WO2016098268A1 - Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate - Google Patents

Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate Download PDF

Info

Publication number
WO2016098268A1
WO2016098268A1 PCT/JP2015/003469 JP2015003469W WO2016098268A1 WO 2016098268 A1 WO2016098268 A1 WO 2016098268A1 JP 2015003469 W JP2015003469 W JP 2015003469W WO 2016098268 A1 WO2016098268 A1 WO 2016098268A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
color filter
substrate
transparent substrate
electrodes
Prior art date
Application number
PCT/JP2015/003469
Other languages
French (fr)
Japanese (ja)
Inventor
栗原 正幸
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2016098268A1 publication Critical patent/WO2016098268A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a color filter substrate with electrodes, a display device including a color filter substrate with electrodes, and a method for manufacturing a color filter substrate with electrodes.
  • color liquid crystal display devices have formed a large market for applications such as liquid crystal color televisions and notebook personal computers.
  • applications such as mobile phones, personal digital assistants, car navigation systems, etc.
  • touch panel type liquid crystal displays that use a touch panel as an input device for image information, with the touch panel integrated with the liquid crystal display panel, have become popular in the market. It was.
  • Touch panels are classified into various types such as a resistive film method, a capacitance method, an ultrasonic method, and an optical method depending on the structure and detection method.
  • the capacitive touch panel has a translucent conductive film (translucent electrode) arranged on a single substrate and divided into a plurality of portions.
  • a capacitive touch panel detects a change in the amount of weak current flowing through a capacitance formed by contact (touch) of a finger or a pen, and specifies a contact position.
  • the touch panel transmits the contact position as an input signal to a processing device (personal computer), and displays the content corresponding to the output signal of the processing device on the liquid crystal display device.
  • Capacitive touch panels without deformation during operation have superior optical characteristics (high transmittance), high durability, and excellent operating temperature characteristics compared to resistive touch panels with deformation during operation. .
  • Conventional touch panel type liquid crystal displays are generally manufactured by separately manufacturing a touch panel substrate having touch panel electrodes and a color filter substrate having color filters, and bonding the substrates together (for example, patents). Reference 1).
  • a touch panel substrate having touch panel electrodes and a color filter substrate having color filters due to the occurrence of interference fringes due to subtle deviations between the touch panel electrodes formed in stripes and the color filters formed in stripes, or because the touch panel electrodes and the color filters are formed at different depths.
  • There is a problem in display performance such as generation of parallax when operated from an oblique direction.
  • Technology to form touch panel electrodes and color filters on the front and back surfaces of the same glass substrate for the purpose of reducing the bonding process between the touch panel substrate and the color filter substrate, and suppressing the deterioration of optical properties due to the gaps generated during the bonding. Have been studied (see, for example, Patent Documents 2 and 3).
  • the touch panel type liquid crystal display includes an in-cell type in which a touch panel function is built in a liquid crystal element (LCD cell) (specifically, on a thin film transistor (TFT) substrate) and an outside of the LCD cell (for example, a polarizing plate). And an on-cell type in which a touch panel function is built in between the color filter substrate and the color filter substrate.
  • LCD cell liquid crystal element
  • TFT thin film transistor
  • on-cell type touch panel type liquid crystal display displays by reducing the yield of LCD cells by incorporating the touch sensor function inside the pixel on the TFT substrate, and by reducing the area of the effective display area caused by the electrode for the touch sensor in the pixel There is concern that image quality will deteriorate.
  • the electrode pattern for the touch sensor is formed between the polarizing plate and the color filter substrate, so that the yield of the LCD cell can be maintained. Further, since the area of the effective display area in the pixel of the LCD cell (TFT substrate) does not decrease, display image quality is hardly deteriorated.
  • the electrode pattern for the touch panel includes a sensor part formed of a transparent conductive oxide (such as indium-tin oxide (ITO)) and a wiring part formed of a low resistance metal. It consists of and. Therefore, it is necessary to form the sensor part and the wiring part by separate processes. Therefore, even if the yield of the LCD cell can be maintained, as a whole on-cell type touch panel type liquid crystal display, the yield tends to decrease due to an increase in the number of processes.
  • a transparent conductive oxide such as indium-tin oxide (ITO)
  • the present invention has been made in order to solve the above-described problems, and reduces the manufacturing process by collectively forming the sensor portion and the wiring portion, and improves the yield of the touch panel type liquid crystal display as a whole.
  • an object of the present invention is to suppress the occurrence of parallax when operated from an oblique direction by shortening the distance between the color filter and the touch panel electrode.
  • the color filter substrate with an electrode according to the first embodiment of the present invention has a first surface and a second surface opposite to the first surface, and has a patterned groove on the first surface. And a color filter on the second surface, and one or a plurality of electrodes including a sensor portion and a wiring portion in the pattern-shaped groove.
  • the transparent substrate may include at least one material selected from the group consisting of glass and organic resin.
  • the transparent substrate may have a stacked structure of a plurality of sub-substrates.
  • the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium.
  • the color filter substrate with an electrode according to the second embodiment of the present invention has a first surface and a second surface opposite to the first surface, and a transparent substrate having a patterned groove on the first surface.
  • each of the second electrodes includes a sensor part having a plurality of extension parts and one or a plurality of connection parts, and a wiring part, and two adjacent extension parts are connected to each other.
  • each of the insulating films is formed on a straight portion of the first electrode, and the first electrode and the second electrode intersect at a connecting portion of the straight portion and the second electrode of the first electrode.
  • the connecting portion of the second electrode is formed across the insulating film.
  • the transparent substrate may include at least one material selected from the group consisting of glass and organic resin.
  • the transparent substrate may have a stacked structure of a plurality of sub-substrates.
  • the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium.
  • the method for manufacturing a color filter substrate with an electrode according to a third embodiment of the present invention is a method for manufacturing the color filter substrate with an electrode according to the first embodiment, wherein the first surface and the side opposite to the first surface.
  • the transparent substrate may include at least one material selected from the group consisting of glass and organic resin.
  • the transparent substrate may have a stacked structure of a plurality of sub-substrates.
  • the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium.
  • the manufacturing method of this embodiment may further include the process of cutting the said transparent substrate and obtaining the color filter substrate with a some electrode.
  • the method for manufacturing a color filter substrate with an electrode according to a fourth embodiment of the present invention is a method for manufacturing the color filter substrate with an electrode according to the second embodiment, wherein the first surface and the side opposite to the first surface.
  • Forming a plurality of second electrode precursors including: a step of forming an insulating film on a straight portion of the plurality of first electrodes; and attaching a metal material on the insulating film to form the insulation Forming a connecting portion across the membrane, adjacent to the second electrode precursor
  • the process of forming pattern-like grooves is from dicing, wheel scribe, water jet, air blast, sand blast, laser processing, embossing, etching, imprint lithography, and photolithography using photosensitive resin. It is carried out using one or more techniques selected from the group consisting of:
  • the transparent substrate may include at least one material selected from the group consisting of glass and organic resin.
  • the transparent substrate may have a stacked structure of a plurality of sub-substrates.
  • the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium.
  • the manufacturing method of this embodiment may further include the process of cutting the said transparent substrate and obtaining the color filter substrate with a some electrode.
  • a display device includes the color filter substrate with an electrode according to the first embodiment or the second embodiment, and a display element selected from the group consisting of a liquid crystal element and an EL element. It is characterized by.
  • the manufacturing method of the display device of the sixth embodiment of the present invention includes a step of forming a color filter substrate with an electrode by the method of the third embodiment or the fourth embodiment, and a second surface of the color filter substrate with an electrode. And a step of attaching a display element selected from the group consisting of a liquid crystal element and an EL element to the side.
  • the method of the present embodiment may further include a step of cutting the color filter substrate with electrodes and the stacked body of the display elements to obtain a plurality of display devices.
  • One modification of the sixth embodiment of the present invention manufactures a display device including the electrode-attached color filter substrate of the first embodiment and a display element selected from the group consisting of a liquid crystal element and an EL element.
  • a method comprising: preparing a transparent substrate having a first surface and a second surface opposite to the first surface; forming a color filter on a second surface of the transparent substrate; and the color Attaching a display element selected from the group consisting of a liquid crystal element and an EL element on the filter; forming a patterned groove on the first surface of the transparent substrate; and depositing a metal material in the groove.
  • the electrode comprises a sensor portion and a wiring portion
  • the step of forming the pattern-like groove includes dicing, wheel scribe, water And one or more techniques selected from the group consisting of photolithographic processing, air blasting, sand blasting, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin It is characterized by.
  • Another modification of the sixth embodiment of the present invention manufactures a display device including the electrode-attached color filter substrate of the second embodiment and a display element selected from the group consisting of a liquid crystal element and an EL element.
  • a method comprising: preparing a transparent substrate having a first surface and a second surface opposite to the first surface; forming a color filter on a second surface of the transparent substrate; and the color Attaching a display element selected from the group consisting of a liquid crystal element and an EL element on the filter; forming a patterned groove on the first surface of the transparent substrate; and depositing a metal material in the groove.
  • a plurality of first electrodes including a plurality of extending portions and one or a plurality of linear portions, and a plurality of first electrodes including a wiring portion, and a plurality of second electrode precursors including a plurality of extending portions and a wiring portion.
  • Forming a body and the compound Forming an insulating film on the straight portion of the first electrode, and depositing a metal material on the insulating film to form a connection portion straddling the insulating film, and adjacent to the second electrode precursor.
  • connection part Connecting the two extension parts by the connection part, obtaining a plurality of second electrodes including a sensor part having a plurality of extension parts and one or more connection parts, and a wiring part, and
  • the process of forming pattern-like grooves is from dicing, wheel scribe, water jet, air blast, sand blast, laser processing, embossing, etching, imprint lithography, and photolithography using photosensitive resin. It is carried out using one or more techniques selected from the group consisting of:
  • the color filter substrate with electrodes of the present invention makes it possible to provide a display device that is thinner and lighter than when the touch sensor electrodes are formed on a separate substrate. Moreover, the color filter substrate with an electrode of the present invention can suppress the occurrence of parallax when operated from an oblique direction by shortening the distance between the color filter and the touch panel electrode. In addition, the method for manufacturing a color filter substrate with an electrode according to the present invention enables simplification of the manufacturing method and reduction in manufacturing cost by simultaneously forming the sensor portion and the wiring portion of the electrode for the touch sensor. .
  • FIG. 2 is a schematic cross-sectional view along the cutting line II-II of the color filter substrate with an electrode according to the first embodiment of the present invention. It is a typical top view of the color filter substrate with an electrode of a 2nd embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view taken along a cutting line IV-IV of a color filter substrate with an electrode according to a second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view along a cutting line VV of a color filter substrate with an electrode according to a second embodiment of the present invention. It is typical sectional drawing of the liquid crystal display device of the 5th Embodiment of this invention. It is typical sectional drawing of the liquid crystal display device of the modification of the 5th Embodiment of this invention.
  • the color filter substrate with an electrode according to the first embodiment of the present invention has a first surface and a second surface opposite to the first surface, and has a patterned groove on the first surface. And a color filter on the second surface, and one or a plurality of electrodes including a sensor portion and a wiring portion in the pattern-shaped groove.
  • substrate with an electrode of this embodiment was shown in FIG.1 and FIG.2. 1 and 2, three electrodes 20 are formed on the first surface of the transparent substrate 10, and a color filter 30 is formed on the second surface opposite to the first surface.
  • Each of the electrodes 20 includes a sensor unit 21 and a wiring unit 22 for connecting the sensor unit 21 to an external drive circuit.
  • the transparent substrate 10 of this embodiment may be colorless or colored. “Transparent” in the present invention means having a transmittance of 80% or more, preferably 95% or more over the entire visible region.
  • a substrate generally used in a liquid crystal display device can be used as the transparent substrate 10 of the present invention.
  • Non-limiting examples of the transparent substrate 10 include inorganic substrates such as glass, and organic resin substrates such as polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and cyclic olefin copolymer (COP).
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • COP cyclic olefin copolymer
  • the groove formed on the first surface of the transparent substrate 10 has a width and depth corresponding to an electrode 20 described later, and is formed at the position of the electrode 20.
  • the transparent substrate 10 of this embodiment may have a laminated structure of a plurality of sub-substrates.
  • Each sub-substrate can be a self-supporting substrate that may be formed using the materials described above.
  • the sub-substrate on the first surface side for forming the grooves and the electrodes 20 is formed of a material suitable for forming the grooves, and the color filter is provided on the second surface side.
  • the sub-substrate can be formed of a material having characteristics suitable for forming a color filter.
  • Other sub-substrates may be non-self-supporting so-called “layers”.
  • the transparent substrate 10 of the present embodiment may have a laminated structure in which one or more layers are provided on a self-supporting sub-substrate.
  • the electrode 20 of the present embodiment includes a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron, and indium.
  • Each of the electrodes 20 of the present invention includes a sensor part 21 and a wiring part 22.
  • the sensor unit 21 forms a part of the sensor of the capacitive touch filter. Since the above-described opaque metal material is used, the sensor unit 21 of the present invention is composed of fine lines that define the outline and fine lines that are arranged in a lattice pattern inside the sensor unit 21, and visible light is transmitted through the sensor unit 21. It is desirable to impart sex.
  • the term “lattice” in the present invention means that it is composed of one or more fine lines extending in the first direction and one or more fine lines extending in the second direction intersecting the first direction.
  • the second direction is a direction orthogonal to the first direction.
  • the fine wires constituting the sensor unit 21 may have a width of 0.1 to 10 ⁇ m, preferably 0.3 to 3 ⁇ m. By having a width within this range, prevention of disconnection when transient voltage such as static electricity occurs, maintenance of invisibility of thin line, high visible light transmittance of sensor, and reduction of electrical resistance of thin line are realized. It becomes possible to do.
  • the thin wire constituting the sensor unit 21 may have a thickness of 0.1 to 10 ⁇ m, preferably 0.3 to 3 ⁇ m. By having a thickness within this range, it is possible to prevent poor conduction and prevent the transparent substrate 10 from cracking.
  • the wiring part 22 has a function of electrically connecting the sensor part 21 to an external circuit (not shown). The wiring part 22 may also have the same width and thickness as the fine lines constituting the sensor part 21.
  • the wiring portion may have a width of 5 to 50 ⁇ m, preferably 10 to 30 ⁇ m for the purpose of achieving a lower electric resistance value than maintaining invisibility. Good.
  • the electrode 20 of this embodiment can form both the sensor part 21 and the wiring part 22 with the same material. Since a transparent conductive oxide such as ITO is not used for the sensor portion, an increase in the resistance value of the entire electrode 20 due to a relatively high resistivity of the transparent conductive oxide can be suppressed. In addition, since there is no interface between the transparent conductive oxide and the low-resistance metal material, an adverse effect such as electromigration can be eliminated. Furthermore, since the entire electrode 20 can be formed in a single process, the manufacturing cost can be reduced.
  • the color filter 30 of the present invention can be formed using any material known in the art.
  • the color filter 30 may have a plurality of portions that transmit light of different color regions.
  • the color filter 30 may have a red (R) colored layer, a green (G) colored layer, and a blue (B) colored layer.
  • Each colored layer can be formed using, for example, an acrylic resin in which a pigment of each color is dispersed.
  • Each colored layer typically has a thickness of 0.5 to 3.0 ⁇ m.
  • the color filter 30 of the present invention may further include a black matrix (BM) that blocks light in the visible region for the purpose of achieving high contrast and preventing color mixing.
  • the black matrix can be formed using an acrylic resin in which a black pigment is dispersed.
  • the black matrix typically has a film thickness of 0.5 to 3.0 ⁇ m.
  • the black matrix may be a metal film having a thickness of 10 to 200 nm.
  • each colored layer is arranged corresponding to a pixel (subpixel) portion of a display element to be combined, and a black matrix is arranged in the gap.
  • the color filter substrate with an electrode according to the second embodiment of the present invention has a first surface and a second surface opposite to the first surface, and a transparent substrate having a patterned groove on the first surface. And a color filter on the second surface, one or more first electrodes, an insulating film, and one or more second electrodes, each of the first electrodes having a plurality of extension portions. And one or a plurality of linear portions, and two adjacent extended portions are connected by a linear portion, and the extended portion, the linear portion, and the wiring portion are connected to each other in the groove.
  • Each of the second electrodes includes a sensor part having a plurality of extension parts and one or more connection parts, and a wiring part, and two adjacent extension parts are connected by the connection parts, The extension part and the wiring part are present in the trench, and the insulating film
  • the first electrode and the second electrode intersect each other at the connecting portion of the first electrode and the second electrode, and the second electrode is connected to the first electrode. The portion is formed across the insulating film.
  • the first surface 110a of the transparent substrate 10 is formed with a first electrode 20a composed of two partial electrodes and a second electrode 20b composed of two partial electrodes.
  • the color filter 30 is formed on the second surface 110b opposite to 110a.
  • Each partial electrode of the first electrode 20a includes a sensor portion 21a including three extended portions 25a and a linear portion 26 between adjacent extended portions 25a, and a wiring portion 22a.
  • Each partial electrode of the second electrode 20b includes a sensor part 21b including a connection part 24 formed between the three extension parts 25b and the adjacent extension part 25b and formed on the insulating film 23, and a wiring part. 22b.
  • the transparent substrate 10 and the color filter 30 of the present embodiment can be the same as the transparent substrate and the color filter of the first embodiment.
  • the first electrode 20a of the present embodiment has the same configuration as that of the electrode of the first embodiment, except that the sensor unit 21a includes an extended portion 25a and a linear portion 26.
  • the first electrode 20a is formed in the groove formed in the first surface 110a of the transparent substrate 10 in which the sensor portion 21a (that is, the extended portion 25a and the straight portion 26) and the wiring portion 22a are all formed.
  • the sensor part 21a and the wiring part 22a can be formed using the material similar to 1st Embodiment.
  • Each of the extended portions 25a is preferably composed of fine lines that define the outline and fine lines that are arranged in a lattice pattern inside. Similar to the first embodiment, the thin wire constituting the extension 25a has a width of 0.1 to 10 ⁇ m, preferably 0.3 to 3 ⁇ m, and a width of 0.1 to 10 ⁇ m, preferably 0.3 to 3 ⁇ m. It may have a thickness.
  • the extension unit 25a serves as an electrode (hereinafter, referred to as “unit electrode”) that determines the minimum unit whose position can be detected on the touch panel. It is desirable that the extended portion 25a has a quadrangular or hexagonal shape so that the extended portion 25a can be uniformly disposed in the entire display area together with the extended portion 25b of the second electrode.
  • the rectangular extension 25a shown in FIG. 3 may have a dimension of each side in the range of 1 to 20 mm.
  • the straight line part 26 constitutes a sensor part 21a extending in one direction by connecting adjacent extension parts 25a. Since the straight line portion 26 is generally formed in the display area, it is desirable that the straight line portion 26 be invisible like the fine lines constituting the extended portion 25a. In addition, since the region where the straight portion 26 and the connecting portion 24 intersect becomes a sensor insensitive region, it is desirable to make the straight portion 26 thinner as long as desired conductivity is obtained.
  • the straight portion 26 desirably has a width of 0.1 to 10 ⁇ m, preferably 0.3 to 3 ⁇ m.
  • the straight portion 26 desirably has a thickness of 0.1 to 10 ⁇ m, preferably 0.3 to 3 ⁇ m.
  • the wiring part 22a has a function of electrically connecting the sensor part 21a to an external circuit (not shown).
  • the wiring part 22a may also have the same width and thickness as the thin line that forms the sensor part 21a.
  • the wiring portion 22a exists in an area other than the display area, and therefore has a width of 5 to 50 ⁇ m, preferably 10 to 30 ⁇ m for the purpose of achieving a lower electric resistance value than maintaining invisibility. Also good.
  • the second electrode 20b of the present embodiment may have the same configuration as that of the first electrode 20a except that the connecting portion 24 is used instead of the straight portion 26 and the extending direction of the sensor portion 22b is different. Good.
  • the connection portion 24 does not exist inside the groove of the transparent substrate 10, but is provided on the upper surface and side surfaces of the insulating film 23 provided on the straight portion 26 of the first electrode 20a.
  • the extended portion 25b and the wiring portion 22b of the second electrode 20b are formed in the groove of the transparent substrate 10 similarly to the first electrode 20a.
  • the extended portion 25b and the wiring portion 22b of the second electrode 20b have the same configuration as the extended portion 25a and the wiring portion 22a of the first electrode 20a, respectively.
  • the insulating film 23 is provided on the straight portion of the first electrode 20a in order to prevent the first electrode 20a and the second electrode 20b from being in electrical contact. Since the insulating film 23 is provided in the display region, it is desirable that the insulating film 23 be transparent to light in the visible region.
  • the insulating film 23 is preferably formed using a photosensitive material because of the necessity of performing patterning described later. Examples of photosensitive materials that are transparent to light in the visible range include polymerizable group-containing oligomers, monomers, UV curable coating compositions containing ultraviolet polymerization initiators and additives, and the like. Alternatively, the photosensitive material may be a positive photosensitive material whose solubility is increased by light irradiation.
  • connection part 24 is formed of a conductive material and electrically connects the adjacent extension parts 25b.
