
  • the supervised matrix so the third CB decoding result can be corrected by the linear block code decoder, and the third CB correction result is obtained, and the third CB correction result is more consistent with the third CB sent by the base station side.
  • the process of correcting the third CB decoding result by the linear block code decoder can be referred to the prior art.
  • the terminal device may determine whether the channel decoding performed on the third CB receiving sequence is successful, and if the terminal device performs the channel on the third CB receiving sequence.
  • the result of the decoding is that the decoding is successful, indicating that the third CB sent by the base station does not have an error during the transmission, so there is no need to modify the third CB decoding result, and instead of performing step C2 and step C3,
  • the third CB decoding result can be directly output. If the decoding result of the third CB decoding result is a decoding failure, it indicates that the third CB sent by the base station has an error in the transmission process, so the terminal device side needs to correct the third CB decoding result again.
  • the receiving success rate of the terminal device to the third CB is increased, in which case step C2 and step C3 can be triggered.
  • the terminal device may further perform the third system information receiving sequence and the fourth CB decoding included in the fifth CB receiving sequence.
  • the third CB decoding result is corrected to obtain a third CB correction result.
  • the third CB decoding sequence and the fourth CB decoding result included in the fifth CB receiving sequence may be used to modify the third CB decoding result.
  • the third CB sent by the base station in the embodiment of the present invention has The error correction capability, the terminal device can correct the error generated by the base station to send the third CB process, so that the obtained third CB correction result can be close to the third CB sent by the base station side, thereby making the third party having a higher degree of importance.
  • the CB can be correctly transmitted, achieving unequal error protection for the third CB and the fourth CB.
  • the data processing method provided by the embodiment of the present invention may further include the following steps:
  • the triggering step 204 is: the terminal device multiplies the third CB decoding result by the preset encoding matrix to obtain a system information recovery sequence, and the system information recovery sequence is obtained. Performing exclusive-OR calculation with the third system information receiving sequence to obtain a second system information receiving sequence, replacing the third system information receiving sequence included in the fifth CB receiving sequence with the second system information receiving sequence, to obtain a fourth CB receiving sequence .
  • the terminal device performs an exclusive-OR calculation on the third system information receiving sequence and the fourth CB decoding result in the step C2 to generate the auxiliary parity information of the linear block code, and the present invention is implemented.
  • the data processing method provided by the example may further include the following steps:
  • the terminal device determines whether the number of times of decoding the channel decoding of the third CB receiving sequence exceeds a preset threshold number of iterations. If the number of times of decoding the channel decoding of the third CB receiving sequence does not exceed the preset number of iterations Threshold, triggering execution step C2: the terminal device performs an exclusive-OR calculation on the third system information receiving sequence and the fourth CB decoding result to generate auxiliary parity information of the linear block code.
  • the terminal device may set the iteration number threshold in advance in order to implement the decoding control of the channel decoding of the third CB receiving sequence.
  • step E1 is performed first. If the number of decoding times of the channel decoding exceeds the threshold of the number of iterations, the determination may be performed. If the preset number of iterations is not exceeded, step C2 and step C3 may be performed. If the preset number of iterations threshold has been exceeded, the translation may be ended. The code is not executed in steps C2 and C3. Through the implementation of step D1, the terminal device side can implement process control for channel decoding to avoid infinitely receiving the third CB due to transmission error of the code block during transmission. The sequence is channel decoded to save the resources of the decoder.
  • step 203 the terminal device sends a letter to the third CB receiving sequence.
  • the data processing method provided by the embodiment of the present invention may further include the following steps:
  • the terminal device performs CRC check on the third CB decoding result.
  • the terminal device If the result of the CRC check by the third CB decoding result is that the verification is successful, the terminal device outputs a third CB decoding result;
  • the terminal device discards the third CB decoding result, or the terminal device notifies the base station to resend the third CB.
  • the terminal device may perform CRC check on the third CB decoding result, and if the CRC check succeeds, the third CB translation may be output.
  • the result of the code if the result of the CRC check of the third CB decoding result is a verification failure, it indicates that the base station has a transmission error during the process of transmitting the third CB, and the terminal device cannot correctly decode the third CB receiving sequence, and the terminal device
  • the third CB decoding result may be discarded, or the base station side may be notified to resend the third CB.
  • the terminal device as the receiving end first receives the third CB sent by the base station, obtains the third CB receiving sequence, and receives the fifth CB sent by the base station, to obtain the fifth CB receiving.
  • the sequence, the third CB receiving sequence includes: a first system information receiving sequence, a first path check information receiving sequence, and a second path check information receiving sequence, and a fifth CB receiving sequence, including: a third system information receiving sequence, The third channel check information receiving sequence and the fourth channel check information receiving sequence, after the terminal device obtains the third CB receiving sequence, the terminal device performs channel decoding on the third CB receiving sequence to obtain a third CB decoding result, The terminal device multiplies the third CB decoding result and the preset coding matrix to obtain a system information recovery sequence, and performs an exclusive OR calculation on the system information recovery sequence and the third system information receiving sequence to obtain a second system information receiving sequence.
  • the fourth CB receiving sequence includes: a second system information receiving sequence, a third channel check information receiving sequence, and a fourth path verifying information receiving sequence, and the terminal device performs channel decoding on the fourth CB receiving sequence to obtain a fourth CB.
  • the result of the decoding because the importance of the data carried by the third CB is greater than the importance of the data carried by the fourth CB, the base station carries the verification information of the obtained linear block code by multiplying the preset coding matrix and the first system information.
  • the fifth CB is generated, and the base station adds a correlation between the third CB and the fourth CB in the fifth CB, and the terminal device can receive the fifth CB after obtaining the fifth CB receiving sequence.
  • the third system information sequence recovers the second system information receiving sequence, so that the unequal error protection for the third CB and the fourth CB can be implemented, so that the third CB carrying the more important data under the same network condition is provided. It can give stronger error protection and improve the transmission quality of the third CB from the sender to the receiver.
  • the foregoing embodiment describes the data processing method provided by the embodiment of the present invention from the base station side and the terminal device side.
  • the communication system may include: a base station and a terminal device.
  • the base station performs the data processing method shown in FIG. 1
  • the terminal device performs the data processing method shown in FIG. 2 .
  • the data processing method performed by the communication system may include a data processing method performed by the base station and a data processing method performed by the terminal device.
  • the layered features of the video service are added, and a new data processing process is added in the channel codec module to ensure that other parameter indicators of the existing network are not At the same time, the UEP processing of the video service data is implemented in a targeted manner.
  • the present invention is based on the existing LTE network physical layer architecture (taking the Turbo channel coding adopted by the PDSCH as an example) based on the inter-layer (Inter-Layer, based on the characteristics of the video services that need to be layered and the importance of each layer is different.
  • the IL implements the UEP of the data layer with different importance levels of the video service.
  • FIG. 3 is a schematic flowchart of physical layer data processing in an embodiment of the present invention.
  • the encoding and decoding process of the video data in the embodiment of the present invention is described in detail as an example.
  • the physical layer PDSCH data processing mechanism implemented by the base station side in the current LTE network is combined with the video coding output code stream.
  • the data layering feature distinguishes the video data content in the MAC PDU generated by multiplexing in a TTI, and after performing code block segmentation on the transport block, according to different layers of the video data belonging to each code block, passing through the current physical layer
  • a precoding module is added on the basis of the Turbo channel coding module, and a specific correlation is added between each code block originally processed independently, and a linear block code decoder is added to the corresponding peer decoding module at the same end.
  • the decoding success rate of carrying high-importance video data (such as BL) can be improved, and UEP can be implemented for different code blocks, and the video service can be improved under the premise that the currently available radio resources and channel states are certain. End-to-end transmission reliability.
  • the embodiment of the present invention can be used for the downlink transmission of the video service of the user plane in the current LTE network, and the downlink service data of the user plane is carried in the PDSCH channel of the physical layer.
  • the base station processes one or more within each TTI.
  • the transport block as shown in Figure 3, the transport block first adds CRC check bits through CRC processing, then performs block segmentation, and performs another CRC processing on each code block, and then performs each block separately for Turbo.
  • the Turbo decoder performs Turbo decoding on each code block, then performs block segmentation and CRC processing, and finally performs CRC check on the transport block and outputs it.
  • the decoding end Since the encoding end adds a precoding module to the Turbo channel coding module of the current physical layer data processing, correspondingly, the decoding end can be combined with the precoding processing mode of the encoding end, and based on the original Turbo decoder, a The system linear block code decoder corresponding to the precoding uses the BL information superimposed on the EL to perform secondary decoding and error correction on the BL information with a certain bit error rate outputted by the Turbo decoding, thereby improving the BL data of the video service. The decoding success rate.
  • each code block in the processing module of the channel coding code is independently performed.
  • the embodiment of the present invention is different from the prior art.
  • a precoding module is added.
  • the bit sequence generated after the BL system information is pre-encoded is superimposed to the system information of the EL, thereby introducing correlation between the code blocks.
  • the decoding end uses the correlation between code blocks introduced by the precoding module, adds a linear block code decoder, and performs iterative decoding on each code block with the original Turbo decoder to realize UEP of different layer data of the video service.
  • the channel coding on the base station side in LTE uses the Turbo coding structure shown in FIG. 4-a, and the “D” in FIG. 4-a indicates the shift register.
  • Independent coding is performed with CB as the unit code length, including a Parallel Concatenated Convolutional Code (PCCC) with two 8-state sub-encoders and a Turbo intra-code interleaver.
  • PCCC Parallel Concatenated Convolutional Code
  • each input code block is independently encoded and then outputs the following three parallel data, and then performs subsequent interleaving and the like, wherein the three parallel data specifically includes:
  • the sequence c k is encoded by the first component encoder to output the first pass check information z k .
  • the second component encoder encodes and outputs the second path check information z' k .
  • each code block performs independent Turbo coding, that is, all data enters the PDSCH of the physical layer.
  • EEP processing is performed in the prior art, and the layers with different degrees of importance are not distinguished according to the EEP processing manner, so that the BL/EL of the video service data is neglected as an important degree of layered service characteristics.
  • the service feature with important degree stratification can be effectively utilized, thereby improving the end-to-end transmission performance of the video service.
  • the PDSCH data processing process of the physical layer is described from the base station side.
  • the current TTI internal MAC multiplexing can form a MAC PDU (ie, TB).
  • the code is coded according to the embodiment of the present invention.
  • a schematic diagram of the processing manner of the block segmentation, after the code block segmentation comprises a total of two code blocks, namely a first CB (ie, CB1) and a second CB (ie, CB2), wherein the code block CB1 includes a video service.
  • the data of the BL layer, the code block CB2 includes the data of the EL layer of the video service, so the importance of CB1 is higher than that of CB2, and the UEP processing needs to give CB1 stronger protection.
  • FIG. 4c a schematic diagram of an implementation manner of coding processing of a code block by a base station is provided according to an embodiment of the present invention.
  • a precoding module is added, and a mode after precoding is obtained.
  • the second superposition increases the correlation between two code blocks, that is, the correlation between different layers of video is added in the channel coding, that is, Inter-Layer Forward Error Correction (IL-FEC) can be implemented.
  • IL-FEC Inter-Layer Forward Error Correction
  • the bit sequences of the code blocks CB1 and CB2 are respectively subjected to Turbo coding to obtain a third CB and a fourth CB.
  • the third CB includes: first system information, first path check information, and second path check information, and is obtained.
  • the fourth CB includes: second system information, third path check information, and fourth path check information.
  • the data of CB1 is x b
  • the first system information is The first verification information
  • the data of CB2 is x e
  • the second system information is The third way check information is Fourth way verification information
  • the third CB and the fourth CB each include three pieces of information
  • CB1 includes one way system information.
  • the two-way verification information are respectively CB2 includes system information And verification information
  • S02 System information of CB1
  • the auxiliary information P b is generated by the precoding module.
  • System information of the coding matrix Q and CB1 of the precoding module in the embodiment of the present invention Meet the following relationship:
  • the coding matrix Q size is [n a , n b ]; n a is a CB1 bit sequence Length, n b is the CB2 bit sequence Length, I is a n a- order unit matrix
  • CB1 keeps the original three-way output unchanged, and the second system information of CB2 is composed of the third system information. Replace, two-way verification information The output remains the same.
  • the three parallel data streams formed by each code block continue to operate according to the original PDSCH processing mechanism.
  • FIG. 4-c Turbo coding and precoding are introduced from the transmitting end, and Turbo decoding and precoding are introduced from the receiving end.
  • the terminal device side code is provided according to an embodiment of the present invention.
  • a schematic diagram of an implementation of a decoding process of a block is a schematic flowchart of a decoding process of a code block on a terminal device side according to an embodiment of the present invention.
  • the embodiment of the present invention combines the coding improvement performed by the transmitting end, and introduces a linear block code decoder at the receiving end, and combines the original Turbo.
  • the decoder performs interactive iterative decoding.
  • the specific decoding process is as follows:
  • the terminal device receives the third CB and the fifth CB sent by the base station, the terminal device acquires the third CB receiving sequence and the fifth CB receiving sequence, and the third CB receiving sequence includes: the first system information receiving sequence, the first A verification information receiving sequence and a second verification information receiving sequence, the fifth CB receiving sequence includes: a third system information receiving sequence, a third channel verifying information receiving sequence, and a fourth channel verifying information receiving sequence.
  • the first system information receiving sequence is The first verification information receiving sequence is Second verification information receiving sequence
  • the third system information receiving sequence is The third channel check information receiving sequence is Fourth way check information receiving sequence
  • the third CB decoding result is obtained, that is, the original bit sequence of CB1
  • S12 According to receiving information Decode CB2. Due to the third system information Is the second system information of CB2 It is superimposed with the verification information P b of the linear block code, so the second system information of CB2 needs to be restored first.
  • the precoding module on the receiving end is identical to the precoding module on the transmitting end. The same is the encoding matrix Q.
  • the precoding module can recover the second system information receiving sequence of CB2. For example, it is calculated as follows:
  • the fourth CB decoding result that is, the CB2 original bit sequence is obtained.
  • the linear block code decoder is equivalent to utilizing the auxiliary check information superimposed on CB2 For CB1 information that is not correctly decoded Performing another correction, so the decoder decodes and outputs the third CB decoding result, that is, the corrected
  • S16 The selection module is used if the corrected CB1 sequence After passing the CRC check, the decoding ends, and the current decoding result is output; if not, the above S11 to S15 are repeated on the premise that the number of iterations does not exceed the set threshold (that is, the maximum number of iterations is not reached).
  • the embodiment of the present invention is based on the existing LTE framework and the PDSCH data processing flow, and the importance of the video data in the formed MAC PDU by multiplexing the TTI in a scheduling period of one TTI.
  • the identifiable feature introduces a precoding mechanism to increase the data correlation between the code blocks, thereby enhancing the FEC protection degree of the code blocks of the BL data with high importance for carrying the video service.
  • the iterative decoding mechanism of the receiving end can improve the decoding success probability of the receiving end, thereby reducing the decoding error probability of the MAC PDU, reducing the number of retransmissions of the MAC PDU, and saving the LTE bandwidth resource.
  • the code block segmentation and channel coding module in the existing LTE eNB side PDSCH data processing flow, and the corresponding improvement of the UE side peer channel decoding module are changed, and the engineering implementation is simple.
  • the processing of the video data is taken as an example, but the embodiment of the present invention is not limited to the video service data, as long as a certain service has an important degree distinguishable feature, and the service can be performed before entering the PDSCH data processing.
  • the different importance level data distinguishes the stream, and the UEP process of the present invention can be performed in the channel coding module.
  • the present invention is improved based on Turbo channel coding in the existing LTE. If other channel coding methods are used, as long as the channel coding method has a system code feature, that is, the system information of the coded code word does not cross with the check information, such as a convolutional code.
  • the data processing method provided by the embodiment of the present invention may also be used in the Hamming code or the like.
  • a base station 500 may include: an encoding module 501, a verification information calculation module 502, a system information update module 503, and a sending module 504, where
  • the encoding module 501 is configured to perform channel coding on the first code block CB to obtain a third CB, where the third CB includes: first system information, first path check information, and second path check information;
  • the second CB performs channel coding to obtain a fourth CB, where the fourth CB includes: second system information, third path check information, and fourth path check information, where the data carried by the third CB is more important than
  • the importance of the data carried by the fourth CB, the first CB and the second CB are two code blocks obtained by the base station after the transport block is segmented by the code block;
  • the verification information calculation module 502 is configured to multiply the preset coding matrix and the first system information to generate verification information of the linear block code, where the coding matrix and the unit matrix constitute the generation of the linear block code matrix;
