WO2017038475A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
WO2017038475A1
WO2017038475A1 PCT/JP2016/074051 JP2016074051W WO2017038475A1 WO 2017038475 A1 WO2017038475 A1 WO 2017038475A1 JP 2016074051 W JP2016074051 W JP 2016074051W WO 2017038475 A1 WO2017038475 A1 WO 2017038475A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber composition
mass
parts
aminoguanidine
Prior art date
Application number
PCT/JP2016/074051
Other languages
French (fr)
Japanese (ja)
Inventor
智希 岩田
拓哉 影山
上等 和良
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2017038475A1 publication Critical patent/WO2017038475A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds

Definitions

  • the present invention relates to a rubber composition and a tire including the rubber composition.
  • ⁇ Filler is a compounding agent used for the purpose of mixing with rubber to reinforce the rubber, add weight or give special functions.
  • Carbon black which is a typical filler, not only contributes to the improvement (reinforcing effect) of mechanical properties such as elastic modulus and breaking strength of rubber, but also has a function of imparting conductivity.
  • a method of using an inorganic filler such as silica is known as a method for obtaining a rubber composition having a rubber reinforcing effect similar to carbon black and having a low exothermic property, that is, a low loss property. It is applied to rubber compositions for low fuel consumption tires that are environmentally friendly.
  • the inorganic filler-containing rubber composition when the inorganic filler is compounded, the inorganic filler, particularly hydrophilic silica having a silanol group on the surface has a low affinity with the hydrophobic rubber, and the rubber composition Since it aggregates in the material, it is necessary to increase the affinity between silica and rubber in order to enhance the reinforcement by silica and obtain a low heat generation effect.
  • synthetic rubber improved in affinity with an inorganic filler by terminal modification with a polar group see Patent Document 1
  • an affinity with an inorganic filler by copolymerizing a polar group-containing monomer Synthetic rubber having improved properties (see Patent Document 2) and the like are known.
  • Patent Document 3 As a method for modifying natural rubber and introducing a polar group, a method in which natural rubber is oxidized and then modified with a hydrazide compound having a polar group (see Patent Document 3), a modified natural rubber having a polar group introduced therein and silica are used. A method of further improving the dispersibility of silica by adding a silane coupling agent to the rubber composition containing the rubber composition is known (see Patent Document 4).
  • polyethylene glycol and amine have a side effect of shortening the molding time, which causes a problem that processability is lowered.
  • the present invention has been made in view of the above problems, and in a rubber composition containing an inorganic filler, it is excellent in low loss property and breaking strength, and further ensures both molding time and shortened vulcanization time.
  • An object is to provide a rubber composition and a tire including the rubber composition.
  • the present inventors have obtained a rubber composition obtained by mixing zinc phosphate, aminoguanidine derivative, natural rubber and / or synthetic rubber, a filler containing an inorganic filler, and a silane coupling agent.
  • the present inventors have found that the above problems can be solved and have completed the present invention.
  • the present invention is as follows. [1] An aminoguanidine derivative (A), Natural rubber and / or synthetic rubber (B); An inorganic filler (C); A silane coupling agent (D); Containing zinc phosphate (E), Rubber composition. [2] The inorganic filler (C) contains silica, [1] The rubber composition according to [1]. [3] The inorganic filler (C) contains carbon black, The rubber composition according to [1] or [2].
  • the content of the zinc phosphate (E) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the natural rubber and / or synthetic rubber (B).
  • the content of the aminoguanidine derivative (A) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the natural rubber and / or the synthetic rubber (B).
  • the tread includes the rubber composition according to any one of [1] to [6]. tire.
  • a rubber composition containing an inorganic filler is excellent in low loss and breaking strength, and further includes a rubber composition that ensures both molding time and shortens vulcanization time, and the rubber composition.
  • a tire can be provided.
  • the present embodiment the embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications are possible without departing from the scope of the present invention. It is.
  • the rubber composition of the present embodiment comprises an aminoguanidine derivative (A), natural rubber and / or synthetic rubber (B) (hereinafter also simply referred to as “rubber component (B)”), and inorganic filler (C). And a silane coupling agent (D) and zinc phosphate (E).
  • A aminoguanidine derivative
  • B natural rubber and / or synthetic rubber
  • C inorganic filler
  • D silane coupling agent
  • E zinc phosphate
  • aminoguanidine derivative (A) The aminoguanidine derivative (A) is not particularly limited, and for example, aminoguanidine, diaminoguanidine, triaminoguanidine, and salts thereof can be used.
  • the aminoguanidine derivative (A) exhibits strong basicity because the positive charge of the conjugate acid is dispersed and stabilized by a plurality of nitrogen atoms present in the molecule, and is usually a complex (salt) with an acid. Exists.
  • the aminoguanidine salt is not particularly limited.
  • the diaminoguanidine salt is not particularly limited.
  • triaminoguanidine salt examples include, but are not limited to, for example, triaminoguanidine carbonate, triaminoguanidine hydrochloride, triaminoguanidine hydroiodide, triaminoguanidine hydrobromide, triaminoguanidine hemisulfate, Triaminoguanidine nitrate, Triaminoguanidine oxalate, Triaminoguanidine phosphate, Triaminoguanidine acetate, Triaminoguanidine sulfamate, Triaminoguanidine perchlorate, Triaminoguanidine silicate, Triaminoguanidine Examples thereof include borate and triaminoguanidine phenylphosphinate.
  • aminoguanidine and its salts are preferably used from the viewpoint of availability, and aminoguanidine carbonate and aminoguanidine hydrochloride are more preferably used from the viewpoint of economy.
  • a polar group is introduced into the rubber component (B) by reacting the hydrazine moiety contained in the aminoguanidine derivative (A) and the rubber component (B) during mixing to introduce a polar group into the rubber component (B).
  • the affinity with the polar group that the inorganic filler (C) may have improves. Adhesion is improved. And rubber molded objects, such as a tire obtained using the rubber composition of this embodiment, will be excellent in low-loss property.
  • the aminoguanidine derivative (A) can be obtained by a known method.
  • an arbitrary salt can be obtained by a salt exchange reaction or the like.
  • the content of the aminoguanidine derivative (A) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, even more preferably 100 parts by weight of the rubber component (B). Is 0.1 to 3 parts by mass.
  • a small amount of polar groups (groups derived from the aminoguanidine derivative (A)) are uniformly present at the double bond sites that the rubber component (B) may have.
  • aminoguanidine derivatives (A) and zinc phosphate (B) tend to react.
  • the workability of the rubber composition is further improved, the affinity between the rubber component (B) and the inorganic filler (C) or zinc oxide is further improved, and the low loss property of the obtained rubber molded body is further improved. It tends to be excellent. Further, the vulcanization time tends to be shortened while securing a sufficient molding time.
  • Rubber component (B) As the rubber component (B), natural rubber obtained from rubber trees and / or synthetic rubber produced industrially from petroleum or the like can be used. In addition, natural rubber has a large tearing effect and is excellent in fatigue resistance, and synthetic rubber is excellent in wear resistance. Therefore, both rubber types can be arbitrarily mixed for the purpose.
  • at least a part of the aminoguanidine derivative (A) may be bonded to at least a part of the rubber component (B) via a covalent bond or a non-covalent bond.
  • the natural rubber is not particularly limited.
  • any shape of natural rubber latex, sheet rubber obtained by coagulating and drying natural rubber latex, and block rubber can be used as a raw material.
  • a main component of natural rubber is polyisoprene.
  • the sheet rubber is not particularly limited, and examples thereof include those described in “International Quality Packaging Standards for Natural Rubber Grades” (commonly called Green Book). More specifically, ribbed smoked sheet (RSS) dried with smoke smoked sheet, air dried sheet (ADS) coagulated material dried with hot air thoroughly washed with hot air and dried with hot air Examples thereof include a creped, a TC rubber (Technically Classified Rubber), an SP rubber (Super Processing Rubber), an MG rubber, a PP crepe, a softener, and a peptizer-added rubber.
  • RSS ribbed smoked sheet
  • ADS air dried sheet
  • coagulated material dried with hot air thoroughly washed with hot air and dried with hot air
  • examples thereof include a creped, a TC rubber (Technically Classified Rubber), an SP rubber (Super Processing Rubber), an MG rubber, a PP crepe, a softener, and a peptizer-added rubber.
  • the block rubber is not particularly limited.
  • SMR Standard Malaysian Rubber Rubber
  • SIR Standard Indonesian Rubber
  • STR Standard Thai Rubber
  • SSR Standard Singapore Rubber
  • SVR Standard Vietnamese Rubber
  • ISNR Indian Standard Natural Rubber
  • rubber that has been solidified after oxidation treatment of natural rubber latex may be used, and oxidation of natural rubber latex can be performed by a known method.
  • natural rubber latex can be oxidized by air-oxidizing natural rubber latex dissolved in an organic solvent at a ratio of 1 to 30% by mass in the presence of a metal-based oxidation catalyst. it can.
  • a carbonyl compound can be added to natural rubber latex for oxidation.
  • air oxidation may be performed in the presence of a radical generator in order to promote air oxidation.
  • a radical generator for example, a peroxide radical generator, a redox radical generator, an azo radical generator and the like are preferably used.
  • These natural rubber raw materials may be used alone or in combination of two or more.
  • the synthetic rubber is not particularly limited.
  • the content of the rubber component (B) is preferably 35 to 80% by mass, more preferably 40 to 70% by mass, and further preferably 40 to 60% by mass with respect to the total amount of the rubber composition. .
  • the content of the rubber component (B) is within the above range, the low loss property and the breaking strength tend to be more excellent.
  • the inorganic filler (C) is not particularly limited as long as it is an inorganic filler used in the art.
  • silicon, typical metal, or transition metal oxide silicon, typical metal, or transition metal hydroxide Hydrates thereof
  • silicon, typical metal, or transition metal carbonates and at least one selected from carbon black and the like.
  • the inorganic filler (C) is a reinforcing filler used for the purpose of enhancing the reinforcing property; and non-reinforcing property used for the purpose of increasing the amount and improving the workability such as rolling property and extrudability. It can also be classified as a filler.
  • the reinforcing filler is not particularly limited, and examples thereof include silica having active surface, surface-treated clay, carbon black, mica, calcium carbonate, aluminum hydroxide, aluminum oxide, and titanium oxide.
  • the non-reinforcing filler is not particularly limited.
  • examples include calcium silicate and ferric oxide.
  • reinforcing fillers are preferable, and silica and carbon black are more preferable.
  • the reinforcing property of the rubber composition is further improved, and the affinity between the rubber component (B) and the inorganic filler (C) is further improved, and the resulting rubber There exists a tendency for the low-loss property of a molded object to be more excellent.
  • the silica is not particularly limited, and for example, wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid) and the like can be used. Further, the BET specific surface area of silica is preferably 40 to 350 m 2 / g, more preferably 100 to 300 m 2 / g, still more preferably 150 to 250 m 2 / g. When the BET surface area of silica is in the above range, the silica particle diameter is appropriate, the tensile strength is further improved, and the hysteresis loss tends to be further reduced.
  • Carbon black is not particularly limited.
  • General Purpose Furnace GPF
  • FEF Fast Extruding Furnace
  • SRF Semi-Reinforcing Furnace
  • High AbsenceFuranceHAF ISAF High AbsenceFuranceHAF ISAF
  • SAF Super Abrasion Furnace
  • the content of the inorganic filler (C) is preferably 5 to 120 parts by weight, more preferably 20 to 100 parts by weight, and further preferably 30 to 30 parts by weight with respect to 100 parts by weight of the organic component of the rubber composition. 100 parts by mass.
  • the content of the inorganic filler (C) is within the above range, the processability and reinforcing property of the rubber composition are further improved, and the low loss property of the resulting rubber molded product tends to be more excellent.
  • the “organic component of the rubber composition” refers to the aminoguanidine derivative (A), the rubber component (B), the silane coupling agent (D), and other organic components.
  • the silane coupling agent (D) is not particularly limited.
  • the silane coupling agent (D) is not particularly limited.
  • silane coupling agents are preferred.
  • the affinity between the rubber component (B) and the inorganic filler (C) tends to be further improved.
  • the content of the silane coupling agent (D) is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass, and even more preferably 6 to 100 parts by mass of the inorganic filler (C). ⁇ 10 parts by mass.
  • the content of the silane coupling agent (D) is within the above range, the affinity between the rubber component (B) and the inorganic filler (C) tends to be further improved.
  • Zinc phosphate (E) is a compound represented by the chemical formula Zn 3 (PO 4 ) 2 or Zn 2 P 2 O 7 . Among these, it is preferable to use a compound represented by the chemical formula Zn 3 (PO 4 ) 2 , and either an anhydride or a hydrate may be used. Examples of the zinc phosphate (E) include zinc phosphate tetrahydrate (Zn 3 (PO 4 ) 2 ⁇ 4H 2 O) and zinc diphosphate (Zn 3 (PO) manufactured by Wako Pure Chemical Industries, Ltd. 4 ) 2 ) etc. can be obtained as commercial products.
  • the content of zinc phosphate (E) is preferably 0.01 to 10 parts by weight, more preferably 1 to 7.5 parts by weight, even more preferably 100 parts by weight of the rubber component (B). Is 2 to 5 parts by mass.
  • the content of zinc phosphate (E) is preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the rubber component (B). Yes, more preferably 0.3 to 5 parts by mass, still more preferably 0.5 to 3 parts by mass.
  • the rubber composition of the present embodiment may contain a compounding agent that is usually used in the rubber industry, if necessary, in addition to the above components.
  • a compounding agent is not particularly limited, and examples thereof include an anti-aging agent, a softening agent, a vulcanization accelerator, a vulcanization acceleration aid, and a vulcanization agent.
  • commercially available products can be suitably used.
  • the anti-aging agent is not particularly limited, and examples thereof include naphthylamine compounds, p-phenylenediamine compounds, hydroquinone derivatives, bis, tris, polyphenol compounds, diphenylamine compounds, quinoline compounds, monophenol compounds. Thiobisphenol compounds, hinders, phenol compounds and the like. Of these, amine-based anti-aging agents are preferable from the viewpoint of further anti-aging effects, and p-phenylenediamine-based compounds and diphenylamine-based compounds are more preferable.
  • the diphenylamine compound is not particularly limited.
  • 4,4 ′-( ⁇ -methylbenzyl) diphenylamine is most preferable from the viewpoint of higher antiaging effect.
  • the p-phenylenediamine compound is not particularly limited.
  • the content of the antioxidant is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component (B).
  • the softening agent is not particularly limited, and examples thereof include mineral oil-based softeners derived from petroleum and coal tar, vegetable oil-based softeners derived from fatty oils and pine trees, and synthetic resin-based softeners. These softeners may be used alone or in combination of two or more.
  • the vulcanization accelerator is not particularly limited.
  • thiazol compounds such as mercaptobenzothiazol and di-2-benzothiazolyl disulfide; N-cyclohexyl-2-benzothiazolylsulfenamide Sulfenamide compounds such as N, N′-dicyclohexyl-2-benzothiazolylsulfenamide, N′-tert-butyl-2-benzothiazolylsulfenamide; guanidine compounds such as diphenylguanidine .
  • These vulcanization accelerators may be used alone or in combination of two or more.
  • the content of the vulcanization accelerator is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component (B).
  • a vulcanization acceleration aid is not particularly limited, and examples thereof include zinc compounds such as zinc oxide and higher fatty acids such as stearic acid. Among these, zinc oxide is preferable, and those treated with an amine dispersant or a wetting agent can be used.
  • Zinc phosphate (E) also acts as a vulcanization acceleration aid in the same manner as zinc oxide. Therefore, for example, when zinc oxide is used as the zinc source, the total content of zinc oxide and zinc phosphate is determined by the rubber component ( B) The amount is preferably 0.01 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, and further preferably 1 to 5 parts by mass with respect to 100 parts by mass.
  • the content of zinc oxide is preferably 0.01 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, and still more preferably 0.8 to 100 parts by mass of the rubber component (B). Is 5 parts by mass. Further, when converted to the content of zinc atoms (Zn) itself, the content of zinc oxide is preferably 0.008 to 8 parts by mass, more preferably 100 parts by mass of the rubber component (B). Is 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass. When the content of zinc oxide is within the above range, characteristics such as molding time and tensile strength of the rubber composition tend to be highly balanced.
  • the vulcanizing agent is not particularly limited as long as it is usually used in the art, and examples thereof include sulfur and peroxides. Among these, sulfur is preferable.
  • the content of the vulcanizing agent is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component (B).
  • the content of the vulcanizing agent is 0.1 parts by mass or more, vulcanization proceeds sufficiently. Further, when the content of the vulcanizing agent is 5 parts by mass or less, the so-called coaching time becomes long, and the rubber tends to be prevented from being burnt during kneading.
  • the rubber composition of this embodiment comprises an aminoguanidine derivative (A), a rubber component (B), an inorganic filler (C), a silane coupling agent (D), and zinc phosphate (E) at 20 to 180 ° C. It is preferable that it is obtained by mixing with.
  • the mixing temperature is preferably 20 to 180 ° C, more preferably 50 to 160 ° C, and further preferably 80 to 160 ° C.
  • the reaction of the aminoguanidine derivative (A) to the rubber component (B) tends to proceed more appropriately while the decomposition of the aminoguanidine derivative (A) is suppressed. Therefore, the affinity between the rubber component (B) and the inorganic filler (C) is further improved, and the low loss property of the obtained rubber molded product tends to be more excellent.
  • the rubber composition of this embodiment is a method in which an aminoguanidine derivative (A), a rubber component (B), an inorganic filler (C), a silane coupling agent (D), and zinc phosphate (E) are mixed. If it does not specifically limit.
  • a mixer, an extruder, a kneader or the like can be used. Among these, it is preferable to mix with a kneader from the viewpoint of improving dispersibility.
  • the method for adding the aminoguanidine derivative (A) and zinc phosphate (E) to the mixer, extruder, kneader, etc. is not particularly limited.
  • the method of adding the powder as it is, or dissolving it in a solvent The method of adding as a solution and the method of adding as an emulsion solution are mentioned.
  • the mixing temperature is preferably 20 to 180 ° C, more preferably 50 to 160 ° C, and further preferably 80 to 160 ° C.
  • the mixing temperature is 20 to 180 ° C.
  • the rubber component (B) and the aminoguanidine derivative (A), and the zinc phosphate (E) and the aminoguanidine derivative (A) are mixed more uniformly, and these reactions are performed. Can proceed more appropriately, and further, thermal decomposition of the aminoguanidine derivative (A) tends to be suppressed.
  • the kneading time is preferably 0.5 to 30 minutes, more preferably 2 to 10 minutes, and further preferably 2 to 7 minutes.
  • the rubber component (B) and the aminoguanidine derivative (A), and the zinc phosphate (E) and the aminoguanidine derivative (A) are sufficiently maintained while maintaining the productivity. Tend to react.
  • the reaction atmosphere is preferably performed in the presence of oxygen such as under air. Oxygen tends to promote the radical reaction between the rubber component (B) and the aminoguanidine derivative (A).
  • a polymerization initiator (reaction promotion) agent or a polymerization inhibitor (reaction delay) agent can be used.
  • Polymerization initiators include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, 2,2-azobisisobutyronitrile, 2,2 -Azobis (2-diaminopropane) hydrochloride, 2,2-azobis (2-diaminopropane) dihydrochloride, 2,2-azobis (2,4-dimethylvaleronitrile), potassium persulfate, sodium persulfate, ammonium persulfate Etc.
  • a redox polymerization initiator In order to lower the reaction temperature, it is preferable to use a redox polymerization initiator.
  • the reducing agent to be combined with the peroxide in the redox polymerization initiator include tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid and the like. These may be used alone or in combination of two or more.
  • polymerization inhibitors include stable radical substances such as diphenylpicrylhydrazyl, galvinoxyl, and ferdazil, and those that easily generate stable radicals when added to radicals such as enzymes, phenol derivatives, benzoquinone derivatives, nitro compounds, etc. Is mentioned. These may be used alone or in combination of two or more.
  • the tire according to this embodiment includes the rubber composition, and a tire including the rubber composition in a tread is particularly preferable. Thereby, the tire of this embodiment becomes excellent in low fuel consumption. If it is a method to manufacture so that the said rubber composition may be included, the manufacturing method of the tire of this embodiment is not specifically limited, It can manufacture in accordance with a conventional method.
  • an inert gas such as nitrogen, argon, helium, or the like can be used in addition to normal or air with adjusted oxygen partial pressure.
  • RSS # 1 natural rubber coagulated product
  • t90 is defined as 90% of the difference between the maximum value and the minimum value of the torque in the evaluation by the vulcanization tester + the time until reaching the minimum value.
  • Example 1 The same operation as in Example 1 except that aminoguanidine carbonate and zinc phosphate tetrahydrate were not used, and the amount of zinc oxide used was changed so that the number of moles of zinc atoms was the same as in Example 1. Thus, an unvulcanized rubber composition was prepared to obtain a vulcanized rubber composition.
  • Molding time / Vulcanization time The molding time (3-1) and vulcanization time (3-2) shown below are measured, and the ratio of the molding time to the vulcanization time (molding time / vulcanizing time) is determined.
  • the value of Comparative Example 1 in Table 1 was taken as 100 and indicated as an index. A larger index value indicates that the vulcanization time can be shortened while securing a sufficient molding time.
  • each component of the compounding prescription indicates part by mass, and the value in () indicates part by mass converted to zinc atom.
  • the rubber composition in which aminoguanidine phosphate, natural rubber, silica and silane coupling agent are mixed is excellent in low exothermic property, has high tensile breaking strength, and is added while ensuring sufficient molding time. It can be seen that the sulfurization time can be shortened.
  • the rubber composition of the present invention has industrial applicability as a tire material and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

