WO2017039342A1 - Barrier film comprising fluorocarbon thin film and method for manufacturing same - Google Patents

Barrier film comprising fluorocarbon thin film and method for manufacturing same Download PDF

Info

Publication number
WO2017039342A1
WO2017039342A1 PCT/KR2016/009772 KR2016009772W WO2017039342A1 WO 2017039342 A1 WO2017039342 A1 WO 2017039342A1 KR 2016009772 W KR2016009772 W KR 2016009772W WO 2017039342 A1 WO2017039342 A1 WO 2017039342A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier film
metal
fluorine
based polymer
Prior art date
Application number
PCT/KR2016/009772
Other languages
French (fr)
Korean (ko)
Inventor
이상진
이재흥
최우진
조성근
함동석
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150123340A external-priority patent/KR101666350B1/en
Priority claimed from KR1020150130675A external-priority patent/KR101719520B1/en
Priority claimed from KR1020160010369A external-priority patent/KR102010240B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2017039342A1 publication Critical patent/WO2017039342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a barrier film comprising a fluorine carbide thin film and a method for manufacturing the same. More particularly, the barrier film not only has a barrier property against moisture but also maintains cyanity in the visible light region and has excellent environmental resistance. And it relates to a manufacturing method thereof.
  • glass substrates have been used in flat panel displays (FPDs) such as plasma displays, liquid crystal display, and organic light emitting display.
  • FPDs flat panel displays
  • Such a glass substrate is liable to be broken, has no bending property, and has a specific gravity, so that there is a limit to thinness and lightness.
  • a transparent plastic film has been attracting attention as a glass substrate replacement.
  • the transparent plastic film has a merit of being able to cope with the increase in size of the device because it is light and difficult to be broken and thinning is easy.
  • the transparent plastic film has a higher gas permeability than glass, the display device employing the transparent plastic film has a problem in that the light emitting performance of the display device is easily degraded due to oxygen or water vapor transmission.
  • a gas barrier film of an organic material or an inorganic material on a transparent plastic film to minimize the effects of oxygen or water vapor.
  • inorganic materials such as silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (AlxOy), tantalum oxide (TaxOy), titanium oxide (TiOx), and the like are mainly used as the gas barrier film.
  • a vacuum deposition method such as plasma enhanced chemical vapor deposition (PECVD), sputtering or the sol-gel method.
  • Patent document 1 (Unexamined-Japanese-Patent No. 1994-031850) discloses a high gas barrier transparent conductive film by sputtering an inorganic layer on the surface of a plastic film.
  • the elastic modulus, thermal expansion coefficient, and bending radius of the plastic film and the inorganic layer are largely different, if heat or repetitive force is applied or bent from the outside, cracks are generated due to stress at the interface. There is a problem that the layer can be easily peeled off.
  • Patent Document 2 Japanese Laid-Open Patent Publication No. 2004-082598 discloses a multilayer gas barrier laminate comprising an organic layer and an inorganic layer and a method of manufacturing the same. This resulted in cracking at or increasing the likelihood of peeling of the thin film.
  • Patent Document 3 European Laid-Open Patent Publication No. 1,938,967 coats a barrier layer with a fluorine paint such as polyvinyl fluoride (PVC) or polyvinylidene fluoride (PVDF) to provide weather resistance and the like.
  • a fluorine paint such as polyvinyl fluoride (PVC) or polyvinylidene fluoride (PVDF) to provide weather resistance and the like.
  • PVC polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • Patent Document 4 proposes a method of adding metal-coated mica particles which are plate-shaped particles.
  • the plate-shaped mica particles described above have a problem that the size of 10 to 300 micrometers is somewhat large and the particle size distribution is wide so that water vapor can still pass through the gaps between the particles. It does not solve the problem perfectly.
  • the present inventors in order to solve the problems of the prior art as described above to meet the needs required in the art, as a result of in-depth research, it includes a super water-repellent fluorocarbon thin film that can block the water permeability significantly
  • a barrier film was devised.
  • DC or MF sputtering which has a frequency lower than a few tens of KHz or lower than RF, and thus continuous rolls.
  • the present invention has been completed by developing a new technology capable of large-area barrier film using a two-roll deposition system.
  • An object of the present invention is to provide a barrier film that can significantly improve the barrier property against moisture as well as external pollutants by including a fluorocarbon thin film having super water repellency and high insulation.
  • the barrier film used for preventing water permeation according to the present invention may exhibit excellent transparency and flexibility by depositing a flexible adherend, and improve adhesion and mechanical adhesion with the adherend using a fluorine-based polymer composite target containing a conductive functionalizing agent. It is to provide a barrier film having strength.
  • the present invention is to provide a barrier film excellent in environmental resistance that can be adjusted not only optically transparent but also optical properties such as thermal barrier properties, anti-reflection properties, etc. according to the purpose.
  • Still another object of the present invention is a thin film deposition process of fluorine carbide, which is a representative insulator, in which the fluorine-based polymer target is damaged due to deterioration due to the use of high energy due to non-conductivity, between the fluorine-based polymer and a metal electrode applying voltage.
  • the generation of an arc, etc. significantly improves the problem of lowering the deposition rate by generating a plasma having a lower efficiency than the applied voltage.
  • the present invention is to provide a method for producing a barrier film comprising a fluorocarbon thin film deposited at a high deposition rate even by a low voltage MF or DC power supply.
  • the present invention can not only easily control the thickness of the thin film through sputtering using a more industrially useful power supply method such as MF or DC, but also evenly and uniformly deposited at a high deposition rate on the adherend, thereby generating pinholes and cracks. It is to provide a method for producing a barrier film that can effectively suppress the degradation due to.
  • Still another object of the present invention is that all processes can be sputtered by MF or DC power supply, which is a relatively low power supply method compared to RF, thereby simplifying the manufacturing process of the barrier film having the excellent characteristics as described above. It is possible to implement a roll-to-roll process capable of manufacturing a large-area barrier film in a very short time, and to provide a method for manufacturing a roll-to-roll barrier film that can be directly applied to a conventional roll-to-roll equipment without additional modification costs.
  • the present invention includes the steps of forming an inorganic layer including at least one selected from metals and metal compounds as a main component on one surface of the adherend and a forming dopant having conductivity and a fluorine-based polymer on one surface of the inorganic layer. It provides a method for producing a barrier film comprising the step of depositing a fluorine-based polymer composite target to form an organic layer.
  • the inorganic layer and the organic layer may be formed by being deposited by RF, MF or DC sputtering, respectively.
  • the organic layer uses a fluorine-based polymer composite target including a functionalizing agent
  • the organic layer prevents damage to the deposition target due to deterioration, which is a problem caused by applying high energy in the deposition of conventional fluorine-based polymers.
  • the generation of an arc or the like between the fluorine-based polymer generated by the application of high energy and the metal electrode applying the voltage can effectively improve the point of low deposition rate due to the generation of plasma having a lower efficiency than the applied voltage.
  • the fluorine-based polymer composite target according to the present invention must include at least one conductive material selected from conductive particles, conductive polymers and metal components that can impart conductivity, so that even with commercially useful MF or DC sputtering, the effective and high deposition rate Thin films may be deposited.
  • the functionalizing agent according to an aspect of the present invention may be to include a functionalizing agent having one or more conductivity selected from conductive particles, conductive polymers and metal components, etc., RF due to the functionalizing agent to impart such conductivity
  • a functionalizing agent having one or more conductivity selected from conductive particles, conductive polymers and metal components, etc. RF due to the functionalizing agent to impart such conductivity
  • sputtering deposition of fluorocarbon thin films is possible at lower voltages, MF and DC, and high quality barrier films can be formed by preventing high deposition rates and dielectric breakdown.
  • the organic layer according to an aspect of the present invention comprises any one or two or more functionalizing agents selected from conductive particles, conductive polymers and metal components, such as metal organic matter, metal oxide, metal carbon body, metal hydroxide, metal carbonate, metal bi Further comprising one or more metallic compounds selected from carbonates, metal nitrides, metal sulfides and metal fluorides, it is possible to additionally control the surface properties of the barrier film.
  • functionalizing agents selected from conductive particles, conductive polymers and metal components, such as metal organic matter, metal oxide, metal carbon body, metal hydroxide, metal carbonate, metal bi
  • metallic compounds selected from carbonates, metal nitrides, metal sulfides and metal fluorides
  • the thickness of the inorganic layer and the organic layer can be easily adjusted and evenly deposited on the adherend through sputtering using a more industrially useful power supply method such as MF or DC, respectively. All of the processes for forming a layer of MF or DC can be sputtered, and the application of a roll-to-roll process can dramatically improve productivity by performing a continuous process in one equipment.
  • the present invention provides a step of forming an inorganic layer using a target containing at least one selected from a metal and a metal compound as a main component while transferring the adherend in a roll-to-roll manner and a function of having fluorine-based polymers and conductivity on one surface of the inorganic layer. It provides a method for producing a barrier film comprising the step of forming an organic layer using a fluorine-based polymer composite target containing a topical agent. At this time, the inorganic layer and the organic layer is characterized in that formed by MF or DC sputtering.
  • the present invention is an adherend; An inorganic layer comprising, as a main component, at least one selected from metals and metal compounds; And an organic layer comprising a fluorine-based polymer and a functionalizing agent having conductivity.
  • the present invention is capable of sputtering at MF or DC, which is a lower voltage than RF, by using a conductive fluorinated polymer composite target, preventing dielectric breakdown, and having a high deposition rate, low surface energy and high barrier property against moisture.
  • the barrier film of can be provided.
  • the adhesion to the adherend or the metal thin film is excellent, it is possible to remarkably reduce problems such as peeling phenomenon between each thin film to give a high durability.
  • the barrier film according to the present invention has a high light transmittance and a low moisture permeability at the same time, it is possible to minimize the failure rate of the device employing it.
  • the present invention can easily provide a barrier film of various aspects to which the physical, chemical, and optical properties according to the purpose is given by configuring a barrier film used for preventing water permeation having a variety of compositions.
  • an MF or DC sputtering device in a conventional roll-to-roll method capable of manufacturing a large-area thin film, can be directly applied without additional modification costs, and continuously includes an inorganic layer and an organic layer.
  • the barrier film can be produced in-line at one time, thereby simplifying the process and reducing costs.
  • FIG. 1 is a schematic diagram of a roll-to-roll sputtering deposition system according to the present invention.
  • a barrier film including a fluorocarbon thin film according to the present invention and a method for manufacturing the same will be described below. However, unless otherwise defined in the technical and scientific terms used, a person having ordinary knowledge in the technical field to which the present invention belongs. Descriptions of well-known functions and configurations, which have ordinary meanings and may unnecessarily obscure the subject matter of the present invention, will be omitted.
  • the present applicant not only has excellent transparency and hydrophobic surface properties, but also has excellent adhesion to the adherend, so that the barrier film suitable for the outermost protective layer of the flexible display and a manufacturing method thereof can be economically mass-produced.
  • the invention has been completed.
  • the barrier film according to the present invention may be an inorganic layer and an organic layer formed on one surface of the adherend.
  • the inorganic layer may include one or more selected from metals and metal compounds as a main component, and the organic layer formed on one surface of the inorganic layer may include a fluorinated polymer and a functionalizing agent having conductivity.
  • the "inorganic layer" in the present specification includes a metal component such as silver (Ag), copper (Cu) or nickel (Ni) as a main component or at least one metal compound selected from metal oxides, metal nitrides and metal sulfides It may be included as a main component, the inorganic layer may be formed by sputtering using a metal compound target, such as a metal oxide target and a metal nitride target, or oxidized or nitrided by a reaction gas using a metal target, of course, It may be formed by other methods.
  • the term “main ingredient” means the most component in the total composition, and may mean, for example, a component that occupies 40 to 90 wt%.
  • the "organic layer” means a fluorocarbon thin film deposited by a fluorine-based polymer composite target containing a functionalizing agent having conductivity to the fluorine-based polymer, the functionalizing agent having a conductivity contained in the fluorine-based polymer composite target is a conductive particle, It may be one selected from conductive polymers, metal components and metal compounds.
  • the organic layer according to an embodiment of the present invention by using a fluorine-based polymer composite target containing the above-described functionalizing agent, to effectively suppress the deformation and defects that may occur in the conventional RF applied to the surface of the adherend It can be formed uniformly.
  • barrier film according to one embodiment of the present invention will be described, but is not limited thereto.
  • the barrier film used for thermal insulation which is one aspect of the barrier film which concerns on this invention, and its manufacturing method are demonstrated.
  • Barrier film used for the thermal barrier according to an aspect of the present invention by placing the fluorocarbon thin film in the outermost layer, to maximize the thermal insulation effect of the heat ray shielding layer containing a metal having a unique heat shielding properties as well as water repellent and antifouling Since the effect is excellent, the environmental resistance of the barrier film exposed to the external environment can be improved.
  • the adhesiveness with the substrate is not only degraded when the coating is performed using a conventionally used wet process, but has a typical color (white), but the barrier film manufactured by the manufacturing method according to the present invention is described above. It is possible to solve the problems and at the same time excellent visibility and adhesion to the substrate.
  • the barrier film according to the present invention is formed using a fluorine-based polymer composite target having conductivity, thereby enabling stable plasma formation and high deposition rate even when using a lower voltage MF or DC power supply method. have.
  • the barrier film used for the heat shield comprises a heat ray shielding layer and a heat shield addition element mainly composed of an adherend, silver (Ag), copper (Cu) or nickel (Ni).
  • An optical compensation layer and a fluorocarbon protective layer are included in the barrier film used for heat shielding.
  • the barrier film used for heat shielding can realize a high heat ray shielding effect by forming a heat ray shielding layer mainly composed of silver (Ag), copper (Cu), or nickel (Ni) with high thermal barrier efficiency.
  • fluorine carbide protective layer formed in the heat shielding rate can be maximized to more than 90%.
  • the heat ray blocking layer and the optical compensation layer are included in the term "inorganic layer” of the present invention, and the fluorocarbon protective layer is included in the term "organic layer” of the present invention.
  • non-limiting examples of the additional element included in the optical compensation layer may include NiCr, NiAu, ITO, IZO, IZTO, AZO, IAZO, GZO, IGO, IGZO, IGTO, ATO, IATO, IWO, CIO, MIO, MgO, SnO 2 , ZnO, ZnAlO x , In 2 O 3 , TiTaO 2 , TiNbO 2 , TiO 2 , RuO 2 , IrO, Nb 2 O 5 , Ta 2 O 5 , ZnO, SiO 2 , SiN, Si 3 N 4 And Al 2 O 3 One or more selected from the like, but is not limited thereto.
  • TiO 2 , SiO 2 , SiN, Si 3 N 4 And Al 2 O 3 It is preferable to include at least one additional element selected from the like.
  • the fluorocarbon protective layer according to an embodiment of the present invention includes a fluorinated polymer and a functionalizing agent having conductivity.
  • the fluorocarbon protective layer according to the present invention by imparting conductivity to the target by including a functionalizing agent having conductivity, as well as the high-frequency energy of RF (radio-frequency) as well as a lower voltage MF (mid-) Sputtering deposition of the fluorocarbon thin film was also possible at a range frequency) and a direct current (DC).
  • a functionalizing agent having conductivity as well as the high-frequency energy of RF (radio-frequency) as well as a lower voltage MF (mid-) Sputtering deposition of the fluorocarbon thin film was also possible at a range frequency) and a direct current (DC).
  • the fluorocarbon protective layer is formed using a fluorine-based polymer composite target.
  • the fluorinated polymer composite target should include a functionalizing agent to impart conductivity, and the functionalizing agent is not limited as long as it is a material capable of imparting conductivity, and examples thereof include conductive particles, conductive polymers, and metal components.
  • the conductive particles include carbon nanotubes, carbon nanofibers, Carbon black, graphene, graphite, carbon fiber, and the like, and other organic conductive particles may also be included.
  • the organic conductive particles which are examples of the conductive particles are used, conductivity can be imparted while maintaining the fluorocarbon component.
  • the conductive polymer polyaniline (polyaniline), polyacetylene (polyacetylene), polythiophene (polythiophene), polypyrrole (polypyrrole), polyfluorene (polyfluorene), polypyrene (polypyrene), polyazulene (polyazulene) , Polynaphthalene, polyphenylene, polyphenylene vinylene, polycarbazole, polyindole, polyazephine, polyethylene, polyethylene Polyethylene vinylene, polyphenylene sulfide, polyfuran, polyselenophene, polytellurophene, polysulfur nitride And the like, but are not limited thereto.
  • the metal component examples include copper (Cu), aluminum (Al), silver (Ag), gold (Au), tungsten (W), magnesium (Mg), nickel (Ni), molybdenum (Mo), Vanadium (V), niobium (Nb), titanium (Ti), platinum (Pt), chromium (Cr), tantalum (Ta), and the like, and preferably copper in terms of excellent binding with a metal electrode.
  • Cu aluminum (Al), silver (Ag), gold (Au), tungsten (W), silicon (Si), magnesium (Mg), nickel (Ni) or mixtures thereof, more preferably copper (Cu ), Aluminum (Al), silver (Ag), gold (Au) or mixtures thereof are preferred, but are not limited thereto.
  • the fluorine-based polymer composite target according to an aspect of the present invention includes a fluorine-based polymer
  • the fluorine-based polymer is not limited as long as it is a resin containing fluorine, preferably polytetra is a synthetic resin polymerized olefin containing fluorine Fluoroethylene (PTFE, polytetrafluoroethylene), polychlorotrifluoroethylene (PCTFE, polychlorotrifluoroethylene), polyvinylidenedifluoride (PVDF, polyvinylidenedifluoride), fluorinated ethylene propylene copolymer (FEP), polyethylene -Tetrafluoroethylene (ETFE, poly ethylene-co-tetra fluoro ethylene), polyethylene-chloro trifluoro ethylene (ECTFE, poly ethylene-co-chloro trifluoro ethylene), polytetrafluoro ethylene-fluoro alkyl vinyl ether
  • PFA poly fluorine Fluoroethylene
  • the composition of the fluorine-based polymer composite target according to the present invention is not limited, but preferably may be contained in 0.01 to 2000 parts by weight of the functionalizing agent with respect to 100 parts by weight of the fluorine-based polymer, to prevent higher deposition rate and insulation breakdown In terms of being able to deposit a high quality fluorocarbon thin film, it is preferable to contain 0.5 to 1500 parts by weight, more preferably 1 to 1000 parts by weight.
  • the adherend according to an aspect of the present invention may be selected from silicon, metal, ceramic, resin, paper, glass, quartz, fiber, plastic, organic polymer, and the like, but is not limited to flexible silicone, polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyethylene terephthalate (PET), polyimide (PI), cyclic olefic copolymer (COC), cyclic olefin polymer (cyclic olefin polymer, COC), triacetyl cellulose (TAC), polyethylene naphthalene (PEN), polyurethane (PU), polyacrylate, polyester, polymethylene pentene PMP), polymethyl methacrylate (PMMA), polymethacrylate (PMA), polystyrene (PS), styrene-acrylonitrile copolymer (styre ne-acrylonitrile copolymer (SAN), acrylonitrile-butylene-styrene copolymer (ABS), poly
  • each of the heat ray shielding layer, the optical compensation layer and the fluorocarbon protective layer of the barrier film used for the thermal barrier according to the present invention can be deposited using a sputtering method and can be applied to a roll-to-roll process. It is possible to manufacture barrier films used for thermal insulation in a continuous process in one machine, which can dramatically improve productivity.
  • the fluorocarbon protective layer of the barrier film used for the thermal barrier according to the present invention can also be easily deposited by the role of the functionalizing agent by the use of industrially useful MF, DC, etc., can bring a surprising increase in the deposition efficiency. have.
  • the fluorocarbon protective layer of the barrier film used for the thermal barrier according to an embodiment of the present invention by imparting conductivity to the fluorine-based polymer, it is surprisingly possible to sputter even in a low voltage power supply method such as MF, DC, very short time It is possible to implement a roll-to-roll process with a large-area coating in the inside, so it can be directly applied by replacing targets in the existing roll-to-roll equipment without any renovation cost. Can have
  • the present invention in the manufacture of the barrier film used for the thermal barrier according to an aspect of the present invention can be utilized as a sputtering process to produce a nano-size thin film, has the advantage of precisely controlling the thickness of the thin film. . That is, according to the present invention, since the contact angle, visible light transmittance, heat ray transmittance, and the like of the barrier film can be freely adjusted, the present invention can be applied to a heat barrier barrier film having excellent energy saving effect by being applied to a loading place.
  • the coating of the optical compensation layer and the coating of the heat ray shielding layer may be performed repeatedly one or more times sequentially or randomly.
  • the process may be repeatedly performed two or more times in sequence, and then the fluoride carbide protective layer is disposed at the outermost portion.
  • the optical compensation layer, the heat ray shielding layer and the fluorocarbon protective layer according to an aspect of the present invention are not particularly limited, but may be manufactured, for example, in the range of 1 to 10000 nm, and in the case of the heat ray shielding layer, 780 which is a stranded region. It is preferable to form a range of 5 to 15 nm in terms of improving heat insulation properties by selectively blocking a wavelength in the range of 2 to 2200 nm and not decreasing cyanity, but is not limited thereto.
  • the optical compensation layer is preferably formed in the range of 20 to 100 nm in terms of improving the heat insulating property and at the same time increasing the hardness of the barrier film used for heat shielding, but is not limited thereto.
  • the fluorocarbon protective layer is preferably formed in the range of 10 to 100 nm in terms of maximizing antifouling and waterproof characteristics, and optimizing the optical and strength characteristics of the barrier film used for thermal barrier, but is not limited thereto. no.
  • the present invention provides a roll-to-roll sputtering deposition system in which all processes of forming an optical compensation layer, a heat ray shielding layer, a fluorocarbon protective layer, and the like included in the barrier film used for the thermal barrier may be continuously performed.
  • the sputtering may be performed by MF or DC sputtering.
  • barrier film used for antireflection which is one aspect of the barrier film which concerns on this invention, and its manufacturing method are demonstrated.
  • the present invention provides a barrier film having omnidirectional antireflective properties.
  • the barrier film used for the anti-reflection according to the present invention may be formed by sequentially depositing an antireflection layer and an antireflection layer having different refractive indices on a substrate by a sputtering method, and the antireflection layer may include a functionalizing agent having conductivity. It may be a fluorocarbon thin film sputtered using a fluorine-based polymer composite target containing.
  • the reflection reducing layer may include one or more selected from metal oxides, metal nitrides, metal sulfides, and the like, which may be metal oxide targets, It can be formed by sputtering using a metal nitride target, a metal sulfide target, or the like, or by oxidizing, nitriding or sulfiding with a reaction gas using a metal target, or may be formed by other methods.
  • the reaction gas may be one or more selected from nitrous oxide (N 2 0), nitrogen dioxide (N0 2 ), nitrogen monoxide (NO) and oxygen (O 2 ), preferably nitrogen dioxide (N0 2 ), oxygen ( O 2 ) or a mixed reaction gas thereof.
  • the reflection reduction layer may include one or more layers selected from a low refractive index layer and a high refractive index layer, or a stacking order thereof
  • the shape and the like can be appropriately adjusted according to the characteristics of the barrier film used for the desired antireflection.
  • the anti-reflection layer in order to implement more excellent anti-reflection characteristics, may be sputtered on a low refractive index layer after sputtering a high refractive index layer on a substrate. In this case, as the number of steps of the high refractive index layer and the low refractive index layer increases, improved antireflection characteristics may be realized.
  • the high refractive index layer is titanium (Ti), zirconium (Zr), niobium (Nb), zinc (Zn), indium (In), aluminum (Al), antimony (Sb), tin (Sn), cerium (Ce) Zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), zinc sulfide (ZnS), based on one or more metals selected from selenium (Se) and yttrium (Y), etc.
  • the high refractive index layer has a high refractive index (@ 550 nm) of 1.6 or more, and by stacking the low refractive index layers to be described later to improve the destructive interference phenomenon of the light reflected at the interface between the layers, excellent antireflection characteristics in a wider wavelength range Can be implemented.
  • the refractive index difference ( ⁇ n) may be 0.1 to 1.5, preferably 0.1 to 1.2, more preferably 0.1 to 1.0, but is not limited thereto. .
  • the low refractive index layer comprises at least one metal selected from silicon (Si) and magnesium (Mg) in the form of a metal oxide such as silicon oxide (SiO 2 ), magnesium oxide (MgO), etc.
  • the silicon oxide (SiO 2 ) may be more preferably included in terms of excellent deposition rate and high reflection characteristics even in a wide wavelength range, but is not limited thereto.
  • the antireflection layer is a thin film of fluorocarbon thin film deposited using a fluorine-based polymer composite target containing a functionalizing agent having conductivity to the fluorine-based polymer.
  • a fluorine-based polymer composite target containing a functionalizing agent having conductivity to the fluorine-based polymer.
  • the configuration of such a fluorocarbon thin film, a manufacturing method thereof, and the like communicate with the fluorocarbon protective layer of the barrier film used for the above-described thermal barrier.
  • the method of manufacturing a barrier film used for the anti-reflection according to an embodiment of the present invention can be deposited by commercially available MF or DC sputtering, without additional supplementary equipment of the conventional roll-to-roll continuous sputtering deposition system Applicable. That is, by using the manufacturing method according to the present invention, it is economical to minimize the width variation and maximize the optical effect, and to quickly form a barrier film used for preventing large area reflection.
  • the reflection reduction layer is formed by repeatedly depositing a high refractive index layer and a step of depositing a low refractive index layer.
  • the structure can be formed.
  • the refractive index difference ( ⁇ n) of the high refractive index layer and the low refractive index layer may be 0.1 to 1.5, preferably 0.1 to 1.2, more preferably 0.1 to 1.0, but is not limited thereto.
  • the barrier film used for the antireflection according to an embodiment of the present invention has an antireflection layer, which is a fluorine carbide thin film, in the outermost layer, thereby significantly reducing the phenomenon of the thin film being detached from the substrate due to deterioration or impact.
  • the high refractive index layer, the low refractive index layer, and the antireflection layer of the antireflection layer of the barrier film used for antireflection according to an aspect of the present invention may be independently deposited to a thickness of 1 nm to 10 ⁇ m, and may have improved visibility. In terms of reflecting properties, it may be preferably deposited with a thickness of 10 nm to 500 nm, more preferably 10 nm to 100 nm.
  • the present invention provides a barrier film, that is, a barrier film used for anti-reflection, which is formed by sequentially sputtering an antireflection layer including a high refractive index layer and a low refractive index layer on a adherend and a fluorine carbide thin film.
  • the barrier film used for the anti-reflection according to an aspect of the present invention has excellent adhesion and reflectance, and has a lower surface energy by introducing a superhydrophobic fluorocarbon thin film into the outermost layer, thereby smoothing surface smoothness and staining. Not only can impart surface properties such as forestry, but also has excellent antifouling properties and antistatic properties.
  • the barrier film used for the anti-reflection is characterized in that the contact angle with moisture has a super water-repellent in the range of 90 to 150 °.
  • barrier film used for water permeation prevention which is one aspect of the barrier film which concerns on this invention, and its manufacturing method are demonstrated.
  • the barrier film used for preventing water permeation includes a fluorocarbon thin film having super water repellency and high insulating property, thereby significantly improving the barrier property against moisture as well as external pollutants. It is deposited on the adherend at high deposition rates to show excellent transparency and flexibility.
  • a multilayer barrier structure of two or more layers including a fluorine carbide thin film it is possible to provide a barrier film used for preventing moisture permeation, which can increase adhesion of the multilayer structure, effectively suppress peeling from the adherend and increase mechanical strength. Can be.
  • the present invention comprises the steps of forming an inorganic layer including at least one selected from metal oxides and metal nitrides on one surface of the adherend; And forming an organic layer including one or more functionalizing agents selected from fluorine-based polymers, conductive particles, conductive polymers, metal components, and metal compounds on one surface of the inorganic layer. Provide a method.
  • the inorganic layer according to an aspect of the present invention is not limited as long as it is a substance capable of inhibiting the permeation of moisture, and may be composed mainly of silicon oxide, aluminum oxide, or silicon nitride having excellent affinity and heat resistance with the adherend.
  • Titanium (Ti), zirconium (Zr), hafnium (Hf), niobium (Nb), tantalum (Ta), vanadium (V), tungsten (W), aluminum (Al), gallium (Ga), indium (In ), Zinc (Zn), silicon (Si), germanium (Ge) and the like may further include one or more oxides or nitrides selected from.
  • the present invention comprises the steps of forming an inorganic layer using a metal target, a metal oxide target or a metal nitride target on one surface of the adherend; And forming an organic layer by using a fluorine-based polymer composite target including at least one conductive material selected from conductive particles, conductive polymers, and metal components on one surface of the inorganic layer.
  • a fluorine-based polymer composite target including at least one conductive material selected from conductive particles, conductive polymers, and metal components on one surface of the inorganic layer.
  • the inorganic layer and the organic layer may be formed by MF or DC sputtering, which is a power method having a frequency lower than tens of KHz or less than RF, and applied them to a continuous roll-to-roll sputtering deposition system.
  • the barrier film can be economically large in area.
  • the inorganic layer according to an aspect of the present invention may be formed at a high deposition rate using a metal target, a metal oxide target or a metal nitride target, and the metal target may be titanium (Ti), zirconium (Zr), or hafnium (Hf). , Niobium (Nb), tantalum (Ta), vanadium (V), tungsten (W), aluminum (Al), gallium (Ga), indium (In), zinc (Zn), silicon (Si) and germanium (Ge) Using a metal selected from), etc., it is oxidized by the reaction gas to form a metal oxide or metal nitride thin film.
  • the reaction gas may be one or more selected from nitrous oxide (N 2 0), nitrogen dioxide (N0 2 ), nitrogen monoxide (NO) and oxygen (O 2 ), preferably nitrogen dioxide (N0 2 ), oxygen ( O 2 ) or a mixed reaction gas thereof.
  • the constitution of the organic layer, the manufacturing method thereof, and the like according to one aspect of the present invention communicate with the fluorocarbon protective layer of the barrier film used for the above-described thermal barrier.
  • the method for producing a barrier film used for preventing water permeation is possible to sputter both the inorganic layer and the organic layer at low energy, and thus it is applicable to a continuous roll-to-roll sputtering deposition system.
  • it is possible to realize excellent deposition rate even in low energy bands such as commercially available MF or DC, and to apply it immediately without supplementary facilities of the existing roll-to-roll sputter deposition system, and to quickly and large area fluoride carbide without defect. Since a thin film can be formed, it can provide the barrier film used for the prevention of moisture permeation of high quality economically.
  • the thickness of the inorganic layer and the organic layer of the barrier film used for preventing water permeation is not limited, it may be deposited to a thickness of 1 nm to 10 ⁇ m. At this time, in view of having a low transmittance to moisture and remarkably reducing the detachment of the thin film from the adherend due to deterioration or impact, the inorganic layer and the organic layer may be sequentially or randomly formed in a thickness of 10 nm to 200 nm. It is preferable to have a multilayer structure by depositing.
  • Barrier film used for preventing moisture permeation by introducing a superhydrophobic fluorocarbon thin film to the outermost, it is possible to significantly improve the optical properties while maintaining superhydrophobicity, high transparency, anti-pollution and It has antireflection properties and can provide excellent chemical resistance and lubricity.
  • the barrier film used for preventing the moisture permeation may have a lower surface energy, the contact angle with the moisture may be in the range of 90 to 150 °.
  • the barrier film used for preventing moisture permeation according to an aspect of the present invention may be prepared by applying to a roll-to-roll sputtering deposition system in which all processes of forming the organic layer and the inorganic layer can be performed continuously.
  • the sputtering deposition system is characterized in that it can be performed by MF or DC sputtering.
  • the roll-to-roll sputtering deposition system includes an unwinder chamber (100), a main chamber (200) for depositing an organic layer and an inorganic layer on one surface of the substrate, and a deposited It may include a winder chamber (300) for winding the barrier film. It can realize excellent deposition rate even in low energy bands such as MF and DC, and it is a barrier film that is used for preventing large area moisture permeation without defect even in continuous roll-to-roll process while ensuring simplicity in manufacturing process. It can be formed more economically.
  • the main chamber according to one aspect of the invention comprises three MF dual sputtering cathodes 202, 203, 204 and one DC single sputtering cathode 205. Due to this configuration, not only can MF and DC sputtering be performed at the same time, but also has the advantage that the deposition of the composite material by the application of various types of targets.
  • the winder chamber includes a resistance meter (301), a transmittance analyzer (302) and a reflectance meter (reflectance meter, 303), the water permeation prepared from the roll-to-roll type sputtering deposition system
  • a resistance meter 301
  • a transmittance analyzer (302)
  • a reflectance meter reflectance meter, 303
  • the properties of the barrier film used for prevention can be easily adjusted in one stop.
  • the contact angle, the maximum transmittance and the infrared transmittance for visible light were measured by the following method, and the results are shown in Tables 1 to 3 below. .
  • the water contact angle of the completed barrier film was measured using a contact angle measuring instrument (PHOEIX 300 TOUCH, SEO).
  • the transmittance of visible light (550 nm) was measured by irradiating light to the finished barrier film using a spectrophotometer (U-410, Hitachi).
  • the transmittance for 1,000 nm wavelength was measured three times using a UV-Vis spectrometer on the finished barrier film, and the average value thereof was determined to determine the infrared transmittance (%).
  • the finished barrier film was measured for moisture permeability at 40 ⁇ 0.5 °C, 90% relative humidity conditions using a WVTR measuring instrument (Deltaperm, Technolux).
  • the barrier film used for thermal insulation was produced using the roll-to-roll sputter (ULVAC, SPW-060) apparatus in PET film (SKC, SH-40, thickness 100micrometer, width 600mm) (refer FIG. 1).
  • the target for deposition for each layer of the barrier film used for the thermal barrier was produced in a square plate shape.
  • Si target 950 mm long, 127 mm wide, 6 mm thick
  • Ag target 950 mm long, 127 mm wide, 6 mm thick
  • PTFE polytetrafluoroethylene
  • CNT carbon nanotube
  • a fluorine-based polymer composite target (length 950 mm, width 127 mm, thickness 6 mm) containing 5 wt% was attached to each copper backing plate electrode surface.
  • Two Si targets were installed in the MF dual sputtering cathode 1 in the process chamber section, and two fluorine-based polymer composite targets were installed in the MF dual sputtering cathode 2.
  • the temperature of the main roll was lowered to 10 ° C., and a barrier film used for thermal barrier was deposited while conveying the PET film at a speed of 1 m / min.
  • a SiNx thin film (optical compensation layer) was deposited through the cathode 1.
  • the SiNx thin film by N 2 gas (N 2 gas) partial pressure (10 mtorr) to the MF power to 8 W / cm 2 was deposited to a thickness of 40 nm.
  • An Ag thin film (heat shielding layer) was deposited to a thickness of 12 nm on one surface of the SiNx thin film with a DC power of 0.6 W / cm 2 through the cathode 4.
  • a fluorocarbon thin film (organic layer) was deposited to a thickness of 20 nm with MF power of 2.0 W / cm 2 through the cathode 2, and a barrier film used for thermal cutoff of a three-layer structure was formed. Rewound in dubu.
  • the barrier film used for thermal insulation was produced by the same method except the following conditions.
  • the cathode 1 to the MF power to 6.5 W / cm 2 (N 2 gas) N 2 gas partial pressure (10 mtorr) to the SiNx thin film (optical compensation layer) it was deposited to a thickness of 30 nm.
  • An Ag thin film (heat shielding layer) was deposited to a thickness of 8 nm on one surface of the SiNx thin film with a DC power of 0.4 W / cm 2 through the cathode 4. Thereafter, the SiNx thin film and the Ag thin film were repeatedly performed one by one under the same conditions.
  • a fluorocarbon thin film (organic layer) was deposited to a thickness of 50 nm with MF power of 3.5 W / cm 2 through the cathode 2, and a barrier film used for thermal barriers having a 5-layer structure was formed. Rewound in dubu.
  • the moisture barrier film was produced in PET film (SKC, SH-40, thickness 100micrometer) using the cluster sputter apparatus.
  • a copper fluorine-based composite target (4 inches in diameter, 6 mm thick) made of circular particles containing 70 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ), 10 wt% of carbon nanotubes, and 20 wt% of silicon oxide (SiO 2 ) Backing plate (Cu backing plate) was attached to the electrode surface.
  • PTFE polytetrafluoroethylene
  • SiO 2 silicon oxide
  • Silicon oxide target (4 inches in diameter, 6 mm thick, SiO 2
  • the inorganic layer was deposited on the target by RF (Radio Frequency) magnetron sputtering.
  • the substrate was prepared with a 10 X 10 cm 2 PET film (SKC, SH-40, thickness 100 ⁇ m), which was prepared by washing with acetone and alcohol for 5 minutes using an ultrasonic cleaner and drying.
  • the prepared substrate was attached to a substrate holder made of aluminum using a heat resistant tape, and the substrate holder was mounted on a substrate stage in the chamber, the chamber was closed, and a rotary pump was used to reach 50 mtorr.
  • the vacuum was evacuated and high vacuum was formed with a cryogenic pump after the low vacuum operation was completed.
  • the distance between the substrate and the target was fixed at 24 cm at room temperature (25 ° C.), and a 100 nm inorganic layer was deposited at a power (200 W) and a gas partial pressure (10 mtorr).
  • RF Radio Frequency
  • PET film (SKC, SH-40, thickness 100 ⁇ m, width 600mm) using a roll-to-roll sputter (ULVAC, SPW-060) apparatus to prepare a moisture barrier film (see Fig. 1).
  • Fluorinated polymer composite target (length 950 mm, width 127 mm, thickness) made of square plate containing 70 wt% of powder PTFE (polytetrafluoroethylene, DuPont 7AJ), 10 wt% of carbon nanotubes, and 20 wt% of silicon oxide (SiO 2 ) 6 mm) was attached to the copper backing plate electrode face. It was installed in MF dual sputtering cathode 1, and two Si targets (length 950 mm, width 127 mm, thickness 6 mm) were installed in MF dual sputtering cathode 2 (cathode 2).
  • the PET film is wound in an unwinder chamber, the inside of the roll-to-roll sputtering apparatus is made low vacuum by using a rotary pump and a booster pump, and then a high vacuum (2 ⁇ 10 -4) is used by using a turbo molecular pump. Pa) was formed.
  • the internal vacuum degree of the roll-to-roll sputtering device is 2 ⁇ 10 -4 Pa or less, pre-sputtering is performed by injecting argon (Ar) gas into each cathode at a flow rate of 400 sccm and MF and DC power of 1 kW. It was.
  • the temperature of the main roll was lowered to 10 ° C., and an inorganic layer was formed by MF dual sputtering cathode 2 while conveying the PET film at a speed of 0.5 m / min.
  • the inorganic layer was deposited with a thickness of 100 nm in an oxygen (O 2 ) atmosphere with MF power 13 kW through the cathode 2.
  • an organic layer including fluorine carbide was formed by MF dual sputtering cathode 1.
  • the organic layer was deposited with a thickness of 100 nm in an argon atmosphere with MF power 3 kW through the cathode 1.
  • the inorganic layer and the organic layer were sequentially repeated once more to produce a barrier film having a four-layer structure, and the water barrier film produced in the winder chamber was rewound.
  • the barrier film used for antireflection was produced using the roll-to-roll sputter (ULVAC, SPW-060) apparatus in PET film (SKC, SH-40, thickness 100micrometer, width 600mm) (refer FIG. 1).
  • Fluorinated polymer composite targets (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of square plate containing 95 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 5 wt% of carbon nanotubes (Cu backing plate) It was attached to the electrode surface. It was installed in MF dual sputtering cathode 3. After that, the PET film is wound in an unwinder chamber, and the inside of the roll-to-roll sputtering device is evacuated to 50 mtorr using a rotary pump and a booster pump to make a low vacuum state, followed by a turbo molecular pump. Was used to form a high vacuum (2 ⁇ 10 ⁇ 4 Pa).
  • the MF dual sputtering cathode 3 was used to deposit an antireflection layer (n-1.38 @ 550 nm) with MF power of 2 kW (fluorocarbon thin film, 50 nm thick).
  • the barrier film used for the final deposited antireflection was rewound in the winder chamber.
  • Fluorinated polymer composite target (square plate, length 950 mm, width 127) made of square plate containing 60 wt% of powder PTFE (polytetrafluoroethylene, DuPont 7AJ), 10 wt% of carbon nanotube, 30 wt% of silica oxide (SiO 2 ) mm, thickness 6 mm) was attached to the copper backing plate electrode face. This was installed in MF dual sputtering cathode 3 to produce a barrier film used for antireflection in the same manner as in Example 5.
  • powder PTFE polytetrafluoroethylene, DuPont 7AJ
  • silica oxide SiO 2
  • the MF dual sputtering cathode 3 was used to deposit an antireflection layer (n-1.38 @ 550 nm) with MF power of 2 kW (fluorocarbon thin film, 50 nm thick).
  • the barrier film used for the final deposited antireflection was rewound in the winder chamber.
  • High Purity Nb 2 O 5 A target (99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) is attached to the copper backing plate electrode surface and mounted on the MF dual sputtering cathode 1, and a high purity Si target ( 99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) was attached to the copper backing plate electrode face and mounted on the MF dual sputtering cathode 2.
  • a copper fluorine-based composite target (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of a rectangular plate containing 99 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 1 wt% of carbon nanotubes was copper.
  • Backing plate (Cu backing plate) was attached to the electrode surface. It was installed in MF dual sputtering cathode 3. After that, the PET film is wound in an unwinder chamber, and the inside of the roll-to-roll sputtering device is evacuated to 50 mtorr using a rotary pump and a booster pump to make a low vacuum state, followed by a turbo molecular pump.
  • a high refractive index layer (n-2.10 @ 550 nm) was deposited with MF power at 7 kW by MF dual sputtering cathode 1 (Nb 2 O 5 thin film, 40 nm thick), and MF power was continuously 13 kW by MF dual sputtering cathode 2
  • a low refractive index layer (n-1.46 @ 550 nm) was deposited (SiO 2 thin film, 60 nm thick).
  • an antireflection layer (n-1.38 @ 550 nm) was deposited by MF dual sputtering cathode 3 with MF power of 2 kW (fluorocarbon thin film, 50 nm thick).
  • the barrier film used for the final deposited antireflection was rewound in the winder chamber.
  • a high-purity Si target (99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) is attached to the copper backing plate electrode surface and installed on the MF dual sputtering cathode 1, with high purity Nb 2 O 5
  • a target (99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) was attached to the copper backing plate electrode face and mounted on the MF dual sputtering cathode 2.
  • a copper fluorine-based composite target (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of a rectangular plate containing 99 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 1 wt% of carbon nanotubes was copper.
  • Backing plate (Cu backing plate) was attached to the electrode surface. It was installed in MF dual sputtering cathode 3.
  • a low refractive index layer (n-1.46 @ 550nm) was deposited with MF power at 2.2 kW by MF dual sputtering cathode 1 (SiO 2 thin film, 10 nm thick), followed by MF dual sputtering cathode 2 with MF power at 7 kW.
  • the high refractive index layer (n ⁇ 2.10 @ 550nm) was deposited (Nb 2 O 5 thin film, 40nm thickness).
  • MF dual sputtering cathode 1 Continuously reversed the direction, MF dual sputtering cathode 1 to deposit a low refractive index layer (n-1.46 @ 550nm) with MF power of 7kW (SiO 2 thin film, 40nm thickness), and again reverse the direction to continuously MF
  • the anti-reflective layer (n-1.38 @ 550 nm) was deposited by dual sputtering cathode 3 with MF power of 2 kW (fluorocarbon thin film, 50 nm thick).
  • the barrier film used for the final deposited antireflection was rewound in the winder chamber.
  • High-purity Si targets (99.9%, Mitsui, square plate shape, length 950 mm, width 127 mm, thickness 6 mm) were attached to the copper backing plate electrode face and mounted on MF dual sputtering cathodes 1 and 2.
  • a copper fluorine-based composite target (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of a rectangular plate containing 99 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 1 wt% of carbon nanotubes was copper.
  • the backing plate was attached to the electrode face and mounted on the MF dual sputtering cathode 3.
  • MF dual sputtering cathode 1 deposits a high refractive index layer (n to 2.1 @ 550 nm) SiNx thin film (40 nm thick) using Ar and N 2 gas at MF power 10 kW and continuously MF power by MF dual sputtering cathode 2
  • the low refractive index layer (n-1.46 @ 550nm) SiO 2 thin film was deposited (40nm thickness) at 7kW.
  • the anti-reflective layer (n-1.38 @ 550 nm) was deposited by MF dual sputtering cathode 3 with MF power of 2 kW continuously in the opposite direction (fluorine carbide thin film, 50 nm thick).
  • the barrier film used for the final deposited antireflection was rewound in the winder chamber.
  • the barrier film used for thermal insulation was produced by the same method except the following conditions. Si targets (950 mm long, 127 mm wide, 6 mm thick) and Ag targets (950 mm long, 127 mm wide, 6 mm thick) were attached to the respective copper backing plate electrode faces, The target was installed with two Si targets in the MF sputtering cathode 1 in the process chamber and one Ag target in the DC sputtering cathode 3. Through the cathode 1 to the MF power to 8 W / cm 2 (N 2 gas) N 2 gas partial pressure (10 mtorr), a SiN thin film (optical compensation layer) was deposited to a thickness of 40 nm.
  • a barrier film used for thermal insulation of a structure laminated in two layers by depositing an Ag thin film (heat shielding layer) to a thickness of 12 nm with a DC power of 0.6 W / cm 2 through the cathode 3 on one surface of the SiN thin film. Rewinding in the winder to complete the production of a barrier film used for thermal cutoff.
  • Ag thin film heat shielding layer
  • the contact angle, the maximum visible light transmittance (Tmax), and the ultraviolet light transmittance (based on the measured wavelength of 1000 nm) were measured, and the results are shown in Table 1.
  • Example 1 Example 2 Comparative Example 1 Contact angle (°) 110 110 55 Maximum visible light transmittance (T max ,%) 48.1 60.5 42.5 Infrared transmittance (%) 8.0 6.9 19.5
  • the barrier film used for the heat shield according to the present invention by placing the fluorocarbon thin film at the outermost portion, the visible light transmittance can be improved, thereby increasing the transparency of the film and securing cyanity. It can be seen that the high contact angle can significantly improve the water repellency and antifouling properties caused by moisture or contaminants.
  • the barrier film used for the thermal barrier according to the present invention has an excellent infrared ray blocking rate to significantly increase the thermal insulation performance, maximize energy saving and heating and cooling efficiency, it is expected to be applicable to various industrial fields.
  • PET layer (SKC, SH-40, thickness 100um, width 600mm) using a roll-to-roll sputter device (ULVAC, SPW-060) in Example 4 using a 100% PTFE target instead of the fluorine-based polymer composite target, only the organic layer It was intended to form.
  • MF power was applied at 3 kW through the cathode 1 to form the organic layer.
  • plasma was not formed, deposition of the organic layer including fluorine carbide was not possible.
  • Example 4 It was intended to form only the inorganic layer according to Example 4 using a roll-to-roll sputter device (ULVAC, SPW-060) on the PET film (SKC, SH-40, thickness 100um, width 600mm).
  • a moisture barrier film deposited at a thickness of 100 nm was prepared by using an oxygen (O 2 ) atmosphere of MF power at 13 kW through the cathode 2.
  • Example 3 Example 4 Comparative Example 3 Contact angle (°) 109 110 30 Moisture Permeability (g / m2 / day) 3.7 ⁇ 10 -2 8.5 ⁇ 10 -3 4.7 ⁇ 10 -1
  • the moisture barrier film according to the present invention has a low moisture permeability compared to the comparative example it can be seen that exhibits excellent moisture barrier properties against moisture.
  • the organic layer having a fluorinated carbide thin film was formed at the outermost side to have a remarkably high contact angle, and showed excellent adhesion to the adherend, thereby effectively suppressing the detachment phenomenon due to external impact.
  • Anti-reflective layer using 100% PTFE target instead of fluorine-based polymer composite target in Example 5 using a roll-to-roll sputter device (ULVAC, SPW-060) on PET film (SKC, SH-40, thickness 100um, width 600mm) was intended to form.
  • MF power was applied at 7 kW through the cathode 1 to form the anti-reflection layer.
  • no plasma was formed, it was impossible to deposit the anti-reflection layer containing fluorine carbide.
  • PET film (SKC, SH-40, thickness 100um, width 600mm) using a roll-to-roll sputtering device (ULVAC, SPW-060), it was intended to form only the high refractive index layer and the low refractive index layer according to Example 5.
  • a barrier film used for antireflection was prepared in the same manner as in Example 5 except that the antireflection layer was deposited.
  • Example 5 Example 6 Example 7 Example 8 Example 9 Comparative Example 5 reflectivity(%) 4.3 4.2 4.0 3.5 4.0 6.0 Contact angle (°) 112 113 112 114 113 65
  • the barrier film used for the antireflection according to the present invention exhibits excellent water repellent characteristics compared to the comparative example.
  • a fluorocarbon thin film into the outermost layer, it has a high water contact angle, exhibits excellent bonding with the adherend, and can effectively suppress detachment due to external impact.
  • the barrier film according to the present invention maintains transparency and effectively blocks contaminants such as moisture, thereby providing various display devices (displays) such as organic EL displays, field emission displays, and liquid crystal displays, solar cells, thin films. It is expected to be used as a flexible substrate or an encapsulating material for various electric elements such as batteries, electric double layer capacitors, etc. to provide high quality devices.
  • display devices such as organic EL displays, field emission displays, and liquid crystal displays, solar cells, thin films. It is expected to be used as a flexible substrate or an encapsulating material for various electric elements such as batteries, electric double layer capacitors, etc. to provide high quality devices.

