WO2017038371A1 - ガスタービン及びガスタービンの運転方法 - Google Patents

ガスタービン及びガスタービンの運転方法 Download PDF

Info

Publication number
WO2017038371A1
WO2017038371A1 PCT/JP2016/072934 JP2016072934W WO2017038371A1 WO 2017038371 A1 WO2017038371 A1 WO 2017038371A1 JP 2016072934 W JP2016072934 W JP 2016072934W WO 2017038371 A1 WO2017038371 A1 WO 2017038371A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
exhaust
gas turbine
diffuser
state
Prior art date
Application number
PCT/JP2016/072934
Other languages
English (en)
French (fr)
Inventor
高善 飯島
橋本 真也
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201680043829.7A priority Critical patent/CN107849942B/zh
Priority to US15/747,915 priority patent/US11085324B2/en
Priority to KR1020187002794A priority patent/KR102064150B1/ko
Priority to DE112016003989.1T priority patent/DE112016003989T5/de
Publication of WO2017038371A1 publication Critical patent/WO2017038371A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • F01D25/305Exhaust heads, chambers, or the like with fluid, e.g. liquid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the present invention relates to a gas turbine and a method of operating a gas turbine
  • the present application claims priority to Japanese Patent Application No. 2015-172711 filed on September 2, 2015, the contents of which are incorporated herein by reference.
  • Gas turbines generally include a compressor, a combustor, a turbine, and an exhaust chamber.
  • the compressor compresses ambient air to produce compressed air.
  • the combustor mixes fuel with compressed air and burns it to produce combustion gas.
  • the turbine has a rotor that is rotated by the combustion gas.
  • the exhaust chamber is provided downstream of the turbine. The combustion gas that has rotated the rotor of this turbine is discharged to the atmosphere through the exhaust chamber as exhaust gas.
  • a cooling structure around an exhaust chamber in a gas turbine is disclosed, for example, in Patent Document 1 below.
  • an exhaust diffuser is formed in an exhaust chamber on the downstream side of the turbine.
  • the exhaust diffuser has an outer diffuser and an inner diffuser provided between the casing wall and the bearing case.
  • a strut connecting the casing wall and the bearing case and a strut cover covering the strut are disposed.
  • the gas turbine cools the struts and the strut covers by introducing atmospheric air from the outside of the casing wall and circulating the air between the struts and the strut covers.
  • such a gas turbine may switch an operation state to turndown operation in order to respond to fluctuations in the power demand during the daytime or nighttime.
  • the flow rate of the combustion gas passing through the turbine is reduced to operate the gas turbine at a lower output than at the rated operation.
  • the gas turbine during turn-down operation in order to reduce the amount of CO emitted, it is necessary to maintain the combustion temperature high even when the output is reduced.
  • the present invention provides a gas turbine and a method of operating a gas turbine capable of temporarily improving the cooling effect on a structure in exhaust gas without affecting the rated operation.
  • a gas turbine includes an exhaust diffuser having an exhaust passage formed therein for circulating exhaust gas from the turbine, and a cooling device for cooling a structure facing the exhaust passage in the exhaust diffuser.
  • a guide channel for circulating the cooling medium is formed therein, and a guide portion for guiding the cooling medium to the structure, and a flow rate of the cooling medium for circulating the guide channel are rated operation. It has a switch part which can be switched to the 1st state made into the 1st flow rate corresponding to time, and the 2nd state made into the 2nd flow rate more than the 1st flow rate.
  • the switching unit can be switched from the first state to the second state, and more cooling medium can be supplied to the structure than in the rated operation.
  • the cooling effect to the structure exposed to the exhaust gas can be temporarily improved as compared to that at the time of rated operation.
  • the switching unit can be switched so that the first state to the second state in the rated operation is reached, and it is possible to prevent the temporarily required cooling medium of the second flow rate from flowing even in the rated operation. Therefore, it is possible to prevent the efficiency of the gas turbine from being lowered due to the supercooling state at the time of rated operation.
  • the switching section narrows the flow passage area of the guide flow passage in the first state, and widens the flow passage area in the second state. It may have a valve part which has a valve body which moves like, and a supply part which supplies the first flow rate to the structure in a state where the valve body closes the guide channel.
  • the switching unit when the switching unit has the valve body, the flow passage area of the guide flow passage through which the cooling medium flows can be easily changed. Therefore, the flow rate of the cooling air flowing through the guide channel can be switched with a simple configuration. Moreover, the first flow rate can be supplied to the structure with high accuracy at the time of rated operation by supplying the first flow rate from the supply unit in a state where the valve body blocks the guide flow path. Therefore, the required cooling medium can be stably secured at the time of rated operation.
  • the supply part may be a through hole formed in the valve body.
  • the first flow rate can be supplied to the structure with high accuracy even if the valve body blocks the guide channel. be able to.
  • the guide portion has an opening for receiving the outside air outside the exhaust diffuser as the cooling medium, and the supply portion is the valve It may be a communicating hole formed in the guide portion so as to connect the outside of the exhaust diffuser and the guide channel on the structure side with respect to the body.
  • the switching section narrows the flow passage area of the guide flow passage in the first state and widens the flow passage area in the second state. It may have a valve part which has a valve body which moves like, and a stopper part which forms a crevice between the guide channel and the valve body in the first state.
  • the valve portion has a drive portion for moving the valve body, and the drive portion can not be controlled.
  • the switching unit when the switching unit can not switch from the first state to the second state, the flow rate of the cooling medium that is forced to flow through the guide flow path can be set as the second flow rate. Therefore, when it is necessary to cool the structure than at the time of rated operation, it is possible to prevent the flow rate of the cooling medium from being insufficient and the structure being unable to be cooled sufficiently. Therefore, when it is necessary to cool the structure more than at the time of rated operation, it is possible to prevent the temperature of the structure from being excessively raised and damaged.
  • the exhaust diffuser is a cylindrical outer diffuser that forms a part of the exhaust flow path, and the outer diffuser An inner diffuser defining the exhaust flow path together with the outer diffuser, and a strut cover connecting the outer diffuser and the inner diffuser, wherein the guide portion is configured as the structure
  • the strut cover may have a strut cover guiding section for guiding the cooling medium, and the outer diffuser guiding section may guide the cooling medium to the outer diffuser as the structure.
  • the cooling medium can be used to simultaneously cool the strut cover, the outer diffuser, and the plurality of structures. Therefore, the cooling medium can be efficiently used.
  • the gas turbine according to an eighth aspect of the present invention is the gas turbine according to the seventh aspect, wherein the guide portion adjusts the flow rate of the cooling medium guided to at least one of the strut cover guiding portion and the outer diffuser guiding portion. You may have a part.
  • the flow rate of the cooling medium flowing through the strut cover guiding portion and the outer diffuser guiding portion can be adjusted by the flow rate adjusting portion. Therefore, it is possible to distribute the flow rates to the strut cover guiding portion and the outer diffuser guiding portion without distributing the cooling medium, which is collectively taken in, to the respective flow rates without performing the fine control. Therefore, the cooling medium can be used more efficiently to effectively cool the strut cover and the outer diffuser.
  • the switching unit is a gas turbine output or a correlation value that is a value correlated with the gas turbine output.
  • the first state and the second state may be switched.
  • a cooling medium is supplied to an exhaust diffuser in which an exhaust flow path for circulating exhaust gas from the turbine is formed, and a structure facing the exhaust flow path in the exhaust diffuser.
  • operating the gas turbine including the cooling device for cooling the structure, the first step of setting the flow rate of the cooling medium supplied to the structure at the time of rated operation as the first flow rate, and turning down And a second step of setting the flow rate of the cooling medium supplied to the structure at the time of operation to a second flow rate higher than the first flow rate.
  • the first step is performed at the time of rated operation
  • the second step is performed at the time of turndown operation. Therefore, it is possible to switch from the first state to the second state at the time of the turndown operation, and to supply the second flow path that is larger than the first flow rate to the structure. Therefore, in the turn-down operation, the switching unit can be switched from the first state to the second state, and more cooling medium can be supplied to the structure than in the rated operation. As a result, the cooling efficiency to the structure exposed to the exhaust gas can be improved at the turn-down operation as compared to the rated operation. Further, the switching unit can be switched in the turn-down operation so that the first state in the rated operation is changed to the second state.
  • the gas turbine can be operated efficiently by temporarily improving the cooling effect without affecting the rated operation.
  • the flow rate of the cooling medium supplied to the structure can be switched between the first flow rate and the second flow rate greater than the first flow rate by the switching unit. Therefore, the cooling effect on the structure in the exhaust gas can be temporarily improved without affecting the rated operation.
  • the gas turbine 100 of the present embodiment includes a compressor 1, a plurality of combustors 2, a turbine 3, and an exhaust chamber 4.
  • the compressor 1 compresses external air to generate compressed air.
  • the combustor 2 burns fuel in compressed air to generate combustion gas.
  • the turbine 3 is driven by the combustion gas.
  • the exhaust chamber 4 circulates the exhaust gas from the turbine 3.
  • the compressor 1 includes a compressor rotor 11, a compressor casing 12, and an IGV (inlet guide vane) 13.
  • the compressor rotor 11 rotates about an axis Ar.
  • the compressor casing 12 rotatably covers the compressor rotor 11.
  • the IGV 13 is provided at the suction port of the compressor casing 12. The IGV 13 regulates the flow rate of air drawn into the compressor casing 12.
  • the direction in which the axis Ar extends is taken as the axial direction Da.
  • the circumferential direction Dc centered on the axis Ar is simply referred to as the circumferential direction Dc.
  • a direction perpendicular to the axis Ar is taken as a radial direction Dr.
  • the first side of the axial direction Da is referred to as the upstream side (one side)
  • the second side of the axial direction Da is referred to as the downstream side (the other side).
  • the side closer to the axis Ar in the radial direction Dr is the inner side of the radial direction Dr
  • the side opposite to the inner side of the radial direction Dr in the radial direction Dr is the outer side of the radial direction Dr.
  • the turbine 3 has a turbine rotor 31 rotating around an axis Ar and a turbine casing 32 rotatably covering the turbine rotor 31.
  • the axis Ar of the compressor rotor 11 and the axis Ar of the turbine rotor 31 are located on the same straight line.
  • the compressor rotor 11 and the turbine rotor 31 are connected to each other to form a gas turbine rotor 101.
  • a rotor of a generator (not shown) is connected to the gas turbine rotor 101.
  • the compressor casing 12 and the turbine casing 32 are connected to each other to form a gas turbine casing 102.
  • the turbine rotor 31 has a rotor shaft 311 extending in the axial direction Da around the axis Ar, and a plurality of moving blades 312 attached to the rotor shaft 311. At each upstream side of the moving blade 312, a stationary blade is disposed.
  • the plurality of combustors 2 are accommodated in the gas turbine casing 102 side by side in the circumferential direction Dc around the axis Ar.
  • the combustor 2 is fixed to the gas turbine casing 102.
  • the exhaust chamber 4 includes an exhaust chamber wall 41, a bearing 42, struts 43, an exhaust diffuser 5, and a cooling device 6.
  • the exhaust chamber wall 41 forms a part of the gas turbine casing 102.