  • the conductive material forming the connection 24 is a material that can be removed without affecting the conductive material filled in the trenches.
  • the connection portion 24 may have a laminated structure of a Mo film with a thickness of 3.5 nm, an Al film with a thickness of 200 nm, and a Mo film with a thickness of 3.5 nm.
  • the extended portion 25b electrically connected by the connecting portion 24 constitutes a second electrode sensor portion 21b extending in a direction intersecting with the first electrode sensor portion 21a.
  • the sensor portion 21b of the second electrode extends in a direction orthogonal to the sensor portion 21a of the first electrode.
  • the width and film thickness of the connection portion 24 can be determined in consideration of realization of invisibility, maintenance of desired conductivity, and the like.
  • 3rd Embodiment of this invention is a method for manufacturing the color filter substrate with an electrode of 1st Embodiment, Comprising: It has a 1st surface and the 2nd surface on the opposite side to the said 1st surface.
  • Preparing a transparent substrate, forming a color filter on the second surface of the transparent substrate, forming a patterned groove on the first surface of the transparent substrate, and attaching a metal material in the groove A step of forming one or a plurality of electrodes, wherein the electrode includes a sensor portion and a wiring portion, and the step of forming the pattern-like groove includes dicing processing, wheel scribing processing, water jet processing, Select from the group consisting of air blasting, sand blasting, laser processing, embossing, etching, imprint lithography, and photolithography using photosensitive resin Which comprises carrying out using one or more techniques. Note that the steps can be performed in any order, provided that the metal material is deposited in the groove after the groove is formed on the
  • a transparent substrate 10 having a first surface and a second surface opposite to the first surface is prepared.
  • the transparent substrate 10 is as described in the first embodiment.
  • the transparent substrate 10 may be a self-supporting substrate made of a single material, may be a laminated structure in which two different types of self-supporting sub-substrates are bonded together, or one or two of the self-supporting sub-substrates may be used.
  • a multilayer structure with a plurality of coatings may be used.
  • the color filter 30 can be formed on the second surface of the transparent substrate 10 by any method known in the art.
  • the method includes application of the coating composition to the second surface, exposure through a photomask, and development. Can be used. Additional steps such as post-baking may be performed as necessary.
  • Formation of the groove on the first surface of the transparent substrate 10 can be performed by any chemical means or physical means known in the art.
  • chemical means that can be used include etching, imprint lithography, photolithography using a photosensitive resin, and the like.
  • physical means that can be used include dicing, wheel scribe, water jet, air blast, laser, emboss, and the like.
  • the groove is formed at a position corresponding to the electrode 20 with a predetermined depth and width.
  • a metal material is deposited in the groove formed on the first surface to form one or a plurality of electrodes 20.
  • Each of the electrodes 20 includes a sensor unit 21 and a wiring unit 22.
  • a conductive paste containing a metal material and an organic binder is applied to the first surface, the conductive paste adhered to a portion other than the groove is removed, and the conductive paste in the groove is heated.
  • the metal material contained in the conductive paste may contain one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium.
  • the organic binder may comprise any material known in the art.
  • the conductive paste may further include any material known in the art, such as a vehicle or an inorganic binder.
  • Application of the conductive paste can be performed by any means as long as the conductive paste is applied to the first surface of the transparent substrate 10 and the grooves can be completely filled with the conductive paste.
  • a means capable of applying the conductive paste with a uniform film thickness For example, means such as spin coating, roll coating, dip coating can be used.
  • the removal of the conductive paste attached to the portion other than the groove can be performed by moving the doctor blade or the like while pressing the doctor blade or the like on the first surface of the transparent substrate 10.
  • a wiping process or the like may be further performed.
  • the heating of the conductive paste in the groove can be carried out for a time and at a temperature sufficient to remove the organic binder in the conductive paste.
  • the electrodes 20 are collectively formed in the groove formed in the first surface.
  • the sensor unit 21 and the wiring unit 22 are formed of the same material and are formed simultaneously.
  • the patterning of the electrode 20 is achieved by forming a groove on the first surface of the transparent substrate 10 instead of etching the conductive material uniformly formed on the substrate. For this reason, it is possible to form the electrode 20 with high definition (thin line width and narrow interval) compared with the case where the conductive material is etched.
  • the formed electrode 20 is formed in the groove of the transparent substrate, it is possible to sufficiently suppress the deformation of the electrode 20 caused by passing an electric current.
  • a plurality of element regions that can be divided may be formed on one transparent substrate 10.
  • the “element region” means a region that has the color filter 30 and one or a plurality of electrodes 20 independent of other regions and can function as a color filter substrate with electrodes by cutting. Then, a plurality of element regions can be cut to form a plurality of electrode-attached color filter substrates 100. A plurality of color filter substrates 100 with electrodes can be efficiently formed using one transparent substrate 10.
  • the cutting of the element region may be performed using any means known in the art such as a diamond cutter scribe method, a dicing method, a water jet method, an etching method, and a laser method. Further, the cutting of the element region may be performed at the time of manufacturing the display device, as will be described later.
  • 4th Embodiment of this invention is a method for manufacturing the color filter substrate with an electrode of 2nd Embodiment, Comprising: It has a 1st surface and the 2nd surface on the opposite side to the said 1st surface.
  • Preparing a transparent substrate, forming a color filter on the second surface of the transparent substrate, forming a patterned groove on the first surface of the transparent substrate, and attaching a metal material in the groove A plurality of first electrodes including a plurality of extending portions and one or a plurality of linear portions, and a plurality of first electrodes including a wiring portion, and a plurality of second electrodes including a plurality of extending portions and a wiring portion.
  • Forming a precursor Forming a precursor; forming an insulating film on the straight portions of the plurality of first electrodes; and depositing a metal material on the insulating film to form a connecting portion across the insulating film. And two adjacent extended portions of the second electrode precursor are connected to the connecting portion.
  • a plurality of second electrodes including a sensor unit having a plurality of extension portions and one or a plurality of connection portions, and a wiring portion, and forming the patterned groove,
  • One or more selected from the group consisting of dicing processing, wheel scribing processing, water jet processing, air blast processing, sand blast processing, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin It implements using the technique of characterized by the above-mentioned.
  • the step of preparing the transparent substrate 10 and the step of forming the color filter on the second surface of the transparent substrate 10 can be performed in the same manner as in the third embodiment.
  • the step of forming the pattern-like groove on the first surface of the transparent substrate is performed in the same manner as in the third embodiment, except that the groove corresponding to the extended portion and the wiring portion of the second electrode 20b is provided. be able to. More specifically, in addition to the plurality of extended portions 25a for the first electrode 20a, the straight portion 26 connecting the adjacent extended portions 25a, and the position corresponding to the wiring portion 22a, the second electrode 20b Grooves are formed at positions corresponding to the extended portion 25b and the wiring portion 22b. A part of the groove corresponding to the extended part 25b is connected to the wiring part 22b, but most of the groove corresponding to the extended part 25b is formed without being connected to other grooves.
  • adhesion of the metal material into the groove is performed in the same manner as in the third embodiment.
  • the plurality of first electrodes 20a including the plurality of extended portions 25a, the linear portions 26 connecting the adjacent extended portions 25a, and the wiring portions 22a are completed.
  • the plurality of second electrodes 20b are not formed with connection portions 24 that connect the plurality of extended portions 25b, and are in the form of second electrode precursors at this stage.
  • an insulating film 23 is formed on the straight portion 26 of the first electrode 20a.
  • the insulating film 23 is formed in a pattern so that the photosensitive material described in the second embodiment is applied to the entire first surface of the transparent substrate 10 and the photosensitive material remains in a predetermined region including the straight portion 26. It is formed by irradiating light and then developing. For example, when a UV curable coating composition is used, the UV light is irradiated to a region including the straight portion 20 directly above. On the other hand, when a positive photosensitive material is used, light having a given wavelength is irradiated on most of the first surface excluding the region including the portion directly above the straight portion 20. Development can be performed using an appropriate liquid depending on the photosensitive material used.
  • a metal material is deposited on the insulating film 23 to form a connecting portion 24 that straddles the insulating film 23, and the two adjacent extended portions 25b of the second electrode precursor are connected by the connecting portion 24,
  • the second electrode 20b is obtained.
  • the metal material is deposited by depositing the metal material on the entire surface of the transparent substrate 10 (including the upper surface and side surfaces of the insulating film 23) by vapor deposition or sputtering, and then performing patterning to remove the unnecessary metal material. Can be implemented. If necessary, the metal material may be deposited using a plurality of types of metal materials to form a metal film having a stacked structure.
  • the patterning can be performed by any means known in the art such as a photolithography method using a positive photoresist.
  • a plurality of element regions that can be divided may be formed on one transparent substrate 10.
  • the plurality of element regions can be cut to form a plurality of electrode-attached color filter substrates 110.
  • a plurality of color filter substrates 110 with electrodes can be efficiently formed using one transparent substrate 10.
  • the cutting of the element region may be performed using any means known in the art such as a diamond cutter scribe method, a dicing method, a water jet method, an etching method, and a laser method. Further, the cutting of the element region may be performed at the time of manufacturing the display device, as will be described later.
  • a fifth embodiment of the present invention is a display device including the color filter with electrodes and the display element of the first or second embodiment.
  • the display element is selected from the group consisting of a liquid crystal element and an EL element.
  • FIG. 6 shows one configuration example of the display device of this embodiment.
  • the second polarizing plate 700 and the cover 800 are laminated on the first surface 110a of the electrode-attached color filter substrate 110 of the second embodiment, and the liquid crystal element 200 and the first polarizing plate are formed on the second surface 110b side. 400 and the backlight 500 are stacked.
  • the liquid crystal element 200 has a structure in which a liquid crystal layer 230 is disposed between a pair of substrates 210 and 220.
  • Substrates 210 and 220 may further include an electrode for applying an electric field to the liquid crystal and an alignment film (not shown) for aligning the liquid crystal.
  • an electrode composed of a plurality of stripe-shaped partial electrodes extending in the first direction is provided on the substrate 210, and a plurality of stripe-shaped portions extending in the second direction intersecting the first direction is provided on the substrate 220.
  • a passive matrix driving type liquid crystal element can be formed by providing an electrode formed of an electrode.
  • the first direction is orthogonal to the second direction.
  • a plurality of pixel electrodes connected to the switching element are provided on the substrate 210, and a common electrode integrally formed over the entire display region is provided on the substrate 220, whereby active matrix driving type liquid crystal
  • the element 200 can be obtained.
  • the switching element may include any element known in the art such as a thin film transistor (TFT).
  • TFT thin film transistor
  • wirings such as scanning lines and signal lines for driving the switching elements, capacitors for maintaining a liquid crystal switching state, and the like can be further provided.
  • the alignment film preferably constitutes the outermost surfaces of the substrates 210 and 220 so as to be in contact with the liquid crystal layer 230.
  • the alignment film can be formed using any material known in the art such as polyimide.
  • the liquid crystal element 200 may be an element of any type known in the art, such as a TN type, STN type, VA type, MVA type, IPS type, OCB type.
  • the liquid crystal material constituting the liquid crystal layer 230 includes any material known in the art to be compatible with the device type.
  • the substrate 220 in the liquid crystal display element 200 may be omitted, and the liquid crystal driving electrode and the alignment film may be provided on the color filter 30 of the electrode-attached color filter substrate 110 of the present invention.
  • FIG. 7 shows a configuration example of this modification.
  • a substrate 210 including pixel electrodes, a liquid crystal layer 230, and a color filter substrate 110 with electrodes including an electrode for liquid crystal switching and an alignment film are stacked in this order.
  • a flattening layer for eliminating unevenness caused by the color filter 30 may be further provided between the color filter 30 and the liquid crystal driving electrode.
  • an electrode can be provided on only one of the substrate 210 and the substrate 220, and the electrode on the other substrate can be omitted.
  • the other substrate from which the electrode is omitted can be replaced with the electrode-attached color filter substrate 100 of the present invention.
  • an electrode is provided only on the substrate 210, the configuration shown in FIG. In this case, a configuration in which an alignment film is provided on the color filter 30 and the alignment film is in contact with the liquid crystal layer 230 is preferable.
  • the liquid crystal element 200 includes a flexible printed circuit (FPC) substrate, an anisotropic conductive film (ACF), a TAB module, a COF module, and a COG for connecting an electrode provided on the substrate 210 and / or 220 and an external driving circuit.
  • FPC flexible printed circuit
  • ACF anisotropic conductive film
  • TAB TAB
  • COF COF
  • COG COG
  • the first polarizing plate 400 and the second polarizing plate 700 have a characteristic of selectively transmitting light polarized in a specific direction.
  • the first polarizing plate 400 and the second polarizing plate 700 have a characteristic of transmitting linearly polarized light in a specific direction.
  • the angle between the polarization direction of the linearly polarized light transmitted through the first polarizing plate 400 and the polarization direction of the linearly polarized light transmitted through the second polarizing plate 700 depends on the alignment state of the liquid crystal material to be used and the method of the element. Can be determined.
  • the above-mentioned angle may be set so that the display device is operated in a normally white mode that transmits the light of the backlight without applying an electric field, or in a normally black mode that does not transmit the light of the backlight without applying an electric field. It depends on whether it works. For example, when a TN or STN display device is operated in a normally white mode, the angle between the polarization direction of the first polarizing plate 400 and the polarization direction of the second polarizing plate 700 is normally set to 90 °.
  • the first polarizing plate 400 and the second polarizing plate 700 can be formed of any material known in the art, including iodine compounds, dichroic molecules, and the like.
  • the backlight 500 includes any light source known in the art.
  • a cold cathode fluorescent tube (CCFL), a light emitting diode (LED), or the like can be used as the backlight 500.
  • the backlight 500 may be arranged in a display area of the display device (directly under type) or may be arranged in a peripheral portion of the display device (side light type or edge light type). In the case of the side light type or the edge light type, light emitted from the backlight 500 can be guided to the entire display region of the display device using a light guide plate, a prism sheet, or the like.
  • the backlight 500 may be a single light source or a plurality of light sources. When the backlight 500 including a plurality of light sources is used, on / off of each light source may be controlled independently depending on display contents.
  • the purpose of the cover 800 is to protect each layer existing below it.
  • the cover 800 is preferably transparent in the visible light region.
  • the cover 800 can be formed of a material such as glass or organic resin (polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), or the like).
  • the first electrode 20a and the second electrode 20b formed on the electrode-attached color filter substrate 110 function as sensor electrodes of the projected capacitive touch panel.
  • an electrode provided on the surface of either the first polarizing plate 700 or the cover 800 By combining these, a projected capacitive touch panel can be obtained.
  • the electrode 20 of the electrode-attached color filter substrate 100 is formed from a plurality of partial electrodes extending in one direction, and the electrode provided on the surface of either the first polarizing plate 700 or the cover 800 is in the intersecting direction. You may form from the several partial electrode extended.
  • the electrode 20 includes a sensor unit having a shape corresponding to the display region, and 3 It is possible to obtain a surface-type capacitive touch panel by configuring with at least four (preferably four) wiring portions.
  • the EL element is attached to the second surface 110b of the color filter substrate with an electrode 110.
  • a cover may be attached to the first surface 110a of the color filter substrate 110 with an electrode.
  • the EL element has a structure in which an organic active layer is sandwiched between a pair of substrates.
  • Each of the pair of substrates has electrodes formed in an arrangement that forms a plurality of light-emitting portions that can be driven independently.
  • a passive matrix driving type EL element may be formed by providing a plurality of striped electrodes extending in intersecting directions on each of a pair of substrates.
  • an active matrix driving type EL element may be formed by providing a plurality of pixel electrodes connected to a switching element in one-to-one correspondence on one substrate and providing an integrated common electrode on the other substrate.
  • the organic active layer includes at least a light emitting layer, and may optionally include a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like.
  • the organic active layer may be one layer that emits white light, or may be a layer in which a plurality of areas that emit light of a plurality of colors (for example, RGB) are arranged in a matrix.
  • the first electrode 20a and the second electrode 20b formed on the electrode-attached color filter substrate 110 function as sensor electrodes of the projected capacitive touch panel.
  • the color filter substrate 100 with an electrode according to the first embodiment instead of the color filter substrate with an electrode 110 according to the second embodiment, as described above, by combining the electrodes provided on the surface of a cover or the like.
  • a projected capacitive touch panel may be formed, or the electrode 20 may be composed of a sensor portion 21 having a shape corresponding to a display area and three or more (preferably four) wiring portions 22 to form a surface type static touch panel.
  • a capacitive touch panel may be formed.
  • the sixth embodiment of the present invention is a method for manufacturing the display device according to the fifth embodiment, wherein a step of forming a color filter substrate with electrodes by the method described in the third or fourth embodiment, Attaching a display element selected from the group consisting of a liquid crystal element and an EL element to the second surface side of the color filter substrate with electrodes.
  • the attachment of the display element to the second surface side of the color filter substrate with electrodes can be performed by any means known in the art including bonding with an adhesive. Also, optional elements such as the first and second polarizing plates, the backlight, and the cover can be manufactured and attached by any means known in the art.
  • a structure in which a plurality of separable element regions are formed on one transparent substrate 10 may be used.
  • a plurality of display devices can be manufactured by attaching a plurality of display elements to the above-described structure and then cutting the transparent substrate 10.
  • a display element structure in which a plurality of display elements are formed on one substrate is attached to the above-described structure, and the transparent substrate 10 and the substrate of the display element structure are cut.
  • a display device may be manufactured. The cutting of the substrate of the display element structure may be performed by the same means as the transparent substrate 10.
  • the color filter 30 (the first color filter substrate with electrodes) A display element may be attached to the second surface side.
  • the touch sensor electrode is formed after combining the display elements, so that the transparent substrate 10 of the color filter substrate and the substrate 210 of the display element are bonded together, and the slimming of the transparent substrate 10 and the substrate 120 is performed. It has the advantage that processing can be carried out. “Slimming” means a step of reducing the film thickness of the substrate. If the touch sensor electrodes are formed before the display elements are combined, the slimming process cannot be applied to both the transparent substrate 10 of the color filter substrate and the substrate 210 of the display element.
  • Example 1 The black photosensitive composition was applied to the second surface of the transparent substrate 10 made of aluminosilicate glass having a thickness of 300 ⁇ m using a spin coater. The obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film. Next, irradiation with 100 mJ / cm 2 high-pressure mercury lamp light through a photomask having a desired pattern, 30 seconds of shower development using a 0.2% by mass aqueous sodium hydrogen carbonate solution, washing with water, and in a hot air circulation oven And drying at 230 ° C. for 30 minutes to form a black matrix.
  • a groove was formed on the first surface of the transparent substrate 10 by laser processing.
  • the grooves where the extended portions 25a and straight portions 26 of the first electrode 20a and the extended portions 25b of the second electrode 20b are formed later have a width of 5 ⁇ m and a depth of 5 ⁇ m.
  • the groove where the wiring part 22a of the first electrode 20a and the wiring part 22b of the second electrode 20b are to be formed later had a width of 20 ⁇ m and a depth of 5 ⁇ m.
  • a conductive material mainly composed of silver particles having an average particle diameter of 100 nm is applied, and the conductive material adhering to a portion other than the groove is scraped off with a doctor blade.
  • the inside was filled with a conductive material.
  • the substrate is heated to 120 ° C. for 30 minutes on the hot plate, and from the first electrode 20a (the sensor unit 21a including the extended portion 25a and the linear portion 26 and the wiring portion 22a), and the extended portion 25b and the wiring portion 22b.
  • a second electrode precursor was formed.
  • a negative resist was applied to the entire first surface using a spin coater.
  • the obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film.
  • the insulating film 23 was formed by performing development, washing with water, and heat drying at 230 ° C. for 30 minutes in a hot air circulating oven.
  • the obtained insulating film 23 was disposed on the straight portion 26 of the first electrode 20a, and had a width of 60 ⁇ m, a length of 100 ⁇ m, and a film thickness of 2 ⁇ m.
  • a 35 nm thick Mo film, a 200 nm thick Al film, and a 35 nm thick Mo film were formed on the entire first surface by sputtering.
  • a positive resist was applied to the entire first surface using a spin coater. The obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film.
  • connection portion 24 is formed using a resist stripping solution that is a 2% aqueous potassium hydroxide solution, and heat drying is performed at 230 ° C. for 30 minutes in a hot air circulating oven to form the connection portion 24 and expand.
  • the sensor part 21b which consists of the part 25b and the connection part 24, and the 2nd electrode 20b which consists of the wiring part 22b were obtained.
  • the obtained connecting portion 24 was connected to the adjacent extended portion 25b across the insulating film 23, and had a width of 5 ⁇ m, a length of 150 ⁇ m, and a film thickness of 270 ⁇ m on the insulating film 23.
  • the obtained connection part 24 obtained the sheet resistance value of 0.2 ohm / square.
  • the color filter substrate 110 with an electrode was obtained by the above method.
  • Example 2 An alignment film was formed on the second surface 110b of the electrode-attached color filter substrate 110 obtained in Example 1 using a printing method.
  • a substrate 210 having a switching circuit including TFTs and a liquid crystal driving electrode was prepared.