  • the system information update module 503 is configured to perform an exclusive-OR calculation on the verification information of the linear block code and the second system information to obtain third system information, and replace the second system information included in the fourth CB with The third system information is obtained by the third system information, where the fifth CB includes: third system information, third path check information, and fourth path check information;
  • the sending module 504 is configured to send the third CB to the terminal device, and the base station sends the fifth CB to the terminal device.
  • the base station 500 further includes: a CRC processing module 505, configured to perform channel coding on the first code block CB by the encoding module 501, to obtain a Before the third CB, cyclic redundancy check code CRC processing is performed on the first CB.
  • a CRC processing module 505 configured to perform channel coding on the first code block CB by the encoding module 501, to obtain a Before the third CB, cyclic redundancy check code CRC processing is performed on the first CB.
  • the CRC processing module 505 is further configured to: the coding module performs channel coding on the second CB, and performs CRC processing on the second CB before obtaining the fourth CB.
  • the base station 500 further includes: a multi-level processing module 506, configured to send, by the sending module 504, the third CB to the terminal device, Before performing the fifth CB to the terminal device, performing rate matching and interleaving coding on the third CB, performing rate matching, interleaving coding on the fifth CB, and then completing the interleaved encoded third CB and completing.
  • the interleaved encoded fifth CB performs code block concatenation and data modulation.
  • the base station performs channel coding on the first CB and the second CB obtained after the transmission block is subjected to the code block segmentation, and obtains data carried by the third CB and the fourth CB, and the third CB.
  • the importance of the data is greater than the importance of the data carried by the fourth CB.
  • the third CB includes the first system information, the first path check information, and the second path check information.
  • the fourth CB includes: the second system information, the third path.
  • the base station will preset the coding matrix and A system information is multiplied to generate verification information of the linear block code, the coding matrix and the unit matrix constitute a generation matrix of the linear block code, and the base station performs an exclusive-OR calculation on the verification information of the linear block code and the second system information, Obtaining the third system information, replacing the second system information included in the fourth CB with the third system information, to obtain the fifth CB, where the fifth CB includes: third system information, third path verification information, and Four-way verification information, the base station sends a third CB to the terminal device, and the base station sends a fifth CB to the UE.
  • the base station carries the verification information of the obtained linear block code by multiplying the preset coding matrix and the first system information.
  • the fifth CB is generated, and the base station adds a correlation between the third CB and the fourth CB in the fifth CB, and the terminal device can receive the fifth CB after obtaining the fifth CB receiving sequence.
  • the third system information sequence carried in the sequence recovers the second system information receiving sequence, so that the unequal error protection for the third CB and the fourth CB can be realized, so that the data with higher importance is carried under the same network condition.
  • the third CB can give stronger error protection and can improve the transmission quality of the third CB from the transmitting end to the receiving end.
  • a terminal device 600 may include: a receiving module 601, a decoding module 602, and a system information updating module 603, where
  • the receiving module 601 is configured to receive the third code block CB sent by the base station, to obtain a third CB receiving sequence, where the third CB receiving sequence includes: a first system information receiving sequence, a first path check information receiving sequence, and a first a second channel check information receiving sequence; receiving the fifth CB sent by the base station to obtain a fifth CB receiving sequence, the fifth CB receiving sequence, including: a third system information receiving sequence, and a third channel check information receiving sequence And a fourth way check information receiving sequence;
  • the decoding module 602 is configured to perform channel decoding on the third CB receiving sequence after obtaining the third CB receiving sequence to obtain a third CB decoding result.
  • the system information update module 603 is configured to multiply the third CB decoding result and the preset coding matrix to obtain a system information recovery sequence, and perform the system information recovery sequence and the third system information receiving sequence. Performing an exclusive-OR calculation, obtaining a second system information receiving sequence, replacing the third system information receiving sequence included in the fifth CB receiving sequence with the second system information receiving sequence, to obtain a fourth CB receiving sequence, where the The fourth CB receiving sequence includes: the second system information receiving sequence, the third channel check information receiving sequence, and the fourth path verifying information receiving sequence;
  • the decoding module 602 is further configured to perform channel decoding on the fourth CB receiving sequence to obtain a fourth CB decoding result.
  • the terminal device 600 further includes: a decoding determination module 604, an auxiliary verification information calculation module 605, and a correction module 606, where
  • the decoding determining module 604 is configured to: the decoding module 602 performs channel decoding on the fourth CB receiving sequence, and after obtaining the fourth CB decoding result, determining to perform channel translation on the third CB receiving sequence. Whether the code is successful;
  • the auxiliary check information calculation module 605 is configured to: if the decoding module fails to perform channel decoding on the third CB receiving sequence, the third system information receiving sequence and the fourth CB decoding result Performing an exclusive OR calculation to generate auxiliary verification information of the linear block code;
  • the correction module 606 is configured to obtain the third CB correction result output by the linear block code decoder as the input of the linear block code decoder by using the auxiliary check information and the third CB decoding result as inputs of the linear block code decoder .
  • the decoding determining module 604 is further configured to: if the decoding module 602 successfully performs channel decoding on the third CB receiving sequence, triggering execution of the system information updating module 603 .
  • the terminal device 600 further includes an iterative determination module 607 for the auxiliary.
  • the check information calculation module 603 performs an exclusive-OR calculation on the third system information receiving sequence and the fourth CB decoding result, and determines to perform the third CB receiving sequence before generating the auxiliary check information of the linear block code. Whether the number of times of decoding of the channel decoding exceeds a preset threshold of the number of iterations. If the number of times of decoding the channel decoding of the third CB receiving sequence does not exceed a preset threshold of the number of iterations, the auxiliary verification information is triggered to be executed. Calculation module 603.
  • the terminal device 600 further includes a CRC processing module 608 for the decoding.
  • the module 602 performs channel decoding on the third CB receiving sequence to obtain a third CB decoding result, and performs a cyclic redundancy check code CRC check on the third CB decoding result; if the third CB The result of the CRC check of the decoding result is that the verification is successful, and the third CB decoding result is output; if the result of the CRC check of the third CB decoding result is a verification failure, the third CB is The decoding result is discarded, or the terminal device notifies the base station to resend the third CB.
  • the CRC processing module 608 is configured to perform, by the decoding module, channel decoding the fourth CB receiving sequence, to obtain a fourth CB decoding result, and to the fourth CB. Decoding the result to perform a CRC check; if the result of the CRC check on the fourth CB decoding result is that the verification is successful, outputting the fourth CB decoding result; if the fourth CB decoding result is performing CRC calibration The result of the verification is that the verification fails, the fourth CB decoding result is discarded, or the terminal device notifies the base station to resend the fifth CB.
  • the receiving module 601 is specifically configured to perform data demodulation on the third CB and the fifth CB sent by the base station, and then perform rate matching and interleaving on the demodulated third CB. Decoding, obtaining a third CB receiving sequence, performing rate matching and interleaving decoding on the demodulated fifth CB, to obtain a fifth CB receiving sequence.
  • the terminal device as the receiving end first receives the third CB sent by the base station, obtains the third CB receiving sequence, and receives the fifth CB sent by the base station, to obtain the fifth CB receiving.
  • the sequence, the third CB receiving sequence includes: a first system information receiving sequence, a first path check information receiving sequence, and a second path check information receiving sequence, and a fifth CB receiving sequence, including: a third system information receiving sequence, The third channel check information receiving sequence and the fourth channel check information receiving sequence, after the terminal device obtains the third CB receiving sequence, the terminal device performs channel decoding on the third CB receiving sequence to obtain a third CB decoding result, The terminal device multiplies the third CB decoding result and the preset coding matrix to obtain a system information recovery sequence, and performs an exclusive OR calculation on the system information recovery sequence and the third system information receiving sequence to obtain a second system information receiving sequence.
  • the fourth CB receiving sequence includes: a second system information receiving sequence, a third channel check information receiving sequence, and a fourth path verifying information receiving sequence, and the terminal device performs channel decoding on the fourth CB receiving sequence to obtain a fourth CB.
  • the result of the decoding because the importance of the data carried by the third CB is greater than the importance of the data carried by the fourth CB, the base station carries the verification information of the obtained linear block code by multiplying the preset coding matrix and the first system information.
  • the fifth CB is generated, and the base station adds a correlation between the third CB and the fourth CB in the fifth CB, and the terminal device can receive the fifth CB after obtaining the fifth CB receiving sequence.
  • the third system information sequence carried in the sequence recovers the second system information receiving sequence, so that the unequal error protection for the third CB and the fourth CB can be realized, so that the third system with higher importance is given under the same network condition.
  • the CB can give stronger error protection and can improve the transmission quality of the third CB from the sender to the receiver.
  • the foregoing embodiment describes the base station and the terminal device provided by the embodiment of the present invention.
  • the communication system may include: a base station and a terminal device, where the base station is the foregoing FIG. 5-a and FIG. -b, the base station shown in any one of Figure 5-c, the terminal device being the terminal device shown in any of the foregoing Figures 6-a, 6-b, 6-c, 6-d, communication
  • the base station is the foregoing FIG. 5-a and FIG. -b
  • the terminal device being the terminal device shown in any of the foregoing Figures 6-a, 6-b, 6-c, 6-d
  • communication refer to the detailed description of the foregoing embodiments, and the details are not described herein.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps described in the foregoing method embodiments.
  • the base station 700 includes:
  • the receiver 701, the transmitter 702, the processor 703, and the memory 704 (wherein the number of processors 703 in the base station 700 may be one or more, and one processor in FIG. 7 is taken as an example).
  • the receiver 701, the transmitter 702, the processor 703, and the memory 704 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 703 performs the data processing method performed by the base station side in the foregoing embodiment. Specifically, the processor 703 is configured to perform the following steps:
  • the fourth CB includes: second system information, third path check information, and fourth path check information, and importance of data carried by the third CB
  • the first CB and the second CB are two code blocks obtained by the base station after the transmission block is segmented by the code block, which is greater than the importance of the data carried by the fourth CB;
  • the fifth CB includes: third system information, third path check information, and fourth path check information;
  • the transmitter 702 is controlled to send the third CB to the terminal device, and the fifth CB is sent to the terminal device.
  • the processor 703 is further configured to perform the following steps:
  • the processor 703 is further configured to perform the following steps: performing channel coding on the second CB, and performing CRC processing on the second CB before obtaining the fourth CB.
  • the processor 703 is further configured to perform the following steps:
  • the base station performs channel coding on the first CB and the second CB obtained after the transmission block is subjected to the code block segmentation, and obtains data carried by the third CB and the fourth CB, and the third CB.
  • the importance of the data is greater than the importance of the data carried by the fourth CB.
  • the third CB includes the first system information, the first path check information, and the second path check information.
  • the fourth CB includes: the second system information, the third path.
  • the base station multiplies the preset coding matrix and the first system information to generate check information of the linear block code, and the coding matrix and the unit matrix constitute the generation of the linear block code a matrix, the base station performs an exclusive-OR calculation on the verification information of the linear block code and the second system information, to obtain the third system information, and replaces the second system information included in the fourth CB with the third system information, to obtain the
  • the fifth CB includes: third system information, third path check information, and fourth path check information, the base station sends a third CB to the terminal device, and the base station sends the fifth CB to the UE.
  • the base station carries the verification information of the obtained linear block code by multiplying the preset coding matrix and the first system information.
  • the fifth CB is generated, and the base station adds a correlation between the third CB and the fourth CB in the fifth CB, and the terminal device can receive the fifth CB after obtaining the fifth CB receiving sequence.
  • the third system information sequence carried in the sequence recovers the second system information receiving sequence, so that the unequal error protection for the third CB and the fourth CB can be realized, so that the data with higher importance is carried under the same network condition.
  • the third CB can give stronger error protection and can improve the transmission quality of the third CB from the transmitting end to the receiving end.
  • the terminal device 800 includes:
  • the receiver 801, the transmitter 802, the processor 803, and the memory 804 (wherein the number of processors 803 in the terminal device 800 may be one or more, and one processor in FIG. 8 is taken as an example).
  • the receiver 801, the transmitter 802, the processor 803, and the memory 804 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 803 performs the data processing method performed by the terminal device side in the foregoing embodiment. Specifically, the processor 803 is configured to perform the following steps:
  • the processor 803 is further configured to perform the following steps:
  • the control receiver 801 receives the third code block CB sent by the base station to obtain a third CB receiving sequence, where the third CB receiving sequence includes: a first system information receiving sequence, a first path check information receiving sequence, and a second path. Verifying the information receiving sequence;
  • the control receiver 801 receives the fifth CB sent by the base station, and obtains a fifth CB receiving sequence, where the fifth CB receiving sequence includes: a third system information receiving sequence, a third channel check information receiving sequence, and a fourth path. Verifying the information receiving sequence;
  • the third CB decoding result and the preset coding matrix Multiplying the third CB decoding result and the preset coding matrix to obtain a system information recovery sequence, and performing an exclusive-OR calculation on the system information recovery sequence and the third system information receiving sequence to obtain a second system And the information receiving sequence, the third system information receiving sequence included in the fifth CB receiving sequence is replaced with the second system information receiving sequence, to obtain a fourth CB receiving sequence, where the fourth CB receiving sequence includes: a second system information receiving sequence, a third channel check information receiving sequence, and a fourth path verifying information receiving sequence;
  • the processor 803 is further configured to: perform channel decoding on the fourth CB receiving sequence, and obtain a fourth CB decoding result, and determine to receive the third CB. Whether the sequence performs channel decoding successfully; if channel decoding fails for the third CB receiving sequence, performing an exclusive-OR calculation on the third system information receiving sequence and the fourth CB decoding result to generate a linear block code Auxiliary check information; taking the auxiliary check information and the third CB decoding result as an input of a linear block code decoder, and acquiring a third CB output by the linear block code decoder Correct the result.
  • the processor 803 is further configured to perform the following steps:
  • the matrix is multiplied to obtain a system information recovery sequence, and the system information recovery sequence is XORed with the third system information receiving sequence to obtain a second system information receiving sequence, and the fifth CB receiving sequence is included
  • the third system information receiving sequence is replaced with the second system information receiving sequence to obtain a fourth CB receiving sequence.
  • the processor 803 is further configured to perform the following steps:
  • the processor 803 is further configured to: perform channel decoding on the third CB receiving sequence, and obtain a third CB decoding result, and then decode the third CB As a result, a cyclic redundancy check code CRC check is performed; if the result of the CRC check by the third CB decoding result is that the check succeeds, the third CB decoding result is output; if the third CB decoding is performed As a result, the result of performing the CRC check is that the check fails, the third CB decoding result is discarded, or the base station is notified to resend the third CB.
  • the processor 803 is further configured to perform the following steps:
  • the processor 803 is specifically configured to perform the following steps:
  • the terminal device as the receiving end first receives the third CB sent by the base station, obtains the third CB receiving sequence, and receives the fifth CB sent by the base station, to obtain the fifth CB receiving.
  • the sequence, the third CB receiving sequence includes: a first system information receiving sequence, a first path check information receiving sequence, and a second path check information receiving sequence, and a fifth CB receiving sequence, including: a third system information receiving sequence, The third channel check information receiving sequence and the fourth channel check information receiving sequence, after the terminal device obtains the third CB receiving sequence, the terminal device performs channel decoding on the third CB receiving sequence to obtain a third CB decoding result, The terminal device multiplies the third CB decoding result and the preset coding matrix to obtain a system information recovery sequence, and performs an exclusive OR calculation on the system information recovery sequence and the third system information receiving sequence to obtain a second system information receiving sequence.
  • the fourth CB receiving sequence includes: a second system information receiving sequence, a third channel check information receiving sequence, and a fourth path verifying information receiving sequence, and the terminal device performs channel decoding on the fourth CB receiving sequence to obtain a fourth CB.
  • the result of the decoding because the importance of the data carried by the third CB is greater than the importance of the data carried by the fourth CB, the base station carries the verification information of the obtained linear block code by multiplying the preset coding matrix and the first system information.
  • the fifth CB is generated, and the base station adds a correlation between the third CB and the fourth CB in the fifth CB, and the terminal device can receive the fifth CB after obtaining the fifth CB receiving sequence.
  • the third system information sequence carried in the sequence recovers the second system information receiving sequence, so that the unequal error protection for the third CB and the fourth CB can be realized, so that the data with higher importance is carried under the same network condition.
  • the third CB can give stronger error protection and can improve the transmission quality of the third CB from the transmitting end to the receiving end.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be Physical units can be located in one place or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a readable storage medium such as a floppy disk of a computer.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.