Abstract

The present invention relates to a method for manufacturing a barrier thin film, the method enabling a roll-to-roll method and comprising the steps of: forming, on one surface of an adherend, an inorganic layer comprising, as a main ingredient, one or more ingredient selected from metal and a metal compound; and forming, on one surface of the inorganic layer, an organic layer by depositing a fluorine-based polymer composite target comprising a fluorine-based polymer and a functionalizing agent that has conductivity, and thus a barrier film may be provided that not only exhibits outstanding barrier properties against moisture, but also may be imparted with excellent flexibility, transparency and various forms of optical properties, and exhibits excellent environmental resistance.

Description

탄화불소 박막을 포함하는 배리어 필름 및 이의 제조방법Barrier film comprising a fluorocarbon thin film and a manufacturing method thereof
본 발명은 탄화불소 박막을 포함하는 배리어 필름 및 이의 제조방법에 관한 것으로, 보다 상세하게는 수분에 대한 배리어성을 가짐과 동시에 가시광선 영역의 시안성을 유지할 수 있을 뿐 아니라 내환경성이 우수한 배리어 필름 및 이의 제조방법에 관한 것이다. The present invention relates to a barrier film comprising a fluorine carbide thin film and a method for manufacturing the same. More particularly, the barrier film not only has a barrier property against moisture but also maintains cyanity in the visible light region and has excellent environmental resistance. And it relates to a manufacturing method thereof.
일반적으로 플라즈마 디스플레이, 액정 소자용 디스플레이 및 유기 발광 소자용 디스플레이와 같은 플랫 패널 디스플레이(Flat Panel Display, FPD)에는 유리 기판이 사용되어 왔다. 이와 같은 유리 기판은 파손되기 쉽고, 굴곡성이 없으며, 비중이 크기 때문에 얇고 가벼움에는 한계가 있다. 이러한 문제점을 해결하고자 유리 기판 대체용으로서 투명 플라스틱 필름이 주목받고 있다. 투명 플라스틱 필름은 경량으로 파손되기 어려우며 박막화도 용이하게 때문에 소자의 대형화에도 대응할 수 있다는 장점을 가진다. 그러나 상기 투명 플라스틱 필름은 유리에 비교해 가스(gas) 투과성이 높기 때문에 투명 플라스틱 필름을 채용한 표시소자는 산소나 수증기의 투과로 인하여 표시소자의 발광성능이 쉽게 저하되는 문제점을 가진다. In general, glass substrates have been used in flat panel displays (FPDs) such as plasma displays, liquid crystal display, and organic light emitting display. Such a glass substrate is liable to be broken, has no bending property, and has a specific gravity, so that there is a limit to thinness and lightness. In order to solve this problem, a transparent plastic film has been attracting attention as a glass substrate replacement. The transparent plastic film has a merit of being able to cope with the increase in size of the device because it is light and difficult to be broken and thinning is easy. However, since the transparent plastic film has a higher gas permeability than glass, the display device employing the transparent plastic film has a problem in that the light emitting performance of the display device is easily degraded due to oxygen or water vapor transmission.
이에 따라, 투명 플라스틱 필름 상에 유기물이나 무기물의 가스 배리어 필름을 형성하여 산소나 수증기 등의 영향을 최소화하려는 다양한 시도가 이루어지고 있다. 이러한 가스 배리어 필름으로 일반적으로 산화규소(SiOx), 규소질화물(SiNx), 산화알루미늄(AlxOy), 산화탄탈륨(TaxOy), 산화 티탄늄(TiOx) 등과 같은 무기물이 주로 사용되고 있으며, 이들 가스 배리어 필름은 고진공 상태에서 플라즈마 화학증착법(Plasma enhanced chemical vapor deposition, PECVD), 스퍼터링 (sputtering) 등의 진공 증착법이나 졸-겔 법을 이용하여 플라스틱 필름의 표면에 코팅되어 제조될 수 있다. Accordingly, various attempts have been made to form a gas barrier film of an organic material or an inorganic material on a transparent plastic film to minimize the effects of oxygen or water vapor. In general, inorganic materials such as silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (AlxOy), tantalum oxide (TaxOy), titanium oxide (TiOx), and the like are mainly used as the gas barrier film. In a high vacuum state, it may be manufactured by coating the surface of the plastic film by using a vacuum deposition method such as plasma enhanced chemical vapor deposition (PECVD), sputtering or the sol-gel method.
특허문헌 1(일본 공개특허공보 제1994-031850호)에는 플라스틱 필름의 표면에 무기층을 스퍼터링하여 고가스 배리어성 투명 전도성 필름을 개시하고 있다. 그러나 플라스틱 필름과 무기층의 탄성계수, 열팽창계수, 굴곡반경 등이 크게 다르기 때문에, 외부에서 열 또는 반복적인 힘이 가해지거나 휘게 되면, 계면에서 스트레스를 받아 크랙이 발생하고, 이로 인해 플라스틱 필름으로부터 무기층이 쉽게 박리될 수 있다는 문제점을 가진다. Patent document 1 (Unexamined-Japanese-Patent No. 1994-031850) discloses a high gas barrier transparent conductive film by sputtering an inorganic layer on the surface of a plastic film. However, since the elastic modulus, thermal expansion coefficient, and bending radius of the plastic film and the inorganic layer are largely different, if heat or repetitive force is applied or bent from the outside, cracks are generated due to stress at the interface. There is a problem that the layer can be easily peeled off.
특허문헌 2(일본 공개특허공보 제2004-082598호)에는 유기층과 무기층으로 이루어진 다층 가스 배리어성 적층재 및 그 제조방법을 개시하고 있으나, 이 역시 물성이 상이한 여러 층의 존재로 인해 각각의 계면에서 크랙이 발생하거나 박막의 박리 가능성이 더욱 증가하는 결과를 초래하였다. Patent Document 2 (Japanese Laid-Open Patent Publication No. 2004-082598) discloses a multilayer gas barrier laminate comprising an organic layer and an inorganic layer and a method of manufacturing the same. This resulted in cracking at or increasing the likelihood of peeling of the thin film.
더욱이, 종래기술에 사용되는 가스 배리어 박막의 형성은 고진공 하에서 이루어지는 증착 공정을 반드시 필요로 하기 때문에 고가의 장치가 요구되고, 고진공에 도달하기 위해 오랜 시간이 소요되어 경제적이지 못하다는 문제점이 있어 상업적으로 바람직하지 않았다. Furthermore, since the formation of the gas barrier thin film used in the prior art necessarily requires a deposition process under high vacuum, an expensive device is required, and it takes a long time to reach a high vacuum, which is not economical. It was not desirable.
또한, 특허문헌 3(유럽 공개특허공보 제1,938,967호)에는 배리어 층에 폴리비닐플루오라이드(Polyvinyl fluoride; PVC) 또는 폴리비닐리덴 플루오라이드 (Polyvinylidene fluoride; PVDF) 등과 같은 불소 도료를 코팅하여 내후성 등의 필요한 기능을 부여하는 기술을 개시하고 있으나, 불소 수지는 구조적 특성상 수분에 대한 안정성은 좋지만 수분과의 친화도가 낮아 투과가 쉽게 되어 전체적인 백시트의 수증기 투과율이 수십 g/㎡/day로 높아 충분한 두께의 코팅을 하지 않을 시 가혹한 외부조건에서 장시간 사용해야 하는 태양전지의 특성상 기능의 저하나 수명 단축을 일으킬 수 있는 여지가 많은 문제점이 있다. In addition, Patent Document 3 (European Laid-Open Patent Publication No. 1,938,967) coats a barrier layer with a fluorine paint such as polyvinyl fluoride (PVC) or polyvinylidene fluoride (PVDF) to provide weather resistance and the like. Although the technology for providing the necessary functions is disclosed, the fluorine resin has good stability to moisture due to its structural characteristics, but has a low affinity with water for easy permeation, and thus the water vapor transmission rate of the entire backsheet is several tens of g / m 2 / day, which is sufficient thickness. Due to the nature of the solar cell that must be used for a long time under harsh external conditions when there is no coating of there is a lot of problems that can cause a decrease in function or shorten the life.
이의 문제점을 극복하고, 불소 도료에 충분한 수분 배리어성을 부여하기 위한 방법으로, 특허문헌 4(미국 공개특허공보 제2009-0260677호)에는 판상 모양 입자인 금속 코팅된 운모 입자를 첨가하는 방법을 제안하고 있으나, 상기 설명한 판상의 운모 입자는 10 내지 300 마이크로미터로 크기가 다소 큰데다가 입자 크기 분포도가 넓어 입자 사이의 틈으로 수증기가 여전히 투과될 수 있는 성질을 지닌다는 문제점이 있어, 상술된 종래의 문제점을 완벽하게 해결하지 못한다.As a method for overcoming this problem and providing sufficient moisture barrier property to the fluorine paint, Patent Document 4 (US Patent Publication No. 2009-0260677) proposes a method of adding metal-coated mica particles which are plate-shaped particles. However, the plate-shaped mica particles described above have a problem that the size of 10 to 300 micrometers is somewhat large and the particle size distribution is wide so that water vapor can still pass through the gaps between the particles. It does not solve the problem perfectly.
본 발명자들은 상술한 바와 같은 종래 기술의 문제점을 해결하면서 당분야에서 요구되는 필요성을 충족시키기 위하여, 심도 있는 연구를 진행한 결과, 수분의 투과도를 획기적으로 차단할 수 있는 초발수성의 탄화불소 박막을 포함하는 배리어 필름을 고안하였다. 또한, 고에너지를 인가해야만 했던 종래 탄화불소 박막 증착의 문제점의 해결과 더불어 RF에 비해, 비교적 낮은 수십 KHz의 주파수 또는 그 이하의 주파수를 가지는 DC 또는 MF 스퍼터링으로도 증착이 가능하여, 연속적인 롤투롤 증착 시스템을 이용한 배리어 필름의 대면적화가 가능한 새로운 기술을 개발함으로써, 본 발명을 완성하게 되었다. The present inventors, in order to solve the problems of the prior art as described above to meet the needs required in the art, as a result of in-depth research, it includes a super water-repellent fluorocarbon thin film that can block the water permeability significantly A barrier film was devised. In addition to solving the problem of conventional fluorine carbide thin film deposition that had to apply high energy, it is possible to deposit by DC or MF sputtering, which has a frequency lower than a few tens of KHz or lower than RF, and thus continuous rolls. The present invention has been completed by developing a new technology capable of large-area barrier film using a two-roll deposition system.
본 발명의 목적은 초발수성 및 고절연성을 가지는 탄화불소 박막을 포함함으로써, 외부의 오염원 뿐 아니라 수분에 대한 배리어성을 현저하게 향상시킬 수 있는 배리어 필름을 제공하는 것이다. 본 발명에 따른 상기 수분투과 방지용으로 사용하는 배리어 필름은 플렉시블한 피착체 증착되어 우수한 투명성 및 유연성을 나타낼 수 있으며, 도전성 기능화제를 포함하는 불소계고분자 복합 타겟을 이용하여 피착체와의 향상된 밀착력 및 기계적 강도를 가지는 배리어 필름을 제공하는 것이다. 또한 본 발명은 광학적으로 투명할 뿐 아니라 목적에 따라 열차단 특성, 반사방지 특성 등의 광학적 특성을 다양한 양태로 조절할 수 있는 내환경성이 우수한 배리어 필름을 제공하는 것이다. An object of the present invention is to provide a barrier film that can significantly improve the barrier property against moisture as well as external pollutants by including a fluorocarbon thin film having super water repellency and high insulation. The barrier film used for preventing water permeation according to the present invention may exhibit excellent transparency and flexibility by depositing a flexible adherend, and improve adhesion and mechanical adhesion with the adherend using a fluorine-based polymer composite target containing a conductive functionalizing agent. It is to provide a barrier film having strength. In addition, the present invention is to provide a barrier film excellent in environmental resistance that can be adjusted not only optically transparent but also optical properties such as thermal barrier properties, anti-reflection properties, etc. according to the purpose.
본 발명의 또 다른 목적은 대표적인 절연체인 탄화불소의 박막 증착공정에 있어, 비전도성으로 인해 고에너지를 사용함에 따른 열화현상으로 인한 불소계고분자 타겟의 손상, 불소계고분자와 전압을 인가하는 금속 전극 사이에서 아크 등의 발생으로, 인가 전압에 비해 낮은 효율의 플라즈마 발생으로 증착율 또한 낮은 문제가 발생하는 등의 문제점을 획기적으로 개선하는 것이다. Still another object of the present invention is a thin film deposition process of fluorine carbide, which is a representative insulator, in which the fluorine-based polymer target is damaged due to deterioration due to the use of high energy due to non-conductivity, between the fluorine-based polymer and a metal electrode applying voltage. The generation of an arc, etc., significantly improves the problem of lowering the deposition rate by generating a plasma having a lower efficiency than the applied voltage.
또한 본 발명은 낮은 전압인 MF 또는 DC 전원방식으로도 높은 증착율로 증착된 탄화불소 박막을 포함하는 배리어 필름의 제조방법을 제공하는 것이다. In another aspect, the present invention is to provide a method for producing a barrier film comprising a fluorocarbon thin film deposited at a high deposition rate even by a low voltage MF or DC power supply.
또한 본 발명은 MF 또는 DC와 같은 보다 산업적으로 유용한 전원방식을 이용한 스퍼터링을 통해 박막의 두께를 용이하게 조절가능 할 뿐 아니라, 고르고 균일하게 피착체에 높은 증착율로 증착됨으로써, 핀홀, 크랙 등의 발생으로 인한 성능 저하를 효과적으로 억제할 수 있는 배리어 필름의 제조방법을 제공하는 것이다.In addition, the present invention can not only easily control the thickness of the thin film through sputtering using a more industrially useful power supply method such as MF or DC, but also evenly and uniformly deposited at a high deposition rate on the adherend, thereby generating pinholes and cracks. It is to provide a method for producing a barrier film that can effectively suppress the degradation due to.
본 발명의 또 다른 목적은 모든 공정이 RF에 비해, 비교적 낮은 전원방식인 MF 또는 DC 전원방식으로도 스퍼터링 가능하여, 상술한 바와 같은 우수한 특성을 가지는 배리어 필름의 제조공정을 단순화할 수 있을 뿐 아니라, 매우 단시간 내에 대면적 배리어 필름의 제조가 가능한 롤투롤 공정의 구현이 가능하고, 기존 롤투롤 장비에서 별도의 개조 비용 없이 바로 적용이 가능한 롤투롤 방식의 배리어 필름의 제조방법을 제공하는 것이다. Still another object of the present invention is that all processes can be sputtered by MF or DC power supply, which is a relatively low power supply method compared to RF, thereby simplifying the manufacturing process of the barrier film having the excellent characteristics as described above. It is possible to implement a roll-to-roll process capable of manufacturing a large-area barrier film in a very short time, and to provide a method for manufacturing a roll-to-roll barrier film that can be directly applied to a conventional roll-to-roll equipment without additional modification costs.
본 발명은 피착체의 일면에 금속 및 금속화합물에서 선택되는 하나 이상을 주성분으로 포함하는 무기층을 형성하는 단계와 상기 무기층의 일면에 불소계고분자와 도전성을 가지는 기능화제(performing dopant)를 포함하는 불소계고분자 복합 타겟을 증착시켜 유기층을 형성하는 단계를 포함하는 배리어 필름의 제조방법을 제공한다.The present invention includes the steps of forming an inorganic layer including at least one selected from metals and metal compounds as a main component on one surface of the adherend and a forming dopant having conductivity and a fluorine-based polymer on one surface of the inorganic layer. It provides a method for producing a barrier film comprising the step of depositing a fluorine-based polymer composite target to form an organic layer.
본 발명의 일 양태에 따르면 상기 무기층 및 상기 유기층은 각각 RF, MF 또는 DC 스퍼터링으로 증착되어 형성될 수 있다. According to an aspect of the present invention, the inorganic layer and the organic layer may be formed by being deposited by RF, MF or DC sputtering, respectively.
상기 유기층은 기능화제를 포함하는 불소계고분자 복합 타겟을 이용함에 따라 종래 불소계고분자의 증착시 고에너지를 인가함에 따른 문제점인 열화현상으로 인한 증착용 타겟의 손상을 방지한다. 또한 고에너지를 인가함으로써 발생하는 불소계고분자와 전압을 인가하는 금속 전극 사이에서 아크 등의 발생으로, 인가 전압에 비해 낮은 효율의 플라즈마 발생으로 낮은 증착율을 보이는 점 등을 효과적으로 개선할 수 있다. 또한 본 발명에 따른 불소계고분자 복합 타겟은 도전성을 부여할 수 있는 전도성입자, 전도성 고분자 및 금속성분 등에서 선택되는 전도성 물질을 반드시 하나 이상 포함함으로써, 상업적으로 유용한 MF 또는 DC 스퍼터링으로도 효과적이고 높은 증착율로 박막이 증착될 수 있다.As the organic layer uses a fluorine-based polymer composite target including a functionalizing agent, the organic layer prevents damage to the deposition target due to deterioration, which is a problem caused by applying high energy in the deposition of conventional fluorine-based polymers. In addition, the generation of an arc or the like between the fluorine-based polymer generated by the application of high energy and the metal electrode applying the voltage can effectively improve the point of low deposition rate due to the generation of plasma having a lower efficiency than the applied voltage. In addition, the fluorine-based polymer composite target according to the present invention must include at least one conductive material selected from conductive particles, conductive polymers and metal components that can impart conductivity, so that even with commercially useful MF or DC sputtering, the effective and high deposition rate Thin films may be deposited.
본 발명의 일 양태에 따른 상기 기능화제는 전도성입자, 전도성 고분자 및 금속성분 등에서 선택되는 하나 또는 둘 이상의 도전성을 가지는 기능화제를 포함하는 것 일 수 있으며, 이와 같은 도전성을 부여하는 기능화제로 인해 RF 뿐 아니라 이보다 낮은 전압인 MF 및 DC에서도 탄화불소 박막의 스퍼터링 증착이 가능하며, 높은 증착율과 절연파괴를 방지하여 고품질의 배리어 필름을 형성할 수 있다.The functionalizing agent according to an aspect of the present invention may be to include a functionalizing agent having one or more conductivity selected from conductive particles, conductive polymers and metal components, etc., RF due to the functionalizing agent to impart such conductivity In addition, sputtering deposition of fluorocarbon thin films is possible at lower voltages, MF and DC, and high quality barrier films can be formed by preventing high deposition rates and dielectric breakdown.
본 발명의 일 양태에 따른 상기 유기층은 전도성입자, 전도성 고분자 및 금속성분 등에서 선택되는 어느 하나 또는 둘 이상의 기능화제를 포함하되, 금속유기물, 금속산화물, 금속탄소체, 금속수산화물, 금속카보네이트, 금속바이카보네이트, 금속질화물, 금속황화물 및 금속불화물 등에서 선택되는 하나 이상의 금속화합물(metallic compound)을 더 포함하여, 추가적으로 배리어 필름의 표면 특성을 다양하게 조절 할 수 있다.The organic layer according to an aspect of the present invention comprises any one or two or more functionalizing agents selected from conductive particles, conductive polymers and metal components, such as metal organic matter, metal oxide, metal carbon body, metal hydroxide, metal carbonate, metal bi Further comprising one or more metallic compounds selected from carbonates, metal nitrides, metal sulfides and metal fluorides, it is possible to additionally control the surface properties of the barrier film.
또한, 본 발명의 일 양태에 따르면 MF 또는 DC와 같은 보다 산업적으로 유용한 전원방식을 이용한 스퍼터링을 통해 무기층 및 유기층의 두께를 용이하게 조절할 수 있을 뿐 아니라 고르고 균일하게 피착체에 증착 가능하며, 각각의 층을 형성하는 공정 모두가 MF 또는 DC 스퍼터링이 가능하여 롤투롤 공정의 적용으로 한 대의 장비에서 연속적인 공정의 수행으로 생산성을 획기적으로 향상시킬 수 있다.In addition, according to an aspect of the present invention, the thickness of the inorganic layer and the organic layer can be easily adjusted and evenly deposited on the adherend through sputtering using a more industrially useful power supply method such as MF or DC, respectively. All of the processes for forming a layer of MF or DC can be sputtered, and the application of a roll-to-roll process can dramatically improve productivity by performing a continuous process in one equipment.
본 발명은 피착체를 롤투롤 방식으로 이송시키면서 금속 및 금속화합물에서 선택되는 하나 이상을 주성분으로 포함하는 타겟을 이용하여 무기층을 형성하는 단계와 상기 무기층의 일면에 불소계고분자와 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합타겟을 이용하여 유기층을 형성하는 단계를 포함하는 배리어 필름의 제조방법을 제공한다. 이때, 상기 무기층 및 유기층은 MF 또는 DC 스퍼터링으로 형성되는 것을 특징으로 한다.The present invention provides a step of forming an inorganic layer using a target containing at least one selected from a metal and a metal compound as a main component while transferring the adherend in a roll-to-roll manner and a function of having fluorine-based polymers and conductivity on one surface of the inorganic layer. It provides a method for producing a barrier film comprising the step of forming an organic layer using a fluorine-based polymer composite target containing a topical agent. At this time, the inorganic layer and the organic layer is characterized in that formed by MF or DC sputtering.
또한, 본 발명은 피착체; 금속 및 금속화합물에서 선택되는 하나 이상을 주성분으로 포함하는 무기층; 및 불소계고분자와 도전성을 가지는 기능화제를 포함하는 유기층;을 포함하는 배리어 필름을 제공한다.In addition, the present invention is an adherend; An inorganic layer comprising, as a main component, at least one selected from metals and metal compounds; And an organic layer comprising a fluorine-based polymer and a functionalizing agent having conductivity.
본 발명은 도전성을 부여한 불소계고분자 복합 타겟을 이용하여 RF보다 낮은 전압인 MF나 DC에서도 스퍼터링이 가능하며, 절연파괴를 방지하고, 높은 증착율로 낮은 표면 에너지와 동시에 수분에 대한 우수한 배리어성을 가지는 고품질의 배리어 필름을 제공할 수 있다. 뿐만 아니라 피착체 또는 금속박막과의 접착력이 우수하여 각각의 박막간의 박리현상 등의 문제를 현저하게 줄여 높은 내구성을 부여할 수 있다. 게다가, 본 발명에 따른 배리어 필름은 높은 광투과도 및 저수분 투과도를 동시에 가져, 이를 채용한 소자의 불량률을 최소화 할 수 있다. The present invention is capable of sputtering at MF or DC, which is a lower voltage than RF, by using a conductive fluorinated polymer composite target, preventing dielectric breakdown, and having a high deposition rate, low surface energy and high barrier property against moisture. The barrier film of can be provided. In addition, the adhesion to the adherend or the metal thin film is excellent, it is possible to remarkably reduce problems such as peeling phenomenon between each thin film to give a high durability. In addition, the barrier film according to the present invention has a high light transmittance and a low moisture permeability at the same time, it is possible to minimize the failure rate of the device employing it.
또한 본 발명에 따르면 용이하게 다양한 조성을 가지는 수분투과 방지용으로 사용하는 배리어 필름을 구성하여 목적에 따른 물리·화학·광학적 특성이 부여된 다양한 양태의 배리어 필름을 제공할 수 있다.In addition, according to the present invention can easily provide a barrier film of various aspects to which the physical, chemical, and optical properties according to the purpose is given by configuring a barrier film used for preventing water permeation having a variety of compositions.
본 발명에 따른 배리어 필름의 제조방법은 대면적의 박막 제조가 가능한 기존 롤투롤 방식에 있어, MF 또는 DC 스퍼터링 장치를 별도의 개조 비용 없이 바로 적용이 가능하며, 연속적으로 무기층 및 유기층을 포함하는 배리어 필름을 인라인(in-line)으로 한번에 제작이 가능하여, 공정을 단순화할 수 있을 뿐 아니라 원가 절감이 가능하다는 장점을 가진다.In the method of manufacturing a barrier film according to the present invention, in a conventional roll-to-roll method capable of manufacturing a large-area thin film, an MF or DC sputtering device can be directly applied without additional modification costs, and continuously includes an inorganic layer and an organic layer. The barrier film can be produced in-line at one time, thereby simplifying the process and reducing costs.
도 1은 본 발명에 따른 롤투롤 방식의 스퍼터링 증착 시스템의 개략적인 구성도이다.1 is a schematic diagram of a roll-to-roll sputtering deposition system according to the present invention.
본 발명에 따른 탄화불소 박막을 포함하는 배리어 필름 및 이의 제조방법에 대하여 이하 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.A barrier film including a fluorocarbon thin film according to the present invention and a method for manufacturing the same will be described below. However, unless otherwise defined in the technical and scientific terms used, a person having ordinary knowledge in the technical field to which the present invention belongs. Descriptions of well-known functions and configurations, which have ordinary meanings and may unnecessarily obscure the subject matter of the present invention, will be omitted.