  • An alignment film was formed on the electrode side surface of the substrate 210 by a printing method.
  • rubbing treatment was performed on the alignment films of both substrates.
  • the color filter substrate 110 with an electrode and the substrate 210 are bonded using a sealing material so that the alignment films face each other, and a liquid crystal material is injected into the gap between the two substrates to form a liquid crystal layer 230.
  • a liquid crystal element 200 attached to the substrate 110 was obtained.
  • the liquid crystal driving electrode of the substrate 210 was connected to the liquid crystal driving external circuit, and the first electrode 20a and the second electrode 20b of the electrode-attached color filter substrate 110 were connected to the touch sensor driving external circuit. .
  • the second polarizing plate 700 and the cover 800 made of aluminosilicate glass were bonded in this order to the first surface 110a of the color filter substrate 110 with electrodes using an adhesive.
  • the first polarizing plate 400 and the backlight 500 are bonded together in this order on the surface of the liquid crystal element 200 opposite to the electrode-attached color filter substrate 110 using an adhesive, and the IPS has the configuration shown in FIG.
  • a display device using a liquid crystal element was obtained. The obtained display device did not include a defective portion and provided a normal display and touch position detection function.
  • Example 3 Using the same procedure as in Example 1, a color filter 30 composed of a black matrix and an RGB colored layer was formed on one surface of a 300 ⁇ m thick aluminosilicate glass substrate.
  • a COP film having a thickness of 50 ⁇ m was prepared. Embossing was performed on one side of the COP film to form a groove. The formation position of the groove, and the width and depth of the formed groove are the same as in the first embodiment. Thereafter, the same procedure as in Example 1 was used to form the first electrode 20a and the second electrode 20b.
  • the other surface of the substrate made of aluminosilicate glass and the other surface of the COP film are bonded to each other, and a color with electrodes including a transparent substrate 10 having a laminated structure of aluminosilicate glass / COP A filter substrate 110 was obtained.
  • Example 4 A display device including an IPS liquid crystal element was formed by the same procedure as in Example 2 except that the electrode-attached color filter substrate 110 obtained in Example 3 was used. The obtained display device did not include a defective portion and provided a normal display and touch position detection function.
  • Example 5 Using the same procedure as in Example 1, a color filter 30 was formed on the second surface of a transparent substrate 10 made of aluminosilicate glass having a thickness of 300 ⁇ m. Subsequently, an alignment film was formed on the color filter 30 on the second surface using a printing method.
  • a substrate 210 having a switching circuit including TFTs and a liquid crystal driving electrode was prepared.
  • An alignment film was formed on the electrode side surface of the substrate 210 by a printing method.
  • rubbing treatment was performed on the alignment films of both substrates.
  • the transparent substrate 10 and the substrate 210 are bonded together using a sealing material so that the alignment films face each other, and a liquid crystal material is injected into a gap between the two substrates to form a liquid crystal layer 230.
  • the attached liquid crystal element 200 was obtained.
  • the first electrode 20a and the second electrode 20b are formed on the first surface of the transparent substrate 10 using the same procedure as in Example 1, and the electrode-attached color filter substrate 110 to which the liquid crystal element 200 is attached is formed. Obtained.
  • the liquid crystal driving electrode of the substrate 210 is connected to the liquid crystal driving external circuit, and the first sensor 20a and the second electrode 20b of the electrode-attached color filter substrate 110 are driven by the touch sensor.
  • the first polarizing plate 400, the second polarizing plate 700, the backlight 500, and the cover 800 made of aluminosilicate glass were bonded to each other, and a display device including an IPS liquid crystal element was obtained. .
  • the obtained display device did not include a defective portion and provided a normal display and touch position detection function.
  • Example 6 Using the same procedure as in Example 1, a color filter 30 composed of a black matrix and an RGB colored layer was formed on one surface of a 300 ⁇ m thick aluminosilicate glass substrate. Subsequently, an alignment film was formed on the color filter 30 by using a printing method.
  • a substrate 210 having a switching circuit including TFTs and a liquid crystal driving electrode was prepared.
  • An alignment film was formed on the electrode side surface of the substrate 210 by a printing method.
  • rubbing treatment was performed on the alignment films of both substrates.
  • the substrate made of aluminosilicate glass and the substrate 210 are bonded together using a sealing material so that the alignment films face each other, and a liquid crystal material 230 is formed by injecting a liquid crystal material into the gap between the two substrates to form a substrate made of aluminosilicate glass.
  • the liquid crystal element 200 attached to the was obtained.
  • a COP film having a thickness of 50 ⁇ m was prepared. Embossing was performed on one side of the COP film to form a groove. The formation position of the groove, and the width and depth of the formed groove are the same as in the first embodiment. Thereafter, the same procedure as in Example 1 was used to form the first electrode 20a and the second electrode 20b.
  • the other surface of the substrate made of aluminosilicate glass and the other surface of the COP film are bonded to each other, and a color with electrodes including a transparent substrate 10 having a laminated structure of aluminosilicate glass / COP A liquid crystal element 200 attached to the filter substrate 110 was obtained.
  • the liquid crystal driving electrode of the substrate 210 is connected to the liquid crystal driving external circuit, and the first sensor 20a and the second electrode 20b of the electrode-attached color filter substrate 110 are driven by the touch sensor.
  • the first polarizing plate 400, the second polarizing plate 700, the backlight 500, and the cover 800 made of aluminosilicate glass were bonded to each other, and a display device including an IPS liquid crystal element was obtained. .
  • the obtained display device did not include a defective portion and provided a normal display and touch position detection function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention addresses the problem of providing an electrode-equipped color filter substrate that makes it possible to provide a thinner and lighter weight display device. This electrode-equipped color filter substrate comprises: a transparent substrate that has a first surface having a pattern-shaped groove and a second surface provided with color filters; one or a plurality of first electrodes that each include a wiring portion and a sensor portion which has a plurality of extending portions and a straight-line portion that connects adjacent extending portions to each other; one or a plurality of insulating films that each include a wiring portion and a sensor portion which has a plurality of extending portions and a connecting portion that connects adjacent extending portions to each other; and one or a plurality of second electrodes. The extending portions and the wiring portions of the first and second electrodes lie in a groove. Each insulating film is formed on the straight line portion of the first electrode. The first electrode and the second electrode intersect at the straight line portion of the first electrode and a connection portion of the second electrode. The connection portion of the second electrode is formed across the insulating film.

Description

電極付きカラーフィルタ基板、該基板を含む表示装置、ならびに該基板の製造方法Color filter substrate with electrodes, display device including the substrate, and method for manufacturing the substrate
 本発明は、電極付きカラーフィルタ基板、電極付きカラーフィルタ基板を含む表示装置、ならびに電極付きカラーフィルタ基板の製造方法に関する。 The present invention relates to a color filter substrate with electrodes, a display device including a color filter substrate with electrodes, and a method for manufacturing a color filter substrate with electrodes.
 近年、カラー液晶表示装置は、液晶カラーテレビおよびノート型パーソナルコンピュータなどの用途において、大きな市場を形成するに至っている。また、携帯電話機、携帯情報端末、カーナビゲーションシステムなどの用途において、タッチパネルを液晶表示パネルと一体型で構成して、タッチパネルを画像情報の入力装置として使用する、タッチパネル式液晶ディスプレイが市場に普及してきた。 In recent years, color liquid crystal display devices have formed a large market for applications such as liquid crystal color televisions and notebook personal computers. In applications such as mobile phones, personal digital assistants, car navigation systems, etc., touch panel type liquid crystal displays that use a touch panel as an input device for image information, with the touch panel integrated with the liquid crystal display panel, have become popular in the market. It was.
 タッチパネルは、その構造および検出方式の差異により、抵抗膜方式、静電容量方式、超音波方式、光学方式などの様々なタイプに分類される。静電容量方式タッチパネルは、1枚の基板上に配置され、複数の部分に分割された透光性導電膜(透光性電極)を有する。静電容量方式タッチパネルは、指またはペンが接触(タッチ)することによって形成される静電容量を介して流れる微弱電流量の変化を検出して、接触位置を特定する。タッチパネルは接触位置を入力信号として処理装置(パーソナルコンピュータ)に送信し、処理装置の出力信号に応じた内容を液晶表示装置に表示する。動作時の変形を伴わない静電容量型タッチパネルは、動作時の変形を伴う抵抗膜方式タッチパネルに比較して、優れた光学特性(高い透過率)、高い耐久性、優れた動作温度特性を有する。 Touch panels are classified into various types such as a resistive film method, a capacitance method, an ultrasonic method, and an optical method depending on the structure and detection method. The capacitive touch panel has a translucent conductive film (translucent electrode) arranged on a single substrate and divided into a plurality of portions. A capacitive touch panel detects a change in the amount of weak current flowing through a capacitance formed by contact (touch) of a finger or a pen, and specifies a contact position. The touch panel transmits the contact position as an input signal to a processing device (personal computer), and displays the content corresponding to the output signal of the processing device on the liquid crystal display device. Capacitive touch panels without deformation during operation have superior optical characteristics (high transmittance), high durability, and excellent operating temperature characteristics compared to resistive touch panels with deformation during operation. .
 従来のタッチパネル式液晶ディスプレイは、タッチパネル電極を有するタッチパネル基板と、カラーフィルタを有するカラーフィルタ基板とを別個に作製し、それら基板を貼り合わせて製造されることが一般的であった(たとえば、特許文献1参照)。しかしながら、ストライプ状に形成されるタッチパネル電極と、ストライプ状に形成されるカラーフィルタとの微妙なズレによる干渉縞の発生、あるいは、タッチパネル電極とカラーフィルタとが異なる深さに形成されることに起因する斜め方向から操作したときの視差の発生のような表示性能面での問題点があった。タッチパネル基板とカラーフィルタ基板との貼り合わせ工程の削減、貼り合わせの際に発生する空隙による光学特性低下の抑制などを目的として、タッチパネル電極およびカラーフィルタを同一のガラス基板の表裏面に形成する技術が検討されてきている(たとえば、特許文献2および3参照)。 Conventional touch panel type liquid crystal displays are generally manufactured by separately manufacturing a touch panel substrate having touch panel electrodes and a color filter substrate having color filters, and bonding the substrates together (for example, patents). Reference 1). However, due to the occurrence of interference fringes due to subtle deviations between the touch panel electrodes formed in stripes and the color filters formed in stripes, or because the touch panel electrodes and the color filters are formed at different depths. There is a problem in display performance such as generation of parallax when operated from an oblique direction. Technology to form touch panel electrodes and color filters on the front and back surfaces of the same glass substrate for the purpose of reducing the bonding process between the touch panel substrate and the color filter substrate, and suppressing the deterioration of optical properties due to the gaps generated during the bonding. Have been studied (see, for example, Patent Documents 2 and 3).
 タッチパネル式液晶ディスプレイには、液晶素子(LCDセル)内(具体的には、薄膜トランジスタ(TFT)基板上)にタッチパネル機能を内蔵したインセル(In-Cell)型と、LCDセル外(たとえば、偏光板とカラーフィルタ基板との間)にタッチパネル機能を内蔵したオンセル(On-Cell)型とがある。インセル型タッチパネル式液晶ディスプレイには、TFT基板上の画素内部にタッチセンサ機能を組み込むことによるLCDセルの歩留りの低下、ならびに画素内のタッチセンサ用電極に起因する有効表示領域の面積の減少による表示画質の劣化が起こる懸念がある。一方、オンセル型タッチパネル式液晶ディスプレイでは、偏光板とカラーフィルタ基板との間にタッチセンサ用の電極パターンを形成するため、LCDセルの歩留まりの維持が可能である。また、LCDセル(TFT基板)の画素内の有効表示領域の面積が減少しないため、表示画質の劣化はほとんどない。 The touch panel type liquid crystal display includes an in-cell type in which a touch panel function is built in a liquid crystal element (LCD cell) (specifically, on a thin film transistor (TFT) substrate) and an outside of the LCD cell (for example, a polarizing plate). And an on-cell type in which a touch panel function is built in between the color filter substrate and the color filter substrate. In-cell type touch panel type liquid crystal display displays by reducing the yield of LCD cells by incorporating the touch sensor function inside the pixel on the TFT substrate, and by reducing the area of the effective display area caused by the electrode for the touch sensor in the pixel There is concern that image quality will deteriorate. On the other hand, in the on-cell touch panel type liquid crystal display, the electrode pattern for the touch sensor is formed between the polarizing plate and the color filter substrate, so that the yield of the LCD cell can be maintained. Further, since the area of the effective display area in the pixel of the LCD cell (TFT substrate) does not decrease, display image quality is hardly deteriorated.
特開2007-178758号公報JP 2007-178758 A 特開2008-9750号公報JP 2008-9750 A 特開2010-72584号公報JP 2010-72584 A
 従来のオンセル型タッチパネル式液晶ディスプレイでは、タッチパネル用の電極パターンは、透明導電性酸化物(インジウム-スズ酸化物(ITO)など)により形成されるセンサ部と、低抵抗金属により形成される配線部とで構成されている。そのため、センサ部と配線部とを別工程により形成する必要がある。そのため、LCDセルの歩留まりを維持できるとしても、オンセル型タッチパネル式液晶ディスプレイ全体として、工程数の増加により歩留まりが低下しやすかった。 In the conventional on-cell type touch panel type liquid crystal display, the electrode pattern for the touch panel includes a sensor part formed of a transparent conductive oxide (such as indium-tin oxide (ITO)) and a wiring part formed of a low resistance metal. It consists of and. Therefore, it is necessary to form the sensor part and the wiring part by separate processes. Therefore, even if the yield of the LCD cell can be maintained, as a whole on-cell type touch panel type liquid crystal display, the yield tends to decrease due to an increase in the number of processes.
 本発明は、上記の問題点を解決するためになされたものであり、センサ部と配線部とを一括して形成することによって製造工程を削減し、タッチパネル式液晶ディスプレイ全体としての歩留まりを向上させることを目的とする。さらに、本発明は、カラーフィルタとタッチパネル用電極との間の距離を短くすることによって、斜め方向から操作したときの視差の発生を抑制することを目的とする。 The present invention has been made in order to solve the above-described problems, and reduces the manufacturing process by collectively forming the sensor portion and the wiring portion, and improves the yield of the touch panel type liquid crystal display as a whole. For the purpose. Furthermore, an object of the present invention is to suppress the occurrence of parallax when operated from an oblique direction by shortening the distance between the color filter and the touch panel electrode.
 本発明の第1の実施形態の電極付きカラーフィルタ基板は、第1面と、前記第1面と反対側の第2面とを有し、前記第1面にパターン状の溝を有する透明基板と、前記第2面上のカラーフィルタと、前記パターン状の溝内に、センサ部および配線部からなる1つまたは複数の電極とを含むことを特徴とする。ここで、透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含んでもよい。あるいはまた、透明基板は、複数のサブ基板の積層構造を有してもよい。さらに、電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていてもよい。 The color filter substrate with an electrode according to the first embodiment of the present invention has a first surface and a second surface opposite to the first surface, and has a patterned groove on the first surface. And a color filter on the second surface, and one or a plurality of electrodes including a sensor portion and a wiring portion in the pattern-shaped groove. Here, the transparent substrate may include at least one material selected from the group consisting of glass and organic resin. Alternatively, the transparent substrate may have a stacked structure of a plurality of sub-substrates. Furthermore, the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium.
 本発明の第2の実施形態の電極付きカラーフィルタ基板は、第1面と、前記第1面と反対側の第2面とを有し、前記第1面にパターン状の溝を有する透明基板と、前記第2面上のカラーフィルタと、1つまたは複数の第1電極と、1つまたは複数の絶縁膜と、1つまたは複数の第2電極とを含み、前記第1電極のそれぞれは、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含み、隣接する2つの拡張部は直線部により接続され、前記拡張部、前記直線部および前記配線部は、前記溝内に存在し、前記第2電極のそれぞれは、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含み、隣接する2つの拡張部は接続部により接続され、前記拡張部および前記配線部は、前記溝内に存在し、前記絶縁膜のそれぞれは、前記第1電極の直線部の上に形成されており、前記第1電極および前記第2電極は、第1電極の直線部および第2電極の接続部において交差し、前記第2電極の接続部は、前記絶縁膜をまたいで形成されていることを特徴とする。ここで、透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含んでもよい。あるいはまた、透明基板は、複数のサブ基板の積層構造を有してもよい。さらに、電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていてもよい。 The color filter substrate with an electrode according to the second embodiment of the present invention has a first surface and a second surface opposite to the first surface, and a transparent substrate having a patterned groove on the first surface. A color filter on the second surface, one or more first electrodes, one or more insulating films, and one or more second electrodes, each of the first electrodes being A sensor portion having a plurality of extension portions and one or a plurality of straight portions, and a wiring portion, and two adjacent extension portions are connected by a straight portion, and the extension portion, the straight portion, and the wiring portion Exists in the groove, and each of the second electrodes includes a sensor part having a plurality of extension parts and one or a plurality of connection parts, and a wiring part, and two adjacent extension parts are connected to each other. Connected to each other, and the extension part and the wiring part exist in the groove. Each of the insulating films is formed on a straight portion of the first electrode, and the first electrode and the second electrode intersect at a connecting portion of the straight portion and the second electrode of the first electrode. The connecting portion of the second electrode is formed across the insulating film. Here, the transparent substrate may include at least one material selected from the group consisting of glass and organic resin. Alternatively, the transparent substrate may have a stacked structure of a plurality of sub-substrates. Furthermore, the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium.
 本発明の第3の実施形態の電極付きカラーフィルタ基板の製造方法は、第1の実施形態の電極付きカラーフィルタ基板を製造する方法であって、第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、前記透明基板の第2面にカラーフィルタを形成する工程と、前記透明基板の第1面にパターン状の溝を形成する工程と、前記溝内に金属材料を付着させて、1つまたは複数の電極を形成する工程とを含み、前記電極はセンサ部および配線部からなり、前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施することを特徴とする。ここで、透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含んでもよい。あるいはまた、透明基板は、複数のサブ基板の積層構造を有してもよい。さらに、電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていてもよい。また、本実施形態の製造方法は、前記透明基板を断裁して、複数の電極付きカラーフィルタ基板を得る工程をさらに含んでもよい。 The method for manufacturing a color filter substrate with an electrode according to a third embodiment of the present invention is a method for manufacturing the color filter substrate with an electrode according to the first embodiment, wherein the first surface and the side opposite to the first surface. Preparing a transparent substrate having the second surface, forming a color filter on the second surface of the transparent substrate, forming a patterned groove on the first surface of the transparent substrate, Forming one or a plurality of electrodes by attaching a metal material in the groove, the electrode comprising a sensor part and a wiring part, and forming the pattern-like groove by dicing, Scribe processing, water jet processing, air blast processing, sand blast processing, laser processing, embossing, etching, imprint lithography, and photo using photosensitive resin Which comprises carrying out using one or more techniques selected from the group consisting of Seo chromatography. Here, the transparent substrate may include at least one material selected from the group consisting of glass and organic resin. Alternatively, the transparent substrate may have a stacked structure of a plurality of sub-substrates. Furthermore, the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium. Moreover, the manufacturing method of this embodiment may further include the process of cutting the said transparent substrate and obtaining the color filter substrate with a some electrode.
 本発明の第4の実施形態の電極付きカラーフィルタ基板の製造方法は、第2の実施形態の電極付きカラーフィルタ基板を製造する方法であって、第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、前記透明基板の第2面にカラーフィルタを形成する工程と、前記透明基板の第1面にパターン状の溝を形成する工程と、前記溝内に金属材料を付着させて、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含む複数の第1電極、および、複数の拡張部および配線部とを含む複数の第2電極前駆体を形成する工程と、前記複数の第1電極の直線部の上に絶縁膜を形成する工程と、前記絶縁膜の上に金属材料を付着させて、前記絶縁膜をまたぐ接続部を形成し、前記第2電極前駆体の隣接する2つの拡張部を前記接続部により接続し、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含む複数の第2電極を得る工程とを含み、前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施することを特徴とする。ここで、透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含んでもよい。あるいはまた、透明基板は、複数のサブ基板の積層構造を有してもよい。さらに、電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていてもよい。また、本実施形態の製造方法は、前記透明基板を断裁して、複数の電極付きカラーフィルタ基板を得る工程をさらに含んでもよい。 The method for manufacturing a color filter substrate with an electrode according to a fourth embodiment of the present invention is a method for manufacturing the color filter substrate with an electrode according to the second embodiment, wherein the first surface and the side opposite to the first surface. Preparing a transparent substrate having the second surface, forming a color filter on the second surface of the transparent substrate, forming a patterned groove on the first surface of the transparent substrate, A plurality of first electrodes including a sensor unit having a plurality of extended portions and one or a plurality of straight portions by attaching a metal material in the groove, and a plurality of extended portions and a wiring portion Forming a plurality of second electrode precursors including: a step of forming an insulating film on a straight portion of the plurality of first electrodes; and attaching a metal material on the insulating film to form the insulation Forming a connecting portion across the membrane, adjacent to the second electrode precursor A plurality of second electrodes including a sensor part having a plurality of extension parts and one or a plurality of connection parts, and a wiring part. The process of forming pattern-like grooves is from dicing, wheel scribe, water jet, air blast, sand blast, laser processing, embossing, etching, imprint lithography, and photolithography using photosensitive resin. It is carried out using one or more techniques selected from the group consisting of: Here, the transparent substrate may include at least one material selected from the group consisting of glass and organic resin. Alternatively, the transparent substrate may have a stacked structure of a plurality of sub-substrates. Furthermore, the electrode may be formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium. Moreover, the manufacturing method of this embodiment may further include the process of cutting the said transparent substrate and obtaining the color filter substrate with a some electrode.