Abstract

一种数据处理方法、基站以及终端设备。其中,一种数据处理方法包括:基站对第一CB进行信道编码,得到第三CB,第三CB包括:第一系统信息、第一路校验信息和第二路校验信息;基站对第二CB进行信道编码,得到第四CB,第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度;基站将预置的编码矩阵和第一系统信息进行相乘,生成线性分组码的校验信息;基站对线性分组码的校验信息和第二系统信息进行异或计算,得到第三系统信息,将第四CB包括的第二系统信息替换为第三系统信息,得到第五CB;基站向终端设备发送第三CB,以及基站向终端设备发送第五CB。

Description

一种数据处理方法、基站以及终端设备 技术领域
本发明实施例涉及通信领域,尤其涉及一种数据处理方法、基站以及终端设备。
背景技术
近年来移动终端日益智能化,且种类丰富,终端性能不断提升,移动终端支持的功能及业务越来越丰富,尤其是2013年正式商用的长期演进(Long Term Evolution,LTE)系统,其下行峰值速率达到100兆比特每秒(Million bits per second,Mbps),可以为用户提供更好的移动上网体验,随之产生的移动数据流量也呈现出爆发式的增长。
相比于移动终端中的其它业务,视频业务发展迅速,并且视频业务具有较大比特率特征,视频流量将成为未来移动网络的主要数据来源。
视频原始数据序列在网络传输前需要进行压缩编码,目前主要使用的视频压缩编码标准是H.264/高级视频编码(Advanced Video Coding,AVC)或者可伸缩视频编码(Scalable Video Coding,SVC)。无论采用哪种视频编码标准,均以图片单元组(Group Of Pictures,GOP)为最小编码单位,GOP间数据相互独立,即在接收端可以根据接收数据独立解码重构得到视频图像,GOP内的视频帧间存在相关性,分为I、P、B三种帧类型,除此之外,GOP内还有供解码器使用的编码控制参数,其中I帧是内部编码帧,可独立解码,P帧是前向预测帧,需依赖I帧才能解码,B帧是双向内插帧,需依赖I帧或P帧才能解码。对于前述的四种类型信息,同样长度的数据包(即一段比特序列)对接收端解码重构的影响程度是不同的,由高到低排列依次为编码控制参数、I帧、P帧、B帧。
SVC作为H.264/AVC的扩展版本,SVC将一个视频序列编码成包含多个相互依存的层的数据流,其中最底层称为基本层(Base Layer,BL),可恢复最基本质量的视频图像,基于基本层的上层为增强层(Enhancement Layer,EL),可增强视频的图像质量。在SVC的编码方式下,所有EL必须依赖BL才能解码,若有多个EL,处于高层的EL需要依赖于低层的EL才能解码。在 实际的视频服务系统中,根据用户的特定需求,从数据流中提取出相应数量的子层(即子码流),从而实现视频输出比特率的控制。
视频业务不仅所占流量比重大,而且视频业务流中不同层对接收端视频恢复效果影响程度不一致。例如,同等的误比特率场景下,在比特错误不是平均发生在BL的数据和EL的数据的情况下,当比特错误更少的发生在BL的数据时,视频数据的恢复效果会明显增强,因为BL的数据的解码错误不仅导致BL的数据无法恢复,亦会影响即使正确接收的EL的数据。但是在现有的LTE接入网中的演进型基站(evolved NodeB,eNB)侧下行用户面数据的传输机制中,每个传输时间间隔(Transmission Time Interval,TTI)内复用生成的包含同一视频业务不同层数据的媒体访问控制(Media Access Control,MAC)协议数据单元(Protocol Data Unit,PDU)在物理层的处理均采用的是均等误差保护(Equal Error Protection,EEP),这会导致同一视频业务数据内不同层的数据发生比特错误的概率相同,无法在同等网络条件下给BL的数据赋予更强的差错保护,从而会降低视频端到端的传输质量。
发明内容
本发明实施例提供了一种数据处理方法、基站以及终端设备,用于提高接收端接收到的重要性高的数据的质量。
第一方面,本发明实施例提供一种数据处理方法,包括:
基站对第一码块CB进行信道编码,得到第三CB,所述第三CB包括:第一系统信息、第一路校验信息和第二路校验信息;
所述基站对第二CB进行信道编码,得到第四CB,所述第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,所述第三CB承载的数据的重要程度大于所述第四CB承载的数据的重要程度,所述第一CB和第二CB是所述基站对传输块经过码块分段后得到的两个码块;
所述基站将预置的编码矩阵和所述第一系统信息进行相乘,生成线性分组码的校验信息,所述编码矩阵和单位矩阵构成所述线性分组码的生成矩阵;
所述基站对所述线性分组码的校验信息和所述第二系统信息进行异或计算,得到第三系统信息,将所述第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,所述第五CB包括:第三系统信息、第三路校 验信息和第四路校验信息;
所述基站向终端设备发送所述第三CB,以及所述基站向所述终端设备发送所述第五CB。
结合第一方面,在第一方面的第一种可能的实现方式中,所述基站对第一码块CB进行信道编码,得到第三CB之前,所述方法还包括:
所述基站对所述第一CB进行循环冗余校验码CRC处理。
结合第一方面,在第一方面的第二种可能的实现方式中,所述基站对第二CB进行信道编码,得到第四CB之前,所述方法还包括:
所述基站对所述第二CB进行CRC处理。
结合第一方面,在第一方面的第三种可能的实现方式中,所述基站向终端设备发送所述第三CB,以及所述基站向终端设备发送所述第五CB之前,所述方法还包括:
所述基站对所述第三CB进行速率匹配、交织编码,所述基站对所述第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制。
第二方面,本发明实施例还提供一种数据处理方法,包括:
终端设备接收基站发送的第三码块CB,得到第三CB接收序列,所述第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列;
所述终端设备接收所述基站发送的第五CB,得到第五CB接收序列,所述第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
所述终端设备在得到所述第三CB接收序列之后,所述终端设备对所述第三CB接收序列进行信道译码,得到第三CB译码结果;
所述终端设备对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列,所述第四CB接收序列包括:所述第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
所述终端设备对所述第四CB接收序列进行信道译码,得到第四CB译码结果。
结合第二方面,在第二方面的第一种可能的实现方式中,所述终端设备对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,所述方法还包括:
所述终端设备判断对所述第三CB接收序列进行信道译码是否成功;
若所述终端设备对所述第三CB接收序列进行信道译码失败,所述终端设备对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息;
所述终端设备将所述辅助校验信息和所述第三CB译码结果作为线性分组码译码器的输入,获取所述线性分组码译码器输出的第三CB修正结果。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述终端设备判断对所述第三CB接收序列进行信道译码是否成功之后,所述方法还包括:
若所述终端设备对所述第三CB接收序列进行信道译码成功,触发执行步骤:所述终端设备对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述终端设备对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息之前,所述方法还包括:
所述终端设备判断对所述第三CB接收序列进行信道译码的译码次数是否超过预置的迭代次数阈值,若对所述第三CB接收序列进行信道译码的译码次数没有超过预置的迭代次数阈值,触发执行步骤:所述终端设备对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息。
结合第二方面,在第二方面的第四种可能的实现方式中,所述终端设备对所述第三CB接收序列进行信道译码,得到第三CB译码结果之后,所述方法 还包括:
所述终端设备对所述第三CB译码结果进行循环冗余校验码CRC校验;
若所述第三CB译码结果进行CRC校验的结果为校验成功,所述终端设备输出所述第三CB译码结果;
若所述第三CB译码结果进行CRC校验的结果为校验失败,所述终端设备将所述第三CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第三CB。
结合第二方面,在第二方面的第五种可能的实现方式中,所述终端设备对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,所述方法还包括:
所述终端设备对所述第四CB译码结果进行CRC校验;
若所述第四CB译码结果进行CRC校验的结果为校验成功,所述终端设备输出所述第四CB译码结果;
若所述第四CB译码结果进行CRC校验的结果为校验失败,所述终端设备将所述第四CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第五CB。
结合第二方面,在第二方面的第六种可能的实现方式中,所述终端设备接收基站发送的第三码块CB,得到第三CB接收序列,所述终端设备接收所述基站发送的第五CB,得到第五CB接收序列,包括:
所述终端设备对所述基站发送的第三CB和第五CB进行数据解调制,然后对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列,对解调制后的第五CB进行速率匹配和交织解码,得到第五CB接收序列。
第三方面,本发明实施例还提供一种基站,包括:
编码模块,用于对第一码块CB进行信道编码,得到第三CB,,所述第三CB包括:第一系统信息、第一路校验信息和第二路校验信息;对第二CB进行信道编码,得到第四CB,所述第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,所述第三CB承载的数据的重要程度大于所述第四CB承载的数据的重要程度,所述第一CB和第二CB是所述基站对传输块经过码块分段后得到的两个码块;
校验信息计算模块,用于将预置的编码矩阵和所述第一系统信息进行相 乘,生成线性分组码的校验信息,所述编码矩阵和单位矩阵构成所述线性分组码的生成矩阵;
系统信息更新模块,用于对所述线性分组码的校验信息和所述第二系统信息进行异或计算,得到第三系统信息,将所述第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,所述第五CB包括:第三系统信息、第三路校验信息和第四路校验信息;
发送模块,用于向终端设备发送所述第三CB,以及向所述终端设备发送所述第五CB。
结合第三方面,在第三方面的第一种可能的实现方式中,所述基站还包括:CRC处理模块,用于所述编码模块对第一码块CB进行信道编码,得到第三CB之前,对所述第一CB进行循环冗余校验码CRC处理。
结合第三方面,在第三方面的第二种可能的实现方式中,所述基站还包括:CRC处理模块,用于所述编码模块对第二CB进行信道编码,得到第四CB之前,对所述第二CB进行CRC处理。
结合第三方面,在第三方面的第三种可能的实现方式中,所述基站,还包括:多级处理模块,用于所述发送模块向终端设备发送所述第三CB,以及向所述终端设备发送所述第五CB之前,对所述第三CB进行速率匹配、交织编码,对所述第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制。
第四方面,本发明实施例还提供一种终端设备,包括:
接收模块,用于接收基站发送的第三码块CB,得到第三CB接收序列,,所述第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列;接收所述基站发送的第五CB,得到第五CB接收序列,所述第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
译码模块,用于在得到所述第三CB接收序列之后,对所述第三CB接收序列进行信道译码,得到第三CB译码结果;
系统信息更新模块,用于对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序 列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列,所述第四CB接收序列包括:所述第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
所述译码模块,还用于对所述第四CB接收序列进行信道译码,得到第四CB译码结果。
结合第四方面,在第四方面的第一种可能的实现方式中,所述终端设备,还包括:译码判断模块、辅助校验信息计算模块和修正模块,其中,
所述译码判断模块,用于所述译码模块对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,判断对所述第三CB接收序列进行信道译码是否成功;
所述辅助校验信息计算模块,用于若所述译码模块对所述第三CB接收序列进行信道译码失败,对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息;
所述修正模块,用于将所述辅助校验信息和所述第三CB译码结果作为线性分组码译码器的输入,获取所述线性分组码译码器输出的第三CB修正结果。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述译码判断模块,还用于若所述译码模块对所述第三CB接收序列进行信道译码成功,触发执行所述系统信息更新模块。
结合第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,所述终端设备,还包括:迭代判断模块,用于所述辅助校验信息计算模块对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息之前,判断对所述第三CB接收序列进行信道译码的译码次数是否超过预置的迭代次数阈值,若对所述第三CB接收序列进行信道译码的译码次数没有超过预置的迭代次数阈值,触发执行所述辅助校验信息计算模块执行。
结合第四方面,在第四方面的第四种可能的实现方式中,所述终端设备,还包括:循环冗余校验码CRC处理模块,用于所述译码模块对所述第三CB接收序列进行信道译码,得到第三CB译码结果之后,对所述第三CB译码结果进行循环冗余校验码CRC校验;若所述第三CB译码结果进行CRC校验的结果为校验成功,输出所述第三CB译码结果;若所述第三CB译码结果进行 CRC校验的结果为校验失败,将所述第三CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第三CB。
结合第四方面,在第四方面的第五种可能的实现方式中,所述终端设备,还包括:循环冗余校验码CRC处理模块,用于所述译码模块对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,对所述第四CB译码结果进行CRC校验;若所述第四CB译码结果进行CRC校验的结果为校验成功,输出所述第四CB译码结果;若所述第四CB译码结果进行CRC校验的结果为校验失败,将所述第四CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第五CB。
结合第四方面,在第四方面的第六种可能的实现方式中,所述接收模块,具体用于对所述基站发送的第三CB和第五CB进行数据解调制,然后对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列,对解调制后的第五CB进行速率匹配和交织解码,得到第五CB接收序列。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中,由于第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此基站通过将预置的编码矩阵和第一系统信息进行相乘,将得到的线性分组码的校验信息携带在第四CB中,生成了第五CB,基站在第五CB中增加了第三CB和第四CB之间的相关性,终端设备在得到第五CB接收序列之后,可以通过第五CB接收序列中携带的第三系统信息序列恢复出第二系统信息接收序列,因此可以实现对第三CB和第四CB的不等误差保护,使得在同等网络条件下,给承载重要程度更高的数据的第三CB可以赋予更强的差错保护,能够提高第三CB从发送端到接收端的传输质量。
附图说明
图1为本发明实施例提供的一种数据处理方法的流程方框示意图;
图2为本发明实施例提供的另一种数据处理方法的流程方框示意图;
图3为本发明实施例中物理层数据处理的流程示意图;
图4-a为本发明实施例中对码块进行Turbo编码的实现方式示意意图;
图4-b为本发明实施例提供的对传输块进行码块分段的处理方式示意图;
图4-c为本发明实施例提供基站侧对码块的编码处理的实现方式示意图;
图4-d为本发明实施例提供终端设备侧对码块的译码处理的实现方式示意图;
图4-e为本发明实施例提供的终端设备侧对码块的译码处理流程示意图;
图5-a为本发明实施例提供的一种基站的组成结构示意图;
图5-b为本发明实施例提供的另一种基站的组成结构示意图;
图5-c为本发明实施例提供的另一种基站的组成结构示意图;
图6-a为本发明实施例提供的一种终端设备的组成结构示意图;
图6-b为本发明实施例提供的另一种终端设备的组成结构示意图;
图6-c为本发明实施例提供的另一种终端设备的组成结构示意图;
图6-d为本发明实施例提供的另一种终端设备的组成结构示意图;
图7为本发明实施例提供的另一种基站的组成结构示意图;
图8为本发明实施例提供的另一种终端设备的组成结构示意图。
具体实施方式
本发明实施例提供了一种数据处理方法、基站以及终端设备,用于增强对重要性高的数据的保护程度,提高接收端接收到的重要性高的数据的质量。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本发明所涉及到的终端设备可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及 各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端(terminal)等。为方便描述,本发明后续实施例中统一称为终端设备。
以下分别进行详细说明。
本发明数据处理方法的一个实施例,可应用于对数据的信道编码过程中,请参阅如图1所示,本发明实施例提供的数据处理方法可以包括如下步骤:
101、基站对第一码块(Code Block,CB)进行信道编码,得到第三CB,第三CB包括:第一系统信息、第一路校验信息和第二路校验信息。
102、基站对第二CB进行信道编码,得到第四CB,第四CB包括:第二系统信息、第三路校验信息和第四路校验信息。
其中,第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,第一CB和第二CB是基站对传输块(Transport Block,TB)经过码块分段后得到的两个码块。
在本发明实施例中,涉及基站侧在物理层的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中的数据处理过程,其中,传输块可以是MAC PDU。传输块经过码块分段后得到两个码块,分别定义为第一CB和第二CB,第一CB承载的数据的重要程度大于第二CB承载的数据的重要程度。其中,数据的重要程度可以通过数据本身的内容来表示数据的重要程度。举例说明如下,以SVC对视频序列的编码为例,对视频序列进行编码之后得到第一CB和第二CB,第一CB包括BL的数据,第二CB包括EL的数据,由于对EL的解码必须依赖于对BL的解码,BL的解码错误会影响到对EL的解码,因此,BL的数据的重要程度大于EL的数据的重要程度。又如,二维的图像可以分解成不同的频率成分。其中,低频分量可用于描述大范围的信息,而高频分量可以用于描述具体的图像细节,第一CB承载的数据可以为低频分量,第二CB的数据为高频分量,低频分量的重要程度大于高频分量的重要程度。又如,在灰度图像中,亮度变化小的区域主要是低频分量,而亮度变化剧烈的区域(比如物体的边缘)主要是高频分量,第一CB承载的数据可以为低频分量,第二CB承载的数据为高频分量,低频分量的重要程度大于高频分量的重要程度。另外,数据的重要程度可以通过在码块中携带的具体标识来表示,例如,第一CB承载的数据的重要程度可以通过在第一CB中携带的重要性标识来确定,第二CB承载的数据的重要程度可以通过在第二CB中携带的重要性 标识来确定,具体的,在第一CB和第二CB中分别承载有不同的数据,若第一CB承载的数据的重要程度大于第二CB承载的数据的重要程度,可以通过在第一CB中携带的重要性标识与第二CB中携带的重要性标识不相同的标识来指示上述重要程度的差异。