A rubber composition which contains (A) an aminoguanidine derivative, (B) a natural rubber and/or a synthetic rubber, (C) an inorganic filler, (D) a silane coupling agent and (E) zinc phosphate.

Description

ゴム組成物及びタイヤRubber composition and tire
 本発明は、ゴム組成物及び当該ゴム組成物を含むタイヤに関する。 The present invention relates to a rubber composition and a tire including the rubber composition.
 充填材は、ゴムに混合して、ゴムの補強、増量や特殊機能を付与するなどの目的で用いられる配合剤である。代表的な充填材であるカ-ボンブラックは、ゴムの弾性率及び破断強度などの力学特性の向上(補強効果)に寄与しているのみならず、導電性を付与するなどの機能も有する。 充填 Filler is a compounding agent used for the purpose of mixing with rubber to reinforce the rubber, add weight or give special functions. Carbon black, which is a typical filler, not only contributes to the improvement (reinforcing effect) of mechanical properties such as elastic modulus and breaking strength of rubber, but also has a function of imparting conductivity.
 カ-ボンブラックと同様にゴムの補強効果が得られ、発熱性の低い、即ち低ロス性のゴム組成物を得ることができる方法として、シリカ等の無機充填材を使用する方法が知られており、環境性に配慮した低燃費タイヤ向けのゴム組成物などに応用されている。 A method of using an inorganic filler such as silica is known as a method for obtaining a rubber composition having a rubber reinforcing effect similar to carbon black and having a low exothermic property, that is, a low loss property. It is applied to rubber compositions for low fuel consumption tires that are environmentally friendly.
 無機充填材配合ゴム組成物において、無機充填材を配合する際、無機充填材、特に、表面にシラノ-ル基を有する親水性のシリカは、疎水性のゴムとの親和性が低く、ゴム組成物中で凝集してしまうため、シリカによる補強性を高め、低発熱化効果を得るには、シリカとゴムの親和性を高める必要がある。その方法として、極性基で末端変性することにより無機充填材との親和性を向上させた合成ゴムや(特許文献1参照)、極性基含有単量体を共重合させて無機充填材との親和性を向上させた合成ゴム(特許文献2参照)等が知られている。天然ゴムを変性して極性基を導入する方法としては、天然ゴムを酸化した後、極性基を有するヒドラジド化合物で変性する方法(特許文献3参照)、極性基を導入した変性天然ゴムとシリカを含むゴム組成物にシランカップリング剤を添加することにより、シリカの分散性を更に向上させる方法(特許文献4参照)が知られている。 In the inorganic filler-containing rubber composition, when the inorganic filler is compounded, the inorganic filler, particularly hydrophilic silica having a silanol group on the surface has a low affinity with the hydrophobic rubber, and the rubber composition Since it aggregates in the material, it is necessary to increase the affinity between silica and rubber in order to enhance the reinforcement by silica and obtain a low heat generation effect. As the method, synthetic rubber improved in affinity with an inorganic filler by terminal modification with a polar group (see Patent Document 1), or an affinity with an inorganic filler by copolymerizing a polar group-containing monomer. Synthetic rubber having improved properties (see Patent Document 2) and the like are known. As a method for modifying natural rubber and introducing a polar group, a method in which natural rubber is oxidized and then modified with a hydrazide compound having a polar group (see Patent Document 3), a modified natural rubber having a polar group introduced therein and silica are used. A method of further improving the dispersibility of silica by adding a silane coupling agent to the rubber composition containing the rubber composition is known (see Patent Document 4).
 このように、シリカの分散性を向上させる検討とともに、シリカは酸性であるため、シリカへの加硫促進剤の吸着による加硫遅延を抑制する検討も行われている。例えば、特許文献5においては、ポリエチレングリコールやアミンを加えることにより加硫遅延の抑制を図っている。 Thus, along with the study to improve the dispersibility of silica, since silica is acidic, studies have been conducted to suppress vulcanization delay due to adsorption of a vulcanization accelerator onto silica. For example, in Patent Document 5, vulcanization delay is suppressed by adding polyethylene glycol or amine.
特開2010-209253号公報JP 2010-209253 A 特開2011-38009号公報JP 2011-38009 A 特開2009-108204号公報JP 2009-108204 A 特開2011-246513号公報JP 2011-246513 A 特開2001-139727号報JP 2001-139727 A
 しかし、ポリエチレングリコールやアミンは成形時間を短くする副作用があり、これにより加工性が低下してしまうという問題もある。 However, polyethylene glycol and amine have a side effect of shortening the molding time, which causes a problem that processability is lowered.
 今後、大気中の二酸化炭素濃度、大気汚染など、環境問題に対する世の中の関心はますます高くなることが予想され、シリカ等の無機充填材を添加しても生産性を低下させずに、タイヤの転がり抵抗を抑え、自動車の低燃費化につながる、低ロス性に優れたゴム組成物及びタイヤを提供する技術が求められている。 In the future, it is expected that there will be an ever-increasing interest in environmental issues such as carbon dioxide concentration in the atmosphere and air pollution. Adding inorganic fillers such as silica will not reduce the productivity of tires. There is a need for a technology that provides a rubber composition and a tire excellent in low-loss properties that suppress rolling resistance and lead to lower fuel consumption of automobiles.
 本発明は、上記問題点に鑑みてなされたものであり、無機充填材を含有するゴム組成物において、低ロス性及び破断強度に優れ、更に成形時間の確保と加硫時間の短縮を両立したゴム組成物及び当該ゴム組成物を含むタイヤを提供することを目的とする。 The present invention has been made in view of the above problems, and in a rubber composition containing an inorganic filler, it is excellent in low loss property and breaking strength, and further ensures both molding time and shortened vulcanization time. An object is to provide a rubber composition and a tire including the rubber composition.
 本発明者等は、鋭意検討した結果、リン酸亜鉛、アミノグアニジン誘導体、天然ゴム及び/又は合成ゴム、無機充填材を含む充填材並びにシランカップリング剤を混合することにより得られるゴム組成物が上記課題を解決することを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have obtained a rubber composition obtained by mixing zinc phosphate, aminoguanidine derivative, natural rubber and / or synthetic rubber, a filler containing an inorganic filler, and a silane coupling agent. The present inventors have found that the above problems can be solved and have completed the present invention.
 すなわち、本発明は、以下のとおりである。
〔1〕
 アミノグアニジン誘導体(A)と、
 天然ゴム及び/又は合成ゴム(B)と、
 無機充填材(C)と、
 シランカップリング剤(D)と、
 リン酸亜鉛(E)と、を含有する、
 ゴム組成物。
〔2〕
 前記無機充填材(C)が、シリカを含む、
 〔1〕に記載のゴム組成物。
〔3〕
 前記無機充填材(C)が、カーボンブラックを含む、
 〔1〕又は〔2〕に記載のゴム組成物。
〔4〕
 前記アミノグアニジン誘導体(A)、前記天然ゴム及び/又は前記合成ゴム(B)、前記無機充填材(C)、前記シランカップリング剤(D)、並びに、前記リン酸亜鉛(E)を20~180℃で混合して得られる、
 〔1〕~〔3〕のいずれか一項に記載のゴム組成物。
〔5〕
 前記リン酸亜鉛(E)の含有量が、前記天然ゴム及び/又は合成ゴム(B)100質量部に対して、0.01~10質量部である、
 〔1〕~〔4〕のいずれか一項に記載のゴム組成物。
〔6〕
 前記アミノグアニジン誘導体(A)の含有量が、前記天然ゴム及び/又は前記合成ゴム(B)100質量部に対して、0.01~10質量部である、
 〔1〕~〔5〕のいずれか一項に記載のゴム組成物。
〔7〕
 トレッドに〔1〕~〔6〕のいずれか一項に記載のゴム組成物を含む、
 タイヤ。
That is, the present invention is as follows.
[1]
An aminoguanidine derivative (A),
Natural rubber and / or synthetic rubber (B);
An inorganic filler (C);
A silane coupling agent (D);
Containing zinc phosphate (E),
Rubber composition.
[2]
The inorganic filler (C) contains silica,
[1] The rubber composition according to [1].
[3]
The inorganic filler (C) contains carbon black,
The rubber composition according to [1] or [2].
[4]
The aminoguanidine derivative (A), the natural rubber and / or the synthetic rubber (B), the inorganic filler (C), the silane coupling agent (D), and the zinc phosphate (E) Obtained by mixing at 180 ° C.,
The rubber composition according to any one of [1] to [3].
[5]
The content of the zinc phosphate (E) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the natural rubber and / or synthetic rubber (B).
The rubber composition according to any one of [1] to [4].
[6]
The content of the aminoguanidine derivative (A) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the natural rubber and / or the synthetic rubber (B).
The rubber composition according to any one of [1] to [5].
[7]
The tread includes the rubber composition according to any one of [1] to [6].
tire.
 本発明によれば、無機充填材を含有するゴム組成物において、低ロス性及び破断強度に優れ、更に成形時間の確保と加硫時間の短縮を両立したゴム組成物及び当該ゴム組成物を含むタイヤを提供することが可能となる。 According to the present invention, a rubber composition containing an inorganic filler is excellent in low loss and breaking strength, and further includes a rubber composition that ensures both molding time and shortens vulcanization time, and the rubber composition. A tire can be provided.
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, the embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to this, and various modifications are possible without departing from the scope of the present invention. It is.
〔ゴム組成物〕
 本実施形態のゴム組成物は、アミノグアニジン誘導体(A)と、天然ゴム及び/又は合成ゴム(B)(以下、単に「ゴム成分(B)」ともいう。)と、無機充填材(C)と、シランカップリング剤(D)と、リン酸亜鉛(E)と、を含有する。
(Rubber composition)
The rubber composition of the present embodiment comprises an aminoguanidine derivative (A), natural rubber and / or synthetic rubber (B) (hereinafter also simply referred to as “rubber component (B)”), and inorganic filler (C). And a silane coupling agent (D) and zinc phosphate (E).
〔アミノグアニジン誘導体(A)〕
 アミノグアニジン誘導体(A)としては、特に限定されないが、例えば、アミノグアニジン、ジアミノグアニジン、トリアミノグアニジンなど、及びこれらの塩を用いることができる。
[Aminoguanidine derivative (A)]
The aminoguanidine derivative (A) is not particularly limited, and for example, aminoguanidine, diaminoguanidine, triaminoguanidine, and salts thereof can be used.
 アミノグアニジン誘導体(A)は、その分子内に存在する複数の窒素原子によって共役酸のプラスの電荷が分散安定化されるため、強い塩基性を示し、通常は酸との複合体(塩)で存在する。 The aminoguanidine derivative (A) exhibits strong basicity because the positive charge of the conjugate acid is dispersed and stabilized by a plurality of nitrogen atoms present in the molecule, and is usually a complex (salt) with an acid. Exists.
 アミノグアニジン塩としては、特に限定されないが、例えば、アミノグアニジン炭酸塩、アミノグアニジン塩酸塩、アミノグアニジンヨウ化水素酸塩、アミノグアニジン臭化水素酸塩、アミノグアニジンヘミ硫酸塩、アミノグアニジン硝酸塩、アミノグアニジンシュウ酸塩、アミノグアニジンリン酸塩、アミノグアニジン酢酸塩、アミノグアニジンスルファミン酸塩、アミノグアニジン過塩素酸塩、アミノグアニジンケイ酸塩、アミノグアニジンホウ酸塩、アミノグアニジンフェニルホスフィン酸塩などが挙げられる。 The aminoguanidine salt is not particularly limited. For example, aminoguanidine carbonate, aminoguanidine hydrochloride, aminoguanidine hydroiodide, aminoguanidine hydrobromide, aminoguanidine hemisulfate, aminoguanidine nitrate, amino Guanidine oxalate, aminoguanidine phosphate, aminoguanidine acetate, aminoguanidine sulfamate, aminoguanidine perchlorate, aminoguanidine silicate, aminoguanidine borate, aminoguanidine phenylphosphinate, etc. It is done.
 ジアミノグアニジン塩としては、特に限定されないが、例えば、ジアミノグアニジン炭酸塩、ジアミノグアニジン塩酸塩、ジアミノグアニジンヨウ化水素酸塩、ジアミノグアニジン臭化水素酸塩、ジアミノグアニジンヘミ硫酸塩、ジアミノグアニジン硝酸塩、ジアミノグアニジンシュウ酸塩、ジアミノグアニジンリン酸塩、ジアミノグアニジン酢酸塩、ジアミノグアニジンスルファミン酸塩、ジアミノグアニジン過塩素酸塩、ジアミノグアニジンケイ酸塩、ジアミノグアニジンホウ酸塩、ジアミノグアニジンフェニルホスフィン酸塩などが挙げられる。 The diaminoguanidine salt is not particularly limited. For example, diaminoguanidine carbonate, diaminoguanidine hydrochloride, diaminoguanidine hydroiodide, diaminoguanidine hydrobromide, diaminoguanidine hemisulfate, diaminoguanidine nitrate, diamino Guanidine oxalate, diaminoguanidine phosphate, diaminoguanidine acetate, diaminoguanidine sulfamate, diaminoguanidine perchlorate, diaminoguanidine silicate, diaminoguanidine borate, diaminoguanidine phenylphosphinate, etc. It is done.