최근 플렉시블 디스플레이 소자의 보다 뛰어난 성능의 구현을 위해 수분 및 산소의 침투를 차단하기 위한 기술이 크게 요구되어 지고 있다. 특히 플렉시블 OLED용 소자의 경우, 10-5 내지 10-6 g/㎡/day의 매우 높은 수분 침투율을 요구하고 있으며, 최근 색재현율 향상을 위해 도입한 퀀텀닷(Quantum Dot, 양자점) 필름의 경우, 10-3 g/㎡/day의 비교적 낮은 수치의 수분 투과율을 요구하고 있으나, 종래 기술로는 상기와 같은 물성을 구현하기 어려울 뿐 아니라 공정이 복잡하고 비용이 크게 소모되기 때문에 대량생산에 적합하지 않았다. Recently, a technique for blocking the penetration of moisture and oxygen has been greatly required for the better performance of the flexible display device. In particular, in the case of a flexible OLED device, a very high water penetration rate of 10 -5 to 10 -6 g / ㎡ / day is required, and in the case of a quantum dot film recently introduced to improve color reproduction, It requires a relatively low water permeability of 10 -3 g / m 2 / day, but it is not suitable for mass production because it is difficult to realize the above properties in the prior art and the process is complicated and costly. .
이에, 본 출원인은 우수한 투명성과 소수성의 표면 특성을 가질 뿐 아니라 피착체와의 밀착력이 우수하여 플렉시블 디스플레이 최외각의 보호층에 적합한 배리어 필름 및 이를 경제적으로 양산할 수 있는 이의 제조방법은 제공하고자 본 발명을 완성하였다.Accordingly, the present applicant not only has excellent transparency and hydrophobic surface properties, but also has excellent adhesion to the adherend, so that the barrier film suitable for the outermost protective layer of the flexible display and a manufacturing method thereof can be economically mass-produced. The invention has been completed.
본 발명에 따른 배리어 필름은 피착체의 일면에 무기층 및 유기층이 형성된 것일 수 있다. 구체적으로, 상기 무기층은 금속 및 금속화합물에서 선택되는 하나 이상을 주성분으로 포함하고, 상기 무기층의 일면에 형성된 유기층은 불소계고분자와 도전성을 가지는 기능화제를 포함하는 것 일 수 있다.The barrier film according to the present invention may be an inorganic layer and an organic layer formed on one surface of the adherend. Specifically, the inorganic layer may include one or more selected from metals and metal compounds as a main component, and the organic layer formed on one surface of the inorganic layer may include a fluorinated polymer and a functionalizing agent having conductivity.
이때, 본 명세서에서 상기 “무기층”은 은(Ag), 구리(Cu) 또는 니켈(Ni) 등의 금속성분을 주성분으로 포함하거나 금속산화물, 금속질화물 및 금속황화물에서 선택되는 하나 이상의 금속화합물을 주성분으로 포함하는 것일 수 있으며, 상기 무기층은 금속산화물 타겟 및 금속질화물 타겟 등의 금속화합물 타켓을 이용하여 스퍼터링되거나 금속 타겟을 이용하여 반응 가스에 의해 산화 또는 질화 되어 형성될 수 있음은 물론이며, 이외의 방법으로도 형성될 수 있다. 본 명세서에서의 “주성분”은 전체 조성 중에 가장 많은 성분을 의미하는 것으로 예를 들면, 40 내지 90 중량%를 차지하는 성분을 의미하는 것일 수 있다. At this time, the "inorganic layer" in the present specification includes a metal component such as silver (Ag), copper (Cu) or nickel (Ni) as a main component or at least one metal compound selected from metal oxides, metal nitrides and metal sulfides It may be included as a main component, the inorganic layer may be formed by sputtering using a metal compound target, such as a metal oxide target and a metal nitride target, or oxidized or nitrided by a reaction gas using a metal target, of course, It may be formed by other methods. As used herein, the term “main ingredient” means the most component in the total composition, and may mean, for example, a component that occupies 40 to 90 wt%.
또한, 상기 “유기층”은 불소계고분자에 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합 타겟에 의해 증착된 탄화불소 박막을 의미하며, 상기 불소계고분자 복합 타겟에 포함되는 도전성을 가지는 기능화제는 전도성입자, 전도성 고분자, 금속성분 및 금속화합물 등에서 선택되는 하나 일 수 있다.In addition, the "organic layer" means a fluorocarbon thin film deposited by a fluorine-based polymer composite target containing a functionalizing agent having conductivity to the fluorine-based polymer, the functionalizing agent having a conductivity contained in the fluorine-based polymer composite target is a conductive particle, It may be one selected from conductive polymers, metal components and metal compounds.
본 발명의 일 실시예에 따른 상기 유기층은 상술된 기능화제를 포함하는 불소계고분자 복합 타겟을 이용함으로써, 종래 RF 인가시에 발생될 수 있는 타겟의 변형 및 결함을 효과적으로 억제하여 피착체의 표면에 고르고 균일하게 성막될 수 있다. The organic layer according to an embodiment of the present invention by using a fluorine-based polymer composite target containing the above-described functionalizing agent, to effectively suppress the deformation and defects that may occur in the conventional RF applied to the surface of the adherend It can be formed uniformly.
이하, 본 발명의 일 양태에 따른 배리어 필름의 구체적일 양태를 들어 설명하나 이에 한정되는 것은 아니다.Hereinafter, one specific embodiment of the barrier film according to one embodiment of the present invention will be described, but is not limited thereto.
본 발명에 따른 배리어 필름의 일 양태인 열차단용으로 사용하는 배리어 필름 및 이의 제조방법에 대하여 설명한다. The barrier film used for thermal insulation which is one aspect of the barrier film which concerns on this invention, and its manufacturing method are demonstrated.
본 발명의 일 양태에 따른 열차단용으로 사용하는 배리어 필름은 탄화불소 박막을 최외각층에 배치하여, 고유의 열 차단 특성을 가지는 금속을 포함하는 열선 차단층의 단열 효과를 극대화시켜줄 뿐 아니라 발수 및 방오 효과가 우수하여 외부 환경에 노출되는 배리어 필름의 내환경성을 향상시킬 수 있다. Barrier film used for the thermal barrier according to an aspect of the present invention by placing the fluorocarbon thin film in the outermost layer, to maximize the thermal insulation effect of the heat ray shielding layer containing a metal having a unique heat shielding properties as well as water repellent and antifouling Since the effect is excellent, the environmental resistance of the barrier film exposed to the external environment can be improved.
대표적인 절연체인 탄화불소 박막의 경우, 종래 일반적으로 사용되는 습식 공정을 이용한 코팅시 기재와의 접착력이 떨어질 뿐 아니라 전형적인 색상(흰색)을 가졌으나, 본 발명에 따른 제조방법으로 제조된 배리어 필름은 상술된 문제점을 해결함과 동시에 우수한 시인성 및 기재와의 접착력의 구현이 가능하다. 이때, 본 발명에 따른 배리어 필름은 도전성을 가지는 불소계고분자 복합 타겟을 이용하여 형성되며, 이로인해 안정적으로 플라즈마 형성이 가능함과 동시에 보다 낮은 전압인 MF나 DC 전원방식을 이용하여도 높은 증착율을 구현할 수 있다. In the case of the fluorocarbon thin film which is a representative insulator, the adhesiveness with the substrate is not only degraded when the coating is performed using a conventionally used wet process, but has a typical color (white), but the barrier film manufactured by the manufacturing method according to the present invention is described above. It is possible to solve the problems and at the same time excellent visibility and adhesion to the substrate. At this time, the barrier film according to the present invention is formed using a fluorine-based polymer composite target having conductivity, thereby enabling stable plasma formation and high deposition rate even when using a lower voltage MF or DC power supply method. have.
구체적으로, 본 발명의 일 양태에 따른 열차단용으로 사용하는 배리어 필름은 피착체, 은(Ag), 구리(Cu) 또는 니켈(Ni)을 주성분으로 하는 열선 차단층과 열차단 부가 원소를 포함하는 광학 보상층 및 탄화불소 보호층을 포함한다. 상기 열차단용으로 사용하는 배리어 필름은 열차단 효율이 높은 은(Ag), 구리(Cu) 또는 니켈(Ni) 등을 주성분으로 열선 차단층을 형성하여 높은 열선 차단 효과를 구현 할 수 있으며, 최외각에 형성된 탄화불소 보호층에 의해 열선 차단율을 90 % 이상으로 극대화 할 수 있다. 이때, 상기 열선 차단층과 광학 보상층은 본 발명의 용어 “무기층”에 포함되며, 상기 탄화불소 보호층은 본 발명의 용어 “유기층”에 포함된다.Specifically, the barrier film used for the heat shield according to an aspect of the present invention comprises a heat ray shielding layer and a heat shield addition element mainly composed of an adherend, silver (Ag), copper (Cu) or nickel (Ni). An optical compensation layer and a fluorocarbon protective layer. The barrier film used for heat shielding can realize a high heat ray shielding effect by forming a heat ray shielding layer mainly composed of silver (Ag), copper (Cu), or nickel (Ni) with high thermal barrier efficiency. By fluorine carbide protective layer formed in the heat shielding rate can be maximized to more than 90%. In this case, the heat ray blocking layer and the optical compensation layer are included in the term "inorganic layer" of the present invention, and the fluorocarbon protective layer is included in the term "organic layer" of the present invention.
본 발명의 일 양태에 따른 상기 열선 차단층에는 열선 차단 효과를 향상시키기 위한 측면에서 상기 주성분 이외 알루미늄(Al), 텅스텐(W), 금(Au), 주석(Sn), 아연(Zn), 철(Fe) 등에서 선택되는 금속 성분을 더 포함할 수 있음은 물론이며, 상기 광학 보상층에 포함되는 부가 원소의 비한정적인 일예로는 NiCr, NiAu, ITO, IZO, IZTO, AZO, IAZO, GZO, IGO, IGZO, IGTO, ATO, IATO, IWO, CIO, MIO, MgO, SnO2, ZnO, ZnAlOx, In2O3, TiTaO2, TiNbO2, TiO2, RuO2, IrO, Nb2O5, Ta2O5, ZnO, SiO2, SiN, Si3N4 및 Al2O3 등에서 선택되는 하나 이상을 들 수 있으나 이에 한정되는 것은 아니다. 이때, 상기 열차단용으로 사용하는 배리어 필름의 광학특성을 보다 향상시키고, 난반사 등을 없애주어 보다 맑고 밝은 시야를 확보할 수 있는 측면에서, TiO2, SiO2, SiN, Si3N4 및 Al2O3 등에서 선택되는 하나 이상의 부가 원소를 포함하는 것이 좋다.In the heat ray shielding layer according to an aspect of the present invention, aluminum (Al), tungsten (W), gold (Au), tin (Sn), zinc (Zn), iron in addition to the main component in terms of improving the heat ray shielding effect Of course, non-limiting examples of the additional element included in the optical compensation layer may include NiCr, NiAu, ITO, IZO, IZTO, AZO, IAZO, GZO, IGO, IGZO, IGTO, ATO, IATO, IWO, CIO, MIO, MgO, SnO 2 , ZnO, ZnAlO x , In 2 O 3 , TiTaO 2 , TiNbO 2 , TiO 2 , RuO 2 , IrO, Nb 2 O 5 , Ta 2 O 5 , ZnO, SiO 2 , SiN, Si 3 N 4 And Al 2 O 3 One or more selected from the like, but is not limited thereto. At this time, in order to further improve the optical properties of the barrier film used for the thermal barrier, to eliminate diffused reflection, etc., to obtain a clearer and brighter view, TiO 2 , SiO 2 , SiN, Si 3 N 4 And Al 2 O 3 It is preferable to include at least one additional element selected from the like.
본 발명의 일 실시예에 따른 상기 탄화불소 보호층은 불소계고분자와 도전성을 가지는 기능화제를 포함한다.The fluorocarbon protective layer according to an embodiment of the present invention includes a fluorinated polymer and a functionalizing agent having conductivity.
일반적으로 불소계고분자의 경우, 소수성의 특성 및 절연 특성을 가짐에 따라 이를 스퍼터링하기 위해서는, RF(radio-frequency)의 고주파 에너지가 인가되어야 하며, 이에 따라 불소계고분자 타겟이 그자체로서 변형되거나 전극면과의 접합부위에 필연적으로 변형이 발생하여, 타겟 내의 결함이 발생될 수 밖에 없었다. 이와 같은 이유로, 스퍼터링된 불소계고분자는 피착체의 표면에 균일하게 증착되지 않기도 하거니와 증착효율이 매우 열악할 수 밖에 없었다.In general, in the case of fluorine-based polymers, in order to sputter them with hydrophobic and insulating properties, radiofrequency (RF) high-frequency energy must be applied, so that the fluorine-based polymer target is deformed as itself or The deformation inevitably occurred at the junction of, resulting in the generation of defects in the target. For this reason, the sputtered fluorine-based polymer may not be uniformly deposited on the surface of the adherend, but the deposition efficiency is inevitably poor.
이에, 본 발명에 따른 탄화불소 보호층은 상술한 바와 같이, 도전성을 가지는 기능화제를 포함하여 타겟에 도전성을 부여함으로써, RF(radio-frequency)의 고주파 에너지 뿐 아니라 이보다 낮은 전압인 MF(mid-range frequency) 및 DC(direct current)에서도 탄화불소 박막의 스퍼터링 증착이 가능하도록 하였다. Thus, the fluorocarbon protective layer according to the present invention, as described above, by imparting conductivity to the target by including a functionalizing agent having conductivity, as well as the high-frequency energy of RF (radio-frequency) as well as a lower voltage MF (mid-) Sputtering deposition of the fluorocarbon thin film was also possible at a range frequency) and a direct current (DC).
본 발명의 일 양태에 따른 열차단용으로 사용하는 배리어 필름의 제조방법에 있어, 상기 탄화불소 보호층을 형성할 때, 불소계고분자 복합 타겟을 사용하여 형성한다. 이때, 상기 불소계고분자 복합 타겟에는 도전성을 부여하는 기능화제를 포함하여야 하며, 기능화제는 도전성을 부여할 수 있는 물질이라면 한정되지 않으나, 전도성입자, 전도성 고분자, 금속성분 등을 들 수 있다. In the method for producing a barrier film used for thermal barrier according to an aspect of the present invention, the fluorocarbon protective layer is formed using a fluorine-based polymer composite target. In this case, the fluorinated polymer composite target should include a functionalizing agent to impart conductivity, and the functionalizing agent is not limited as long as it is a material capable of imparting conductivity, and examples thereof include conductive particles, conductive polymers, and metal components.
상기 전도성입자의 구체적인 일예로는 카본나노튜브(Carbon nano tube), 카본나노섬유 (carbon nano fiber), 카본블랙(Carbon black), 그래핀(Graphene), 그라파이트(Graphite), 탄소섬유(Carbon fiber) 등을 들 수 있으며, 기타 유기 전도성입자도 포함할 수 있다. 이때, 상기 전도성입자의 일예인 유기 전도성입자를 사용할 경우 탄화불소 성분을 유지하면서 도전성을 부여할 수 있어 바람직하다. 상기 전도성 고분자의 구체적인 일예로는, 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리티오펜(polythiophene), 폴리피롤(polypyrrole), 폴리플루렌(polyfluorene), 폴리피렌(polypyrene), 폴리아줄렌(polyazulene), 폴리나프탈렌(polynaphthalene), 폴리페닐렌(polyphenylene), 폴리페닐렌비닐렌(poly phenylene vinylene), 폴리카르바졸(polycarbazole), 폴리인돌(polyindole), 폴리아제핀(polyazephine), 폴리에틸렌(polyethylene), 폴리에틸렌비닐렌(polyethylene vinylene), 폴리페닐렌설파이드(polyphenylene sulfide), 폴리퓨란(polyfuran), 폴리셀레노펜(polyselenophene), 폴리텔루로펜(polytellurophene), 폴리설퍼 나이트라이드 (polysulfur nitride) 등을 들 수 있으나 이에 한정되는 것은 아니다. 또한, 상기 금속성분의 구체적인 일예로는 구리(Cu), 알루미늄(Al), 은(Ag), 금(Au), 텅스텐(W), 마그네슘(Mg), 니켈(Ni), 몰리브덴(Mo), 바나듐(V), 나이오븀(Nb), 티타늄(Ti), 백금(Pt), 크롬(Cr), 탄탈(Ta) 등을 들 수 있으며, 금속 전극과의 우수한 결착력을 가지는 측면에서 바람직하게는 구리(Cu), 알루미늄(Al), 은(Ag), 금(Au), 텅스텐(W), 실리콘(Si), 마그네슘(Mg), 니켈(Ni) 또는 이들의 혼합물, 보다 바람직하게는 구리(Cu), 알루미늄(Al), 은(Ag), 금(Au) 또는 이들의 혼합물이 좋으나 이에 한정되는 것은 아니다.Specific examples of the conductive particles include carbon nanotubes, carbon nanofibers, Carbon black, graphene, graphite, carbon fiber, and the like, and other organic conductive particles may also be included. In this case, when the organic conductive particles which are examples of the conductive particles are used, conductivity can be imparted while maintaining the fluorocarbon component. Specific examples of the conductive polymer, polyaniline (polyaniline), polyacetylene (polyacetylene), polythiophene (polythiophene), polypyrrole (polypyrrole), polyfluorene (polyfluorene), polypyrene (polypyrene), polyazulene (polyazulene) , Polynaphthalene, polyphenylene, polyphenylene vinylene, polycarbazole, polyindole, polyazephine, polyethylene, polyethylene Polyethylene vinylene, polyphenylene sulfide, polyfuran, polyselenophene, polytellurophene, polysulfur nitride And the like, but are not limited thereto. In addition, specific examples of the metal component include copper (Cu), aluminum (Al), silver (Ag), gold (Au), tungsten (W), magnesium (Mg), nickel (Ni), molybdenum (Mo), Vanadium (V), niobium (Nb), titanium (Ti), platinum (Pt), chromium (Cr), tantalum (Ta), and the like, and preferably copper in terms of excellent binding with a metal electrode. (Cu), aluminum (Al), silver (Ag), gold (Au), tungsten (W), silicon (Si), magnesium (Mg), nickel (Ni) or mixtures thereof, more preferably copper (Cu ), Aluminum (Al), silver (Ag), gold (Au) or mixtures thereof are preferred, but are not limited thereto.
또한, 본 발명의 일 양태에 따른 불소계고분자 복합 타겟은 불소계고분자를 포함하며, 상기 불소계고분자는 불소를 함유한 수지류 라면 한정되는 것은 아니나 바람직하게는 불소를 함유하는 올레핀을 중합시킨 합성수지인 폴리테트라 플루오로에틸렌(PTFE, polytetrafluoroethylene), 폴리클로로트리플루오로에틸렌(PCTFE, polychlorotrifluoroethylene), 폴리비닐리덴디플루오라이드(PVDF, polyvinylidenedifluoride), 플로린화 에틸렌 프로필렌 공중합체 (FEP, fluorinated ethylene propylene copolymer), 폴리 에틸렌-테트라플루오로 에틸렌 (ETFE, poly ethylene-co-tetra fluoro ethylene), 폴리 에틸렌-클로로 트리플루오로 에틸렌 (ECTFE, poly ethylene-co-chloro trifluoro ethylene), 폴리 테트라 플루오로 에틸렌-플로오로 알킬 비닐 에테르 (PFA, poly tetra fluoro ethylene-co-fluoro alkyl vinyl ether) 등에서 선택되는 하나 이상의 불소계고분자; 비닐플루오라이드 단일중합체 고무, 비닐플루오라이드 공중합체 고무, 비닐리덴플루오라이드 단일중합체 고무 및 비닐리덴플루오라이드 공중합체 고무 등에서 선택되는 하나 이상의 불소고무; 로부터 선택되는 하나 이상일 수 있으며, 보다 바람직하게는 폴리테트라 플루오로에틸렌(PTFE, polytetrafluoroethylene)일 수 있지만 이에 한정하는 것은 아니다.In addition, the fluorine-based polymer composite target according to an aspect of the present invention includes a fluorine-based polymer, the fluorine-based polymer is not limited as long as it is a resin containing fluorine, preferably polytetra is a synthetic resin polymerized olefin containing fluorine Fluoroethylene (PTFE, polytetrafluoroethylene), polychlorotrifluoroethylene (PCTFE, polychlorotrifluoroethylene), polyvinylidenedifluoride (PVDF, polyvinylidenedifluoride), fluorinated ethylene propylene copolymer (FEP), polyethylene -Tetrafluoroethylene (ETFE, poly ethylene-co-tetra fluoro ethylene), polyethylene-chloro trifluoro ethylene (ECTFE, poly ethylene-co-chloro trifluoro ethylene), polytetrafluoro ethylene-fluoro alkyl vinyl ether One or more selected from (PFA, poly tetra fluoro ethylene-co-fluoro alkyl vinyl ether) Fluorine polymers; At least one fluororubber selected from vinyl fluoride homopolymer rubber, vinyl fluoride copolymer rubber, vinylidene fluoride homopolymer rubber, vinylidene fluoride copolymer rubber, and the like; It may be one or more selected from, and more preferably may be polytetrafluoroethylene (PTFE, polytetrafluoroethylene), but is not limited thereto.
이때, 본 발명에 따른 상기 불소계고분자 복합 타겟의 조성은 제한되지는 않지만 좋게는 상기 불소계고분자 100 중량부에 대하여 상기 기능화제 0.01 내지 2000 중량부로 함유할 수 있으며, 보다 높은 증착율과 절연파괴를 방지하여 고품질의 탄화불소 박막을 증착할 수 있는 측면에서 바람직하게는 0.5 내지 1500 중량부, 보다 바람직하게는 1 내지 1000 중량부로 함유되는 것이 좋다.At this time, the composition of the fluorine-based polymer composite target according to the present invention is not limited, but preferably may be contained in 0.01 to 2000 parts by weight of the functionalizing agent with respect to 100 parts by weight of the fluorine-based polymer, to prevent higher deposition rate and insulation breakdown In terms of being able to deposit a high quality fluorocarbon thin film, it is preferable to contain 0.5 to 1500 parts by weight, more preferably 1 to 1000 parts by weight.
또한, 본 발명의 일 양태에 따른 상기 피착체는 실리콘, 금속, 세라믹, 수지, 종이, 유리, 수정, 섬유, 플라스틱, 유기 고분자 등에서 선택될 수 있으며, 이에 한정되는 것은 아니나 플렉시블한 실리콘, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC), 폴리에틸렌테레프탈레이트(PET), 폴리이미드(polyimide, PI), 환형올레핀공중합체(cyclic olefic copolymer, COC), 환형올레핀고분자(cyclic olefin polymer, COC), 트리아세틸 셀룰로오스 (triacetyl cellulose, TAC), 폴리에틸렌나프탈렌(polyethylene naphthalene, PEN), 폴리우레탄(polyurethane, PU), 폴리아크릴레이트 (polyacrylate), 폴리에스터(polyester), 폴리메틸펜텐 (polymethylene pentene, PMP), 폴리메틸메타크릴레이트(polymethyl methacrylate, PMMA), 폴리메타크릴레이트 (polymethacrylate, PMA), 폴리스티렌(polystyrene, PS), 스티렌-아크릴로니트릴 공중합체 (styrene-acrylonitrile copolymer, SAN), 아크릴로니트릴-부틸렌-스티렌 공중합체 (acrylonitrile-butylene-styrene copolymer, ABS), 폴리염화비닐 (polyvinyl chloride, PVC), 에틸렌-비닐 아세테이트 공중합체 (ethylene-vinyl acetate, EVA), 에틸렌비닐알콜 (ethylene-vinyl alcohol copolymer, EVOH), 폴리비닐알콜 (polyvinyl alcohol, PVA), 폴리알릴레이트 (polyarylate, PAR), 아크릴-스티렌-아크릴로니트릴 공중합체 (acrylic-styrene-acrylonitrile copolymer), 에틸렌-부텐 공중합체 (ethylene-butylene copolymer), 에틸렌-옥텐 공중합체 (ethylene-octene copolymer), 에틸렌-프로필렌 공중합체 (ethylene-propylene copolymer), 에틸렌-프로필렌-디엔 공중합체 (ethylene-propylene-diene monomer copolymer, EPDM), 폴리아미드(polyamide), 폴리페닐렌옥사이드 (polyphenylene oxide, PPO), 폴리부틸렌 테레프탈레이트 (polybuthylene terephthalate, PBT), 폴리트리메틸렌테레프탈레이트(polytrimethylene terephthalate, PTT), 폴리옥시메틸렌 (polyoxy methylene, POM), 폴리프탈아미드 (polyphthalamide, PPA), 폴리술폰 (polysulfone, PSf), 폴리에테르술폰 (polyether sulfone, PES), 폴리페닐렌설피드 (polyphenylene sulfide, PPS), 액정고분자 (liquid crystalline polymer, LCP), 폴리에테르이미드 (polyether imide, PEI), 폴리아미드이미드(polyamide imide, PAI), 폴리케톤 (polyketone, PK), 폴리에테르에테르케톤 (poly ether ether ketone, PEEK), 폴리에테르케톤 (poly ether ketone, PEK), 폴리에테르케톤케톤 (polyether ketone ketone, PEKK), 폴리에테르케톤에테르케톤케톤 (polyether ketone ether ketone ketone, PEKEKK), 폴리아릴에테르케톤 (polyaryl ether ketone, PAEK), 폴리벤조이미다졸(polybenzimidazole, PBI), 폴리비닐부티랄(polyvinyl butyral, PVB), 폴리프로필렌카보네이트 (polypropylene carbonate, PPC), 폴리락트산(polylactic acid, PLA), 폴리히드록시알카노에이트 (polyhydroxy alkanoates, PHAs), 알키드 수지 (alkyd resin), 페놀 수지 (phenol resin), 에폭시 수지 (epoxy resin) 등의 필름에서 선택되거나 섬유 또는 유리 등에 사용되는 것이 좋으나 이에 한정되는 것은 아니다. In addition, the adherend according to an aspect of the present invention may be selected from silicon, metal, ceramic, resin, paper, glass, quartz, fiber, plastic, organic polymer, and the like, but is not limited to flexible silicone, polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyethylene terephthalate (PET), polyimide (PI), cyclic olefic copolymer (COC), cyclic olefin polymer (cyclic olefin polymer, COC), triacetyl cellulose (TAC), polyethylene naphthalene (PEN), polyurethane (PU), polyacrylate, polyester, polymethylene pentene PMP), polymethyl methacrylate (PMMA), polymethacrylate (PMA), polystyrene (PS), styrene-acrylonitrile copolymer (styre ne-acrylonitrile copolymer (SAN), acrylonitrile-butylene-styrene copolymer (ABS), polyvinyl chloride (PVC), ethylene-vinyl acetate copolymer (ethylene-vinyl acetate , EVA), ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol (PVA), polyallylate (PAR), acrylic-styrene-acrylonitrile copolymer (acrylic-styrene- acrylonitrile copolymer, ethylene-butylene copolymer, ethylene-octene copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer propylene-diene monomer copolymer (EPDM), polyamide, polyphenylene oxide (PPO), polybutylene terephthalate (PBT), polytrimethylene terephthalate (polytr) imethylene terephthalate (PTT), polyoxy methylene (POM), polyphthalamide (PPA), polysulfone (PSf), polyether sulfone (PES), polyphenylene sulfide , PPS), liquid crystalline polymer (LCP), polyether imide (PEI), polyamide imide (PAI), polyketone (PK), polyether ether ketone (poly ether ether) ketone, PEEK), polyether ketone (PEK), polyether ketone ketone (PEKK), polyether ketone ether ketone ketone (PEKEKK), polyaryl ether ketone (polyaryl ketone) ether ketone (PAEK), polybenzimidazole (PBI), polyvinyl butyral (PVB), polypropylene carbonate (PPC), polylactic acid (PLA), polyhydroxyal Kanoei (Polyhydroxy alkanoates, PHAs), selected from a film, such as an alkyd resin (alkyd resin), phenol resin (phenol resin), epoxy resin (epoxy resin), or good or is used for fibers or glass but not limited to.