可选的,在本发明实施例中,基于第一CB承载的数据的重要程度大于第二CB承载的数据的重要程度,本发明实施例中可以对第一CB和第二CB采取不等误差保护(Unequal Error Protection,UEP),通过UEP可以保护承载的数据重要程度更高的第一CB可以被接收端(即终端设备)进行正确译码。
在本发明实施例中,基站对传输块经过码块分段后可以得到两个码块,分别为第一CB和第二CB,接下来基站对两个码块(即第一CB和第二CB)分别进行信道编码,其中,基站对第一CB进行信道编码可以得到第三CB,基站对第二CB进行信道编码可以得到第四CB,若第一CB承载的数据的重要程度大于第二CB承载的数据的重要程度,那么这两个码块在经过信道编码之后,并不改变两者之间的重要程度,因此第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度。例如,以SVC对视频序列的编码为例,第三CB包括:BL的数据,第四CB包括:EL的数据。又如,以对二维的图像的编码为例,第三CB承载的数据可以为低频分量,第四CB承载的数据为高频分量。
需要说明的是,在本发明实施例中,基站对码块的信道编码可以有多种方式,举例说明如下,基站可以采用涡轮(Turbo)编码,基站还可以采用卷积编码或者汉明编码,具体基站采用哪种编码方式,本发明实施例中可不做具体限定,可以根据具体的应用场景来决定采用哪种信道编码方式,信道编码方式的具体选择并不限制本发明实施例中对不同码块实现的不等误差保护。
在本发明的一些实施例中,第一CB作为原始的码块序列,可以经过Turbo编码之后生成第三CB,在该第三CB中包括有系统信息和校验信息,具体的,第三CB包括:第一系统信息、第一路校验信息和第二路校验信息,第二CB作为原始的码块序列,可以经过Turbo编码之后,可以生成第四CB,在该第四CB中包括有系统信息和校验信息,具体的,第四CB包括:第二系统信息、第三路校验信息和第四路校验信息。
需要说明的是,本发明实施例中基站以信道编码采用Turbo编码为例,基 站对第一CB的Turbo编码和对第二CB的Turbo编码是独立进行的,两者之间并没有时序上或者逻辑上的先后顺序,不限定的是,基站还可以采用卷积编码、汉明编码的方式对码块进行编码,只要满足如下条件:信道编码方法中具有系统码特征,编码后的码字的系统信息与校验信息不交叉,均可以用于本发明实施例中对码块的信道编码。
在本发明的一些实施例中,步骤101中基站对第一CB进行信道编码,得到第三CB之前,本发明实施例提供的数据处理方法还可以包括如下步骤:
A1、基站对第一CB进行循环冗余校验码(Cyclic Redundancy Check,CRC)处理。
同样的,步骤102中基站对第二CB进行信道编码,得到第四CB之前,本发明实施例提供的数据处理方法还可以包括如下步骤:
A2、基站对第二CB进行CRC处理。
也就是说,本发明实施例中,基站在对码块进行信道编码之前,基站还可以先对码块进行CRC处理,CRC是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定,CRC可以实现数据传输检错功能,对数据进行多项式计算,并将得到的结果附在码块的后面,以保证数据传输的正确性和完整性,具体CRC处理过程可参阅现有技术。
需要说明的是,在本发明的一些实施例中,基站在对传输块进行码块分段得到第一CB和第二CB之前,基站也可以对该传输块进行CRC处理,在该传输块中添加CRC校验位,具体CRC处理过程可参阅现有技术。
103、基站将预置的编码矩阵和第一系统信息进行相乘,生成线性分组码的校验信息,其中,编码矩阵和单位矩阵构成线性分组码的生成矩阵。
在本发明实施例中,基站在得到第三CB和第四CB之后,基站执行步骤103,并在得到线性分组码的校验信息之后执行步骤104。
104、基站对线性分组码的校验信息和第二系统信息进行异或计算,得到第三系统信息,将第四CB包括的第二系统信息替换为第三系统信息,得到第五CB,第五CB包括:第三系统信息、第三路校验信息和第四路校验信息。
在本发明实施例中,基站通过对第一CB和第二CB分别进行信道编码之后,基站可以获取到第三CB和第四CB,其中第三CB中包括有第一系统信息,第四CB中包括有第二系统信息,接下来基站采用预置的编码矩阵和该第 一系统信息进行相乘计算,得到线性分组码的校验信息,基站再将线性分组码的校验信息和第二系统信息进行异或计算,得到第三系统信息,接下来基站将第四CB包括的第二系统信息替换为第三系统信息,得到第五CB,基站在第五CB中包括有第三系统信息,而第三系统信息是线性分组码的校验信息和第二系统信息进行异或计算得到,由前述步骤103可知,线性分组码的校验信息为预置的编码矩阵和第一系统信息进行相乘的结果,因此基站通过执行步骤103和步骤104之后,基站在第五CB中增加了第三CB和第四CB之间的相关性,其中,在第五CB中包括的第三系统信息可以表示出第三CB和第四CB之间的相关程度。在本发明实施例中,基站可以采用预先设置的编码矩阵用于对第三CB和第四CB进行相关性计算,其中,预置的编码矩阵可以是多种编码方法中使用的编码矩阵,例如,预置的编码矩阵可以是使用线性分组码的编码方法中使用的编码矩阵,预置的编码矩阵还可以使用其他线性码的编码方法中使用的编码矩阵,例如采用循环码、汉明码的编码矩阵作为预置的编码矩阵。
在本发明实施例中,在第五CB中包括的第三系统信息可以表示在第三CB和第四CB之间引入的相关性,该第三系统信息可以被接收端(即终端设备)用于对码块的信道译码,提高对第三CB的译码成功率。
在本发明实施例中,预置的编码矩阵为线性分组码的编码矩阵,则编码矩阵和单位矩阵构成线性分组码的生成矩阵,该单位矩阵为从左上角到右下角的主对角线上的元素均为1,除此以外全都为0的方阵,第三CB包括的系统信息为第一系统信息,基站将编码矩阵和第一系统信息进行相乘,生成线性分组码的校验信息,接下来基站对线性分组码的校验信息和第二系统信息进行异或计算,得到第三系统信息,该第三系统信息被携带在第五CB中,即基站计算出用于表示第三CB和第四CB之间相关性的第三系统信息之后通过第五CB来携带该第三系统信息,由于第三CB比第四CB具有更高的重要性,因此可以通过第五CB来携带第三系统信息,而不会影响基站得到的第三CB,并且第五CB中携带的第三系统信息可以用于接收端对第三CB的信道译码,因此可以提高第三CB的译码成功率。
105、基站向终端设备发送第三CB,以及基站向UE发送第五CB。
在本发明实施例中,基站通过步骤103和步骤104计算出用于表示第三CB和第四CB之间相关性的第三系统信息之后,该第三系统信息由第五CB 来携带,然后基站向终端设备发送第三CB,以及向终端设备发送第五CB。其中,基站向终端设备发送第三CB,以及发送第五CB可以通过基站和终端设备之间的底层物理链路来传输,第三CB和第五CB的具体传输过程可参阅现有技术,本发明实施例中不再赘述。
在本发明的一些实施例中,步骤103基站向终端设备发送第三CB,以及基站向UE发送第五CB之前,本发明实施例提供的数据处理方法还可以包括如下步骤:
B1、基站对第三CB进行速率匹配、交织编码,基站对第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制。
也就是说,在本发明实施例中,基站获取到第三CB和第五CB之后,基站还可以对第三CB进行速率匹配、交织编码,基站对第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制,在基站完成上述的多级处理之后,基站再向终端设备发送第三CB,以及向终端设备发送第五CB。其中,速率匹配是指传输信道上的比特被重发或者被打孔,以匹配物理信道的承载能力,信道映射时达到传输格式所要求的比特速率。交织编码是在实际移动通信环境下改善移动通信信号衰落的一种通信技术,将造成数字信号传输的突发性差错,利用交织编码技术可离散并纠正这种突发性差错,改善移动通信的传输特性。码块级联是依次将第三CB和第五CB进行级联后输出第三CB和第五CB。数据调制是将基带信号变换成传输信号的技术。
通过以上实施例对本发明的描述可知,首先基站对传输块经过码块分段后得到的第一CB和第二CB分别进行信道编码,得到第三CB和第四CB,第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,第三CB包括第一系统信息、第一路校验信息和第二路校验信息,第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,然后基站将预置的编码矩阵和第一系统信息进行相乘,生成线性分组码的校验信息,编码矩阵和单位矩阵构成所述线性分组码的生成矩阵,基站对线性分组码的校验信息和第二系统信息进行异或计算,得到第三系统信息,将第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,第五CB包括:第三系统信息、第三路校 验信息和第四路校验信息,基站向终端设备发送第三CB,以及基站向UE发送第五CB。由于第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此基站通过将预置的编码矩阵和第一系统信息进行相乘,将得到的线性分组码的校验信息携带在第四CB中,生成了第五CB,基站在第五CB中增加了第三CB和第四CB之间的相关性,终端设备在得到第五CB接收序列之后,可以通过第五CB接收序列中携带的第三系统信息序列恢复出第二系统信息接收序列,因此可以实现对第三CB和第四CB的不等误差保护,使得在同等网络条件下,给承载重要程度更高的数据的第三CB赋予更强的差错保护,能够提高第三CB从发送端到接收端的传输质量。
上述实施例从基站侧描述了本发明实施例提供的数据处理方法,接下来从终端设备侧描述本发明实施例提供的数据处理方法,请参阅如图2所示,本发明实施例提供的数据处理方法可以包括如下步骤:
201、终端设备接收基站发送的第三CB,得到第三CB接收序列,第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列。
202、终端设备接收基站发送的第五CB,得到第五CB接收序列,第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列。
在本发明实施例中,基站通过基站和终端设备之间的物理链路向终端设备发送第三CB和第五CB,则终端设备分别对基站发送的第三CB和第五CB进行接收,终端设备可以得到第三CB接收序列、第五CB接收序列,由于基站在第五CB中包括有第三系统信息,因此终端设备在接收第五CB时,可以得到第三系统信息接收序列,得到的第三系统信息接收序列可用于表示第三CB和第四CB之间的相关性。
需要说明的是,由前述实施例可知,第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此对于终端设备侧而言,第三CB接收序列承载的数据的重要程度大于第五CB接收序列承载的数据的重要程度。
在本发明的一些实施例中,步骤201终端设备接收基站发送的第三码块CB,得到第三CB接收序列,步骤202终端设备接收基站发送的第五CB,得到第五CB接收序列,具体可以包括如下步骤:
终端设备对基站发送的第三CB和第五CB进行数据解调制,然后对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列,对解调制后的第五CB进行速率匹配和交织解码,得到第五CB接收序列。
也就是说,在本发明实施例中,终端设备通过底层物理链路接收基站发送的数据流时,该数据流中包括有基站发送的第三CB和第五CB,终端设备首先对基站发送的第三CB和第五CB进行数据解调制之后,终端设备将不同的码块流分开,终端设备对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列,终端设备对解调制后的第五CB进行速率匹配和交织解码,得到第五CB接收序列。若基站侧对第三CB和第五CB执行了速率匹配、交织编码、码块级联、数据调制。终端设备侧还需要第三CB和第五CB执行与基站侧相反的多级处理,具体处理过程可参阅现有技术。
203、终端设备在得到第三CB接收序列之后,终端设备对第三CB接收序列进行信道译码,得到第三CB译码结果。
在本发明实施例中,终端设备在步骤201中得到第三CB接收序列之后,终端设备执行步骤203,对该第三CB接收序列进行信道译码,得到第三CB译码结果,需要说明的是,在终端设备侧执行的信道译码是与前述实施例中基站侧执行的信道编码是相反的两个信道处理过程,因此,基站侧采用哪种信道编码方式,在终端设备侧就需要采用相应的信道译码方式,例如,基站对码块的信道编码采用Turbo编码,终端设备对码块的信道译码就需要采用Turbo译码,若基站采用卷积编码或者汉明编码,终端设备需要采用卷积译码或者汉明译码,以完成对第三CB的信道译码。具体终端设备采用哪种译码方式,本发明实施例中可不做具体限定,可以根据具体的应用场景来决定采用哪种信道译码方式,信道译码方式的具体选择并不限制本发明实施例中对不同码块实现的不等误差保护。
204、终端设备对第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将系统信息恢复序列与第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将第五CB接收序列中包括的第三系统信息接收序列替换为第二系统信息接收序列,得到第四CB接收序列,第四CB接收序列包括:第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列。
在本发明实施例中,在第五CB接收序列中包括有基站在第五CB中携带的第三系统信息,因此终端设备侧得到的第三系统信息接收序列也可以用于表示第三CB和第四CB之间具有的相关性,在终端设备获取到第三CB译码结果之后,终端设备可以将第三CB译码结果与终端设备侧预先设置的编码矩阵进行相乘计算,得到系统信息恢复序列,其中在终端设备侧预先设置的编码矩阵与基站侧使用的编码矩阵是完全相同的编码矩阵,因此通过第三CB译码结果和编码矩阵相乘,可以得到系统信息恢复序列,该系统信息恢复序列用于对第五CB接收序列中第三系统信息接收序列的恢复,将系统信息恢复序列与第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,再将第五CB接收序列中包括的第三系统信息接收序列替换为第二系统信息接收序列,则终端设备可以得到第四CB接收序列,该第四CB接收序列包括:第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列。
需要说明的是,基站侧采用了预置的编码矩阵和第一系统信息进行相乘,生成线性分组码的校验信息,那么终端设备在对第五CB接收序列进行信道译码时还需要使用相同的编码矩阵来完成信道译码。在本发明实施例中,第三CB译码结果是终端设备对基站发送的第三CB的译码结果,在本发明实施例中,基站侧独立发送第三CB,但是并不会独立发送第四CB,而是将第四CB中的第二系统信息替换为第三系统信息,得到了第五CB,基站侧发送的是第五CB。终端设备侧对第三CB接收序列的信道译码是独立进行的,因此终端设备计算出的第三CB译码结果并不会受到第五CB传输过程中产生错误的影响。由于在第五CB中携带有用于表示第三CB和第四CB之间相关性的第三系统信息,因此终端设备得到的第五CB接收序列中第三系统信息接收序列还可以用于对第三CB传输过程中产生的错误进行修正,详见后续实施例的描述。
由于第四CB承载的数据的重要程度没有第三CB承载的数据的重要程度高,即使第三CB的传输错误影响到了对第五CB的接收,这种错误影响也是比较小的,因此本发明实施例中只有在第五CB中携带可表示第三CB和第四CB之间相关性的第三系统信息,而不在第三CB中增加第三CB和第四CB之间的相关性,从而可以实现对第三CB和第四CB的不等误差保护。
205、终端设备对第四CB接收序列进行信道译码,得到第四CB译码结果。
在本发明实施例中,终端设备通过前述步骤204得到第四CB接收序列之后,终端设备执行步骤205,对该第四CB接收序列进行信道译码,得到第四CB译码结果,需要说明的是,在终端设备侧执行的信道译码是与前述实施例中基站侧执行的信道编码是相反的两个信道处理过程,因此,基站侧采用哪种信道编码方式,在终端设备侧就需要采用相应的信道译码方式。例如,基站对码块的信道编码采用Turbo编码,终端设备对码块的信道译码就需要采用Turbo译码,若基站采用卷积编码或者汉明编码,终端设备需要采用卷积译码或者汉明译码,以完成对第三CB的信道译码。具体终端设备采用哪种译码方式,本发明实施例中可不做具体限定,可以根据具体的应用场景来决定采用哪种信道译码方式,信道译码方式的具体选择并不限制本发明实施例中对不同码块实现的不等误差保护。
在本发明的一些实施例中,步骤205终端设备对第四CB接收序列进行信道译码,得到第四CB译码结果之后,本发明实施例提供的数据处理方法还可以包括如下步骤:
F1、终端设备对第四CB译码结果进行CRC校验;
F2、若第四CB译码结果进行CRC校验的结果为校验成功,终端设备输出第四CB译码结果;
F3、若第四CB译码结果进行CRC校验的结果为校验失败,终端设备将第四CB译码结果丢弃,或,终端设备通知基站重新发送第五CB。
在本发明实施例中,终端设备通过步骤205得到第四CB译码结果之后,终端设备可以对该第四CB译码结果进行CRC校验,若CRC校验成功,则可以输出第四CB译码结果,若第四CB译码结果进行CRC校验的结果为校验失败,则说明基站在传输第四CB的过程中发生了传输错误,终端设备无法正确解码第四CB接收序列,终端设备可以选择丢弃掉第四CB译码结果,也可以通知基站侧重新发送第五CB。
在本发明的一些实施例中,步骤205所述终端设备对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,本发明实施例提供的数据处理方法,还可以包括如下步骤:
C1、终端设备判断对第三CB接收序列进行信道译码是否成功;
C2、若终端设备对第三CB接收序列进行信道译码失败,终端设备对第三 系统信息接收序列和第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息;
C3、终端设备将辅助校验信息和第三CB译码结果作为线性分组码译码器的输入,获取线性分组码译码器输出的第三CB修正结果。
在本发明实施例中,步骤203终端设备对第三CB接收序列进行信道译码,得到第三CB译码结果之后,终端设备可以对第三CB接收序列进行信道译码是否译码成功进行判断,例如,终端设备可以通过CRC校验的方式判断出对第三CB接收序列是否译码成功,若对第三CB接收序列译码成功,则直接输出第三CB译码结果。若终端设备对第三CB接收序列进行信道译码失败,则执行步骤C2,终端设备接收到的第五CB接收序列中包括有第三系统信息接收序列,该第三系统信息接收序列可以用于对第三CB译码结果的修正,终端设备对第三系统信息接收序列和第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息,终端设备再将辅助校验信息和第三CB译码结果作为线性分组码译码器的输入,获取线性分组码译码器输出的第三CB修正结果,则该线性分组吗译码器的监督矩阵就是线性分组码的生成矩阵对应的监督矩阵,因此通过上述线性分组码译码器可以实现第三CB译码结果的修正,得到第三CB修正结果,该第三CB修正结果更符合基站侧发送的第三CB。其中线性分组码译码器对第三CB译码结果的修正过程可以参阅现有技术。
在本发明实施例中,终端设备在获取到第三CB译码结果之后,终端设备可以判断对第三CB接收序列进行的信道译码是否成功,若终端设备对第三CB接收序列进行的信道译码的结果为译码成功,则说明基站发送的第三CB在传输过程中没有出现差错,因此不需要再对第三CB译码结果进行修正,可以不用执行步骤C2和步骤C3,而是可以直接输出第三CB译码结果。若第三CB译码结果进行译码的结果为译码失败,则说明基站发送的第三CB在传输过程中出现了错,因此终端设备侧需要再对第三CB译码结果进行修正,以提高终端设备对第三CB的接收成功率,在这种情况下可以触发执行步骤C2和步骤C3。
