WO2017038408A1 - 石炭貯蔵システムおよび石炭貯蔵方法 - Google Patents

石炭貯蔵システムおよび石炭貯蔵方法 Download PDF

Info

Publication number
WO2017038408A1
WO2017038408A1 PCT/JP2016/073483 JP2016073483W WO2017038408A1 WO 2017038408 A1 WO2017038408 A1 WO 2017038408A1 JP 2016073483 W JP2016073483 W JP 2016073483W WO 2017038408 A1 WO2017038408 A1 WO 2017038408A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
pile
coal pile
watering
outer peripheral
Prior art date
Application number
PCT/JP2016/073483
Other languages
English (en)
French (fr)
Inventor
誠 籔内
貴寛 松延
朋之 仲谷
太郎 加藤
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2017537701A priority Critical patent/JP6870614B2/ja
Priority to CN201680056574.8A priority patent/CN108137234A/zh
Publication of WO2017038408A1 publication Critical patent/WO2017038408A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G3/00Storing bulk material or loose, i.e. disorderly, articles
    • B65G3/02Storing bulk material or loose, i.e. disorderly, articles in the open air

Definitions

  • the present invention relates to a coal storage system and a coal storage method.
  • Patent Document 1 discloses that coal is stored in a state in which 50% or more of its total height is submerged to suppress heat generation, and the stored coal is taken out in a wet state, It is disclosed that coal is heated and dried with extracted steam generated from a power generation facility.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-055375
  • Patent Document 1 significantly increases the water content of coal by submerging the coal.
  • the problem is that the process from drying such coal with increased water content with extracted steam to making it possible to use the stored coal is complicated and may increase the cost of the coal. was there.
  • the extraction steam from the power generation facility is used to dry the coal, there is a problem that the storage place of the coal is limited to a place adjacent to the power generation facility.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to realize appropriate temperature management without significantly increasing the water content, and to achieve a low-cost coal storage system and coal storage. It is to provide a method.
  • the coal storage system of the present invention includes a yard for storing coal, A frustum-shaped coal pile having a ceiling surface and an outer peripheral side surface formed by stacking the coal in the yard; An expansion facility for expanding the coal pile; A sprinkler for watering the coal pile; With The coal pile is characterized in that at least an outer peripheral portion of the ceiling surface is expanded by the pressure expansion equipment, and the outer peripheral side surface is sprinkled by the sprinkler.
  • the present invention provides a coal storage method, the coal storage method of forming a frustum-shaped coal pile having a ceiling surface and an outer peripheral side surface by stacking coal in a yard; Expanding the outer peripheral portion of at least the ceiling surface of the coal pile; Watering the outer circumferential side of the coal pile that has been spread; Have
  • expanding pressure means that the surface of a coal pile during or after formation is pressed and pressed to such an extent that the internal voids can be reduced.
  • “Expanding equipment” refers to general equipment used to spread coal piles.
  • the “heavy machinery” can be used simply as “expanding equipment”, but other weights that have a flat bottom surface, and weights that move up and down to pressurize the weight against the surface of the coal pile.
  • a combination with a vertical movement device can also be used as the “expanding pressure equipment”.
  • “Heavy machinery” is a general term for construction machinery. Among “heavy machinery”, “construction vehicles” can perform “expanding pressure” by simply running on the surface of the coal pile using its own weight. When a power shovel is used as a “heavy machine”, “developing pressure” can be performed by pressing or hitting the bucket or backhoe on the surface of the coal pile. This is effective in the case of “expanding pressure” where a “heavy machine” cannot travel. Furthermore, a “compacting machine” that is a kind of “heavy machinery” can be used for the spreading pressure.
  • the expansion pressure specifying the coal pile portion of the “expansion pressure” is defined as follows.
  • Outer periphery pressure means that only the area 3 to 5 m from the position 1 to 2 m inside from the outer periphery of the ceiling surface of the coal pile is applied.
  • “Surface pressure” refers to spreading the entire ceiling surface of the coal pile. Therefore, in the “surface spreading pressure”, in addition to the area spread by the “outer circumferential spreading pressure”, the inner area and the outer area are further spread. Further, in the “surface spreading pressure”, the outer edge portion of the coal pile ceiling surface (corresponding to “shoulder shoulder” in civil engineering terms) is formed in a substantially round shape.
  • Corner spreading pressure refers to the spreading of the corner (the portion corresponding to the side ridge of the truncated pyramid) on the outer circumferential side of the coal pile. At this time, it is preferable to apply pressure so that the corners are formed substantially round.
  • corner spreading pressure When performing “corner spreading pressure” with heavy machinery, heavy machinery cannot run on the outer circumferential side of the coal pile, but the corners are spread by pressing or hitting the bucket or backhoe against the corner. Can do.
  • an appropriate temperature control can be realized without significantly increasing the water content of coal, and a low-cost coal storage system and method can be provided.
  • FIG. 1 is a schematic top view of a coal pile in Example 1.
  • FIG. 2 is a graph which shows the correlation of the temperature of the coal pile in Example 1, and watering. It is a graph which shows the correlation of the water
  • FIG. 2 is a schematic top view of the coal pile in Example 2. It is a graph which shows the correlation with the temperature of the coal pile in Example 2, and watering. It is a graph which shows the correlation of the water
  • the coal pile 1 is obtained by depositing coal on a coal yard 2 and usually has a ceiling surface 11 which is a substantially horizontal plane and a ceiling so that the entire vertical cross section is a truncated cone shape having a substantially trapezoidal shape.
  • the outer peripheral side surface 12 is configured to continuously extend from the edge of the surface and incline in a skirt-like manner.
  • the coal pile 1 is spread and sprinkled to suppress heat generation.
  • a spreading machine such as a heavy machine is used for spreading the coal pile 1, and a sprinkler is used for watering. Therefore, in addition to the coal pile 1, the coal storage system includes an expansion facility and a sprinkler.
  • the coal pile 1 can be formed by shaping the surface of coal stacked by a stacker using a pressure-extended equipment such as a heavy machine.
  • the coal pile 1 that has been stacked and formed reduces internal voids by spreading pressure, thereby suppressing the oxidation and heat generation of coal.
  • the coal pile 1 can be formed, for example, by repeating the steps of stacking and stacking coal to a height of about 2 m, and then stacking and stacking 2 m.
  • Expanding pressure can be performed by a heavy machine applying a load on the ceiling surface 11 that is the upper surface of the coal pile 1, further stacking coal on the expanded ceiling surface 11 and further expanding the coal.
  • the coal pile 1 having a desired size can be formed.
  • the entire ceiling surface 11 may be spread (surface spreading pressure) or only the ceiling surface outer peripheral portion 13 may be spread (outer circumferential spreading pressure).
  • the expansion pressure of the outer peripheral portion 13 of the ceiling surface is essential. The reason is that the oxidation and heat generation of the coal pile 1 proceeds by the air flowing into the coal pile 1 from the outer peripheral side surface 12, but by spreading the ceiling surface outer peripheral portion 13, This is because the density of coal becomes high and air hardly flows in from the outer peripheral side surface 12.
  • the heavy machinery may fall from the coal pile 1. Therefore, by providing the ceiling surface outer peripheral portion 13 for performing pressure expansion on the inner peripheral side with respect to the end portion 15, the passage of the heavy machinery is secured.
  • the coal pile 1 can have a roadway 14 as a route for moving heavy machinery from the coal yard 2 to the ceiling surface 11 of the coal pile 1 in a part of the outer peripheral side surface 12.