 トリアミノグアニジン塩として、特に限定されないが、例えば、トリアミノグアニジン炭酸塩、トリアミノグアニジン塩酸塩、トリアミノグアニジンヨウ化水素酸塩、トリアミノグアニジン臭化水素酸塩、トリアミノグアニジンヘミ硫酸塩、トリアミノグアニジン硝酸塩、トリアミノグアニジンシュウ酸塩、トリアミノグアニジンリン酸塩、トリアミノグアニジン酢酸塩、トリアミノグアニジンスルファミン酸塩、トリアミノグアニジン過塩素酸塩、トリアミノグアニジンケイ酸塩、トリアミノグアニジンホウ酸塩、トリアミノグアニジンフェニルホスフィン酸塩などが挙げられる。 Examples of the triaminoguanidine salt include, but are not limited to, for example, triaminoguanidine carbonate, triaminoguanidine hydrochloride, triaminoguanidine hydroiodide, triaminoguanidine hydrobromide, triaminoguanidine hemisulfate, Triaminoguanidine nitrate, Triaminoguanidine oxalate, Triaminoguanidine phosphate, Triaminoguanidine acetate, Triaminoguanidine sulfamate, Triaminoguanidine perchlorate, Triaminoguanidine silicate, Triaminoguanidine Examples thereof include borate and triaminoguanidine phenylphosphinate.
 これらのアミノグアニジン誘導体の中で、入手の容易さからアミノグアニジン及びその塩を用いることが好ましく、経済性からアミノグアニジン炭酸塩、アミノグアニジン塩酸塩を用いることが更に好ましい。 Of these aminoguanidine derivatives, aminoguanidine and its salts are preferably used from the viewpoint of availability, and aminoguanidine carbonate and aminoguanidine hydrochloride are more preferably used from the viewpoint of economy.
 上記アミノグアニジン誘導体(A)に含まれるヒドラジン部位とゴム成分(B)が混合中に反応することにより、ゴム成分(B)に極性基が導入され、ゴム成分(B)に導入される極性基と、無機充填材(C)が有し得る極性基(特にシリカの場合はシリカ表面のシラノ-ル基)と親和性が向上するため、ゴム成分(B)-無機充填材(C)間の密着性が向上する。そして、本実施形態のゴム組成物を用いて得られるタイヤ等のゴム成形体は、低ロス性に優れるものとなる。 A polar group is introduced into the rubber component (B) by reacting the hydrazine moiety contained in the aminoguanidine derivative (A) and the rubber component (B) during mixing to introduce a polar group into the rubber component (B). Between the rubber component (B) and the inorganic filler (C), since the affinity with the polar group that the inorganic filler (C) may have (especially silanol groups on the silica surface in the case of silica) improves. Adhesion is improved. And rubber molded objects, such as a tire obtained using the rubber composition of this embodiment, will be excellent in low-loss property.
 本実施形態の十分な成形時間を確保しながら加硫時間を短縮し得る効果は、上記リン酸亜鉛又は上記アミノグアニジン誘導体をそれぞれ単独に添加したゴム組成物においても得られるが、併用した場合に顕著であることが分かっている。理由は定かではないが、リン酸亜鉛又はアミノグアニジン誘導体単独よりも、リン酸亜鉛とアミノグアニジン誘導体が混合中に反応することにより生成した複合体が、シリカ或いは酸化亜鉛の分散状態を大きく変化させたためではないかと推察される。 The effect of shortening the vulcanization time while ensuring a sufficient molding time of the present embodiment is also obtained in the rubber composition in which the zinc phosphate or the aminoguanidine derivative is added individually, but when used in combination. It turns out to be prominent. The reason is not clear, but the composite formed by the reaction of zinc phosphate and aminoguanidine derivative during mixing greatly changes the dispersion state of silica or zinc oxide rather than zinc phosphate or aminoguanidine derivative alone. It is presumed that it was because of
 アミノグアニジン誘導体(A)は、公知の方法で得ることができ、例えば塩の交換反応等により任意の塩を得ることができる。 The aminoguanidine derivative (A) can be obtained by a known method. For example, an arbitrary salt can be obtained by a salt exchange reaction or the like.
 アミノグアニジン誘導体(A)の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~5質量部であり、さらに好ましくは0.1~3質量部である。アミノグアニジン誘導体(A)の含有量が上記範囲内であることにより、ゴム成分(B)が有し得る二重結合部位にまんべんなく少量の極性基(アミノグアニジン誘導体(A)に由来する基)が導入され、また、アミノグアニジン誘導体(A)とリン酸亜鉛(B)が反応する傾向にある。これにより、ゴム組成物の加工性がより向上し、ゴム成分(B)と無機充填材(C)若しくは酸化亜鉛等との親和性がより向上し、得られるゴム成形体の低ロス性がより優れる傾向にある。また、十分な成形時間を確保しながら加硫時間を短縮し得る傾向にある。 The content of the aminoguanidine derivative (A) is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, even more preferably 100 parts by weight of the rubber component (B). Is 0.1 to 3 parts by mass. When the content of the aminoguanidine derivative (A) is within the above range, a small amount of polar groups (groups derived from the aminoguanidine derivative (A)) are uniformly present at the double bond sites that the rubber component (B) may have. In addition, aminoguanidine derivatives (A) and zinc phosphate (B) tend to react. Thereby, the workability of the rubber composition is further improved, the affinity between the rubber component (B) and the inorganic filler (C) or zinc oxide is further improved, and the low loss property of the obtained rubber molded body is further improved. It tends to be excellent. Further, the vulcanization time tends to be shortened while securing a sufficient molding time.
〔ゴム成分(B)〕
 ゴム成分(B)としては、ゴムの樹から得られる天然ゴム及び/又は石油等から工業的に製造される合成ゴムを用いることができる。また、天然ゴムは引き裂き効力が大きく、耐疲労性に優れており、合成ゴムは耐摩耗性に優れていることから、両ゴム種を目的に併せて任意に混合することが出来る。なお、本実施形態において、少なくとも一部のゴム成分(B)には、少なくとも一部のアミノグアニジン誘導体(A)が、共有結合又は非共有結合を介して結合していてもよい。
[Rubber component (B)]
As the rubber component (B), natural rubber obtained from rubber trees and / or synthetic rubber produced industrially from petroleum or the like can be used. In addition, natural rubber has a large tearing effect and is excellent in fatigue resistance, and synthetic rubber is excellent in wear resistance. Therefore, both rubber types can be arbitrarily mixed for the purpose. In this embodiment, at least a part of the aminoguanidine derivative (A) may be bonded to at least a part of the rubber component (B) via a covalent bond or a non-covalent bond.
(天然ゴム)
 天然ゴムとしては、特に限定されないが、例えば、天然ゴムラテックス、天然ゴムラテックスを凝固及び乾燥して得られるシ-トゴム、ブロックゴムいずれの形状も原料として用いることができる。天然ゴムの主成分としては、ポリイソプレンが挙げられる。
(Natural rubber)
The natural rubber is not particularly limited. For example, any shape of natural rubber latex, sheet rubber obtained by coagulating and drying natural rubber latex, and block rubber can be used as a raw material. A main component of natural rubber is polyisoprene.
 シ-トゴムとしては、特に限定されないが、例えば、「天然ゴム各種等級品の国際品質包装基準」(通称グリ-ンブック)に記載されたものが挙げられる。より具体的には、シ-トを煙で燻しながら乾燥させたリブドスモ-クドシ-ト(RSS)、シ-トを熱風乾燥させたエアドライシ-ト(ADS)凝固物を充分に水洗し熱風で乾燥させたクレ-プ、TCラバ-(Technically Classified Rubber)、SPラバ-(Super Processing Rubber)、MGラバ-、PPクレ-プ、軟化剤、しゃく解剤添加ゴム等が挙げられる。 The sheet rubber is not particularly limited, and examples thereof include those described in “International Quality Packaging Standards for Natural Rubber Grades” (commonly called Green Book). More specifically, ribbed smoked sheet (RSS) dried with smoke smoked sheet, air dried sheet (ADS) coagulated material dried with hot air thoroughly washed with hot air and dried with hot air Examples thereof include a creped, a TC rubber (Technically Classified Rubber), an SP rubber (Super Processing Rubber), an MG rubber, a PP crepe, a softener, and a peptizer-added rubber.
 ブロックゴムとしては、特に限定されないが、例えば、マレ-シア産のStandard Malaysian Rubber(SMR)、インドネシア産のStandard Indonesian Rubber(SIR)、タイ産のStandard Thai  Rubber(STR)、スリランカ産のSri Lanka Rubber(SLR)、シンガポ-ル産のStandard Singapore Rubber(SSR)、ベトナム産のStandard Vietnamese Rubber(SVR)、インド産のIndian Standard Natural Rubber(ISNR)、中国産のStandard China Rubber(SCR)などが挙げられる。 The block rubber is not particularly limited. For example, Standard Malaysian Rubber Rubber (SMR) from Malaysia, Standard Indonesian Rubber (SIR) from Indonesia, Standard Thai Rubber (STR) from Sri Lan, srib from STR Standard Singapore Rubber (SSR) from Singapore, Standard Vietnamese Rubber (SVR) from Vietnam, Indian Standard Natural Rubber (ISNR) from India, CR from China Standard .
 また、天然ゴムラテックスを酸化処理した後に凝固させたゴムを用いてもよく、天然ゴムラテックスの酸化は公知の方法で行うことができる。例えば、特開平8-81505号公報に従って、有機溶剤に1~30質量%の割合で溶解した天然ゴムラテックスを金属系酸化触媒の存在下で空気酸化することによって天然ゴムラテックスの酸化を行うことができる。また、特開平9-136903号公報に記載されているように、天然ゴムラテックスにカルボニル化合物を添加して、酸化を行うこともできる。酸化方法として空気酸化を行う場合は、特開平9-136903号公報に記載されているように、空気酸化を促進するためにラジカル発生剤の存在下で空気酸化を行ってもよい。ラジカル発生剤としては、例えば過酸化物系ラジカル発生剤、レドックス系ラジカル発生剤、アゾ系ラジカル発生剤等が好適に用いられる。 Further, rubber that has been solidified after oxidation treatment of natural rubber latex may be used, and oxidation of natural rubber latex can be performed by a known method. For example, according to JP-A-8-81505, natural rubber latex can be oxidized by air-oxidizing natural rubber latex dissolved in an organic solvent at a ratio of 1 to 30% by mass in the presence of a metal-based oxidation catalyst. it can. Further, as described in JP-A-9-136903, a carbonyl compound can be added to natural rubber latex for oxidation. When air oxidation is performed as an oxidation method, as described in JP-A-9-136903, air oxidation may be performed in the presence of a radical generator in order to promote air oxidation. As the radical generator, for example, a peroxide radical generator, a redox radical generator, an azo radical generator and the like are preferably used.
 これら天然ゴム原材料は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 These natural rubber raw materials may be used alone or in combination of two or more.
(合成ゴム)
 合成ゴムとしては、特に限定されないが、例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、1,4-ポリイソプレン、3,4-ポリイソプレン、イソブチレンゴム、イソプレン-イソブチレンゴム、スチレン-ブタジエンゴム、スチレン-イソプレンゴム、末端変性スチレン-ブタジエンゴム、クロロプレンゴム、ニトリルゴム、エチレン-プロピレンゴム、プロピレン-ブチレンゴム、エチレン-プロピレン-ジエンゴムなど、分子内に二重結合を有するジエン系ゴムが挙げられる。
(Synthetic rubber)
The synthetic rubber is not particularly limited. For example, 1,4-polybutadiene, 1,2-polybutadiene, 1,4-polyisoprene, 3,4-polyisoprene, isobutylene rubber, isoprene-isobutylene rubber, styrene-butadiene rubber Styrene-isoprene rubber, terminal-modified styrene-butadiene rubber, chloroprene rubber, nitrile rubber, ethylene-propylene rubber, propylene-butylene rubber, ethylene-propylene-diene rubber, and the like, and diene rubber having a double bond in the molecule.
 ゴム成分(B)の含有量は、ゴム組成物の総量に対して、好ましくは35~80質量%であり、より好ましくは40~70質量%であり、さらに好ましくは40~60質量%である。ゴム成分(B)の含有量が上記範囲内であることにより、低ロス性及び破断強度がより優れる傾向にある。 The content of the rubber component (B) is preferably 35 to 80% by mass, more preferably 40 to 70% by mass, and further preferably 40 to 60% by mass with respect to the total amount of the rubber composition. . When the content of the rubber component (B) is within the above range, the low loss property and the breaking strength tend to be more excellent.
〔無機充填材(C)〕
 無機充填材(C)としては、当業界で用いられる無機充填材であれば特に限定されないが、例えば、ケイ素、典型金属、若しくは遷移金属の酸化物;ケイ素、典型金属、若しくは遷移金属の水酸化物;それらの水和物;ケイ素、典型金属、若しくは遷移金属の炭酸塩;及び、カ-ボンブラック等から選ばれる少なくとも一種が挙げられる。