 本発明の第5の実施形態の表示装置は、第1の実施形態または第2の実施形態の電極付きカラーフィルタ基板と、液晶素子およびEL素子からなる群から選択される表示素子とを含むことを特徴とする。 A display device according to a fifth embodiment of the present invention includes the color filter substrate with an electrode according to the first embodiment or the second embodiment, and a display element selected from the group consisting of a liquid crystal element and an EL element. It is characterized by.
 本発明の第6の実施形態の表示装置の製造方法は、第3の実施形態または第4実施形態の方法により電極付きカラーフィルタ基板を形成する工程と、前記電極付きカラーフィルタ基板の第2面側に、液晶素子およびEL素子からなる群から選択される表示素子を取り付ける工程とを含むことを特徴とする。本実施形態の方法は、前記電極付きカラーフィルタ基板および前記表示素子の積層体を断裁して、複数の表示装置を得る工程をさらに含んでもよい。 The manufacturing method of the display device of the sixth embodiment of the present invention includes a step of forming a color filter substrate with an electrode by the method of the third embodiment or the fourth embodiment, and a second surface of the color filter substrate with an electrode. And a step of attaching a display element selected from the group consisting of a liquid crystal element and an EL element to the side. The method of the present embodiment may further include a step of cutting the color filter substrate with electrodes and the stacked body of the display elements to obtain a plurality of display devices.
 本発明の第6の実施形態の1つの変形例は、第1の実施形態の電極付きカラーフィルタ基板と、液晶素子およびEL素子からなる群から選択される表示素子とを含む表示装置を製造する方法であって、第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、前記透明基板の第2面にカラーフィルタを形成する工程と、前記カラーフィルタ上に、液晶素子およびEL素子からなる群から選択される表示素子を取り付ける工程と、前記透明基板の第1面にパターン状の溝を形成する工程と、前記溝内に金属材料を堆積させて、1つまたは複数の電極を形成する工程とを含み、前記電極はセンサ部および配線部からなり、前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施することを特徴とする。 One modification of the sixth embodiment of the present invention manufactures a display device including the electrode-attached color filter substrate of the first embodiment and a display element selected from the group consisting of a liquid crystal element and an EL element. A method comprising: preparing a transparent substrate having a first surface and a second surface opposite to the first surface; forming a color filter on a second surface of the transparent substrate; and the color Attaching a display element selected from the group consisting of a liquid crystal element and an EL element on the filter; forming a patterned groove on the first surface of the transparent substrate; and depositing a metal material in the groove. Forming one or a plurality of electrodes, wherein the electrode comprises a sensor portion and a wiring portion, and the step of forming the pattern-like groove includes dicing, wheel scribe, water And one or more techniques selected from the group consisting of photolithographic processing, air blasting, sand blasting, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin It is characterized by.
 本発明の第6の実施形態の別の変形例は、第2の実施形態の電極付きカラーフィルタ基板と、液晶素子およびEL素子からなる群から選択される表示素子とを含む表示装置を製造する方法であって、第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、前記透明基板の第2面にカラーフィルタを形成する工程と、前記カラーフィルタ上に、液晶素子およびEL素子からなる群から選択される表示素子を取り付ける工程と、前記透明基板の第1面にパターン状の溝を形成する工程と、前記溝内に金属材料を堆積させて、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含む複数の第1電極、および、複数の拡張部および配線部とを含む複数の第2電極前駆体を形成する工程と、前記複数の第1電極の直線部の上に絶縁膜を形成する工程と、前記絶縁膜の上に金属材料を堆積させて、前記絶縁膜をまたぐ接続部を形成し、前記第2電極前駆体の隣接する2つの拡張部を前記接続部により接続し、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含む複数の第2電極を得る工程とを含み、前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施することを特徴とする。 Another modification of the sixth embodiment of the present invention manufactures a display device including the electrode-attached color filter substrate of the second embodiment and a display element selected from the group consisting of a liquid crystal element and an EL element. A method comprising: preparing a transparent substrate having a first surface and a second surface opposite to the first surface; forming a color filter on a second surface of the transparent substrate; and the color Attaching a display element selected from the group consisting of a liquid crystal element and an EL element on the filter; forming a patterned groove on the first surface of the transparent substrate; and depositing a metal material in the groove. A plurality of first electrodes including a plurality of extending portions and one or a plurality of linear portions, and a plurality of first electrodes including a wiring portion, and a plurality of second electrode precursors including a plurality of extending portions and a wiring portion. Forming a body and the compound Forming an insulating film on the straight portion of the first electrode, and depositing a metal material on the insulating film to form a connection portion straddling the insulating film, and adjacent to the second electrode precursor. Connecting the two extension parts by the connection part, obtaining a plurality of second electrodes including a sensor part having a plurality of extension parts and one or more connection parts, and a wiring part, and The process of forming pattern-like grooves is from dicing, wheel scribe, water jet, air blast, sand blast, laser processing, embossing, etching, imprint lithography, and photolithography using photosensitive resin. It is carried out using one or more techniques selected from the group consisting of:
 本発明の電極付きカラーフィルタ基板は、タッチセンサ用電極を別個の基板上に形成した場合と比較して、より薄型でより軽量の表示装置を提供することを可能にする。また、本発明の電極付きカラーフィルタ基板は、カラーフィルタとタッチパネル用電極との間の距離を短くすることによって、斜め方向から操作したときの視差の発生を抑制することができる。加えて、本発明の電極付きカラーフィルタ基板の製造方法は、タッチセンサ用電極のセンサ部および配線部を同時に形成することによって、製造方法の簡略化、ならびにそれによる製造コストの削減を可能にする。 The color filter substrate with electrodes of the present invention makes it possible to provide a display device that is thinner and lighter than when the touch sensor electrodes are formed on a separate substrate. Moreover, the color filter substrate with an electrode of the present invention can suppress the occurrence of parallax when operated from an oblique direction by shortening the distance between the color filter and the touch panel electrode. In addition, the method for manufacturing a color filter substrate with an electrode according to the present invention enables simplification of the manufacturing method and reduction in manufacturing cost by simultaneously forming the sensor portion and the wiring portion of the electrode for the touch sensor. .
本発明の第1の実施形態の電極付きカラーフィルタ基板の模式的上面図である。It is a typical top view of the color filter substrate with an electrode of the 1st embodiment of the present invention. 本発明の第1の実施形態の電極付きカラーフィルタ基板の、切断線II-IIに沿った模式的断面図である。FIG. 2 is a schematic cross-sectional view along the cutting line II-II of the color filter substrate with an electrode according to the first embodiment of the present invention. 本発明の第2の実施形態の電極付きカラーフィルタ基板の模式的上面図である。It is a typical top view of the color filter substrate with an electrode of a 2nd embodiment of the present invention. 本発明の第2の実施形態の電極付きカラーフィルタ基板の、切断線IV-IVに沿った模式的断面図である。FIG. 4 is a schematic cross-sectional view taken along a cutting line IV-IV of a color filter substrate with an electrode according to a second embodiment of the present invention. 本発明の第2の実施形態の電極付きカラーフィルタ基板の、切断線V-Vに沿った模式的断面図である。FIG. 5 is a schematic cross-sectional view along a cutting line VV of a color filter substrate with an electrode according to a second embodiment of the present invention. 本発明の第5の実施形態の液晶表示装置の模式的断面図である。It is typical sectional drawing of the liquid crystal display device of the 5th Embodiment of this invention. 本発明の第5の実施形態の変形例の液晶表示装置の模式的断面図である。It is typical sectional drawing of the liquid crystal display device of the modification of the 5th Embodiment of this invention.
 本発明の第1の実施形態の電極付きカラーフィルタ基板は、第1面と、前記第1面と反対側の第2面とを有し、前記第1面にパターン状の溝を有する透明基板と、前記第2面上のカラーフィルタと、前記パターン状の溝内に、センサ部および配線部からなる1つまたは複数の電極とを含むことを特徴とする。本実施形態の電極付きカラーフィルタ基板の構成例を図1および図2に示した。図1および図2の構成例において、透明基板10の第1面に3つの電極20が形成され、第1面の反対側の第2面にカラーフィルタ30が形成されている。電極20のそれぞれは、センサ部21と、センサ部21を外部駆動回路に接続するための配線部22とで構成される。 The color filter substrate with an electrode according to the first embodiment of the present invention has a first surface and a second surface opposite to the first surface, and has a patterned groove on the first surface. And a color filter on the second surface, and one or a plurality of electrodes including a sensor portion and a wiring portion in the pattern-shaped groove. The structural example of the color filter board | substrate with an electrode of this embodiment was shown in FIG.1 and FIG.2. 1 and 2, three electrodes 20 are formed on the first surface of the transparent substrate 10, and a color filter 30 is formed on the second surface opposite to the first surface. Each of the electrodes 20 includes a sensor unit 21 and a wiring unit 22 for connecting the sensor unit 21 to an external drive circuit.
 本実施形態の透明基板10は、無色であっても有色であってもよい。本発明における「透明」とは、可視領域全体にわたって80%以上、好ましくは95%以上の透過率を有することを意味する。特段の制限なしに、液晶表示装置に一般的に用いられている基板を、本発明の透明基板10として使用することができる。透明基板10の非制限的な例は、ガラスなどの無機基板、およびポリカーボネート、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、環状オレフィンコポリマー(COP)などの有機樹脂基板を含む。本実施形態の電極付きカラーフィルタ基板をタッチパネルの構成要素として用いる場合、タッチパネルは静電容量方式のものとなる。抵抗膜方式のタッチパネルのように、外力の印加によるひずみを考慮する必要がないため、透明基板10の材料および厚さの選択肢が広くなる。製造過程における耐熱性を考慮すると、透明基板10をガラスで形成することが望ましい。透明基板10の第1面に形成される溝は、後述の電極20に相当する幅および深さを有し、電極20の位置に形成される。 The transparent substrate 10 of this embodiment may be colorless or colored. “Transparent” in the present invention means having a transmittance of 80% or more, preferably 95% or more over the entire visible region. Without particular limitation, a substrate generally used in a liquid crystal display device can be used as the transparent substrate 10 of the present invention. Non-limiting examples of the transparent substrate 10 include inorganic substrates such as glass, and organic resin substrates such as polycarbonate, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and cyclic olefin copolymer (COP). When the color filter substrate with an electrode according to the present embodiment is used as a constituent element of a touch panel, the touch panel is a capacitive type. Unlike the resistive film type touch panel, it is not necessary to consider the strain due to the application of external force, so the choice of the material and thickness of the transparent substrate 10 is widened. In consideration of heat resistance in the manufacturing process, it is desirable to form the transparent substrate 10 with glass. The groove formed on the first surface of the transparent substrate 10 has a width and depth corresponding to an electrode 20 described later, and is formed at the position of the electrode 20.
 本実施形態の透明基板10は、複数のサブ基板の積層構造であってもよい。それぞれのサブ基板は、前述の材料を用いて形成してもよい自立性基板であることができる。たとえば2つのサブ基板の積層構造を用いる場合、溝および電極20を形成する第1面側のサブ基板を、溝の形成に適した材料で形成し、その上にカラーフィルタを設ける第2面側のサブ基板を、カラーフィルタの形成に適した特性を有する材料で形成することができる。複数のサブ基板の積層構造を有する透明基板10において、少なくとも1つのサブ基板は自立性を有することが望ましい。その他のサブ基板は、非自立性のいわゆる「層」であってもよい。言い換えると、本実施形態の透明基板10は、自立性サブ基板の上に1つまたは複数の層を設けた積層構造であってもよい。 The transparent substrate 10 of this embodiment may have a laminated structure of a plurality of sub-substrates. Each sub-substrate can be a self-supporting substrate that may be formed using the materials described above. For example, when a laminated structure of two sub-substrates is used, the sub-substrate on the first surface side for forming the grooves and the electrodes 20 is formed of a material suitable for forming the grooves, and the color filter is provided on the second surface side. The sub-substrate can be formed of a material having characteristics suitable for forming a color filter. In the transparent substrate 10 having a laminated structure of a plurality of sub-substrates, it is desirable that at least one sub-substrate has a self-supporting property. Other sub-substrates may be non-self-supporting so-called “layers”. In other words, the transparent substrate 10 of the present embodiment may have a laminated structure in which one or more layers are provided on a self-supporting sub-substrate.
 本実施形態の電極20は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料を含む。本発明の電極20のそれぞれは、センサ部21および配線部22からなる。センサ部21は、静電容量式タッチフィルタのセンサの一部をなす。前述のような不透明の金属材料を用いるため、本発明のセンサ部21を、その輪郭を画定する細線と、その内部に格子状に配列される細線とで構成し、センサ部21に可視光透過性を付与することが望ましい。本発明における「格子状」とは、第1方向に延びる1つまたは複数の細線と、第1の方向に交差する第2の方向に延びる1つまたは複数の細線とで構成されることを意味する。好ましくは、第2の方向は、第1の方向と直交する方向である。センサ部21を構成する細線は、0.1~10μm、好ましくは0.3~3μmの幅を有してもよい。この範囲内の幅を有することによって、静電気などの過渡電圧が生じた際の断線の防止、細線の不可視性の維持、センサ部の高い可視光透過率、ならびに細線の電気抵抗値の低減を実現することが可能となる。ここで、透明基板10垂直方向からの観察におけるセンサ部21の面積に対する細線の総面積の比を0.1~10%の範囲内として、センサ部21の可視光透過性を確保することが望ましい。また、センサ部21を構成する細線は、0.1~10μm、好ましくは0.3~3μmの厚さを有してもよい。この範囲内の厚さを有することによって、導通不良を防止するとともに、透明基板10が割れることを防止することができる。一方、配線部22は、センサ部21を外部回路(不図示)に電気的に接続する機能を有する。配線部22も、センサ部21を構成する細線と同様の幅および厚さを有してもよい。通常の用途では、配線部は表示領域以外の領域に存在するため、不可視性の維持よりも低い電気抵抗値の達成を目的として、5~50μm、好ましくは10~30μmの幅を有してもよい。 The electrode 20 of the present embodiment includes a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron, and indium. Each of the electrodes 20 of the present invention includes a sensor part 21 and a wiring part 22. The sensor unit 21 forms a part of the sensor of the capacitive touch filter. Since the above-described opaque metal material is used, the sensor unit 21 of the present invention is composed of fine lines that define the outline and fine lines that are arranged in a lattice pattern inside the sensor unit 21, and visible light is transmitted through the sensor unit 21. It is desirable to impart sex. The term “lattice” in the present invention means that it is composed of one or more fine lines extending in the first direction and one or more fine lines extending in the second direction intersecting the first direction. To do. Preferably, the second direction is a direction orthogonal to the first direction. The fine wires constituting the sensor unit 21 may have a width of 0.1 to 10 μm, preferably 0.3 to 3 μm. By having a width within this range, prevention of disconnection when transient voltage such as static electricity occurs, maintenance of invisibility of thin line, high visible light transmittance of sensor, and reduction of electrical resistance of thin line are realized. It becomes possible to do. Here, it is desirable to ensure the visible light transmittance of the sensor unit 21 by setting the ratio of the total area of the fine lines to the area of the sensor unit 21 in the observation from the vertical direction of the transparent substrate 10 within a range of 0.1 to 10%. . Further, the thin wire constituting the sensor unit 21 may have a thickness of 0.1 to 10 μm, preferably 0.3 to 3 μm. By having a thickness within this range, it is possible to prevent poor conduction and prevent the transparent substrate 10 from cracking. On the other hand, the wiring part 22 has a function of electrically connecting the sensor part 21 to an external circuit (not shown). The wiring part 22 may also have the same width and thickness as the fine lines constituting the sensor part 21. In a normal use, since the wiring portion exists in an area other than the display area, the wiring portion may have a width of 5 to 50 μm, preferably 10 to 30 μm for the purpose of achieving a lower electric resistance value than maintaining invisibility. Good.
 本実施形態の電極20は、センサ部21および配線部22の両方を同一の材料で形成することができる。センサ部にITOなどの透明導電性酸化物を使用しないため、透明導電性酸化物の比較的高い抵抗率に起因する電極20全体の抵抗値の上昇を抑制することができる。また、透明導電性酸化物と低抵抗の金属材料とが接触する界面が存在しないため、エレクトロマイグレーションのような悪影響を及ぼす効果も排除することができる。さらに、電極20全体を単一工程で形成することができるため、製造コストの低減が可能となる。 The electrode 20 of this embodiment can form both the sensor part 21 and the wiring part 22 with the same material. Since a transparent conductive oxide such as ITO is not used for the sensor portion, an increase in the resistance value of the entire electrode 20 due to a relatively high resistivity of the transparent conductive oxide can be suppressed. In addition, since there is no interface between the transparent conductive oxide and the low-resistance metal material, an adverse effect such as electromigration can be eliminated. Furthermore, since the entire electrode 20 can be formed in a single process, the manufacturing cost can be reduced.
 本発明のカラーフィルタ30は、当該技術において知られている任意の材料を用いて形成することができる。カラーフィルタ30は、異なる色領域の光を透過させる複数の部分を有してもよい。たとえば、カラーフィルタ30は、赤色(R)着色層、緑色(G)着色層、および青色(B)着色層を有してもよい。各着色層は、たとえば、各色の顔料を分散させたアクリル系樹脂を用いて形成することができる。各着色層は、典型的には、0.5~3.0μmの膜厚を有する。また、本発明のカラーフィルタ30は、高いコントラストの実現および混色の防止を目的として、可視領域の光を遮断するブラックマトリクス(BM)をさらに有してもよい。ブラックマトリクスは、黒色顔料を分散させたアクリル系樹脂を用いて形成することができる。黒色顔料分散アクリル系樹脂を用いる場合、ブラックマトリクスは、典型的には、0.5~3.0μmの膜厚を有する。あるいはまた、ブラックマトリクスは、10~200nmの膜厚を有する金属膜であってもよい。当該技術において知られているように、カラーフィルタ30においては、組み合わせられる表示素子の画素(副画素)部に対応してそれぞれの着色層が配置され、その間隙にブラックマトリクスが配置される。 The color filter 30 of the present invention can be formed using any material known in the art. The color filter 30 may have a plurality of portions that transmit light of different color regions. For example, the color filter 30 may have a red (R) colored layer, a green (G) colored layer, and a blue (B) colored layer. Each colored layer can be formed using, for example, an acrylic resin in which a pigment of each color is dispersed. Each colored layer typically has a thickness of 0.5 to 3.0 μm. The color filter 30 of the present invention may further include a black matrix (BM) that blocks light in the visible region for the purpose of achieving high contrast and preventing color mixing. The black matrix can be formed using an acrylic resin in which a black pigment is dispersed. When the black pigment-dispersed acrylic resin is used, the black matrix typically has a film thickness of 0.5 to 3.0 μm. Alternatively, the black matrix may be a metal film having a thickness of 10 to 200 nm. As known in the art, in the color filter 30, each colored layer is arranged corresponding to a pixel (subpixel) portion of a display element to be combined, and a black matrix is arranged in the gap.
 本発明の第2の実施形態の電極付きカラーフィルタ基板は、第1面と、前記第1面と反対側の第2面とを有し、前記第1面にパターン状の溝を有する透明基板と、前記第2面上のカラーフィルタと、1つまたは複数の第1電極と、絶縁膜と、1つまたは複数の第2電極とを含み、前記第1電極のそれぞれは、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含み、隣接する2つの拡張部は直線部により接続され、前記拡張部、前記直線部および前記配線部は、前記溝内に存在し、前記第2電極のそれぞれは、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含み、隣接する2つの拡張部は接続部により接続され、前記拡張部および前記配線部は、前記溝内に存在し、前記絶縁膜は、前記第1電極の直線部の上に形成されており、前記第1電極および前記第2電極は、第1電極の直線部および第2電極の接続部において交差し、前記第2電極の接続部は、前記絶縁膜をまたいで形成されていることを特徴とする。 The color filter substrate with an electrode according to the second embodiment of the present invention has a first surface and a second surface opposite to the first surface, and a transparent substrate having a patterned groove on the first surface. And a color filter on the second surface, one or more first electrodes, an insulating film, and one or more second electrodes, each of the first electrodes having a plurality of extension portions. And one or a plurality of linear portions, and two adjacent extended portions are connected by a linear portion, and the extended portion, the linear portion, and the wiring portion are connected to each other in the groove. Each of the second electrodes includes a sensor part having a plurality of extension parts and one or more connection parts, and a wiring part, and two adjacent extension parts are connected by the connection parts, The extension part and the wiring part are present in the trench, and the insulating film The first electrode and the second electrode intersect each other at the connecting portion of the first electrode and the second electrode, and the second electrode is connected to the first electrode. The portion is formed across the insulating film.