  • the shape and position of the roadway 14, that is, the route of heavy machinery can be arbitrary.
  • the roadway 14 is provided on the diagonal of the coal pile 1 when the coal pile 1 is viewed from above.
  • the road 14 may be deviated from the diagonal line.
  • the outer peripheral side surface 12 of the coal pile 1 is formed by the accumulated coal flowing down to the periphery of the ceiling surface 11. Further, since it is difficult for the heavy machinery to travel stably on the outer peripheral side surface 12 except for the roadway 14, normally, no pressure is applied to the outer peripheral side surface 12.
  • Coal especially sub-bituminous coal and lignite (including reformed coal of lignite), which is likely to oxidize and generate heat, is sprinkled onto the coal pile 1 by the sprinkler 3 (see FIG. 1) during storage.
  • the coal pile 1 since air flows in from the outer peripheral side surface 12, the vicinity of the outer peripheral side surface 12 is most likely to oxidize and generate heat. Therefore, heat generation can be efficiently suppressed by watering at least the outer peripheral side surface 12.
  • the sprinkler 3 may be installed at any position and number as long as the sprinkler 3 can be sprayed on a desired region of the outer peripheral side surface 12, for example, the position and number shown in FIG. 1.
  • Sprinkling is not continuous watering but regular watering such as how many hours per day is sufficient.
  • the spreading pressure and watering it is possible to sufficiently suppress the heat generation and moisture increase of coal.
  • the frequency of watering after that can be reduced to, for example, half compared to the frequency of watering from the start of coal storage to the 10th to 14th days.
  • FIG. 3 the example of the spreading pressure to the surface corner
  • the roadway 14 is omitted in FIG. Since the coal pile 1 is formed by stacking massive coal, air easily flows into the vicinity of the corner 16 and the coal is easily oxidized.
  • the corner 16 of the coal pile 1 in the example shown in FIG. 2, the coal pile 1 is a substantially quadrangular pyramid, and the corner 16 corresponds to the vicinity of the surrounding four sides). Is particularly large. Therefore, the corner 16 of the outer periphery of the coal pile 1 is spread with a heavy machine to reduce the amount of air flow by the wind, thereby suppressing the oxidation of the coal.
  • the coal pile 1 may be sprayed with chemicals as necessary.
  • the spraying of the chemical may be performed on the entire surface of the coal pile 1 after the coal pile 1 is formed, or may be performed on the coal before forming the coal pile 1.
  • the chemical include a surfactant for imparting hydrophilicity to coal and a coating agent for maintaining the shape of the coal pile 1.
  • the surfactant When the surfactant is sprayed, it is preferable to spray the coal before the coal pile 1 is formed in order to make the coal pile 1 hydrophilic.
  • the coating agent is sprayed, it is sufficient that the surface of the coal pile 1 is coated.
  • the coal storage system can further include an appropriate chemical spraying facility according to the chemical to be sprayed.
  • Example 1 In FIG. 4, the schematic top view of the coal pile 1 in Example 1 is shown.
  • the coal pile 1 was formed by repeatedly stacking coal with a stacker and forming the surface of the stacked coal with a heavy machine.
  • FIG. 4 the illustration of the outer peripheral portion 13 of the ceiling surface is omitted.
  • Example 1 hydrophilicity was improved by spraying a surfactant on coal pile 1 (coal storage amount of about 30,000 tons) formed on coal yard 2.
  • Surfactant spraying was performed using a chemical spraying facility installed in the unloader feeding feeder portion of the coal before being stacked on the stacker.
  • As the surfactant a publicly known one (manufactured by NOF Corporation, Dasseal F-10) was used.
  • thermocouple is installed as a temperature measuring device at the position indicated by the encircled numerals 1 to 16 in FIG. 4 on the outer peripheral side surface 12 and the temperature at each position is measured. did. Specifically, the thermocouple was inserted into the coal pile 1 at a position where the surface of the coal pile 1 was 3 m higher than the ground (coal yard 2). The insertion depth of the thermocouple into the coal pile 1 was 1.5 m, and the distance between the thermocouples in the horizontal direction was 10 m.
  • FIG. 5 is a graph showing the correlation between the temperature of the coal pile 1 and watering in Example 1.
  • one scale on the horizontal axis indicates 10 days.
  • water was sprayed almost uniformly on the outer peripheral side surface 12.
  • the amount of water spray in Example 1 is shown in Table 2 below.
  • Example 1 the outer periphery moisture of the coal pile 1 was measured in order to confirm the transition of the moisture of the coal pile 1 due to sprinkling or rain.
  • the peripheral moisture was measured as follows. The four outer peripheral sides 12 of the coal pile 1 are each divided into two areas in the horizontal direction. From a total of eight areas, three per one area at a position of 40 cm in height from the ground surface and 30 cm in depth from the outer peripheral side surface 12. A sample was taken. The collected samples were mixed, and the moisture measured on the mixed sample was used as the outer peripheral moisture of the coal pile 1.
  • Example 1 The correlation between the moisture of the coal pile 1 and watering in Example 1 is shown in the graph of FIG. Also in the graph of FIG. 6, as in FIG. 5, one scale on the horizontal axis indicates 10 days. The vertical axis also shows rainfall.
  • Example 1 since water is sprayed only on the outer peripheral side surface 12, even if there is rain, the increase in moisture is only a few percent increase from the moisture (acceptance moisture) at the start of coal storage. Thereby, in Example 1, it can be said that heat_generation
  • Example 1 in order to maintain the shape of the coal pile 1, a known coating agent may be sprayed.
  • the coating agent also has a dust suppressing effect (see, for example, JP-A-7-117823 and JP-A-2000-80356), and the spraying of the coating agent can further suppress the oxidation and heat generation of the coal pile 1.
  • the coating agent since a sufficient temperature suppressing effect is obtained without spraying the coating agent, the coating agent is not used.
  • Example 2 In FIG. 7, the schematic top view of the coal pile 1 in Example 2 is shown.
  • Example 2 the shape of the coal pile 1 was almost the same as in Example 1, but the amount of coal stored was about 26,770 tons. Further, as in Example 1, a surfactant was sprayed on the coal pile 1, and the coating agent was not sprayed.
  • Example 1 In the same manner as in Example 1, with respect to the ceiling pressure, only the outer peripheral portion 13 of the ceiling surface was expanded, and the corner portion 16 was further expanded.
  • the watering as in Example 1, the watering only on the outer peripheral side surface 12 was divided into the initial watering and the subsequent regular watering.
  • the amount of water spray in Example 2 is shown in Table 3 below. From the regular watering up to the 49th day, watering was not performed, and the temperature and moisture described below were measured over 49 days, and the effect of the coal pile 1 in Example 2 was confirmed.
  • Example 2 the temperature was measured using the thermocouple installed in the same manner as in Example 1 at the positions indicated by the encircled numerals 1 to 16 in FIG. 4, and the transition of the outer peripheral temperature of the coal pile 1 as the average value was measured. It was confirmed. In Example 2, the transition of the internal temperature of the coal pile 1 was further confirmed. After the initial watering, the internal temperature was measured by boring the ceiling surface 11 of the coal pile 1 at the positions shown in FIGS. 7A, 7B, 7C, and 5 thermocouples arranged at intervals of 1.5 m. The lower end thermocouple was buried so as to be 1.5 m above the ground (coal yard 2), and the average value of the temperatures measured by these three rows ⁇ 5 thermocouples was obtained.
  • FIG. 8 shows the transition of the outer and inner temperature of the coal pile 1. From FIG. 8, it can be seen that heat generation of the coal pile 1 is suppressed by the effect of watering, and both the outer temperature and the inner temperature are controlled at 40 ° C. or less throughout the coal storage period.