  • the exhaust chamber wall 41 is disposed downstream of the turbine casing 32.
  • the exhaust chamber wall 41 has a cylindrical shape around the axis Ar.
  • the exhaust chamber wall 41 is disposed downstream of the final stage moving blade 312.
  • the bearing portion 42 rotatably supports the turbine rotor 31.
  • the bearing portion 42 is disposed inside the radial direction Dr of the inner diffuser 52 described later.
  • the strut 43 connects the exhaust chamber wall 41 and the bearing portion 42.
  • the struts 43 are disposed to penetrate the exhaust diffuser 5.
  • the struts 43 extend in a tangential (tangential) direction of the turbine rotor 31 so as to be inclined at a predetermined angle in the circumferential direction Dc with respect to the radial direction Dr.
  • a plurality of struts 43 are arranged at equal intervals in the circumferential direction Dc.
  • the exhaust diffuser 5 is formed with an exhaust passage Pe through which the exhaust gas from the turbine 3 flows.
  • the exhaust diffuser 5 includes an outer diffuser 51, an inner diffuser 52, and a strut cover 53.
  • the outer diffuser 51 and the inner diffuser 52 are disposed inside the radial direction Dr of the exhaust chamber wall 41.
  • the outer diffuser 51 and the inner diffuser 52 are cylindrical around an axis Ar.
  • the outer diffuser 51 and the inner diffuser 52 are penetrated by the struts 43.
  • the outer diffuser 51 is disposed at an interval inside the radial direction Dr of the exhaust chamber wall 41.
  • the outer diffuser 51 extends along the inner circumferential surface of the exhaust chamber wall 41.
  • the inner diffuser 52 is spaced apart from the inside of the radial direction Dr of the outer diffuser 51.
  • the outer diffuser 51 and the inner diffuser 52 form an exhaust flow path Pe of the combustion gas which has rotated the turbine rotor 31 in the space between the radial directions Dr. That is, the exhaust passage Pe extends in the axial direction Da between the radial direction Dr of the outer diffuser 51 and the inner diffuser 52.
  • An outer diffuser flow passage Pd is defined in a space between the outer diffuser 51 and the exhaust chamber wall 41 in the radial direction Dr.
  • the outer diffuser flow path Pd cools the outer diffuser 51 by circulating a cooling medium along the outer peripheral surface of the outer diffuser 51.
  • the outer diffuser passage Pd extends in the axial direction Da along the outer peripheral surface of the outer diffuser 51 outside the radial direction Dr of the outer diffuser 51.
  • the outer diffuser passage Pd is in communication with a strut passage Ps described later on the upstream side of the axial direction Da.
  • the outer diffuser passage Pd is connected to the cooling device 6 on the downstream side in the axial direction Da.
  • the strut cover 53 has a tubular hollow structure.
  • the strut 43 is disposed inside the strut cover 53. That is, the strut cover 53 covers the struts 43 along the direction in which the struts 43 extend.
  • a space between the strut cover 53 and the strut 43 is formed as a strut flow path Ps.
  • the strut flow path Ps cools the strut cover 53 and the strut 43 by circulating a cooling medium.
  • the strut flow passage Ps is formed such that the flow passage cross section is larger than the outer diffuser flow passage Pd.
  • the strut cover 53 is attached to the outer diffuser 51 at its outer end in the radial direction Dr.
  • the strut cover 53 is attached to the inner diffuser 52 at the inner end in the radial direction Dr.
  • the strut cover 53 is disposed in the exhaust passage Pe so as to cross the exhaust passage Pe.
  • the cooling device 6 cools the structure facing the exhaust passage Pe in the exhaust diffuser 5.
  • the structures in the exhaust gas in the present embodiment are the outer diffuser 51 and the strut cover 53.
  • the cooling device 6 supplies outside air at atmospheric pressure from the outside of the gas turbine 100 as a cooling medium to the structure as cooling air.
  • the cooling device 6 of the present embodiment supplies a cooling medium to the structure.
  • the cooling device 6 is attached to the exhaust chamber wall 41.
  • the cooling device 6 has a guiding unit 7 and a switching unit 8.
  • the guide part 7 has a guide channel Pg for circulating a cooling medium formed therein.
  • the guiding unit 7 guides the cooling air taken from the outside as a cooling medium to the structure.
  • the guiding portion 7 has a strut cover guiding portion 71, an outer diffuser guiding portion 72, and a flow rate adjusting portion 73.
  • the strut cover guiding portion 71 guides the cooling medium to the strut cover 53 as a structure.
  • the strut cover guiding portion 71 guides the cooling air to the strut flow passage Ps via the first refrigerant supply hole 41 a formed in the exhaust chamber wall 41.
  • the first refrigerant supply holes 41 a are formed at positions corresponding to the struts 43 in the axial direction Da of the exhaust chamber wall 41.
  • the strut cover guiding portion 71 has an opening 71a for receiving outside air as a cooling medium.
  • the strut cover guiding portion 71 in the present embodiment is a cylindrical pipe extending from the exhaust chamber wall 41 toward the outside in the radial direction Dr.
  • the space inside the strut cover guiding portion 71 forms a part of the guiding flow path Pg connected to the strut flow path Ps.
  • the strut cover guiding portion 71 has an opening 71a that is open so that the outside of the radial direction Dr opposite to the side connected to the first coolant supply hole 41a communicates with the outside of the gas turbine casing 102. There is.
  • the outer diffuser guide 72 guides the cooling medium to the outer diffuser 51 as a structure.
  • the outer diffuser guiding portion 72 guides the cooling air to the outer diffuser passage Pd via the second refrigerant supply hole 41 b formed in the exhaust chamber wall 41.
  • the second refrigerant supply hole 41 b is formed in the exhaust chamber wall 41 on the downstream side of the first refrigerant supply hole 41 a in the axial direction Da.
  • the outer diffuser guide portion 72 in the present embodiment is a cylindrical pipe extending from the middle in the radial direction Dr of the strut cover guide portion 71 to the downstream side in the axial direction Da. That is, the space inside the outer diffuser guide portion 72 forms a part of the guide passage Pg connected to the outer diffuser passage Pd.
  • the outer diffuser guide portion 72 has a flexible region 72a in which a part of the axial direction Da is formed of a flexible material having high flexibility. The position of the outer diffuser guide portion 72 is adjusted by the flexible region 72a so as to follow the positional deviation between the strut cover guide portion 71 and the second coolant supply hole 41b.
  • the flow rate adjusting unit 73 adjusts the flow rate of the cooling medium guided to at least one of the strut cover guiding portion 71 and the outer diffuser guiding portion 72.
  • the flow rate adjusting unit 73 of the present embodiment adjusts the flow rate of the cooling medium guided to the strut cover guiding unit 71.
  • the flow rate adjusting portion 73 is provided closer to the exhaust chamber wall 41 than the position where the outer diffuser guiding portion 72 of the strut cover guiding portion 71 branches off.
  • the flow rate adjusting unit 73 is a ring-shaped orifice fixed to the inner peripheral surface of the strut cover guiding unit 71.
  • the switching unit 8 can switch between a first state in which the flow rate of the cooling medium flowing through the guide flow path Pg is a first flow rate corresponding to the rated operation and a second state in which the second flow rate is higher than the first flow rate. It is assumed.
  • the switching unit 8 switches the inflow state of the cooling air from the outside to the guiding unit 7.
  • the switching unit 8 switches between the first state and the second state based on a gas turbine output or a correlation value that is a value correlated with the gas turbine output.
  • the switching unit 8 of the present embodiment includes a valve unit 81, a supply unit 82, a fail safe unit 83, and a control unit 84.
  • the valve portion 81 is provided in the vicinity of the opening 71 a for taking in the cooling air of the guiding portion 7 from the outside.
  • the valve portion 81 of the present embodiment is provided on the side of the opening 71 a that is upstream of the position where the outer diffuser guide portion 72 of the strut cover guide portion 71 branches off.
  • the valve portion 81 of the present embodiment is a butterfly valve.
  • the valve unit 81 has a valve body 811 and a drive unit 812.
  • the valve body 811 moves so as to narrow the flow passage area of the guide flow passage Pg in the first state and to widen the flow passage area in the second state.
  • the valve body 811 has a disk shape.
  • the outer shape of the valve body 811 corresponds to the shape of the inner peripheral surface of the strut cover guiding portion 71.
  • the valve body 811 opens and closes the guide flow path Pg by being rotated by a drive unit 812 described later. By closing the guiding flow path Pg, the valve body 811 brings the switching unit 8 into the first state in which the cooling air flows into the guiding flow path Pg only from the supply unit 82 described later.
  • the valve body 811 opens the guiding flow path Pg, thereby setting the switching unit 8 in the second state in which the cooling air having the second flow rate larger than the first flow rate flows into the guiding flow path Pg.
  • the drive unit 812 causes the valve body 811 to switch between the first state and the second state by moving the valve body 811.
  • the drive unit 812 has a valve stem 812 a and a drive unit main body 812 b.
  • the valve stem 812 a is disposed to pass through the center of the valve body 811.
  • the valve stem portion 812a has a cylindrical shape, and can rotate together with the valve body 811 around its central axis.
  • the valve stem portion 812a is disposed in a state of penetrating the strut cover guiding portion 71 in a direction orthogonal to the extending direction.
  • the drive portion main body 812 b rotates the valve stem portion 812 a together with the valve body 811.
  • the drive portion main body 812 b of the present embodiment is disposed on the outer peripheral surface of the guide portion 7.
  • the drive unit main body 812 b is configured of, for example, an air cylinder.
  • the drive portion main body 812b rotates the valve stem portion 812a by pressing a position eccentric to the central axis of the valve stem portion 812a at the end of the valve stem portion 812a.
  • the drive portion main body 812 b rotates the valve stem portion 812 a and closes the guide flow path Pg with the valve body 811 to set the switching portion 8 in the first state.
  • the drive portion main body 812 b rotates the valve stem portion 812 a and opens the guide flow path Pg with the valve body 811 to bring the switching portion 8 into the second state.
  • the supply unit 82 supplies the cooling medium having the first flow rate to the structure in the exhaust gas with the valve body 811 closing the guide flow path Pg.
  • the supply unit 82 of the present embodiment is a plurality of circular through holes formed in the valve body 811.
  • the supply parts 82 are formed in a number corresponding to the flow passage area required to flow the first flow rate.
  • the supply part 82 of 1st embodiment is not limited to being several through-holes.
  • the supply unit 82 may be a single through hole as long as a flow passage area necessary for circulating the first flow rate can be secured.
  • the supply unit 82 may be formed at the end of the valve body 811 or may be formed at the center of the valve body 811.
  • the fail safe unit 83 sets the flow rate of the cooling medium flowing through the guide flow passage Pg as the second flow rate.
  • the fail safe unit 83 of the present embodiment when the drive unit 812 becomes uncontrollable and the valve body 811 can not be rotated by the drive unit main body 812 b, the guide passage Pg remains in a closed state forcibly.
  • the valve body 811 is rotated to open the guide channel Pg.
  • the fail safe unit 83 is, for example, an elastic member such as a spring material. The fail safe unit 83 presses the valve stem 812 a in the direction of opening the valve body 811.
  • the control unit 84 drives the valve body 811 to switch between the first state and the second state based on the gas turbine output or the correlation value that is a value correlated with the gas turbine output.
  • the control unit 84 of the present embodiment switches the drive state of the drive unit 812 based on the gas turbine output measured by a power meter (not shown).
  • the control unit 84 sends a signal to the drive unit 812 to close the guide flow path Pg with the valve body 811 so as to narrow the flow path area of the guide flow path Pg.
  • the control unit 84 sends a signal to the drive unit 812 to open the guide flow path Pg by the valve body 811 so as to expand the flow path area of the guide flow path Pg.
  • the gas turbine 100 In the turndown operation (partial load operation or low load operation), the gas turbine 100 is operated in a state where the gas turbine output is lower than that in the rated operation.