[Inorganic filler (C)]
The inorganic filler (C) is not particularly limited as long as it is an inorganic filler used in the art. For example, silicon, typical metal, or transition metal oxide; silicon, typical metal, or transition metal hydroxide Hydrates thereof; silicon, typical metal, or transition metal carbonates; and at least one selected from carbon black and the like.
 また、無機充填材(C)は、補強性を高める目的で使用される補強性充填剤;及び、増量の目的や圧延性、押出性などの加工性を改善する目的で使用される非補強性充填剤に分類することもできる。 Further, the inorganic filler (C) is a reinforcing filler used for the purpose of enhancing the reinforcing property; and non-reinforcing property used for the purpose of increasing the amount and improving the workability such as rolling property and extrudability. It can also be classified as a filler.
 補強性充填剤としては、特に限定されないが、例えば、表面が活性なシリカ、表面処理クレー、カーボンブラック、マイカ、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン等が挙げられる。 The reinforcing filler is not particularly limited, and examples thereof include silica having active surface, surface-treated clay, carbon black, mica, calcium carbonate, aluminum hydroxide, aluminum oxide, and titanium oxide.
 また、非補強性充填材としては、特に限定されないが、例えば、炭酸カルシウム、クレー、タルク、けいそう土、粉砕石英、溶融石英、アルミノケイ酸、有機酸表面処理炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ケイ酸カルシウム、酸化第二鉄等が挙げられる。 The non-reinforcing filler is not particularly limited. For example, calcium carbonate, clay, talc, diatomaceous earth, pulverized quartz, fused quartz, aluminosilicate, organic acid surface-treated calcium carbonate, magnesium carbonate, zinc carbonate, Examples include calcium silicate and ferric oxide.
 上記のなかでも、補強性充填材が好ましく、シリカ及びカ-ボンブラックがより好ましい。このような無機充填材(C)を用いることにより、ゴム組成物の補強性がより向上するとともに、ゴム成分(B)と無機充填材(C)との親和性がより向上し、得られるゴム成形体の低ロス性がより優れる傾向にある。 Among the above, reinforcing fillers are preferable, and silica and carbon black are more preferable. By using such an inorganic filler (C), the reinforcing property of the rubber composition is further improved, and the affinity between the rubber component (B) and the inorganic filler (C) is further improved, and the resulting rubber There exists a tendency for the low-loss property of a molded object to be more excellent.
 なお、シリカとしては、特に限定されないが、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)等を使用することができる。また、シリカのBET比表面積は、好ましくは40~350m/gであり、より好ましくは100~300m/gであり、さらに好ましくは150~250m/gである。シリカのBET表面積が上記範囲であることにより、シリカの粒子径が適切となり、引張り強度がより向上し、ヒステリシスロスがより低下する傾向にある。 The silica is not particularly limited, and for example, wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid) and the like can be used. Further, the BET specific surface area of silica is preferably 40 to 350 m 2 / g, more preferably 100 to 300 m 2 / g, still more preferably 150 to 250 m 2 / g. When the BET surface area of silica is in the above range, the silica particle diameter is appropriate, the tensile strength is further improved, and the hysteresis loss tends to be further reduced.
 また、カ-ボンブラックとしては、特に限定されないが、例えば、General Purpose Furnace(GPF)、Fast Extruding Furnace(FEF)、Semi-Reinforcing Furnace(SRF)、High Abrasion Furnace(HAF)、Intermediate Super Abrasion Furnace(ISAF)、Super Abrasion Furnace(SAF)グレ-ドのもの等が挙げられる。 Carbon black is not particularly limited. For example, General Purpose Furnace (GPF), Fast Extruding Furnace (FEF), Semi-Reinforcing Furnace (SRF), High AbsenceFuranceHAF ISAF), Super Abrasion Furnace (SAF) grade, and the like.
 無機充填材(C)の含有量は、ゴム組成物の有機成分100質量部に対して、好ましくは5~120質量部であり、より好ましくは20~100質量部であり、さらに好ましくは30~100質量部である。無機充填材(C)の含有量が上記範囲内であることにより、ゴム組成物の加工性及び補強性がより向上し、得られるゴム成形体の低ロス性がより優れる傾向にある。ここで、「ゴム組成物の有機成分」とは、アミノグアニジン誘導体(A)、ゴム成分(B)、シランカップリング剤(D)及びその他の有機成分をいう。 The content of the inorganic filler (C) is preferably 5 to 120 parts by weight, more preferably 20 to 100 parts by weight, and further preferably 30 to 30 parts by weight with respect to 100 parts by weight of the organic component of the rubber composition. 100 parts by mass. When the content of the inorganic filler (C) is within the above range, the processability and reinforcing property of the rubber composition are further improved, and the low loss property of the resulting rubber molded product tends to be more excellent. Here, the “organic component of the rubber composition” refers to the aminoguanidine derivative (A), the rubber component (B), the silane coupling agent (D), and other organic components.
〔シランカップリング剤(D)〕
 シランカップリング剤(D)としては、特に限定されないが、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリメトキシシリルプロピルメタクリロイルモノスルフィド等のスルフィド系シランカップリング剤;3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシラン等のチオ系シランカップリング剤;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等のメルカプト系シランカップリング剤;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノシラン系シランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン系シランカップリング剤等が挙げられる。
[Silane coupling agent (D)]
The silane coupling agent (D) is not particularly limited. For example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-methyldimethoxysilylpropyl) Tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, 3 -Sulphides such as trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-trimethoxysilylpropylmethacryloyl monosulfide Silane coupling agent; 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3-lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyl Triethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltri Methoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, 2-octanoylthioethyltrimethoxysilane Thio silane coupling agents such as 2-decanoylthioethyltrimethoxysilane, 2-lauroylthioethyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyl Mercapto silane coupling agents such as dimethoxysilane; aminosilane silane coupling agents such as 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane; γ-glycidoxypropyltrimethoxysilane, γ-glycidoxy Examples include epoxy silane-based silane coupling agents such as propylmethyldiethoxysilane.
 このなかでも、スルフィド系シランカップリング剤が好ましい。このようなシランカップリング剤(D)を用いることにより、ゴム成分(B)と無機充填材(C)の親和性がより向上する傾向にある。 Of these, sulfide-based silane coupling agents are preferred. By using such a silane coupling agent (D), the affinity between the rubber component (B) and the inorganic filler (C) tends to be further improved.
 シランカップリング剤(D)の含有量は、無機充填材(C)100質量部に対して、好ましくは1~20質量部であり、より好ましくは3~15質量部であり、さらに好ましくは6~10質量部である。シランカップリング剤(D)の含有量が上記範囲内であることにより、ゴム成分(B)と無機充填材(C)の親和性がより向上する傾向にある。 The content of the silane coupling agent (D) is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass, and even more preferably 6 to 100 parts by mass of the inorganic filler (C). ~ 10 parts by mass. When the content of the silane coupling agent (D) is within the above range, the affinity between the rubber component (B) and the inorganic filler (C) tends to be further improved.
〔リン酸亜鉛(E)〕
 リン酸亜鉛(E)とは、化学式Zn(PO又はZnで表される化合物である。このなかでも、化学式Zn(POで表される化合物を用いることが好ましく、無水物と水和物いずれを用いてもよい。リン酸亜鉛(E)としては、例えば、和光純薬工業(株)製のリン酸亜鉛四水和物(Zn(PO・4HO)、二リン酸亜鉛(Zn(PO)等を市販品として入手することができる。
[Zinc phosphate (E)]
Zinc phosphate (E) is a compound represented by the chemical formula Zn 3 (PO 4 ) 2 or Zn 2 P 2 O 7 . Among these, it is preferable to use a compound represented by the chemical formula Zn 3 (PO 4 ) 2 , and either an anhydride or a hydrate may be used. Examples of the zinc phosphate (E) include zinc phosphate tetrahydrate (Zn 3 (PO 4 ) 2 · 4H 2 O) and zinc diphosphate (Zn 3 (PO) manufactured by Wako Pure Chemical Industries, Ltd. 4 ) 2 ) etc. can be obtained as commercial products.
 リン酸亜鉛(E)の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは1~7.5質量部であり、さらに好ましくは2~5質量部である。また、亜鉛原子(Zn)自体の含有量に換算した場合は、リン酸亜鉛(E)の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.1~8質量部であり、より好ましくは0.3~5質量部であり、さらに好ましくは0.5~3質量部である。リン酸亜鉛(E)の含有量が上記範囲内にあることにより、ゴム組成物の加硫挙動に影響を与え難い傾向にある。 The content of zinc phosphate (E) is preferably 0.01 to 10 parts by weight, more preferably 1 to 7.5 parts by weight, even more preferably 100 parts by weight of the rubber component (B). Is 2 to 5 parts by mass. In addition, when converted to the content of zinc atoms (Zn) itself, the content of zinc phosphate (E) is preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the rubber component (B). Yes, more preferably 0.3 to 5 parts by mass, still more preferably 0.5 to 3 parts by mass. When the content of zinc phosphate (E) is within the above range, it tends to hardly affect the vulcanization behavior of the rubber composition.
〔その他の成分〕
 本実施形態のゴム組成物は、上記成分の他に、必要に応じて、ゴム工業界で通常使用される配合剤を含んでもよい。このような配合剤としては、特に限定されないが、例えば、老化防止剤、軟化剤、加硫促進剤、加硫促進助剤、加硫剤等が挙げられる。これらの配合剤は、市販品を好適に使用することができる。
[Other ingredients]
The rubber composition of the present embodiment may contain a compounding agent that is usually used in the rubber industry, if necessary, in addition to the above components. Such a compounding agent is not particularly limited, and examples thereof include an anti-aging agent, a softening agent, a vulcanization accelerator, a vulcanization acceleration aid, and a vulcanization agent. As these compounding agents, commercially available products can be suitably used.
(老化防止剤)
 老化防止剤としては、特に限定されないが、例えば、ナフチルアミン系化合物、p-フェニレンジアミン系化合物、ヒドロキノン誘導体、ビス,トリス,ポリフェノ-ル系化合物、ジフェニルアミン系化合物、キノリン系化合物、モノフェノ-ル系化合物、チオビスフェノ-ル系化合物、ヒンダ-ド、フェノ-ル系化合物などを挙げることができる。このなかでも、更なる老化防止効果の点から、アミン系老化防止剤が好ましく、p-フェニレンジアミン系化合物、ジフェニルアミン系化合物がより好ましい。
(Anti-aging agent)
The anti-aging agent is not particularly limited, and examples thereof include naphthylamine compounds, p-phenylenediamine compounds, hydroquinone derivatives, bis, tris, polyphenol compounds, diphenylamine compounds, quinoline compounds, monophenol compounds. Thiobisphenol compounds, hinders, phenol compounds and the like. Of these, amine-based anti-aging agents are preferable from the viewpoint of further anti-aging effects, and p-phenylenediamine-based compounds and diphenylamine-based compounds are more preferable.
 ジフェニルアミン系化合物としては、特に限定されないが、例えば、4,4'-(α-メチルベンジル)ジフェニルアミン、4,4'-(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、4,4'-ジオクチルジフェニルアミンなどが挙げられ、これらの中で、更に高い老化防止効果の点で4,4'-(α-メチルベンジル)ジフェニルアミンが最も好ましい。 The diphenylamine compound is not particularly limited. For example, 4,4 ′-(α-methylbenzyl) diphenylamine, 4,4 ′-(α, α-dimethylbenzyl) diphenylamine, p- (p-toluenesulfonylamide) Examples thereof include diphenylamine and 4,4′-dioctyldiphenylamine. Among these, 4,4 ′-(α-methylbenzyl) diphenylamine is most preferable from the viewpoint of higher antiaging effect.