  • the outer peripheral moisture and the internal moisture were measured. Since the measurement of the peripheral moisture is the same as in Example 1, the description thereof is omitted here. Also, when boring when installing a thermocouple for measuring the internal temperature of the coal pile 1 and when the coal pile 1 is dismantled, a sample is taken from the inside of the coal pile 1, and the moisture measured for the sample is taken as the internal moisture. did.
  • FIG. 9 shows the transition of moisture in the coal pile 1.
  • the peripheral moisture increased by about 1 to 3% with respect to the received moisture, but when the internal moisture was confirmed when the coal pile 1 was disassembled, it was found that the increase was within 1% with respect to the received moisture. confirmed. From the above, in Example 2, it can be said that heat generation is suppressed without increasing the moisture of coal more than necessary.
  • Example 3 In Example 3, a coal pile was formed in the same shape as in Example 1 except that the amount of stored coal was about 19,664 tons, and the transition of the outer peripheral temperature of the coal pile was performed in the same manner as in Example 1. And the transition of the peripheral moisture was confirmed. In addition, about the outer peripheral temperature of coal pile, the transition of the maximum temperature was also confirmed besides the average temperature calculated
  • Example 3 the surfactant was not sprayed on the coal pile and the coating agent was not sprayed.
  • watering from the 3rd to the 16th day from the start of coal storage, watering was performed for 8 hours per day (176 tons in 8 hours), and regular watering was started from the 17th day. .
  • Regular watering was divided into three periods. The first period was from the 17th to the 28th day from the start of coal storage, and watering was performed for 8 hours (176 tons in 8 hours) per 2 days. The second period was the period from the 31st to the 34th day from the start of coal storage, and watering was performed twice for 8 hours per week (176 tons in 8 hours). The third period was from the 38th day to the 45th day from the start of coal storage, and watering was performed for 8 hours per week (176 tons in 8 hours).
  • the amount of water spray in Example 3 is shown in Table 4 below.
  • FIG. 10A shows a transition graph of the average temperature (outer periphery temperature) of the coal pile in Example 3.
  • FIG. 10B the transition graph of the maximum temperature (outer periphery temperature) of the coal pile in Example 3 is shown.
  • FIGS. 10A and 10B also show the moisture content of the coal in Example 3 and the moisture content on the outer periphery of the coal pile on the second and sixteenth days from the start of coal storage. From FIG. 10A, it can be seen that the heat generation of the coal pile is suppressed by the effect of watering, and the average temperature is controlled at 40 ° C. or less throughout the coal storage period.
  • FIG. 10B shows that the maximum temperature is also managed at 50 ° C.
  • Comparative Example 1 In FIG. 11, the schematic top view of the coal pile 1 in the comparative example 1 is shown.
  • Comparative Example 1 the shape of the coal pile 1 was almost the same as that of Example 1, but the amount of coal stored was about 18,000 tons. Further, as in Example 1, a surfactant was sprayed on the coal pile 1. However, in Comparative Example 1, unlike Example 1, watering to the coal pile 1 was not performed, and a coating agent was sprayed on the coal pile 1 in order to suppress pulverization of the coal pile 1.
  • a coating agent Rikabond ET-39 manufactured by MC Evatech Co., Ltd. was used. The coating agent was sprayed using a portable power pump after installing a thermocouple for temperature measurement.
  • thermocouples are installed on the outer peripheral side surface 12 at the positions indicated by the circled numbers 1 to 42 in FIG. 11 (3 m high from the ground, 5 m apart horizontally, 1.5 m deep). The temperature at each position was measured, and the average value was taken as the temperature of the coal pile 1. In addition, unlike the example 1, the spreading pressure was performed on the entire surface of the ceiling surface 11.
  • FIG. 12 shows a temperature change graph of the coal pile 1 in Comparative Example 1.
  • the temperature of the coal pile 1 continued to rise from the fifth day of coal storage, and reached about 60 ° C., which is the upper limit of the management temperature in coal storage, around 22 days, so temperature measurement was stopped.
  • the watering is not performed in the comparative example 1, it turns out that a temperature rise cannot be suppressed also by spreading pressure and coating agent application.
  • Comparative Example 2 In FIG. 13, the schematic top view of the coal pile 1 in the comparative example 2 is shown.
  • the shape of the coal pile 1 was a substantially square frustum shape, and the amount of coal stored was about 72,900 tons.
  • the surfactant and the coating agent as in Example 1, the surfactant was sprayed but the coating agent was not sprayed.
  • Comparative Example 2 contrary to Comparative Example 1, no spreading pressure was performed, and only watering to the outer peripheral side surface 12 was performed. Watering started on the fourth day of coal storage. However, since some charcoal was seen in 3 hours after sprinkling, for the time being, watering was performed for 3 hours per day, and the situation was observed, and from the 12th day of the start of coal storage, the watering was switched to 7 hours per day (initial watering). . The initial watering was conducted until the 18th day from the start of coal storage, and after the 19th day, the watering was switched to a regular watering of 7 hours per 2 days.
  • FIG. 14 shows changes in the average temperature and the maximum temperature of the coal pile 1 in Comparative Example 2.
  • the measurement of the temperature of the coal pile was performed in the same manner as in Example 1. From Fig. 14, the average temperature rises to about 50 ° C around the 14th day from the start of coal storage, and then tends to decline, but the maximum temperature is controlled between the 10th and 17th days. A temperature exceeding the temperature of 60 ° C. was confirmed. As described above, in Comparative Example 2, the effect of suppressing heat generation as in Examples 1 and 2 was not seen despite sprinkling water.
  • Comparative Example 3 In FIG. 15, the schematic top view of the coal pile 1 in the comparative example 3 is shown.
  • Comparative Example 3 as in Comparative Example 2, the shape of the coal pile 1 was a substantially square frustum shape, and the amount of coal stored was about 32,690 tons. Neither the surfactant nor the coating agent was sprayed.
  • thermocouple was installed at a position indicated by circled numbers 1 to 4 in FIG. 15 and the temperature of the coal pile 1 was measured.
  • the thermocouple installation method was the same as in Example 1.
  • no spreading pressure was performed, and water was sprayed on the entire surface of the coal pile 1.
  • a watering device (sprinkler) was installed at a position indicated by a circle in FIG. 15, and watering was carried out from the 13th day after the start of coal storage. Sprinkling was basically carried out at all times (24 hours), but depending on the temperature of the coal, etc., the days when watering was not carried out and the days when watering was carried out for about 6-7 hours per day were the coal storage period (70 days) There were only 9 days inside.
  • FIG. 16 shows the transition of the maximum temperature of coal in Comparative Example 3.
  • the maximum temperature of the coal exceeded the control temperature of 60 ° C., and watering was performed from the 13th day. It can be seen that the temperature reached 79 ° C. The temperature decreased from the 15th day and decreased to 47 ° C. on the 16th day. From the 21st day onward, the temperature remained below 30 ° C.
  • Table 7 shows the conditions of Examples 1 to 3 and Comparative Examples 1 to 3 described above.
  • Table 8 shows data relating to the amount of coal and the amount of water sprayed in Examples 1 to 3 and Comparative Examples 1 to 3.
  • the amount of coal per 1 m 3 of water sprayed at the time of the maximum watering shown in Table 8 can be said to be one index representing the degree of heat generation suppression effect of coal by watering. That is, the greater the amount of coal per unit sprinkling amount, the more heat generation of a larger amount of coal can be suppressed with a smaller amount of sprinkling. In other words, the watering efficiency is excellent. From this point of view, referring to Table 8, it can be seen that all of Examples 1 to 3 are superior in watering efficiency as compared with Comparative Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