 本実施形態の電極付きカラーフィルタ基板の構成例を図3および図5に示した。図3~図5の構成例において、透明基板10の第1面110aに、2つの部分電極からなる第1電極20aと、2つの部分電極からなる第2電極20bとが形成され、第1面110aの反対側の第2面110bにカラーフィルタ30が形成されている。第1電極20aのそれぞれの部分電極は、3つの拡張部25aと、隣接する拡張部25aの間の直線部26とからなるセンサ部21a、および配線部22aからなる。第2電極20bのそれぞれの部分電極は、3つの拡張部25bと、隣接する拡張部25bの間にあり、絶縁膜23の上に形成される接続部24とからなるセンサ部21b、および配線部22bとからなる。 Examples of the configuration of the color filter substrate with electrodes of the present embodiment are shown in FIGS. 3 to 5, the first surface 110a of the transparent substrate 10 is formed with a first electrode 20a composed of two partial electrodes and a second electrode 20b composed of two partial electrodes. The color filter 30 is formed on the second surface 110b opposite to 110a. Each partial electrode of the first electrode 20a includes a sensor portion 21a including three extended portions 25a and a linear portion 26 between adjacent extended portions 25a, and a wiring portion 22a. Each partial electrode of the second electrode 20b includes a sensor part 21b including a connection part 24 formed between the three extension parts 25b and the adjacent extension part 25b and formed on the insulating film 23, and a wiring part. 22b.
 本実施形態の透明基板10およびカラーフィルタ30は、第1の実施形態の透明基板およびカラーフィルタと同様のものを用いることができる。 The transparent substrate 10 and the color filter 30 of the present embodiment can be the same as the transparent substrate and the color filter of the first embodiment.
 本実施形態の第1電極20aは、センサ部21aが拡張部25aおよび直線部26からなることを除いて、第1の実施形態の電極と同様の構成を有する。第1電極20aはセンサ部21a(すなわち、拡張部25aおよび直線部26)および配線部22aの全てが透明基板10の第1面110aに形成された溝の内部に形成される。また、センサ部21aおよび配線部22aは、第1の実施形態と同様の材料を用いて形成することができる。 The first electrode 20a of the present embodiment has the same configuration as that of the electrode of the first embodiment, except that the sensor unit 21a includes an extended portion 25a and a linear portion 26. The first electrode 20a is formed in the groove formed in the first surface 110a of the transparent substrate 10 in which the sensor portion 21a (that is, the extended portion 25a and the straight portion 26) and the wiring portion 22a are all formed. Moreover, the sensor part 21a and the wiring part 22a can be formed using the material similar to 1st Embodiment.
 拡張部25aのそれぞれは、その輪郭を画定する細線と、その内部に格子状に配列される細線とで構成することが望ましい。第1の実施形態と同様に、拡張部25aを構成する細線は、0.1~10μm、好ましくは0.3~3μmの幅、ならびに、0.1~10μm、好ましくは0.3~3μmの厚さを有してもよい。拡張部25aは、タッチパネルにおいて位置を検出可能な最小単位を決定する電極(以下、「単位電極」と称する)となる。拡張部25aは、第2電極の拡張部25bと一緒になって表示領域全体にムラなく配置されるような、四角形または六角形の形状を有することが望ましい。たとえば、図3に示す四角形の拡張部25aは、各辺の寸法が1~20mmの範囲内であることができる。 Each of the extended portions 25a is preferably composed of fine lines that define the outline and fine lines that are arranged in a lattice pattern inside. Similar to the first embodiment, the thin wire constituting the extension 25a has a width of 0.1 to 10 μm, preferably 0.3 to 3 μm, and a width of 0.1 to 10 μm, preferably 0.3 to 3 μm. It may have a thickness. The extension unit 25a serves as an electrode (hereinafter, referred to as “unit electrode”) that determines the minimum unit whose position can be detected on the touch panel. It is desirable that the extended portion 25a has a quadrangular or hexagonal shape so that the extended portion 25a can be uniformly disposed in the entire display area together with the extended portion 25b of the second electrode. For example, the rectangular extension 25a shown in FIG. 3 may have a dimension of each side in the range of 1 to 20 mm.
 直線部26は、隣接する拡張部25aを接続して、1つの方向に延びるセンサ部21aを構成する。直線部26は、一般的に表示領域内に形成されるため、拡張部25aを構成する細線と同様に不可視性を有することが望ましい。また、直線部26と接続部24とが交差する領域はセンサの不感領域となるため、所望の導電性が得られる限りにおいて、直線部26を細くすることが望ましい。直線部26は、0.1~10μm、好ましくは0.3~3μmの幅を有することが望ましい。また、直線部26は、0.1~10μm、好ましくは0.3~3μmの厚さを有することが望ましい。 The straight line part 26 constitutes a sensor part 21a extending in one direction by connecting adjacent extension parts 25a. Since the straight line portion 26 is generally formed in the display area, it is desirable that the straight line portion 26 be invisible like the fine lines constituting the extended portion 25a. In addition, since the region where the straight portion 26 and the connecting portion 24 intersect becomes a sensor insensitive region, it is desirable to make the straight portion 26 thinner as long as desired conductivity is obtained. The straight portion 26 desirably has a width of 0.1 to 10 μm, preferably 0.3 to 3 μm. The straight portion 26 desirably has a thickness of 0.1 to 10 μm, preferably 0.3 to 3 μm.
 配線部22aは、センサ部21aを外部回路(不図示)に電気的に接続する機能を有する。配線部22aも、センサ部21aを構成する細線と同様の幅および厚さを有してもよい。通常の用途では、配線部22aは表示領域以外の領域に存在するため、不可視性の維持よりも低い電気抵抗値の達成を目的として、5~50μm、好ましくは10~30μmの幅を有してもよい。 The wiring part 22a has a function of electrically connecting the sensor part 21a to an external circuit (not shown). The wiring part 22a may also have the same width and thickness as the thin line that forms the sensor part 21a. In a normal application, the wiring portion 22a exists in an area other than the display area, and therefore has a width of 5 to 50 μm, preferably 10 to 30 μm for the purpose of achieving a lower electric resistance value than maintaining invisibility. Also good.
 本実施形態の第2電極20bは、直線部26に代えて接続部24を用いること、ならびにセンサ部22bの延びる方向が異なることを除いて、第1電極20aと同等の構成を有してもよい。第2電極20bにおいて、接続部24は、透明基板10の溝の内部に存在せず、第1電極20aの直線部26上に設けられた絶縁膜23の上面および側面に設けられる。一方、第2電極20bの拡張部25bおよび配線部22bは、第1電極20aと同様に、透明基板10の溝内に形成される。第2電極20bの拡張部25bおよび配線部22bは、それぞれ、第1電極20aの拡張部25aおよび配線部22aと同様の構成を有する。 The second electrode 20b of the present embodiment may have the same configuration as that of the first electrode 20a except that the connecting portion 24 is used instead of the straight portion 26 and the extending direction of the sensor portion 22b is different. Good. In the second electrode 20b, the connection portion 24 does not exist inside the groove of the transparent substrate 10, but is provided on the upper surface and side surfaces of the insulating film 23 provided on the straight portion 26 of the first electrode 20a. On the other hand, the extended portion 25b and the wiring portion 22b of the second electrode 20b are formed in the groove of the transparent substrate 10 similarly to the first electrode 20a. The extended portion 25b and the wiring portion 22b of the second electrode 20b have the same configuration as the extended portion 25a and the wiring portion 22a of the first electrode 20a, respectively.
 絶縁膜23は、第1電極20aと第2電極20bとが電気的に接触することを防止するために、第1電極20aの直線部上に設けられる。絶縁膜23は、表示領域内に設けられるため、可視領域の光に対して透明であることが望ましい。また、絶縁膜23は、後述するパターニングを行う必要性から、感光性材料を用いて形成することが望ましい。可視領域の光に対して透明である感光性材料の例は、重合性基含有オリゴマー、モノマー、紫外線重合開始剤および添加剤を含有するUV硬化型コーティング組成物などを含む。あるいはまた、感光性材料は、光照射により可溶性が増大するポジ型感光性材料であってもよい。 The insulating film 23 is provided on the straight portion of the first electrode 20a in order to prevent the first electrode 20a and the second electrode 20b from being in electrical contact. Since the insulating film 23 is provided in the display region, it is desirable that the insulating film 23 be transparent to light in the visible region. The insulating film 23 is preferably formed using a photosensitive material because of the necessity of performing patterning described later. Examples of photosensitive materials that are transparent to light in the visible range include polymerizable group-containing oligomers, monomers, UV curable coating compositions containing ultraviolet polymerization initiators and additives, and the like. Alternatively, the photosensitive material may be a positive photosensitive material whose solubility is increased by light irradiation.
 接続部24は、導電性材料から形成され、隣接する拡張部25bを電気的に接続する。望ましくは、接続部24を形成する導電性材料は、溝内に充填された導電性材料に影響を与えることなしに除去することができる材料である。接続部の1つの構成例は、接続部24は、膜厚3.5nmのMo膜、膜厚200nmのAl膜および膜厚3.5nmのMo膜の積層構造を有してもよい。接続部24によって電気的に接続された拡張部25bは、第1電極のセンサ部21aと交差する方向に延びる第2電極のセンサ部21bを構成する。好ましくは、図3~図5に示すように、第2電極のセンサ部21bは、第1電極のセンサ部21aと直交する方向に延びる。接続部24の幅および膜厚は、不可視性の実現、所望の導電性の維持などを考慮して決定することができる。 The connection part 24 is formed of a conductive material and electrically connects the adjacent extension parts 25b. Desirably, the conductive material forming the connection 24 is a material that can be removed without affecting the conductive material filled in the trenches. In one configuration example of the connection portion, the connection portion 24 may have a laminated structure of a Mo film with a thickness of 3.5 nm, an Al film with a thickness of 200 nm, and a Mo film with a thickness of 3.5 nm. The extended portion 25b electrically connected by the connecting portion 24 constitutes a second electrode sensor portion 21b extending in a direction intersecting with the first electrode sensor portion 21a. Preferably, as shown in FIGS. 3 to 5, the sensor portion 21b of the second electrode extends in a direction orthogonal to the sensor portion 21a of the first electrode. The width and film thickness of the connection portion 24 can be determined in consideration of realization of invisibility, maintenance of desired conductivity, and the like.
 本発明の第3の実施形態は、第1の実施形態の電極付きカラーフィルタ基板を製造するための方法であって、第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、前記透明基板の第2面にカラーフィルタを形成する工程と、前記透明基板の第1面にパターン状の溝を形成する工程と、前記溝内に金属材料を付着させて、1つまたは複数の電極を形成する工程とを含み、前記電極はセンサ部および配線部からなり、前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施することを特徴とする。なお、第1面に対する溝の形成の後に溝内への金属材料の付着を行うことを条件として、各工程を任意の順序で実施することができる。 3rd Embodiment of this invention is a method for manufacturing the color filter substrate with an electrode of 1st Embodiment, Comprising: It has a 1st surface and the 2nd surface on the opposite side to the said 1st surface. Preparing a transparent substrate, forming a color filter on the second surface of the transparent substrate, forming a patterned groove on the first surface of the transparent substrate, and attaching a metal material in the groove A step of forming one or a plurality of electrodes, wherein the electrode includes a sensor portion and a wiring portion, and the step of forming the pattern-like groove includes dicing processing, wheel scribing processing, water jet processing, Select from the group consisting of air blasting, sand blasting, laser processing, embossing, etching, imprint lithography, and photolithography using photosensitive resin Which comprises carrying out using one or more techniques. Note that the steps can be performed in any order, provided that the metal material is deposited in the groove after the groove is formed on the first surface.
 最初に、第1面と、前記第1面と反対側の第2面とを有する透明基板10を準備する。透明基板10は、第1の実施形態で説明した通りである。透明基板10は、単一材料からなる自立性基板であってもよいし、2つの異種の自立性のサブ基板を貼り合わせた積層構造であってもよいし、自立性サブ基板に1つまたは複数のコーティングを施した多層構造であってもよい。 First, a transparent substrate 10 having a first surface and a second surface opposite to the first surface is prepared. The transparent substrate 10 is as described in the first embodiment. The transparent substrate 10 may be a self-supporting substrate made of a single material, may be a laminated structure in which two different types of self-supporting sub-substrates are bonded together, or one or two of the self-supporting sub-substrates may be used. A multilayer structure with a plurality of coatings may be used.
 透明基板10の第2面に対するカラーフィルタ30の形成は、当該技術において知られている任意の方法により形成することができる。たとえば、感光性を有するコーティング組成物を用いてカラーフィルタ30の各着色層およびブラックマトリクスの形成を行う場合、第2面に対するコーティング組成物の塗布、フォトマスクを通した露光、および現像を含む方法を用いることができる。必要に応じて、ポストベークなどの追加工程を実施してもよい。 The color filter 30 can be formed on the second surface of the transparent substrate 10 by any method known in the art. For example, when each colored layer of the color filter 30 and the black matrix are formed using a photosensitive coating composition, the method includes application of the coating composition to the second surface, exposure through a photomask, and development. Can be used. Additional steps such as post-baking may be performed as necessary.
 透明基板10の第1面に対する溝の形成は、当該技術において知られている任意の化学的手段または物理的手段により実施することができる。用いることができる化学的手段の例は、エッチング、インプリントリソグラフィー、感光性樹脂を用いたフォトリソグラフィーなどを含む。用いることができる物理的手段の例は、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、レーザー加工、エンボス加工などを含む。溝は、電極20に相当する位置に、所定の深さおよび幅で形成される。 Formation of the groove on the first surface of the transparent substrate 10 can be performed by any chemical means or physical means known in the art. Examples of chemical means that can be used include etching, imprint lithography, photolithography using a photosensitive resin, and the like. Examples of physical means that can be used include dicing, wheel scribe, water jet, air blast, laser, emboss, and the like. The groove is formed at a position corresponding to the electrode 20 with a predetermined depth and width.
 続いて、第1面に形成された溝内に金属材料を付着させて、1つまたは複数の電極20を形成する。電極20のそれぞれは、センサ部21および配線部22を有する。金属材料の付着は、金属材料および有機結合剤を含む導電性ペーストなどを第1面に塗布し、溝以外の部分に付着した導電性ペーストを除去し、溝内の導電性ペーストを加熱処理することによって実施することができる。導電ペースト中に含まれる金属材料は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含んでもよい。有機結合剤は、当該技術において知られている任意の材料を含んでもよい。導電性ペーストは、ビヒクル、無機結合剤などの当該技術において知られている任意の材料をさらに含んでもよい。 Subsequently, a metal material is deposited in the groove formed on the first surface to form one or a plurality of electrodes 20. Each of the electrodes 20 includes a sensor unit 21 and a wiring unit 22. For the adhesion of the metal material, a conductive paste containing a metal material and an organic binder is applied to the first surface, the conductive paste adhered to a portion other than the groove is removed, and the conductive paste in the groove is heated. Can be implemented. The metal material contained in the conductive paste may contain one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium. The organic binder may comprise any material known in the art. The conductive paste may further include any material known in the art, such as a vehicle or an inorganic binder.
 導電性ペーストの塗布は、透明基板10の第1面に導電性ペーストを塗布し、溝を導電性ペーストで完全に充填することが可能である限り、任意の手段で実施することができる。ここで、導電性ペーストを均一な膜厚で塗布することができる手段を用いることが、望ましい。たとえば、スピンコート、ロールコート、ディップコートなどの手段を用いることができる。次いで、溝以外の部分に付着した導電性ペーストの除去は、透明基板10の第1面にドクターブレードなどを押圧しながら移動させることによって実施することができる。第1面の溝以外の部分にわずかに除去する導電性ペーストを除去するために、ワイプ処理などをさらに実施してもよい。溝内の導電性ペーストの加熱は、導電ペースト中の有機結合剤を除去するのに充分な時間および温度で実施することができる。 Application of the conductive paste can be performed by any means as long as the conductive paste is applied to the first surface of the transparent substrate 10 and the grooves can be completely filled with the conductive paste. Here, it is desirable to use a means capable of applying the conductive paste with a uniform film thickness. For example, means such as spin coating, roll coating, dip coating can be used. Next, the removal of the conductive paste attached to the portion other than the groove can be performed by moving the doctor blade or the like while pressing the doctor blade or the like on the first surface of the transparent substrate 10. In order to remove the conductive paste that is slightly removed in portions other than the grooves on the first surface, a wiping process or the like may be further performed. The heating of the conductive paste in the groove can be carried out for a time and at a temperature sufficient to remove the organic binder in the conductive paste.
 本実施形態の方法では、第1面に形成された溝の中に電極20が一括で形成される。言い換えると、センサ部21および配線部22は、同一の材料で形成され、かつ同時に形成される。これによって、電極20の形成工程を簡略化し、製造コストの上昇を防止することができる。また、電極20のパターニングは、基板上に均一に形成された導電性材料のエッチングではなく、透明基板10の第1面に溝を形成することによって達成される。このため、導電性材料のエッチングを行う場合に比較して、高い精細度(細い線幅および狭い間隔)の電極20を形成することができる。さらに、形成された電極20は、透明基板の溝内に形成されているため、電流を通すことによる電極20の変形などを十分に抑制することが可能となる。 In the method of the present embodiment, the electrodes 20 are collectively formed in the groove formed in the first surface. In other words, the sensor unit 21 and the wiring unit 22 are formed of the same material and are formed simultaneously. Thereby, the formation process of the electrode 20 can be simplified and an increase in manufacturing cost can be prevented. Further, the patterning of the electrode 20 is achieved by forming a groove on the first surface of the transparent substrate 10 instead of etching the conductive material uniformly formed on the substrate. For this reason, it is possible to form the electrode 20 with high definition (thin line width and narrow interval) compared with the case where the conductive material is etched. Furthermore, since the formed electrode 20 is formed in the groove of the transparent substrate, it is possible to sufficiently suppress the deformation of the electrode 20 caused by passing an electric current.
 本実施形態において、1つの透明基板10の上に分割可能な複数の素子領域を形成してもよい。「素子領域」とは、他の領域と独立したカラーフィルタ30および1つまたは複数の電極20を有し、断裁することによって電極付きカラーフィルタ基板として機能し得る領域を意味する。そして、複数の素子領域を断裁して、複数の電極付きカラーフィルタ基板100を形成することができる。1つの透明基板10を用いて複数の電極付きカラーフィルタ基板100を効率的に形成することができる。素子領域の断裁は、ダイヤカッタースクライブ法、ダイシング法、ウォータージェット法、エッチング法、レーザー法などの当該技術において知られている任意の手段を用いて実施してもよい。また、素子領域の断裁は、後述するように、表示装置の製造時に実施してもよい。 In this embodiment, a plurality of element regions that can be divided may be formed on one transparent substrate 10. The “element region” means a region that has the color filter 30 and one or a plurality of electrodes 20 independent of other regions and can function as a color filter substrate with electrodes by cutting. Then, a plurality of element regions can be cut to form a plurality of electrode-attached color filter substrates 100. A plurality of color filter substrates 100 with electrodes can be efficiently formed using one transparent substrate 10. The cutting of the element region may be performed using any means known in the art such as a diamond cutter scribe method, a dicing method, a water jet method, an etching method, and a laser method. Further, the cutting of the element region may be performed at the time of manufacturing the display device, as will be described later.
 本発明の第4の実施形態は、第2の実施形態の電極付きカラーフィルタ基板を製造するための方法であって、第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、前記透明基板の第2面にカラーフィルタを形成する工程と、前記透明基板の第1面にパターン状の溝を形成する工程と、前記溝内に金属材料を付着させて、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含む複数の第1電極、および、複数の拡張部および配線部とを含む複数の第2電極前駆体を形成する工程と、前記複数の第1電極の直線部の上に絶縁膜を形成する工程と、前記絶縁膜の上に金属材料を付着させて、前記絶縁膜をまたぐ接続部を形成し、前記第2電極前駆体の隣接する2つの拡張部を前記接続部により接続し、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含む複数の第2電極を得る工程とを含み、前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施することを特徴とする。 4th Embodiment of this invention is a method for manufacturing the color filter substrate with an electrode of 2nd Embodiment, Comprising: It has a 1st surface and the 2nd surface on the opposite side to the said 1st surface. Preparing a transparent substrate, forming a color filter on the second surface of the transparent substrate, forming a patterned groove on the first surface of the transparent substrate, and attaching a metal material in the groove A plurality of first electrodes including a plurality of extending portions and one or a plurality of linear portions, and a plurality of first electrodes including a wiring portion, and a plurality of second electrodes including a plurality of extending portions and a wiring portion. Forming a precursor; forming an insulating film on the straight portions of the plurality of first electrodes; and depositing a metal material on the insulating film to form a connecting portion across the insulating film. And two adjacent extended portions of the second electrode precursor are connected to the connecting portion. Forming a plurality of second electrodes including a sensor unit having a plurality of extension portions and one or a plurality of connection portions, and a wiring portion, and forming the patterned groove, One or more selected from the group consisting of dicing processing, wheel scribing processing, water jet processing, air blast processing, sand blast processing, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin It implements using the technique of characterized by the above-mentioned.