  • For turn-down operation simply squeeze the IGV 13 to keep the turbine inlet temperature high, reduce the flow rate of combustion gas passing through the turbine 3 using an anti-icing system, or pass the turbine 3 using a turbine bypass system There is a way to reduce the combustion gas flow rate.
  • the intake air temperature is raised to prevent the icing of the compressor 1 by returning the bleed air of the compressor 1 to the intake side.
  • the intake temperature of the compressor 1 can be increased even if the intake temperature is not low. Therefore, the mass flow rate of air that the compressor 1 sucks can be reduced, and the amount of air for combustion can be further reduced by the bleed air.
  • the flow rate of the combustion gas passing through the turbine 3 can be reduced to reduce the gas turbine output, and the gas turbine 100 can be operated.
  • the first step is performed in which the flow rate of the cooling medium supplied to the structure in the exhaust gas is the first flow rate.
  • a signal from the control unit 84 is sent to the drive unit 812 so that the valve body 811 blocks the guide flow path Pg.
  • the drive unit main body 812 b of the drive unit 812 that has received the signal rotates the valve body 811 together with the valve stem 812 a so as to close the guide flow path Pg.
  • the cooling air flows into the guide channel Pg only from the through hole which is the supply unit 82.
  • the switching unit 8 is switched to the first state. Therefore, the cooling air flows into the guiding flow path Pg of the strut cover guiding portion 71 by the first flow rate.
  • the inflowing cooling air flows toward the first refrigerant supply hole 41a through the strut cover guiding portion 71, and a part thereof flows into the outer diffuser guiding portion 72 and flows toward the second refrigerant supply hole 41b.
  • the cooling air having passed through the strut flow path Ps passes through the inside of the radial direction Dr of the inner diffuser 52 and between the rotor blade 312 of the final stage and the upstream end of the inner diffuser 52, the inner diffuser 52 and the outer diffuser 51 Flow into the exhaust flow path Pe between them.
  • the cooling air that has flowed into the exhaust chamber wall 41 from the second refrigerant supply hole 41 b flows through the outer diffuser passage Pd to cool the outer diffuser 51.
  • the cooling air passing through the outer diffuser passage Pd joins the cooling air flowing through the strut passage Ps.
  • a second step is performed in which the flow rate of the cooling medium supplied to the structure is a second flow rate larger than the first flow rate.
  • a signal from the control unit 84 is sent to the drive unit 812 so that the valve body 811 opens the guide flow path Pg.
  • the drive unit main body 812 b of the drive unit 812 that has received the signal rotates the valve body 811 together with the valve stem 812 a so as to open the guide flow path Pg.
  • the switching unit 8 is switched to the second state.
  • the cooling air of the second flow rate which is higher than the first flow rate, flows into the guide flow path Pg of the strut cover guiding portion 71.
  • the flowing cooling air flows toward the first coolant supply hole 41a while the cooling air flows into the outer diffuser guide 72 while flowing toward the first coolant supply hole 41a, as in the rated operation, toward the second coolant supply hole 41b.
  • the first step is performed at the time of rated operation to set the switching unit 8 in the first state
  • the second step is performed at the turndown operation to set the switching unit 8 in the second state
  • the flow rate of the combustion gas passing through the turbine 3 decreases, so the expansion ratio of the turbine 3 decreases. Therefore, at the time of turndown operation, by maintaining the combustion temperature high, the temperature of the exhaust gas will rise compared to at the time of rated operation.
  • the switching unit 8 can be switched during turndown operation so that the first state is changed to the second state during rated operation, and the flow rate of cooling air required during turndown operation also flows during rated operation. It can prevent. Therefore, it is possible to prevent the efficiency of the gas turbine 100 from being lowered due to the supercooling state at the time of rated operation.
  • the cooling effect during turn-down operation without affecting the time of rated operation. That is, the cooling effect on the structure exposed to the exhaust gas such as the strut cover 53, the outer diffuser 51, and the inner diffuser 52 can be temporarily improved as needed without affecting the rated operation. . Therefore, the gas turbine 100 can be operated efficiently.
  • the switching part 8 since the switching part 8 has the valve body 811, the flow passage area of the guide flow passage Pg through which the cooling air flows can be easily changed. Therefore, the flow rate of the cooling air flowing through the guide flow path Pg can be switched with a simple configuration. Further, by supplying the first flow rate to the downstream side of the valve body 811 from the through hole formed in the valve body 811 in the state where the valve body 811 closes the guide flow path Pg, the first operation can be performed with high accuracy at the time of rated operation. Flow rates can be supplied to the structure. Therefore, the required cooling medium can be stably secured at the time of rated operation.
  • the supply portion 82 as the through hole formed in the valve body 811, the cooling air of the first flow rate can be supplied to the downstream side of the valve body 811 with high accuracy.
  • the supply part 82 can be formed by the simple structure which only forms a through-hole in the valve body 811.
  • valve shaft portion 812 a is pressed by the fail safe portion 83 in the direction in which the valve body 811 is opened.
  • the valve body 811 can be prevented from being in a state in which the guide flow path Pg is blocked. Therefore, the guide channel Pg is closed by the valve body 811 during turn-down operation, and only the first flow of cooling air is supplied to the structure such as the strut cover 53, the outer diffuser 51, and the inner diffuser 52. It can prevent.
  • the guiding portion 7 has a strut cover guiding portion 71 connected to the strut flow path Ps and an outer diffuser guiding portion 72 connected to the outer diffuser flow path Pd. Therefore, cooling air can be used to simultaneously cool the strut cover 53, the outer diffuser 51, and the plurality of structures. Therefore, the cooling air can be used efficiently.
  • the flow rate of the cooling air flowing through the strut cover guiding portion 71 and the outer diffuser guiding portion 72 can be adjusted by the orifice serving as the flow rate adjusting portion 73. Therefore, without finely controlling the cooling air taken in collectively from the outside through the valve portion 81, the flow rates may be distributed to different flow rates and distributed to the strut cover guiding portion 71 and the outer diffuser guiding portion 72. it can. Therefore, the cooling air can be used more efficiently to cool the strut cover 53 and the outer diffuser 51 effectively.
  • control unit 84 switches the drive state of the drive unit 812 based on the gas turbine output. Therefore, it is possible to switch between the first state and the second state with high accuracy to correspond to the switching of the operating state so that the rated operation and the turn-down operation are switched. Therefore, it is possible to prevent the switching unit 8 from being erroneously brought into the first state during turn-down operation other than during rated operation. As a result, it is possible to prevent the flow rate of the cooling air from being insufficient for the turn-down operation and the structure can not be cooled sufficiently. Therefore, it is possible to prevent the temperatures of the strut cover 53, the outer diffuser 51, the inner diffuser 52, and the like from excessively rising and being damaged in the turn down operation.
  • the cooling device 6 is the exhaust chamber wall 41 Can be prevented from falling out of
  • the guide portion 7 is configured such that the supply portion 82A of the switching portion 8A communicates the outside of the exhaust diffuser 5 with the guide flow path Pg on the exhaust chamber wall 41 side of the valve body 811 It is a communicating hole formed in
  • the supply portion 82A of the second embodiment is a plurality of circular holes penetrating the pipe which is the strut cover guiding portion 71 in the direction orthogonal to the extending direction.
  • the supply portion 82 ⁇ / b> A is formed between a position where the outer diffuser guide portion 72 of the strut cover guide portion 71 branches and a flow rate adjustment portion 73.
  • the supply part 82A of 2nd embodiment is not limited to being several communication holes.
  • the supply portion 82A may be a single communication hole as long as a flow passage area necessary for circulating the first flow rate can be secured.
  • the supply portion 82A may be formed on the side of the exhaust chamber wall 41 which is the downstream side of the valve body 811 in the strut cover guiding portion 71.
  • the supply portion 82A is formed to communicate the inside and the outside of the strut cover guiding portion 71. Therefore, even when the valve body 811 blocks the guide flow path Pg, the cooling air with the first flow rate can be supplied from the outside to the downstream side of the valve body 811 with high accuracy. Further, by forming the supply portion 82A in the strut cover guiding portion 71, it is possible to form a structure capable of supplying the first flow rate regardless of the valve body 811.
  • a gas turbine according to a third embodiment will be described with reference to FIG.
  • the same components as those in the first embodiment and the second embodiment will be assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the structure of the switching portion of the cooling device is different from the first embodiment and the second embodiment.
  • the switching unit 8B includes a stopper 85 instead of the supply unit 82.
  • the stopper portion 85 forms a gap between the guide channel Pg and the valve body 811 in the first state.
  • the stopper portion 85 forms a gap through which the cooling air flows by the first flow rate without the valve body 811 completely blocking the guide flow path Pg.
  • the stopper portion 85 of the present embodiment protrudes inward from the inner peripheral surface of the strut cover guiding portion 71 so that the valve body 811 does not completely block the guide flow path Pg.
  • the stopper part 85 is not limited to the structure of this embodiment, and it may be a gap between the guiding flow path Pg and the valve body 811 through which the cooling air flows by the first flow rate.
  • the stopper portion 85 may protrude from the valve body 811 or may have a structure that prevents the valve body 811 from being blocked from the outside.
  • the stopper portion 85 forms a gap between the strut cover guiding portion 71 and the valve body 811 through which the cooling air flows by the first flow rate. Therefore, the cooling air at the first flow rate can be supplied to the downstream side of the valve body 811 with high accuracy.
  • the structure in the present embodiment is not limited to both the outer diffuser 51 and the strut cover 53.
  • the structure may be any member that faces the exhaust passage Pe and is exposed to the exhaust gas.
  • the structure may be either the outer diffuser 51 or the strut cover 53.
  • the structure may be a member other than the outer diffuser 51 and the strut cover 53 like the strut 43.
  • the switching unit 8 is not limited to the structure having the valve unit 81 and the supply unit 82 as in the present embodiment.
  • the switching part 8 should just be a structure which can switch a 1st state and a 2nd state.
  • the switching unit 8 may have, for example, a bypass structure in which cooling air is supplied through different pipes in the first state and the second state.
  • the fail safe unit 83 is not limited to the structure for pressing the valve body 811 as in the present embodiment. If the switching unit 8 can not switch from the first state to the second state, the fail safe unit 83 only needs to be able to use the flow rate of the cooling air flowing through the guide flow passage Pg as the second flow rate. For example, when the valve body 811 itself becomes inoperable and the switching unit 8 can not switch from the first state to the second state, the fail safe unit 83 bypasses the switching unit 8 and supplies cooling air. Like bypass
  • the gas turbine output measured by the power meter is used.
  • the present invention is not limited to this, and may be a correlation value correlated with the gas turbine output such that the state of the gas turbine output is known.
  • temperature information obtained by measuring the temperature of the exhaust gas in the exhaust flow path Pe or opening degree information obtained by measuring the opening degree of the IGV 13 may be used as a correlation value correlating to the gas turbine output. .
  • the flow rate of the cooling medium supplied to the structure can be switched between the first flow rate and the second flow rate greater than the first flow rate by the switching unit. Therefore, the cooling effect on the structure in the exhaust gas can be temporarily improved without affecting the rated operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Abstract