本発明は、石炭の含水量を大幅に増加させることなく適切な温度管理を低コストで実現する石炭貯蔵システムおよび石炭貯蔵方法を提供する。石炭貯蔵システムは、石炭を貯蔵する石炭ヤード2と、石炭ヤードに形成された、天井面11および外周側面12を有する錘台形状の石炭パイル1と、石炭パイル1を展圧する展圧設備と、石炭パイルに散水するスプリンクラー3と、を備える。石炭パイル1は、少なくとも天井面11の外周部が展圧設備によって展圧され、かつ、外周側面12がスプリンクラー3によって散水されている。

Description

石炭貯蔵システムおよび石炭貯蔵方法
 本発明は、石炭貯蔵システムおよび石炭貯蔵方法に関する。
 従来、石炭は酸化・発熱しやすいため、石炭の貯蔵時には散水等による温度の管理が行われることが一般的である。このような技術として、特許文献1には、石炭を、その全高の50%以上を水没させた状態で貯蔵することで発熱を抑制するとともに、貯蔵されている石炭を湿潤状態で取り出し、次いで、発電設備より発生する抽気蒸気で石炭を加熱して乾燥させることが開示されている。
 特許文献1:特開2015-055375号公報
 しかしながら、特許文献1に開示された技術は、石炭を水没させることにより石炭の含水量が大幅に増大している。そのような含水量が増大した石炭を抽気蒸気で乾燥させることから、貯蔵している石炭を使用できるように状態とするまでの処理が煩雑であり、石炭のコストアップを招くおそれがあるという問題があった。また、石炭を乾燥させるのに発電設備からの抽気蒸気を使用するので、石炭の貯蔵地が発電設備に隣接した場所に制限されるという問題もあった。
 本発明は、上記問題点を解決するためになされたものであり、その目的は、含水量を大幅に上昇させることなく適切な温度管理を実現し、かつ、低コストの石炭貯蔵システムおよび石炭貯蔵方法を提供することにある。
 本発明の石炭貯蔵システムは、石炭を貯蔵するヤードと、
 前記ヤードに前記石炭を積み重ねて形成された、天井面および外周側面を有する錐台形状の石炭パイルと、
 前記石炭パイルを展圧する展圧設備と、
 前記石炭パイルに散水するスプリンクラーと、
 を備え、
 前記石炭パイルは、少なくとも前記天井面の外周部が前記展圧設備によって展圧され、かつ、前記外周側面が前記スプリンクラーによって散水されていること、を特徴とする。
 また、本発明は石炭貯蔵方法を提供し、その石炭貯蔵方法は、ヤードに石炭を積み重ねることによって、天井面および外周側面を有する錘台形状の石炭パイルを形成する工程と、
 前記石炭パイルの、少なくとも前記天井面の外周部を展圧する工程と、
 展圧された前記石炭パイルの前記外周側面に散水する工程と、
 を有する。
 (用語の定義)
 本発明において、「展圧」とは、形成途中あるいは形成後の石炭パイルの表面を、内部の空隙を減少させることができる程度に加圧して押し固めることを意味する。
 「展圧設備」とは、石炭パイルを展圧するのに用いられる設備一般を指す。「展圧設備」として簡便に用いることができるのは「重機」であるが、その他、平坦な底面を有する重りと、その重りを石炭パイルの表面に対して加圧できるように上下動させる重り上下動装置との組み合わせを「展圧設備」として用いることもできる。「重機」は、建設機械の総称であり、「重機」の中でも「建設車両」は、その自重を利用して、石炭パイルの表面上を走行するだけで「展圧」を行うことができる。また、「重機」としてパワーショベルを用いた場合は、そのバケットやバックホウを石炭パイルの表面上に押し付ける、あるいは叩き付けることによって「展圧」を行うことができる。これは、「重機」が走行できない場所を「展圧」する場合に有効である。さらに、「重機」の一種である「締固め機械」を展圧に用いることもできる。
 また、「展圧」のうち、石炭パイルの部分を特定した展圧について、本発明では次のように定義する。
 「外周展圧」とは、石炭パイルの天井面のうち、天井面の外周縁から1~2m内側の位置から3~5mの領域のみを展圧することをいう。
 「表面展圧」とは、石炭パイルの天井面全体を展圧することをいう。したがって、「表面展圧」では、「外周展圧」によって展圧される領域に加え、さらに、その内側の領域および外側の領域を展圧する。また、「表面展圧」では、石炭パイルの天井面の外縁部(土木用語でいう「法肩」に相当する。)は略丸く成形される。
 「角部展圧」とは、石炭パイルの外周側面の角部(角錐台の側稜に相当する部分)を展圧することをいう。この際、角部が略丸く成形されるように展圧することが好ましい。「角部展圧」を重機で行う場合、石炭パイルの外周側面は重機が走行することができないが、上述したバケットやバックホウを角部に押し付けたり叩き付けたりすることで、角部を展圧することができる。
 本発明によれば、石炭の含水量を大幅に増加させることなく適正な温度管理を実現し、かつ低コストの石炭貯蔵システムおよび石炭貯蔵方法を提供することができる。
本発明の一実施形態による石炭パイルの上面図である。 図1に示す石炭パイルの側面図である。 図1に示す石炭パイルにおける表面角展圧を示す図である。 実施例1における石炭パイルの概略上面図である。 実施例1における石炭パイルの温度と散水との相関を示すグラフである。 本発明の実施例1における石炭パイルの水分と散水との相関を示すグラフである。 実施例2における石炭パイルの概略上面図である。 実施例2における石炭パイルの温度と散水との相関を示すグラフである。 実施例2における石炭パイルの水分と散水との相関を示すグラフである。 実施例3における石炭パイルの平均温度および水分の推移を示すグラフである。 実施例3における石炭パイルの最大温度および水分の推移を示すグラフである。 比較例1における石炭パイルの概略上面図である。 比較例1における石炭パイルの温度推移を示すグラフである。 比較例2における石炭パイルの概略上面図である。 比較例2における石炭パイルの平均温度および最大温度の推移を示すグラフである。 比較例3における石炭パイルの概略上面図である。 比較例3における石炭パイルの最大温度の推移を示すグラフである。
 図1および図2を参照すると、本発明の一実施形態による石炭貯蔵システムの一部を構成する石炭パイル1の上面図及び側面図が示される。石炭パイル1は、石炭ヤード2上に石炭を堆積したものであり、通常は、全体として垂直方向の断面が略台形である錐台形状となるように、略水平面となる天井面11と、天井面の端縁から連続して裾拡がり状に傾斜して延びた外周側面12を有して構成される。石炭パイル1は、発熱を抑制するために展圧および散水される。石炭パイル1の展圧には、重機などの展圧設備が用いられ、散水にはスプリンクラーが用いられる。したがって、石炭貯蔵システムは、石炭パイル1の他に、展圧設備およびスプリンクラーを含む。
 以下に、これら展圧、散水およびその他の構成について説明する。
 [展圧]
 石炭パイル1は、スタッカーで積み上げられた石炭を、重機などの展圧設備を用いて表面を成形することによって形成することができる。積み上げられ、成形された石炭パイル1は、展圧によって内部の空隙を減少させ、石炭の酸化・発熱が抑制される。石炭パイル1は、例えば、石炭を2mほどの高さに積んで展圧、さらに2m積んで展圧、という工程を繰り返すことによって形成することができる。展圧は、重機が石炭パイル1の上面である天井面11に乗って荷重をかけることで行うことができ、展圧された天井面11の上にさらに石炭を積み増し、これをさらに展圧することで、所望の大きさの石炭パイル1を形成することができる。
 展圧の際は、天井面11を全て展圧してもよいし(表面展圧)、天井面外周部13のみを展圧してもよい(外周展圧)。ただし、天井面外周部13の展圧は必須となる。その理由は、石炭パイル1の酸化・発熱は、外周側面12から石炭パイル1内に流入した空気によって進行するが、天井面外周部13を展圧することによって、天井面外周部13の下部での石炭の密度が高くなり、外周側面12から空気が流入し難くなるからである。なお、天井面外周部13の展圧時において、重機が天井面の端部15に寄り過ぎると、重機が石炭パイル1から落下するおそれがある。したがって、展圧を行う天井面外周部13を端部15よりも内周側に設けることで、重機の通路を確保している。
 石炭パイル1は、石炭ヤード2から石炭パイル1の天井面11まで重機を移動させるための経路となる車路14を、外周側面12の一部に有することができる。車路14の形状および位置、すなわち重機の経路は任意とすることができ、例えば、図1と同様、石炭パイル1を上から見たときに石炭パイル1の対角線上に車路14を設けることもできるし、後述する図4に示すように、対角線からずれた車路14とすることもできる。