需要说明的是,在本发明实施例中,终端设备在获取到第四CB译码结果之后,终端设备还可以根据第五CB接收序列中包括的第三系统信息接收序列和第四CB译码结果对第三CB译码结果进行修正,得到第三CB修正结果。 由于第五CB接收序列中包括的第三系统信息接收序列和第四CB译码结果还可以用于对第三CB译码结果进行修正,因此本发明实施例中对基站发送的第三CB具有纠错能力,终端设备可以对基站发送第三CB过程中产生的错误进行修正,因此得到的第三CB修正结果能够能接近基站侧发送的第三CB,从而使得具有较高重要程度的第三CB可以被正确传输,实现了对第三CB和第四CB的不等误差保护。
在本发明的一些实施例中,前述步骤C1终端设备判断对第三CB接收序列进行信道译码是否成功之后,本发明实施例提供的数据处理方法,还可以包括如下步骤:
若终端设备对第三CB接收序列进行信道译码成功,触发执行步骤204:终端设备对第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将系统信息恢复序列与第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将第五CB接收序列中包括的第三系统信息接收序列替换为第二系统信息接收序列,得到第四CB接收序列。
进一步的,在本发明的一些实施例中,步骤C2中终端设备对第三系统信息接收序列和第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息之前,本发明实施例提供的数据处理方法还可以包括如下步骤:
D1、终端设备判断对第三CB接收序列进行信道译码的译码次数是否超过预置的迭代次数阈值,若对第三CB接收序列进行信道译码的译码次数没有超过预置的迭代次数阈值,触发执行步骤C2:终端设备对第三系统信息接收序列和第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息。
其中,终端设备为了实现对第三CB接收序列进行信道译码的译码控制,终端设备可以提前设置迭代次数阈值,在每次执行步骤C2和步骤C3之前,先执行步骤E1,对已经执行过的信道译码的译码次数是否超过迭代次数阈值进行判断,若没有超过预置的迭代次数阈值,则可以执行步骤C2和步骤C3,若已经超过了预置的迭代次数阈值,则可以结束译码,不再执行步骤C2和C3,通过步骤D1的实现方式,终端设备侧可以实现对信道译码的过程控制,避免因发送过程中对码块的传输错误使得无限次的对第三CB接收序列进行信道译码,以节省译码器的资源。
在本发明的一些实施例中,步骤203终端设备对第三CB接收序列进行信 道译码,得到第三CB译码结果之后,本发明实施例提供的数据处理方法还可以包括如下步骤:
E1、终端设备对第三CB译码结果进行CRC校验;
E2、若第三CB译码结果进行CRC校验的结果为校验成功,终端设备输出第三CB译码结果;
E3、若第三CB译码结果进行CRC校验的结果为校验失败,终端设备将第三CB译码结果丢弃,或,终端设备通知基站重新发送第三CB。
在本发明实施例中,终端设备通过步骤203得到第三CB译码结果之后,终端设备可以对该第三CB译码结果进行CRC校验,若CRC校验成功,则可以输出第三CB译码结果,若第三CB译码结果进行CRC校验的结果为校验失败,则说明基站在传输第三CB的过程中发生了传输错误,终端设备无法正确解码第三CB接收序列,终端设备可以选择丢弃掉第三CB译码结果,也可以通知基站侧重新发送第三CB。
通过以上实施例对本发明的描述可知,终端设备作为接收端,首先对基站发送的第三CB进行接收,得到第三CB接收序列,以及对基站发送的第五CB进行接收,得到第五CB接收序列,第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列,第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列,终端设备在得到第三CB接收序列之后,终端设备对第三CB接收序列进行信道译码,得到第三CB译码结果,终端设备对第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将系统信息恢复序列与第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将第五CB接收序列中包括的第三系统信息接收序列替换为第二系统信息接收序列,得到第四CB接收序列,第四CB接收序列包括:第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列,终端设备对第四CB接收序列进行信道译码,得到第四CB译码结果。由于第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此基站通过将预置的编码矩阵和第一系统信息进行相乘,将得到的线性分组码的校验信息携带在第四CB中,生成了第五CB,基站在第五CB中增加了第三CB和第四CB之间的相关性,终端设备在得到第五CB接收序列之后,可以通过第五CB接收序列中携带的 第三系统信息序列恢复出第二系统信息接收序列,因此可以实现对第三CB和第四CB的不等误差保护,使得在同等网络条件下,给承载重要程度更高的数据的第三CB可以赋予更强的差错保护,能够提高第三CB从发送端到接收端的传输质量。
前述实施例从基站侧、终端设备侧描述了本发明实施例提供的数据处理方法,接下来介绍本发明实施例提供的通信系统实现的数据处理方法,该通信系统可以包括:基站和终端设备,其中基站执行前述图1所示的数据处理方法,终端设备执行前述图2所示的数据处理方法,通信系统执行的数据处理方法可以包括基站执行的数据处理方法、终端设备执行的数据处理方法,详见前述实施例的具体描述,此处不再赘述。
为便于更好的理解和实施本发明实施例的上述方案,下面举例相应的应用场景来进行具体说明。
本发明实施例在保持原有LTE网络架构和数据处理流程的基础上,针对视频业务的分层特征,通过在信道编解码模块加入新的数据处理过程,保证了现有网络的其它参数指标不受任何影响的同时,有针对性的实现对视频业务数据的UEP处理。基于视频业务需要分层且各个层的重要程度不同的特征,本发明实施例在现有LTE网络物理层架构(以PDSCH采用的Turbo信道编码为例)基础上,基于层间(Inter-Layer,IL)方式实现视频业务不同重要程度数据层的UEP。
请参阅如图3所示,为本发明实施例中物理层数据处理的流程示意图。以本发明实施例中对视频数据的编解码处理为例进行详细说明,本发明实施例在目前LTE网络中的基站侧实现的物理层PDSCH数据处理机制的基础上,结合视频编码输出码流的数据分层特征,区分出一个TTI内复用生成的MAC PDU内视频数据内容,在对传输块进行码块分段后,根据各个码块隶属于视频数据的不同层,通过在当前物理层的Turbo信道编码模块的基础上增加一个预编码模块,将原来独立处理的各个码块之间增加特定的相关性,同时相应的在收端对等解码模块增加一个线性分组码译码器,与原有Turbo译码器相结合,提高携带高重要性视频数据(例如BL)的译码成功率,可以实现对不同的码块的UEP,在当前可用无线资源、信道状态一定的前提下提高视频业务端到端的传输可靠性。
本发明实施例可以用于当前LTE网络中用户面的视频业务的下行传输,用户面的下行业务数据都承载在物理层的PDSCH信道,本发明实施例中,基站每个TTI内处理一个或多个的传输块,如图3所示,传输块首先经过CRC处理添加CRC校验位,然后进行码块分段,并对各码块进行再一次的CRC处理,然后将各个码块独立进行Turbo信道编码,然后再进入预编码模块进行处理,最后下发进行速率匹配、交织编码、码块级联、数据调制等处理,作为接收端的终端设备,在译码模块中线性分组码译码器和Turbo译码器对各码块进行Turbo译码,然后再进行码块分段和CRC处理,最后对传输块进行CRC校验后输出。由于编码端在当前物理层数据处理的Turbo信道编码模块中增加了一个预编码模块,相应的,对于译码端可以结合编码端的预编码处理方式,在原有Turbo译码器的基础上,引入一个与预编码对应的系统线性分组码译码器,利用叠加在EL的BL信息,对Turbo译码输出的具有一定误码率的BL信息进行二次译码纠错,从而提高视频业务的BL数据的译码成功率。
现有技术中在信道编译码的处理模块中各个码块都是独立进行的,本发明实施例与现有技术不相同,在编码端的码块经过独立的Turbo编码之后,增加一个预编码模块,将BL系统信息经过预编码之后产生的比特序列叠加至EL的系统信息,从而引入码块间的相关性。译码端利用预编码模块引入的码块间相关性,增加线性分组码译码器,与原有Turbo译码器对各个码块进行交互迭代译码,实现视频业务不同层数据的UEP。
接下来对基站侧的Turbo信道编码过程进行详细说明,LTE中基站侧的信道编码采用的是图4-a所示的Turbo编码结构,图4-a中“D”表示移位寄存器,该编码以CB作为单位码长进行独立编码,包括一个含2个8状态子编码器的并行级联卷积码(Parallel Concatenated Convolutional Code,PCCC)和一个Turbo码内交织器。其中,每个输入码块经过独立编码之后输出下述三路的并行数据,然后再进行后续的交织等处理,其中,三路的并行数据具体包括:
1)、码块原始序列ck直接输出为Turbo系统信息xk
2)、序列ck经过第一分量编码器编码输出第一路校验信息zk
3)、序列ck先经过Turbo码内交织器之后,再通过第二分量编码器编码输出第二路校验信息z′k
其中,各个码块进行独立的Turbo编码,即所有数据进入物理层的PDSCH 之后,现有技术中进行的都是EEP处理,按照EEP处理的方式对重要程度不同的层并不做区分,这样就忽略视频业务数据的BL/EL这种重要程度可分层的业务特征,本发明实施例中可以有效的利用重要程度可分层的业务特征,从而提高视频业务端到端的传输性能。
首先从基站侧对物理层的PDSCH数据处理过程进行说明,当前TTI内MAC复用可形成MAC PDU(即TB),如图4-b所示,为本发明实施例提供的对传输块进行码块分段的处理方式示意图,经过码块分段后一共包含两个码块,分别为第一CB(也就是CB1)和第二CB(也就是CB2),其中,码块CB1包括视频业务的BL层的数据,码块CB2包括视频业务的EL层的数据,因此CB1的重要程度高于CB2,UEP处理需赋予CB1更强的保护。
得到上述两个码块后首先按照原有机制分别进行CRC处理,添加CRC校验信息,然后对两个码块分别进行信道编码。现有的处理方法是两个码块独立进行Turbo编码输出到下一个处理模块。本发明实施例中,如图4-c所示,为本发明实施例提供基站侧对码块的编码处理的实现方式示意图,本发明实施例中增加一个预编码模块,通过预编码之后的模二叠加增加了两个码块间的相关性,即在信道编码中增加了视频不同层间的相关性,即可以实现层间联合前向纠错(Inter-Layer Forward Error Correction,IL-FEC)。具体的,基站执行如下步骤:
S01:码块CB1、CB2的比特序列分别进行Turbo编码,得到第三CB和第四CB,第三CB包括:第一系统信息、第一路校验信息和第二路校验信息,得到,第四CB包括:第二系统信息、第三路校验信息和第四路校验信息。图4-c中,CB1的数据为xb,第一系统信息为
Figure PCTCN2015089252-appb-000001
第一路校验信息为
Figure PCTCN2015089252-appb-000002
第二路校验信息
Figure PCTCN2015089252-appb-000003
CB2的数据为xe,第二系统信息为
Figure PCTCN2015089252-appb-000004
第三路校验信息为
Figure PCTCN2015089252-appb-000005
第四路校验信息
Figure PCTCN2015089252-appb-000006
由此可知,第三CB和第四CB都各包括三路信息,CB1包括一路系统信息
Figure PCTCN2015089252-appb-000007
以及两路校验信息分别为
Figure PCTCN2015089252-appb-000008
CB2包括系统信息
Figure PCTCN2015089252-appb-000009
和校验信息
Figure PCTCN2015089252-appb-000010
S02:CB1的系统信息
Figure PCTCN2015089252-appb-000011
经过预编码模块生成辅助信息Pb。一个系统线性分组码的生成矩阵G可拆分为两部分G=[I|Q],其中I为单位矩阵,直接生成与输入信息保持不变的系统信息,编码矩阵Q与输入信息相乘得到该线性分组码编码器的校验信息。本发明实施例中的预编码模块的编码矩阵Q和CB1的 系统信息
Figure PCTCN2015089252-appb-000012
满足如下关系:
Figure PCTCN2015089252-appb-000013
其中,编码矩阵Q大小为[na,nb];na为CB1比特序列
Figure PCTCN2015089252-appb-000014
的长度,nb为CB2比特序列
Figure PCTCN2015089252-appb-000015
长度,I为na阶单位矩阵
Figure PCTCN2015089252-appb-000016
S03:将CB2的第二系统信息
Figure PCTCN2015089252-appb-000017
替换为第三系统信息
Figure PCTCN2015089252-appb-000018
得到第五CB:
Figure PCTCN2015089252-appb-000019
故最终输出中,CB1保持原三路输出不变,CB2的第二系统信息由第三系统信息
Figure PCTCN2015089252-appb-000020
取代,两路校验信息
Figure PCTCN2015089252-appb-000021
输出保持不变。
码块经过上述IL-FEC处理之后,每个码块形成的3路并行数据流按照原来PDSCH的处理机制继续进行下续操作。
上述图4-c中从发送端介绍了Turbo编码和预编码,接下来从接收端来介绍Turbo译码和预编码,如图4-d所示,为本发明实施例提供终端设备侧对码块的译码处理的实现方式示意图,如图4-e所示,为本发明实施例提供的终端设备侧对码块的译码处理流程示意图,在接收端UE侧,数据流到达上述信道编码模块对等的信道译码模块之前,得到的即是对应的可能含有一定比特错误的码块,该码块含有三路并行数据子流的各码字信息。如图4-d所示,在原有各码块独立Turbo译码的基础上,本发明实施例结合发送端所做的编码改进,在接收端通过引入线性分组码译码器,结合原有Turbo译码器进行交互迭代译码,具体的译码过程如下:
S11:终端设备对基站发送的第三CB、第五CB进行接收,终端设备获取到第三CB接收序列和第五CB接收序列,第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列,第五CB接收序列包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列。其中,第一系统信息接收序列为
Figure PCTCN2015089252-appb-000022
第一路校验信息接收序列为
Figure PCTCN2015089252-appb-000023
第二路校验信息接收序列
Figure PCTCN2015089252-appb-000024
第三系统信息接收序列为
Figure PCTCN2015089252-appb-000025
第三路校验信息接收序列为
Figure PCTCN2015089252-appb-000026
第四路校验信息接收序列
Figure PCTCN2015089252-appb-000027
根据接收信息
Figure PCTCN2015089252-appb-000028
经过Turbo译码器译码,得到第三CB译码结果,即CB1原比特序列
Figure PCTCN2015089252-appb-000029
S12:根据接收信息
Figure PCTCN2015089252-appb-000030
译码CB2。由于第三系统信息
Figure PCTCN2015089252-appb-000031
是CB2的第二系统信息
Figure PCTCN2015089252-appb-000032
与线性分组码的校验信息Pb叠加得到的,因此需先恢复 CB2的第二系统信息。如图4-d和图4-e所示,接收端的预编码模块与发送端的预编码模块完全一致,同为编码矩阵Q,通过预编码模块可以恢复出CB2的第二系统信息接收序列
Figure PCTCN2015089252-appb-000033
例如通过如下方式计算得到:
Figure PCTCN2015089252-appb-000034
然后,对第四CB接收序列经过Turbo译码器译码之后,得到第四CB译码结果,即CB2原比特序列
Figure PCTCN2015089252-appb-000035
S13:若CB1经CRC校验通过,表示经过S11之后CB1已经译码成功,则译码结束,输出第三CB译码结果,若CB1经CRC校验不通过,即CB1译码失败,则激活图4-e中虚线所示的译码流程,即执行如下步骤S14~S16。
S14:利用
Figure PCTCN2015089252-appb-000036
Figure PCTCN2015089252-appb-000037
恢复出线性分组译码器的辅助校验信息
Figure PCTCN2015089252-appb-000038
Figure PCTCN2015089252-appb-000039
其中,
Figure PCTCN2015089252-appb-000040
通过第四CB译码结果
Figure PCTCN2015089252-appb-000041
和第三系统信息接收序列
Figure PCTCN2015089252-appb-000042
进行异或计算得到。
S15:
Figure PCTCN2015089252-appb-000043
Figure PCTCN2015089252-appb-000044
构成矩阵
Figure PCTCN2015089252-appb-000045
作为线性分组码译码器的输入,线性分组码译码器的监督矩阵H即为由预编码矩阵Q形成的线性分组码生成矩阵G=[I|Q]对应的监督矩阵,H矩阵由上下分别为矩阵PT和单位矩阵I组成,根据线性分组码的编译码原理,G和H需满足如下关系:
Figure PCTCN2015089252-appb-000046
其中,该公式中的等式右端的0指的是全0矩阵,因为P、Q皆为二进制的0、1矩阵,故由上式可知PΤ=Q。因此,监督矩阵H满足
Figure PCTCN2015089252-appb-000047
获取到线性分组码译码器的监督矩阵之后,线性分组码译码器等效于利用叠加在CB2上的辅助校验信息
Figure PCTCN2015089252-appb-000048
对没有正确译码的CB1信息
Figure PCTCN2015089252-appb-000049
进行再一次修正,于是该译码器译码输出的是第三CB译码结果,即修正后的
Figure PCTCN2015089252-appb-000050
S16:选择模块用于若修正后的CB1序列
Figure PCTCN2015089252-appb-000051
经CRC校验通过,则译码结束,输出当前译码结果;若不通过,则在迭代次数不超过设定阈值(即没有达到最大迭代次数)的前提下,重复上述S11~S15。
前述描述的信道译码过程可以参阅图4-e所示,CB1&CB2硬判决表示若CB1译码成功,则S13中用于恢复
Figure PCTCN2015089252-appb-000052
的CB1信息
Figure PCTCN2015089252-appb-000053
为译码正确的码块。
通过前述对本发明的举例说明可知,本发明实施例基于现有的LTE框架和PDSCH数据处理流程,通过在一个TTI的调度周期内,将该TTI内复用形成的MAC PDU中视频数据的重要性可识别特征,引入预编码机制,增加码块间的数据相关性,从而增强对携带视频业务重要性高的BL数据的码块的FEC保护程度。结合收端的改进译码机制,在不影响整体MAC PDU的Turbo译码性能的基础上,提高了携带视频业务重要BL数据的译码成功概率,提高LTE中视频传输端到端重构可靠性。且由于发送端的IL-FEC机制,收端的迭代译码机制能提高收端的译码成功概率,从而减小MAC PDU的译码错误概率,减少MAC PDU的重传次数,节省LTE带宽资源。此外本发明实施例中改变了现有LTE eNB侧PDSCH数据处理流程中的码块分段和信道编码模块,以及UE侧对等信道译码模块的相应改进,工程实现简单。