 また、p-フェニレンジアミン系化合物としては、特に限定されないが、例えば、N,N'-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N'-フェニル-p-フェニレンジアミン、N,N'-ジ-2-ナフチル-p-フェニレンジアミン、N-シクロヘキシル-N'-フェニル-p-フェニレンジアミン、N-フェニル-N'-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン、N,N'-ビス(1-メチルヘプチル)-p-フェニレンジアミン、N,N'-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン、N,N'-ビス(1-エチル-3-メチルペンチル)-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミンなどが挙げられ、これらの中で、更に高い老化防止効果及びコスト面からN-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミンが最も好ましい。 Further, the p-phenylenediamine compound is not particularly limited. For example, N, N′-diphenyl-p-phenylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, N, N′-di -2-naphthyl-p-phenylenediamine, N-cyclohexyl-N′-phenyl-p-phenylenediamine, N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, N, N′-bis (1-methylheptyl) -p-phenylenediamine, N, N′-bis (1,4-dimethylpentyl) -p-phenylenediamine, N, N′-bis (1-ethyl-3-methyl) Pentyl) -p-phenylenediamine, N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, and the like. Among these, higher anti-aging effect and a cost N-(1,3-dimethylbutyl)-N'-phenyl -p- phenylenediamine is most preferred.
 老化防止剤の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.1~5質量部である。 The content of the antioxidant is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component (B).
(軟化剤)
 軟化剤としては、特に限定されないが、例えば、石油やコールタール由来の鉱物油系軟化剤、脂肪油や松樹由来の植物油系軟化剤及び合成樹脂系軟化剤などが挙げられる。これら軟化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Softener)
The softening agent is not particularly limited, and examples thereof include mineral oil-based softeners derived from petroleum and coal tar, vegetable oil-based softeners derived from fatty oils and pine trees, and synthetic resin-based softeners. These softeners may be used alone or in combination of two or more.
(加硫促進剤)
 加硫促進剤としては、特に限定されないが、例えば、メルカプトベンゾチアゾ-ル、ジ-2-ベンゾチアゾリルジスルフィド等のチアゾ-ル系化合物;N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N'-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N'-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド等のスルフェンアミド系化合物;ジフェニルグアニジン等のグアニジン系化合物が挙げられる。これら加硫促進剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Vulcanization accelerator)
The vulcanization accelerator is not particularly limited. For example, thiazol compounds such as mercaptobenzothiazol and di-2-benzothiazolyl disulfide; N-cyclohexyl-2-benzothiazolylsulfenamide Sulfenamide compounds such as N, N′-dicyclohexyl-2-benzothiazolylsulfenamide, N′-tert-butyl-2-benzothiazolylsulfenamide; guanidine compounds such as diphenylguanidine . These vulcanization accelerators may be used alone or in combination of two or more.
 加硫促進剤の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.1~5質量部である。 The content of the vulcanization accelerator is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component (B).
(加硫促進助剤)
 さらに、本実施形態においては加硫促進剤の効果をさらに向上させるため、加硫促進助剤を用いることが好ましい。加硫促進助剤としては、特に限定されないが酸化亜鉛等の亜鉛化合物、ステアリン酸等の高級脂肪酸が挙げられる。このなかでも、酸化亜鉛が好ましく、アミン系分散剤や湿潤剤で表面処理したものなどを用いることもできる。
(Vulcanization accelerator)
Furthermore, in this embodiment, in order to further improve the effect of the vulcanization accelerator, it is preferable to use a vulcanization acceleration aid. The vulcanization acceleration aid is not particularly limited, and examples thereof include zinc compounds such as zinc oxide and higher fatty acids such as stearic acid. Among these, zinc oxide is preferable, and those treated with an amine dispersant or a wetting agent can be used.
 リン酸亜鉛(E)は、酸化亜鉛と同様に加硫促進助剤としても作用するため、亜鉛源として例えば酸化亜鉛を用いる場合は、酸化亜鉛及びリン酸亜鉛の合計含有量は、ゴム成分(B)100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.5~8質量部であり、さらに好ましくは1~5質量部である。 Zinc phosphate (E) also acts as a vulcanization acceleration aid in the same manner as zinc oxide. Therefore, for example, when zinc oxide is used as the zinc source, the total content of zinc oxide and zinc phosphate is determined by the rubber component ( B) The amount is preferably 0.01 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, and further preferably 1 to 5 parts by mass with respect to 100 parts by mass.
 酸化亜鉛の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.5~8質量部であり、さらに好ましくは0.8~5質量部である。また、亜鉛原子(Zn)自体の含有量に換算した場合は、酸化亜鉛の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.008~8質量部であり、より好ましくは0.1~5質量部であり、さらに好ましくは0.5~3質量部である。酸化亜鉛の含有量が上記範囲内にあることにより、ゴム組成物の成形時間や引張強度などの特性が高度にバランスされる傾向にある。 The content of zinc oxide is preferably 0.01 to 10 parts by mass, more preferably 0.5 to 8 parts by mass, and still more preferably 0.8 to 100 parts by mass of the rubber component (B). Is 5 parts by mass. Further, when converted to the content of zinc atoms (Zn) itself, the content of zinc oxide is preferably 0.008 to 8 parts by mass, more preferably 100 parts by mass of the rubber component (B). Is 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass. When the content of zinc oxide is within the above range, characteristics such as molding time and tensile strength of the rubber composition tend to be highly balanced.
(加硫剤)
 加硫剤としては、通常当業界で用いられるものであれば特に限定されないが、例えば、硫黄、過酸化物などが挙げられる。このなかでも、硫黄が好ましい。
(Vulcanizing agent)
The vulcanizing agent is not particularly limited as long as it is usually used in the art, and examples thereof include sulfur and peroxides. Among these, sulfur is preferable.
 加硫剤の含有量は、ゴム成分(B)100質量部に対して、好ましくは0.1~5質量部であり、より好ましくは0.5~3質量部である。加硫剤の含有量が0.1質量部以上であることにより、十分に加硫が進行する。また、加硫剤の含有量が5質量部以下であることにより、いわゆるスコ-チ時間が長くなり、混練り中にゴムが焦げてしまうことを抑制できる傾向にある。 The content of the vulcanizing agent is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component (B). When the content of the vulcanizing agent is 0.1 parts by mass or more, vulcanization proceeds sufficiently. Further, when the content of the vulcanizing agent is 5 parts by mass or less, the so-called coaching time becomes long, and the rubber tends to be prevented from being burnt during kneading.
 本実施形態のゴム組成物は、アミノグアニジン誘導体(A)、ゴム成分(B)、無機充填材(C)、シランカップリング剤(D)、及びリン酸亜鉛(E)を、20~180℃で混合して得られるものであることが好ましい。混合温度は、好ましくは20~180℃であり、より好ましくは50~160℃であり、さらに好ましくは80~160℃である。このようなゴム組成物は、アミノグアニジン誘導体(A)の分解が抑制されつつ、ゴム成分(B)へのアミノグアニジン誘導体(A)の反応がより適切に進行する傾向にある。したがって、ゴム成分(B)と無機充填材(C)との親和性がより向上し、得られるゴム成形体の低ロス性がより優れる傾向にある。 The rubber composition of this embodiment comprises an aminoguanidine derivative (A), a rubber component (B), an inorganic filler (C), a silane coupling agent (D), and zinc phosphate (E) at 20 to 180 ° C. It is preferable that it is obtained by mixing with. The mixing temperature is preferably 20 to 180 ° C, more preferably 50 to 160 ° C, and further preferably 80 to 160 ° C. In such a rubber composition, the reaction of the aminoguanidine derivative (A) to the rubber component (B) tends to proceed more appropriately while the decomposition of the aminoguanidine derivative (A) is suppressed. Therefore, the affinity between the rubber component (B) and the inorganic filler (C) is further improved, and the low loss property of the obtained rubber molded product tends to be more excellent.
〔ゴム組成物の製造方法〕
 次に、本実施形態のゴム組成物の製造方法について述べる。本実施形態のゴム組成物は、アミノグアニジン誘導体(A)、ゴム成分(B)、無機充填材(C)、シランカップリング剤(D)、及びリン酸亜鉛(E)を混合する方法であれば特に限定されない。
[Method for producing rubber composition]
Next, the manufacturing method of the rubber composition of this embodiment is described. The rubber composition of this embodiment is a method in which an aminoguanidine derivative (A), a rubber component (B), an inorganic filler (C), a silane coupling agent (D), and zinc phosphate (E) are mixed. If it does not specifically limit.
 混合に際しては、ミキサ-、押出機及び混練機等を用いることができる。このなかでも、分散性向上の観点から、混練機で混合することが好ましい。アミノグアニジン誘導体(A)及びリン酸亜鉛(E)をミキサ-、押出機及び混練機等に添加する方法としては、特に限定されないが、例えば、粉体をそのまま添加する方法、溶媒に溶解させて溶液として添加する方法、エマルジョン溶液として添加する方法が挙げられる。 In mixing, a mixer, an extruder, a kneader or the like can be used. Among these, it is preferable to mix with a kneader from the viewpoint of improving dispersibility. The method for adding the aminoguanidine derivative (A) and zinc phosphate (E) to the mixer, extruder, kneader, etc. is not particularly limited. For example, the method of adding the powder as it is, or dissolving it in a solvent. The method of adding as a solution and the method of adding as an emulsion solution are mentioned.
 混合温度は、好ましくは20~180℃であり、より好ましくは50~160℃であり、さらに好ましくは80~160℃である。混合温度が20~180℃であることにより、ゴム成分(B)とアミノグアニジン誘導体(A)、及びリン酸亜鉛(E)とアミノグアニジン誘導体(A)とがより均質に混合され、これらの反応をより適切に進行させることができ、更にアミノグアニジン誘導体(A)の熱分解を抑えることができる傾向にある。 The mixing temperature is preferably 20 to 180 ° C, more preferably 50 to 160 ° C, and further preferably 80 to 160 ° C. When the mixing temperature is 20 to 180 ° C., the rubber component (B) and the aminoguanidine derivative (A), and the zinc phosphate (E) and the aminoguanidine derivative (A) are mixed more uniformly, and these reactions are performed. Can proceed more appropriately, and further, thermal decomposition of the aminoguanidine derivative (A) tends to be suppressed.
 混練時間は、好ましくは0.5~30分間であり、より好ましくは2~10分間り、さらに好ましくは2~7分間である。混練時間が0.5~30分間であることにより、生産性を維持しつつ、ゴム成分(B)とアミノグアニジン誘導体(A)、及びリン酸亜鉛(E)とアミノグアニジン誘導体(A)を十分に反応させることができる傾向にある。 The kneading time is preferably 0.5 to 30 minutes, more preferably 2 to 10 minutes, and further preferably 2 to 7 minutes. When the kneading time is 0.5 to 30 minutes, the rubber component (B) and the aminoguanidine derivative (A), and the zinc phosphate (E) and the aminoguanidine derivative (A) are sufficiently maintained while maintaining the productivity. Tend to react.
 反応の雰囲気としては、空気下など酸素存在下で行うことが好ましい。酸素はゴム成分(B)とアミノグアニジン誘導体(A)のラジカル反応を促進する傾向にある。 The reaction atmosphere is preferably performed in the presence of oxygen such as under air. Oxygen tends to promote the radical reaction between the rubber component (B) and the aminoguanidine derivative (A).