 石炭パイル1の外周側面12は、積み増しされた石炭が天井面11の周囲へ流れ落ちることで形成される。また、外周側面12では車路14を除いて重機が安定して走行するのが困難であることから、通常、外周側面12への展圧は行われない。
 [散水]
 石炭、特に亜瀝青炭や褐炭(褐炭の改質炭も含む)は、酸化・発熱しやすいものが多いことから、貯蔵時にはスプリンクラー3(図1参照)によって石炭パイル1への散水が行われる。石炭パイル1においては、外周側面12から空気が流入するため、この外周側面12付近が最も酸化・発熱しやすい。したがって、少なくとも外周側面12に散水するようにすることで、発熱を効率的に抑制することができる。
 外周側面12のみへの散水であっても石炭パイル1の酸化・発熱を抑制でき、この場合は、石炭パイル1全体へ散水する場合と比べて、石炭水分の増加および散水量の増加を抑制することができる。スプリンクラー3の設置位置および数は、外周側面12の所望の領域に散水できれば、例えば図1に示す位置および数など、任意であってよい。
 散水は、連続散水ではなく、例えば1日当たり何時間というような定期的な散水で十分である。展圧と散水とを組み合わせることによって、十分に、石炭の発熱および水分の増加を抑制することができる。また、散水の頻度についても、貯炭開始から10~14日目までの散水頻度に対して、それ以降の散水頻度を少なく、例えば半分とすることもでき、これによって、水分の増加がより抑制される。さらには、貯炭開始から1~2カ月程度で、散水を実施しなくても石炭の発熱を抑制することも可能である。
 [角部展圧]
 図3に、石炭パイル1における表面角部への展圧の例を示す。説明の簡略化のため、図3では車路14を省略している。石炭パイル1は塊状の石炭を積み上げて形成されるため、角部16付近には空気が流入しやすく、石炭が酸化されやすい。特に、石炭パイル1の角部16(図2に示す例では、石炭パイル1は略四角錐台であるため、角部16は周囲の4辺付近に相当する。)は風による空気の流通量が特に多くなる。したがって、石炭パイル1の外周の角部16を重機で展圧し、風による空気の流通量を低減することで、石炭の酸化が抑制される。
 [その他の構成]
 石炭パイル1は、必要に応じて薬剤が散布されていてもよい。薬剤の散布は、石炭パイル1の形成後、石炭パイル1全体の表面に対して行ってもよいし、石炭パイル1を構成する前の石炭に対して行ってもよい。薬剤としては、石炭に親水性を与えるための界面活性剤および石炭パイル1の形状を維持するためのコーティング剤などが挙げられる。界面活性剤を散布する場合は、石炭パイル1の内部においても親水性を持たせるために、石炭パイル1を形成する前の石炭に散布することが好ましい。一方、コーティング剤を散布する場合は、石炭パイル1の表面がコーティングされていれば十分なので、石炭パイル1の形成後に散布することが好ましい。
 このように薬剤が散布される場合、石炭貯蔵システムは、散布する薬剤に応じた適宜の薬剤散布設備をさらに含むことができる。
 実施例1~3および比較例1~3により、石炭パイル1の発熱の抑制効果を評価した。表1に、これらの実施例および比較例で用いた石炭の性状を示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 図4に、実施例1における石炭パイル1の概略上面図を示す。石炭パイル1は、スタッカーによって石炭を積み上げることと、積み上げられた石炭の表面を重機で打圧することなどによって成形することと、を繰り返すことによって形成した。なお、図4では、天井面外周部13の図示を省略している。
 また、実施例1では、石炭ヤード2上に形成された石炭パイル1(貯炭量約30,000トン)に界面活性剤を散布して親水性を向上させた。界面活性剤の散布は、スタッカーにて積み上げられる前の石炭に対して、アンローダーの払出しフィーダー部に設置した薬剤散布設備を用いて行った。界面活性剤としては、公知のもの(日油株式会社製、ダスシールF-10)を用いた。
 石炭パイル1の形成後、天井面11については天井面外周部13のみを、重機で踏み固めることによって展圧した。さらに角部16についても、表面を重機(パワーショベルのバケットやバックホウ)で叩いて丸く成形することによって展圧した。散水は、外周側面12のみとした。また、外周側面12には図4の丸囲み数字1~16で示す位置に温度測定器として熱電対を設置し、それぞれの位置での温度を測定し、その平均値を石炭パイル1の温度とした。なお、熱電対は、具体的には、保護管に挿入した熱電対を、石炭パイル1の表面が地面(石炭ヤード2)より高さ3mとなる位置で石炭パイル1内に挿入した。熱電対の石炭パイル1内への挿入深さは1.5m、水平方向における熱電対の間隔は10mとした。
 実施例1における石炭パイル1の温度と散水との相関を図5のグラフに示す。図5のグラフにおいて、横軸の1目盛りは10日を示している。実施例1では外周側面12にほぼ均等に散水した。実施例1における散水量を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、上記の日数はいずれも貯炭開始日からの日数である。このことは以下で述べる実施例および比較例においても同様である。図5に示されるとおり、実施例1における石炭パイル1の温度は常に、貯炭における管理温度の上限である60℃を下回っており、外周側面12のみへの散水によって石炭パイル1の発熱が抑制されたことが示された。
 また、実施例1では、散水や降雨等による石炭パイル1の水分の推移を確認するため、石炭パイル1の外周水分を測定した。外周水分の測定は、次のようにして行った。石炭パイル1の4つの外周側面12をそれぞれ水平方向に2つのエリアに分け、合計8つのエリアから、地表から高さ40cm、外周側面12からの深さ30cmの位置において、1つのエリア当たり3つのサンプルを採取した。採取したサンプルを混合し、その混合したサンプルで測定した水分を石炭パイル1の外周水分とした。
 実施例1における石炭パイル1の水分と散水との相関を図6のグラフに示す。図6のグラフにおいても図5と同様、横軸の1目盛りは10日を示している。また、縦軸には降雨量も併せて示している。実施例1では外周側面12のみに散水しているため、降雨があっても、水分の増加は貯炭を開始したときの水分(受入水分)から数%の増加に留まっている。これにより、実施例1では必要以上に石炭の水分を増加させることなく、発熱が抑制されるといえる。
 なお、実施例1では用いていないが、石炭パイル1の形状を維持するために公知のコーティング剤を散布してもよい。コーティング剤は粉塵抑制効果もあり(例えば、特開平7-117823号公報、特開2000-80356号公報参照)、コーティング剤の散布により石炭パイル1の酸化、発熱をさらに抑制することができる。実施例1では、コーティング剤を散布しなくても十分な温度抑制効果が得られているため、コーティング剤を使用していない。
 (実施例2)
 図7に、実施例2における石炭パイル1の概略上面図を示す。実施例2では、石炭パイル1の形状は実施例1とほぼ同様であるが、その貯炭量は約26,770トンであった。また、実施例1と同様、石炭パイル1には界面活性剤を散布し、コーティング剤の散布は行わなかった。展圧も、実施例1と同様、天井面11については天井面外周部13のみを展圧し、さらに角部16を展圧した。散水についても実施例1と同様、外周側面12のみへの散水を、初期散水とその後の定期散水とに分けて行った。実施例2における散水量を下記表3に示す。定期散水後から49日目までは、散水を行わず、この49日間にわたって以下に述べる温度および水分を測定し、実施例2における石炭パイル1の効果確認を行なった。
Figure JPOXMLDOC01-appb-T000003
 温度については、図4に丸囲み数字1~16で示す位置にて、実施例1と同様に設置した熱電対を用いて温度を測定し、その平均値である石炭パイル1の外周温度の推移を確認した。実施例2ではさらに、石炭パイル1の内部温度の推移も確認した。内部温度は、初期散水の終了後、図7のA、B、Cに示す位置にて石炭パイル1の天井面11をボーリングし、1.5m間隔で配列された5個の熱電対を、最下端の熱電対が地上(石炭ヤード2)より1.5mの高さとなるように埋設し、これら3列×5個の熱電対によって測定された温度の平均値により求めた。
 図8に、石炭パイル1の外周温度および内周温度の推移を示す。図8より、散水の効果によって石炭パイル1の発熱が抑制され、貯炭期間を通して外周温度、内部温度ともに40℃以下で管理されていることがわかる。
 一方、水分については、外周水分および内部水分を測定した。外周水分の測定については実施例1と同様であるので、ここではその説明は省略する。また、石炭パイル1の内部温度測定用の熱電対を設置する際のボーリング時、および石炭パイル1の解体時に、石炭パイル1の内部からサンプルを採取し、そのサンプルについて測定した水分を内部水分とした。