상술한 바와 같이, 본 발명에 따른 열차단용으로 사용하는 배리어 필름의 열선 차단층, 광학 보상층 및 탄화불소 보호층 각각은 스퍼터링 방식을 이용하여 증착될 수 있을 뿐 아니라 롤투롤 공정의 적용이 가능하여 한 대의 장비에서 연속 공정으로 열차단용으로 사용하는 배리어 필름을 제작할 수 있어 생산성을 획기적으로 향상시킬 수 있다. 특히, 본 발명에 따른 열차단용으로 사용하는 배리어 필름의 탄화불소 보호층 역시 산업적으로 유용한 MF나 DC등의 이용으로 상기 기능화제의 역할에 의해 쉽게 증착이 가능하며, 증착효율에서도 놀라운 증대를 가져올 수 있다. As described above, each of the heat ray shielding layer, the optical compensation layer and the fluorocarbon protective layer of the barrier film used for the thermal barrier according to the present invention can be deposited using a sputtering method and can be applied to a roll-to-roll process. It is possible to manufacture barrier films used for thermal insulation in a continuous process in one machine, which can dramatically improve productivity. In particular, the fluorocarbon protective layer of the barrier film used for the thermal barrier according to the present invention can also be easily deposited by the role of the functionalizing agent by the use of industrially useful MF, DC, etc., can bring a surprising increase in the deposition efficiency. have.
즉, 본 발명의 일 실시예에 따른 열차단용으로 사용하는 배리어 필름의 탄화불소 보호층은 불소계고분자에 전도성을 부여함으로써, 놀랍게도 MF나 DC등의 낮은 전압의 전원방식에서도 스퍼터링이 가능하고, 매우 단시간 내에 대면적 코팅이 가능한 롤투롤 공정의 구현이 가능하여, 기존 롤투롤 장비에서 별도의 개조 비용 없이 타겟의 교환으로 바로 적용이 가능하기 때문에 상업성 또한 우수하고, 공정의 단순화 및 제조 원가 절감이 가능한 장점을 가질 수 있다. That is, the fluorocarbon protective layer of the barrier film used for the thermal barrier according to an embodiment of the present invention by imparting conductivity to the fluorine-based polymer, it is surprisingly possible to sputter even in a low voltage power supply method such as MF, DC, very short time It is possible to implement a roll-to-roll process with a large-area coating in the inside, so it can be directly applied by replacing targets in the existing roll-to-roll equipment without any renovation cost. Can have
또한, 본 발명의 일 양태에 따른 열차단용으로 사용하는 배리어 필름의 제조에 있어 스퍼터링 공정으로의 활용이 가능하여 나노 사이즈의 박막의 제조가 가능하며, 박막의 두께를 정밀하게 제어 가능하다는 장점을 가진다. 즉, 본 발명에 따르면 배리어 필름의 접촉각, 가시광선 투과율, 열선 투과율 등을 자유롭게 조절할 수 있기 때문에, 적재적소에 적용하여 에너지 절감 효과가 우수한 열차단용 배리어 필름으로의 적용이 가능하다.In addition, in the manufacture of the barrier film used for the thermal barrier according to an aspect of the present invention can be utilized as a sputtering process to produce a nano-size thin film, has the advantage of precisely controlling the thickness of the thin film. . That is, according to the present invention, since the contact angle, visible light transmittance, heat ray transmittance, and the like of the barrier film can be freely adjusted, the present invention can be applied to a heat barrier barrier film having excellent energy saving effect by being applied to a loading place.
본 발명의 일 양태에 따른 열차단용으로 사용하는 배리어 필름의 제조방법에 있어, 상기 광학 보상층을 코팅하는 단계와 상기 열선 차단층을 코팅하는 단계는 순차적으로 또는 랜덤으로 1회 이상 반복하여 수행될 수 있으며, 보다 낮은 열선 투과율 및 우수한 가시광선 투과율을 구현하기 위해 순차적으로 2회 이상 반복하여 수행될 수 있으며, 이후 최외각에는 탄화불소 보호층이 배치되도록 한다.In the method of manufacturing a barrier film for use in a thermal barrier according to an aspect of the present invention, the coating of the optical compensation layer and the coating of the heat ray shielding layer may be performed repeatedly one or more times sequentially or randomly. In order to realize a lower heat ray transmittance and excellent visible ray transmittance, the process may be repeatedly performed two or more times in sequence, and then the fluoride carbide protective layer is disposed at the outermost portion.
본 발명의 일 양태에 따른 상기 광학 보상층, 열선 차단층 및 탄화불소 보호층은 특별히 제한하지 않지만 예를 들어 각각 1 내지 10000 nm 범위로 제조가 가능하며, 상기 열선 차단층의 경우 연선 영역인 780 내지 2200 nm 범위 파장을 선택적으로 차단하여 단열특성을 향상시키고, 시안성을 저하하지 않는 측면에서 5 내지 15 nm 범위로 형성되는 것이 바람직하지만 이에 한정하는 것은 아니다. 상기 광학 보상층은 단열특성을 향상시킴과 동시에 열차단용으로 사용하는 배리어 필름의 경도를 높이기 위한 측면에서 20 내지 100 nm 범위로 형성되는 것이 바람직하지만 또한 이에 한정하는 것은 아니다. 또한, 상기 탄화불소 보호층은 방오 및 방수 특성을 극대화하고, 열차단용으로 사용하는 배리어 필름의 광학특성 및 강도 특성을 최적화하기 위한 측면에서 10 내지 100 nm 범위로 형성되는 것이 바람직하나 이에 한정되는 것은 아니다.The optical compensation layer, the heat ray shielding layer and the fluorocarbon protective layer according to an aspect of the present invention are not particularly limited, but may be manufactured, for example, in the range of 1 to 10000 nm, and in the case of the heat ray shielding layer, 780 which is a stranded region. It is preferable to form a range of 5 to 15 nm in terms of improving heat insulation properties by selectively blocking a wavelength in the range of 2 to 2200 nm and not decreasing cyanity, but is not limited thereto. The optical compensation layer is preferably formed in the range of 20 to 100 nm in terms of improving the heat insulating property and at the same time increasing the hardness of the barrier film used for heat shielding, but is not limited thereto. In addition, the fluorocarbon protective layer is preferably formed in the range of 10 to 100 nm in terms of maximizing antifouling and waterproof characteristics, and optimizing the optical and strength characteristics of the barrier film used for thermal barrier, but is not limited thereto. no.
또한, 본 발명은 상기 열차단용으로 사용하는 배리어 필름에 포함되는 광학 보상층, 열선 차단층 및 탄화불소 보호층 등을 형성하는 모든 공정이 연속적으로 수행될 수 있는 롤투롤 방식의 스퍼터링 증착 시스템을 제공할 수 있으며, 상기 스퍼터링은 MF 또는 DC 스퍼터링으로 수행 가능한 것을 특징으로 한다.In addition, the present invention provides a roll-to-roll sputtering deposition system in which all processes of forming an optical compensation layer, a heat ray shielding layer, a fluorocarbon protective layer, and the like included in the barrier film used for the thermal barrier may be continuously performed. The sputtering may be performed by MF or DC sputtering.
다음으로, 본 발명에 따른 배리어 필름의 일 양태인 반사 방지용으로 사용되는 배리어 필름 및 이의 제조방법에 대하여 설명한다. Next, the barrier film used for antireflection which is one aspect of the barrier film which concerns on this invention, and its manufacturing method are demonstrated.
본 발명은 전방향성(omnidirectional) 반사방지 특성을 가지는 배리어 필름을 제공한다. 구체적으로, 본 발명에 따른 반사 방지용으로 사용되는 배리어 필름은 기재 상부에 스퍼터링 방식으로 굴절율이 상이한 반사감소층 및 반사방지층을 순차적으로 증착하여 형성될 수 있으며, 상기 반사방지층은 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합 타겟을 이용하여 스퍼터링된 탄화불소 박막일 수 있다. The present invention provides a barrier film having omnidirectional antireflective properties. Specifically, the barrier film used for the anti-reflection according to the present invention may be formed by sequentially depositing an antireflection layer and an antireflection layer having different refractive indices on a substrate by a sputtering method, and the antireflection layer may include a functionalizing agent having conductivity. It may be a fluorocarbon thin film sputtered using a fluorine-based polymer composite target containing.
본 발명의 일 양태에 따른 반사 방지용으로 사용하는 배리어 필름의 제조방법에 있어서, 상기 반사감소층은 금속산화물, 금속질화물 및 금속황화물 등에서 선택되는 하나 이상을 포함하는 것일 수 있으며, 이는 금속산화물 타겟, 금속질화물 타겟 및 금속황화물 타겟 등을 이용하여 스퍼터링되거나 금속 타겟을 이용하여 반응 가스에 의해 산화, 질화 또는 황화 되어 형성될 수 있음은 물론이며, 이외의 방법으로도 형성될 수 있다. 이때, 상기 반응 가스는 아산화질소(N20), 이산화질소(N02), 일산화질소(NO) 및 산소(O2) 등에서 선택되는 하나 이상일 수 있으며, 바람직하게는 이산화질소(N02), 산소(O2) 또는 이들의 혼합 반응 가스인 것이 좋다.In the method of manufacturing a barrier film used for anti-reflection according to an aspect of the present invention, the reflection reducing layer may include one or more selected from metal oxides, metal nitrides, metal sulfides, and the like, which may be metal oxide targets, It can be formed by sputtering using a metal nitride target, a metal sulfide target, or the like, or by oxidizing, nitriding or sulfiding with a reaction gas using a metal target, or may be formed by other methods. In this case, the reaction gas may be one or more selected from nitrous oxide (N 2 0), nitrogen dioxide (N0 2 ), nitrogen monoxide (NO) and oxygen (O 2 ), preferably nitrogen dioxide (N0 2 ), oxygen ( O 2 ) or a mixed reaction gas thereof.
또한, 본 발명의 일 양태에 따른 반사 방지용으로 사용하는 배리어 필름의 제조방법에 있어서, 상기 반사감소층은 저굴절율층 및 고굴절율층에서 선택되는 하나 이상의 층을 포함할 수 있으며, 이의 적층 순서 또는 형태 등은 목적하는 반사 방지용으로 사용하는 배리어 필름의 특성에 따라 적절하게 조절될 수 있음은 물론이다. In addition, in the method of manufacturing a barrier film used for anti-reflection according to an aspect of the present invention, the reflection reduction layer may include one or more layers selected from a low refractive index layer and a high refractive index layer, or a stacking order thereof The shape and the like can be appropriately adjusted according to the characteristics of the barrier film used for the desired antireflection.
본 발명의 일 양태에 따른 반사 방지용으로 사용하는 배리어 필름은 보다 우수한 반사방지 특성의 구현을 위해, 상기 반사감소층은 기재 상에 고굴절율층을 스퍼터링한 후 저굴절율층을 스퍼터링될 수 있다. 이때, 상기 고굴절율층 및 저굴절율층의 단수가 증가할수록 향상된 반사방지 특성을 구현할 수 있다. 상기 고굴절율층은 타이타늄(Ti), 지르코늄(Zr), 나이오븀(Nb), 아연(Zn), 인듐(In), 알루미늄(Al), 안티몬(Sb), 주석(Sn), 세륨(Ce), 셀레늄(Se) 및 이트륨(Y) 등에서 선택되는 하나 이상의 금속을 주성분으로 하여, 산화 지르코늄(zirconium oxide: ZrO2), 산화 티타늄(titanium oxide: TiO2), 황화 아연(Zinc sulfide: ZnS), 산화 안티몬(Sb2O3), 산화 아연(Zinc oxide: ZnO2), 인듐-주석 복합산화물(Indum oxide doped Tin: ITO), 안티몬-주석 복합산화물(Antimonu doped Tin: ATO), 티타늄-안티모니-주석 복합산화물(TiO2, Sb doped SnO2), 산화 세륨(CeO) 산화 셀레늄(SeO2), 산화 알루미늄(Al2O3), 산화 이트륨(Y2O3), 산화 나이오븀(Nb2O5) 및 안티몬-아연 복합산화물(AZO) 등의 형태로 포함할 수 있으나 이에 한정되는 것은 아니며, 질화 실리콘(SiN) 등을 포함할 수도 있다. 이때, 상기 고굴절율층은 1.6 이상의 높은 굴절율(@ 550 nm)을 가지며, 후술되는 저굴절율층을 적층되어 층간 계면에서 반사되는 빛의 상쇄간섭 현상 등을 향상시켜 보다 넓은 파장 영역에서 우수한 반사방지 특성을 구현할 수 있다. 이에, 상기 고굴절율층 상에 적층되는 저굴절율층의 경우, 굴절율 차이(△n)가 0.1 내지 1.5일 수 있으며, 바람직하게 0.1 내지 1.2, 보다 바람직하게 0.1 내지 1.0일 수 있으나 이에 한정되는 것은 아니다. In the barrier film used for anti-reflection according to an aspect of the present invention, in order to implement more excellent anti-reflection characteristics, the anti-reflection layer may be sputtered on a low refractive index layer after sputtering a high refractive index layer on a substrate. In this case, as the number of steps of the high refractive index layer and the low refractive index layer increases, improved antireflection characteristics may be realized. The high refractive index layer is titanium (Ti), zirconium (Zr), niobium (Nb), zinc (Zn), indium (In), aluminum (Al), antimony (Sb), tin (Sn), cerium (Ce) Zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), zinc sulfide (ZnS), based on one or more metals selected from selenium (Se) and yttrium (Y), etc. Antimony oxide (Sb 2 O 3 ), zinc oxide (ZnO 2 ), indium oxide doped tin (ITO), antimony-tin composite oxide (ATO), titanium-antimony Tin composite oxide (TiO 2 , Sb doped SnO 2 ), cerium oxide (CeO) selenium oxide (SeO 2 ), aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), niobium oxide (Nb 2) O 5 ) and antimony-zinc composite oxide (AZO), and the like, but are not limited thereto, and may include silicon nitride (SiN). In this case, the high refractive index layer has a high refractive index (@ 550 nm) of 1.6 or more, and by stacking the low refractive index layers to be described later to improve the destructive interference phenomenon of the light reflected at the interface between the layers, excellent antireflection characteristics in a wider wavelength range Can be implemented. Thus, in the case of the low refractive index layer laminated on the high refractive index layer, the refractive index difference (Δn) may be 0.1 to 1.5, preferably 0.1 to 1.2, more preferably 0.1 to 1.0, but is not limited thereto. .
본 발명의 일 양태에 따른 상기 저굴절율층은 규소(Si) 및 마그네슘(Mg)에서 선택되는 하나 이상의 금속을 주성분으로 하여 산화 규소(SiO2), 산화 마그네슘(MgO) 등의 금속산화물 형태로 포함되는 것이 바람직하며, 증착율이 우수하고 넓은 파장 영역에서도 높은 반사특성을 가지기 위한 측면에서 보다 바람직하게는 산화 규소(SiO2)를 포함할 수 있으나 이에 한정되는 것은 아니다.The low refractive index layer according to an aspect of the present invention comprises at least one metal selected from silicon (Si) and magnesium (Mg) in the form of a metal oxide such as silicon oxide (SiO 2 ), magnesium oxide (MgO), etc. Preferably, the silicon oxide (SiO 2 ) may be more preferably included in terms of excellent deposition rate and high reflection characteristics even in a wide wavelength range, but is not limited thereto.
본 발명의 일 양태에 따른 상기 반사 방지용으로 사용하는 배리어 필름의 제조방법에 있어서, 상기 반사방지층은 불소계고분자에 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합 타겟을 이용하여 증착된 박막인 탄화불소 박막일 수 있다. 이러한 탄화불소 박막의 구성 및 이의 제조방법 등은 상술한 열차단용으로 사용하는 배리어 필름의 탄화불소 보호층과 통한다.In the method for producing a barrier film used for the antireflection according to an aspect of the present invention, the antireflection layer is a thin film of fluorocarbon thin film deposited using a fluorine-based polymer composite target containing a functionalizing agent having conductivity to the fluorine-based polymer. Can be. The configuration of such a fluorocarbon thin film, a manufacturing method thereof, and the like communicate with the fluorocarbon protective layer of the barrier film used for the above-described thermal barrier.
또한, 본 발명의 일 실시예에 따른 반사 방지용으로 사용하는 배리어 필름의 제조방법은 상업적으로 유용한 MF 또는 DC 스퍼터링으로 증착이 가능하여, 기존 롤투롤 방식의 연속적인 스퍼터링 증착 시스템의 추가 설비 보완 없이 바로 적용가능하다. 즉, 본 발명에 따른 제조방법을 이용하여 폭간 편차를 최소화하고, 광학적 효과를 극대화하면서, 신속하게 대면적의 반사 방지용으로 사용하는 배리어 필름을 형성할 수 있어 경제적이다.In addition, the method of manufacturing a barrier film used for the anti-reflection according to an embodiment of the present invention can be deposited by commercially available MF or DC sputtering, without additional supplementary equipment of the conventional roll-to-roll continuous sputtering deposition system Applicable. That is, by using the manufacturing method according to the present invention, it is economical to minimize the width variation and maximize the optical effect, and to quickly form a barrier film used for preventing large area reflection.
본 발명의 일 양태에 따른 상기 반사 방지용으로 사용하는 배리어 필름의 제조방법에 있어서, 상기 반사감소층은 고굴절율층을 증착하는 단계 및 저굴절율층을 증착하는 단계를 반복 실시하여, 2층 이상의 다층 구조를 형성할 수 있다. 이때, 상기 고굴절율층 및 저굴절율층의 굴절률 차이(△n)는 0.1 내지 1.5일 수 있으며, 바람직하게는 0.1 내지 1.2, 보다 바람직하게는 0.1 내지 1.0일 수 있으나 이에 한정되는 것은 아니다.In the method for manufacturing a barrier film used for the antireflection according to an aspect of the present invention, the reflection reduction layer is formed by repeatedly depositing a high refractive index layer and a step of depositing a low refractive index layer. The structure can be formed. In this case, the refractive index difference (Δn) of the high refractive index layer and the low refractive index layer may be 0.1 to 1.5, preferably 0.1 to 1.2, more preferably 0.1 to 1.0, but is not limited thereto.
또한, 본 발명의 일 양태에 따른 상기 반사 방지용으로 사용하는 배리어 필름은 최외각층에 탄화불소 박막인 반사방지층을 가짐으로써, 열화 또는 충격 등에 의한 기재로부터 박막이 탈리되는 현상을 현저하게 줄일 수 있다. In addition, the barrier film used for the antireflection according to an embodiment of the present invention has an antireflection layer, which is a fluorine carbide thin film, in the outermost layer, thereby significantly reducing the phenomenon of the thin film being detached from the substrate due to deterioration or impact.
본 발명의 일 양태에 따른 반사 방지용으로 사용하는 배리어 필름의 상기 반사감소층의 고굴절율층과 저굴절율층 및 상기 반사방지층은 각각 독립적으로 1 nm 내지 10 ㎛ 두께로 증착될 수 있으며, 향상된 시인성과 반사특성을 가지기 위한 측면에서 바람직하게는 10 nm 내지 500 nm 두께로 증착될 수 있으며, 보다 바람직하게는 10 nm 내지 100 nm 두께로 증착되는 것이 좋다.The high refractive index layer, the low refractive index layer, and the antireflection layer of the antireflection layer of the barrier film used for antireflection according to an aspect of the present invention may be independently deposited to a thickness of 1 nm to 10 μm, and may have improved visibility. In terms of reflecting properties, it may be preferably deposited with a thickness of 10 nm to 500 nm, more preferably 10 nm to 100 nm.
본 발명은 피착체 상에 고굴절율층과 저굴절율층을 포함하는 반사방지층 및 탄화불소 박막을 포함하는 반사방지층이 순차적으로 스퍼터링하여 제조된 배리어 필름, 즉 반사 방지용으로 사용하는 배리어 필름을 제공한다. The present invention provides a barrier film, that is, a barrier film used for anti-reflection, which is formed by sequentially sputtering an antireflection layer including a high refractive index layer and a low refractive index layer on a adherend and a fluorine carbide thin film.
본 발명의 일 양태에 따른 상기 반사 방지용으로 사용하는 배리어 필름은 밀착성 및 반사율이 우수하고, 초소수성의 탄화불소 박막을 최외각층에 도입함으로써, 보다 낮은 표면 에너지를 가져, 표면의 매끄러움성, 오염 닦임성 등의 표면 특성을 부여할 수 있을 뿐 아니라 우수한 방오성 및 대전방지 특성을 가진다. 이때, 상기 반사 방지용으로 사용하는 배리어 필름은 수분과의 접촉각이 90 내지 150 °범위로 초발수성을 가지는 것을 특징으로 한다.The barrier film used for the anti-reflection according to an aspect of the present invention has excellent adhesion and reflectance, and has a lower surface energy by introducing a superhydrophobic fluorocarbon thin film into the outermost layer, thereby smoothing surface smoothness and staining. Not only can impart surface properties such as forestry, but also has excellent antifouling properties and antistatic properties. At this time, the barrier film used for the anti-reflection is characterized in that the contact angle with moisture has a super water-repellent in the range of 90 to 150 °.
다음으로, 본 발명에 따른 배리어 필름의 일 양태인 수분투과 방지용으로 사용하는 배리어 필름 및 이의 제조방법에 대하여 설명한다. Next, the barrier film used for water permeation prevention which is one aspect of the barrier film which concerns on this invention, and its manufacturing method are demonstrated.
본 발명의 일 양태에 따른 수분투과 방지용으로 사용하는 배리어 필름은 초발수성 및 고절연성을 가지는 탄화불소 박막을 포함함으로써, 외부의 오염원 뿐 아니라 수분에 대한 배리어성을 현저하게 향상시킬 수 있으며, 플렉시블한 피착체에 높은 증착율로 증착되어 우수한 투명성 및 유연성을 나타낸다. 또한 탄화불소 박막을 포함하는 2층 이상의 다층 배리어 구조를 가짐으로써, 다층 구조의 밀착력을 높여, 피착체로부터의 박리를 효과적으로 억제하고 기계적 강도를 높일 수 있는 수분투과 방지용으로 사용하는 배리어 필름을 제공할 수 있다.The barrier film used for preventing water permeation according to an aspect of the present invention includes a fluorocarbon thin film having super water repellency and high insulating property, thereby significantly improving the barrier property against moisture as well as external pollutants. It is deposited on the adherend at high deposition rates to show excellent transparency and flexibility. In addition, by having a multilayer barrier structure of two or more layers including a fluorine carbide thin film, it is possible to provide a barrier film used for preventing moisture permeation, which can increase adhesion of the multilayer structure, effectively suppress peeling from the adherend and increase mechanical strength. Can be.
본 발명은 피착체의 일면에 금속산화물 및 금속질화물에서 선택되는 하나 이상을 포함하는 무기층을 형성하는 단계; 및 상기 무기층의 일면에 불소계고분자와 전도성입자, 전도성 고분자, 금속성분 및 금속화합물에서 선택되는 하나 이상의 기능화제를 포함하는 유기층을 형성하는 단계;를 포함하는 수분투과 방지용으로 사용하는 배리어 필름의 제조방법을 제공한다.The present invention comprises the steps of forming an inorganic layer including at least one selected from metal oxides and metal nitrides on one surface of the adherend; And forming an organic layer including one or more functionalizing agents selected from fluorine-based polymers, conductive particles, conductive polymers, metal components, and metal compounds on one surface of the inorganic layer. Provide a method.
본 발명의 일 양태에 따른 상기 무기층은 수분의 투과를 억제할 수 있는 물질이라면 한정되는 것은 아니나, 피착체와의 친화성 및 내열성이 우수한 실리콘 산화물, 알루미늄 산화물 또는 실리콘 질화물을 주성분으로 할 수 있으며, 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 나이오븀(Nb), 탄탈륨(Ta), 바나듐(V), 텅스텐(W), 알루미늄(Al), 갈륨(Ga), 인듐(In), 아연(Zn), 실리콘(Si) 및 게르마늄(Ge) 등에서 선택되는 하나 이상의 산화물 또는 질화물을 더 포함할 수 있음은 물론이다.The inorganic layer according to an aspect of the present invention is not limited as long as it is a substance capable of inhibiting the permeation of moisture, and may be composed mainly of silicon oxide, aluminum oxide, or silicon nitride having excellent affinity and heat resistance with the adherend. , Titanium (Ti), zirconium (Zr), hafnium (Hf), niobium (Nb), tantalum (Ta), vanadium (V), tungsten (W), aluminum (Al), gallium (Ga), indium (In ), Zinc (Zn), silicon (Si), germanium (Ge) and the like may further include one or more oxides or nitrides selected from.
또한, 본 발명은 피착체의 일면에 금속 타겟, 금속산화물 타겟 또는 금속질화물 타겟을 이용하여 무기층을 형성하는 단계; 및 상기 무기층의 일면에 전도성입자, 전도성 고분자 및 금속성분에서 선택되는 하나 이상의 전도성 물질을 포함하는 불소계고분자 복합 타겟을 이용하여 유기층을 형성하는 단계;를 포함하는 수분투과 방지용으로 사용하는 배리어 필름의 제조방법을 제공한다. 이때, 상기 무기층과 유기층은 RF에 비해, 비교적 낮은 수십 KHz의 주파수 또는 그 이하의 주파수를 가지는 전원방식인 MF 또는 DC 스퍼터링으로 형성될 수 있으며, 이들을 연속적인 롤투롤 방식의 스퍼터링 증착 시스템에 적용할 수 있어 배리어 필름을 경제적으로 대면적화 할 수 있다.In addition, the present invention comprises the steps of forming an inorganic layer using a metal target, a metal oxide target or a metal nitride target on one surface of the adherend; And forming an organic layer by using a fluorine-based polymer composite target including at least one conductive material selected from conductive particles, conductive polymers, and metal components on one surface of the inorganic layer. It provides a manufacturing method. In this case, the inorganic layer and the organic layer may be formed by MF or DC sputtering, which is a power method having a frequency lower than tens of KHz or less than RF, and applied them to a continuous roll-to-roll sputtering deposition system. The barrier film can be economically large in area.
본 발명의 일 양태에 따른 상기 무기층은 금속 타겟, 금속산화물 타겟 또는 금속질화물 타겟을 이용하여 높은 증착율로 형성될 수 있으며, 상기 금속 타겟은 타이타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 나이오븀(Nb), 탄탈륨(Ta), 바나듐(V), 텅스텐(W), 알루미늄(Al), 갈륨(Ga), 인듐(In), 아연(Zn), 실리콘(Si) 및 게르마늄(Ge) 등에서 선택되는 금속을 이용하여, 반응 가스에 의해 산화되어 금속산화물 또는 금속질화물 박막을 형성한다. The inorganic layer according to an aspect of the present invention may be formed at a high deposition rate using a metal target, a metal oxide target or a metal nitride target, and the metal target may be titanium (Ti), zirconium (Zr), or hafnium (Hf). , Niobium (Nb), tantalum (Ta), vanadium (V), tungsten (W), aluminum (Al), gallium (Ga), indium (In), zinc (Zn), silicon (Si) and germanium (Ge) Using a metal selected from), etc., it is oxidized by the reaction gas to form a metal oxide or metal nitride thin film.