需要说明的是,在前述实施例中以视频数据的处理为例,但是本发明实施例不局限于视频业务数据,只要某业务具有重要程度可区分特征,并在进入PDSCH数据处理前能够将业务的不同重要程度数据区分分流,即可在信道编码模块中进行本发明的UEP处理。同时本发明基于现有LTE中的Turbo信道编码进行改进,若是其它的信道编码方式,只要信道编码方法具有系统码特征,即编码后码字的系统信息与校验信息不交叉,例如卷积码、汉明码等,亦可采用本发明实施例提供的数据处理方法。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
为便于更好的实施本发明实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅图5-a所示,本发明实施例提供的一种基站500,可以包括:编码模块501、校验信息计算模块502、系统信息更新模块503、发送模块504,其中,
编码模块501,用于对第一码块CB进行信道编码,得到第三CB,,所述第三CB包括:第一系统信息、第一路校验信息和第二路校验信息;对第二CB进行信道编码,得到第四CB,所述第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,所述第三CB承载的数据的重要程度大于所述第四CB承载的数据的重要程度,所述第一CB和第二CB是所述基站对传输块经过码块分段后得到的两个码块;
校验信息计算模块502,用于将预置的编码矩阵和所述第一系统信息进行相乘,生成线性分组码的校验信息,所述编码矩阵和单位矩阵构成所述线性分组码的生成矩阵;
系统信息更新模块503,用于对所述线性分组码的校验信息和所述第二系统信息进行异或计算,得到第三系统信息,将所述第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,所述第五CB包括:第三系统信息、第三路校验信息和第四路校验信息;
发送模块504,用于向终端设备发送所述第三CB,以及所述基站向所述终端设备发送所述第五CB。
在本发明的一些实施例中,请参阅如图5-b所示,所述基站500还包括:CRC处理模块505,用于所述编码模块501对第一码块CB进行信道编码,得到第三CB之前,对所述第一CB进行循环冗余校验码CRC处理。
在本发明的一些实施例中,CRC处理模块505,还用于所述编码模块对第二CB进行信道编码,得到第四CB之前,对所述第二CB进行CRC处理。
在本发明的一些实施例中,请参阅如图5-c所示,所述基站500,还包括:多级处理模块506,用于所述发送模块504向终端设备发送所述第三CB,以及向所述终端设备发送第五CB之前,对所述第三CB进行速率匹配、交织编码,对所述第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制。
通过以上实施例对本发明的描述可知,首先基站对传输块经过码块分段后得到的第一CB和第二CB分别进行信道编码,得到第三CB和第四CB,第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,第三CB包括第一系统信息、第一路校验信息和第二路校验信息,第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,然后基站将预置的编码矩阵和第 一系统信息进行相乘,生成线性分组码的校验信息,编码矩阵和单位矩阵构成所述线性分组码的生成矩阵,基站对线性分组码的校验信息和第二系统信息进行异或计算,得到第三系统信息,将第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,第五CB包括:第三系统信息、第三路校验信息和第四路校验信息,基站向终端设备发送第三CB,以及基站向UE发送第五CB。由于第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此基站通过将预置的编码矩阵和第一系统信息进行相乘,将得到的线性分组码的校验信息携带在第四CB中,生成了第五CB,基站在第五CB中增加了第三CB和第四CB之间的相关性,终端设备在得到第五CB接收序列之后,可以通过第五CB接收序列中携带的第三系统信息序列恢复出第二系统信息接收序列,因此可以实现对第三CB和第四CB的不等误差保护,使得在同等网络条件下,给承载重要程度更高的数据的第三CB可以赋予更强的差错保护,能够提高第三CB从发送端到接收端的传输质量。
请参阅图6-a所示,本发明实施例提供的一种终端设备600,可以包括:接收模块601、译码模块602、系统信息更新模块603,其中,
接收模块601,用于接收基站发送的第三码块CB,得到第三CB接收序列,所述第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列;接收所述基站发送的第五CB,得到第五CB接收序列,所述第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
译码模块602,用于在得到所述第三CB接收序列之后,对所述第三CB接收序列进行信道译码,得到第三CB译码结果;
系统信息更新模块603,用于对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列,所述第四CB接收序列包括:所述第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
译码模块602,还用于对所述第四CB接收序列进行信道译码,得到第四CB译码结果。
在本发明的一些实施例中,请参阅如图6-b所示,所述终端设备600还包括:译码判断模块604、辅助校验信息计算模块605和修正模块606,其中,
所述译码判断模块604,用于所述译码模块602对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,判断对所述第三CB接收序列进行信道译码是否成功;
所述辅助校验信息计算模块605,用于若所述译码模块对所述第三CB接收序列进行信道译码失败,对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息;
所述修正模块606,用于将所述辅助校验信息和所述第三CB译码结果作为线性分组码译码器的输入,获取所述线性分组码译码器输出的第三CB修正结果。
在本发明的一些实施例中,所述译码判断模块604,还用于若所述译码模块602对所述第三CB接收序列进行信道译码成功,触发执行所述系统信息更新模块603。
在本发明的一些实施例中,进一步的,相比于如图6-a,请参阅如图6-c所示,所述终端设备600,还包括:迭代判断模块607,用于所述辅助校验信息计算模块603对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息之前,判断对所述第三CB接收序列进行信道译码的译码次数是否超过预置的迭代次数阈值,若对所述第三CB接收序列进行信道译码的译码次数没有超过预置的迭代次数阈值,触发执行所述辅助校验信息计算模块603。
在本发明的一些实施例中,相比于如图6-a所示,请参阅如图6-d所示,所述终端设备600,还包括:CRC处理模块608,用于所述译码模块602对所述第三CB接收序列进行信道译码,得到第三CB译码结果之后,对所述第三CB译码结果进行循环冗余校验码CRC校验;若所述第三CB译码结果进行CRC校验的结果为校验成功,输出所述第三CB译码结果;若所述第三CB译码结果进行CRC校验的结果为校验失败,将所述第三CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第三CB。
在本发明的一些实施例中,CRC处理模块608,用于所述译码模块对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,对所述第四CB 译码结果进行CRC校验;若所述第四CB译码结果进行CRC校验的结果为校验成功,输出所述第四CB译码结果;若所述第四CB译码结果进行CRC校验的结果为校验失败,将所述第四CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第五CB。
在本发明的一些实施例中,所述接收模块601,具体用于对所述基站发送的第三CB和第五CB进行数据解调制,然后对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列,对解调制后的第五CB进行速率匹配和交织解码,得到第五CB接收序列。
通过以上实施例对本发明的描述可知,终端设备作为接收端,首先对基站发送的第三CB进行接收,得到第三CB接收序列,以及对基站发送的第五CB进行接收,得到第五CB接收序列,第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列,第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列,终端设备在得到第三CB接收序列之后,终端设备对第三CB接收序列进行信道译码,得到第三CB译码结果,终端设备对第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将系统信息恢复序列与第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将第五CB接收序列中包括的第三系统信息接收序列替换为第二系统信息接收序列,得到第四CB接收序列,第四CB接收序列包括:第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列,终端设备对第四CB接收序列进行信道译码,得到第四CB译码结果。由于第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此基站通过将预置的编码矩阵和第一系统信息进行相乘,将得到的线性分组码的校验信息携带在第四CB中,生成了第五CB,基站在第五CB中增加了第三CB和第四CB之间的相关性,终端设备在得到第五CB接收序列之后,可以通过第五CB接收序列中携带的第三系统信息序列恢复出第二系统信息接收序列,因此可以实现对第三CB和第四CB的不等误差保护,使得在同等网络条件下,给重要程度更高的第三CB可以赋予更强的差错保护,能够提高第三CB从发送端到接收端的传输质量。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容, 由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施例相同,具体内容可参见本发明前述所示的方法实施例中的叙述,此处不再赘述。
前述实施例描述了本发明实施例提供的基站和终端设备,接下来介绍本发明实施例提供的通信系统,该通信系统可以包括:基站和终端设备,其中基站为前述图5-a、图5-b、图5-c中任一种所示的基站,终端设备为前述图6-a、图6-b、图6-c、图6-d中任一种所示的终端设备,通信系统包括的基站和终端设备详见前述实施例的具体描述,此处不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本发明实施例提供的另一种基站,请参阅图7所示,基站700包括:
接收器701、发送器702、处理器703和存储器704(其中基站700中的处理器703的数量可以一个或多个,图7中以一个处理器为例)。在本发明的一些实施例中,接收器701、发送器702、处理器703和存储器704可通过总线或其它方式连接,其中,图7中以通过总线连接为例。
其中,处理器703执行前述实施例中基站侧执行的数据处理方法。具体的,处理器703,用于执行如下步骤:
对第一码块CB进行信道编码,得到第三CB,所述第三CB包括:第一系统信息、第一路校验信息和第二路校验信息;
对第二CB进行信道编码,得到第四CB,所述第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,所述第三CB承载的数据的重要程度大于所述第四CB承载的数据的重要程度,所述第一CB和第二CB是所述基站对传输块经过码块分段后得到的两个码块;
将预置的编码矩阵和所述第一系统信息进行相乘,生成线性分组码的校验信息,所述编码矩阵和单位矩阵构成所述线性分组码的生成矩阵;
对所述线性分组码的校验信息和所述第二系统信息进行异或计算,得到第三系统信息,将所述第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,所述第五CB包括:第三系统信息、第三路校验信息和第四路校验信息;
控制所述发送器702向终端设备发送所述第三CB,以及向所述终端设备发送所述第五CB。
在本发明的一些实施例中,处理器703,还用于执行如下步骤:
对第一码块CB进行信道编码,得到第三CB之前,对所述第一CB进行循环冗余校验码CRC处理。
在本发明的一些实施例中,处理器703,还用于执行如下步骤:对第二CB进行信道编码,得到第四CB之前,对所述第二CB进行CRC处理。
在本发明的一些实施例中,处理器703,还用于执行如下步骤:
控制所述发送器702向终端设备发送所述第三CB,以及向终端设备发送所述第五CB之前,对所述第三CB进行速率匹配、交织编码,对所述第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制。
通过以上实施例对本发明的描述可知,首先基站对传输块经过码块分段后得到的第一CB和第二CB分别进行信道编码,得到第三CB和第四CB,第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,第三CB包括第一系统信息、第一路校验信息和第二路校验信息,第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,然后基站将预置的编码矩阵和第一系统信息进行相乘,生成线性分组码的校验信息,编码矩阵和单位矩阵构成所述线性分组码的生成矩阵,基站对线性分组码的校验信息和第二系统信息进行异或计算,得到第三系统信息,将第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,第五CB包括:第三系统信息、第三路校验信息和第四路校验信息,基站向终端设备发送第三CB,以及基站向UE发送第五CB。由于第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此基站通过将预置的编码矩阵和第一系统信息进行相乘,将得到的线性分组码的校验信息携带在第四CB中,生成了第五CB,基站在第五CB中增加了第三CB和第四CB之间的相关性,终端设备在得到第五CB接收序列之后,可以通过第五CB接收序列中携带的第三系统信息序列恢复出第二系统信息接收序列,因此可以实现对第三CB和第四CB的不等误差保护,使得在同等网络条件下,给承载重要程度更高的数据的第三CB可以赋予更强的差错保护,能够提高第三CB从发送端到接收端的传输质量。
接下来介绍本发明实施例提供的另一种终端设备,请参阅图8所示,终端设备800包括:
接收器801、发送器802、处理器803和存储器804(其中终端设备800中的处理器803的数量可以一个或多个,图8中以一个处理器为例)。在本发明的一些实施例中,接收器801、发送器802、处理器803和存储器804可通过总线或其它方式连接,其中,图8中以通过总线连接为例。
其中,处理器803执行前述实施例中终端设备侧执行的数据处理方法。具体的,处理器803,用于执行如下步骤:
在本发明的一些实施例中,处理器803还用于执行以下步骤:
控制接收器801接收基站发送的第三码块CB,得到第三CB接收序列,所述第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列;
控制接收器801接收所述基站发送的第五CB,得到第五CB接收序列,所述第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
在得到所述第三CB接收序列之后,对所述第三CB接收序列进行信道译码,得到第三CB译码结果;
对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列,所述第四CB接收序列包括:所述第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
对所述第四CB接收序列进行信道译码,得到第四CB译码结果。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,判断对所述第三CB接收序列进行信道译码是否成功;若对所述第三CB接收序列进行信道译码失败,对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息;将所述辅助校验信息和所述第三CB译码结果作为线性分组码译码器的输入,获取所述线性分组码译码器输出的第三CB 修正结果。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:
判断对所述第三CB接收序列进行信道译码是否成功之后,若对所述第三CB接收序列进行信道译码成功,触发执行步骤:对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:
对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息之前,判断对所述第三CB接收序列进行信道译码的译码次数是否超过预置的迭代次数阈值,若对所述第三CB接收序列进行信道译码的译码次数没有超过预置的迭代次数阈值,触发执行步骤:对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:对所述第三CB接收序列进行信道译码,得到第三CB译码结果之后,对所述第三CB译码结果进行循环冗余校验码CRC校验;若所述第三CB译码结果进行CRC校验的结果为校验成功,输出所述第三CB译码结果;若所述第三CB译码结果进行CRC校验的结果为校验失败,将所述第三CB译码结果丢弃,或,通知所述基站重新发送第三CB。
在本发明的一些实施例中,处理器803,还用于执行如下步骤:
对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,对所述第四CB译码结果进行CRC校验;若所述第四CB译码结果进行CRC校验的结果为校验成功,输出所述第四CB译码结果;若所述第四CB译码结果进行CRC校验的结果为校验失败,将所述第四CB译码结果丢弃,或,通知所述基站重新发送第五CB。
在本发明的一些实施例中,处理器803,具体用于执行如下步骤:
对所述基站发送的第三CB和第五CB进行数据解调制,然后对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列,对解调制后的 第五CB进行速率匹配和交织解码,得到第五CB接收序列。
通过以上实施例对本发明的描述可知,终端设备作为接收端,首先对基站发送的第三CB进行接收,得到第三CB接收序列,以及对基站发送的第五CB进行接收,得到第五CB接收序列,第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列,第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列,终端设备在得到第三CB接收序列之后,终端设备对第三CB接收序列进行信道译码,得到第三CB译码结果,终端设备对第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将系统信息恢复序列与第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将第五CB接收序列中包括的第三系统信息接收序列替换为第二系统信息接收序列,得到第四CB接收序列,第四CB接收序列包括:第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列,终端设备对第四CB接收序列进行信道译码,得到第四CB译码结果。由于第三CB承载的数据的重要程度大于第四CB承载的数据的重要程度,因此基站通过将预置的编码矩阵和第一系统信息进行相乘,将得到的线性分组码的校验信息携带在第四CB中,生成了第五CB,基站在第五CB中增加了第三CB和第四CB之间的相关性,终端设备在得到第五CB接收序列之后,可以通过第五CB接收序列中携带的第三系统信息序列恢复出第二系统信息接收序列,因此可以实现对第三CB和第四CB的不等误差保护,使得在同等网络条件下,给承载重要程度更高的数据的第三CB可以赋予更强的差错保护,能够提高第三CB从发送端到接收端的传输质量。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本发明而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
综上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (22)