 図9に、石炭パイル1の水分の推移を示す。図9より、外周水分は受入水分に対して1~3%程度増加しているが、石炭パイル1の解体時に内部水分を確認したところ、受入水分に対して1%以内の増加であることが確認された。以上より、実施例2では、必要以上に石炭の水分を増加させることなく、発熱が抑制されるといえる。
 (実施例3)
 実施例3では、貯炭量を約19,664トンとした以外は、実施例1と同様の形状で石炭パイルを形成し、また、実施例1と同様の方法で、石炭パイルの外周温度の推移および外周水分の推移を確認した。なお、石炭パイルの外周温度については、実施例1と同様にして求めた平均温度の他に、最大温度の推移も確認した。展圧についても、実施例1と同様、天井面については天井面外周部のみを転圧し、さらに角部の展圧を行った。
 ただし、実施例3では、石炭パイルへの界面活性剤の散布およびコーティング剤の散布は行わなかった。また、散水については、貯炭開始から3日目~16日目までは初期散水として1日当たり8時間(8時間での散水量176トン)の散水を行い、17日目からは定期散水を行った。定期散水は、3つの期間に分けて行った。第1の期間は、貯炭開始から17日目~28日目までの期間であり、2日当たり8時間(8時間での散水量176トン)の散水を行った。第2の期間は、貯炭開始から31日目~34日目までの期間であり、1週間当たり8時間(8時間での散水量176トン)の散水を2回行った。第3の期間は、貯炭開始から38日目~45日目までの期間であり、1週間当たり8時間(8時間での散水量176トン)の散水を行った。実施例3における散水量を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 図10Aに、実施例3における石炭パイルの平均温度(外周温度)の推移グラフを示す。また、図10Bに、実施例3における石炭パイルの最大温度(外周温度)の推移グラフを示す。さらに、図10Aおよび図10Bには、実施例3における石炭の受入水分、貯炭開始から2日目および16日目の石炭パイルの外周水分も併せて示す。図10Aより、散水の効果によって石炭パイルの発熱が抑制され、貯炭期間を通して平均温度は40℃以下で管理されていることがわかる。また、図10Bより、最大温度についても、貯炭における管理温度の上限である60℃よりも十分に低い50℃以下で管理されていることがわかる。水分については、実施例1および2と比較すると、受入水分に対する水分の増加が多いものの、数%の増加に留まっており、必要以上に石炭の水分を増加させることなく、発熱が抑制されているといえる。
 (比較例1)
 図11に、比較例1における石炭パイル1の概略上面図を示す。比較例1では、石炭パイル1の形状は実施例1とほぼ同様であるが、その貯炭量は約18,000トンであった。また、実施例1と同様、石炭パイル1には界面活性剤を散布した。ただし、比較例1では、実施例1とは異なり、石炭パイル1への散水は行わず、かつ、石炭パイル1の粉化を抑制するために、コーティング剤を石炭パイル1に散布した。コーティング剤としては、株式会社MCエバテック製、リカボンドET-39を使用した。コーティング剤の散布は、温度測定用の熱電対の設置後、可搬式動力ポンプを用いて行った。
 温度の測定については、外周側面12において図11の丸囲み数字1~42で示す位置(地面からの高さ3m、水平方向に5m間隔、深さ1.5mの位置)に熱電対を設置してそれぞれの位置での温度を測定し、その平均値を石炭パイル1の温度とした。また、展圧については、実施例1と異なり天井面11の全面に対して行った。
 図12に、比較例1における石炭パイル1の温度変化グラフを示す。比較例1では、石炭パイル1の温度は貯炭開始5日目から上昇し続け、22日前後で貯炭における管理温度の上限である60℃に達したため、温度測定を停止した。また、比較例1では散水を行っていないため、展圧およびコーティング剤塗布によっても温度上昇を抑制できないことが分かる。
 (比較例2)
 図13に、比較例2における石炭パイル1の概略上面図を示す。比較例2では、石炭パイル1の形状は略四角錐台形状とし、その貯炭量は約72,900トンであった。界面活性剤およびコーティング剤については、実施例1と同様、界面活性剤は散布したがコーティング剤は散布しなかった。
 また、比較例2では、比較例1とは逆に、展圧は行わず、外周側面12への散水のみを行った。散水は貯炭開始4日目に開始した。しかし、散水から3時間で一部流炭が見られたため、当面は1日当たり3時間の散水を行って様子を見、貯炭開始12日目から1日当たり7時間の散水に切り替えた(初期散水)。初期散水は貯炭開始18日目まで実施し、19日目以降は2日当たり7時間の定期散水に切り替えた。ただし、定期散水の期間中、温度の上昇傾向が見られたため25日目からは1日当たり7時間の定期散水を実施し、さらに、38日目に温度測定部以外からの発熱が確認されたため、38日目からは1日当たり24時間の連続散水へ変更した。比較例2における散水量を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 図14に、比較例2における石炭パイル1の平均温度および最大温度の推移を示す。石炭パイルの温度の測定は実施例1と同様に行ったものである。図14より、平均温度は、貯炭開始から14日目前後で約50℃まで上昇し、それ以降は下降する傾向が見られるものの、最大温度については10日目~17日目の間に、管理温度である60℃を超える温度が確認された。このように、比較例2では、散水を行っているにもかかわらず、実施例1、2のような発熱抑制の効果は見られなかった。
 (比較例3)
 図15に、比較例3における石炭パイル1の概略上面図を示す。比較例3でも比較例2と同様、石炭パイル1の形状は略四角錐台形状とし、その貯炭量は約32,690トンであった。界面活性剤およびコーティング剤については、いずれも散布しなかった。
 比較例3では、図15に丸囲み数字1~4で示す位置に熱電対を設置し、石炭パイル1の温度を測定した。熱電対の設置方法は、実施例1と同様であった。また、比較例3では、展圧は行わず、石炭パイル1の全面への散水を行った。散水装置(スプリンクラー)は、図15に丸で示す位置に設置し、貯炭開始から13日目から散水を実施した。散水は、基本的には常時(24時間)行ったが、石炭の温度状況等により、散水を実施しない日および1日当たり6~7時間程度の散水を実施した日が、貯炭期間(70日)中に9日間だけあった。また、石炭パイル1からの石炭の出荷状況や石炭パイル1の温度状況に応じてスプリンクラーの増設および撤去を行った。石炭パイル1からの石炭の出荷は、図15に示す左上隅および左下隅から順次行った。比較例3における散水量を下記表6に示す。
Figure JPOXMLDOC01-appb-T000006
 図16に、比較例3における石炭の最大温度の推移を示す。図16を参照すると、貯炭開始から12日目まで散水を行わなかったため石炭の最大温度が管理温度である60℃を超え、13日目から散水を行ったが、温度の上昇は14日目まで続き、79℃に達したことがわかる。15日目から温度は下降し、16日目で47℃まで低下した。21日目以降は、ほぼ30℃以下で推移した。
 表7に、上述した実施例1~3および比較例1~3の諸条件等を示す。
Figure JPOXMLDOC01-appb-T000007
 また、表8に、実施例1~3および比較例1~3の石炭量および散水量に関するデータを示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示した最大散水時の散水量1m当たりの石炭量は、散水による石炭の発熱抑制効果の程度を表す一つの指標ということができる。すなわち、単位散水量当たりの石炭量が多ければ多いほど、少ない散水量でより多くの量の石炭の発熱を抑制できること、別の言い方をすれば、散水効率が優れていることを表す。その観点で表8を参照すると、実施例1~3はいずれも、比較例2と比較して散水効率が優れていることが分かる。
 (まとめ)
 以上述べた実施例および比較例より、以下のことがいえる。
(1)初期散水を実施することで、貯炭初期での石炭の発熱を抑制でき、長期にわたる石炭の貯蔵が可能となることが確認された。
(2)初期散水から定期散水に移行して1~2カ月程度で散水せずに管理できる可能性が確認された。
(3)コーティング剤を使用しなくても発熱を抑制し、水分のコントロールが可能であることが確認された。
(4)外周側面のみの散水であっても石炭パイル全体の温度管理が可能であることが確認された。
 1  石炭パイル
 2  石炭ヤード
 11  天井面
 12  外周側面
 13  天井面外周部
 14  車路
 15  端部
 16  角部