ガスタービンは、タービンからの排ガスを流通させる排気流路(Pe)が形成された排気ディフューザ(5)と、排気ディフューザ(5)における排気流路(Pe)に面する構造体を冷却する冷却装置(6)とを備える。冷却装置(6)は、冷却媒体を流通させる案内流路(Pg)が内部に形成され、前記構造体まで前記冷却媒体を案内する案内部(7)と、案内流路(Pg)を流通する前記冷却媒体の流量を定格運転時に対応する第一流量とする第一状態と、前記第一流量よりも多い第二流量とする第二状態とに切替可能な切替部(8)と、を有する。

Description

ガスタービン及びガスタービンの運転方法
 本発明は、ガスタービン及びガスタービンの運転方法に関する
 本願は、2015年9月2日に出願された特願2015-172711号について優先権を主張し、その内容をここに援用する。
 ガスタービンは、一般的に、圧縮機と、燃焼器と、タービンと、排気室とを備えている。圧縮機は、外気を圧縮して圧縮空気を生成する。燃焼器は、燃料を圧縮空気に混合して燃焼させて燃焼ガスを生成する。タービンは、燃焼ガスにより回転するロータを有する。排気室は、タービンの下流側に設けられている。このタービンのロータを回転させた燃焼ガスは、排ガスとして排気室を通って大気に放出される。
 このようなガスタービンでは、高効率化に伴って、タービンに供給される燃焼ガス温度が非常に高温になってきている。このため、タービンの構成部品の多くが冷却対象になっている。上記排気室を形成する部品やこの排気室周りの部品も冷却対象になっている。
 ガスタービンにおける排気室周りの冷却構造は、例えば、以下の特許文献1に開示されている。特許文献1に記載のガスタービンでは、タービンの下流側の排気室に排気ディフューザが形成されている。排気ディフューザは、車室壁及びベアリングケースとの間に設けられた外側ディフューザと内側ディフューザとを有している。この排気室には、車室壁とベアリングケーストとを連結するストラットと、ストラットを覆うストラットカバーとが配置されている。このガスタービンは、車室壁の外部から大気圧の外気を導入して、ストラットとストラットカバーとの間の空間に流通させることでストラット及びストラットカバーを冷却している。
特開2013-174134号公報
 ところで、このようなガスタービンは、日中や夜間の電力需要の変動に対応するために、運転状態をターンダウン運転に切り替える場合がある。ターンダウン運転では、タービンを通過する燃焼ガスの流量を減少させて定格運転時に比べて低い出力でガスタービンが運転される。ターンダウン運転時のガスタービンでは、排出されるCOの排出量を抑えるために、出力を低下させた場合であっても燃焼温度を高く維持する必要がある。
 しかしながら、タービンを通過する燃焼ガスの流量を減少させた状態では、タービンの膨張比は小さくなる。そのため、燃焼温度を高く維持することで、定格運転時と比べて排ガスの温度が上昇してしまう。その結果、排ガスに曝されるストラットカバーのような構造体のメタル温度が上昇してしまう。そのため、ターンダウン運転のようにガスタービン出力を定格運転時よりも下げてガスタービンの運転を行う場合には、構造体を冷却するための空気等の冷却媒体の供給量を定格運転時よりも増やす必要がある。ところが、ターンダウン運転時に合わせて、冷却媒体の供給量を増やしてしまうと、定格運転時に過冷却状態となり、ガスタービンの効率が低下してしまう。そのため、定格運転時に影響を与えることなく、一時的に排ガス中の構造体への冷却効果を向上することが望まれている。
 本発明は、定格運転時に影響を与えることなく、一時的に排ガス中の構造体への冷却効果を向上することが可能なガスタービン及びガスタービンの運転方法を提供する。
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明の第一の態様におけるガスタービンは、タービンからの排ガスを流通させる排気流路が形成された排気ディフューザと、前記排気ディフューザにおける前記排気流路に面する構造体を冷却する冷却装置とを備え、前記冷却装置は、冷却媒体を流通させる案内流路が内部に形成され、前記構造体まで前記冷却媒体を案内する案内部と、前記案内流路を流通する前記冷却媒体の流量を定格運転時に対応する第一流量とする第一状態と、前記第一流量よりも多い第二流量とする第二状態とに切替可能な切替部と、を有する。
 このような構成によれば、第一状態から第二状態に切り替えることで、第一流量よりも多い第二流路を構造体に供給することができる。したがって、第一状態から第二状態に切替部を切り替えて、定格運転時よりも多くの冷却媒体を構造体に供給することができる。これにより、排ガスに曝される構造体への冷却効果を定格運転時に比べて、一時的に向上させることができる。また、定格運転時の第一状態から第二状態となるように、切替部を切り替えることができ、一時的に必要な第二流量の冷却媒体が定格運転時にも流れてしまうことを防止できる。したがって、定格運転時に過冷却状態となり、ガスタービンの効率が低下してしまうことを抑制することができる。
 本発明の第二の態様におけるガスタービンでは、第一の態様において、前記切替部は、前記第一状態で前記案内流路の流路面積を狭め、前記第二状態で前記流路面積を広げるように可動する弁体を有する弁部と、前記弁体が前記案内流路を閉塞した状態で、前記第一流量を前記構造体へ供給する供給部とを有していてもよい。
 このような構成によれば、切替部が弁体を有していることで、冷却媒体の流通する案内流路の流路面積を容易に変化させることができる。したがって、案内流路を流通する冷却空気の流量を簡易な構成で切り替えることができる。また、弁体が案内流路を閉塞した状態で、供給部から第一流量を供給することで、定格運転時に高い精度で第一流量を構造体へ供給することができる。したがって、定格運転時に、必要な冷却媒体を安定して確保することできる。
 本発明の第三の態様におけるガスタービンでは、第二の態様において、前記供給部は、前記弁体に形成された貫通孔であってもよい。
 このような構成によれば、供給部を弁体の形成された貫通孔とすることで、弁体が案内流路を閉塞した場合あっても、高い精度で第一流量を構造体へ供給することができる。
 本発明の第四の態様におけるガスタービンでは、第二の態様において、前記案内部は、前記冷却媒体として、前記排気ディフューザの外部の外気を受け入れる開口部を有し、前記供給部は、前記弁体よりも前記構造体側で、前記排気ディフューザの外部と前記案内流路とを連通するように前記案内部に形成される連通孔であってもよい。
 このような構成によれば、案内部に供給部に形成されることで、弁体によらずに第一流量を供給可能な構造を形成することができる。
 本発明の第五の態様におけるガスタービンでは、第一の態様において、前記切替部は、前記第一状態で前記案内流路の流路面積を狭め、前記第二状態で前記流路面積を広げるように可動する弁体を有する弁部と、前記第一状態で前記案内流路と前記弁体との間に隙間を形成するストッパ部とを有していてもよい。
 このような構成によれば、ストッパ部がストラットカバー案内部と弁体との間に隙間を形成することで、第一流量の冷却媒体を弁体の下流側に高い精度で供給することができる。
 本発明の第六の態様におけるガスタービンでは、第二から第五の態様のいずれか一つにおいて、前記弁部は、前記弁体を可動させる駆動部を有し、前記駆動部が制御不能となった場合に、前記案内流路を流通する前記冷却媒体の流量を前記第二流量とするフェイルセーフ部を備えていてもよい。
 このような構成によれば、切替部が第一状態から第二状態に切替不能となった場合に、強制的に案内流路を流通する冷却媒体の流量を第二流量とすることができる。そのため、定格運転時よりも構造体を冷却する必要がある場合に、冷却媒体の流量が不足して構造体を十分冷却できなくなってしまうことを防止できる。したがって、定格運転時よりも構造体を冷却する必要がある場合に、構造体の温度が上昇し過ぎて損傷してしまうことを防止することができる。
 本発明の第七の態様におけるガスタービンは、第一から第六のいずれか一つの態様において、前記排気ディフューザは、前記排気流路の一部を形成する筒状の外側ディフューザと、前記外側ディフューザの内側に設けられて、前記外側ディフューザとともに前記排気流路を画成する内側ディフューザと、前記外側ディフューザと前記内側ディフューザとを連結するストラットカバーとを備え、前記案内部は、前記構造体として前記ストラットカバーに前記冷却媒体を案内するストラットカバー案内部と、前記構造体として前記外側ディフューザに前記冷却媒体を案内する外側ディフューザ案内部と、を有していてもよい。
 このような構成によれば、冷却媒体を利用して、ストラットカバーと外側ディフューザと複数の構造体を同時冷却することができる。したがって、冷却媒体を効率的に利用することができる。
 本発明の第八の態様におけるガスタービンは、第七の態様において、前記案内部は、前記ストラットカバー案内部及び前記外側ディフューザ案内部の少なくとも一方に案内する前記冷却媒体の流量を調整する流量調整部を有していてもよい。
 このような構成によれば、ストラットカバー案内部及び外側ディフューザ案内部を流通する冷却媒体の流量を流量調整部で調整することができる。そのため、一括して取り入れた冷却媒体を細かな制御を行うことなく、異なる流量に分配してストラットカバー案内部及び外側ディフューザ案内部のそれぞれに流通させることができる。したがって、冷却媒体をより効率的に利用して、ストラットカバーと外側ディフューザとを効果的に冷却することができる。
 本発明の第九の態様におけるガスタービンは、第一から第八のいずれか一つの態様において、前記切替部は、ガスタービン出力又は前記ガスタービン出力に相関する値である相関値に基づいて、前記第一状態と前記第二状態とを切り替えてもよい。
 このような構成によれば、定格運転から運転状態が切り替わったことに高い精度で対応させて、第一状態と第二状態とを切り替えることができる。したがって、定格運転時以外に誤って切替部が第一状態となってしまうことを防ぐことができる。これにより、定格運転時以外に、冷却媒体の流量が不足して構造体を十分冷却できなくなってしまうことを防止できる。したがって、定格運転時以外に、構造体の温度が上昇し過ぎて損傷してしまうことを防止することができる。