이때, 상기 반응 가스는 아산화질소(N20), 이산화질소(N02), 일산화질소(NO) 및 산소(O2) 등에서 선택되는 하나 이상일 수 있으며, 바람직하게는 이산화질소(N02), 산소(O2) 또는 이들의 혼합 반응 가스인 것이 좋다.In this case, the reaction gas may be one or more selected from nitrous oxide (N 2 0), nitrogen dioxide (N0 2 ), nitrogen monoxide (NO) and oxygen (O 2 ), preferably nitrogen dioxide (N0 2 ), oxygen ( O 2 ) or a mixed reaction gas thereof.
본 발명의 일 양태에 따른 상기 유기층의 구성 및 이의 제조방법 등은 상술한 열차단용으로 사용하는 배리어 필름의 탄화불소 보호층과 통한다.The constitution of the organic layer, the manufacturing method thereof, and the like according to one aspect of the present invention communicate with the fluorocarbon protective layer of the barrier film used for the above-described thermal barrier.
본 발명의 일 양태에 따른 수분투과 방지용으로 사용하는 배리어 필름의 제조방법은 상기 무기층과 유기층 모두를 낮은 에너지에서 스퍼터링이 가능하여, 연속적인 롤투롤 방식의 스퍼터링 증착 시스템에 적용가능하다. 또한, 상업적으로 유용한 MF나 DC와 같은 낮은 에너지대에서도 우수한 증착율을 구현할 수 있을 뿐 아니라, 기존 롤투롤 방식의 스퍼터링 증착 시스템의 추가 설비 보완 없이 바로 적용하여, 디펙트 없이 신속하게 대면적의 탄화불소 박막을 형성할 수 있어 경제적으로 고품질의 수분투과 방지용으로 사용하는 배리어 필름을 제공할 수 있다.The method for producing a barrier film used for preventing water permeation according to an aspect of the present invention is possible to sputter both the inorganic layer and the organic layer at low energy, and thus it is applicable to a continuous roll-to-roll sputtering deposition system. In addition, it is possible to realize excellent deposition rate even in low energy bands such as commercially available MF or DC, and to apply it immediately without supplementary facilities of the existing roll-to-roll sputter deposition system, and to quickly and large area fluoride carbide without defect. Since a thin film can be formed, it can provide the barrier film used for the prevention of moisture permeation of high quality economically.
본 발명의 일 양태에 따른 수분투과 방지용으로 사용하는 배리어 필름의 상기 무기층과 유기층의 두께는 제한되는 것은 아니지만 1 nm 내지 10 ㎛ 두께로 증착될 수 있다. 이때, 수분에 대한 낮은 투과율을 가지며, 열화 또는 충격 등에 의한 피착체로부터 박막의 탈리되는 현상을 현저하게 줄일 수 있다는 측면에서 바람직하게는 10 nm 내지 200 nm 두께로 무기층 및 유기층이 순차적으로 또는 랜덤으로 증착되어 다층 구조를 가지는 것이 좋다. Although the thickness of the inorganic layer and the organic layer of the barrier film used for preventing water permeation according to an aspect of the present invention is not limited, it may be deposited to a thickness of 1 nm to 10 μm. At this time, in view of having a low transmittance to moisture and remarkably reducing the detachment of the thin film from the adherend due to deterioration or impact, the inorganic layer and the organic layer may be sequentially or randomly formed in a thickness of 10 nm to 200 nm. It is preferable to have a multilayer structure by depositing.
본 발명의 일 양태에 따른 수분투과 방지용으로 사용하는 배리어 필름은 초소수성의 탄화불소 박막을 최외각에 도입함으로써, 초소수성, 고투명성을 유지하면서 광학적 특성을 현저하게 향상시킬 수 있으며, 오염방지 및 반사방지 특성을 가지며, 우수한 내화학성 및 윤활성 등을 부여할 수 있다. 이때, 상기 수분투과 방지용으로 사용하는 배리어 필름은 보다 낮은 표면 에너지를 가질 수 있으며, 수분과의 접촉각은 90 내지 150 °범위일 수 있다.Barrier film used for preventing moisture permeation according to an aspect of the present invention by introducing a superhydrophobic fluorocarbon thin film to the outermost, it is possible to significantly improve the optical properties while maintaining superhydrophobicity, high transparency, anti-pollution and It has antireflection properties and can provide excellent chemical resistance and lubricity. At this time, the barrier film used for preventing the moisture permeation may have a lower surface energy, the contact angle with the moisture may be in the range of 90 to 150 °.
또한, 본 발명의 일 양태에 따른 수분투과 방지용으로 사용하는 배리어 필름은 유기층 및 무기층을 형성하는 모든 공정이 연속적으로 수행될 수 있는 롤투롤 방식의 스퍼터링 증착 시스템에 적용하여 제조될 수 있다. 상기 스퍼터링 증착 시스템은 MF 또는 DC 스퍼터링으로 수행 가능한 것을 특징으로 한다. In addition, the barrier film used for preventing moisture permeation according to an aspect of the present invention may be prepared by applying to a roll-to-roll sputtering deposition system in which all processes of forming the organic layer and the inorganic layer can be performed continuously. The sputtering deposition system is characterized in that it can be performed by MF or DC sputtering.
본 발명의 일 양태에 따른 상기 롤투롤 방식의 스퍼터링 증착 시스템은 언와인더 챔버(unwinder chamber, 100), 상기 기재의 일면에 유기층 및 무기층을 증착하는 메인 챔버(main chamber, 200) 및 증착된 배리어 필름을 권취하는 와인더 챔버(winder chamber, 300)를 포함할 수 있다. 이는 MF나 DC와 같은 낮은 에너지대에서도 우수한 증착율을 구현할 수 있으며, 제조 공정에서의 단순성을 확보하면서, 연속적인 롤투롤 공정으로도 디펙트 없이 신속하게 대면적의 수분투과 방지용으로 사용하는 배리어 필름을 보다 경제적으로 형성할 수 있다.According to an aspect of the present invention, the roll-to-roll sputtering deposition system includes an unwinder chamber (100), a main chamber (200) for depositing an organic layer and an inorganic layer on one surface of the substrate, and a deposited It may include a winder chamber (300) for winding the barrier film. It can realize excellent deposition rate even in low energy bands such as MF and DC, and it is a barrier film that is used for preventing large area moisture permeation without defect even in continuous roll-to-roll process while ensuring simplicity in manufacturing process. It can be formed more economically.
본 발명의 일 양태에 따른 상기 메인 챔버에는 3개의 MF 듀얼 스퍼터링 캐소드(202, 203, 204)와 1개의 DC 싱글 스퍼터링 캐소드(205)를 포함한다. 이와 같은 구성으로 인해, MF 및 DC 스퍼터링이 동시에 수행될 수 있을 뿐 아니라 다양한 종류의 타겟의 적용으로 복합소재의 증착이 가능하다는 장점을 가진다.The main chamber according to one aspect of the invention comprises three MF dual sputtering cathodes 202, 203, 204 and one DC single sputtering cathode 205. Due to this configuration, not only can MF and DC sputtering be performed at the same time, but also has the advantage that the deposition of the composite material by the application of various types of targets.
또한, 상기 와인더 챔버에는 저항 측정기(resistance meter, 301), 투과율 분석기(transmittance analyzer, 302) 및 반사율 측정기(reflectance meter, 303)를 포함하여, 상기 롤투롤 방식의 스퍼터링 증착 시스템으로부터 제조된 수분투과 방지용으로 사용하는 배리어 필름의 특성을 간편하게 원스톱으로 조절할 수 있다. In addition, the winder chamber includes a resistance meter (301), a transmittance analyzer (302) and a reflectance meter (reflectance meter, 303), the water permeation prepared from the roll-to-roll type sputtering deposition system The properties of the barrier film used for prevention can be easily adjusted in one stop.
이하, 본 발명을 하기 실시예에 의해 더욱 구체적으로 설명한다. 그러나 이들 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are only for the understanding of the present invention, and the scope of the present invention in any sense is not limited thereto.
또한 본 발명에 따른 배리어 필름의 물성을 확인하기 위하여, 접촉각, 가시광선(550 nm)에 대한 최대 투과율 및 적외선 투과율을 하기와 같은 방법으로 측정하였으며, 그 결과를 하기 표 1 내지 표 3에 나타내었다.In addition, in order to confirm the physical properties of the barrier film according to the present invention, the contact angle, the maximum transmittance and the infrared transmittance for visible light (550 nm) were measured by the following method, and the results are shown in Tables 1 to 3 below. .
1.접촉각 측정1. Contact angle measurement
완성된 배리어 필름의 수접촉각을 접촉각 측정기(PHOEIX 300 TOUCH, SEO 사)를 사용하여 측정하였다.The water contact angle of the completed barrier film was measured using a contact angle measuring instrument (PHOEIX 300 TOUCH, SEO).
2.가시광선 최대 투과율(Tmax) 측정2. Maximum visible light transmittance (Tmax) measurement
완성된 배리어 필름에 Spectrophotometer(U-410, Hitachi사)를 이용하여 빛을 조사하여 가시광선(550 nm)의 투과율을 측정하였다.The transmittance of visible light (550 nm) was measured by irradiating light to the finished barrier film using a spectrophotometer (U-410, Hitachi).
3.적외선 투과율(측정파장 1000 nm 기준) 측정3.Infrared transmittance (measured at 1000nm wavelength)
완성된 배리어 필름에 UV-Vis 스펙트로미터(spectrometer)를 이용하여 1,000 nm 파장에 대한 투과율을 3회 측정하고, 이의 평균값을 구하여 적외선 투과율(%)을 측정하였다.The transmittance for 1,000 nm wavelength was measured three times using a UV-Vis spectrometer on the finished barrier film, and the average value thereof was determined to determine the infrared transmittance (%).
4.수분 투과율 측정4. Moisture transmittance measurement
완성된 배리어 필름은 WVTR 측정기 (Deltaperm, Technolux사)를 이용하여, 40 ± 0.5 ℃, 90 % 상대 습도 조건에서 수분 투과율을 측정하였다. The finished barrier film was measured for moisture permeability at 40 ± 0.5 ℃, 90% relative humidity conditions using a WVTR measuring instrument (Deltaperm, Technolux).
(실시예 1)(Example 1)
PET 필름(SKC, SH-40, 두께 100㎛, 폭 600 mm)에 롤투롤 스퍼터 (ULVAC, SPW-060)장치를 이용하여 열차단용으로 사용하는 배리어 필름을 제작하였다(도 1 참조).The barrier film used for thermal insulation was produced using the roll-to-roll sputter (ULVAC, SPW-060) apparatus in PET film (SKC, SH-40, thickness 100micrometer, width 600mm) (refer FIG. 1).
상기 열차단용으로 사용하는 배리어 필름의 각 층별 증착용 타겟은 사각 판형으로 제작되었다. Si 타겟(길이 950 mm, 폭 127 mm, 두께 6 mm), Ag 타겟(길이 950 mm, 폭 127 mm, 두께 6 mm), PTFE(polytetrafluoroethylene) 95 wt%에 카본나노튜브 (carbon nano tube, CNT) 5 wt%가 함유된 불소계고분자 복합 타겟(길이 950 mm, 폭 127 mm, 두께 6 mm)을 각각의 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하였다. 2개의 Si 타겟을 프로세스 챔버부에 있는 MF 듀얼 스퍼터링 캐소드 1(cathode 1)에 설치하고, 2개의 불소계고분자 복합 타겟을 MF 듀얼 스퍼터링 캐소드 2(cathode 2)에 설치하였다. 그리고, 1개의 Ag 타겟을 DC 싱글 스퍼터링 캐소드 4(cathode 4)에 설치하였다. 그 후, PET 필름을 언와인더에 권취(load)하고, 로타리 펌프와 부스터 펌프를 이용하여 롤투롤 스퍼터 장치 내부를 저진공 상태로 만든 후 터보 분자 펌프를 이용하여 고진공(2×10-4 Pa)을 형성하였다. 상기 롤투롤 스퍼터 장치의 내부 진공도가 2×10-4 Pa 이하가 되면 각각의 캐소드에 아르곤(Ar) 가스를 400 sccm의 유량으로 주입하면서 MF 및 DC 파워를 1.0 W/cm2 로하여, pre-sputtering을 실시하였다. 이후, 메인 롤(main roll)의 온도를 10 ℃로 하온하고, 1 m/min의 속도로 PET 필름을 반송하면서 열차단용으로 사용하는 배리어 필름을 증착하였다. 상기 캐소드 1을 통해 SiNx 박막(광학 보상층)을 증착하였다. 이때, MF 파워를 8 W/cm2 로 하여 N2 가스(N2 gas) 분압(10 mtorr)으로 SiNx 박막을 40 nm 두께로 증착하였다. 상기 SiNx 박막 일면에 상기 캐소드 4을 통해 DC 파워를 0.6 W/cm2 로 하여 Ag 박막(열선 차단층)을 12 nm 두께로 증착하였다. 상기 Ag 박막 일면에 상기 캐소드 2를 통해 MF 파워를 2.0 W/cm2 로 하여 탄화불소 박막(유기층)을 20 nm 두께로 증착하여, 3층으로 적층된 구조의 열차단용으로 사용하는 배리어 필름을 와인더부에서 재권취하였다.The target for deposition for each layer of the barrier film used for the thermal barrier was produced in a square plate shape. Si target (950 mm long, 127 mm wide, 6 mm thick), Ag target (950 mm long, 127 mm wide, 6 mm thick), PTFE (polytetrafluoroethylene) 95 wt% carbon nanotube (CNT) A fluorine-based polymer composite target (length 950 mm, width 127 mm, thickness 6 mm) containing 5 wt% was attached to each copper backing plate electrode surface. Two Si targets were installed in the MF dual sputtering cathode 1 in the process chamber section, and two fluorine-based polymer composite targets were installed in the MF dual sputtering cathode 2. And one Ag target was installed in DC single sputtering cathode 4 (cathode 4). After that, the PET film is wound on an unwinder, the inside of the roll-to-roll sputtering apparatus is made low vacuum by using a rotary pump and a booster pump, and then a high vacuum (2 × 10 -4 Pa) is used by using a turbo molecular pump. ) Was formed. When the internal vacuum of the roll-to-roll sputtering apparatus is 2 × 10 −4 Pa or less, MF and DC power is 1.0 W / cm 2 while argon (Ar) gas is injected into each cathode at a flow rate of 400 sccm, and the pre- sputtering was performed. Thereafter, the temperature of the main roll was lowered to 10 ° C., and a barrier film used for thermal barrier was deposited while conveying the PET film at a speed of 1 m / min. A SiNx thin film (optical compensation layer) was deposited through the cathode 1. At this time, the SiNx thin film by N 2 gas (N 2 gas) partial pressure (10 mtorr) to the MF power to 8 W / cm 2 was deposited to a thickness of 40 nm. An Ag thin film (heat shielding layer) was deposited to a thickness of 12 nm on one surface of the SiNx thin film with a DC power of 0.6 W / cm 2 through the cathode 4. On the Ag thin film, a fluorocarbon thin film (organic layer) was deposited to a thickness of 20 nm with MF power of 2.0 W / cm 2 through the cathode 2, and a barrier film used for thermal cutoff of a three-layer structure was formed. Rewound in dubu.
완성된 열차단용으로 사용하는 배리어 필름의 물성을 확인하기 위하여 접촉각, 가시광선 최대 투과율(Tmax), 적외선 투과율(측정파장 1000 nm 기준)을 측정하여, 그 결과를 하기 표 1에 나타내었다.In order to confirm the physical properties of the barrier film used for the thermal barrier, the contact angle, visible light maximum transmittance (Tmax), and infrared transmittance (based on a measured wavelength of 1000 nm) were measured, and the results are shown in Table 1 below.
(실시예 2)(Example 2)
상기 실시예 1에 있어, 아래와 같은 조건을 제외하고는 동일한 방법으로 열차단용으로 사용하는 배리어 필름을 제작하였다. 상기 캐소드 1을 통해 MF 파워를 6.5 W/cm2 로 하여 N2 가스(N2 gas) 분압(10 mtorr)으로 SiNx 박막(광학 보상층)을 30 nm 두께로 증착하였다. 상기 SiNx 박막 일면에 상기 캐소드 4을 통해 DC 파워를 0.4 W/cm2 로 하여 Ag 박막(열선 차단층)을 8 nm 두께로 증착하였다. 이후, 동일한 방법으로 상기 동일한 조건으로 SiNx 박막 및 Ag 박막을 순차적으로 1회 반복 수행하였다. 상기 Ag 박막 일면에 상기 캐소드 2를 통해 MF 파워를 3.5 W/cm2 로 하여 탄화불소 박막(유기층)을 50 nm 두께로 증착하여, 5층으로 적층된 구조의 열차단용으로 사용하는 배리어 필름을 와인더부에서 재권취하였다.In the said Example 1, the barrier film used for thermal insulation was produced by the same method except the following conditions. Through the cathode 1 to the MF power to 6.5 W / cm 2 (N 2 gas) N 2 gas partial pressure (10 mtorr) to the SiNx thin film (optical compensation layer) it was deposited to a thickness of 30 nm. An Ag thin film (heat shielding layer) was deposited to a thickness of 8 nm on one surface of the SiNx thin film with a DC power of 0.4 W / cm 2 through the cathode 4. Thereafter, the SiNx thin film and the Ag thin film were repeatedly performed one by one under the same conditions. On the Ag thin film, a fluorocarbon thin film (organic layer) was deposited to a thickness of 50 nm with MF power of 3.5 W / cm 2 through the cathode 2, and a barrier film used for thermal barriers having a 5-layer structure was formed. Rewound in dubu.
완성된 열차단용으로 사용하는 배리어 필름의 물성을 확인하기 위하여 접촉각, 가시광선 최대 투과율(Tmax), 자외선 투과율 (측정파장 1000 nm 기준)을 측정하여, 그 결과를 하기 표 1에 나타내었다.In order to confirm the physical properties of the barrier film used for the thermal barrier, the contact angle, visible light maximum transmittance (Tmax), and ultraviolet transmittance (based on a measured wavelength of 1000 nm) were measured, and the results are shown in Table 1 below.
(실시예 3)(Example 3)
PET 필름(SKC, SH-40, 두께 100㎛)에 클러스터 스퍼터 장치를 이용하여 수분 배리어 필름을 제작하였다.The moisture barrier film was produced in PET film (SKC, SH-40, thickness 100micrometer) using the cluster sputter apparatus.
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 70 wt%, 탄소나노튜브 10 wt%, 실리콘 산화물(SiO2) 20 wt%가 함유된 원형으로 제작된 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하였다. A copper fluorine-based composite target (4 inches in diameter, 6 mm thick) made of circular particles containing 70 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ), 10 wt% of carbon nanotubes, and 20 wt% of silicon oxide (SiO 2 ) Backing plate (Cu backing plate) was attached to the electrode surface.
실리콘 산화물 타겟(직경 4인치, 두께 6 mm, SiO2 target)을 RF(Radio Frequency) 마그네트론 스퍼터링법(magnetron sputtering)으로 무기층을 증착하였다. 이때, 기판은 10 X 10 ㎠ 크기의 PET 필름(SKC, SH-40, 두께 100㎛)으로 준비하였으며, 이를 아세톤과 알코올로 각각 5분간 초음파 세척기를 사용하여 세척하고 건조하여 준비하였다. 준비된 기판은 알루미늄으로 제작된 기판 홀더(holder)에 내열 테이프를 사용하여 부착하였고, 기판 홀더를 챔버내의 기판 스테이지(stage)에 거치한 후 챔버를 닫고 로터리(rotary) 펌프(pump)로 50 mtorr까지 진공(vacuum)을 배기하였고, 저진공 작업을 완료한 후 cryogenic 펌프로 고진공을 형성하였다. 상온(25 ℃)에서 기판과 타겟 사이의 거리를 24 cm로 고정하고, 파워(200 W)와 가스(gas) 분압(10 mtorr)으로 100 nm 무기층을 증착하였다. 그 상부에 상기 제조된 불소계고분자 복합 타겟을 이용하여 상기 무기층과 동일한 RF(Radio Frequency) 마그네트론 스퍼터링법(magnetron sputtering) 조건으로 SiO2가 함유된 탄화불소층을 100nm 증착하여, 2층 구조를 가지는 수분 배리어 필름을 제작하였다.Silicon oxide target (4 inches in diameter, 6 mm thick, SiO 2 The inorganic layer was deposited on the target by RF (Radio Frequency) magnetron sputtering. At this time, the substrate was prepared with a 10 X 10 cm 2 PET film (SKC, SH-40, thickness 100㎛), which was prepared by washing with acetone and alcohol for 5 minutes using an ultrasonic cleaner and drying. The prepared substrate was attached to a substrate holder made of aluminum using a heat resistant tape, and the substrate holder was mounted on a substrate stage in the chamber, the chamber was closed, and a rotary pump was used to reach 50 mtorr. The vacuum was evacuated and high vacuum was formed with a cryogenic pump after the low vacuum operation was completed. The distance between the substrate and the target was fixed at 24 cm at room temperature (25 ° C.), and a 100 nm inorganic layer was deposited at a power (200 W) and a gas partial pressure (10 mtorr). The fluorine-based polymer composite target manufactured on the upper portion of the inorganic layer under the same RF (Radio Frequency) magnetron sputtering conditions by depositing a fluorine carbide layer containing SiO 2 100nm, having a two-layer structure A moisture barrier film was produced.
완성된 수분 배리어 필름의 물성을 확인하기 위하여 접촉각, 수분 투과율을 측정하여, 그 결과를 하기 표 2에 나타내었다.In order to confirm the physical properties of the completed moisture barrier film, the contact angle and moisture transmittance were measured, and the results are shown in Table 2 below.
(실시예 4)(Example 4)
PET 필름(SKC, SH-40, 두께 100㎛, 폭 600 mm)에 롤투롤 스퍼터 (ULVAC, SPW-060)장치를 이용하여 수분 배리어 필름을 제작하였다(도 1 참조).PET film (SKC, SH-40, thickness 100㎛, width 600mm) using a roll-to-roll sputter (ULVAC, SPW-060) apparatus to prepare a moisture barrier film (see Fig. 1).
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 70 wt%, 탄소나노튜브 10 wt%, 실리콘 산화물(SiO2) 20 wt%가 함유된 사각 판형으로 제작된 불소계고분자 복합 타겟(길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하였다. 이를 MF 듀얼 스퍼터링 캐소드 1(cathode 1)에 설치하고, 2개의 Si 타겟(길이 950 mm, 폭 127 mm, 두께 6 mm)을 MF 듀얼 스퍼터링 캐소드 2(cathode 2)에 설치하였다. 그 후, PET 필름을 언와인더 챔버에 권취(load)하고, 로타리 펌프와 부스터 펌프를 이용하여 롤투롤 스퍼터 장치 내부를 저진공 상태로 만든 후 터보 분자 펌프를 이용하여 고진공(2×10-4 Pa)을 형성하였다. 상기 롤투롤 스퍼터 장치의 내부 진공도가 2×10-4 Pa 이하가 되면 각각의 캐소드에 아르곤(Ar) 가스를 400 sccm의 유량으로 주입하면서 MF 및 DC 파워를 1 kW로하여, pre-sputtering을 실시하였다. 이후, 메인 롤(main roll)의 온도를 10 ℃로 하온하고, 0.5 m/min의 속도로 PET 필름을 반송하면서 MF 듀얼 스퍼터링 캐소드 2(cathode 2)에 의해 무기층을 형성하였다. 이때, 상기 무기층은 상기 캐소드 2를 통해 MF 파워 13 kW로 산소(O2) 분위기 하여서 두께 100 nm로 증착되었다. 이후, MF 듀얼 스퍼터링 캐소드 1(cathode 1)에 의해 탄화불소를 포함하는 유기층을 형성하였다. 이때, 상기 유기층은 상기 캐소드 1을 통해 MF 파워 3 kW로 아르곤 분위기 하여서 두께 100 nm로 증착되었다. 상기 방법으로 무기층 및 유기층을 순차적으로 1회 더 반복 수행하여 4층 구조를 가지는 배리어 필름을 제작하고 와인더 챔버에서 제작된 수분 배리어 필름을 재권취하였다.Fluorinated polymer composite target (length 950 mm, width 127 mm, thickness) made of square plate containing 70 wt% of powder PTFE (polytetrafluoroethylene, DuPont 7AJ), 10 wt% of carbon nanotubes, and 20 wt% of silicon oxide (SiO 2 ) 6 mm) was attached to the copper backing plate electrode face. It was installed in MF dual sputtering cathode 1, and two Si targets (length 950 mm, width 127 mm, thickness 6 mm) were installed in MF dual sputtering cathode 2 (cathode 2). After that, the PET film is wound in an unwinder chamber, the inside of the roll-to-roll sputtering apparatus is made low vacuum by using a rotary pump and a booster pump, and then a high vacuum (2 × 10 -4) is used by using a turbo molecular pump. Pa) was formed. When the internal vacuum degree of the roll-to-roll sputtering device is 2 × 10 -4 Pa or less, pre-sputtering is performed by injecting argon (Ar) gas into each cathode at a flow rate of 400 sccm and MF and DC power of 1 kW. It was. Thereafter, the temperature of the main roll was lowered to 10 ° C., and an inorganic layer was formed by MF dual sputtering cathode 2 while conveying the PET film at a speed of 0.5 m / min. At this time, the inorganic layer was deposited with a thickness of 100 nm in an oxygen (O 2 ) atmosphere with MF power 13 kW through the cathode 2. Thereafter, an organic layer including fluorine carbide was formed by MF dual sputtering cathode 1. At this time, the organic layer was deposited with a thickness of 100 nm in an argon atmosphere with MF power 3 kW through the cathode 1. In this manner, the inorganic layer and the organic layer were sequentially repeated once more to produce a barrier film having a four-layer structure, and the water barrier film produced in the winder chamber was rewound.
완성된 수분 배리어 필름의 물성을 확인하기 위하여 접촉각, 수분 투과율을 측정하여, 그 결과를 하기 표 2에 나타내었다.In order to confirm the physical properties of the completed moisture barrier film, the contact angle and moisture transmittance were measured, and the results are shown in Table 2 below.
(실시예 5)(Example 5)
PET 필름(SKC, SH-40, 두께 100㎛, 폭 600 mm)에 롤투롤 스퍼터 (ULVAC, SPW-060)장치를 이용하여 반사 방지용으로 사용하는 배리어 필름을 제작하였다(도 1 참조).The barrier film used for antireflection was produced using the roll-to-roll sputter (ULVAC, SPW-060) apparatus in PET film (SKC, SH-40, thickness 100micrometer, width 600mm) (refer FIG. 1).
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 95 wt%, 탄소나노튜브 5 wt%가 함유된 사각 판형으로 제작된 불소계고분자 복합 타겟(사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하였다. 이를 MF 듀얼 스퍼터링 캐소드 3에 설치하였다. 그 후, PET 필름을 언와인더 챔버에 권취(load)하고, 로타리 펌프와 부스터 펌프를 이용하여 롤투롤 스퍼터 장치 내부를 50 mtorr까지 진공(vacuum)을 배기하여 저진공 상태로 만든 후 터보 분자 펌프를 이용하여 고진공(2×10-4 Pa)을 형성하였다. 상기 롤투롤 스퍼터 장치의 내부 진공도가 2×10-4 Pa 이하가 되면 캐소드에 아르곤(Ar) 가스를 400 sccm의 유량으로 주입하면서 MF 파워를 1 kW로하여 각각의 타겟의 pre-sputtering을 실시하였다. 이후, 메인 롤(main roll)의 온도를 10 ℃로 하온하고, 1 m/min의 속도로 필름을 반송하면서 반사 방지용으로 사용하는 배리어 필름을 제작하였다.Fluorinated polymer composite targets (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of square plate containing 95 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 5 wt% of carbon nanotubes (Cu backing plate) It was attached to the electrode surface. It was installed in MF dual sputtering cathode 3. After that, the PET film is wound in an unwinder chamber, and the inside of the roll-to-roll sputtering device is evacuated to 50 mtorr using a rotary pump and a booster pump to make a low vacuum state, followed by a turbo molecular pump. Was used to form a high vacuum (2 × 10 −4 Pa). When the internal vacuum of the roll-to-roll sputtering device was 2 × 10 −4 Pa or less, pre-sputtering of each target was performed with MF power of 1 kW while argon (Ar) gas was injected into the cathode at a flow rate of 400 sccm. . Then, the temperature of the main roll was lowered to 10 degreeC, and the barrier film used for antireflection was produced, conveying a film at a speed | rate of 1 m / min.