Claims (10)

  1.  石炭を貯蔵するヤードと、
     前記ヤードに前記石炭を積み重ねて形成された、天井面および外周側面を有する錐台形状の石炭パイルと、
     前記石炭パイルを展圧する展圧設備と、
     前記石炭パイルに散水するスプリンクラーと、
     を備え、
     前記石炭パイルは、少なくとも前記天井面の外周部が前記展圧設備によって展圧され、かつ、前記外周側面が前記スプリンクラーによって散水されていること、を特徴とする石炭貯蔵システム。
  2.  請求項1に記載の石炭貯蔵システムにおいて、前記石炭パイルは、前記外周側面において角部が展圧されていることを特徴とする石炭貯蔵システム。
  3.  請求項1または2に記載の石炭貯蔵システムにおいて、前記石炭または前記石炭パイルの表面に薬剤を散布する少なくとも1つの薬剤散布設備をさらに含むことを特徴とする石炭貯蔵システム。
  4.  請求項1から3のいずれか一項に記載の石炭貯蔵システムにおいて、前記展圧設備は重機であることを特徴とする石炭貯蔵システム。
  5.  ヤードに石炭を積み重ねることによって、天井面および外周側面を有する錘台形状の石炭パイルを形成する工程と、
     前記石炭パイルの、少なくとも前記天井面の外周部を展圧する工程と、
     展圧された前記石炭パイルの前記外周側面に散水する工程と、
     を有する石炭貯蔵方法。
  6.  前記石炭パイルを展圧する工程は、前記外周側面において角部を展圧することを含む、請求項5に記載の石炭貯蔵方法。
  7.  前記石炭パイルに散水する工程は、1日当たりの散水時間が決められており、その散水頻度が、貯炭開始から10~14目以降は、最初の10~14日目までの散水頻度の半分とすることを含む、請求項5または6に記載の石炭貯蔵方法。
  8.  前記石炭または前記石炭パイルの表面に薬剤を散布する少なくとも1つの工程をさらに含む、請求項5から7のいずれか一項に記載の石炭貯蔵方法。
  9.  前記薬剤を散布する工程は、前記石炭パイルを形成する前の前記石炭に、薬剤として界面活性剤を散布することを含む、請求項8に記載の石炭貯蔵方法。
  10.  前記薬剤を散布する工程は、前記石炭パイルに、薬剤として前記石炭パイルの形状を維持するためのコーティング剤を散布することを含む、請求項8または9に記載の石炭貯蔵方法。
PCT/JP2016/073483 2015-08-28 2016-08-09 石炭貯蔵システムおよび石炭貯蔵方法 WO2017038408A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017537701A JP6870614B2 (ja) 2015-08-28 2016-08-09 石炭貯蔵システムおよび石炭貯蔵方法
CN201680056574.8A CN108137234A (zh) 2015-08-28 2016-08-09 贮煤系统和贮存煤的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169508 2015-08-28
JP2015-169508 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038408A1 true WO2017038408A1 (ja) 2017-03-09