 アミノグアニジン誘導体(A)の反応性を調整する目的で、重合開始(反応促進)剤や重合防止(反応遅延)剤を用いることができる。重合開始剤としては、過酸化ベンゾイル、過酸化水素、クメンハイドロパ-オキサイド、tert-ブチルハイドロパ-オキサイド、ジ-tert-ブチルパ-オキサイド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2-ジアミノプロパン)ヒドロクロライド、2,2-アゾビス(2-ジアミノプロパン)ジヒドロクロライド、2,2-アゾビス(2,4-ジメチルバレロニトリル)、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。なお、反応温度を低下させるためには、レドックス系の重合開始剤を用いることが好ましい。かかるレドックス系重合開始剤において、過酸化物と組み合せる還元剤としては、例えば、テトラエチレンペンタミン、メルカプタン類、酸性亜硫酸ナトリウム、還元性金属イオン、アスコルビン酸等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 For the purpose of adjusting the reactivity of the aminoguanidine derivative (A), a polymerization initiator (reaction promotion) agent or a polymerization inhibitor (reaction delay) agent can be used. Polymerization initiators include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, 2,2-azobisisobutyronitrile, 2,2 -Azobis (2-diaminopropane) hydrochloride, 2,2-azobis (2-diaminopropane) dihydrochloride, 2,2-azobis (2,4-dimethylvaleronitrile), potassium persulfate, sodium persulfate, ammonium persulfate Etc. In order to lower the reaction temperature, it is preferable to use a redox polymerization initiator. Examples of the reducing agent to be combined with the peroxide in the redox polymerization initiator include tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid and the like. These may be used alone or in combination of two or more.
 重合防止剤としては、ジフェニルピクリルヒドラジル、ガルビノキシル、フェルダジルなどの安定なラジカル物質や、酵素、フェノ-ル誘導体、ベンゾキノン誘導体、ニトロ化合物のようにラジカルと付加して安定ラジカルを生じやすいものなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of polymerization inhibitors include stable radical substances such as diphenylpicrylhydrazyl, galvinoxyl, and ferdazil, and those that easily generate stable radicals when added to radicals such as enzymes, phenol derivatives, benzoquinone derivatives, nitro compounds, etc. Is mentioned. These may be used alone or in combination of two or more.
〔タイヤ〕
 本実施形態のタイヤは、上記ゴム組成物を含み、特にトレッドに上記ゴム組成物を含むものが好ましい。これにより、本実施形態のタイヤは、低燃費性に優れるものとなる。上記ゴム組成物が含まれるよう製造する方法であれば、本実施形態のタイヤの製造方法は、特に限定されず、常法に従って製造することができる。なお、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
〔tire〕
The tire according to this embodiment includes the rubber composition, and a tire including the rubber composition in a tread is particularly preferable. Thereby, the tire of this embodiment becomes excellent in low fuel consumption. If it is a method to manufacture so that the said rubber composition may be included, the manufacturing method of the tire of this embodiment is not specifically limited, It can manufacture in accordance with a conventional method. In addition, as a gas filled in the tire, an inert gas such as nitrogen, argon, helium, or the like can be used in addition to normal or air with adjusted oxygen partial pressure.
 以下、実施例及び比較例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
〔実施例1〕
 表1の組成に従い、最初に天然ゴム凝固体(商品名「RSS#1」、加藤産商(株)製)、シリカ(商品名「ニップシ-ルAQ」、東ソ-・シリカ(株)製、BET表面積=207m/g)、シランカップリング剤(ビス(3-トリエトキシシリルプロピル)テトラスルフィド、エボニック ジャパン(株)製)、酸化亜鉛(和光純薬工業(株)製)、リン酸亜鉛四水和物(Zn(PO・4HO、和光純薬工業(株)製)、ステアリン酸(和光純薬工業(株)製)、アミノグアニジン炭酸塩(東京化成工業(株)製)をラボプラストミル((株)東洋精機製作所製)にて、145℃で5分間混練した。その後、得られた混練物を一旦55℃に冷却し、これに硫黄(細井化学工業(株)製、250μm)と加硫促進剤としてCBS(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、和光純薬工業(株)製)及びDPG(ジフェニルグアニジン、和光純薬工業(株)製)を投入し、90℃で3分間混練して未加硫ゴム組成物を調製した。
[Example 1]
According to the composition shown in Table 1, natural rubber coagulated product (trade name “RSS # 1”, manufactured by Kato Sangsho Co., Ltd.), silica (trade name “Nip Seal AQ”, manufactured by Tosoh Silica Co., Ltd.) , BET surface area = 207 m 2 / g), silane coupling agent (bis (3-triethoxysilylpropyl) tetrasulfide, manufactured by Evonik Japan Co., Ltd.), zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.), phosphoric acid zinc tetrahydrate (Zn 3 (PO 4) 2 · 4H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.), (manufactured by Wako Pure Chemical Industries, Ltd.) stearic acid, aminoguanidine carbonate (Tokyo Kasei Kogyo ( Co., Ltd.) was kneaded at 145 ° C. for 5 minutes in a lab plast mill (manufactured by Toyo Seiki Seisakusho). Thereafter, the obtained kneaded material was once cooled to 55 ° C., to which sulfur (manufactured by Hosoi Chemical Co., Ltd., 250 μm) and CBS (N-cyclohexyl-2-benzothiazolylsulfenamide) as a vulcanization accelerator, Wako Pure Chemical Industries, Ltd.) and DPG (diphenylguanidine, Wako Pure Chemical Industries, Ltd.) were added and kneaded at 90 ° C. for 3 minutes to prepare an unvulcanized rubber composition.
 続いて、プレス機(北川精機(株)製)を用いて145℃、10MPaでt90値(分)の1.5倍の時間(19~40分間)加硫することにより加硫ゴム組成物を得た。t90は、加硫試験機による評価でのトルクの最大値と最小値の差の90%+最小値に達するまでの時間とした。 Subsequently, the vulcanized rubber composition was vulcanized using a press (made by Kitagawa Seiki Co., Ltd.) at 145 ° C. and 10 MPa for 1.5 times the t90 value (minute) (19 to 40 minutes). Obtained. t90 is defined as 90% of the difference between the maximum value and the minimum value of the torque in the evaluation by the vulcanization tester + the time until reaching the minimum value.
〔比較例1〕
 アミノグアニジン炭酸塩及びリン酸亜鉛四水和物を用いず、酸化亜鉛の使用量を実施例1と亜鉛原子のモル数が同一になるように変更したこと以外は、実施例1と同様の操作により未加硫ゴム組成物を調製し、加硫ゴム組成物を得た。
[Comparative Example 1]
The same operation as in Example 1 except that aminoguanidine carbonate and zinc phosphate tetrahydrate were not used, and the amount of zinc oxide used was changed so that the number of moles of zinc atoms was the same as in Example 1. Thus, an unvulcanized rubber composition was prepared to obtain a vulcanized rubber composition.
 得られた加硫ゴム組成物を用いて、下記の方法で発熱性及び引張り破断強度を測定、評価した。結果を表1に示す。 Using the obtained vulcanized rubber composition, the exothermic property and tensile breaking strength were measured and evaluated by the following methods. The results are shown in Table 1.
(1)発熱性
 上記加硫ゴム組成物に対し、動的粘弾性測定装置(セイコ-インスツル(株)製DMS6100)を用い、温度50℃、歪み0.05%、周波数10Hzで損失正接(tanδ)を測定し、表1の比較例1の値を100として指数表示した。指数値が小さい程、tanδが低く、ゴム組成物が低発熱性であることを示す。
(1) Exothermic property The vulcanized rubber composition was subjected to loss tangent (tan δ) at a temperature of 50 ° C., a strain of 0.05%, and a frequency of 10 Hz using a dynamic viscoelasticity measuring device (DMS6100 manufactured by Seiko Instruments Inc.). ) Was measured, and the value of Comparative Example 1 in Table 1 was taken as 100 and indicated as an index. The smaller the index value, the lower the tan δ, indicating that the rubber composition is less exothermic.
(2)引張り破断強度
 上記加硫ゴム組成物に対し、JIS K6251:2010に準拠して引張り試験を行い、引張り破断強度を測定し、表1の比較例1の値を100として指数表示した。指数値が大きい程、引張り破断強度が大きいことを示す。
(2) Tensile strength at break The above vulcanized rubber composition was subjected to a tensile test in accordance with JIS K6251: 2010, the tensile strength at break was measured, and the value of Comparative Example 1 in Table 1 was expressed as an index. A larger index value indicates a higher tensile breaking strength.
(3)成形時間/加硫時間
 下記に示す成形時間(3-1)と加硫時間(3-2)をそれぞれ測定し、加硫時間に対する成形時間の比率(成形時間/加硫時間)を求め、表1の比較例1の値を100として指数表示した。指数値が大きい程、十分な成形時間を確保しながら加硫時間の短縮が可能となることを示す。
(3) Molding time / Vulcanization time The molding time (3-1) and vulcanization time (3-2) shown below are measured, and the ratio of the molding time to the vulcanization time (molding time / vulcanizing time) is determined. The value of Comparative Example 1 in Table 1 was taken as 100 and indicated as an index. A larger index value indicates that the vulcanization time can be shortened while securing a sufficient molding time.
(3-1)成形時間
 上記未加硫ゴム組成物に対し、加硫試験機((株)東洋精機製作所製ローターレス・レオメータRLR-4)を用い、JIS K 6300-2:2001 ダイ加硫試験A法に準拠して、温度145℃、振幅角±1°、振動数100cpmでt10を測定した。t10はトルクの最大値と最小値の差の10%+最小値に達するまでの時間とし、加硫成形時の流動時間の長さ、すなわち加工性or成形時間の指標として用いられている。この時間が長い程、成形性に優れることを示す。
(3-1) Molding time JIS K 6300-2: 2001 die vulcanization is performed on the unvulcanized rubber composition using a vulcanization tester (rotorless rheometer RLR-4 manufactured by Toyo Seiki Seisakusho Co., Ltd.). According to the test A method, t10 was measured at a temperature of 145 ° C., an amplitude angle of ± 1 °, and a frequency of 100 cpm. t10 is 10% of the difference between the maximum value and the minimum value of the torque + the time required to reach the minimum value, and is used as an index of the flow time during vulcanization molding, that is, the workability or molding time. It shows that it is excellent in a moldability, so that this time is long.
(3-2)加硫時間
 上記未加硫ゴム組成物に対し、加硫試験機((株)東洋精機製作所製ローターレス・レオメータRLR-4)を用い、JIS K 6300-2:2001 ダイ加硫試験A法に準拠して、温度145℃、振幅角±1°、振動数100cpmでt90を測定した。t90はトルクの最大値と最小値の差の90%+最小値に達するまでの時間とし、加硫時間の指標として用いられている。この時間が短い程、生産性に優れることを示す。
(3-2) Vulcanization Time JIS K 6300-2: 2001 Die vulcanization is applied to the unvulcanized rubber composition using a vulcanization tester (rotorless rheometer RLR-4 manufactured by Toyo Seiki Seisakusho Co., Ltd.). According to the sulfur test A method, t90 was measured at a temperature of 145 ° C., an amplitude angle of ± 1 °, and a frequency of 100 cpm. t90 is 90% of the difference between the maximum value and the minimum value of the torque + the time required to reach the minimum value, and is used as an index of the vulcanization time. It shows that it is excellent in productivity, so that this time is short.
Figure JPOXMLDOC01-appb-T000001
 表1中、配合処方の各成分は質量部を示し、( )内は亜鉛原子に換算した質量部を示す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, each component of the compounding prescription indicates part by mass, and the value in () indicates part by mass converted to zinc atom.
 表1から、アミノグアニジンリン酸塩、天然ゴム、シリカ及びシランカップリング剤を混合したゴム組成物は、低発熱性に優れ、引張り破断強度が大きくなり、更に十分な成形時間を確保しながら加硫時間を短縮が可能となることが分かる。 From Table 1, the rubber composition in which aminoguanidine phosphate, natural rubber, silica and silane coupling agent are mixed is excellent in low exothermic property, has high tensile breaking strength, and is added while ensuring sufficient molding time. It can be seen that the sulfurization time can be shortened.
 本出願は、2015年9月4日に日本国特許庁へ出願された日本特許出願(特願2015-174392)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-174392) filed with the Japan Patent Office on September 4, 2015, the contents of which are incorporated herein by reference.
 本発明のゴム組成物は、タイヤの材料等として、産業上の利用可能性を有する。 The rubber composition of the present invention has industrial applicability as a tire material and the like.