 本実施形態において、透明基板10を準備する工程、および透明基板10の第2面にカラーフィルタを形成する工程は、第3の実施形態と同様に実施することができる。 In the present embodiment, the step of preparing the transparent substrate 10 and the step of forming the color filter on the second surface of the transparent substrate 10 can be performed in the same manner as in the third embodiment.
 また、透明基板の第1面にパターン状の溝を形成する工程は、第2電極20bの拡張部および配線部に対応する溝を設けることを除いて、第3の実施形態と同様に実施することができる。より具体的には、第1電極20aのための複数の拡張部25a、隣接する拡張部25aを接続する直線部26、および配線部22aに相当する位置に加えて、第2電極20bのための拡張部25bおよび配線部22bに相当する位置に溝が形成される。拡張部25bに対応する溝の一部は、配線部22bと接続されているが、拡張部25bに対応する溝の大部分は、他の溝と接続せずに形成される。 Further, the step of forming the pattern-like groove on the first surface of the transparent substrate is performed in the same manner as in the third embodiment, except that the groove corresponding to the extended portion and the wiring portion of the second electrode 20b is provided. be able to. More specifically, in addition to the plurality of extended portions 25a for the first electrode 20a, the straight portion 26 connecting the adjacent extended portions 25a, and the position corresponding to the wiring portion 22a, the second electrode 20b Grooves are formed at positions corresponding to the extended portion 25b and the wiring portion 22b. A part of the groove corresponding to the extended part 25b is connected to the wiring part 22b, but most of the groove corresponding to the extended part 25b is formed without being connected to other grooves.
 続いて、溝内への金属材料の付着を、第3の実施形態と同様に実施する。この段階で、複数の拡張部25a、隣接する拡張部25aを接続する直線部26、および配線部22aからなる複数の第1電極20aは完成形となる。一方、複数の第2電極20bは、複数の拡張部25bを接続する接続部24が形成されておらず、この段階では第2電極前駆体の形態にある。 Subsequently, adhesion of the metal material into the groove is performed in the same manner as in the third embodiment. At this stage, the plurality of first electrodes 20a including the plurality of extended portions 25a, the linear portions 26 connecting the adjacent extended portions 25a, and the wiring portions 22a are completed. On the other hand, the plurality of second electrodes 20b are not formed with connection portions 24 that connect the plurality of extended portions 25b, and are in the form of second electrode precursors at this stage.
 次に、第1電極20aの直線部26の上に絶縁膜23を形成する。絶縁膜23は、第2の実施形態で説明した感光性材料を透明基板10の第1面全体に塗布し、直線部26直上を含む所定の領域に感光性材料が残存するようなパターン状に光を照射し、次いで現像を行うことによって形成される。たとえば、UV硬化型コーティング組成物を用いる場合、直線部20直上を含む領域にUV光を照射する。一方、ポジ型感光性材料を用いる場合、直線部20直上を含む領域を除く第1面の大部分に所与の波長の光を照射する。現像は、用いた感光性材料に応じて、適当な液体を用いて実施することができる。 Next, an insulating film 23 is formed on the straight portion 26 of the first electrode 20a. The insulating film 23 is formed in a pattern so that the photosensitive material described in the second embodiment is applied to the entire first surface of the transparent substrate 10 and the photosensitive material remains in a predetermined region including the straight portion 26. It is formed by irradiating light and then developing. For example, when a UV curable coating composition is used, the UV light is irradiated to a region including the straight portion 20 directly above. On the other hand, when a positive photosensitive material is used, light having a given wavelength is irradiated on most of the first surface excluding the region including the portion directly above the straight portion 20. Development can be performed using an appropriate liquid depending on the photosensitive material used.
 次に、絶縁膜23上に金属材料を付着させて、絶縁膜23をまたぐ接続部24を形成し、前記第2電極前駆体の隣接する2つの拡張部25bを接続部24により接続して、第2電極20bを得る。金属材料の付着は、蒸着法、スパッタ法などによって透明基板10の全面(絶縁膜23の上面および側面を含む)に対して金属材料を堆積させ、次いでパターニングを行って不要部分の金属材料を除去することにより実施することができる。必要に応じて、金属材料の堆積は、複数種の金属材料を用いて、積層構造を有する金属膜を形成してもよい。パターニングは、たとえばポジ型フォトレジストを用いるフォトリソグラフィー法などの当該技術において知られている任意の手段により実施することができる。 Next, a metal material is deposited on the insulating film 23 to form a connecting portion 24 that straddles the insulating film 23, and the two adjacent extended portions 25b of the second electrode precursor are connected by the connecting portion 24, The second electrode 20b is obtained. The metal material is deposited by depositing the metal material on the entire surface of the transparent substrate 10 (including the upper surface and side surfaces of the insulating film 23) by vapor deposition or sputtering, and then performing patterning to remove the unnecessary metal material. Can be implemented. If necessary, the metal material may be deposited using a plurality of types of metal materials to form a metal film having a stacked structure. The patterning can be performed by any means known in the art such as a photolithography method using a positive photoresist.
 本実施形態においても、1つの透明基板10の上に分割可能な複数の素子領域を形成してもよい。そして、複数の素子領域を断裁して、複数の電極付きカラーフィルタ基板110を形成することができる。1つの透明基板10を用いて複数の電極付きカラーフィルタ基板110を効率的に形成することができる。素子領域の断裁は、ダイヤカッタースクライブ法、ダイシング法、ウォータージェット法、エッチング法、レーザー法などの当該技術において知られている任意の手段を用いて実施してもよい。また、素子領域の断裁は、後述するように、表示装置の製造時に実施してもよい。 Also in this embodiment, a plurality of element regions that can be divided may be formed on one transparent substrate 10. The plurality of element regions can be cut to form a plurality of electrode-attached color filter substrates 110. A plurality of color filter substrates 110 with electrodes can be efficiently formed using one transparent substrate 10. The cutting of the element region may be performed using any means known in the art such as a diamond cutter scribe method, a dicing method, a water jet method, an etching method, and a laser method. Further, the cutting of the element region may be performed at the time of manufacturing the display device, as will be described later.
 本発明の第5の実施形態は、第1または第2の実施形態の電極付きカラーフィルタと表示素子とを含むことを特徴とする表示装置である。表示素子は、液晶素子およびEL素子からなる群から選択される。 A fifth embodiment of the present invention is a display device including the color filter with electrodes and the display element of the first or second embodiment. The display element is selected from the group consisting of a liquid crystal element and an EL element.
 最初に、第2の実施形態の電極付きカラーフィルタ基板と、表示素子として液晶素子を用いる表示装置を説明する。図6に、本実施形態の表示装置の1つの構成例を示した。 First, a display device using a color filter substrate with electrodes of the second embodiment and a liquid crystal element as a display element will be described. FIG. 6 shows one configuration example of the display device of this embodiment.
 図6の例は、第2の実施形態の電極付きカラーフィルタ基板110の第1面110aに第2偏光板700およびカバー800が積層され、第2面110b側に液晶素子200、第1偏光板400およびバックライト500が積層されている。 In the example of FIG. 6, the second polarizing plate 700 and the cover 800 are laminated on the first surface 110a of the electrode-attached color filter substrate 110 of the second embodiment, and the liquid crystal element 200 and the first polarizing plate are formed on the second surface 110b side. 400 and the backlight 500 are stacked.
 液晶素子200は、1対の基板210および220の間に液晶層230を配置した構造を有する。基板210および220は、液晶に電界を印加するための電極、ならびに液晶を配向させるための配向膜(不図示)をさらに含んでもよい。 The liquid crystal element 200 has a structure in which a liquid crystal layer 230 is disposed between a pair of substrates 210 and 220. Substrates 210 and 220 may further include an electrode for applying an electric field to the liquid crystal and an alignment film (not shown) for aligning the liquid crystal.
 たとえば、基板210の上に、第1の方向に延びる複数のストライプ状部分電極からなる電極を設け、基板220の上に、第1の方向と交差する第2の方向に延びる複数のストライプ状部分電極からなる電極を設けて、パッシブマトリクス駆動型の液晶素子を形成することができる。好ましくは、第1の方向は、第2の方向と直交する。 For example, an electrode composed of a plurality of stripe-shaped partial electrodes extending in the first direction is provided on the substrate 210, and a plurality of stripe-shaped portions extending in the second direction intersecting the first direction is provided on the substrate 220. A passive matrix driving type liquid crystal element can be formed by providing an electrode formed of an electrode. Preferably, the first direction is orthogonal to the second direction.
 あるいはまた、基板210の上に、スイッチング素子と接続された複数の画素電極を設け、基板220の上に、表示領域全体にわたって一体に形成される共通電極を設けることによって、アクティブマトリクス駆動型の液晶素子200を得ることができる。スイッチング素子は、薄膜トランジスタ(TFT)など当該技術分野において知られている任意の素子を含んでもよい。基板210の上には、スイッチング素子を駆動するための走査線および信号線などの配線、ならびに液晶のスイッチング状態を維持するためのキャパシタなどをさらに設けることができる。 Alternatively, a plurality of pixel electrodes connected to the switching element are provided on the substrate 210, and a common electrode integrally formed over the entire display region is provided on the substrate 220, whereby active matrix driving type liquid crystal The element 200 can be obtained. The switching element may include any element known in the art such as a thin film transistor (TFT). On the substrate 210, wirings such as scanning lines and signal lines for driving the switching elements, capacitors for maintaining a liquid crystal switching state, and the like can be further provided.
 配向膜は、液晶層230と接触するように、基板210および220の最表面を構成することが好ましい。配向膜は、ポリイミドなどの当該技術において知られている任意の材料を用いて形成することができる。配向膜にラビング処理を行うことによって、液晶層220中の液晶分子を所定の方向に配向させることができる。 The alignment film preferably constitutes the outermost surfaces of the substrates 210 and 220 so as to be in contact with the liquid crystal layer 230. The alignment film can be formed using any material known in the art such as polyimide. By performing rubbing treatment on the alignment film, the liquid crystal molecules in the liquid crystal layer 220 can be aligned in a predetermined direction.
 液晶素子200は、TN型、STN型、VA型、MVA型、IPS型、OCB型などの当該技術で知られている任意の方式の素子であってもよい。液晶層230を構成する液晶材料は、素子の方式に適合することが当該技術において知られている任意の材料を含む。 The liquid crystal element 200 may be an element of any type known in the art, such as a TN type, STN type, VA type, MVA type, IPS type, OCB type. The liquid crystal material constituting the liquid crystal layer 230 includes any material known in the art to be compatible with the device type.
 本実施形態の変形例において、液晶表示素子200中の基板220を省略して、本発明の電極付きカラーフィルタ基板110のカラーフィルタ30の上に液晶駆動用電極および配向膜を設けてもよい。図7に本変形例の構成例を示した。図7の構成では、画素電極を含む基板210、液晶層230、および、液晶スイッチング用の電極および配向膜を含む電極付きカラーフィルタ基板110がこの順に積層されている。なお、カラーフィルタ30と液晶駆動用電極との間に、カラーフィルタ30に起因する凹凸を解消するための平坦化層をさらに設けてもよい。 In the modification of this embodiment, the substrate 220 in the liquid crystal display element 200 may be omitted, and the liquid crystal driving electrode and the alignment film may be provided on the color filter 30 of the electrode-attached color filter substrate 110 of the present invention. FIG. 7 shows a configuration example of this modification. In the configuration of FIG. 7, a substrate 210 including pixel electrodes, a liquid crystal layer 230, and a color filter substrate 110 with electrodes including an electrode for liquid crystal switching and an alignment film are stacked in this order. A flattening layer for eliminating unevenness caused by the color filter 30 may be further provided between the color filter 30 and the liquid crystal driving electrode.
 また、液晶分子を平面内でスイッチングするIPS型の素子においては、基板210または基板220の一方のみに電極を設け、他方の基板の電極を省略することができる。また、IPS型の素子では、電極を省略した他方の基板を、本発明の電極付きカラーフィルタ基板100で代替することができる。たとえば、基板210のみに電極を設ける場合、基板220を省略した図7の構成を採ってもよい。この場合、カラーフィルタ30の上に配向膜を設けて、配向膜を液晶層230と接触させる構成が好ましい。 Also, in an IPS type element that switches liquid crystal molecules in a plane, an electrode can be provided on only one of the substrate 210 and the substrate 220, and the electrode on the other substrate can be omitted. In the IPS type element, the other substrate from which the electrode is omitted can be replaced with the electrode-attached color filter substrate 100 of the present invention. For example, when an electrode is provided only on the substrate 210, the configuration shown in FIG. In this case, a configuration in which an alignment film is provided on the color filter 30 and the alignment film is in contact with the liquid crystal layer 230 is preferable.
 液晶素子200は、基板210および/または220上に設けた電極と外部駆動回路とを接続するためのフレキシブルプリント回路(FPC)基板、異方性導電膜(ACF)、TABモジュール、COFモジュール、COGモジュールなどをさらに含んでもよい。 The liquid crystal element 200 includes a flexible printed circuit (FPC) substrate, an anisotropic conductive film (ACF), a TAB module, a COF module, and a COG for connecting an electrode provided on the substrate 210 and / or 220 and an external driving circuit. A module or the like may be further included.
 第1偏光板400および第2偏光板700は、特定方向に偏光した光を選択的に透過させる特性を有する。液晶表示装置に用いる場合、第1偏光板400および第2偏光板700は、特定方向の直線偏光を透過させる特性を有する。また、第1偏光板400を透過する直線偏光の偏光方向と、第2偏光板700を透過する直線偏光の偏光方向となす角度は、使用する液晶材料の配向状態および素子の方式に依存して決定することができる。また、上記角度は、表示装置を、電界無印加状態でバックライトの光を透過させるノーマリー・ホワイト・モードで動作させるか、電界無印加状態でバックライトの光を透過させないノーマリー・ブラック・モードで動作させるかにも依存する。たとえば、TN方式またはSTN方式の表示装置をノーマリー・ホワイト・モードで動作させる場合、第1偏光板400の偏光方向と第2偏光板700の偏光方向とのなす角は、通常90°に設定される。 The first polarizing plate 400 and the second polarizing plate 700 have a characteristic of selectively transmitting light polarized in a specific direction. When used in a liquid crystal display device, the first polarizing plate 400 and the second polarizing plate 700 have a characteristic of transmitting linearly polarized light in a specific direction. The angle between the polarization direction of the linearly polarized light transmitted through the first polarizing plate 400 and the polarization direction of the linearly polarized light transmitted through the second polarizing plate 700 depends on the alignment state of the liquid crystal material to be used and the method of the element. Can be determined. In addition, the above-mentioned angle may be set so that the display device is operated in a normally white mode that transmits the light of the backlight without applying an electric field, or in a normally black mode that does not transmit the light of the backlight without applying an electric field. It depends on whether it works. For example, when a TN or STN display device is operated in a normally white mode, the angle between the polarization direction of the first polarizing plate 400 and the polarization direction of the second polarizing plate 700 is normally set to 90 °. The
 第1偏光板400および第2偏光板700は、ヨウ素化合物、二色性分子などを含む、当該技術において知られている任意の材料で形成することができる。 The first polarizing plate 400 and the second polarizing plate 700 can be formed of any material known in the art, including iodine compounds, dichroic molecules, and the like.
 バックライト500は、当該技術において知られている任意の光源を含む。たとえば、冷陰極蛍光管(CCFL)、発光ダイオード(LED)などをバックライト500として用いることができる。バックライト500は、表示装置の表示領域に配置してもよいし(直下型)、表示装置の周縁部に配置してもよい(サイドライト型またはエッジライト型)。サイドライト型またはエッジライト型の場合、導光板、プリズムシートなどを用いてバックライト500が発する光を、表示装置の表示領域全体に導くことができる。また、バックライト500は、単一の光源であってもよいし、複数の光源からなってもよい。複数の光源からなるバックライト500を用いる場合、表示内容に依存して、各光源のオン・オフを独立的に制御してもよい。 The backlight 500 includes any light source known in the art. For example, a cold cathode fluorescent tube (CCFL), a light emitting diode (LED), or the like can be used as the backlight 500. The backlight 500 may be arranged in a display area of the display device (directly under type) or may be arranged in a peripheral portion of the display device (side light type or edge light type). In the case of the side light type or the edge light type, light emitted from the backlight 500 can be guided to the entire display region of the display device using a light guide plate, a prism sheet, or the like. The backlight 500 may be a single light source or a plurality of light sources. When the backlight 500 including a plurality of light sources is used, on / off of each light source may be controlled independently depending on display contents.
 カバー800は、その下に存在する各層を保護することを目的とする。また、カバー800を通して表示素子200の表示内容を視認することになるため、カバー800は、可視光領域において透明であることが望ましい。カバー800は、ガラス、有機樹脂(ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)など)などの材料で形成することができる。 The purpose of the cover 800 is to protect each layer existing below it. In addition, since the display content of the display element 200 is visually recognized through the cover 800, the cover 800 is preferably transparent in the visible light region. The cover 800 can be formed of a material such as glass or organic resin (polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), or the like).
 本実施形態において、電極付きカラーフィルタ基板110に形成された第1電極20aおよび第2電極20bは、投影型静電容量方式タッチパネルのセンサ電極として機能する。一方、第2の実施形態の電極付きカラーフィルタ基板110に代えて第1の実施形態の電極付きカラーフィルタ基板100を用いる場合、第1偏光板700またはカバー800のいずれかの表面に設けた電極を組み合わせることによって、投影型静電容量方式タッチパネルを得ることができる。ここで、電極付きカラーフィルタ基板100の電極20は、1つの方向に延びる複数の部分電極から形成され、第1偏光板700またはカバー800のいずれかの表面に設けた電極は、交差する方向に延びる複数の部分電極から形成されてもよい。 In the present embodiment, the first electrode 20a and the second electrode 20b formed on the electrode-attached color filter substrate 110 function as sensor electrodes of the projected capacitive touch panel. On the other hand, when the color filter substrate 100 with an electrode according to the first embodiment is used instead of the color filter substrate with an electrode 110 according to the second embodiment, an electrode provided on the surface of either the first polarizing plate 700 or the cover 800. By combining these, a projected capacitive touch panel can be obtained. Here, the electrode 20 of the electrode-attached color filter substrate 100 is formed from a plurality of partial electrodes extending in one direction, and the electrode provided on the surface of either the first polarizing plate 700 or the cover 800 is in the intersecting direction. You may form from the several partial electrode extended.
 あるいはまた、第2の実施形態の電極付きカラーフィルタ基板110に代えて第1の実施形態の電極付きカラーフィルタ基板100を用いる場合、電極20を、表示領域に相当する形状のセンサ部と、3個以上(好ましくは4個)の配線部とで構成し、表面型静電容量方式タッチパネルを得ることもできる。 Alternatively, when the electrode-attached color filter substrate 100 of the first embodiment is used in place of the electrode-attached color filter substrate 110 of the second embodiment, the electrode 20 includes a sensor unit having a shape corresponding to the display region, and 3 It is possible to obtain a surface-type capacitive touch panel by configuring with at least four (preferably four) wiring portions.
 一方、第2の実施形態の電極付きカラーフィルタ基板110と、表示素子としてEL素子を用いる表示装置においては、電極付きカラーフィルタ基板110の第2面110bにEL素子が取り付けられる。必要に応じて、電極付きカラーフィルタ基板110の第1面110aにカバーを取り付けてもよい。 On the other hand, in the color filter substrate 110 with an electrode according to the second embodiment and a display device using an EL element as a display element, the EL element is attached to the second surface 110b of the color filter substrate with an electrode 110. If necessary, a cover may be attached to the first surface 110a of the color filter substrate 110 with an electrode.
 EL素子は、1対の基板の間に有機活性層が挟まれた構造を有する。1対の基板のそれぞれは、独立的に駆動可能な複数の発光部を形成するような配置で電極が形成されている。1対の基板のそれぞれに、交差する方向に延びる複数のストライプ状電極を設けて、パッシブマトリクス駆動型のEL素子を形成してもよい。あるいは、一方の基板にスイッチング素子と1対1で接続される複数の画素電極を設け、他方の基板に一体型の共通電極を設けて、アクティブマトリクス駆動型のEL素子を形成してもよい。さらに、有機活性層は、少なくとも発光層を含み、任意選択的に正孔注入層、正孔輸送層、電子輸送層、電子注入層などを含んでもよい。また、有機活性層は、白色に発光する1つの層であってもよいし、複数の色(たとえば、RGB)に発光する複数の区域がマトリクス状に配列された層であってもよい。 The EL element has a structure in which an organic active layer is sandwiched between a pair of substrates. Each of the pair of substrates has electrodes formed in an arrangement that forms a plurality of light-emitting portions that can be driven independently. A passive matrix driving type EL element may be formed by providing a plurality of striped electrodes extending in intersecting directions on each of a pair of substrates. Alternatively, an active matrix driving type EL element may be formed by providing a plurality of pixel electrodes connected to a switching element in one-to-one correspondence on one substrate and providing an integrated common electrode on the other substrate. Further, the organic active layer includes at least a light emitting layer, and may optionally include a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like. The organic active layer may be one layer that emits white light, or may be a layer in which a plurality of areas that emit light of a plurality of colors (for example, RGB) are arranged in a matrix.