Family

ID=58187300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073483 WO2017038408A1 (ja) 2015-08-28 2016-08-09 石炭貯蔵システムおよび石炭貯蔵方法

Country Status (3)

Country Link
JP (1) JP6870614B2 (ja)
CN (1) CN108137234A (ja)
WO (1) WO2017038408A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028245A (ja) * 2020-08-03 2022-02-16 栗田工業株式会社 管理システム、管理装置、管理方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982976A (ja) * 1982-11-01 1984-05-14 Hitachi Ltd 散水制御方法
JPS60195809U (ja) * 1984-06-05 1985-12-27 新日鐵化学株式会社 貯炭山のスタンピング装置
JPS62259911A (ja) * 1986-04-30 1987-11-12 Ngk Insulators Ltd 炭塵飛散防止方法
JPS6460507A (en) * 1987-08-27 1989-03-07 Kawasaki Steel Co Coating method for open-air storage coal
JP2001164254A (ja) * 1999-12-02 2001-06-19 Lion Corp 炭素質粉体の昇温・自然発火抑制剤
JP2002068433A (ja) * 2000-08-29 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd 粉塵飛散防止設備
JP2014105065A (ja) * 2012-11-27 2014-06-09 Kobe Steel Ltd 改質石炭の貯蔵方法及び粒度調整石炭

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182105A (ja) * 1983-04-01 1984-10-16 Mitsubishi Heavy Ind Ltd 粉塵の飛散を防止する石炭等の堆積方法
JP2593697B2 (ja) * 1988-09-27 1997-03-26 三井サイテック株式会社 石炭の取扱管理方法
RU2161115C1 (ru) * 1999-05-12 2000-12-27 Васильев Петр Назарович Способ формирования штабеля угля
KR100778674B1 (ko) * 2006-07-31 2007-11-22 주식회사 포스코 야드의 석탄 장기간 저장 장치
JP5380769B2 (ja) * 2006-08-23 2014-01-08 Jfeスチール株式会社 飛散防止散水方法
KR20110098158A (ko) * 2010-02-26 2011-09-01 현대제철 주식회사 대량 석탄 더미의 자연발화 소화장치
CN102746918B (zh) * 2012-07-31 2014-04-09 广州普凯环保科技有限公司 煤堆自燃的抑制方法和其专用抑制剂及抑制剂的制备方法
CN104232239B (zh) * 2014-07-01 2017-01-25 广东电网公司电力科学研究院 一种采用以乳化原油制备阻燃剂防止煤堆自燃的方法
CN104384166B (zh) * 2014-11-13 2017-01-25 赵立虎 一种燃煤电厂储灰场及工业尾矿抑尘工艺及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982976A (ja) * 1982-11-01 1984-05-14 Hitachi Ltd 散水制御方法
JPS60195809U (ja) * 1984-06-05 1985-12-27 新日鐵化学株式会社 貯炭山のスタンピング装置
JPS62259911A (ja) * 1986-04-30 1987-11-12 Ngk Insulators Ltd 炭塵飛散防止方法
JPS6460507A (en) * 1987-08-27 1989-03-07 Kawasaki Steel Co Coating method for open-air storage coal
JP2001164254A (ja) * 1999-12-02 2001-06-19 Lion Corp 炭素質粉体の昇温・自然発火抑制剤
JP2002068433A (ja) * 2000-08-29 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd 粉塵飛散防止設備
JP2014105065A (ja) * 2012-11-27 2014-06-09 Kobe Steel Ltd 改質石炭の貯蔵方法及び粒度調整石炭

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028245A (ja) * 2020-08-03 2022-02-16 栗田工業株式会社 管理システム、管理装置、管理方法及びプログラム
JP7166314B2 (ja) 2020-08-03 2022-11-07 栗田工業株式会社 管理システム、管理装置、管理方法及びプログラム

Also Published As

Publication number Publication date
JP6870614B2 (ja) 2021-05-12
CN108137234A (zh) 2018-06-08
JPWO2017038408A1 (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2017038408A1 (ja) 石炭貯蔵システムおよび石炭貯蔵方法
EP2495373A3 (de) Entwässerungssystem, Verfahren zu seiner Herstellung und Bauelemente hierfür
CN206706525U (zh) 一种压路机压轮的清洗及刮轮板机构
CN106234076A (zh) 一种日光温室微热管阵列蓄热墙体及其制备方法
CN204551164U (zh) 一种园林用排水对接空心砖
KR101416652B1 (ko) 초발수 표면을 가지는 열교환기용 냉각핀 및 이를 이용한 열교환기
CN207466024U (zh) 一种改性沥青耐根穿刺防水卷材
US20160160125A1 (en) Carbonized material production kiln
CN102174815B (zh) 干灰场灰渣坝修筑方法
JP2006138589A (ja) 空間の冷却構造
CN206328775U (zh) 锅炉房泄爆口结构
EP2444471A2 (en) Method for producing peat
EP2389425A1 (en) Method and drying field for fuel peat production
JP2017149637A (ja) 製鋼スラグの水和促進方法
JP6834451B2 (ja) 防潮堤用壁体構造物
CN101417852A (zh) 赤泥滤饼堆场的堆存方法及装置
JP2020002643A (ja) 盛土構造および盛土構造の施工方法
CN214460134U (zh) 一种安全性高的水利工程用护坡网
CN214656076U (zh) 木铺装龙骨防腐排水结构
CA2695736A1 (en) Stackable greenhouse
JP3837379B2 (ja) 緑化基礎工法並びにそれを用いた緑化工法
JP3103559U (ja) 荷重緩徐材及び法面構造物
CN106592629B (zh) 锅炉房泄爆口结构及其施工工艺
RU2016105674A (ru) Способ ремонта бетонных облицовок оросительных каналов
CN206554504U (zh) 一种带底模的阵列式圆筒板成型结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841440

Country of ref document: EP

Kind code of ref document: A1