Claims (7)

  1.  アミノグアニジン誘導体(A)と、
     天然ゴム及び/又は合成ゴム(B)と、
     無機充填材(C)と、
     シランカップリング剤(D)と、
     リン酸亜鉛(E)と、を含有する、
     ゴム組成物。
    An aminoguanidine derivative (A),
    Natural rubber and / or synthetic rubber (B);
    An inorganic filler (C);
    A silane coupling agent (D);
    Containing zinc phosphate (E),
    Rubber composition.
  2.  前記無機充填材(C)が、シリカを含む、
     請求項1に記載のゴム組成物。
    The inorganic filler (C) contains silica,
    The rubber composition according to claim 1.
  3.  前記無機充填材(C)が、カーボンブラックを含む、
     請求項1又は2に記載のゴム組成物。
    The inorganic filler (C) contains carbon black,
    The rubber composition according to claim 1 or 2.
  4.  前記アミノグアニジン誘導体(A)、前記天然ゴム及び/又は前記合成ゴム(B)、前記無機充填材(C)、前記シランカップリング剤(D)、並びに、前記リン酸亜鉛(E)を20~180℃で混合して得られる、
     請求項1~3のいずれか一項に記載のゴム組成物。
    The aminoguanidine derivative (A), the natural rubber and / or the synthetic rubber (B), the inorganic filler (C), the silane coupling agent (D), and the zinc phosphate (E) Obtained by mixing at 180 ° C.,
    The rubber composition according to any one of claims 1 to 3.
  5.  前記リン酸亜鉛(E)の含有量が、前記天然ゴム及び/又は合成ゴム(B)100質量部に対して、0.01~10質量部である、
     請求項1~4のいずれか一項に記載のゴム組成物。
    The content of the zinc phosphate (E) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the natural rubber and / or synthetic rubber (B).
    The rubber composition according to any one of claims 1 to 4.
  6.  前記アミノグアニジン誘導体(A)の含有量が、前記天然ゴム及び/又は前記合成ゴム(B)100質量部に対して、0.01~10質量部である、
     請求項1~5のいずれか一項に記載のゴム組成物。
    The content of the aminoguanidine derivative (A) is 0.01 to 10 parts by mass with respect to 100 parts by mass of the natural rubber and / or the synthetic rubber (B).
    The rubber composition according to any one of claims 1 to 5.
  7.  トレッドに請求項1~6のいずれか一項に記載のゴム組成物を含む、
     タイヤ。
    The tread contains the rubber composition according to any one of claims 1 to 6,
    tire.
PCT/JP2016/074051 2015-09-04 2016-08-17 Rubber composition and tire WO2017038475A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-174392 2015-09-04
JP2015174392A JP2018172446A (en) 2015-09-04 2015-09-04 Rubber composition and tire