 この場合にも、電極付きカラーフィルタ基板110に形成された第1電極20aおよび第2電極20bは、投影型静電容量方式タッチパネルのセンサ電極として機能する。一方、第2の実施形態の電極付きカラーフィルタ基板110に代えて第1の実施形態の電極付きカラーフィルタ基板100を用いる場合、前述のように、カバーなどの表面に設けた電極を組み合わせることによって投影型静電容量方式タッチパネルを形成してもよいし、電極20を表示領域に相当する形状のセンサ部21と3個以上(好ましくは4個)の配線部22とで構成して表面型静電容量方式タッチパネルを形成してもよい。 Also in this case, the first electrode 20a and the second electrode 20b formed on the electrode-attached color filter substrate 110 function as sensor electrodes of the projected capacitive touch panel. On the other hand, when using the color filter substrate 100 with an electrode according to the first embodiment instead of the color filter substrate with an electrode 110 according to the second embodiment, as described above, by combining the electrodes provided on the surface of a cover or the like. A projected capacitive touch panel may be formed, or the electrode 20 may be composed of a sensor portion 21 having a shape corresponding to a display area and three or more (preferably four) wiring portions 22 to form a surface type static touch panel. A capacitive touch panel may be formed.
 本発明の第6の実施形態は、第5の実施形態の表示装置の製造方法であって、第3または第4の実施形態に記載の方法によって電極付きカラーフィルタ基板を形成する工程と、前記電極付きカラーフィルタ基板の第2面側に、液晶素子およびEL素子からなる群から選択される表示素子を取り付ける工程とを含むことを特徴とする。 The sixth embodiment of the present invention is a method for manufacturing the display device according to the fifth embodiment, wherein a step of forming a color filter substrate with electrodes by the method described in the third or fourth embodiment, Attaching a display element selected from the group consisting of a liquid crystal element and an EL element to the second surface side of the color filter substrate with electrodes.
 電極付きカラーフィルタ基板の第2面側に対する表示素子の取り付けは、接着剤による貼り合わせなどを含む当該技術において知られている任意の手段で実施することができる。また、第1および第2偏光板、バックライト、カバーなど任意選択的要素についても、当該技術において知られている任意の手段による製造および取り付けが可能である。 The attachment of the display element to the second surface side of the color filter substrate with electrodes can be performed by any means known in the art including bonding with an adhesive. Also, optional elements such as the first and second polarizing plates, the backlight, and the cover can be manufactured and attached by any means known in the art.
 本実施形態において、第3および第4の実施形態で説明したように、1つの透明基板10の上に分割可能な複数の素子領域を形成した構造体を用いてもよい。この場合、たとえば、前述の構造体に対して複数の表示素子を取り付け、その後に透明基板10を断裁して、複数の表示装置を製造することができる。あるいはまた、前述の構造体に対して、1つの基板上に複数の表示素子が形成された表示素子構造体を取り付けて、透明基板10および表示素子構造体の基板の断裁を行って、複数の表示装置を製造してもよい。表示素子構造体の基板の断裁は、透明基板10と同様の手段で実施してもよい。 In this embodiment, as described in the third and fourth embodiments, a structure in which a plurality of separable element regions are formed on one transparent substrate 10 may be used. In this case, for example, a plurality of display devices can be manufactured by attaching a plurality of display elements to the above-described structure and then cutting the transparent substrate 10. Alternatively, a display element structure in which a plurality of display elements are formed on one substrate is attached to the above-described structure, and the transparent substrate 10 and the substrate of the display element structure are cut. A display device may be manufactured. The cutting of the substrate of the display element structure may be performed by the same means as the transparent substrate 10.
 本実施形態の変形例として、第3および第4の実施形態の方法において、第1面の溝形成および溝内への金属付着の前に、カラーフィルタ30の上(電極付きカラーフィルタ基板の第2面側)に表示素子を取り付けてもよい。この変形例では、表示素子を組み合わせた後にタッチセンサ用電極を形成することにより、カラーフィルタ基板の透明基板10と表示素子の基板210とを貼り合わせた状態で、透明基板10および基板120のスリミング加工を実施することができるという利点を有する。「スリミング加工」とは、基板の膜厚を減少させる工程を意味する。表示素子を組み合わせる前にタッチセンサ用電極を形成すると、カラーフィルタ基板の透明基板10、表示素子の基板210の両方に対して、スリミング加工が適用できなくなる。 As a modification of the present embodiment, in the method of the third and fourth embodiments, before forming the groove on the first surface and attaching the metal into the groove, the color filter 30 (the first color filter substrate with electrodes) A display element may be attached to the second surface side. In this modified example, the touch sensor electrode is formed after combining the display elements, so that the transparent substrate 10 of the color filter substrate and the substrate 210 of the display element are bonded together, and the slimming of the transparent substrate 10 and the substrate 120 is performed. It has the advantage that processing can be carried out. “Slimming” means a step of reducing the film thickness of the substrate. If the touch sensor electrodes are formed before the display elements are combined, the slimming process cannot be applied to both the transparent substrate 10 of the color filter substrate and the substrate 210 of the display element.
[実施例]
  (実施例1)
 厚さ300μmのアルミノシリケートガラス製の透明基板10の第2面に、スピンコーターを用いて黒色感光性組成物を塗布した。得られた塗膜を、ホットプレート上で5分間にわたって100℃に加熱し、塗膜を乾燥させた。次いで、所望するパターンを有するフォトマスクを通した100mJ/cmの高圧水銀灯光の照射、0.2質量%の炭酸水素ナトリウム水溶液を用いた30秒間にわたるシャワー現像、水洗、および熱風循環式オーブン中で30分間にわたる230℃での加熱乾燥を実施して、ブラックマトリクスを形成した。続いて、黒色感光性組成物に代えて赤色感光性組成物、緑色感光性組成物または青色感光性組成物を用いたこと、および各色に対応したフォトマスクを用いたことを除いて同様の手順により、赤色着色層、緑色着色層、および青色着色層を順次形成し、第2面上のカラーフィルタ30を得た。
[Example]
(Example 1)
The black photosensitive composition was applied to the second surface of the transparent substrate 10 made of aluminosilicate glass having a thickness of 300 μm using a spin coater. The obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film. Next, irradiation with 100 mJ / cm 2 high-pressure mercury lamp light through a photomask having a desired pattern, 30 seconds of shower development using a 0.2% by mass aqueous sodium hydrogen carbonate solution, washing with water, and in a hot air circulation oven And drying at 230 ° C. for 30 minutes to form a black matrix. Subsequently, the same procedure except that a red photosensitive composition, a green photosensitive composition or a blue photosensitive composition was used instead of the black photosensitive composition, and a photomask corresponding to each color was used. As a result, a red colored layer, a green colored layer, and a blue colored layer were sequentially formed to obtain a color filter 30 on the second surface.
 次に、レーザー加工によって、透明基板10の第1面に溝を形成した。後に第1電極20aの拡張部25aおよび直線部26、ならびに第2電極20bの拡張部25bが形成される箇所の溝は、5μmの幅および5μmの深さを有した。後に第1電極20aの配線部22aならびに第2電極20bの配線部22bが形成される箇所の溝は、20μmの幅および5μmの深さを有した。 Next, a groove was formed on the first surface of the transparent substrate 10 by laser processing. The grooves where the extended portions 25a and straight portions 26 of the first electrode 20a and the extended portions 25b of the second electrode 20b are formed later have a width of 5 μm and a depth of 5 μm. The groove where the wiring part 22a of the first electrode 20a and the wiring part 22b of the second electrode 20b are to be formed later had a width of 20 μm and a depth of 5 μm.
 続いて、スピンコーターを用いて、100nmの平均粒径を有する銀粒子を主成分とする導電性材料を塗布し、溝以外の部分に付着した導電性材料をドクターブレードで掻き取ることによって、溝内に導電性材料を充填した。続いて、ホットプレート上で30分間にわたって120℃に加熱し、第1電極20a(拡張部25aおよび直線部26からなるセンサ部21a、ならびに配線部22a)、ならびに、拡張部25bおよび配線部22bからなる第2電極前駆体を形成した。 Subsequently, using a spin coater, a conductive material mainly composed of silver particles having an average particle diameter of 100 nm is applied, and the conductive material adhering to a portion other than the groove is scraped off with a doctor blade. The inside was filled with a conductive material. Subsequently, the substrate is heated to 120 ° C. for 30 minutes on the hot plate, and from the first electrode 20a (the sensor unit 21a including the extended portion 25a and the linear portion 26 and the wiring portion 22a), and the extended portion 25b and the wiring portion 22b. A second electrode precursor was formed.
 続いて、スピンコーターを用いて第1面全面にネガ型レジストを塗布した。得られた塗膜を、ホットプレート上で5分間にわたって100℃に加熱し、塗膜を乾燥させた。次いで、第1電極20aの直線部26の位置に開口部を有するフォトマスクを通した100mJ/cmの高圧水銀灯光の照射、0.2質量%の炭酸水素ナトリウム水溶液を用いた30秒間にわたるシャワー現像、水洗、および熱風循環式オーブン中で30分間にわたる230℃での加熱乾燥を実施して、絶縁膜23を形成した。得られた絶縁膜23は、第1電極20aの直線部26の上に配置され、60μmの幅および100μmの長さ、ならびに2μmの膜厚を有した。 Subsequently, a negative resist was applied to the entire first surface using a spin coater. The obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film. Next, irradiation with 100 mJ / cm 2 high pressure mercury lamp light through a photomask having an opening at the position of the straight portion 26 of the first electrode 20a, shower for 30 seconds using a 0.2 mass% sodium bicarbonate aqueous solution The insulating film 23 was formed by performing development, washing with water, and heat drying at 230 ° C. for 30 minutes in a hot air circulating oven. The obtained insulating film 23 was disposed on the straight portion 26 of the first electrode 20a, and had a width of 60 μm, a length of 100 μm, and a film thickness of 2 μm.
 続いて、スパッタ法を用いて、膜厚35nmのMo膜、膜厚200nmのAl膜、および膜厚35nmのMo膜を、第1面の全面に形成した。次に、スピンコーターを用いて第1面全面にポジ型レジストを塗布した。得られた塗膜を、ホットプレート上で5分間にわたって100℃に加熱し、塗膜を乾燥させた。次いで、絶縁膜23および隣接する拡張部25bの一部に相当する位置に遮光部を有するフォトマスクを通した100mJ/cmの高圧水銀灯光の照射、2.3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いた60秒間にわたるシャワー現像、水洗を行い、絶縁膜23および隣接する拡張部25bの一部に相当する位置に配置された複数の部分からなるレジスト膜を形成した。次いで、リン酸/硝酸/酢酸/水(5/5/5/1)のエッチング液を用い、露出したMo/Al/Mo積層膜を除去した。続いて、2%水酸化カリウム水溶液であるレジスト剥離液を用いるレジスト膜の除去、および熱風循環式オーブン中で30分間にわたる230℃での加熱乾燥を実施して、接続部24を形成し、拡張部25bおよび接続部24からなるセンサ部21b、ならびに配線部22bからなる第2電極20bを得た。得られた接続部24は、絶縁膜23をまたいで隣接する拡張部25bに接続され、5μmの幅、150μmの長さ、および絶縁膜23上において270μmの膜厚を有した。また、得られた接続部24は、0.2Ω/□のシート抵抗値を得た。以上の方法により、電極付きカラーフィルタ基板110が得られた。 Subsequently, a 35 nm thick Mo film, a 200 nm thick Al film, and a 35 nm thick Mo film were formed on the entire first surface by sputtering. Next, a positive resist was applied to the entire first surface using a spin coater. The obtained coating film was heated to 100 ° C. for 5 minutes on a hot plate to dry the coating film. Next, irradiation with high-pressure mercury lamp light of 100 mJ / cm 2 through a photomask having a light-shielding part at a position corresponding to a part of the insulating film 23 and the adjacent extension part 25b, 2.3 mass% of tetramethylammonium hydroxide Shower development and water washing for 60 seconds using (TMAH) aqueous solution were performed, and a resist film composed of a plurality of portions arranged at positions corresponding to a part of the insulating film 23 and the adjacent extended portion 25b was formed. Next, the exposed Mo / Al / Mo laminated film was removed using an etching solution of phosphoric acid / nitric acid / acetic acid / water (5/5/5/1). Subsequently, the resist film is removed using a resist stripping solution that is a 2% aqueous potassium hydroxide solution, and heat drying is performed at 230 ° C. for 30 minutes in a hot air circulating oven to form the connection portion 24 and expand. The sensor part 21b which consists of the part 25b and the connection part 24, and the 2nd electrode 20b which consists of the wiring part 22b were obtained. The obtained connecting portion 24 was connected to the adjacent extended portion 25b across the insulating film 23, and had a width of 5 μm, a length of 150 μm, and a film thickness of 270 μm on the insulating film 23. Moreover, the obtained connection part 24 obtained the sheet resistance value of 0.2 ohm / square. The color filter substrate 110 with an electrode was obtained by the above method.
  (実施例2)
 実施例1で得られた電極付きカラーフィルタ基板110の第2面110bに、印刷法を用いて配向膜を形成した。一方、TFTを含むスイッチング回路および液晶駆動用電極を有する基板210を準備した。基板210の電極側の面に、印刷法を用いて配向膜を形成した。続いて、両基板の配向膜にラビング処理を行った。さらに、シール材を用いて電極付きカラーフィルタ基板110および基板210を、配向膜が対向するように貼り合わせ、両基板の間隙に液晶材料を注入して液晶層230を形成し、電極付きカラーフィルタ基板110に取り付けられた液晶素子200を得た。
(Example 2)
An alignment film was formed on the second surface 110b of the electrode-attached color filter substrate 110 obtained in Example 1 using a printing method. On the other hand, a substrate 210 having a switching circuit including TFTs and a liquid crystal driving electrode was prepared. An alignment film was formed on the electrode side surface of the substrate 210 by a printing method. Subsequently, rubbing treatment was performed on the alignment films of both substrates. Furthermore, the color filter substrate 110 with an electrode and the substrate 210 are bonded using a sealing material so that the alignment films face each other, and a liquid crystal material is injected into the gap between the two substrates to form a liquid crystal layer 230. A liquid crystal element 200 attached to the substrate 110 was obtained.
 続いて、基板210の液晶駆動用電極の液晶駆動用外部回路への接続、ならびに電極付きカラーフィルタ基板110の第1電極20aおよび第2電極20bのタッチセンサ駆動用外部回路への接続を行った。 Subsequently, the liquid crystal driving electrode of the substrate 210 was connected to the liquid crystal driving external circuit, and the first electrode 20a and the second electrode 20b of the electrode-attached color filter substrate 110 were connected to the touch sensor driving external circuit. .
 さらに、電極付きカラーフィルタ基板110の第1面110aに、接着剤を用いて、第2偏光板700、ならびにアルミノシリケートガラス製のカバー800をこの順に貼り合わせた。そして、液晶素子200の電極付きカラーフィルタ基板110とは反対側の面に、接着剤を用いて第1偏光板400およびバックライト500をこの順に貼り合わせて、図7に示す構成を有する、IPS液晶素子を用いた表示装置を得た。得られた表示装置は、不良部分を含まず、正常な表示およびタッチ位置検出機能を提供した。 Furthermore, the second polarizing plate 700 and the cover 800 made of aluminosilicate glass were bonded in this order to the first surface 110a of the color filter substrate 110 with electrodes using an adhesive. Then, the first polarizing plate 400 and the backlight 500 are bonded together in this order on the surface of the liquid crystal element 200 opposite to the electrode-attached color filter substrate 110 using an adhesive, and the IPS has the configuration shown in FIG. A display device using a liquid crystal element was obtained. The obtained display device did not include a defective portion and provided a normal display and touch position detection function.
  (実施例3)
 実施例1と同様の手順を用いて、厚さ300μmのアルミノシリケートガラス製基板の一方の面に、ブラックマトリクスおよびRGB着色層からなるカラーフィルタ30を形成した。
(Example 3)
Using the same procedure as in Example 1, a color filter 30 composed of a black matrix and an RGB colored layer was formed on one surface of a 300 μm thick aluminosilicate glass substrate.
 別途、厚さ50μmのCOPフィルムを準備した。COPフィルムの一方の面にエンボス加工を行い、溝を形成した。溝の形成位置、ならびに形成される溝の幅および深さは実施例1と同様である。その後、実施例1と同様の手順を用いて、第1電極20aおよび第2電極20bを形成した。 Separately, a COP film having a thickness of 50 μm was prepared. Embossing was performed on one side of the COP film to form a groove. The formation position of the groove, and the width and depth of the formed groove are the same as in the first embodiment. Thereafter, the same procedure as in Example 1 was used to form the first electrode 20a and the second electrode 20b.
 最後に、接着剤を用いて、アルミノシリケートガラス製基板の他方の面と、COPフィルムの他方の面とを貼り合わせて、アルミノシリケートガラス/COPの積層構造を有する透明基板10を含む電極付きカラーフィルタ基板110を得た。 Finally, using an adhesive, the other surface of the substrate made of aluminosilicate glass and the other surface of the COP film are bonded to each other, and a color with electrodes including a transparent substrate 10 having a laminated structure of aluminosilicate glass / COP A filter substrate 110 was obtained.
  (実施例4)
 実施例3で得られた電極付きカラーフィルタ基板110を用いたことを除いて実施例2と同様の手順により、IPS液晶素子を含む表示装置を形成した。得られた表示装置は、不良部分を含まず、正常な表示およびタッチ位置検出機能を提供した。
Example 4
A display device including an IPS liquid crystal element was formed by the same procedure as in Example 2 except that the electrode-attached color filter substrate 110 obtained in Example 3 was used. The obtained display device did not include a defective portion and provided a normal display and touch position detection function.
  (実施例5)
 実施例1と同様の手順を用いて、厚さ300μmのアルミノシリケートガラス製の透明基板10の第2面に、カラーフィルタ30を形成した。続いて、第2面のカラーフィルタ30の上に、印刷法を用いて配向膜を形成した。
(Example 5)
Using the same procedure as in Example 1, a color filter 30 was formed on the second surface of a transparent substrate 10 made of aluminosilicate glass having a thickness of 300 μm. Subsequently, an alignment film was formed on the color filter 30 on the second surface using a printing method.
 次に、TFTを含むスイッチング回路および液晶駆動用電極を有する基板210を準備した。基板210の電極側の面に、印刷法を用いて配向膜を形成した。続いて、両基板の配向膜にラビング処理を行った。さらに、シール材を用いて透明基板10および基板210を、配向膜が対向するように貼り合わせ、両基板の間隙に液晶材料を注入して液晶層230を形成し、電極付きカラーフィルタ基板110に取り付けられた液晶素子200を得た。 Next, a substrate 210 having a switching circuit including TFTs and a liquid crystal driving electrode was prepared. An alignment film was formed on the electrode side surface of the substrate 210 by a printing method. Subsequently, rubbing treatment was performed on the alignment films of both substrates. Further, the transparent substrate 10 and the substrate 210 are bonded together using a sealing material so that the alignment films face each other, and a liquid crystal material is injected into a gap between the two substrates to form a liquid crystal layer 230. The attached liquid crystal element 200 was obtained.
 続いて、透明基板10の第1面に、実施例1と同様の手順を用いて、第1電極20aおよび第2電極20bを形成し、液晶素子200が取り付けられた電極付きカラーフィルタ基板110を得た。 Subsequently, the first electrode 20a and the second electrode 20b are formed on the first surface of the transparent substrate 10 using the same procedure as in Example 1, and the electrode-attached color filter substrate 110 to which the liquid crystal element 200 is attached is formed. Obtained.
 さらに、実施例2と同様の手順を用いて、基板210の液晶駆動用電極の液晶駆動用外部回路への接続、電極付きカラーフィルタ基板110の第1電極20aおよび第2電極20bのタッチセンサ駆動用外部回路への接続、接着剤による第1偏光板400、第2偏光板700、バックライト500、およびアルミノシリケートガラス製のカバー800の貼り合わせを行い、IPS液晶素子を含む表示装置を得た。得られた表示装置は、不良部分を含まず、正常な表示およびタッチ位置検出機能を提供した。 Further, using the same procedure as in the second embodiment, the liquid crystal driving electrode of the substrate 210 is connected to the liquid crystal driving external circuit, and the first sensor 20a and the second electrode 20b of the electrode-attached color filter substrate 110 are driven by the touch sensor. The first polarizing plate 400, the second polarizing plate 700, the backlight 500, and the cover 800 made of aluminosilicate glass were bonded to each other, and a display device including an IPS liquid crystal element was obtained. . The obtained display device did not include a defective portion and provided a normal display and touch position detection function.
  (実施例6)
 実施例1と同様の手順を用いて、厚さ300μmのアルミノシリケートガラス製基板の一方の面に、ブラックマトリクスおよびRGB着色層からなるカラーフィルタ30を形成した。続いて、カラーフィルタ30の上に、印刷法を用いて配向膜を形成した。
(Example 6)
Using the same procedure as in Example 1, a color filter 30 composed of a black matrix and an RGB colored layer was formed on one surface of a 300 μm thick aluminosilicate glass substrate. Subsequently, an alignment film was formed on the color filter 30 by using a printing method.