 本発明の第十の態様におけるガスタービンの運転方法は、タービンからの排ガスを流通させる排気流路が形成された排気ディフューザと、前記排気ディフューザにおける排気流路に面する構造体に冷却媒体を供給することで前記構造体を冷却する冷却装置とを備えるガスタービンの運転方法であって、定格運転時に前記構造体に供給する前記冷却媒体の流量を第一流量とする第一工程と、ターンダウン運転時に前記構造体に供給する前記冷却媒体の流量を前記第一流量よりも多い第二流量とする第二工程と含む。
 このような構成によれば、定格運転時に第一工程を実施し、ターンダウン運転時に第二工程を実施している。そのため、ターンダウン運転時に第一状態から第二状態に切り替えて、第一流量よりも多い第二流路を構造体に供給することができる。したがって、ターンダウン運転時に、第一状態から第二状態に切替部が切り替えて、定格運転時よりも多くの冷却媒体を構造体に供給することができる。これにより、排ガスに曝される構造体への冷却効率を定格運転時に比べてターンダウン運転時に向上させることができる。また、定格運転時の第一状態から第二状態となるようにターンダウン運転時に切替部を切り替えることができる。そのため、ターンダウン運転時に必要な冷却媒体の流量が定格運転時にも流れてしまうことを防止できる。したがって、定格運転時に過冷却状態となり、ガスタービンの効率が低下してしまうことを抑制することができる。これらから、定格運転時に影響を与えることなく、一時的に冷却効果を向上させてガスタービンを効率良く運転することができる。
 本発明によれば、構造体に供給される冷却媒体の流量を切替部が第一流量と、第一流量よりも多い第二流量とに切替可能とされている。そのため、定格運転時に影響を与えることなく、一時的に排ガス中の構造体への冷却効果を向上することができる。
本発明の第一実施形態におけるガスタービンの要部切欠側面図である。 本発明の第一実施形態における排気室部を示すガスタービンの要部断面図である。 本発明の第一実施形態における冷却装置を説明する要部断面図である。 本発明の第二実施形態における冷却装置を説明する要部断面図である。 本発明の第三実施形態における冷却装置を説明する要部断面図である。
《第一実施形態》
 以下、本発明に係る第一実施形態について図1から図3を参照して説明する。
 本実施形態のガスタービン100は、図1に示すように、圧縮機1と、複数の燃焼器2と、タービン3と、排気室部4と、を備えている。圧縮機1は、外気を圧縮して圧縮空気を生成する。燃焼器2は、燃料を圧縮空気中で燃焼させて燃焼ガスを生成する。タービン3は、燃焼ガスにより駆動する。排気室部4は、タービン3からの排ガスを流通させる。
 圧縮機1は、圧縮機ロータ11と、圧縮機車室12と、IGV(inlet guide vane)13と、を有する。圧縮機ロータ11は、軸線Arを中心として回転する。圧縮機車室12は、圧縮機ロータ11を回転可能に覆っている。IGV13は、圧縮機車室12の吸込み口に設けられている。このIGV13は、圧縮機車室12内に吸い込まれる空気の流量を調節する。
 なお、以下では、軸線Arが延びる方向を軸方向Daとする。この軸線Arを中心とした周方向Dcを単に周方向Dcとする。軸線Arに対して垂直な方向を径方向Drとする。また、軸方向Daの第一側を上流側(一方側)、軸方向Daの第二側を下流側(他方側)とする。また、径方向Drで軸線Arに近づく側を径方向Drの内側、この径方向Drで径方向Drの内側とは反対側を径方向Drの外側とする。
 タービン3は、軸線Arを中心として回転するタービンロータ31と、タービンロータ31を回転可能に覆うタービン車室32と、を有する。圧縮機ロータ11の軸線Arとタービンロータ31の軸線Arとは、同一直線上に位置している。圧縮機ロータ11とタービンロータ31とは、互いに連結されてガスタービンロータ101をなしている。ガスタービンロータ101には、例えば、不図示の発電機のロータが連結されている。また、圧縮機車室12とタービン車室32とは、互いに連結されてガスタービン車室102をなしている。
 タービンロータ31は、図2に示すように、軸線Arを中心として軸方向Daに延びるロータ軸311と、このロータ軸311に取り付けられている複数の動翼312と、を有する。動翼312の各上流側には、静翼が配置されている。
 複数の燃焼器2は、軸線Arを中心として周方向Dcに並んで、ガスタービン車室102に収納されている。燃焼器2は、ガスタービン車室102に固定されている。
 排気室部4は、タービン3から排出された排ガスが流れる。排気室部4は、図2に示すように、排気室壁41と、軸受部42と、ストラット43と、排気ディフューザ5と、冷却装置6とを備えている。
 排気室壁41は、ガスタービン車室102の一部をなしている。排気室壁41は、タービン車室32の下流側に配置されている。排気室壁41は、軸線Arを中心として円筒状をなしている。排気室壁41は、最終段の動翼312よりも下流側に配置されている。
 軸受部42は、タービンロータ31を回転可能に支持している。軸受部42は、後述する内側ディフューザ52の径方向Drの内側に配置されている。
 ストラット43は、排気室壁41と軸受部42とを連結している。ストラット43は、排気ディフューザ5を貫通するように配置されている。ストラット43は、径方向Drに対して周方向Dcに所定角度だけ傾斜するように、タービンロータ31のタンジェンシャル(接線)方向に延びている。ストラット43は、周方向Dcに均等に離れて複数配置されている。
 排気ディフューザ5は、タービン3からの排ガスを流通させる排気流路Peが形成されている。排気ディフューザ5は、外側ディフューザ51と、内側ディフューザ52と、ストラットカバー53とを備えている。
 外側ディフューザ51及び内側ディフューザ52は、排気室壁41の径方向Drの内側に配置されている。外側ディフューザ51及び内側ディフューザ52は、軸線Arを中心として円筒状をなしている。外側ディフューザ51及び内側ディフューザ52は、ストラット43によって貫通されている。
 外側ディフューザ51は、排気室壁41の径方向Drの内側に間隔を空けて配置されている。外側ディフューザ51は、排気室壁41の内周面に沿って延びている。内側ディフューザ52は、外側ディフューザ51の径方向Drの内側に間隔をあけて配置されている。外側ディフューザ51及び内側ディフューザ52は、その径方向Drの間の空間に、タービンロータ31を回転させた燃焼ガスの排気流路Peを形成している。つまり、排気流路Peは、外側ディフューザ51と内側ディフューザ52との径方向Drの間で、軸方向Daに延びている。外側ディフューザ51と排気室壁41との径方向Drの間に空間には、外側ディフューザ流路Pdが画成されている。
 外側ディフューザ流路Pdは、外側ディフューザ51の外周面に沿って冷却媒体を流通させることで、外側ディフューザ51を冷却する。外側ディフューザ流路Pdは、外側ディフューザ51の径方向Drの外側で、外側ディフューザ51の外周面に沿って軸方向Daに延びている。外側ディフューザ流路Pdは、軸方向Daの上流側で後述するストラット流路Psと連通している。外側ディフューザ流路Pdは、軸方向Daの下流側で冷却装置6と繋がれている。
 ストラットカバー53は、筒状の中空構造をなしている。ストラットカバー53は、その内部にストラット43が配置されている。つまり、ストラットカバー53は、ストラット43をその延在している方向に沿って覆っている。ストラットカバー53は、ストラット43との間に空間が、ストラット流路Psとして形成されている。ストラット流路Psは、冷却媒体が流通させることで、ストラットカバー53及びストラット43を冷却する。ストラット流路Psは、外側ディフューザ流路Pdよりも流路断面が大きくなるように形成されている。
 ストラットカバー53は、径方向Drの外側の端部が外側ディフューザ51に取り付けられている。ストラットカバー53は、径方向Drの内側の端部が内側ディフューザ52に取り付けられている。ストラットカバー53は、排気流路Peを横断するように、排気流路Pe内に配置されている。
 冷却装置6は、排気ディフューザ5における排気流路Peに面する構造体を冷却する。本実施形態における排ガス中の構造体とは、外側ディフューザ51及びストラットカバー53である。冷却装置6は、冷却媒体として、ガスタービン100の外部から大気圧下の外気を冷却空気として構造体に供給する。本実施形態の冷却装置6は、冷却媒体を構造体に供給する。冷却装置6は、排気室壁41に取り付けられている。冷却装置6は、案内部7と、切替部8と、を有する。
 案内部7は、冷却媒体を流通させる案内流路Pgが内部に形成されている。案内部7は、冷却媒体として外部から取り込んだ冷却空気を構造体まで案内する。具体的には、案内部7は、ストラットカバー案内部71と、外側ディフューザ案内部72と、流量調整部73とを有する。
 ストラットカバー案内部71は、構造体としてストラットカバー53に冷却媒体を案内する。ストラットカバー案内部71は、冷却空気を排気室壁41に形成された第一冷媒供給孔41aを介してストラット流路Psまで案内する。第一冷媒供給孔41aは、排気室壁41の軸方向Daのストラット43に対応する位置に形成されている。ストラットカバー案内部71は、冷却媒体として、外気を受け入れる開口部71aを有している。本実施形態のストラットカバー案内部71は、排気室壁41から径方向Drの外側に向かって延びる円筒状をなす配管である。つまり、ストラットカバー案内部71の内側の空間がストラット流路Psに繋がる案内流路Pgの一部を形成している。ストラットカバー案内部71は、第一冷媒供給孔41aと接続されている側と反対側である径方向Drの外側がガスタービン車室102の外部と連通するように開口する開口部71aとなっている。
 外側ディフューザ案内部72は、構造体として外側ディフューザ51に冷却媒体を案内する。外側ディフューザ案内部72は、冷却空気を排気室壁41に形成された第二冷媒供給孔41bを介して外側ディフューザ流路Pdまで案内する。第二冷媒供給孔41bは、第一冷媒供給孔41aよりも軸方向Daの下流側で排気室壁41に形成されている。本実施形態の外側ディフューザ案内部72は、ストラットカバー案内部71の径方向Drの途中から軸方向Daの下流側に向かって分岐して延びる円筒状をなす配管である。つまり、外側ディフューザ案内部72の内側の空間が外側ディフューザ流路Pdに繋がる案内流路Pgの一部を形成している。
 外側ディフューザ案内部72は、軸方向Daの一部が可撓性の高いフレキシブルな材料で構成されたフレキシブル領域72aを有している。外側ディフューザ案内部72は、フレキシブル領域72aにより、ストラットカバー案内部71と第二冷媒供給孔41bとの位置のずれに追従するよう位置が調整されている。
 流量調整部73は、ストラットカバー案内部71及び外側ディフューザ案内部72の少なくとも一方に案内する冷却媒体の流量を調整する。本実施形態の流量調整部73は、ストラットカバー案内部71に案内する冷却媒体の流量を調整する。流量調整部73は、ストラットカバー案内部71の外側ディフューザ案内部72と分岐する位置よりも排気室壁41側に設けられている。流量調整部73は、ストラットカバー案内部71の内周面に固定されたリング状をなすオリフィスである。
 切替部8は、案内流路Pgを流通する冷却媒体の流量を定格運転時に対応する第一流量とする第一状態と、第一流量よりも多い第二流量とする第二状態とに切替可能とされている。切替部8は、外部から案内部7への冷却空気の流入状態を切り替えている。切替部8は、ガスタービン出力又はガスタービン出力に相関する値である相関値に基づいて、第一状態と第二状態とを切り替える。本実施形態の切替部8は、弁部81と、供給部82と、フェイルセーフ部83と、制御部84とを有する。
 弁部81は、案内部7の冷却空気を外部から取り入れる開口部71a付近に設けられている。本実施形態の弁部81は、ストラットカバー案内部71の外側ディフューザ案内部72と分岐する位置よりも上流側である開口部71a側に設けられている。本実施形態の弁部81は、バタフライ弁である。弁部81は、弁体811と、駆動部812とを有する。
 弁体811は、第一状態で案内流路Pgの流路面積を狭め、第二状態で流路面積を広げるように可動する。弁体811は、円板状をなしている。弁体811は、外形状がストラットカバー案内部71の内周面の形状と対応している。弁体811は、後述する駆動部812によって回転させられることで、案内流路Pgを開放及び閉塞する。弁体811は、案内流路Pgを閉塞することで、切替部8を後述する供給部82のみから冷却空気が案内流路Pg内に流入する第一状態とする。弁体811は、案内流路Pgを開放することで、切替部8を第一流量よりも多い第二流量の冷却空気が案内流路Pg内に流入する第二状態とする。
 駆動部812は、弁体811を可動させることで、弁体811に第一状態と第二状態とを切り替えさせる。駆動部812は、弁軸部812aと、駆動部本体812bとを有する。
 弁軸部812aは、弁体811の中心を挿通するように配置されている。弁軸部812aは、円柱状をなしており、その中心軸周りに弁体811とともに回転可能とされている。弁軸部812aは、ストラットカバー案内部71をその延在している方向と直交する方向に貫通した状態で配置されている。
 駆動部本体812bは、弁軸部812aを弁体811とともに回転させる。本実施形態の駆動部本体812bは、案内部7に外周面に配置されている。駆動部本体812bは、例えば、エアシリンダによって構成されている。駆動部本体812bは、弁軸部812aの端部において、弁軸部812aの中心軸から偏芯した位置を押圧することで、弁軸部812aを回転させる。駆動部本体812bは、弁軸部812aを回転させて弁体811で案内流路Pgを閉塞することで、切替部8を第一状態とする。駆動部本体812bは、弁軸部812aを回転させて弁体811で案内流路Pgを開放することで、切替部8を第二状態とする。
 供給部82は、弁体811が案内流路Pgを閉塞した状態で、第一流量の冷却媒体を排ガス中の構造体へ供給する。本実施形態の供給部82は、弁体811に形成された複数の円形状の貫通孔である。供給部82は、第一流量を流通させるために必要な流路面積に対応した数だけ形成されている。
 なお、第一実施形態の供給部82は、複数の貫通孔であることに限定されるものではない。供給部82は、第一流量を流通させるために必要な流路面積が確保できれば、一つの貫通孔であってもよい。供給部82は、弁体811の端部に形成されていてもよく、弁体811の中心部に形成されていてもよい。
 フェイルセーフ部83は、切替部8が第一状態から第二状態に切替不能となった場合に、案内流路Pgを流通する冷却媒体の流量を第二流量とする。本実施形態のフェイルセーフ部83は、駆動部812が制御不能となり、駆動部本体812bによって弁体811が回転できずに案内流路Pgを閉塞したままの状態となった場合に、強制的に弁体811を回転させて案内流路Pgを開放する。具体的には、フェイルセーフ部83は、例えば、バネ材等の弾性部材である。フェイルセーフ部83は、弁体811を開放させる方向に弁軸部812aを押圧している。
 制御部84は、ガスタービン出力又はガスタービン出力に相関する値である相関値に基づいて、第一状態と第二状態とを切り替えさせるように弁体811を駆動させる。本実施形態の制御部84は、不図示の出力計で測定したガスタービン出力に基づいて、駆動部812の駆動状態を切り替えさせる。制御部84は、ガスタービン100の定格運転時には、案内流路Pgの流路面積を狭めるように弁体811で案内流路Pgを閉塞させる信号を駆動部812に送る。制御部84は、ガスタービン100のターンダウン運転時には、案内流路Pgの流路面積を広げるように弁体811で案内流路Pgを開放させる信号を駆動部812に送る。
 なお、ターンダウン運転(部分負荷運転又は低負荷運転)では、ガスタービン100は、ガスタービン出力を定格運転時よりも低下させた状態で運転される。ターンダウン運転には、単にIGV13を絞ってタービン入口温度を高く保つ方法や、アンチアイシング系統を使ってタービン3を通過する燃焼ガス流量を減少させる方法や、タービンバイパス系統を使ってタービン3を通過する燃焼ガス流量を減少させる方法がある。
 アンチアイシング系統を用いたターンダウン運転では、圧縮機1の抽気を吸気側に戻すことにより、吸気温度を上げて圧縮機1の氷結を防止する。これにより、吸気温度が低くなくとも、圧縮機1の吸気温度を上げることができる。そのため、圧縮機1が吸い込む空気の質量流量を低下させるととともに、抽気により、燃焼用の空気の量をさらに減少させることができる。その結果、タービン3を通過する燃焼ガス流量を減少させて、ガスタービン出力を低下させて、ガスタービン100を運転することができる。
 タービンバイパス系統を用いたターンダウン運転では、圧縮機1の吐出空気の一部を抽気してタービン3の排気側にバイパスさせる。これにより、タービン3を通過する燃焼ガス流量を減少させて、ガスタービン出力を低下させて、ガスタービン100を運転することができる。
 第一実施形態のガスタービン100の運転方法によれば、定格運転中には、排ガス中の構造体に供給する冷却媒体の流量を第一流量とする第一工程を実施する。第一工程では、計測したガスタービン出力に基づいて、弁体811が案内流路Pgを閉塞するように駆動部812に制御部84から信号を送る。信号を受けた駆動部812の駆動部本体812bは、案内流路Pgを閉塞するように弁軸部812aとともに弁体811を回転させる。弁体811によって案内流路Pgが閉塞されることで、冷却空気は、供給部82である貫通孔のみから案内流路Pg内に流入する。つまり、切替部8が第一状態に切り替えられる。そのため、第一流量だけ冷却空気がストラットカバー案内部71の案内流路Pgに流入する。流入した冷却空気は、ストラットカバー案内部71を第一冷媒供給孔41aに向かって流れつつ、一部が外側ディフューザ案内部72に流れ込み、第二冷媒供給孔41bに向かって流れる。
 第一冷媒供給孔41aから排気室壁41内に流入した冷却空気は、ストラット流路Psを流通してストラットカバー53及びストラット43を冷却する。ストラット流路Psを経た冷却空気は、内側ディフューザ52の径方向Drの内側を通って、最終段の動翼312と内側ディフューザ52の上流端との間から、この内側ディフューザ52と外側ディフューザ51との間の排気流路Peに流れ込む。
 また、第二冷媒供給孔41bから排気室壁41内に流入した冷却空気は、外側ディフューザ流路Pdを流通して外側ディフューザ51を冷却する。外側ディフューザ流路Pdを経た冷却空気は、ストラット流路Psを流通する冷却空気に合流する。
 また、ガスタービン100の運転状態が変化してターンダウン運転となった場合には、構造体に供給する冷却媒体の流量を第一流量よりも多い第二流量とする第二工程を実施する。第二工程では、計測したガスタービン出力に基づいて、弁体811が案内流路Pgを開放するように駆動部812に制御部84から信号を送る。信号を受けた駆動部812の駆動部本体812bは、案内流路Pgを開放するように弁軸部812aとともに弁体811を回転させる。弁体811によって案内流路Pgが開放されることで、多くの冷却空気が案内流路Pg内に流入する。つまり、切替部8が第二状態に切り替えられる。そのため、第一流量よりも流量の多い第二流量の冷却空気がストラットカバー案内部71の案内流路Pgに流入する。流入した冷却空気は、定格運転時と同様に、ストラットカバー案内部71を第一冷媒供給孔41aに向かって流れつつ、一部が外側ディフューザ案内部72に流れ込み、第二冷媒供給孔41bに向かって流れる。
 上記のようなガスタービン100によれば、定格運転時に第一工程を実施して切替部8を第一状態とし、ターンダウン運転時に第二工程を実施して切替部8を第二状態とするように切り替えることができる。つまり、第一状態から第二状態に切り替えることで、定格運転時の第一流量よりも多い第二流路をストラット流路Psや外側ディフューザ流路Pdに供給することができる。ターンダウン運転時には、タービン3を通過する燃焼ガスの流量が減少することで、タービン3の膨張比は小さくなる。そのため、ターンダウン運転時には、燃焼温度を高く維持することで、定格運転時と比べて排ガスの温度が上昇してしまう。しかしながら、ターンダウン運転時に、定格運転時よりも多くの冷却空気によってストラットカバー53、外側ディフューザ51、及び内側ディフューザ52等の排ガスに曝される構造体を冷却することができる。これにより、ストラットカバー53、外側ディフューザ51、及び内側ディフューザ52等の排ガス中の構造体への冷却効果を定格運転時に比べて、ターンダウン運転時に向上させることができる。
 また、定格運転時の第一状態から第二状態となるようにターンダウン運転時に切替部8を切り替えることができ、ターンダウン運転時に必要な冷却空気の流量が定格運転時にも流れてしまうことを防止できる。したがって、定格運転時に過冷却状態となり、ガスタービン100の効率が低下してしまうことを抑制することができる。
 これらから、定格運転時に影響を与えることなく、ターンダウン運転時の冷却効果を向上させることができる。つまり、定格運転時に影響を与えることなく、必要に応じて、ストラットカバー53、外側ディフューザ51、及び内側ディフューザ52等の排ガスに曝される構造体への冷却効果を一時的に向上することができる。したがって、ガスタービン100を効率良く運転することができる。
 また、切替部8が弁体811を有していることで、冷却空気の流通する案内流路Pgの流路面積を容易に変化させることができる。したがって、案内流路Pgを流通する冷却空気の流量を簡易な構成で切り替えることができる。また、弁体811が案内流路Pgを閉塞した状態で、弁体811に形成された貫通孔から第一流量を弁体811の下流側に供給することで、定格運転時に高い精度で第一流量を構造体へ供給することができる。したがって、定格運転時に、必要な冷却媒体を安定して確保することできる。
 また、供給部82を弁体811に形成された貫通孔とすることで、第一流量の冷却空気を弁体811の下流側に高い精度で供給することができる。また、弁体811に貫通孔を形成するだけの簡易な構造で、供給部82を形成することができる。
 また、フェイルセーフ部83によって、弁軸部812aが弁体811を開放する方向に押圧されている。その結果、駆動部812が故障して弁体811を回転させることができなくなった場合であっても、弁体811が案内流路Pgを閉塞したままの状態となってしまうことを防止できる。そのため、ターンダウン運転時に弁体811によって案内流路Pgが閉塞されて、ストラットカバー53、外側ディフューザ51、及び内側ディフューザ52等の構造体に第一流量の冷却空気しか供給されなくなってしまうことを防止できる。つまり、定格運転時よりも排ガスに曝される構造体を冷却する必要があるターンダウン運転に、冷却空気の流量が不足して構造体を十分冷却できなくなってしまうことを防止できる。したがって、ターンダウン運転に、ストラットカバー53、外側ディフューザ51、及び内側ディフューザ52等の温度が上昇し過ぎて損傷してしまうことを防止することができる。
 また、案内部7が、ストラット流路Psに繋がるストラットカバー案内部71と外側ディフューザ流路Pdに繋がる外側ディフューザ案内部72とを有する。そのため、冷却空気を利用して、ストラットカバー53と外側ディフューザ51と複数の構造体を同時冷却することができる。したがって、冷却空気を効率的に利用することができる。
 また、ストラットカバー案内部71及び外側ディフューザ案内部72を流通する冷却空気の流量を流量調整部73であるオリフィスで調整することができる。そのため、弁部81を介して外部から一括して取り入れた冷却空気を細かな制御を行うことなく、それぞれに異なる流量に分配してストラットカバー案内部71及び外側ディフューザ案内部72に流通させることができる。したがって、冷却空気をより効率的に利用して、ストラットカバー53と外側ディフューザ51とを効果的に冷却することができる。
 また、制御部84が、ガスタービン出力に基づいて駆動部812の駆動状態を切り替えさせる。そのため、定格運転とターンダウン運転とが切り替わるように運転状態が切り替わったことに高い精度で対応させて、第一状態と第二状態とを切り替えることができる。したがって、定格運転時以外のターンダウン運転時に誤って切替部8が第一状態となってしまうことを防ぐことができる。これにより、ターンダウン運転に、冷却空気の流量が不足して構造体を十分冷却できなくなってしまうことを防止できる。したがって、ターンダウン運転に、ストラットカバー53、外側ディフューザ51、及び内側ディフューザ52等の温度が上昇し過ぎて損傷してしまうことを防止することができる。
 また、外側ディフューザ案内部72の一部が可撓性の高いフレキシブルな材料で構成されているフレキシブル領域72aを有する。そのため、外側ディフューザ案内部72と第二冷媒供給孔41bが形成された排気室壁41との位置がずれた場合に、ガスタービン100が運転した際の排気車室の軸方向Daの熱伸びによって生じるストラットカバー案内部71と第二冷媒供給孔41bとの位置のずれの影響を抑えることができる。したがって、本実施形態のように案内部7が第一冷媒供給孔41a及び第二冷媒供給孔41bのように複数箇所で排気室壁41と接続していても、冷却装置6が排気室壁41から脱落してしまうことを防止できる。
《第二実施形態》
 次に、図4を参照して第二実施形態のガスタービンについて説明する。
 第二実施形態においては第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。この第二実施形態のガスタービンでは、冷却装置の切替部の供給部の構造が第一実施形態と相違する。
 第二実施形態の冷却装置6Aでは、切替部8Aの供給部82Aが、弁体811よりも排気室壁41側で、排気ディフューザ5の外部と案内流路Pgとを連通するように案内部7に形成される連通孔である。第二実施形態の供給部82Aは、ストラットカバー案内部71である配管をその延在している方向と直交する方向に貫通している複数の円形状の孔である。供給部82Aは、ストラットカバー案内部71の外側ディフューザ案内部72と分岐する位置と流量調整部73との間に形成されている。
 なお、第二実施形態の供給部82Aは、複数の連通孔であることに限定されるものではない。供給部82Aは、第一流量を流通させるために必要な流路面積が確保できれば、一つの連通孔であってもよい。また、供給部82Aは、ストラットカバー案内部71において、弁体811よりも下流側である排気室壁41側に形成されていればよい。
 第二実施形態のガスタービン100によれば、供給部82Aがストラットカバー案内部71の外部と内部を連通するように形成されている。そのため、弁体811が案内流路Pgを閉塞した場合あっても、第一流量の冷却空気を外部から弁体811の下流側に高い精度で供給することができる。また、ストラットカバー案内部71に供給部82Aが形成されることで、弁体811によらずに第一流量を供給可能な構造を形成することができる。
《第三実施形態》
 次に、図5を参照して第三実施形態のガスタービンについて説明する。
 第三実施形態においては第一実施形態及び第二実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。この第三実施形態のガスタービンでは、冷却装置の切替部の構造が第一実施形態及び第二実施形態と相違する。
 第三実施形態の冷却装置6Bでは、切替部8Bが、供給部82の代わりにストッパ部85を有している。ストッパ部85は、第一状態で案内流路Pgと弁体811との間に隙間を形成する。ストッパ部85は、弁体811が完全に案内流路Pgを閉塞せずに、第一流量だけ冷却空気が流通する隙間を形成する。本実施形態のストッパ部85は、弁体811が完全に案内流路Pgを閉塞しないように、ストラットカバー案内部71の内周面から内側に向かって突出している。
 なお、ストッパ部85は、本実施形態の構造に限定されるものではなく、案内流路Pgと弁体811との間に第一流量だけ冷却空気が流通する隙間ことができればよい。例えば、ストッパ部85は、弁体811から突出していてもよく、外部から弁体811が閉塞することを阻害するような構造であってもよい。
 第三実施形態のガスタービン100によれば、ストッパ部85がストラットカバー案内部71と弁体811との間に第一流量だけ冷却空気が流通する隙間を形成している。そのため、第一流量の冷却空気を弁体811の下流側に高い精度で供給することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 なお、本実施形態における構造体は、外側ディフューザ51及びストラットカバー53の両方であることに限定されるものではない。構造体は、排気流路Peに面して排ガスに曝される部材であればよい。例えば、構造体は、外側ディフューザ51及びストラットカバー53の何れか一方であってもよい。構造体は、ストラット43のように外側ディフューザ51及びストラットカバー53以外の部材であってもよい。
 また、切替部8は、本実施形態のように弁部81と供給部82とを有している構造に限定されるものではない。切替部8は、第一状態と第二状態とを切替可能な構造であればよい。切替部8は、例えば、第一状態と第二状態とで異なる配管を介して冷却空気を供給するようなバイパス構造であってもよい。
 また、フェイルセーフ部83は、本実施形態のように弁体811を押圧する構造に限定されるものではない。フェイルセーフ部83は、切替部8が第一状態から第二状態に切替不能となった場合に、案内流路Pgを流通する冷却空気の流量を第二流量とすることができればよい。例えば、フェイルセーフ部83は、弁体811自体が動作不能となって切替部8が第一状態から第二状態に切替不能となった場合に、切替部8を迂回して冷却空気を供給するようなバイパス
 また、本実施形態では、出力計で測定したガスタービン出力を用いたがこれに限定されるものではなく、ガスタービン出力の状態がわかるようなガスタービン出力に相関する相関値であってもよい。例えば、ガスタービン出力に相関する相関値として、排気流路Pe内の排ガスの温度を測定して得られる温度情報や、IGV13の開度を計測して得られる開度情報を利用してもよい。
 上記したガスタービンは、構造体に供給される冷却媒体の流量を切替部が第一流量と、第一流量よりも多い第二流量とに切替可能とされている。そのため、定格運転時に影響を与えることなく、一時的に排ガス中の構造体への冷却効果を向上することができる。
100 ガスタービン
1     圧縮機
Ar   軸線
11   圧縮機ロータ
12   圧縮機車室
13   IGV
Da   軸方向
Dc   周方向
Dr   径方向
2     燃焼器
3     タービン
31   タービンロータ
311 ロータ軸
312 動翼
32   タービン車室
101 ガスタービンロータ
102 ガスタービン車室
4     排気室部
41   排気室壁
41a 第一冷媒供給孔
41b 第二冷媒供給孔
42   軸受部
43   ストラット
5     排気ディフューザ
51   外側ディフューザ
Pd   外側ディフューザ流路
52   内側ディフューザ
53   ストラットカバー
Ps   ストラット流路
Pe   排気流路
6、6A、6B       冷却装置
7     案内部
71   ストラットカバー案内部
72   外側ディフューザ案内部
72a フレキシブル領域
Pg   案内流路
73   流量調整部
8、8A、8B       切替部
81   弁部
811 弁体
812 駆動部
812a      弁軸部
812b      駆動部本体
82、82A  供給部
83   フェイルセーフ部
84   制御部
85   ストッパ部