  1. 一种数据处理方法,其特征在于,包括:
    基站对第一码块CB进行信道编码,得到第三CB,所述第三CB包括:第一系统信息、第一路校验信息和第二路校验信息;
    所述基站对第二CB进行信道编码,得到第四CB,所述第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,所述第三CB承载的数据的重要程度大于所述第四CB承载的数据的重要程度,所述第一CB和第二CB是所述基站对传输块经过码块分段后得到的两个码块;
    所述基站将预置的编码矩阵和所述第一系统信息进行相乘,生成线性分组码的校验信息,所述编码矩阵和单位矩阵构成所述线性分组码的生成矩阵;
    所述基站对所述线性分组码的校验信息和所述第二系统信息进行异或计算,得到第三系统信息,将所述第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,所述第五CB包括:第三系统信息、第三路校验信息和第四路校验信息;
    所述基站向终端设备发送所述第三CB,以及所述基站向所述终端设备发送所述第五CB。
  2. 根据权利要求1所述的方法,其特征在于,所述基站对第一码块CB进行信道编码,得到第三CB之前,所述方法还包括:
    所述基站对所述第一CB进行循环冗余校验码CRC处理。
  3. 根据权利要求1所述的方法,其特征在于,所述基站对第二CB进行信道编码,得到第四CB之前,所述方法还包括:
    所述基站对所述第二CB进行CRC处理。
  4. 根据权利要求1所述的方法,其特征在于,所述基站向终端设备发送所述第三CB,以及所述基站向终端设备发送所述第五CB之前,所述方法还包括:
    所述基站对所述第三CB进行速率匹配、交织编码,所述基站对所述第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制。
  5. 一种数据处理方法,其特征在于,包括:
    终端设备接收基站发送的第三码块CB,得到第三CB接收序列,所述第 三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列;
    所述终端设备接收所述基站发送的第五CB,得到第五CB接收序列,所述第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
    所述终端设备在得到所述第三CB接收序列之后,所述终端设备对所述第三CB接收序列进行信道译码,得到第三CB译码结果;
    所述终端设备对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列,所述第四CB接收序列包括:所述第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
    所述终端设备对所述第四CB接收序列进行信道译码,得到第四CB译码结果。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,所述方法还包括:
    所述终端设备判断对所述第三CB接收序列进行信道译码是否成功;
    若所述终端设备对所述第三CB接收序列进行信道译码失败,所述终端设备对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息;
    所述终端设备将所述辅助校验信息和所述第三CB译码结果作为线性分组码译码器的输入,获取所述线性分组码译码器输出的第三CB修正结果。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备判断对所述第三CB接收序列进行信道译码是否成功之后,所述方法还包括:
    若所述终端设备对所述第三CB接收序列进行信道译码成功,触发执行步骤:所述终端设备对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收 序列。
  8. 根据权利要求6所述的方法,其特征在于,所述终端设备对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息之前,所述方法还包括:
    所述终端设备判断对所述第三CB接收序列进行信道译码的译码次数是否超过预置的迭代次数阈值,若对所述第三CB接收序列进行信道译码的译码次数没有超过预置的迭代次数阈值,触发执行步骤:所述终端设备对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息。
  9. 根据权利要求5所述的方法,其特征在于,所述终端设备对所述第三CB接收序列进行信道译码,得到第三CB译码结果之后,所述方法还包括:
    所述终端设备对所述第三CB译码结果进行循环冗余校验码CRC校验;
    若所述第三CB译码结果进行CRC校验的结果为校验成功,所述终端设备输出所述第三CB译码结果;
    若所述第三CB译码结果进行CRC校验的结果为校验失败,所述终端设备将所述第三CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第三CB。
  10. 根据权利要求5所述的方法,其特征在于,所述终端设备对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,所述方法还包括:
    所述终端设备对所述第四CB译码结果进行CRC校验;
    若所述第四CB译码结果进行CRC校验的结果为校验成功,所述终端设备输出所述第四CB译码结果;
    若所述第四CB译码结果进行CRC校验的结果为校验失败,所述终端设备将所述第四CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第五CB。
  11. 根据权利要求5所述的方法,其特征在于,所述终端设备接收基站发送的第三码块CB,得到第三CB接收序列,所述终端设备接收所述基站发送的第五CB,得到第五CB接收序列,包括:
    所述终端设备对所述基站发送的第三CB和第五CB进行数据解调制,然后对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列, 对解调制后的第五CB进行速率匹配和交织解码,得到第五CB接收序列。
  12. 一种基站,其特征在于,包括:
    编码模块,用于对第一码块CB进行信道编码,得到第三CB,,所述第三CB包括:第一系统信息、第一路校验信息和第二路校验信息;对第二CB进行信道编码,得到第四CB,所述第四CB包括:第二系统信息、第三路校验信息和第四路校验信息,所述第三CB承载的数据的重要程度大于所述第四CB承载的数据的重要程度,所述第一CB和第二CB是所述基站对传输块经过码块分段后得到的两个码块;
    校验信息计算模块,用于将预置的编码矩阵和所述第一系统信息进行相乘,生成线性分组码的校验信息,所述编码矩阵和单位矩阵构成所述线性分组码的生成矩阵;
    系统信息更新模块,用于对所述线性分组码的校验信息和所述第二系统信息进行异或计算,得到第三系统信息,将所述第四CB包括的第二系统信息替换为所述第三系统信息,得到所述第五CB,所述第五CB包括:第三系统信息、第三路校验信息和第四路校验信息;
    发送模块,用于向终端设备发送所述第三CB,以及向所述终端设备发送所述第五CB。
  13. 根据权利要求12所述的基站,其特征在于,所述基站还包括:CRC处理模块,用于所述编码模块对第一码块CB进行信道编码,得到第三CB之前,对所述第一CB进行循环冗余校验码CRC处理。
  14. 根据权利要求12所述的基站,其特征在于,所述基站还包括:CRC处理模块,用于所述编码模块对第二CB进行信道编码,得到第四CB之前,对所述第二CB进行CRC处理。
  15. 根据权利要求13所述的基站,其特征在于,所述基站,还包括:多级处理模块,用于所述发送模块向终端设备发送所述第三CB,以及向所述终端设备发送所述第五CB之前,对所述第三CB进行速率匹配、交织编码,对所述第五CB进行速率匹配、交织编码,然后对完成交织编码后的第三CB和完成交织编码后的第五CB进行码块级联和数据调制。
  16. 一种终端设备,其特征在于,包括:
    接收模块,用于接收基站发送的第三码块CB,得到第三CB接收序列,, 所述第三CB接收序列,包括:第一系统信息接收序列、第一路校验信息接收序列和第二路校验信息接收序列;接收所述基站发送的第五CB,得到第五CB接收序列,所述第五CB接收序列,包括:第三系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
    译码模块,用于在得到所述第三CB接收序列之后,对所述第三CB接收序列进行信道译码,得到第三CB译码结果;
    系统信息更新模块,用于对所述第三CB译码结果和预置的编码矩阵进行相乘,得到系统信息恢复序列,将所述系统信息恢复序列与所述第三系统信息接收序列进行异或计算,得到第二系统信息接收序列,将所述第五CB接收序列中包括的第三系统信息接收序列替换为所述第二系统信息接收序列,得到第四CB接收序列,所述第四CB接收序列包括:所述第二系统信息接收序列、第三路校验信息接收序列和第四路校验信息接收序列;
    所述译码模块,还用于对所述第四CB接收序列进行信道译码,得到第四CB译码结果。
  17. 根据权利要求16所述的终端设备,其特征在于,所述终端设备,还包括:译码判断模块、辅助校验信息计算模块和修正模块,其中,
    所述译码判断模块,用于所述译码模块对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,判断对所述第三CB接收序列进行信道译码是否成功;
    所述辅助校验信息计算模块,用于若所述译码模块对所述第三CB接收序列进行信道译码失败,对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信息;
    所述修正模块,用于将所述辅助校验信息和所述第三CB译码结果作为线性分组码译码器的输入,获取所述线性分组码译码器输出的第三CB修正结果。
  18. 根据权利要求17所述的终端设备,其特征在于,所述译码判断模块,还用于若所述译码模块对所述第三CB接收序列进行信道译码成功,触发执行所述系统信息更新模块。
  19. 根据权利要求17所述的终端设备,其特征在于,所述终端设备,还包括:迭代判断模块,用于所述辅助校验信息计算模块对所述第三系统信息接收序列和所述第四CB译码结果进行异或计算,生成线性分组码的辅助校验信 息之前,判断对所述第三CB接收序列进行信道译码的译码次数是否超过预置的迭代次数阈值,若对所述第三CB接收序列进行信道译码的译码次数没有超过预置的迭代次数阈值,触发执行所述辅助校验信息计算模块执行。
  20. 根据权利要求16所述的终端设备,其特征在于,所述终端设备,还包括:循环冗余校验码CRC处理模块,用于所述译码模块对所述第三CB接收序列进行信道译码,得到第三CB译码结果之后,对所述第三CB译码结果进行循环冗余校验码CRC校验;若所述第三CB译码结果进行CRC校验的结果为校验成功,输出所述第三CB译码结果;若所述第三CB译码结果进行CRC校验的结果为校验失败,将所述第三CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第三CB。
  21. 根据权利要求16所述的终端设备,其特征在于,所述终端设备,还包括:循环冗余校验码CRC处理模块,用于所述译码模块对所述第四CB接收序列进行信道译码,得到第四CB译码结果之后,对所述第四CB译码结果进行CRC校验;若所述第四CB译码结果进行CRC校验的结果为校验成功,输出所述第四CB译码结果;若所述第四CB译码结果进行CRC校验的结果为校验失败,将所述第四CB译码结果丢弃,或,所述终端设备通知所述基站重新发送第五CB。
  22. 根据权利要求16所述的终端设备,其特征在于,所述接收模块,具体用于对所述基站发送的第三CB和第五CB进行数据解调制,然后对解调制后的第三CB进行速率匹配和交织解码,得到第三CB接收序列,对解调制后的第五CB进行速率匹配和交织解码,得到第五CB接收序列。
PCT/CN2015/089252 2015-09-09 2015-09-09 一种数据处理方法、基站以及终端设备 WO2017041248A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/089252 WO2017041248A1 (zh) 2015-09-09 2015-09-09 一种数据处理方法、基站以及终端设备
CN201580065157.5A CN107005349B (zh) 2015-09-09 2015-09-09 一种数据处理方法、基站以及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089252 WO2017041248A1 (zh) 2015-09-09 2015-09-09 一种数据处理方法、基站以及终端设备