Publications (1)

Publication Number Publication Date
WO2017038475A1 true WO2017038475A1 (en) 2017-03-09

Family

ID=58187517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074051 WO2017038475A1 (en) 2015-09-04 2016-08-17 Rubber composition and tire

Country Status (3)

Country Link
JP (1) JP2018172446A (en)
TW (1) TW201714940A (en)
WO (1) WO2017038475A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700122793A1 (en) * 2017-10-27 2019-04-27 Bridgestone Corp NANOMATERIALS BASED ON SILICA AS SUBSTITUTES OF THE ZNO IN RUBBER COMPOUNDS AND THEIR PREPARATION
JP2019131645A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131646A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131649A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131647A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131650A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131648A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420044A2 (en) * 1997-04-02 2004-05-19 Bridgestone Corporation Rubber composition and pneumatic tire
CN103756045A (en) * 2013-12-13 2014-04-30 芜湖金鹰机械科技开发有限公司 Environmental protective rubber O-shaped ring
CN104087051A (en) * 2014-07-24 2014-10-08 张慧玲 Derusting/antirust primer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420044A2 (en) * 1997-04-02 2004-05-19 Bridgestone Corporation Rubber composition and pneumatic tire
CN103756045A (en) * 2013-12-13 2014-04-30 芜湖金鹰机械科技开发有限公司 Environmental protective rubber O-shaped ring
CN104087051A (en) * 2014-07-24 2014-10-08 张慧玲 Derusting/antirust primer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247098A (en) * 2017-10-27 2020-06-05 株式会社普利司通 Silica-based nanomaterials as a substitute for ZnO in rubber compounds and their preparation
WO2019082069A1 (en) * 2017-10-27 2019-05-02 Bridgestone Corporation Silica based nanomaterials as substitutes for zno in rubber compounds and preparation thereof
JP7024074B2 (en) 2017-10-27 2022-02-22 株式会社ブリヂストン Silica-based nanomaterials as an alternative to ZnO in rubber formulations and their preparation
JP2021500458A (en) * 2017-10-27 2021-01-07 株式会社ブリヂストン Silica-based nanomaterials as an alternative to ZnO in rubber formulations and their preparation
IT201700122793A1 (en) * 2017-10-27 2019-04-27 Bridgestone Corp NANOMATERIALS BASED ON SILICA AS SUBSTITUTES OF THE ZNO IN RUBBER COMPOUNDS AND THEIR PREPARATION
JP2019131649A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131650A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131648A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131647A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131646A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2019131645A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP7069752B2 (en) 2018-01-29 2022-05-18 住友ゴム工業株式会社 Rubber composition for tires and tires
JP2023025131A (en) * 2018-01-29 2023-02-21 住友ゴム工業株式会社 Tire rubber composition and tire
JP7225537B2 (en) 2018-01-29 2023-02-21 住友ゴム工業株式会社 Tire rubber composition and tire
JP7331332B2 (en) 2018-01-29 2023-08-23 住友ゴム工業株式会社 Tire rubber composition and tire
JP7435718B2 (en) 2018-01-29 2024-02-21 住友ゴム工業株式会社 Rubber composition for tires and tires

Also Published As

Publication number Publication date
TW201714940A (en) 2017-05-01
JP2018172446A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP5924562B1 (en) Modified rubber, tire rubber composition and tire using the same
WO2017038475A1 (en) Rubber composition and tire
JP5904430B1 (en) Modified rubber and method for producing the same, rubber composition, and tire
JP4930661B1 (en) Rubber composition for tire and pneumatic tire
JP5347353B2 (en) Method for producing silica-containing diene rubber composition
KR20170019354A (en) Alkylidene aminoganidine and salt thereof, modifier composition, modified rubber for tire, rubber composition for tire, and tire
WO2017038474A1 (en) Rubber composition and tire
WO2012049959A1 (en) Rubber composition and pneumatic tire
JP2014218614A (en) Coupling agent for rubber-carbon black, and rubber composition
WO2018037882A1 (en) Rubber composition and tire
JP2011173986A (en) Rubber composition for tire
EP3842486A1 (en) Rubber composition and tire
JP2006265400A (en) Method of manufacturing rubber composition and pneumatic tire using the same
JP7427488B2 (en) Rubber compositions and tires
JP2007031578A (en) Rubber composition
JP2018035325A (en) Rubber composition
JP2018035326A (en) Rubber composition
JP2009256439A (en) Rubber composition
JP2016065186A (en) Rubber composition and tire
JP2007238805A (en) Rubber composition
JP2016065185A (en) Rubber composition and tire
JP3948940B2 (en) Rubber composition for tire tread
JP2019089878A (en) Method of producing rubber composition for tire tread
JP2019089882A (en) Method of producing rubber composition for tire
JP2019094379A (en) Method for producing tire rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP