WO2017038053A1 - Color filter substrate with electrode, display device using same and manufacturing methods therefor - Google Patents

Color filter substrate with electrode, display device using same and manufacturing methods therefor Download PDF

Info

Publication number
WO2017038053A1
WO2017038053A1 PCT/JP2016/003851 JP2016003851W WO2017038053A1 WO 2017038053 A1 WO2017038053 A1 WO 2017038053A1 JP 2016003851 W JP2016003851 W JP 2016003851W WO 2017038053 A1 WO2017038053 A1 WO 2017038053A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
color filter
electrode
electrode layer
substrate
Prior art date
Application number
PCT/JP2016/003851
Other languages
French (fr)
Japanese (ja)
Inventor
栗原 正幸
伊藤 大
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2017038053A1 publication Critical patent/WO2017038053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a color filter substrate with an electrode, a display device using the same, and a manufacturing method thereof.
  • the present invention relates to a color filter substrate with an electrode in which a touch sensor operating in a capacitive manner is integrated, a display device using the same, and a method for manufacturing the same.
  • touch panel system examples include a resistance film type and a capacitance type.
  • the touch position is detected by contacting the upper and lower electrodes.
  • the capacitance type the touch position is detected by a change in the surface capacitance when a fingertip or the like touches.
  • a sensor for a capacitive touch panel is generally used as an out-cell structure that is prepared as an electrode pattern on a resin substrate such as a PET film or a glass substrate and arranged outside the display structure (Patent Document 1).
  • Patent Documents 2 and 3 Recently, an in-cell structure or an on-cell structure in which a touch sensor is incorporated into a display structure has begun to be adopted, and efforts have been made to make the display with a touch sensor thinner and lighter (Patent Documents 2 and 3).
  • JP 2007-178758 A Japanese Patent No. 4816668 Japanese Patent No. 4584342
  • the in-cell structure requires a touch sensor circuit to be incorporated in the TFT substrate, which is a display display drive circuit, and has been accompanied by complicated design and process and associated deterioration in the yield of non-defective products.
  • the touch sensor is formed in the state of the cell in which the liquid crystal is sealed.
  • the present invention provides an electrode-equipped color filter substrate that operates stably with a high yield and is compatible with various display designs, a display device using the same, and a method of manufacturing the same.
  • the present invention is intended to solve the above-described problems of the prior art in manufacturing a display in which a touch sensor is integrated.
  • One aspect of the present invention for solving the above problems includes a color filter layer, a transparent substrate, a first electrode layer, a cured resin layer, and a second electrode layer in this order, and the cured resin layer includes a photosensitive resin. And a color filter substrate with electrodes, wherein the cured resin layer and the second electrode layer have the same pattern in plan view.
  • the transparent substrate may be composed of one or more substrates selected from glass, plastic film, and resin film.
  • the second electrode layer may be at least one selected from the group consisting of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin, and niobium, or at least one oxidation selected from the group Or a conductive resin composition.
  • first electrode layer and the second electrode layer may be a part of components of a touch sensor that detects a touch position.
  • Another aspect of the present invention is a display device using the color filter substrate with electrodes.
  • Still another aspect of the present invention includes a step of laminating a color filter layer, a transparent substrate, and a first electrode layer in this order, a step of patterning the first electrode layer, and curing on the first electrode layer.
  • a method for producing a color filter substrate with an electrode comprising: laminating a resin layer and a second electrode layer; and patterning the cured resin layer and the second electrode layer by irradiating the cured resin layer with light. is there.
  • the transparent substrate may be composed of one or more substrates selected from glass, plastic film, and resin film.
  • the second electrode layer may be at least one selected from the group consisting of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin, and niobium, or at least one oxidation selected from the group Or a conductive resin composition.
  • a TFT substrate is bonded in advance to a surface of the color filter layer opposite to the transparent substrate, and the first electrode layer and the cured resin are produced by the above-described method for manufacturing a color filter substrate with electrodes.
  • a method of manufacturing a display device including electrically connecting the first electrode layer and the second electrode layer to a drive circuit of the touch sensor after patterning the layer and the second electrode layer.
  • a color filter substrate with an electrode that operates stably with a high yield and is compatible with various display designs, a display device using the same, and a manufacturing method thereof.
  • FIG. 1 is a sectional view of a color filter substrate with electrodes according to an embodiment of the present invention.
  • FIG. 2 is a top view showing the electrode shape of the electrode-attached color filter substrate according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a display device using a color filter substrate with electrodes according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a display device using an electrode-attached color filter substrate according to an embodiment of the present invention.
  • FIG. 1 shows a schematic cross-sectional view of an electrode-attached color filter substrate 10 according to an embodiment of the present invention.
  • the color filter substrate 10 with electrodes shown in FIG. 1 includes a color filter layer 11, a transparent substrate 12, a first electrode layer 13, a cured resin layer 14, and a second electrode layer 15 in this order.
  • the transparent substrate 12 can be composed of one or more substrates selected from glass, plastic film, resin film and the like.
  • the transparent substrate 12 is not particularly limited as long as it has sufficient strength in the film forming step and the subsequent step, has excellent transparency, and has good surface smoothness.
  • glass alkali-free glass for display applications is preferably used
  • plastic film and resin film materials are, for example, polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polycarbonate film, polyethersulfone film, polysulfone film. , Polyarylate film, cyclic polyolefin film, polyimide film and the like.
  • the transparent substrate 12 is typically used for a color filter of a display device, it needs to have high transparency, and a substrate having a total light transmittance of 85% or more is preferably used.
  • the transparent substrate 12 may be subjected to corona treatment, low temperature plasma treatment, ion bombardment treatment, chemical treatment, etc. as pretreatment in order to improve adhesion with each layer.
  • a color filter layer 11 is formed on one surface of the transparent substrate 12.
  • the color filter layer 11 is typically a layer including at least a black matrix and colored layers of each color of red, green, and blue.
  • the color filter layer 11 can be formed by applying a colored photosensitive ink by a method such as spin coating, spinless coating, and inkjet, and then exposing and baking. Further, a transparent electrode may be formed so as to cover the black matrix and the colored layer.
  • the colored layer is made of, for example, an acrylic resin having a thickness of 0.5 ⁇ m to 3.0 ⁇ m in which pigments of respective colors are dispersed.
  • the black matrix is formed of, for example, an acrylic resin having a thickness of 0.5 ⁇ m or more and 3.0 ⁇ m or less in which a black pigment is dispersed, or a metal film having a thickness of 10 nm or more and 200 nm or less.
  • a yellow, cyan, magenta, or white (colorless) layer may be used as the color filter layer.
  • the transparent electrode is made of, for example, ITO having a thickness of 10 nm to 200 nm. Further, a transparent resin layer may be formed on the color filter layer 11 for the purpose of flattening and protection.
  • the first electrode layer 13 is formed on the other surface of the transparent substrate 12.
  • the first electrode layer 13 is a part of a capacitive touch sensor, and it is desirable to impart visible light transparency using a transparent metal material such as tin-doped indium oxide.
  • the metal material can be formed by depositing the metal material on the entire surface of the transparent substrate 12 by vapor deposition, sputtering, or the like, and then performing patterning to remove unnecessary portions of the metal material. If necessary, the metal material may be deposited using a plurality of types of metal materials to form a metal film having a stacked structure.
  • the patterning can be performed by any means known in the art such as a photolithography method using a positive photoresist.
  • a cured resin layer 14 is formed on the first electrode layer 13.
  • the cured resin layer 14 is a layer obtained by exposing and curing a photosensitive resin described later.
  • the photosensitive resin may be a negative photosensitive resin or a positive photosensitive resin.
  • the negative photosensitive resin is generally composed of a resin material serving as a binder, a photopolymerizable material, and a material containing at least a photopolymerization initiator, but is not particularly limited.
  • materials described in JP-A-6-273936, JP-A-10-98266, and JP-A-2003-122004 can be used.
  • the positive photosensitive resin is generally formed from a material containing an alkali-soluble resin material, a photoacid generating material, an acid-decomposable functional group-containing compound, etc., but is not particularly limited.
  • the positive photosensitive resin for example, materials described in JP-A-48-89003, JP-A-60-3625, and JP-A-63-27829 can be used.
  • the cured resin layer 14 is coated with the above materials by a known coating method such as a die coater, curtain flow coater, roll coater, reverse roll coater, gravure coater, knife coater, bar coater, spin coater, micro gravure coater, and then dried. By doing so, it can be formed.
  • the film thickness of the cured resin layer 14 is preferably 0.1 ⁇ m or more and 25 ⁇ m or less, for example, 5 ⁇ m, but is not limited thereto. Since the cured resin layer 14 has almost no change in film thickness before and after curing, it will be described as a film thickness after curing. When the film thickness is 25 ⁇ m or less, high-definition pattern formation becomes easy, and when the film thickness is 0.1 ⁇ m or more, appearance distortion such as formation unevenness does not occur and sufficient adhesion with an adjacent layer is obtained. The effect of showing is obtained.
  • a second electrode layer 15 is formed on the cured resin layer 14.
  • the second electrode layer 15 forms part of a capacitive touch sensor.
  • a material for forming the second electrode layer 15 for example, metal fine particles containing any of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin and niobium, any oxide, Alternatively, fine particles of an alloy containing this metal or a conductive resin composition can be used. Among metal fine particles, it is fibrous, unbranched, easy to loosen, and easy to obtain a uniform distribution density of the fibrous material. As a result, a large opening is formed between the fibers and the fiber bundle, and good light The wire-like thing which can implement
  • the conductive material having such a shape examples include carbon nano tubes and metal nanowires that are wire-like conductive metals.
  • the metal nanowire is a fine conductive substance having a nanometer size, which is a rod having a straight or curved shape and made of metal. If the fine conductive material is in the form of a fiber, preferably a wire, they are entangled with each other to form a mesh, thereby forming a good electrical conduction path even with a small amount of the conductive material. This is preferable because the resistance value of the conductive layer can be further reduced.
  • the metal of the metal nanowire is preferably gold, silver, or copper from the viewpoint of conductivity.
  • the liquid as a dispersion medium for dispersing these fine conductive substances to form a transparent conductive paint is not particularly limited, and various known dispersion media can be used.
  • saturated hydrocarbons such as hexane, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, propanol, and butanol, ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and diisobutyl ketone
  • Esters such as ethyl acetate and butyl acetate
  • ethers such as tetrahydrofuran, dioxane and diethyl ether
  • amides such as N, N-dimethylformamide, N-methylpyrrolidone (NMP) and N, N-dimethylacetamide, ethylene chloride
  • halogenated hydrocarbons such as chlorobenzene.
  • a dispersing agent can also be used according to the kind of dispersion medium. These liquids can be used singly or as a mixture of two or more. Water can also be used as a dispersion medium. When water is used, if the surface of the transparent substrate is hydrophobic, water is easily repelled, and a uniform film is difficult to obtain when a transparent conductive paint is applied. In such a case, a uniform film can be obtained by mixing and adding an alcohol to water, or selecting and adding a surfactant that improves wettability to a hydrophobic transparent substrate.
  • the amount of the liquid as a dispersion medium to be used is not particularly limited, and the dispersion liquid of the fine conductive material may have a viscosity suitable for coating.
  • the liquid can be set in a wide range of about 100 parts by weight or more and 100,000 parts by weight or less, and the type of the transparent conductive substance and the dispersion medium, the stirring used, It can be appropriately selected depending on the dispersing device.
  • a dispersion containing a transparent conductive material, a dispersion medium, and a resin as necessary is applied on a transparent substrate, dried, and then a transparent substrate.
  • a uniform conductive coating film is formed on the material.
  • a coating method a known coating method such as spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, or the like can be used. If the film thickness of the transparent conductive layer is too thin, sufficient conductivity as a conductor tends not to be achieved, and if it is too thick, transparency tends to be impaired due to an increase in haze value, a decrease in total light transmittance, and the like.
  • the adjustment is made appropriately between 10 nm and 10 ⁇ m, but when the conductive material itself is not transparent like metal nanowires, the transparency can easily be lost by increasing the film thickness, and the conductive film with a thinner film thickness can be lost. Often layers are formed.
  • the conductive layer has a large number of openings, but when measured with a contact-type film thickness meter, the average film thickness is preferably in the range of 10 nm to 500 nm, more preferably 30 nm to 300 nm, and more preferably 50 nm to 150 nm. The following are most preferred.
  • the cured resin layer 14 and the second electrode layer 15 are formed on the transparent substrate 12 on which the color filter layer 11 and the first electrode layer 13 are formed. To do. In this case, first, the cured resin layer 14 and the second electrode layer 15 are started by forming them on the surface of the transparent substrate 12 on which the first electrode layer 13 is formed. The cured resin layer 14 and the second electrode layer 15 may be formed on the first electrode layer 13 in this order, or the second electrode layer 15 and the cured resin layer 14 may be formed on the support film substrate (not shown) in this order. The prepared film may be prepared and bonded to the transparent substrate 12 using a laminator or the like, and then the support film substrate may be peeled off.
  • the support film substrate is not particularly limited as long as it is a film having good releasability.
  • releasability is imparted to a film substrate such as polyethylene, polypropylene, polyethylene terephthalate (PET), and polycarbonate (PC).
  • a thin film made of a resin containing a silicone material or a fluorine material is preferably used.
  • the cured resin layer 14 and the second electrode layer 15 are formed in advance on a color filter substrate (a laminate of the color filter layer 11, the transparent substrate 12 and the first electrode layer 13) according to heat resistance, and then a display is manufactured.
  • the display may be formed and then formed on the back surface of the color filter substrate (the surface of the first electrode layer 13 of the laminate).
  • it is possible to reduce the thickness by dissolving both the glass of the color filter substrate (transparent substrate 12) and the glass to be the TFT substrate 30 in a cellized display with a chemical solution such as hydrofluoric acid.
  • the cured resin layer 14 and the second electrode layer 15 may be formed in a display device in which the transparent substrate 12 on which the color filter layer 11 is formed is bonded to the TFT substrate 30 to form a cell.
  • the pattern of the cured resin layer 14 and the second electrode layer 15 creates a part soluble in the developer and an insoluble part by light irradiation through a photomask, and a part soluble in the developer of the photosensitive resin. Can be dissolved by development to form a pattern of the cured resin layer 14 composed of insoluble portions. The same pattern is formed on the second electrode layer 15 simultaneously with the cured resin layer 14.
  • the developer can be appropriately selected depending on the kind of the photosensitive resin or its material, and can generally be an alkaline aqueous solution or an organic solvent.
  • the color filter substrate 10 with an electrode produced as described above may be provided with a plurality of surfaces on a single glass substrate. In this case, it is possible to efficiently manufacture a plurality of pieces by cutting the color filter substrate with electrodes 10 or a state in which the color filter substrate 10 is bonded to the TFT substrate 30 into pieces. Examples of the singulation method include diamond cutter scribe processing, dicing processing, water jet processing, etching processing, and laser processing. After separation, the wiring connected to the first electrode layer 13 or the second electrode layer 15 is connected to a driving IC or the like via an anisotropic conductive adhesive (ACF) and a printed circuit board (FPC). It can be operated as a capacitive touch panel.
  • ACF anisotropic conductive adhesive
  • FPC printed circuit board
  • the FPC is thermocompression bonded to the wiring drawn from the first electrode layer 13 or the second electrode layer 15 via the ACF, and the FPC is connected to the drive IC of the touch sensor.
  • the TFT substrate 30 is connected to the drive IC and the FPC and is connected to the drive circuit.
  • FIG. 2 is a schematic top view showing the electrode shape of the color filter substrate 10 with an electrode according to an example.
  • the first electrode layer 13 and the second electrode layer 15 shown in FIG. 2 are connected to a drive circuit via a wiring portion extended from the end (not shown), form a capacitance between the electrodes, and Functions as a capacitive touch sensor.
  • Examples of the display device having the electrode-attached color filter substrate of the present invention include a liquid crystal display, an organic EL display, electronic paper, a MEMS display, a reflective or transflective liquid crystal display, and the like.
  • Examples of display devices having a liquid crystal layer include those having a cross-sectional structure as shown in FIG.
  • the liquid crystal layer 20 is formed between the color filter substrate with electrodes 10 and the TFT substrate 30.
  • a polarizing plate 40 and a backlight 50 are sequentially formed on the surface of the TFT substrate 30 opposite to the liquid crystal layer 20.
  • a polarizing plate 60 and a cover glass 70 are sequentially formed on the surface of the color filter substrate with electrode 10 opposite to the liquid crystal layer 20.
  • a plurality of scanning lines are formed on the TFT substrate 30 at regular intervals.
  • a plurality of signal lines are formed at regular intervals on the scanning lines.
  • the scanning line and the signal line are arranged so as to intersect with each other via an insulating film.
  • a thin film transistor (TFT) that is a switching element is disposed in the vicinity of the intersection of the scanning line and the signal line.
  • a display signal is supplied from the signal line to the pixel electrode via the TFT.
  • the pixel electrode is formed from a transparent conductive film such as ITO, for example.
  • the display area of the liquid crystal display element is composed of a plurality of pixels. The display area is usually formed in a shape close to a rectangle. Further, a frame area provided so as to surround the display area is arranged in the display element.
  • the liquid crystal layer 20 can be formed using a known material and is sealed between the color filter substrate 10 with electrodes and the TFT substrate 30. At this time, an alignment film is formed on the surface of the color filter layer 11 of the electrode-attached color filter substrate 10 and the TFT substrate 30 by a method such as flexographic printing, and the liquid crystal layer 20 is sealed after rubbing treatment. Liquid crystal molecules can be arranged in a certain direction.
  • the polarizing plates 40 and 60 arranged on both surfaces of the liquid crystal cell have absorption axes in directions almost perpendicular to each other.
  • the lighting, gray scale, and extinguishing of each pixel are determined by the direction of linearly polarized light controlled by the liquid crystal.
  • the backlight 50 is attached to the polarizing plate 40 on the anti-visible (back) side with an adhesive or the like.
  • the backlight 50 irradiates the polarizing plate 40 with planar light.
  • the backlight 50 the thing of the general structure provided with the light source, the light-guide plate, the prism sheet etc. is used, for example.
  • the cover glass 70 may be adhered to the four sides of the polarizing plate 60 on the viewing side or the four sides of the display housing with a double-sided tape or the like, or the entire surface including the display portion of the liquid crystal display is bonded using a transparent optical adhesive. Also good.
  • the cover glass 70 is made of chemically strengthened glass or transparent resin. Thereby, the display device 100 is completed.
  • the display device 100 for example, a liquid crystal cell formed of the electrode-attached color filter substrate 10, the TFT substrate 30, and the liquid crystal layer 20 is sandwiched between polarizing plates 40 and 60. After that, the backlight 50 is disposed on the back surface and the cover glass 70 is disposed on the display surface, whereby the display device 100, that is, a capacitive touch sensor integrated liquid crystal display can be provided.
  • a white organic light emitting layer 80 is formed on the TFT substrate 30 on which TFTs are formed on glass.
  • an organic EL light emitting element structure is formed by forming a transparent upper electrode layer.
  • the electrode-attached color filter substrate 10 is bonded through a sealant having moisture absorption ability.
  • the organic EL display 200 is obtained by forming a layer that also serves as a capacitive touch sensor, a color filter, and a sealing glass.
  • the white organic light emitting layer 80 includes a hole transport layer, a hole injection layer, a light emitting layer, an electron injection layer, an electron transport layer, and the like, and can be formed using a known material.
  • Example 1 A display device corresponding to the display device 100 of FIG. 3 was produced.
  • Aluminosilicate glass was used as a transparent substrate, and a black photosensitive coloring composition was applied on one surface with a spin coater, and dried on a hot plate at 100 ° C. for 5 minutes to dry the coating film. Thereafter, exposure is performed through a photomask having a desired opening at 100 mJ / cm 2 using a high-pressure mercury lamp as a light source, followed by shower development for 30 seconds with a 0.2% by mass aqueous sodium hydrogen carbonate solution. Carried out. After washing with water, heat treatment was performed at 230 ° C. for 30 minutes in a hot air circulation oven to form a black matrix pattern. Thereafter, except for changing the type of the photosensitive coloring composition, similarly, red, green and blue patterns are formed in sequence, a color filter layer is formed, and a color filter substrate including a transparent substrate and a color filter layer is formed. did.
  • an alignment film was formed by printing on the surface of the TFT substrate on which the color filter layer and the TFT circuit of the color filter substrate were formed, and then baked at 230 ° C. and then rubbed. Thereafter, the color filter substrate and the TFT substrate were bonded together with a sealing material, and a liquid crystal material was injected into the gap to form a liquid crystal layer.
  • the first electrode layer was formed on the surface of the transparent substrate where the color filter layer was not formed.
  • the first electrode layer was formed by forming a tin-doped indium oxide (ITO) film having a thickness of 30 nm by sputtering.
  • the obtained ITO film obtained a sheet resistance value of 80 ⁇ / ⁇ .
  • a positive resist was applied to the entire surface of the first electrode layer using a spin coater.
  • the obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film.
  • TMAH tetramethylammonium hydroxide
  • a cured resin layer and a second electrode layer were formed on the first electrode layer.
  • the cured resin layer and the second electrode layer were formed by pasting together a support film substrate with a laminator.
  • a PET film in which a silicone resin was formed with a thickness of about 200 nm was prepared as a support film substrate, and an aqueous dispersion of gold nanowires having a diameter of 50 nm and a length of 30 ⁇ m was applied to the silicone resin surface and dried.
  • Gold nanowires were applied by slit die coating using an aqueous dispersion ink having a solid content concentration of 0.2 wt%, and dried at 60 ° C.
  • the photosensitive resin material was applied in a thickness of 5 ⁇ m. The obtained photosensitive resin material was bonded to a PET film as a cover film.
  • the laminate of the gold nanowire and the cured resin layer previously formed on the support film base material is bonded after peeling the cover film, and using a high pressure mercury lamp through a photomask.
  • Light irradiation was performed at 1000 mJ / cm 2 , and the cured resin layer of the light irradiated portion was cured.
  • shower development was performed for 30 seconds with a 0.2% by mass aqueous sodium hydrogen carbonate solution, followed by washing with water to form a cured resin layer and a second electrode layer.
  • the plan view of the second electrode layer was formed in a diamond shape as shown in FIG.
  • the FPC terminal and the wiring connected to the first electrode layer and the second electrode layer are electrically connected via the ACF, and the touch sensor driving IC Connected.
  • the FPC and the liquid crystal driving IC were connected also at the end of the TFT substrate.
  • polarizing plates were respectively attached to the upper surface of the second electrode layer of the color filter substrate with electrodes and the lower surface of the TFT substrate using an adhesive material.
  • a backlight was attached to the polarizing plate on the anti-viewing (back) side, and chemically strengthened glass was bonded as a cover glass on the polarizing plate on the viewing side (upper surface) using an optical adhesive.
  • a liquid crystal display integrated with a capacitive touch sensor was produced.
  • the display was good and the touch sensor could be operated well.
  • a color filter substrate with electrodes that operates stably with a high yield and is compatible with various display designs, a display device using the same, and a manufacturing method thereof. it can.
  • the color filter substrate with an electrode of the present invention can be used as a touch panel display in which a liquid crystal display or organic EL display using a color filter and a capacitive touch sensor are integrated, for example, a smartphone, a tablet, a notebook PC, etc. It can be used as a display and user interface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided are a high yield color filter substrate with electrode that operates stably and is provided with general-purpose properties corresponding to various display designs, a display device using same and manufacturing methods therefor. The color filter substrate with electrode is provided with a color filter layer, a transparent substrate, a first electrode layer, a curing resin layer and a second electrode layer in this order, wherein the curing resin layer comprises a photosensitive resin and the curing resin layer and the second electrode layer have patterns that are identical in planar view.

Description

電極付きカラーフィルタ基板、これを用いた表示装置、およびこれらの製造方法COLOR FILTER SUBSTRATE WITH ELECTRODE, DISPLAY DEVICE USING THE SAME, AND MANUFACTURING METHOD THEREOF
 本発明は、電極付きカラーフィルタ基板、これを用いた表示装置、およびこれらの製造方法に関する。好適には、本発明は、静電容量方式で動作するタッチセンサが一体となった電極付きカラーフィルタ基板、これを用いた表示装置、およびこれらの製造方法に関する。 The present invention relates to a color filter substrate with an electrode, a display device using the same, and a manufacturing method thereof. Preferably, the present invention relates to a color filter substrate with an electrode in which a touch sensor operating in a capacitive manner is integrated, a display device using the same, and a method for manufacturing the same.
 近年、様々な電子機器のディスプレイ上に、入力デバイスとして透明なタッチパネルが用いられている。タッチパネルの方式としては、抵抗膜式、静電容量式などが挙げられる。抵抗膜式では上下の電極が接触することでタッチ位置を検出する。また静電容量式では指先などが触れた際の表面の静電容量の変化でタッチ位置を検出する。 In recent years, transparent touch panels have been used as input devices on the displays of various electronic devices. Examples of the touch panel system include a resistance film type and a capacitance type. In the resistive film type, the touch position is detected by contacting the upper and lower electrodes. In the capacitance type, the touch position is detected by a change in the surface capacitance when a fingertip or the like touches.
 静電容量式タッチパネルのセンサーはPETフィルムなどの樹脂基板やガラス基板に電極パターンとして作製し、ディスプレイ構造の外側に配置されるアウトセル構造が一般的に用いられている(特許文献1)。 A sensor for a capacitive touch panel is generally used as an out-cell structure that is prepared as an electrode pattern on a resin substrate such as a PET film or a glass substrate and arranged outside the display structure (Patent Document 1).
 一方、近年ではタッチセンサをディスプレイ構造に組み込むインセル構造やオンセル構造が採用され始めており、タッチセンサ付きディスプレイをより薄型・軽量化する取り組みがなされている(特許文献2、特許文献3)。 On the other hand, recently, an in-cell structure or an on-cell structure in which a touch sensor is incorporated into a display structure has begun to be adopted, and efforts have been made to make the display with a touch sensor thinner and lighter (Patent Documents 2 and 3).
特開2007-178758号公報JP 2007-178758 A 特許第4816668号公報Japanese Patent No. 4816668 特許第4584342号公報Japanese Patent No. 4584342
 しかしながら、インセル構造はディプレイ表示の駆動回路であるTFT基板にタッチセンサの回路を組み込む必要があり、従来から設計やプロセスの煩雑さとそれに伴う良品収率の悪化が伴うことが指摘されていた。またオンセル構造は、特に液晶ディスプレイの場合、液晶を封入したセルの状態でタッチセンサを形成するため、熱などのプロセス条件による液晶へのダメージを考慮したプロセス設計に課題があった。 However, it has been pointed out that the in-cell structure requires a touch sensor circuit to be incorporated in the TFT substrate, which is a display display drive circuit, and has been accompanied by complicated design and process and associated deterioration in the yield of non-defective products. In the case of the on-cell structure, particularly in the case of a liquid crystal display, the touch sensor is formed in the state of the cell in which the liquid crystal is sealed.
 本発明は、歩留まり良く、安定に動作し、様々なディスプレイ設計に対応する汎用性を備えた電極付きカラーフィルタ基板、これを用いた表示装置、およびこれらの製造方法を提供するものである。好適には、本発明は、タッチセンサが一体化したディスプレイの作製にあたり、上記のような従来技術の課題を解決しようとするものである。 The present invention provides an electrode-equipped color filter substrate that operates stably with a high yield and is compatible with various display designs, a display device using the same, and a method of manufacturing the same. Preferably, the present invention is intended to solve the above-described problems of the prior art in manufacturing a display in which a touch sensor is integrated.
 上記の課題を解決するための本発明の一局面は、カラーフィルタ層、透明基板、第1の電極層、硬化樹脂層、第2の電極層をこの順に備え、硬化樹脂層が感光性樹脂を含み、前記硬化樹脂層および前記第2の電極層が平面視で同一のパターンを有する、電極付きカラーフィルタ基板である。 One aspect of the present invention for solving the above problems includes a color filter layer, a transparent substrate, a first electrode layer, a cured resin layer, and a second electrode layer in this order, and the cured resin layer includes a photosensitive resin. And a color filter substrate with electrodes, wherein the cured resin layer and the second electrode layer have the same pattern in plan view.
 また、透明基板は、ガラス、プラスチックフィルム、樹脂膜から選ばれる1つ以上の基板で構成されていてもよい。 The transparent substrate may be composed of one or more substrates selected from glass, plastic film, and resin film.
 また、第2の電極層は、金、銀、銅、アルミニウム、鉄、チタン、モリブデン、インジウム、錫、およびニオブからなる群から選ばれる少なくとも1種、または該群から選ばれる少なくとも1種の酸化物、または導電性樹脂組成物から形成されていてもよい。 The second electrode layer may be at least one selected from the group consisting of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin, and niobium, or at least one oxidation selected from the group Or a conductive resin composition.
 また、第1の電極層および第2の電極層は、タッチ位置の検出をするタッチセンサの構成要素の一部であって良い。 Further, the first electrode layer and the second electrode layer may be a part of components of a touch sensor that detects a touch position.
 本発明の他の局面は、前記電極付きカラーフィルタ基板を用いた表示装置である。 Another aspect of the present invention is a display device using the color filter substrate with electrodes.
 本発明の更に他の局面は、カラーフィルタ層、透明基板、第1の電極層をこの順に積層する工程と、第1の電極層をパターン形成する工程と、第1の電極層の上に硬化樹脂層および第2の電極層を積層する工程と、硬化樹脂層を光照射することで硬化樹脂層および第2の電極層をパターン形成する工程と、を含む電極付きカラーフィルタ基板の製造方法である。 Still another aspect of the present invention includes a step of laminating a color filter layer, a transparent substrate, and a first electrode layer in this order, a step of patterning the first electrode layer, and curing on the first electrode layer. A method for producing a color filter substrate with an electrode, comprising: laminating a resin layer and a second electrode layer; and patterning the cured resin layer and the second electrode layer by irradiating the cured resin layer with light. is there.
 また、前記透明基板は、ガラス、プラスチックフィルム、樹脂膜から選ばれる1つ以上の基板で構成されていてもよい。 The transparent substrate may be composed of one or more substrates selected from glass, plastic film, and resin film.
 また、第2の電極層は、金、銀、銅、アルミニウム、鉄、チタン、モリブデン、インジウム、錫、およびニオブからなる群から選ばれる少なくとも1種、または該群から選ばれる少なくとも1種の酸化物、または導電性樹脂組成物から形成されていてもよい。 The second electrode layer may be at least one selected from the group consisting of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin, and niobium, or at least one oxidation selected from the group Or a conductive resin composition.
 本発明の更に他の局面は、カラーフィルタ層の透明基板と反対側の面に、あらかじめTFT基板が貼り合わされており、上述の電極付きカラーフィルタ基板の製造方法により第1の電極層、硬化樹脂層、第2の電極層をパターン形成した後、第1の電極層および第2の電極層をタッチセンサの駆動回路に電気的に接続する工程を含む、表示装置の製造方法である。 According to still another aspect of the present invention, a TFT substrate is bonded in advance to a surface of the color filter layer opposite to the transparent substrate, and the first electrode layer and the cured resin are produced by the above-described method for manufacturing a color filter substrate with electrodes. A method of manufacturing a display device, the method including electrically connecting the first electrode layer and the second electrode layer to a drive circuit of the touch sensor after patterning the layer and the second electrode layer.
 本発明によれば、歩留まり良く、安定に動作し、様々なディスプレイ設計に対応する汎用性を備えた電極付きカラーフィルタ基板、これを用いた表示装置、およびこれらの製造方法が提供される。 According to the present invention, there is provided a color filter substrate with an electrode that operates stably with a high yield and is compatible with various display designs, a display device using the same, and a manufacturing method thereof.
図1は、本発明の一実施形態に係る電極付きカラーフィルタ基板の断面図である。FIG. 1 is a sectional view of a color filter substrate with electrodes according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る電極付きカラーフィルタ基板の電極形状を示す上面図である。FIG. 2 is a top view showing the electrode shape of the electrode-attached color filter substrate according to the embodiment of the present invention. 図3は、本発明の一実施形態に係る電極付きカラーフィルタ基板を用いた表示装置の断面図である。FIG. 3 is a cross-sectional view of a display device using a color filter substrate with electrodes according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る電極付きカラーフィルタ基板を用いた表示装置の断面図である。FIG. 4 is a cross-sectional view of a display device using an electrode-attached color filter substrate according to an embodiment of the present invention.
 以下、本発明を実施するための形態を、図面を用いて説明する。なお、本発明は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づいて設計の変更などを加えることも可能である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited to the embodiments described below, and design changes and the like can be added based on the knowledge of those skilled in the art.
 図1に、本発明の一実施形態に係る電極付きカラーフィルタ基板10の模式的な断面図を示す。図1に示された電極付きカラーフィルタ基板10は、カラーフィルタ層11、透明基板12、第1の電極層13、硬化樹脂層14、および第2の電極層15をこの順に備えている。 FIG. 1 shows a schematic cross-sectional view of an electrode-attached color filter substrate 10 according to an embodiment of the present invention. The color filter substrate 10 with electrodes shown in FIG. 1 includes a color filter layer 11, a transparent substrate 12, a first electrode layer 13, a cured resin layer 14, and a second electrode layer 15 in this order.
 透明基板12として、ガラス、プラスチックフィルム、樹脂膜等から選ばれる1つ以上の基板で構成することができる。透明基板12は、成膜工程および後工程において十分な強度があり、優れた透明性を有し、表面の平滑性が良好であれば特に限定されない。ガラスとしてはディスプレイ用途の無アルカリガラスが好適に使用され、プラスチックフィルム、樹脂膜の材質としては例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、ポリエーテルスルホンフィルム、ポリスルホンフィルム、ポリアリレートフィルム、環状ポリオレフィンフィルム、ポリイミドフィルムなどが挙げられる。また、透明基板12は、典型的には表示装置のカラーフィルタに用いられるため、高い透明性を有することが必要で、全光透過率が85%以上のものが好適に使用される。透明基板12は、各層との密着性を改善するため、前処理としてコロナ処理、低温プラズマ処理、イオンボンバード処理、薬品処理などを施してもよい。 The transparent substrate 12 can be composed of one or more substrates selected from glass, plastic film, resin film and the like. The transparent substrate 12 is not particularly limited as long as it has sufficient strength in the film forming step and the subsequent step, has excellent transparency, and has good surface smoothness. As the glass, alkali-free glass for display applications is preferably used, and plastic film and resin film materials are, for example, polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polycarbonate film, polyethersulfone film, polysulfone film. , Polyarylate film, cyclic polyolefin film, polyimide film and the like. Further, since the transparent substrate 12 is typically used for a color filter of a display device, it needs to have high transparency, and a substrate having a total light transmittance of 85% or more is preferably used. The transparent substrate 12 may be subjected to corona treatment, low temperature plasma treatment, ion bombardment treatment, chemical treatment, etc. as pretreatment in order to improve adhesion with each layer.
 透明基板12の一方面上には、カラーフィルタ層11が形成されている。カラーフィルタ層11は、典型的には、ブラックマトリクスと、赤、緑および青色の各色の着色層とを少なくとも含む層である。カラーフィルタ層11は、スピンコート、スピンレスコート、インクジェット等の方式で着色感光性インキを塗工した後、露光、焼成すること等から形成することができる。更にブラックマトリクスおよび着色層を覆うように透明電極が形成されていてもよい。着色層は、例えば各色の顔料を分散させた厚み0.5μm以上3.0μm以下のアクリル系樹脂よりなる。ブラックマトリクスは、例えば黒色顔料を分散させた厚み0.5μm以上3.0μm以下のアクリル系樹脂や、厚み10nm以上200nm以下の金属膜により形成される。カラーフィルタ層には、黄色、シアン、マゼンダ、あるいは白色(無色)層を用いても良い。透明電極は、例えば厚み10nm以上200nm以下のITOよりなる。また、カラーフィルタ層11上には、平坦化や保護を目的に透明樹脂層を形成してもよい。 A color filter layer 11 is formed on one surface of the transparent substrate 12. The color filter layer 11 is typically a layer including at least a black matrix and colored layers of each color of red, green, and blue. The color filter layer 11 can be formed by applying a colored photosensitive ink by a method such as spin coating, spinless coating, and inkjet, and then exposing and baking. Further, a transparent electrode may be formed so as to cover the black matrix and the colored layer. The colored layer is made of, for example, an acrylic resin having a thickness of 0.5 μm to 3.0 μm in which pigments of respective colors are dispersed. The black matrix is formed of, for example, an acrylic resin having a thickness of 0.5 μm or more and 3.0 μm or less in which a black pigment is dispersed, or a metal film having a thickness of 10 nm or more and 200 nm or less. As the color filter layer, a yellow, cyan, magenta, or white (colorless) layer may be used. The transparent electrode is made of, for example, ITO having a thickness of 10 nm to 200 nm. Further, a transparent resin layer may be formed on the color filter layer 11 for the purpose of flattening and protection.
 透明基板12の他方面上には、第1の電極層13が形成されている。第1の電極層13は、静電容量式タッチセンサの一部をなし、スズドープ酸化インジウムのような透明の金属材料を用いて可視光透過性を付与することが望ましい。金属材料の形成は、蒸着法、スパッタ法などによって透明基板12の全面に対して金属材料を堆積させ、次いでパターニングを行って不要部分の金属材料を除去することにより実施することができる。必要に応じて、金属材料の堆積は、複数種の金属材料を用いて、積層構造を有する金属膜を形成してもよい。パターニングは、たとえばポジ型フォトレジストを用いるフォトリソグラフィー法などの当該技術において知られている任意の手段により実施することができる。 The first electrode layer 13 is formed on the other surface of the transparent substrate 12. The first electrode layer 13 is a part of a capacitive touch sensor, and it is desirable to impart visible light transparency using a transparent metal material such as tin-doped indium oxide. The metal material can be formed by depositing the metal material on the entire surface of the transparent substrate 12 by vapor deposition, sputtering, or the like, and then performing patterning to remove unnecessary portions of the metal material. If necessary, the metal material may be deposited using a plurality of types of metal materials to form a metal film having a stacked structure. The patterning can be performed by any means known in the art such as a photolithography method using a positive photoresist.
 第1の電極層13上には、硬化樹脂層14が形成されている。硬化樹脂層14は、後述の感光性樹脂を露光して硬化させた層である。感光性樹脂は、ネガ型感光性樹脂としても良いし、ポジ型感光性樹脂としても良い。ネガ型感光性樹脂は、一般的に、バインダーとなる樹脂材料、光重合性材料、光重合開始剤を少なくとも含有する材料から構成されるが、特に限定されない。ネガ型感光性樹脂として、例えば、特開平6-273936号公報、特開平10-98266号公報、特開2003-122004号公報に記載の材料を用いることができる。また、ポジ型感光性樹脂は、一般的に、アルカリ可溶性樹脂材料、光酸発生材料、酸分解性官能基含有化合物等を含有する材料から形成されるが、特に限定されない。ポジ型感光性樹脂として、例えば、特開昭48-89003号公報、特開昭60-3625号公報、特開昭63-27829号公報に記載の材料を用いることができる。硬化樹脂層14は、ダイコーター、カーテンフローコーター、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター、スピンコーター、マイクログラビアコーターなどの公知の塗布方法で上記材料を塗布した後、乾燥することで形成することができる。硬化樹脂層14の膜厚は、0.1μm以上25μm以下であることが好ましく、例えば5μmであるがこの限りではない。硬化樹脂層14は、硬化前後でほとんど膜厚の変化はないため、以後硬化後の膜厚で記載することとする。膜厚が25μm以下であると高精細パターン形成が容易となり、膜厚が0.1μm以上であると形成ムラ等の外観上の歪みが発生せず、また隣接する層との十分な密着性を示すという効果が得られる。 A cured resin layer 14 is formed on the first electrode layer 13. The cured resin layer 14 is a layer obtained by exposing and curing a photosensitive resin described later. The photosensitive resin may be a negative photosensitive resin or a positive photosensitive resin. The negative photosensitive resin is generally composed of a resin material serving as a binder, a photopolymerizable material, and a material containing at least a photopolymerization initiator, but is not particularly limited. As the negative photosensitive resin, for example, materials described in JP-A-6-273936, JP-A-10-98266, and JP-A-2003-122004 can be used. The positive photosensitive resin is generally formed from a material containing an alkali-soluble resin material, a photoacid generating material, an acid-decomposable functional group-containing compound, etc., but is not particularly limited. As the positive photosensitive resin, for example, materials described in JP-A-48-89003, JP-A-60-3625, and JP-A-63-27829 can be used. The cured resin layer 14 is coated with the above materials by a known coating method such as a die coater, curtain flow coater, roll coater, reverse roll coater, gravure coater, knife coater, bar coater, spin coater, micro gravure coater, and then dried. By doing so, it can be formed. The film thickness of the cured resin layer 14 is preferably 0.1 μm or more and 25 μm or less, for example, 5 μm, but is not limited thereto. Since the cured resin layer 14 has almost no change in film thickness before and after curing, it will be described as a film thickness after curing. When the film thickness is 25 μm or less, high-definition pattern formation becomes easy, and when the film thickness is 0.1 μm or more, appearance distortion such as formation unevenness does not occur and sufficient adhesion with an adjacent layer is obtained. The effect of showing is obtained.
 硬化樹脂層14上には、第2の電極層15が形成されている。第2の電極層15は、静電容量式タッチセンサの一部をなす。第2の電極層15を形成する材料としては、例えば、金、銀、銅、アルミニウム、鉄、チタン、モリブデン、インジウム、錫及びニオブなどのいずれかを含有する金属微粒子、いずれかの酸化物、または、この金属を含む合金の微粒子、または導電性樹脂組成物を用いることができる。金属微粒子の中でも、繊維状で、分岐がなく、ほぐれやすく、かつ繊維状物質の均一な分布密度を得やすく、その結果繊維と繊維のからまりの間に大きな開口部を形成し、良好な光透過率を実現することができるワイヤ状のものが好ましい。このような形状をした導電性物質の例としては、カーボンナノチューブやワイヤ状の導電性金属である金属ナノワイヤを挙げることができる。本発明で金属ナノワイヤとは、形状が直線または曲線の細い棒状で、材質が金属であるナノメートルサイズの微細な導電性物質である。微細な導電性物質が繊維状、好ましくはワイヤ状であると、それらが互いに絡み合って網の目状となることで、少ない量の導電性物質であっても良好な電気伝導経路を形成することができ、導電性層の抵抗値をより低下させることができ好ましい。さらにこのような網の目状を形成した場合、網の目の隙間部分の開口が大きいので、たとえ繊維状の導電性物質そのものが透明でなかったとしても、塗膜として良好な透明性を達成することが可能である。金属ナノワイヤの金属としては、導電性の観点から金、銀、銅が好ましい。 A second electrode layer 15 is formed on the cured resin layer 14. The second electrode layer 15 forms part of a capacitive touch sensor. As a material for forming the second electrode layer 15, for example, metal fine particles containing any of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin and niobium, any oxide, Alternatively, fine particles of an alloy containing this metal or a conductive resin composition can be used. Among metal fine particles, it is fibrous, unbranched, easy to loosen, and easy to obtain a uniform distribution density of the fibrous material. As a result, a large opening is formed between the fibers and the fiber bundle, and good light The wire-like thing which can implement | achieve the transmittance | permeability is preferable. Examples of the conductive material having such a shape include carbon nano tubes and metal nanowires that are wire-like conductive metals. In the present invention, the metal nanowire is a fine conductive substance having a nanometer size, which is a rod having a straight or curved shape and made of metal. If the fine conductive material is in the form of a fiber, preferably a wire, they are entangled with each other to form a mesh, thereby forming a good electrical conduction path even with a small amount of the conductive material. This is preferable because the resistance value of the conductive layer can be further reduced. Furthermore, when such a mesh-like shape is formed, since the opening of the gap portion of the mesh is large, even if the fibrous conductive material itself is not transparent, it achieves good transparency as a coating film. Is possible. The metal of the metal nanowire is preferably gold, silver, or copper from the viewpoint of conductivity.
 これら微細な導電性物質を分散して透明導電性塗料を形成するための分散媒である液体としては、特に限定されることなく、既知の各種分散媒を使用することができる。例えば、ヘキサン等の飽和炭化水素類、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、ジイソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、テトラヒドロフラン、ジオキサン、ジエチルエーテル等のエーテル類、N,N-ジメチルホルムアミド、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド等のアミド類、エチレンクロライド、クロルベンゼン等のハロゲン化炭化水素等を挙げることができる。また、分散媒の種類により、分散剤を使用することもできる。これら液体は、単独でも2種類以上の混合したものでも使用することができる。また、分散媒として、水も使用可能である。水を用いる場合には、透明基材表面が疎水性の場合は、水をはじきやすく、透明導電性塗料を塗布する際に、均一な膜が得られにくい。このような場合には、水にアルコールを混合するか、あるいは疎水性の透明基材への濡れ性を改善するような界面活性剤を選定し、添加することで均一な膜を得る。用いる分散媒としての液体の量は、特に制限されず、前記微細な導電性物質の分散液が塗布に適した粘度を有するようにすればよい。例えば、前記透明導電性物質100重量部に対して、液体100重量部以上100,000重量部以下程度と広範囲に設定可能であって、前記透明導電性物質と分散媒の種類、使用する撹拌、分散装置に応じて適宜選択することができる。 The liquid as a dispersion medium for dispersing these fine conductive substances to form a transparent conductive paint is not particularly limited, and various known dispersion media can be used. For example, saturated hydrocarbons such as hexane, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, propanol, and butanol, ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, and diisobutyl ketone , Esters such as ethyl acetate and butyl acetate, ethers such as tetrahydrofuran, dioxane and diethyl ether, amides such as N, N-dimethylformamide, N-methylpyrrolidone (NMP) and N, N-dimethylacetamide, ethylene chloride And halogenated hydrocarbons such as chlorobenzene. Moreover, a dispersing agent can also be used according to the kind of dispersion medium. These liquids can be used singly or as a mixture of two or more. Water can also be used as a dispersion medium. When water is used, if the surface of the transparent substrate is hydrophobic, water is easily repelled, and a uniform film is difficult to obtain when a transparent conductive paint is applied. In such a case, a uniform film can be obtained by mixing and adding an alcohol to water, or selecting and adding a surfactant that improves wettability to a hydrophobic transparent substrate. The amount of the liquid as a dispersion medium to be used is not particularly limited, and the dispersion liquid of the fine conductive material may have a viscosity suitable for coating. For example, with respect to 100 parts by weight of the transparent conductive material, the liquid can be set in a wide range of about 100 parts by weight or more and 100,000 parts by weight or less, and the type of the transparent conductive substance and the dispersion medium, the stirring used, It can be appropriately selected depending on the dispersing device.
 上記原料を用いて第2の電極層15を形成するためには、透明導電性物質と分散媒と必要に応じて樹脂を含有する分散液を透明基体上に塗布し、乾燥して、透明基材上に均一な導電性塗膜を形成する。塗布方法としてはスプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコートなど公知の塗布方法を用いることができる。透明導電層の膜厚は薄すぎると導体としての十分な導電性が達成出来なくなる傾向にあり、厚すぎるとヘイズ値の上昇、全光線透過率の低下等で透明性が損なわれる傾向にある。通常は10nm以上10μm以下の間で適宜調整を行うが、金属ナノワイヤのように導電性物質そのものが透明でない場合には、膜厚の増加によって透明性が失われ得やすく、より薄い膜厚の導電層が形成されることが多い。この場合きわめて開口部の多い導電層であるが、接触式の膜厚計で測定したときに平均膜厚として10nm以上500nm以下の膜厚範囲が好ましく、30nm以上300nm以下がより好ましく、50nm以上150nm以下が最も好ましい。 In order to form the second electrode layer 15 using the above raw material, a dispersion containing a transparent conductive material, a dispersion medium, and a resin as necessary is applied on a transparent substrate, dried, and then a transparent substrate. A uniform conductive coating film is formed on the material. As a coating method, a known coating method such as spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, or the like can be used. If the film thickness of the transparent conductive layer is too thin, sufficient conductivity as a conductor tends not to be achieved, and if it is too thick, transparency tends to be impaired due to an increase in haze value, a decrease in total light transmittance, and the like. Normally, the adjustment is made appropriately between 10 nm and 10 μm, but when the conductive material itself is not transparent like metal nanowires, the transparency can easily be lost by increasing the film thickness, and the conductive film with a thinner film thickness can be lost. Often layers are formed. In this case, the conductive layer has a large number of openings, but when measured with a contact-type film thickness meter, the average film thickness is preferably in the range of 10 nm to 500 nm, more preferably 30 nm to 300 nm, and more preferably 50 nm to 150 nm. The following are most preferred.
 硬化樹脂層14および第2の電極層15を形成するために、例えばカラーフィルタ層11および第1の電極層13を形成した透明基板12に、硬化樹脂層14および第2の電極層15を形成する。この場合、まず硬化樹脂層14と第2の電極層15とを、透明基板12の第1の電極層13を形成した面に形成することから始める。第1の電極層13上に硬化樹脂層14、第2の電極層15の順に形成しても良いし、図示しない支持フィルム基材上に第2の電極層15、硬化樹脂層14の順に形成したものを準備し、これをラミネータ等を用いて透明基板12に貼り合わせた後、前記支持フィルム基材を剥がすことで形成しても良い。 In order to form the cured resin layer 14 and the second electrode layer 15, for example, the cured resin layer 14 and the second electrode layer 15 are formed on the transparent substrate 12 on which the color filter layer 11 and the first electrode layer 13 are formed. To do. In this case, first, the cured resin layer 14 and the second electrode layer 15 are started by forming them on the surface of the transparent substrate 12 on which the first electrode layer 13 is formed. The cured resin layer 14 and the second electrode layer 15 may be formed on the first electrode layer 13 in this order, or the second electrode layer 15 and the cured resin layer 14 may be formed on the support film substrate (not shown) in this order. The prepared film may be prepared and bonded to the transparent substrate 12 using a laminator or the like, and then the support film substrate may be peeled off.
 支持フィルム基材に第2の電極層15と硬化樹脂層14とを形成する場合、例えば透明基板12の第1の電極層13上に第2の電極層15と硬化樹脂層14とを貼り合わせる。支持フィルム基材としては、離型性の良いフィルムであれば特に限定するものではなく、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)などのフィルム基材に離型性を付与するためのシリコーン系材料やフッ素系材料を含有する樹脂を薄膜で形成したものが好適に用いられる。 When the second electrode layer 15 and the cured resin layer 14 are formed on the support film substrate, for example, the second electrode layer 15 and the cured resin layer 14 are bonded onto the first electrode layer 13 of the transparent substrate 12. . The support film substrate is not particularly limited as long as it is a film having good releasability. For example, releasability is imparted to a film substrate such as polyethylene, polypropylene, polyethylene terephthalate (PET), and polycarbonate (PC). For this purpose, a thin film made of a resin containing a silicone material or a fluorine material is preferably used.
 硬化樹脂層14および第2の電極層15は、耐熱性に応じて、予めカラーフィルタ基板(カラーフィルタ層11、透明基板12および第1の電極層13の積層体)に形成してからディスプレイ作製しても良いし、ディスプレイを作製してからカラーフィルタ基板の裏面(前記積層体の第1の電極層13の面)に形成しても良い。後者のプロセスを用いる場合、セル化したディスプレイにおけるカラーフィルタ基板のガラス(透明基板12)およびTFT基板30となるガラスの両面をフッ酸等の薬液で溶解することにより薄型化することが可能である。硬化樹脂層14および第2の電極層15は、カラーフィルタ層11を形成した透明基板12をTFT基板30と貼り合わせてセル化した表示装置に形成しても良い。 The cured resin layer 14 and the second electrode layer 15 are formed in advance on a color filter substrate (a laminate of the color filter layer 11, the transparent substrate 12 and the first electrode layer 13) according to heat resistance, and then a display is manufactured. Alternatively, the display may be formed and then formed on the back surface of the color filter substrate (the surface of the first electrode layer 13 of the laminate). When using the latter process, it is possible to reduce the thickness by dissolving both the glass of the color filter substrate (transparent substrate 12) and the glass to be the TFT substrate 30 in a cellized display with a chemical solution such as hydrofluoric acid. . The cured resin layer 14 and the second electrode layer 15 may be formed in a display device in which the transparent substrate 12 on which the color filter layer 11 is formed is bonded to the TFT substrate 30 to form a cell.
 硬化樹脂層14および第2の電極層15のパターンは、フォトマスクを介した光照射により、現像液に可溶な部分と不溶な部分を作成し、感光性樹脂の現像液に可溶な部分は現像により溶解して、不溶な部分からなる硬化樹脂層14のパターンを形成できる。第2の電極層15は硬化樹脂層14と同時に同一のパターンが形成される。現像液は感光性樹脂またはその材料の種類により適宜選択でき、一般的にアルカリ水溶液または有機溶剤とすることができる。 The pattern of the cured resin layer 14 and the second electrode layer 15 creates a part soluble in the developer and an insoluble part by light irradiation through a photomask, and a part soluble in the developer of the photosensitive resin. Can be dissolved by development to form a pattern of the cured resin layer 14 composed of insoluble portions. The same pattern is formed on the second electrode layer 15 simultaneously with the cured resin layer 14. The developer can be appropriately selected depending on the kind of the photosensitive resin or its material, and can generally be an alkaline aqueous solution or an organic solvent.
 以上のとおり作製した電極付きカラーフィルタ基板10は、1枚のガラス基板上に複数面付けしていてもよい。この場合、電極付きカラーフィルタ基板10、またはこれとTFT基板30とを貼り合せた状態のものを断裁して個片化することで、効率的に複数製造することができる。個片化の手法としては、ダイヤカッタースクライブ加工、ダイシング加工、ウォータージェット加工、エッチング加工、レーザー加工等が挙げられる。個片化後、第1の電極層13または第2の電極層15に接続された配線を、異方導電接着剤(ACF)およびプリント基板(FPC)を介して駆動IC等に接続し、静電容量式タッチパネルとして動作させることができる。この時、第1の電極層13または第2の電極層15から引き出された配線にはACFを介してFPCが熱圧着され、FPCはタッチセンサの駆動ICに接続される。TFT基板30は、駆動ICおよびFPCと接続されて駆動回路と接続される。 The color filter substrate 10 with an electrode produced as described above may be provided with a plurality of surfaces on a single glass substrate. In this case, it is possible to efficiently manufacture a plurality of pieces by cutting the color filter substrate with electrodes 10 or a state in which the color filter substrate 10 is bonded to the TFT substrate 30 into pieces. Examples of the singulation method include diamond cutter scribe processing, dicing processing, water jet processing, etching processing, and laser processing. After separation, the wiring connected to the first electrode layer 13 or the second electrode layer 15 is connected to a driving IC or the like via an anisotropic conductive adhesive (ACF) and a printed circuit board (FPC). It can be operated as a capacitive touch panel. At this time, the FPC is thermocompression bonded to the wiring drawn from the first electrode layer 13 or the second electrode layer 15 via the ACF, and the FPC is connected to the drive IC of the touch sensor. The TFT substrate 30 is connected to the drive IC and the FPC and is connected to the drive circuit.
 図2に、一例に係る電極付きカラーフィルタ基板10の電極形状を示す模式的な上面図を示す。図2に示した第1の電極層13および第2の電極層15は、端部から延長された配線部を介して駆動回路に接続され(図示省略)、電極間で容量を形成し、静電容量式タッチセンサとして機能する。 FIG. 2 is a schematic top view showing the electrode shape of the color filter substrate 10 with an electrode according to an example. The first electrode layer 13 and the second electrode layer 15 shown in FIG. 2 are connected to a drive circuit via a wiring portion extended from the end (not shown), form a capacitance between the electrodes, and Functions as a capacitive touch sensor.
 本発明の電極付きカラーフィルタ基板を有する表示装置としては、例えば液晶ディスプレイ、有機ELディスプレイ、電子ペーパー、MEMSディスプレイ、反射型または半透過型液晶ディスプレイなどが挙げられる。 Examples of the display device having the electrode-attached color filter substrate of the present invention include a liquid crystal display, an organic EL display, electronic paper, a MEMS display, a reflective or transflective liquid crystal display, and the like.
 液晶層を有する表示装置の例としては、図3に示したような断面構造を有するものが挙げられる。表示装置100は、電極付きカラーフィルタ基板10とTFT基板30との間に液晶層20が形成されている。TFT基板30の液晶層20と反対側の面に、偏光板40およびバックライト50が順に形成されている。電極付きカラーフィルタ基板10の液晶層20と反対側の面に、偏光板60およびカバーガラス70が順に形成されている。 Examples of display devices having a liquid crystal layer include those having a cross-sectional structure as shown in FIG. In the display device 100, the liquid crystal layer 20 is formed between the color filter substrate with electrodes 10 and the TFT substrate 30. A polarizing plate 40 and a backlight 50 are sequentially formed on the surface of the TFT substrate 30 opposite to the liquid crystal layer 20. A polarizing plate 60 and a cover glass 70 are sequentially formed on the surface of the color filter substrate with electrode 10 opposite to the liquid crystal layer 20.
 TFT基板30には、複数の走査線が一定間隔を隔てて形成されている。また、走査線の上には、複数の信号線が一定間隔を隔てて形成されている。走査線と信号線とは、絶縁膜を介して交差するよう配置されている。そして、走査線と信号線との交差点の近傍にスイッチング素子である薄膜トランジスタ(TFT)が配置される。このTFTを介して、画素電極に信号線から表示信号が供給される。画素電極は、例えばITOなどの透明導電膜から形成される。液晶表示素子の表示領域は複数の画素により構成される。表示領域は通常、矩形に近い形状で形成される。さらに、表示素子には、表示領域を囲むように設けられた額縁領域が配置される。 A plurality of scanning lines are formed on the TFT substrate 30 at regular intervals. A plurality of signal lines are formed at regular intervals on the scanning lines. The scanning line and the signal line are arranged so as to intersect with each other via an insulating film. A thin film transistor (TFT) that is a switching element is disposed in the vicinity of the intersection of the scanning line and the signal line. A display signal is supplied from the signal line to the pixel electrode via the TFT. The pixel electrode is formed from a transparent conductive film such as ITO, for example. The display area of the liquid crystal display element is composed of a plurality of pixels. The display area is usually formed in a shape close to a rectangle. Further, a frame area provided so as to surround the display area is arranged in the display element.
 液晶層20は、公知の材料を用いて形成でき、電極付きカラーフィルタ基板10とTFT基板30との間に封入される。この際、電極付きカラーフィルタ基板10のカラーフィルタ層11およびTFT基板30の表面に対してフレキソ印刷等の方法により配向膜を形成し、ラビング処理を行った後に液晶層20を封入することで、液晶分子を一定方向に配列することができる。 The liquid crystal layer 20 can be formed using a known material and is sealed between the color filter substrate 10 with electrodes and the TFT substrate 30. At this time, an alignment film is formed on the surface of the color filter layer 11 of the electrode-attached color filter substrate 10 and the TFT substrate 30 by a method such as flexographic printing, and the liquid crystal layer 20 is sealed after rubbing treatment. Liquid crystal molecules can be arranged in a certain direction.
 液晶セルの両面に配置される偏光板40および60は、それぞれほぼ直交する方向に吸収軸を有している。液晶によって制御された直線偏光の向きによって各画素の点灯、グレースケール、消灯が決定される。 The polarizing plates 40 and 60 arranged on both surfaces of the liquid crystal cell have absorption axes in directions almost perpendicular to each other. The lighting, gray scale, and extinguishing of each pixel are determined by the direction of linearly polarized light controlled by the liquid crystal.
 バックライト50は、反視認(背面)側の偏光板40に接着材などにより取り付けられている。バックライト50は、偏光板40に対して面状の光を照射する。バックライト50としては、例えば、光源、導光板、プリズムシートなどを備えた一般的な構成のものを用いる。 The backlight 50 is attached to the polarizing plate 40 on the anti-visible (back) side with an adhesive or the like. The backlight 50 irradiates the polarizing plate 40 with planar light. As the backlight 50, the thing of the general structure provided with the light source, the light-guide plate, the prism sheet etc. is used, for example.
 カバーガラス70は、視認側の偏光板60の四辺またはディスプレイ筐体の四辺に両面テープなどにより接着しても良いし、透明光学粘着を用いて液晶ディスプレイの表示部を含めた全面を貼り合せても良い。カバーガラス70は、化学強化したガラスや透明樹脂により形成される。これにより、表示装置100が完成する。 The cover glass 70 may be adhered to the four sides of the polarizing plate 60 on the viewing side or the four sides of the display housing with a double-sided tape or the like, or the entire surface including the display portion of the liquid crystal display is bonded using a transparent optical adhesive. Also good. The cover glass 70 is made of chemically strengthened glass or transparent resin. Thereby, the display device 100 is completed.
 表示装置100を製造する際には、例えば電極付きカラーフィルタ基板10、TFT基板30、および液晶層20とから形成された液晶セルを偏光板40および60で挟み込む。その後、裏面にバックライト50、表示面にカバーガラス70を配置することで、表示装置100、すなわち静電容量式タッチセンサ一体型の液晶ディスプレイを提供することができる。 When manufacturing the display device 100, for example, a liquid crystal cell formed of the electrode-attached color filter substrate 10, the TFT substrate 30, and the liquid crystal layer 20 is sandwiched between polarizing plates 40 and 60. After that, the backlight 50 is disposed on the back surface and the cover glass 70 is disposed on the display surface, whereby the display device 100, that is, a capacitive touch sensor integrated liquid crystal display can be provided.
 有機ELディスプレイの構造としては、図4に断面を示した例が挙げられる。ガラス上にTFTを形成したTFT基板30に対し、白色有機発光層80を形成する。このように、透明な上部電極層を形成することで、有機EL発光素子構造を形成する。その後、水分吸収能を有する封止剤を介して、電極付きカラーフィルタ基板10を貼り合わせる。こうして静電容量式タッチセンサとカラーフィルタ、封止ガラスを兼ねた層を形成することで有機ELディスプレイ200が得られる。白色有機発光層80は、正孔輸送層、正孔注入層、発光層、電子注入層、電子輸送層等からなり、公知の材料を用いて形成することができる。 An example of the structure of the organic EL display is shown in a cross section in FIG. A white organic light emitting layer 80 is formed on the TFT substrate 30 on which TFTs are formed on glass. Thus, an organic EL light emitting element structure is formed by forming a transparent upper electrode layer. Thereafter, the electrode-attached color filter substrate 10 is bonded through a sealant having moisture absorption ability. In this way, the organic EL display 200 is obtained by forming a layer that also serves as a capacitive touch sensor, a color filter, and a sealing glass. The white organic light emitting layer 80 includes a hole transport layer, a hole injection layer, a light emitting layer, an electron injection layer, an electron transport layer, and the like, and can be formed using a known material.
 以下、具体的な実施例によって本発明を詳細に説明する。実施例は説明を目的としたもので、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with specific examples. The examples are for illustrative purposes and the invention is not limited to the examples.
<実施例1>
 図3の表示装置100に対応する表示装置を作製した。
 透明基板としてアルミノ珪酸ガラスを使用し、一方面上に、黒色感光性着色組成物をスピンコーターにて塗布し、ホットプレートにて100℃で5分間乾燥を行い、塗膜を乾燥させた。その後、光源として高圧水銀ランプを用いて100mJ/cmで所望する開口部を有するフォトマスクを介して露光を実施した後、0.2質量%の炭酸水素ナトリウム水溶液にて、30秒間シャワー現像を実施した。水洗後、熱風循環式オーブンにて230℃で30分間加熱処理を実施して、ブラックマトリクスパターンを形成した。その後、感光性着色組成物の種類を変更した以外は同様に、赤色、緑色、青色パターンを順次形成し、カラーフィルタ層を形成して、透明基板とカラーフィルタ層とを含むカラーフィルタ基板を形成した。
<Example 1>
A display device corresponding to the display device 100 of FIG. 3 was produced.
Aluminosilicate glass was used as a transparent substrate, and a black photosensitive coloring composition was applied on one surface with a spin coater, and dried on a hot plate at 100 ° C. for 5 minutes to dry the coating film. Thereafter, exposure is performed through a photomask having a desired opening at 100 mJ / cm 2 using a high-pressure mercury lamp as a light source, followed by shower development for 30 seconds with a 0.2% by mass aqueous sodium hydrogen carbonate solution. Carried out. After washing with water, heat treatment was performed at 230 ° C. for 30 minutes in a hot air circulation oven to form a black matrix pattern. Thereafter, except for changing the type of the photosensitive coloring composition, similarly, red, green and blue patterns are formed in sequence, a color filter layer is formed, and a color filter substrate including a transparent substrate and a color filter layer is formed. did.
 続いて、カラーフィルタ基板のカラーフィルタ層およびTFT回路が形成されたTFT基板の表面に対して印刷により配向膜を形成した後、230℃で焼成し、その後ラビング処理を行った。その後、カラーフィルタ基板とTFT基板をシール材により貼り合せ、上記隙間に液晶材料を注入して液晶層を形成した。 Subsequently, an alignment film was formed by printing on the surface of the TFT substrate on which the color filter layer and the TFT circuit of the color filter substrate were formed, and then baked at 230 ° C. and then rubbed. Thereafter, the color filter substrate and the TFT substrate were bonded together with a sealing material, and a liquid crystal material was injected into the gap to form a liquid crystal layer.
 次に、透明基板のカラーフィルタ層を形成していない面に、第1の電極層を形成した。第1の電極層は、スパッタ法によって膜厚30nmのスズドープ酸化インジウム(ITO)膜を成膜して形成した。得られたITO膜は、80Ω/□のシート抵抗値を得た。続いて、スピンコーターを用いて第1の電極層全面にポジ型レジストを塗布した。得られた塗膜を、ホットプレート上で5分間にわたって100℃に加熱し、塗膜を乾燥させた。次いで、フォトマスクを通した100mJ/cmの高圧水銀灯光の照射、2.3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いた60秒間にわたるシャワー現像、水洗を行い、塩化第二鉄のエッチング液を用い、露出したITO膜を除去した。続いて、2%水酸化カリウム水溶液であるレジスト剥離液を用いてレジスト膜の除去を行い、第1の電極層を形成した。 Next, the first electrode layer was formed on the surface of the transparent substrate where the color filter layer was not formed. The first electrode layer was formed by forming a tin-doped indium oxide (ITO) film having a thickness of 30 nm by sputtering. The obtained ITO film obtained a sheet resistance value of 80Ω / □. Subsequently, a positive resist was applied to the entire surface of the first electrode layer using a spin coater. The obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film. Next, irradiation with 100 mJ / cm 2 high-pressure mercury lamp through a photomask, shower development using 2.3 mass% tetramethylammonium hydroxide (TMAH) aqueous solution for 60 seconds, washing with water, ferric chloride The exposed ITO film was removed using the etching solution. Subsequently, the resist film was removed using a resist stripping solution that was a 2% aqueous potassium hydroxide solution to form a first electrode layer.
 続いて、第1の電極層上に、硬化樹脂層および第2の電極層を形成した。硬化樹脂層および第2の電極層は、あらかじめ支持フィルム基材に形成したものをラミネータで貼り合わせることで形成した。支持フィルム基材として、シリコーン樹脂を200nm厚程度で形成したPETフィルムを用意し、シリコーン樹脂面に直径50nm、長さ30μmである金ナノワイヤの水分散体を塗布・乾燥することで形成した。金ナノワイヤは固形分濃度0.2wt%の水分散体インクを用いて、スリットダイコートにより塗工し、60℃で乾燥した。続いて、感光性樹脂材料を5μm厚で塗工した。得られた感光性樹脂材料にはPETフィルムをカバーフィルムとして貼り合わせた。 Subsequently, a cured resin layer and a second electrode layer were formed on the first electrode layer. The cured resin layer and the second electrode layer were formed by pasting together a support film substrate with a laminator. A PET film in which a silicone resin was formed with a thickness of about 200 nm was prepared as a support film substrate, and an aqueous dispersion of gold nanowires having a diameter of 50 nm and a length of 30 μm was applied to the silicone resin surface and dried. Gold nanowires were applied by slit die coating using an aqueous dispersion ink having a solid content concentration of 0.2 wt%, and dried at 60 ° C. Subsequently, the photosensitive resin material was applied in a thickness of 5 μm. The obtained photosensitive resin material was bonded to a PET film as a cover film.
 透明基板の第1の電極層上に、上記あらかじめ支持フィルム基材に形成した金ナノワイヤ、硬化樹脂層の積層体をカバーフィルムを剥離した後に貼り合わせ、フォトマスクを介して高圧水銀ランプを用いて1000mJ/cmで光照射し、光照射した部分の硬化樹脂層を硬化させた。支持フィルムを剥離した後、0.2質量%の炭酸水素ナトリウム水溶液にて、30秒間シャワー現像を実施し、水洗することで、硬化樹脂層と第2の電極層を形成した。この時、第2の電極層の平面図は図2に示したようなダイヤモンド形状に形成した。 On the first electrode layer of the transparent substrate, the laminate of the gold nanowire and the cured resin layer previously formed on the support film base material is bonded after peeling the cover film, and using a high pressure mercury lamp through a photomask. Light irradiation was performed at 1000 mJ / cm 2 , and the cured resin layer of the light irradiated portion was cured. After peeling off the support film, shower development was performed for 30 seconds with a 0.2% by mass aqueous sodium hydrogen carbonate solution, followed by washing with water to form a cured resin layer and a second electrode layer. At this time, the plan view of the second electrode layer was formed in a diamond shape as shown in FIG.
 さらに、フレキシブルプリント配線板(FPC)を用い、FPCの端子と、第1の電極層および第2の電極層に接続された配線とをACFを介して電気的に接続して、タッチセンサ駆動ICを接続した。また、TFT基板の端部においても、FPCと液晶駆動ICを接続した。続いて、電極付きカラーフィルタ基板の第2の電極層の上面とTFT基盤の下面とに偏光板を、それぞれ粘着材を用いて貼り付けた。さらに、反視認(背面)側の偏光板にバックライトを取り付け、視認側(上面)の偏光板の上にカバーガラスとして化学強化ガラスを光学粘着剤を用いて貼り合わせた。以上により静電容量式タッチセンサ一体化の液晶ディスプレイを作製し、表示は良好でタッチセンサを良好に動作させることができた。以上のように本発明によれば、歩留まり良く、安定に動作し、様々なディスプレイ設計に対応する汎用性を備えた電極付きカラーフィルタ基板、これを用いた表示装置、およびこれらの製造方法を提供できる。 Furthermore, using a flexible printed wiring board (FPC), the FPC terminal and the wiring connected to the first electrode layer and the second electrode layer are electrically connected via the ACF, and the touch sensor driving IC Connected. In addition, the FPC and the liquid crystal driving IC were connected also at the end of the TFT substrate. Subsequently, polarizing plates were respectively attached to the upper surface of the second electrode layer of the color filter substrate with electrodes and the lower surface of the TFT substrate using an adhesive material. Furthermore, a backlight was attached to the polarizing plate on the anti-viewing (back) side, and chemically strengthened glass was bonded as a cover glass on the polarizing plate on the viewing side (upper surface) using an optical adhesive. As a result, a liquid crystal display integrated with a capacitive touch sensor was produced. The display was good and the touch sensor could be operated well. As described above, according to the present invention, there is provided a color filter substrate with electrodes that operates stably with a high yield and is compatible with various display designs, a display device using the same, and a manufacturing method thereof. it can.
 本発明の電極付きカラーフィルタ基板は、例えばカラーフィルタを用いる液晶ディスプレイまたは有機ELディスプレイと、静電容量式タッチセンサとが一体化したタッチパネルディスプレイとして用いることができ、更にスマートフォンやタブレット、ノートPCなどのディスプレイとユーザーインターフェースとして利用可能である。 The color filter substrate with an electrode of the present invention can be used as a touch panel display in which a liquid crystal display or organic EL display using a color filter and a capacitive touch sensor are integrated, for example, a smartphone, a tablet, a notebook PC, etc. It can be used as a display and user interface.
 10  電極付きカラーフィルタ基板
 11  カラーフィルタ層
 12  透明基板
 13  第1の電極層
 14  硬化樹脂層
 15  第2の電極層
 20  液晶層
 30  TFT基板
 40  偏光板
 50  バックライト
 60  偏光板
 70  カバーレンズ
 80  白色有機発光層
 100  表示装置(液晶ディスプレイ)
 200  表示装置(有機ELディスプレイ)
DESCRIPTION OF SYMBOLS 10 Color filter board | substrate with electrode 11 Color filter layer 12 Transparent substrate 13 1st electrode layer 14 Cured resin layer 15 2nd electrode layer 20 Liquid crystal layer 30 TFT substrate 40 Polarizing plate 50 Backlight 60 Polarizing plate 70 Cover lens 80 White organic Light emitting layer 100 Display device (liquid crystal display)
200 Display device (organic EL display)

Claims (9)

  1.  カラーフィルタ層、透明基板、第1の電極層、硬化樹脂層、第2の電極層をこの順に備え、
     前記硬化樹脂層が感光性樹脂を含み、
     前記硬化樹脂層および前記第2の電極層が平面視で同一のパターンを有する、電極付きカラーフィルタ基板。
    A color filter layer, a transparent substrate, a first electrode layer, a cured resin layer, and a second electrode layer are provided in this order,
    The cured resin layer includes a photosensitive resin;
    A color filter substrate with an electrode, wherein the cured resin layer and the second electrode layer have the same pattern in plan view.
  2.  前記透明基板は、ガラス、プラスチックフィルム、樹脂膜から選ばれる1つ以上の基板で構成されている、請求項1に記載の電極付きカラーフィルタ基板。 The color filter substrate with an electrode according to claim 1, wherein the transparent substrate is composed of one or more substrates selected from glass, a plastic film, and a resin film.
  3.  前記第2の電極層は、金、銀、銅、アルミニウム、鉄、チタン、モリブデン、インジウム、錫、およびニオブからなる群から選ばれる少なくとも1種、または該群から選ばれる少なくとも1種の酸化物、または導電性樹脂組成物から形成されている、請求項1または2に記載の電極付きカラーフィルタ基板。 The second electrode layer is at least one selected from the group consisting of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin, and niobium, or at least one oxide selected from the group The color filter substrate with an electrode according to claim 1 or 2, wherein the color filter substrate is formed from a conductive resin composition.
  4.  前記第1の電極層および第2の電極層は、タッチ位置の検出をするタッチセンサの構成要素の一部である、請求項1~3のいずれかに記載の電極付きカラーフィルタ基板。 The color filter substrate with an electrode according to any one of claims 1 to 3, wherein the first electrode layer and the second electrode layer are a part of components of a touch sensor that detects a touch position.
  5.  請求項1~4のいずれかに記載の電極付きカラーフィルタ基板を用いた表示装置。 A display device using the electrode-attached color filter substrate according to any one of claims 1 to 4.
  6.  カラーフィルタ層、透明基板、第1の電極層をこの順に積層する工程と、前記第1の電極層をパターン形成する工程と、
     前記第1の電極層の上に硬化樹脂層および第2の電極層を積層する工程と、
     前記硬化樹脂層を光照射することで前記硬化樹脂層および前記第2の電極層をパターン形成する工程とを含む、電極付きカラーフィルタ基板の製造方法。
    A step of laminating a color filter layer, a transparent substrate, and a first electrode layer in this order; a step of patterning the first electrode layer;
    Laminating a cured resin layer and a second electrode layer on the first electrode layer;
    And a step of patterning the cured resin layer and the second electrode layer by irradiating the cured resin layer with light.
  7.  前記透明基板は、ガラス、プラスチックフィルム、樹脂膜から選ばれる1つ以上の基板で構成されている、請求項6に記載の電極付きカラーフィルタ基板の製造方法。 The method for producing a color filter substrate with an electrode according to claim 6, wherein the transparent substrate is composed of one or more substrates selected from glass, plastic film, and resin film.
  8.  前記第2の電極層は、金、銀、銅、アルミニウム、鉄、チタン、モリブデン、インジウム、錫、およびニオブからなる群から選ばれる少なくとも1種、または該群から選ばれる少なくとも1種の酸化物、または導電性樹脂組成物から形成されている、請求項6又は7に記載の電極付きカラーフィルタ基板の製造方法。 The second electrode layer is at least one selected from the group consisting of gold, silver, copper, aluminum, iron, titanium, molybdenum, indium, tin, and niobium, or at least one oxide selected from the group Or the manufacturing method of the color filter substrate with an electrode of Claim 6 or 7 currently formed from the conductive resin composition.
  9.  前記カラーフィルタ層の前記透明基板と反対側の面に、あらかじめTFT基板が貼り合わされており、請求項6~8のいずれかに記載の電極付きカラーフィルタ基板の製造方法により第1の電極層、硬化樹脂層、第2の電極層をパターン形成した後、前記第1の電極層および第2の電極層をタッチセンサの駆動回路に電気的に接続する工程を含む、表示装置の製造方法。 A TFT substrate is bonded in advance to a surface of the color filter layer opposite to the transparent substrate, and the first electrode layer is formed by the method for manufacturing a color filter substrate with an electrode according to any one of claims 6 to 8. A method for manufacturing a display device, comprising: forming a pattern of a cured resin layer and a second electrode layer, and then electrically connecting the first electrode layer and the second electrode layer to a drive circuit of a touch sensor.
PCT/JP2016/003851 2015-09-01 2016-08-24 Color filter substrate with electrode, display device using same and manufacturing methods therefor WO2017038053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-172249 2015-09-01
JP2015172249A JP2017049421A (en) 2015-09-01 2015-09-01 Color filter substrate with electrode, display device using the same, and method for manufacturing the substrate and the display device

Publications (1)

Publication Number Publication Date
WO2017038053A1 true WO2017038053A1 (en) 2017-03-09

Family

ID=58187033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003851 WO2017038053A1 (en) 2015-09-01 2016-08-24 Color filter substrate with electrode, display device using same and manufacturing methods therefor

Country Status (3)

Country Link
JP (1) JP2017049421A (en)
TW (1) TW201719202A (en)
WO (1) WO2017038053A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220670A (en) * 2011-04-07 2012-11-12 Toppan Printing Co Ltd Color filter with touch panel electrode and manufacturing method therefor
JP2013174900A (en) * 2013-04-18 2013-09-05 Toppan Printing Co Ltd Method of manufacturing color filter substrate with touch panel electrode
JP2014142785A (en) * 2013-01-23 2014-08-07 Toppan Printing Co Ltd Touch panel and touch panel manufacturing method
WO2016088609A1 (en) * 2014-12-03 2016-06-09 富士フイルム株式会社 Transfer film, manufacturing method for film sensor, film sensor, front-plate-integrated-type sensor, and image display apparatus
WO2016120913A1 (en) * 2015-01-27 2016-08-04 凸版印刷株式会社 Electrode-attached color filter substrate, display device using same, and methods for manufacturing electrode-attached color filter substrate and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220670A (en) * 2011-04-07 2012-11-12 Toppan Printing Co Ltd Color filter with touch panel electrode and manufacturing method therefor
JP2014142785A (en) * 2013-01-23 2014-08-07 Toppan Printing Co Ltd Touch panel and touch panel manufacturing method
JP2013174900A (en) * 2013-04-18 2013-09-05 Toppan Printing Co Ltd Method of manufacturing color filter substrate with touch panel electrode
WO2016088609A1 (en) * 2014-12-03 2016-06-09 富士フイルム株式会社 Transfer film, manufacturing method for film sensor, film sensor, front-plate-integrated-type sensor, and image display apparatus
WO2016120913A1 (en) * 2015-01-27 2016-08-04 凸版印刷株式会社 Electrode-attached color filter substrate, display device using same, and methods for manufacturing electrode-attached color filter substrate and display device

Also Published As

Publication number Publication date
JP2017049421A (en) 2017-03-09
TW201719202A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US9158144B2 (en) Polarizer capacitive touch screen
US8008752B2 (en) Component for an information display device
US20140055688A1 (en) Polarizer resistive touch screen
WO2011030773A1 (en) Narrow frame touch input sheet, manufacturing method of same, and conductive sheet used in narrow frame touch input sheet
TW201040618A (en) Liquid crystal display device having input function
KR20130026885A (en) Method of manufacturing touch panel
CN105653106B (en) A kind of capacitance touch screen and its manufacturing method of GF2 structure
CN104765505B (en) A kind of touch-control display panel, manufacturing method and display device
US20150382475A1 (en) Preparation method of patterned film, display substrate and display device
WO2016120913A1 (en) Electrode-attached color filter substrate, display device using same, and methods for manufacturing electrode-attached color filter substrate and display device
CN107239162A (en) Touch sensor and preparation method thereof
CN105630233B (en) Touch control display apparatus and preparation method thereof
CN109901742A (en) A kind of flexibility touch module and preparation method thereof
CN109613783A (en) Beam direction control element and its manufacturing method and display device
KR20140030727A (en) Touch panel and method for manufacturing the same
WO2016098268A1 (en) Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate
US20180032169A1 (en) Silver nanowire touch sensor component
JP2017142382A (en) Color filter substrate with electrode and liquid crystal display
WO2017068744A1 (en) Electrode release film, color filter substrate with electrode, and method for manufacturing same
WO2017038053A1 (en) Color filter substrate with electrode, display device using same and manufacturing methods therefor
KR102152193B1 (en) Method for Manufacturing Touch Panel
KR101391820B1 (en) Touch Panel and Method for Painting Color Using the Same
WO2010035371A1 (en) Liquid crystal display device, touch panel, and display device including the same
WO2016208127A1 (en) Electrode release film, electrode-attached color filter substrate, and methods for manufacturing same
JP2017102177A (en) Color filter substrate with electrodes, display device having the same, and methods of manufacturing aforementioned products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841092

Country of ref document: EP

Kind code of ref document: A1