MF 듀얼 스퍼터링 캐소드 3에 의해 MF 파워를 2kW로 하여 반사방지층(n~1.38 @550nm)을 증착하였다(탄화불소 박막, 50nm 두께). 최종 증착된 반사 방지용으로 사용하는 배리어 필름을 와인더 챔버에서 재권취하였다.The MF dual sputtering cathode 3 was used to deposit an antireflection layer (n-1.38 @ 550 nm) with MF power of 2 kW (fluorocarbon thin film, 50 nm thick). The barrier film used for the final deposited antireflection was rewound in the winder chamber.
상기 방법으로 제조된 반사 방지용으로 사용하는 배리어 필름의 물성을 확인하기 위하여, 반사율 및 접촉각을 측정하였으며, 그 결과를 표 3에 나타내었다. In order to confirm the physical properties of the barrier film used for the anti-reflection prepared by the above method, the reflectance and the contact angle were measured, and the results are shown in Table 3.
(실시예 6)(Example 6)
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 60 wt%, 탄소나노튜브 10 wt%, 산화실리카 (SiO2) 30 wt%가 함유된 사각 판형으로 제작된 불소계고분자 복합 타겟(사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하였다. 이를 MF 듀얼 스퍼터링 캐소드 3에 설치하여 실시예 5와 동일하게 반사 방지용으로 사용하는 배리어 필름을 제작하였다.Fluorinated polymer composite target (square plate, length 950 mm, width 127) made of square plate containing 60 wt% of powder PTFE (polytetrafluoroethylene, DuPont 7AJ), 10 wt% of carbon nanotube, 30 wt% of silica oxide (SiO 2 ) mm, thickness 6 mm) was attached to the copper backing plate electrode face. This was installed in MF dual sputtering cathode 3 to produce a barrier film used for antireflection in the same manner as in Example 5.
MF 듀얼 스퍼터링 캐소드 3에 의해 MF 파워를 2kW로 하여 반사방지층(n~1.38 @550nm)을 증착하였다(탄화불소 박막, 50nm 두께). 최종 증착된 반사 방지용으로 사용하는 배리어 필름을 와인더 챔버에서 재권취하였다.The MF dual sputtering cathode 3 was used to deposit an antireflection layer (n-1.38 @ 550 nm) with MF power of 2 kW (fluorocarbon thin film, 50 nm thick). The barrier film used for the final deposited antireflection was rewound in the winder chamber.
상기 방법으로 제조된 반사 방지용으로 사용하는 배리어 필름의 물성을 확인하기 위하여, 반사율 및 접촉각을 측정하였으며, 그 결과를 표 3에 나타내었다. In order to confirm the physical properties of the barrier film used for the anti-reflection prepared by the above method, the reflectance and the contact angle were measured, and the results are shown in Table 3.
(실시예 7)(Example 7)
고순도 Nb2O5 타겟(99.9%, Mitsui, 사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하여 이를 MF 듀얼 스퍼터링 캐소드 1에 설치하고, 고순도 Si 타겟(99.9%, Mitsui, 사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하여 이를 MF 듀얼 스퍼터링 캐소드 2에 설치하였다. 또, 분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 99 wt%, 탄소나노튜브 1 wt%가 함유된 사각 판형으로 제작된 불소계고분자 복합 타겟(사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하였다. 이를 MF 듀얼 스퍼터링 캐소드 3에 설치하였다. 그 후, PET 필름을 언와인더 챔버에 권취(load)하고, 로타리 펌프와 부스터 펌프를 이용하여 롤투롤 스퍼터 장치 내부를 50 mtorr까지 진공(vacuum)을 배기하여 저진공 상태로 만든 후 터보 분자 펌프를 이용하여 고진공(2×10-4 Pa)을 형성하였다. 상기 롤투롤 스퍼터 장치의 내부 진공도가 2×10-4 Pa 이하가 되면 캐소드에 아르곤(Ar) 가스를 400 sccm의 유량으로 주입하면서 MF 파워를 1 kW로하여 각각의 타겟의 pre-sputtering을 실시하였다. 이후, 메인 롤(main roll)의 온도를 10 ℃로 하온하고, 1 m/min의 속도로 필름을 반송하면서 반사 방지용으로 사용하는 배리어 필름을 제작하였다.High Purity Nb 2 O 5 A target (99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) is attached to the copper backing plate electrode surface and mounted on the MF dual sputtering cathode 1, and a high purity Si target ( 99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) was attached to the copper backing plate electrode face and mounted on the MF dual sputtering cathode 2. In addition, a copper fluorine-based composite target (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of a rectangular plate containing 99 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 1 wt% of carbon nanotubes was copper. Backing plate (Cu backing plate) was attached to the electrode surface. It was installed in MF dual sputtering cathode 3. After that, the PET film is wound in an unwinder chamber, and the inside of the roll-to-roll sputtering device is evacuated to 50 mtorr using a rotary pump and a booster pump to make a low vacuum state, followed by a turbo molecular pump. Was used to form a high vacuum (2 × 10 −4 Pa). When the internal vacuum of the roll-to-roll sputtering device was 2 × 10 −4 Pa or less, pre-sputtering of each target was performed with MF power of 1 kW while argon (Ar) gas was injected into the cathode at a flow rate of 400 sccm. . Then, the temperature of the main roll was lowered to 10 degreeC, and the barrier film used for antireflection was produced, conveying a film at a speed | rate of 1 m / min.
MF 듀얼 스퍼터링 캐소드 1에 의해 MF 파워를 7kW로 하여 고굴절율층(n~2.10 @550nm)을 증착하고(Nb2O5 박막, 40nm 두께), 연속적으로 MF 듀얼 스퍼터링 캐소드 2에 의해 MF 파워를 13kW로 하여 저굴절율층(n~1.46 @550nm)을 증착하였다(SiO2 박막, 60nm 두께). 연속적으로 MF 듀얼 스퍼터링 캐소드 3에 의해 MF 파워를 2kW로 하여 반사방지층(n~1.38 @550nm)을 증착하였다(탄화불소 박막, 50nm 두께). 최종 증착된 반사 방지용으로 사용하는 배리어 필름을 와인더 챔버에서 재권취하였다.A high refractive index layer (n-2.10 @ 550 nm) was deposited with MF power at 7 kW by MF dual sputtering cathode 1 (Nb 2 O 5 thin film, 40 nm thick), and MF power was continuously 13 kW by MF dual sputtering cathode 2 A low refractive index layer (n-1.46 @ 550 nm) was deposited (SiO 2 thin film, 60 nm thick). Subsequently, an antireflection layer (n-1.38 @ 550 nm) was deposited by MF dual sputtering cathode 3 with MF power of 2 kW (fluorocarbon thin film, 50 nm thick). The barrier film used for the final deposited antireflection was rewound in the winder chamber.
상기 방법으로 제조된 반사 방지용으로 사용하는 배리어 필름의 물성을 확인하기 위하여, 반사율 및 접촉각을 측정하였으며, 그 결과를 표 3에 나타내었다. In order to confirm the physical properties of the barrier film used for the anti-reflection prepared by the above method, the reflectance and the contact angle were measured, and the results are shown in Table 3.
(실시예 8)(Example 8)
고순도 Si 타겟(99.9%, Mitsui, 사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하여 이를 MF 듀얼 스퍼터링 캐소드 1에 설치하고, 고순도 Nb2O5 타겟(99.9%, Mitsui, 사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하여 이를 MF 듀얼 스퍼터링 캐소드 2에 설치하였다. 또, 분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 99 wt%, 탄소나노튜브 1 wt%가 함유된 사각 판형으로 제작된 불소계고분자 복합 타겟(사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하였다. 이를 MF 듀얼 스퍼터링 캐소드 3에 설치하였다. A high-purity Si target (99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) is attached to the copper backing plate electrode surface and installed on the MF dual sputtering cathode 1, with high purity Nb 2 O 5 A target (99.9%, Mitsui, square plate, length 950 mm, width 127 mm, thickness 6 mm) was attached to the copper backing plate electrode face and mounted on the MF dual sputtering cathode 2. In addition, a copper fluorine-based composite target (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of a rectangular plate containing 99 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 1 wt% of carbon nanotubes was copper. Backing plate (Cu backing plate) was attached to the electrode surface. It was installed in MF dual sputtering cathode 3.
MF 듀얼 스퍼터링 캐소드 1에 의해 MF 파워를 2.2kW로 하여 저굴절율층(n~1.46 @550nm)을 증착하고(SiO2 박막, 10nm 두께), 연속적으로 MF 듀얼 스퍼터링 캐소드 2에 의해 MF 파워를 7kW로 하여 고굴절율층(n~2.10 @550nm)을 증착하였다(Nb2O5 박막, 40nm 두께). 연속적으로 방향을 반대로 이송하여 MF 듀얼 스퍼터링 캐소드 1에 의해 MF 파워를 7kW로 하여 저굴절율층(n~1.46 @550nm)을 증착하고(SiO2 박막, 40nm 두께), 다시 방향을 반대로 하여 연속적으로 MF 듀얼 스퍼터링 캐소드 3에 의해 MF 파워를 2kW로 하여 반사방지층(n~1.38 @550nm)을 증착하였다(탄화불소 박막, 50nm 두께). 최종 증착된 반사 방지용으로 사용하는 배리어 필름을 와인더 챔버에서 재권취하였다.A low refractive index layer (n-1.46 @ 550nm) was deposited with MF power at 2.2 kW by MF dual sputtering cathode 1 (SiO 2 thin film, 10 nm thick), followed by MF dual sputtering cathode 2 with MF power at 7 kW. The high refractive index layer (n ~ 2.10 @ 550nm) was deposited (Nb 2 O 5 thin film, 40nm thickness). Continuously reversed the direction, MF dual sputtering cathode 1 to deposit a low refractive index layer (n-1.46 @ 550nm) with MF power of 7kW (SiO 2 thin film, 40nm thickness), and again reverse the direction to continuously MF The anti-reflective layer (n-1.38 @ 550 nm) was deposited by dual sputtering cathode 3 with MF power of 2 kW (fluorocarbon thin film, 50 nm thick). The barrier film used for the final deposited antireflection was rewound in the winder chamber.
상기 방법으로 제조된 반사 방지용으로 사용하는 배리어 필름의 물성을 확인하기 위하여, 반사율 및 접촉각을 측정하였으며, 그 결과를 표 3에 나타내었다. In order to confirm the physical properties of the barrier film used for the anti-reflection prepared by the above method, the reflectance and the contact angle were measured, and the results are shown in Table 3.
(실시예 9)(Example 9)
고순도 Si 타겟(99.9%, Mitsui, 사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하여 이를 MF 듀얼 스퍼터링 캐소드 1과 2에 설치하였다. 또, 분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 99 wt%, 탄소나노튜브 1 wt%가 함유된 사각 판형으로 제작된 불소계고분자 복합 타겟(사각 판형, 길이 950 mm, 폭 127 mm, 두께 6 mm)을 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하여, 이를 MF 듀얼 스퍼터링 캐소드 3에 설치하였다. High-purity Si targets (99.9%, Mitsui, square plate shape, length 950 mm, width 127 mm, thickness 6 mm) were attached to the copper backing plate electrode face and mounted on MF dual sputtering cathodes 1 and 2. In addition, a copper fluorine-based composite target (square plate, length 950 mm, width 127 mm, thickness 6 mm) made of a rectangular plate containing 99 wt% of powdered PTFE (polytetrafluoroethylene, DuPont 7AJ) and 1 wt% of carbon nanotubes was copper. The backing plate was attached to the electrode face and mounted on the MF dual sputtering cathode 3.
MF 듀얼 스퍼터링 캐소드 1에 의해 MF 파워 10kW에서 Ar과 N2 가스를 이용하여 고굴절율층 (n~2.1 @550nm) SiNx 박막을 증착하고(40nm 두께), 연속적으로 MF 듀얼 스퍼터링 캐소드 2에 의해 MF 파워를 7kW로 하여 저굴절율층(n~1.46 @550nm) SiO2 박막을 증착하였다(40nm 두께). 연속적으로 방향을 반대로 이송하여 MF 듀얼 스퍼터링 캐소드 3에 의해 MF 파워를 2kW로 하여 반사방지층(n~1.38 @550nm)을 증착하였다(탄화불소 박막, 50nm 두께). 최종 증착된 반사 방지용으로 사용하는 배리어 필름을 와인더 챔버에서 재권취하였다.MF dual sputtering cathode 1 deposits a high refractive index layer (n to 2.1 @ 550 nm) SiNx thin film (40 nm thick) using Ar and N 2 gas at MF power 10 kW and continuously MF power by MF dual sputtering cathode 2 The low refractive index layer (n-1.46 @ 550nm) SiO 2 thin film was deposited (40nm thickness) at 7kW. The anti-reflective layer (n-1.38 @ 550 nm) was deposited by MF dual sputtering cathode 3 with MF power of 2 kW continuously in the opposite direction (fluorine carbide thin film, 50 nm thick). The barrier film used for the final deposited antireflection was rewound in the winder chamber.
상기 방법으로 제조된 반사 방지용으로 사용하는 배리어 필름의 물성을 확인하기 위하여, 반사율 및 접촉각을 측정하였으며, 그 결과를 표 3에 나타내었다. In order to confirm the physical properties of the barrier film used for the anti-reflection prepared by the above method, the reflectance and the contact angle were measured, and the results are shown in Table 3.
(비교예 1)(Comparative Example 1)
상기 실시예 1에 있어, 아래와 같은 조건을 제외하고는 동일한 방법으로 열차단용으로 사용하는 배리어 필름을 제작하였다. Si 타겟(길이 950 mm, 폭 127 mm, 두께 6 mm)과 Ag 타겟(길이 950 mm, 폭 127 mm, 두께 6 mm)을 각각의 구리 백킹 플레이트(Cu backing plate) 전극면에 부착하고, 각각의 타겟을 프로세스 챔버에 있는 MF 스퍼터링 캐소드 1(cathode 1)에 2개의 Si 타겟과 DC 스퍼터링 캐소드 3(cathode 3)에 Ag 타겟을 1개 설치하였다. 상기 캐소드 1을 통해 MF 파워를 8 W/cm2 로 하여 N2 가스(N2 gas) 분압(10 mtorr)으로 SiN 박막(광학 보상층)을 40 nm 두께로 증착하였다. 상기 SiN 박막 일면에 상기 캐소드 3을 통해 DC 파워를 0.6 W/cm2 로 하여 Ag 박막(열선 차단층)을 12 nm 두께로 증착하여, 2층으로 적층된 구조의 열차단용으로 사용하는 배리어 필름을 와인더부에서 재권취하여 열차단용으로 사용하는 배리어 필름 제작을 완료하였다.In the said Example 1, the barrier film used for thermal insulation was produced by the same method except the following conditions. Si targets (950 mm long, 127 mm wide, 6 mm thick) and Ag targets (950 mm long, 127 mm wide, 6 mm thick) were attached to the respective copper backing plate electrode faces, The target was installed with two Si targets in the MF sputtering cathode 1 in the process chamber and one Ag target in the DC sputtering cathode 3. Through the cathode 1 to the MF power to 8 W / cm 2 (N 2 gas) N 2 gas partial pressure (10 mtorr), a SiN thin film (optical compensation layer) was deposited to a thickness of 40 nm. A barrier film used for thermal insulation of a structure laminated in two layers by depositing an Ag thin film (heat shielding layer) to a thickness of 12 nm with a DC power of 0.6 W / cm 2 through the cathode 3 on one surface of the SiN thin film. Rewinding in the winder to complete the production of a barrier film used for thermal cutoff.
완성된 열차단용으로 사용하는 배리어 필름의 물성을 확인하기 위하여 접촉각, 가시광선 최대 투과율(Tmax), 자외선 투과율(측정파장 1000 nm 기준)을 측정하여 그 결과를 표 1에 나타내었다.In order to confirm the properties of the barrier film used for the thermal barrier, the contact angle, the maximum visible light transmittance (Tmax), and the ultraviolet light transmittance (based on the measured wavelength of 1000 nm) were measured, and the results are shown in Table 1.
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1
접촉각(°)Contact angle (°) 110110 110110 5555
가시광선 최대 투과율(Tmax, %)Maximum visible light transmittance (T max ,%) 48.148.1 60.560.5 42.542.5
적외선 투과율(%)Infrared transmittance (%) 8.08.0 6.96.9 19.519.5
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 열차단용으로 사용하는 배리어 필름의 경우 탄화불소 박막을 최외각에 배치함으로써, 보다 향상된 가시광선 투과율을 가져 필름의 투명성을 높여 시안성을 확보할 수 있음을 알 수 있으며, 접촉각이 높아 수분이나 오염물에 의한 발수성 및 방오성을 현저하게 향상시킬 수 있음을 알 수 있다. 또한, 본 발명에 따른 열차단용으로 사용하는 배리어 필름은 우수한 적외선 차단율을 가져 단열 성능을 획기적으로 높여 에너지 절감 및 냉난방 효율을 극대화 할 수 있어, 다양한 산업분야에 적용 가능할 것으로 기대된다. As shown in Table 1, in the case of the barrier film used for the heat shield according to the present invention, by placing the fluorocarbon thin film at the outermost portion, the visible light transmittance can be improved, thereby increasing the transparency of the film and securing cyanity. It can be seen that the high contact angle can significantly improve the water repellency and antifouling properties caused by moisture or contaminants. In addition, the barrier film used for the thermal barrier according to the present invention has an excellent infrared ray blocking rate to significantly increase the thermal insulation performance, maximize energy saving and heating and cooling efficiency, it is expected to be applicable to various industrial fields.
(비교예 2)(Comparative Example 2)
PET 필름(SKC, SH-40, 두께 100um, 폭 600mm)에 롤투롤 스퍼터 장치(ULVAC, SPW-060)를 이용하여 상기 실시예 4에서 불소계고분자 복합 타겟 대신 100% PTFE Target을 사용하여, 유기층만을 형성하고자 하였다. 이때, 상기 유기층의 형성을 위해 상기 캐소드 1을 통해 MF 파워를 3 kW로 인가하였으나, 플라즈마가 형성되지 않아 탄화불소를 포함하는 유기층의 증착이 불가하였다. PET layer (SKC, SH-40, thickness 100um, width 600mm) using a roll-to-roll sputter device (ULVAC, SPW-060) in Example 4 using a 100% PTFE target instead of the fluorine-based polymer composite target, only the organic layer It was intended to form. At this time, MF power was applied at 3 kW through the cathode 1 to form the organic layer. However, since plasma was not formed, deposition of the organic layer including fluorine carbide was not possible.
(비교예 3)(Comparative Example 3)
PET 필름(SKC, SH-40, 두께 100um, 폭 600mm)에 롤투롤 스퍼터 장치(ULVAC, SPW-060)를 이용하여 상기 실시예 4에 따른 무기층만을 형성하고자 하였다. 이때, 상기 무기층의 형성을 위해 상기 캐소드 2를 통해 MF 파워를 13 kW로 산소(O2) 분위기 하여서 두께 100 nm로 증착된 수분 배리어 필름을 제작하였다.It was intended to form only the inorganic layer according to Example 4 using a roll-to-roll sputter device (ULVAC, SPW-060) on the PET film (SKC, SH-40, thickness 100um, width 600mm). At this time, in order to form the inorganic layer, a moisture barrier film deposited at a thickness of 100 nm was prepared by using an oxygen (O 2 ) atmosphere of MF power at 13 kW through the cathode 2.
실시예 3Example 3 실시예 4Example 4 비교예 3Comparative Example 3
접촉각(°)Contact angle (°) 109109 110110 3030
수분 투과율(g/㎡/day)Moisture Permeability (g / ㎡ / day) 3.7 × 10-2 3.7 × 10 -2 8.5 × 10-3 8.5 × 10 -3 4.7 × 10-1 4.7 × 10 -1
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 수분 배리어 필름은 비교예에 비해 낮은 수분 투과율을 가져 수분에 대한 우수한 수분 배리어성을 나타냄을 알 수 있었다. 또한, 최외각에 탄화불소 박막을 가지는 유기층이 형성되어 현저하게 높은 접촉각을 가지며, 피착체와의 우수한 접합성을 보여 외부적 충격에 의한 탈리 현상을 효과적으로 억제할 수 있음을 확인하였다. As shown in Table 2, the moisture barrier film according to the present invention has a low moisture permeability compared to the comparative example it can be seen that exhibits excellent moisture barrier properties against moisture. In addition, it was confirmed that the organic layer having a fluorinated carbide thin film was formed at the outermost side to have a remarkably high contact angle, and showed excellent adhesion to the adherend, thereby effectively suppressing the detachment phenomenon due to external impact.
(비교예 4)(Comparative Example 4)
PET 필름(SKC, SH-40, 두께 100um, 폭 600mm)에 롤투롤 스퍼터 장치(ULVAC, SPW-060)를 이용하여 상기 실시예 5에서 불소계고분자 복합 타겟 대신 100% PTFE Target을 사용하여, 반사방지층을 형성하고자 하였다. 이때, 상기 반사방지층을 형성을 위해 상기 캐소드 1을 통해 MF 파워를 7kW로 인가하였으나, 플라즈마가 형성되지 않아 탄화불소를 포함하는 반사방지층의 증착이 불가하였다. Anti-reflective layer using 100% PTFE target instead of fluorine-based polymer composite target in Example 5 using a roll-to-roll sputter device (ULVAC, SPW-060) on PET film (SKC, SH-40, thickness 100um, width 600mm) Was intended to form. At this time, MF power was applied at 7 kW through the cathode 1 to form the anti-reflection layer. However, since no plasma was formed, it was impossible to deposit the anti-reflection layer containing fluorine carbide.
(비교예 5)(Comparative Example 5)
PET 필름(SKC, SH-40, 두께 100um, 폭 600mm)에 롤투롤 스퍼터 장치(ULVAC, SPW-060)를 이용하여, 상기 실시예 5에 따른 고굴절율층 및 저굴절율층만을 형성하고자 하였다. 상기 실시예 5에서 반사방지층을 증착하는 것을 제외하고는 동일한 방법으로 반사 방지용으로 사용하는 배리어 필름을 제작하였다.In the PET film (SKC, SH-40, thickness 100um, width 600mm) using a roll-to-roll sputtering device (ULVAC, SPW-060), it was intended to form only the high refractive index layer and the low refractive index layer according to Example 5. A barrier film used for antireflection was prepared in the same manner as in Example 5 except that the antireflection layer was deposited.
상기 방법으로 제조된 반사 방지용으로 사용하는 배리어 필름의 물성을 확인하기 위하여, 반사율 및 접촉각을 측정하였으며, 그 결과를 표 3에 나타내었다.In order to confirm the physical properties of the barrier film used for the anti-reflection prepared by the above method, the reflectance and the contact angle were measured, and the results are shown in Table 3.
실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 실시예 9Example 9 비교예 5Comparative Example 5
반사율(%)reflectivity(%) 4.34.3 4.24.2 4.04.0 3.53.5 4.04.0 6.06.0
접촉각(°)Contact angle (°) 112112 113113 112112 114114 113113 6565
상기 표 3에 나타낸 바와 같이, 본 발명에 따른 반사 방지용으로 사용하는 배리어 필름은 비교예에 비해 우수한 발수특성을 나타냄을 알 수 있었다. 또한, 최외각층에 탄화불소 박막을 도입함으로써, 높은 수 접촉각을 가지며, 피착체와의 우수한 접합성을 보여 외부적 충격에 의한 탈리 현상을 효과적으로 억제할 수 있다. As shown in Table 3, it can be seen that the barrier film used for the antireflection according to the present invention exhibits excellent water repellent characteristics compared to the comparative example. In addition, by introducing a fluorocarbon thin film into the outermost layer, it has a high water contact angle, exhibits excellent bonding with the adherend, and can effectively suppress detachment due to external impact.
요컨데, 본 발명에 따른 배리어 필름은 투명성을 유지함과 동시에 수분 등의 오염원을 효과적으로 차단함으로써, 유기 EL 표시 장치, 필드 이미션 표시 장치, 액정 표시 장치 등의 각종 표시 장치(디스플레이), 태양 전지, 박막 전지, 전기 이중층 콘덴서 등의 각종 전기 소자의 플렉시블 기판 또는 봉지 재료 등으로 사용되어 고품질의 소자를 제공할 수 있을 것으로 기대된다.In short, the barrier film according to the present invention maintains transparency and effectively blocks contaminants such as moisture, thereby providing various display devices (displays) such as organic EL displays, field emission displays, and liquid crystal displays, solar cells, thin films. It is expected to be used as a flexible substrate or an encapsulating material for various electric elements such as batteries, electric double layer capacitors, etc. to provide high quality devices.
[부호의 설명][Description of the code]
100 : 언와인더 챔버(unwinder chamber), 101 : 이온 플라즈마 처리부(ion plasma trestment), 102 : 히터(Heater), 103 : 서브 언와인더(suv UW), 104 : 언와인더(unwinder), 105 : 폴리콜드(poly cold), 200 : 메인 챔버(main chamber), 201 : 메인 롤(main roll), 202 : MF 듀얼 캐소드(MF dual cathode, cathode 1), 203 : MF 듀얼 캐소드(MF dual cathode, cathode 2), 204 : MF 듀얼 캐소드(MF dual cathode, cathode 3), 205 : DC 싱글 캐소드(MF single cathode, cathode 4), 205 : 폴리콜드(poly cold), 300 : 와인더 챔버(winder chamber), 301 : 저항 측정기(resistance meter), 302 : 투과율 분석기(transmittance analyzer), 303 : 반사율 측정기(reflectance meter), 304 : 서브 와인더(suv WD), 305 : 와인더(winder)100: unwinder chamber, 101: ion plasma trestment, 102: heater, 103: sub unwinder, 104: unwinder, 105 : Poly cold, 200: main chamber, 201: main roll, 202: MF dual cathode, 203: MF dual cathode, cathode 2), 204: MF dual cathode (cathode 3), 205: DC single cathode (MF single cathode, cathode 4), 205: poly cold, 300: winder chamber 301: resistance meter, 302: transmittance analyzer, 303: reflectance meter, 304: sub-winder (SUV WD), 305: winder