Publications (1)

Publication Number Publication Date
WO2017041248A1 true WO2017041248A1 (zh) 2017-03-16

Family

ID=58240527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089252 WO2017041248A1 (zh) 2015-09-09 2015-09-09 一种数据处理方法、基站以及终端设备

Country Status (2)

Country Link
CN (1) CN107005349B (zh)
WO (1) WO2017041248A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600677A (zh) * 2019-02-20 2020-08-28 成都华为技术有限公司 一种数据传输方法及装置
CN113114426A (zh) * 2021-04-21 2021-07-13 上海道生物联技术有限公司 一种两段式编码、调制发送方法及发送端
WO2023051106A1 (en) * 2021-09-30 2023-04-06 Mediatek Singapore Pte. Ltd. Method and apparatus for code block groups and slices mapping in mobile communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030171934A1 (en) * 2002-03-07 2003-09-11 Qian Zhang Scalable audio communication
WO2006078406A2 (en) * 2005-01-18 2006-07-27 Motorola, Inc. Method and apparatus for encoding a video sequence
CN104320147A (zh) * 2014-10-27 2015-01-28 中国传媒大学 一种系统不等差错保护的Raptor码方法
CN104602007A (zh) * 2013-10-30 2015-05-06 英特尔公司 基于信道质量的动态视频编码

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064586B (zh) * 2007-04-27 2011-09-14 武汉大学 一种基于信道状态的自适应数据分级保护方法
US8654834B2 (en) * 2009-01-06 2014-02-18 Electronics And Telecommunications Research Institute Method for tuning coding rate and applying unequal error protection for adaptive video transmission, and video transmission/reception apparatus using the method
CN101860514B (zh) * 2010-05-24 2012-09-26 航天恒星科技有限公司 一种基于自适应符号载波分配的不等差错保护方法
CN103475884B (zh) * 2013-09-12 2016-08-24 宁波大学 面向hbp编码格式的立体视频b帧整帧丢失错误隐藏方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030171934A1 (en) * 2002-03-07 2003-09-11 Qian Zhang Scalable audio communication
WO2006078406A2 (en) * 2005-01-18 2006-07-27 Motorola, Inc. Method and apparatus for encoding a video sequence
CN104602007A (zh) * 2013-10-30 2015-05-06 英特尔公司 基于信道质量的动态视频编码
CN104320147A (zh) * 2014-10-27 2015-01-28 中国传媒大学 一种系统不等差错保护的Raptor码方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, GUIJIN: "Channel-Adaptive Unequal Error Protection for Scalable Video Transmission Over Wireless Channel", VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2001, 31 December 2001 (2001-12-31), XP055368256 *
ZHOU, RENGUI, UNEQUAL ERROR PROTECTION RESEARCH BASED ON H.264 CODE STREAM, 31 December 2007 (2007-12-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600677A (zh) * 2019-02-20 2020-08-28 成都华为技术有限公司 一种数据传输方法及装置
CN113114426A (zh) * 2021-04-21 2021-07-13 上海道生物联技术有限公司 一种两段式编码、调制发送方法及发送端
WO2023051106A1 (en) * 2021-09-30 2023-04-06 Mediatek Singapore Pte. Ltd. Method and apparatus for code block groups and slices mapping in mobile communications

Also Published As

Publication number Publication date
CN107005349A (zh) 2017-08-01
CN107005349B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
US10826539B2 (en) Method and system for advanced outer coding
CN111954982B (zh) 无线通信系统和广播系统中使用极性码进行编码和解码的装置和方法
US8996946B2 (en) Application of fountain forward error correction codes in multi-link multi-path mobile networks
US8225168B2 (en) Method and system for data transmission in a multiple input multiple output (MIMO) system
US8239727B2 (en) Decoding of raptor codes
US9225357B2 (en) Data packet transmission/reception apparatus and method
TW201803280A (zh) 利用分段式的冗餘校驗對控制訊號傳遞進行編碼和解碼
CN106817192B (zh) 一种错误估计的方法、基站及终端
US10015486B2 (en) Enhanced video decoding with application layer forward error correction
US10498496B2 (en) Retransmission technique
CN103347202A (zh) 一种无线通信系统中的ewf码译码方法
WO2017041248A1 (zh) 一种数据处理方法、基站以及终端设备
Li et al. N-in-1 retransmission with network coding
Fong et al. Low-latency network-adaptive error control for interactive streaming
WO2017101023A1 (zh) 通信方法及网络设备、用户设备
Mladenov et al. MBMS Raptor codes design trade-offs for IPTV
Roca et al. Rs+ ldpc-staircase codes for the erasure channel: Standards, usage and performance
WO2018127161A1 (zh) 一种被用于信道编码的用户设备、基站中的方法和设备
WO2018184493A1 (zh) 数据编码和译码的方法和装置
Mohammadi et al. Exploiting partial packets in random linear codes using sparse error recovery
Mazzotti et al. Analysis of packet-level forward error correction for video transmission
Gasiba et al. Enhanced system design for download and streaming services using Raptor codes
EP3142280A1 (en) Method, system and computer readable medium for the transmission of symbols between at least two telecommunication apparatus
Arslan et al. Optimization of generalized LT codes for progressive image transfer
Sasaki et al. On unicast based recovery for multicast content distribution considering XOR-FEC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903355

Country of ref document: EP

Kind code of ref document: A1