Claims (10)

  1.  タービンからの排ガスを流通させる排気流路が形成された排気ディフューザと、
     前記排気ディフューザにおける前記排気流路に面する構造体を冷却する冷却装置とを備え、
     前記冷却装置は、
     冷却媒体を流通させる案内流路が内部に形成され、前記構造体まで前記冷却媒体を案内する案内部と、
     前記案内流路を流通する前記冷却媒体の流量を定格運転時に対応する第一流量とする第一状態と、前記第一流量よりも多い第二流量とする第二状態とに切替可能な切替部と、を有するガスタービン。
  2.  前記切替部は、
     前記第一状態で前記案内流路の流路面積を狭め、前記第二状態で前記流路面積を広げるように可動する弁体を有する弁部と、
     前記弁体が前記案内流路を閉塞した状態で、前記第一流量を前記構造体へ供給する供給部とを有する請求項1に記載のガスタービン。
  3.  前記供給部は、前記弁体に形成された貫通孔である請求項2に記載のガスタービン。
  4.  前記案内部は、前記冷却媒体として、前記排気ディフューザの外部の外気を受け入れる開口部を有し、
     前記供給部は、前記弁体よりも前記構造体側で、前記排気ディフューザの外部と前記案内流路とを連通するように前記案内部に形成される連通孔である請求項2に記載のガスタービン。
  5.  前記切替部は、
     前記第一状態で前記案内流路の流路面積を狭め、前記第二状態で前記流路面積を広げるように可動する弁体を有する弁部と、
     前記第一状態で前記案内流路と前記弁体との間に隙間を形成するストッパ部とを有する請求項1に記載のガスタービン。
  6.  前記弁部は、前記弁体を可動させる駆動部を有し、
     前記駆動部が制御不能となった場合に、前記案内流路を流通する前記冷却媒体の流量を前記第二流量とするフェイルセーフ部を備える請求項2から請求項5のいずれか一項に記載のガスタービン。
  7.  前記排気ディフューザは、
     前記排気流路の一部を形成する筒状の外側ディフューザと、
     前記外側ディフューザの内側に設けられて、前記外側ディフューザとともに前記排気流路を画成する内側ディフューザと、
     前記外側ディフューザと前記内側ディフューザとを連結するストラットカバーとを備え、
     前記案内部は、
     前記構造体として前記ストラットカバーに前記冷却媒体を案内するストラットカバー案内部と、
     前記構造体として前記外側ディフューザに前記冷却媒体を案内する外側ディフューザ案内部と、を有する請求項1から請求項6のいずれか一項に記載のガスタービン。
  8.  前記案内部は、前記ストラットカバー案内部及び前記外側ディフューザ案内部の少なくとも一方に案内する前記冷却媒体の流量を調整する流量調整部を有する請求項7に記載のガスタービン。
  9.  前記切替部は、ガスタービン出力又は前記ガスタービン出力に相関する値である相関値に基づいて、前記第一状態と前記第二状態とを切り替える請求項1から請求項8のいずれか一項に記載のガスタービン。
  10.  タービンからの排ガスを流通させる排気流路が形成された排気ディフューザと、前記排気ディフューザにおける排気流路に面する構造体に冷却媒体を供給することで前記構造体を冷却する冷却装置とを備えるガスタービンの運転方法であって、
     定格運転時に前記構造体に供給する前記冷却媒体の流量を第一流量とする第一工程と、
     ターンダウン運転時に前記構造体に供給する前記冷却媒体の流量を前記第一流量よりも多い第二流量とする第二工程と含むガスタービンの運転方法。
     
PCT/JP2016/072934 2015-09-02 2016-08-04 ガスタービン及びガスタービンの運転方法 WO2017038371A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680043829.7A CN107849942B (zh) 2015-09-02 2016-08-04 燃气轮机以及燃气轮机的运转方法
US15/747,915 US11085324B2 (en) 2015-09-02 2016-08-04 Gas turbine and gas turbine operating method
KR1020187002794A KR102064150B1 (ko) 2015-09-02 2016-08-04 가스 터빈 및 가스 터빈의 운전 방법
DE112016003989.1T DE112016003989T5 (de) 2015-09-02 2016-08-04 Gasturbine und gasturbinenbetriebsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015172711A JP6601948B2 (ja) 2015-09-02 2015-09-02 ガスタービン
JP2015-172711 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017038371A1 true WO2017038371A1 (ja) 2017-03-09

Family

ID=58187278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072934 WO2017038371A1 (ja) 2015-09-02 2016-08-04 ガスタービン及びガスタービンの運転方法

Country Status (6)

Country Link
US (1) US11085324B2 (ja)
JP (1) JP6601948B2 (ja)
KR (1) KR102064150B1 (ja)
CN (1) CN107849942B (ja)
DE (1) DE112016003989T5 (ja)
WO (1) WO2017038371A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590793B1 (en) * 2018-10-29 2020-03-17 Borgwarner Inc. Diffuser for diffusing the flow of exhaust gas and a system including the same
JP7297153B2 (ja) 2020-04-24 2023-06-23 三菱重工業株式会社 断熱材アセンブリ及びガスタービン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137319A (en) * 1979-03-30 1980-10-27 Gen Electric Turbine cooling air regulator
JPS59173527A (ja) * 1983-03-22 1984-10-01 Hitachi Ltd ガスタ−ビン排気フレ−ム冷却空気系統
WO2009087847A1 (ja) * 2008-01-10 2009-07-16 Mitsubishi Heavy Industries, Ltd. ガスタービンの排気部の構造およびガスタービン
US8641362B1 (en) * 2011-09-13 2014-02-04 Florida Turbine Technologies, Inc. Turbine exhaust cylinder and strut cooling
US8756911B1 (en) * 2011-11-16 2014-06-24 Florida Turbine Technologies, Inc. Turbine exhaust cylinder and strut cooling

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303088B4 (de) * 2002-02-09 2015-08-20 Alstom Technology Ltd. Abgasgehäuse einer Wärmekraftmaschine
US8257025B2 (en) * 2008-04-21 2012-09-04 Siemens Energy, Inc. Combustion turbine including a diffuser section with cooling fluid passageways and associated methods
US20120186261A1 (en) 2011-01-20 2012-07-26 General Electric Company System and method for a gas turbine exhaust diffuser
JP5222384B2 (ja) * 2011-09-09 2013-06-26 三菱重工業株式会社 ガスタービン
WO2013118880A1 (ja) 2012-02-10 2013-08-15 三菱重工業株式会社 ガスタービンにおけるディスク軸心調整機構
JP5738211B2 (ja) * 2012-02-10 2015-06-17 三菱重工業株式会社 ガスタービンにおけるディスク軸心調整機構
JP5738214B2 (ja) * 2012-02-23 2015-06-17 三菱重工業株式会社 ガスタービンにおけるディスク軸心調整機構
WO2014114652A2 (en) * 2013-01-22 2014-07-31 Siemens Aktiengesellschaft Gas turbine outer case active ambient cooling including air exhaust into a sub-ambient region of exhaust flow
JP6387631B2 (ja) 2014-03-12 2018-09-12 株式会社ニコン 光学系および光学機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137319A (en) * 1979-03-30 1980-10-27 Gen Electric Turbine cooling air regulator
JPS59173527A (ja) * 1983-03-22 1984-10-01 Hitachi Ltd ガスタ−ビン排気フレ−ム冷却空気系統
WO2009087847A1 (ja) * 2008-01-10 2009-07-16 Mitsubishi Heavy Industries, Ltd. ガスタービンの排気部の構造およびガスタービン
US8641362B1 (en) * 2011-09-13 2014-02-04 Florida Turbine Technologies, Inc. Turbine exhaust cylinder and strut cooling
US8756911B1 (en) * 2011-11-16 2014-06-24 Florida Turbine Technologies, Inc. Turbine exhaust cylinder and strut cooling

Also Published As

Publication number Publication date
CN107849942A (zh) 2018-03-27
KR102064150B1 (ko) 2020-01-08
US20180223686A1 (en) 2018-08-09
DE112016003989T5 (de) 2018-05-17
JP2017048725A (ja) 2017-03-09
US11085324B2 (en) 2021-08-10
KR20180022914A (ko) 2018-03-06
CN107849942B (zh) 2019-11-01
JP6601948B2 (ja) 2019-11-06

Similar Documents

Publication Publication Date Title
EP2146057B1 (en) Fluidically controlled valve for a gas turbine engine and for a combustor
US9157331B2 (en) Radial active clearance control for a gas turbine engine
JP5571106B2 (ja) ガスタービン
KR101274928B1 (ko) 가스 터빈 설비
JP6471148B2 (ja) ジェットエンジン用の複数ノズル分流器
US10669852B2 (en) Gas turbine
US20070243811A1 (en) Ejector controlled twin air source gas turbine pressurizing air system
EP3187694B1 (en) Passive flow modulation devices and gas turbine cooling system comprising such devices
US20140157791A1 (en) System for controlling a cooling flow from a compressor section of a gas turbine
JP5496469B2 (ja) ターボ機械内で冷却流体をリアルタイムに調節するための方法及びシステム
WO2016031475A1 (ja) ガスタービン
JP2017198188A (ja) タービンエンジンのエジェクタスロートの制御
WO2017038371A1 (ja) ガスタービン及びガスタービンの運転方法
KR20190140891A (ko) 이중관 라이너 내부 유동가이드를 포함하는 가스 터빈 엔진의 연소기, 및 이를 포함하는 가스터빈
JP2012184734A (ja) ガスタービン及びガスタービン冷却方法
KR101889543B1 (ko) 블레이드 팁 간극 제어를 위한 핫 가스 공급 시스템
JP2014037831A (ja) タービンシステムの温度勾配管理装置およびタービンシステムの温度勾配管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15747915

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187002794

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016003989

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841403

Country of ref document: EP

Kind code of ref document: A1