Claims (22)

  1. 피착체의 일면에 금속 및 금속화합물에서 선택되는 하나 이상을 주성분으로 포함하는 무기층을 형성하는 단계와 상기 무기층의 일면에 불소계고분자와 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합 타겟을 증착시켜 유기층을 형성하는 단계를 포함하는 배리어 필름의 제조방법.Forming an inorganic layer including at least one selected from metals and metal compounds as main components on one surface of the adherend, and depositing a fluorine-based polymer composite target including a fluorine-based polymer and a functionalizing agent having conductivity on one surface of the inorganic layer Method of manufacturing a barrier film comprising the step of forming an organic layer.
  2. 제 1항에 있어서, The method of claim 1,
    상기 무기층 및 유기층은 RF, MF 또는 DC 스퍼터링으로 형성되는 배리어 필름의 제조방법.The inorganic layer and the organic layer is a method of manufacturing a barrier film is formed by RF, MF or DC sputtering.
  3. 제 1항에 있어서, The method of claim 1,
    상기 배리어 필름은 열차단 부가 원소를 포함하는 광학 보상층과 은, 구리 또는 니켈을 주성분으로 포함하는 열선 차단층을 포함하는 무기층을 형성하는 단계 및 불소계고분자와 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합 타겟을 증착시켜 탄화불소 보호층인 유기층을 형성하는 단계를 포함하는 열차단용으로 사용하는 배리어 필름의 제조방법.The barrier film includes a step of forming an inorganic layer including an optical compensation layer including a thermal barrier addition element and a heat ray shielding layer including silver, copper or nickel as a main component, and a fluorine-based polymer and a functionalizing agent having conductivity. Method of manufacturing a barrier film for thermal barrier comprising depositing a polymer composite target to form an organic layer which is a fluorocarbon protective layer.
  4. 제 3항에 있어서, The method of claim 3, wherein
    상기 광학 보상층의 열차단 부가 원소는 NiCr, NiAu, ITO, IZO, IZTO, AZO, IAZO, GZO, IGO, IGZO, IGTO, ATO, IATO, IWO, CIO, MIO, MgO, SnO2, ZnO, ZnAlOx, In2O3, TiTaO2, TiNbO2, TiO2, RuO2, IrO, Nb2O5, Ta2O5, ZnO, SiO2, SiN, Si3N4 및 Al2O3에서 선택되는 것인 열차단용으로 사용하는 배리어 필름의 제조방법.The thermal blocking additive elements of the optical compensation layer are NiCr, NiAu, ITO, IZO, IZTO, AZO, IAZO, GZO, IGO, IGZO, IGTO, ATO, IATO, IWO, CIO, MIO, MgO, SnO 2 , ZnO, ZnAlO selected from x , In 2 O 3 , TiTaO 2 , TiNbO 2 , TiO 2 , RuO 2 , IrO, Nb 2 O 5 , Ta 2 O 5 , ZnO, SiO 2 , SiN, Si 3 N 4 and Al 2 O 3 Method for producing a barrier film to be used for thermal barrier.
  5. 제 3항에 있어서, The method of claim 3, wherein
    상기 광학 보상층과 상기 열선 차단층은 교대로 적어도 1회 이상 반복 적층되는 열차단용으로 사용하는 배리어 필름의 제조방법. The optical compensation layer and the heat ray shielding layer is a method for producing a barrier film used for thermal barrier is alternately laminated at least one or more times.
  6. 제 1항에 있어서, The method of claim 1,
    상기 배리어 필름은 금속산화물 및 금속질화물에서 선택되는 하나 이상을 주성분으로 포함하는 무기층을 형성하는 단계 및 불소계고분자와 도전성을 가지는 기능화제를 포함하는 유기층을 형성하는 단계를 포함하는 수분투과 방지용으로 사용하는 배리어 필름의 제조방법.The barrier film is used for preventing moisture permeation, including forming an inorganic layer including at least one selected from metal oxides and metal nitrides as a main component, and forming an organic layer including a fluorinated polymer and a functionalizing agent having conductivity. The method of manufacturing a barrier film.
  7. 제 6항에 있어서, The method of claim 6,
    상기 무기층은 타이타늄, 지르코늄, 하프늄, 나이오븀, 탄탈륨, 바나듐, 텅스텐, 알루미늄, 갈륨, 인듐, 아연, 실리콘 및 게르마늄에서 선택되는 하나 이상의 금속, 이들의 산화물 및 이들의 질화물에서 선택되는 하나 이상을 포함하는 타겟을 이용하여 형성되는 것인 수분투과 방지용으로 사용하는 배리어 필름의 제조방법.The inorganic layer comprises at least one metal selected from titanium, zirconium, hafnium, niobium, tantalum, vanadium, tungsten, aluminum, gallium, indium, zinc, silicon and germanium, oxides thereof and nitrides thereof. Method for producing a barrier film to be used for preventing water permeation that is formed using a target containing.
  8. 제 1항에 있어서,The method of claim 1,
    상기 배리어 필름은 금속산화물, 금속질화물 및 금속황화물에서 선택되는 하나 이상을 포함하는 반사감소층인 무기층을 형성하는 단계 및 불소계고분자와 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합 타겟을 증착시켜 반사방지층인 유기층을 형성하는 단계를 포함하는 반사 방지용으로 사용하는 배리어 필름의 제조방법.The barrier film is formed by forming an inorganic layer, which is an anti-reflective layer including at least one selected from metal oxides, metal nitrides, and metal sulfides, and depositing a fluorine-based polymer composite target including a fluorine-based polymer and a functionalizing agent having conductivity. A method of manufacturing a barrier film used for antireflection, comprising forming an organic layer that is an antireflection layer.
  9. 제 8항에 있어서, The method of claim 8,
    상기 반사감소층은 타이타늄, 지르코늄, 하프늄, 나이오븀, 탄탈륨, 바나듐, 텅스텐, 알루미늄, 갈륨, 인듐, 아연, 실리콘, 안티몬, 주석, 세륨, 셀레늄, 이트륨, 마그네슘 및 게르마늄에서 선택되는 금속을 포함하는 하나 이상의 금속산화물, 금속질화물 및 금속황화물을 주성분으로 포함하는 것인 반사 방지용으로 사용하는 배리어 필름의 제조방법.The reflection reducing layer includes a metal selected from titanium, zirconium, hafnium, niobium, tantalum, vanadium, tungsten, aluminum, gallium, indium, zinc, silicon, antimony, tin, cerium, selenium, yttrium, magnesium, and germanium. Method for producing a barrier film for antireflection comprising at least one metal oxide, metal nitride and metal sulfide as a main component.
  10. 제 9항에 있어서, The method of claim 9,
    상기 반사감소층은 고굴절율층 및 저굴절율층을 포함하며, 상기 저굴절율층은 규소 및 마그네슘에서 선택되는 하나 이상의 금속산화물을 주성분으로 포함하는 것인 반사 방지용으로 사용하는 배리어 필름의 제조방법.The reflection reduction layer includes a high refractive index layer and a low refractive index layer, wherein the low refractive index layer is a method for producing a barrier film used for antireflection that comprises at least one metal oxide selected from silicon and magnesium as a main component.
  11. 제 10항에 있어서,The method of claim 10,
    상기 반사감소층은 고굴절율층을 증착하는 단계 및 저굴절율층을 증착하는 단계를 반복 수행하여 다층 구조를 형성하는 것인 반사 방지용으로 사용하는 배리어 필름의 제조방법.The reflection reduction layer is a method of manufacturing a barrier film used for antireflection to form a multi-layer structure by repeating the step of depositing a high refractive index layer and the step of depositing a low refractive index layer.
  12. 제 1항에 있어서,The method of claim 1,
    상기 기능화제는 전도성입자, 전도성 고분자 및 금속성분에서 선택되는 하나 이상인 배리어 필름의 제조방법.The functionalizing agent is a method for producing a barrier film of at least one selected from conductive particles, conductive polymers and metal components.
  13. 제 12항에 있어서,The method of claim 12,
    상기 전도성입자는 카본나노튜브, 카본나노섬유, 카본블랙, 그래핀, 그라파이트 및 탄소섬유에서 선택되는 하나 이상이고, 상기 전도성 고분자는 폴리아닐린, 폴리아세틸렌, 폴리티오펜, 폴리피롤, 폴리플루렌, 폴리피렌, 폴리아줄렌, 폴리나프탈렌, 폴리페닐렌, 폴리페닐렌비닐렌, 폴리카르바졸, 폴리인돌, 폴리아제핀, 폴리에틸렌, 폴리에틸렌비닐렌, 폴리페닐렌설파이드, 폴리퓨란, 폴리셀레노펜, 폴리텔루로펜 및 폴리설퍼 나이트라이드에서 선택되는 하나 이상이고, 상기 금속성분은 구리, 알루미늄, 은, 금, 텅스텐, 실리콘, 마그네슘, 니켈, 몰리브덴, 바나듐, 나이오븀, 타이타늄, 백금, 크롬 및 탄탈륨에서 선택되는 하나 이상인 배리어 필름의 제조방법.The conductive particles are one or more selected from carbon nanotubes, carbon nanofibers, carbon black, graphene, graphite and carbon fibers, and the conductive polymers are polyaniline, polyacetylene, polythiophene, polypyrrole, polyfluene, polypyrene , Polyazulene, polynaphthalene, polyphenylene, polyphenylenevinylene, polycarbazole, polyindole, polyazepine, polyethylene, polyethylenevinylene, polyphenylenesulfide, polyfuran, polyselenophene, polytelurofen and At least one selected from polysulfur nitride, and the metal component is at least one selected from copper, aluminum, silver, gold, tungsten, silicon, magnesium, nickel, molybdenum, vanadium, niobium, titanium, platinum, chromium, and tantalum. Method of producing a barrier film.
  14. 제 1항에 있어서,The method of claim 1,
    상기 유기층은 금속유기물, 금속산화물, 금속탄소체, 금속수산화물, 금속카보네이트, 금속바이카보네이트, 금속질화물, 금속황화물 및 금속불화물에서 선택되는 하나 이상의 금속화합물을 더 포함하는 것인 배리어 필름의 제조방법.Wherein the organic layer further comprises at least one metal compound selected from metal organics, metal oxides, metal carbon bodies, metal hydroxides, metal carbonates, metal bicarbonates, metal nitrides, metal sulfides and metal fluorides.
  15. 피착체를 롤투롤 방식으로 이송시키면서 금속 및 금속화합물에서 선택되는 하나 이상을 주성분으로 포함하는 타겟을 이용하여 무기층을 형성하는 단계와 상기 무기층의 일면에 불소계고분자와 도전성을 가지는 기능화제를 포함하는 불소계고분자 복합 타겟을 이용하여 유기층을 형성하는 단계를 포함하는 배리어 필름의 제조방법.Forming an inorganic layer using a target containing at least one selected from a metal and a metal compound as a main component while transferring the adherend in a roll-to-roll manner, and includes a functionalizing agent having a fluorine-based polymer and conductivity on one surface of the inorganic layer. Method of producing a barrier film comprising the step of forming an organic layer using a fluorine-based polymer composite target.
  16. 제 15항에 있어서,The method of claim 15,
    상기 무기층 및 상기 유기층을 형성하는 단계는 MF 또는 DC 스퍼터링으로 수행되는 것인 배리어 필름의 제조방법.Forming the inorganic layer and the organic layer is a method of manufacturing a barrier film is performed by MF or DC sputtering.
  17. 피착체; 금속 및 금속화합물에서 선택되는 하나 이상을 주성분으로 포함하는 무기층; 및 불소계고분자와 기능화제를 포함하는 유기층;을 포함하는 배리어 필름.Adherend; An inorganic layer comprising, as a main component, at least one selected from metals and metal compounds; And an organic layer comprising a fluorine-based polymer and a functionalizing agent.
  18. 제 17항에 있어서,The method of claim 17,
    수분과의 접촉각이 90 내지 150 °범위인 배리어 필름.A barrier film having a contact angle with moisture in the range of 90 to 150 degrees.
  19. 제 17항에 있어서,The method of claim 17,
    피착체; 은, 구리 또는 니켈을 주성분으로 하는 열선 차단층과 열차단 부가 원소를 포함하는 광학 보상층을 포함하는 무기층; 및 불소계고분자와 도전성을 가지는 기능화제를 포함하는 탄화불소 보호층을 유기층;을 포함하는 열차단용으로 사용하는 배리어 필름.Adherend; An inorganic layer comprising a heat ray shielding layer mainly composed of silver or copper or nickel and an optical compensation layer including a thermally blocked additional element; And a fluorocarbon protective layer comprising a fluorine-based polymer and a functionalizing agent having conductivity, an organic layer.
  20. 제 17항에 있어서,The method of claim 17,
    피착체; 금속산화물 및 금속질화물에서 선택되는 하나 이상을 포함하는 무기층; 및 불소계고분자와 도전성을 가지는 기능화제를 포함하는 유기층;을 포함하는 수분투과 방지용으로 사용하는 배리어 필름.Adherend; An inorganic layer comprising at least one selected from metal oxides and metal nitrides; And an organic layer comprising a fluorine-based polymer and a functionalizing agent having conductivity; a barrier film used for preventing water permeation.
  21. 제 17항에 있어서,The method of claim 17,
    피착체; 금속산화물, 금속질화물 및 금속황화물에서 선택되는 하나 이상을 포함하는 반사감소층인 무기층; 및 불소계고분자와 도전성을 가지는 기능화제를 포함하는 반사방지층인 유기층;을 포함하는 반사 방지용으로 사용하는 배리어 필름.Adherend; An inorganic layer, which is a reflection reduction layer comprising at least one selected from metal oxides, metal nitrides and metal sulfides; And an organic layer, which is an antireflection layer comprising a fluorine-based polymer and a functionalizing agent having conductivity.
  22. 제 21항에 있어서,The method of claim 21,
    상기 반사감소층은 고굴절율층 및 저굴절율층을 가지며, 상기 저굴절율층은 규소(Si) 및 마그네슘(Mg)에서 선택되는 하나 이상의 금속 산화물을 주성분으로 포함하고, 상기 고굴절율층과 저굴절율층의 굴절률 차이(△n)는 0.1 내지 1.5인 반사 방지용으로 사용하는 배리어 필름.The reflection reducing layer has a high refractive index layer and a low refractive index layer, and the low refractive index layer comprises at least one metal oxide selected from silicon (Si) and magnesium (Mg) as a main component, and the high refractive index layer and the low refractive index layer The refractive index difference (Δn) of 0.1 to 1.5 is a barrier film used for antireflection.
PCT/KR2016/009772 2015-09-01 2016-09-01 Barrier film comprising fluorocarbon thin film and method for manufacturing same WO2017039342A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0123340 2015-09-01
KR1020150123340A KR101666350B1 (en) 2015-09-01 2015-09-01 Insulation Film including fluorocarbon thin film and Method of Manufacturing The Same
KR10-2015-0130675 2015-09-16
KR1020150130675A KR101719520B1 (en) 2015-09-16 2015-09-16 Multilayer barrier film including fluorocarbon thin film and Method of Manufacturing The Same
KR10-2016-0010369 2016-01-28
KR1020160010369A KR102010240B1 (en) 2016-01-28 2016-01-28 Anti-reflection film with water repelling properties and Method of Manufacturing The Same

Publications (1)

Publication Number Publication Date
WO2017039342A1 true WO2017039342A1 (en) 2017-03-09

Family

ID=58188068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009772 WO2017039342A1 (en) 2015-09-01 2016-09-01 Barrier film comprising fluorocarbon thin film and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017039342A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826622A (en) * 2020-06-10 2020-10-27 深圳市锐欧光学电子有限公司 Film coating method for mobile phone camera cover plate
CN112813396A (en) * 2020-12-30 2021-05-18 山东永聚医药科技有限公司 Preparation method of one-step magnetron sputtering deposition inorganic/organic alternating mixed structure ultrahigh barrier film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098306A (en) * 2001-09-19 2003-04-03 Sumitomo Metal Mining Co Ltd Antireflection film
JP2007504500A (en) * 2003-09-04 2007-03-01 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Antireflection coating treatment method on optical substrate, coated optical substrate, and coating treatment execution apparatus
JP2008266728A (en) * 2007-04-20 2008-11-06 Toppan Printing Co Ltd Vacuum deposition device and vacuum deposition method
KR20110079500A (en) * 2009-12-31 2011-07-07 삼성모바일디스플레이주식회사 Barrier film composites, display apparatus comprising the same, manufacturing method of the barrier film composites, and manufacturing method of display apparatus comprising the same
KR101470901B1 (en) * 2014-08-08 2014-12-10 주식회사 코사인 Heat-reflecting film with the visibility improvement and the thermal barrier and thermal insulation characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098306A (en) * 2001-09-19 2003-04-03 Sumitomo Metal Mining Co Ltd Antireflection film
JP2007504500A (en) * 2003-09-04 2007-03-01 エシロール アンテルナショナル コムパニー ジェネラル ドプテイク Antireflection coating treatment method on optical substrate, coated optical substrate, and coating treatment execution apparatus
JP2008266728A (en) * 2007-04-20 2008-11-06 Toppan Printing Co Ltd Vacuum deposition device and vacuum deposition method
KR20110079500A (en) * 2009-12-31 2011-07-07 삼성모바일디스플레이주식회사 Barrier film composites, display apparatus comprising the same, manufacturing method of the barrier film composites, and manufacturing method of display apparatus comprising the same
KR101470901B1 (en) * 2014-08-08 2014-12-10 주식회사 코사인 Heat-reflecting film with the visibility improvement and the thermal barrier and thermal insulation characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826622A (en) * 2020-06-10 2020-10-27 深圳市锐欧光学电子有限公司 Film coating method for mobile phone camera cover plate
CN112813396A (en) * 2020-12-30 2021-05-18 山东永聚医药科技有限公司 Preparation method of one-step magnetron sputtering deposition inorganic/organic alternating mixed structure ultrahigh barrier film

Similar Documents

Publication Publication Date Title
KR20050086413A (en) Material for use in the manufacturing of luminous display devices
WO2015050320A1 (en) Electrode having excellent light transmittance, method for manufacturing same, and electronic element including same
TWI381401B (en) Transparent conductive film and manufacturing method thereof
KR20140141707A (en) Transparent body for use in a touch screen panel manufacturing method and system
TW201006668A (en) Inorganic graded barrier film and methods for their manufacture
KR20140141706A (en) Transparent body for use in a touch panel and its manufacturing method and apparatus
JP6650770B2 (en) Conductive laminated film
JPWO2015115237A1 (en) Substrate with transparent electrode and manufacturing method thereof
WO2017065472A1 (en) Electrochromic element and method for manufacturing same
WO2017039342A1 (en) Barrier film comprising fluorocarbon thin film and method for manufacturing same
KR20220155281A (en) Transparent conductive film and method for producing the transparent conductive film
Kim et al. Highly transparent tin oxide films prepared by DC magnetron sputtering and its liquid crystal display application
KR101843364B1 (en) Transparent conductive film of water-repellency and plate heater comprising the same
KR101160845B1 (en) Method for manufacturing metal oxide based transparency electrode
Kim et al. Polymer-based multi-layer conductive electrode film for plastic LCD applications
JP2011073417A (en) Barrier film, method of producing barrier film, and organic photoelectric conversion element
JP3501820B2 (en) Transparent conductive film with excellent flexibility
KR101439753B1 (en) Amorphous transparent electrode
JP2005071901A (en) Transparent conductive laminated film
JP2009202379A (en) Laminated body
JP5468801B2 (en) Substrate with transparent electrode and manufacturing method thereof
KR101719520B1 (en) Multilayer barrier film including fluorocarbon thin film and Method of Manufacturing The Same
KR102010240B1 (en) Anti-reflection film with water repelling properties and Method of Manufacturing The Same
WO2017039339A1 (en) Method for manufacturing fluorocarbon thin film
TW202035128A (en) Transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842308

Country of ref document: EP

Kind code of ref document: A1