 次に、TFTを含むスイッチング回路および液晶駆動用電極を有する基板210を準備した。基板210の電極側の面に、印刷法を用いて配向膜を形成した。続いて、両基板の配向膜にラビング処理を行った。さらに、シール材を用いてアルミノシリケートガラス製基板および基板210を、配向膜が対向するように貼り合わせ、両基板の間隙に液晶材料を注入して液晶層230を形成し、アルミノシリケートガラス製基板に取り付けられた液晶素子200を得た。 Next, a substrate 210 having a switching circuit including TFTs and a liquid crystal driving electrode was prepared. An alignment film was formed on the electrode side surface of the substrate 210 by a printing method. Subsequently, rubbing treatment was performed on the alignment films of both substrates. Further, the substrate made of aluminosilicate glass and the substrate 210 are bonded together using a sealing material so that the alignment films face each other, and a liquid crystal material 230 is formed by injecting a liquid crystal material into the gap between the two substrates to form a substrate made of aluminosilicate glass. The liquid crystal element 200 attached to the was obtained.
 別途、厚さ50μmのCOPフィルムを準備した。COPフィルムの一方の面にエンボス加工を行い、溝を形成した。溝の形成位置、ならびに形成される溝の幅および深さは実施例1と同様である。その後、実施例1と同様の手順を用いて、第1電極20aおよび第2電極20bを形成した。 Separately, a COP film having a thickness of 50 μm was prepared. Embossing was performed on one side of the COP film to form a groove. The formation position of the groove, and the width and depth of the formed groove are the same as in the first embodiment. Thereafter, the same procedure as in Example 1 was used to form the first electrode 20a and the second electrode 20b.
 最後に、接着剤を用いて、アルミノシリケートガラス製基板の他方の面と、COPフィルムの他方の面とを貼り合わせて、アルミノシリケートガラス/COPの積層構造を有する透明基板10を含む電極付きカラーフィルタ基板110に取り付けられた液晶素子200を得た。 Finally, using an adhesive, the other surface of the substrate made of aluminosilicate glass and the other surface of the COP film are bonded to each other, and a color with electrodes including a transparent substrate 10 having a laminated structure of aluminosilicate glass / COP A liquid crystal element 200 attached to the filter substrate 110 was obtained.
 さらに、実施例2と同様の手順を用いて、基板210の液晶駆動用電極の液晶駆動用外部回路への接続、電極付きカラーフィルタ基板110の第1電極20aおよび第2電極20bのタッチセンサ駆動用外部回路への接続、接着剤による第1偏光板400、第2偏光板700、バックライト500、およびアルミノシリケートガラス製のカバー800の貼り合わせを行い、IPS液晶素子を含む表示装置を得た。得られた表示装置は、不良部分を含まず、正常な表示およびタッチ位置検出機能を提供した。 Further, using the same procedure as in the second embodiment, the liquid crystal driving electrode of the substrate 210 is connected to the liquid crystal driving external circuit, and the first sensor 20a and the second electrode 20b of the electrode-attached color filter substrate 110 are driven by the touch sensor. The first polarizing plate 400, the second polarizing plate 700, the backlight 500, and the cover 800 made of aluminosilicate glass were bonded to each other, and a display device including an IPS liquid crystal element was obtained. . The obtained display device did not include a defective portion and provided a normal display and touch position detection function.
  10 透明基板
  20 電極
   20a 第1電極
   20b 第2電極
  21 センサ部
  22(a,b) 配線部
  23(a,b) 絶縁膜
  24 接続部
  25(a,b) 拡張部
  26 直線部
 100,110 電極付きカラーフィルタ基板
 110a 第1面
 110b 第2面
 200 液晶素子
   210、220 基板
   230 液晶層
 400 第1偏光板
 500 バックライト
 700 第2偏光板
 800 カバー
DESCRIPTION OF SYMBOLS 10 Transparent substrate 20 Electrode 20a 1st electrode 20b 2nd electrode 21 Sensor part 22 (a, b) Wiring part 23 (a, b) Insulating film 24 Connection part 25 (a, b) Expansion part 26 Linear part 100, 110 Electrode With color filter substrate 110a first surface 110b second surface 200 liquid crystal element 210, 220 substrate 230 liquid crystal layer 400 first polarizing plate 500 backlight 700 second polarizing plate 800 cover

Claims (23)

  1.  第1面と、前記第1面と反対側の第2面とを有し、前記第1面にパターン状の溝を有する透明基板と、
     前記第2面上のカラーフィルタと、
     前記パターン状の溝内に、センサ部および配線部からなる1つまたは複数の電極と
    を含むことを特徴とする電極付きカラーフィルタ基板。
    A transparent substrate having a first surface and a second surface opposite to the first surface, and having a patterned groove on the first surface;
    A color filter on the second surface;
    A color filter substrate with an electrode, wherein the pattern-shaped groove includes one or a plurality of electrodes including a sensor portion and a wiring portion.
  2.  前記透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含むことを特徴とする請求項1に記載の電極付きカラーフィルタ基板。 2. The color filter substrate with an electrode according to claim 1, wherein the transparent substrate contains at least one material selected from the group consisting of glass and organic resin.
  3.  前記透明基板は、複数のサブ基板の積層構造を有することを特徴とする請求項1に記載の電極付きカラーフィルタ基板。 2. The color filter substrate with an electrode according to claim 1, wherein the transparent substrate has a laminated structure of a plurality of sub-substrates.
  4.  前記電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていることを特徴とする請求項1に記載の電極付きカラーフィルタ基板。 2. The electrode according to claim 1, wherein the electrode is formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium. With color filter substrate.
  5.  第1面と、前記第1面と反対側の第2面とを有し、前記第1面にパターン状の溝を有する透明基板と、
     前記第2面上のカラーフィルタと、
     1つまたは複数の第1電極と、
     1つまたは複数の絶縁膜と、
     1つまたは複数の第2電極と
    を含み、
     前記第1電極のそれぞれは、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含み、隣接する2つの拡張部は直線部により接続され、前記拡張部、前記直線部および前記配線部は、前記溝内に存在し、
     前記第2電極のそれぞれは、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含み、隣接する2つの拡張部は接続部により接続され、前記拡張部および前記配線部は、前記溝内に存在し、
     前記絶縁膜のそれぞれは、前記第1電極の直線部の上に形成されており、
     前記第1電極および前記第2電極は、第1電極の直線部および第2電極の接続部において交差し、
     前記第2電極の接続部は、前記絶縁膜をまたいで形成されている
    ことを特徴とする電極付きカラーフィルタ基板。
    A transparent substrate having a first surface and a second surface opposite to the first surface, and having a patterned groove on the first surface;
    A color filter on the second surface;
    One or more first electrodes;
    One or more insulating films;
    One or more second electrodes,
    Each of the first electrodes includes a sensor part having a plurality of extension parts and one or a plurality of linear parts, and a wiring part, and two adjacent extension parts are connected by a linear part, the extension part, The straight portion and the wiring portion exist in the groove,
    Each of the second electrodes includes a sensor part having a plurality of extension parts and one or a plurality of connection parts, and a wiring part, and two adjacent extension parts are connected by a connection part, and the extension parts and The wiring portion exists in the groove,
    Each of the insulating films is formed on a straight portion of the first electrode,
    The first electrode and the second electrode intersect at a straight portion of the first electrode and a connection portion of the second electrode,
    The electrode-attached color filter substrate, wherein the connection portion of the second electrode is formed across the insulating film.
  6.  前記透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含むことを特徴とする請求項5に記載の電極付きカラーフィルタ基板。 The color filter substrate with an electrode according to claim 5, wherein the transparent substrate contains at least one material selected from the group consisting of glass and organic resin.
  7.  前記透明基板は、複数のサブ基板の積層構造を有することを特徴とする請求項5に記載の電極付きカラーフィルタ基板。 The color filter substrate with electrodes according to claim 5, wherein the transparent substrate has a laminated structure of a plurality of sub-substrates.
  8.  前記電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていることを特徴とする請求項5に記載の電極付きカラーフィルタ基板。 6. The electrode according to claim 5, wherein the electrode is made of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium. With color filter substrate.
  9.  第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、
     前記透明基板の第2面にカラーフィルタを形成する工程と、
     前記透明基板の第1面にパターン状の溝を形成する工程と、
     前記溝内に金属材料を付着させて、1つまたは複数の電極を形成する工程と
    を含み、
     前記電極はセンサ部および配線部からなり、
     前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施する
    ことを特徴とする電極付きカラーフィルタ基板の製造方法。
    Preparing a transparent substrate having a first surface and a second surface opposite to the first surface;
    Forming a color filter on the second surface of the transparent substrate;
    Forming a patterned groove on the first surface of the transparent substrate;
    Depositing a metal material in the groove to form one or more electrodes,
    The electrode consists of a sensor part and a wiring part,
    The process of forming the pattern-shaped groove includes dicing processing, wheel scribe processing, water jet processing, air blast processing, sand blast processing, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin. A method for producing a color filter substrate with an electrode, which is carried out using one or more techniques selected from the group consisting of:
  10.  前記透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含むことを特徴とする請求項9に記載の電極付きカラーフィルタ基板の製造方法。 The method for producing a color filter substrate with an electrode according to claim 9, wherein the transparent substrate contains at least one material selected from the group consisting of glass and organic resin.
  11.  前記透明基板は、複数のサブ基板の積層構造を有することを特徴とする請求項9に記載の電極付きカラーフィルタ基板の製造方法。 The method for manufacturing a color filter substrate with an electrode according to claim 9, wherein the transparent substrate has a laminated structure of a plurality of sub-substrates.
  12.  前記電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていることを特徴とする請求項9に記載の電極付きカラーフィルタ基板の製造方法。 The electrode according to claim 9, wherein the electrode is formed of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium. Of manufacturing a color filter substrate with a filter.
  13.  前記透明基板を断裁して、複数の電極付きカラーフィルタ基板を得る工程をさらに含むことを特徴とする請求項9に記載の電極付きカラーフィルタ基板の製造方法。 10. The method for producing a color filter substrate with electrodes according to claim 9, further comprising a step of cutting the transparent substrate to obtain a plurality of color filter substrates with electrodes.
  14.  第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、
     前記透明基板の第2面にカラーフィルタを形成する工程と、
     前記透明基板の第1面にパターン状の溝を形成する工程と、
     前記溝内に金属材料を付着させて、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含む複数の第1電極、および、複数の拡張部および配線部とを含む複数の第2電極前駆体を形成する工程と、
     前記複数の第1電極の直線部の上に絶縁膜を形成する工程と、
     前記絶縁膜の上に金属材料を付着させて、前記絶縁膜をまたぐ接続部を形成し、前記第2電極前駆体の隣接する2つの拡張部を前記接続部により接続し、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含む複数の第2電極を得る工程と
    を含み、
     前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施する
    ことを特徴とする電極付きカラーフィルタ基板の製造方法。
    Preparing a transparent substrate having a first surface and a second surface opposite to the first surface;
    Forming a color filter on the second surface of the transparent substrate;
    Forming a patterned groove on the first surface of the transparent substrate;
    A plurality of first electrodes including a sensor unit having a plurality of extended portions and one or a plurality of straight portions by attaching a metal material in the groove, and a plurality of extended portions and a wiring portion Forming a plurality of second electrode precursors comprising:
    Forming an insulating film on the straight portions of the plurality of first electrodes;
    A metal material is deposited on the insulating film to form a connecting portion that straddles the insulating film, two adjacent extended portions of the second electrode precursor are connected by the connecting portion, and a plurality of extended portions Obtaining a plurality of second electrodes including a sensor part having one or a plurality of connection parts, and a wiring part,
    The process of forming the pattern-shaped groove includes dicing processing, wheel scribe processing, water jet processing, air blast processing, sand blast processing, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin. A method for producing a color filter substrate with an electrode, which is carried out using one or more techniques selected from the group consisting of:
  15.  前記透明基板は、ガラスおよび有機樹脂からなる群から選択される少なくとも1種の材料を含むことを特徴とする請求項14に記載の電極付きカラーフィルタ基板の製造方法。 The method for producing a color filter substrate with an electrode according to claim 14, wherein the transparent substrate contains at least one material selected from the group consisting of glass and organic resin.
  16.  前記透明基板は、複数のサブ基板の積層構造を有することを特徴とする請求項14に記載の電極付きカラーフィルタ基板の製造方法。 The method for manufacturing a color filter substrate with an electrode according to claim 14, wherein the transparent substrate has a laminated structure of a plurality of sub-substrates.
  17.  前記電極は、金、銀、銅、アルミニウム、鉄およびインジウムからなる群から選択される1種または複数種の元素を含む金属材料で形成されていることを特徴とする請求項14に記載の電極付きカラーフィルタ基板の製造方法。 The electrode according to claim 14, wherein the electrode is made of a metal material containing one or more elements selected from the group consisting of gold, silver, copper, aluminum, iron and indium. Of manufacturing a color filter substrate with a filter.
  18.  前記透明基板を断裁して、複数の電極付きカラーフィルタ基板を得る工程をさらに含むことを特徴とする請求項14に記載の電極付きカラーフィルタ基板の製造方法。 The method for producing a color filter substrate with an electrode according to claim 14, further comprising a step of cutting the transparent substrate to obtain a plurality of color filter substrates with an electrode.
  19.  請求項1から8のいずれかに記載の電極付きカラーフィルタ基板と、液晶素子およびEL素子からなる群から選択される表示素子とを含むことを特徴とする表示装置。 A display device comprising the color filter substrate with an electrode according to any one of claims 1 to 8, and a display element selected from the group consisting of a liquid crystal element and an EL element.
  20.  請求項9から18のいずれかに記載の方法により電極付きカラーフィルタ基板を形成する工程と、
     前記電極付きカラーフィルタ基板の第2面側に、液晶素子およびEL素子からなる群から選択される表示素子を取り付ける工程と
    を含むことを特徴とする表示装置の製造方法。
    A step of forming a color filter substrate with an electrode by the method according to any one of claims 9 to 18,
    Attaching a display element selected from the group consisting of a liquid crystal element and an EL element to the second surface side of the color filter substrate with an electrode.
  21.  前記電極付きカラーフィルタ基板および前記表示素子の積層体を断裁して、複数の表示装置を得る工程をさらに含むことを特徴とする請求項20に記載の表示装置の製造方法。 The method for manufacturing a display device according to claim 20, further comprising a step of cutting the color filter substrate with electrodes and the laminate of the display elements to obtain a plurality of display devices.
  22.  第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、
     前記透明基板の第2面にカラーフィルタを形成する工程と、
     前記カラーフィルタ上に、液晶素子およびEL素子からなる群から選択される表示素子を取り付ける工程と、
     前記透明基板の第1面にパターン状の溝を形成する工程と、
     前記溝内に金属材料を堆積させて、1つまたは複数の電極を形成する工程と
    を含み、
     前記電極はセンサ部および配線部からなり、
     前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施する
    ことを特徴とする表示装置の製造方法。
    Preparing a transparent substrate having a first surface and a second surface opposite to the first surface;
    Forming a color filter on the second surface of the transparent substrate;
    Attaching a display element selected from the group consisting of a liquid crystal element and an EL element on the color filter;
    Forming a patterned groove on the first surface of the transparent substrate;
    Depositing a metal material in the groove to form one or more electrodes;
    The electrode consists of a sensor part and a wiring part,
    The process of forming the pattern-shaped groove includes dicing processing, wheel scribe processing, water jet processing, air blast processing, sand blast processing, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin. A method for manufacturing a display device, which is performed using one or more techniques selected from the group consisting of:
  23.  第1面と、前記第1面と反対側の第2面とを有する透明基板を準備する工程と、
     前記透明基板の第2面にカラーフィルタを形成する工程と、
     前記カラーフィルタ上に、液晶素子およびEL素子からなる群から選択される表示素子を取り付ける工程と、
     前記透明基板の第1面にパターン状の溝を形成する工程と、
     前記溝内に金属材料を堆積させて、複数の拡張部と1つまたは複数の直線部とを有するセンサ部、および配線部とを含む複数の第1電極、および、複数の拡張部および配線部とを含む複数の第2電極前駆体を形成する工程と、
     前記複数の第1電極の直線部の上に絶縁膜を形成する工程と、
     前記絶縁膜の上に金属材料を堆積させて、前記絶縁膜をまたぐ接続部を形成し、前記第2電極前駆体の隣接する2つの拡張部を前記接続部により接続し、複数の拡張部と1つまたは複数の接続部とを有するセンサ部、および配線部とを含む複数の第2電極を得る工程と
    を含み、
     前記パターン状の溝を形成する工程を、ダイシング加工、ホイールスクライブ加工、ウォータージェット加工、エアーブラスト加工、サンドブラスト加工、レーザー加工、エンボス加工、エッチング、インプリントリソグラフィー、および感光性樹脂を用いたフォトリソグラフィーからなる群から選択される1つまたは複数の技術を用いて実施する
    ことを特徴とする表示装置の製造方法。
    Preparing a transparent substrate having a first surface and a second surface opposite to the first surface;
    Forming a color filter on the second surface of the transparent substrate;
    Attaching a display element selected from the group consisting of a liquid crystal element and an EL element on the color filter;
    Forming a patterned groove on the first surface of the transparent substrate;
    A plurality of first electrodes including a sensor part having a plurality of extension parts and one or a plurality of straight parts, and a wiring part by depositing a metal material in the groove, and a plurality of extension parts and wiring parts Forming a plurality of second electrode precursors comprising:
    Forming an insulating film on the straight portions of the plurality of first electrodes;
    A metal material is deposited on the insulating film to form a connecting portion that straddles the insulating film, two adjacent extended portions of the second electrode precursor are connected by the connecting portion, and a plurality of extended portions Obtaining a plurality of second electrodes including a sensor part having one or a plurality of connection parts, and a wiring part,
    The process of forming the pattern-shaped groove includes dicing processing, wheel scribe processing, water jet processing, air blast processing, sand blast processing, laser processing, embossing, etching, imprint lithography, and photolithography using a photosensitive resin. A method for manufacturing a display device, which is performed using one or more techniques selected from the group consisting of:
PCT/JP2015/003469 2014-12-18 2015-07-09 Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate WO2016098268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014256207 2014-12-18
JP2014-256207 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016098268A1 true WO2016098268A1 (en) 2016-06-23

Family

ID=56126184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003469 WO2016098268A1 (en) 2014-12-18 2015-07-09 Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate

Country Status (2)

Country Link
TW (1) TW201629589A (en)
WO (1) WO2016098268A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107506082A (en) * 2017-08-31 2017-12-22 广东欧珀移动通信有限公司 Array base palte, self-tolerant touch-control display panel and electronic equipment
WO2018110398A1 (en) * 2016-12-14 2018-06-21 シャープ株式会社 Wiring substrate, position input device, display panel with position input function, and method for manufacturing wiring substrate
CN110032293A (en) * 2018-01-11 2019-07-19 夏普株式会社 The manufacturing method of substrate, display device and substrate
JP2019521466A (en) * 2016-07-07 2019-07-25 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Organic light emitting diode substrate, method of manufacturing the same, display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301974A (en) * 2004-03-15 2005-10-27 Sharp Corp Coordinate position detector
JP2007280101A (en) * 2006-04-07 2007-10-25 Sharp Corp Touch panel device and display
WO2011089975A1 (en) * 2010-01-21 2011-07-28 大日本印刷株式会社 Touch panel member, as well as display device and touch panel using the touch panel member
JP2011170485A (en) * 2010-02-17 2011-09-01 Sony Corp Method for producing electrical solid-state device
JP2013521563A (en) * 2010-03-03 2013-06-10 ミレナノテク シーオー.,エルティーディー. Capacitive touch panel and manufacturing method thereof
WO2014121583A1 (en) * 2013-02-06 2014-08-14 南昌欧菲光科技有限公司 Electrically-conductive film, a manufacturing method therefor, and touch screen comprising the electrically-conductive film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301974A (en) * 2004-03-15 2005-10-27 Sharp Corp Coordinate position detector
JP2007280101A (en) * 2006-04-07 2007-10-25 Sharp Corp Touch panel device and display
WO2011089975A1 (en) * 2010-01-21 2011-07-28 大日本印刷株式会社 Touch panel member, as well as display device and touch panel using the touch panel member
JP2011170485A (en) * 2010-02-17 2011-09-01 Sony Corp Method for producing electrical solid-state device
JP2013521563A (en) * 2010-03-03 2013-06-10 ミレナノテク シーオー.,エルティーディー. Capacitive touch panel and manufacturing method thereof
WO2014121583A1 (en) * 2013-02-06 2014-08-14 南昌欧菲光科技有限公司 Electrically-conductive film, a manufacturing method therefor, and touch screen comprising the electrically-conductive film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521466A (en) * 2016-07-07 2019-07-25 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Organic light emitting diode substrate, method of manufacturing the same, display device
WO2018110398A1 (en) * 2016-12-14 2018-06-21 シャープ株式会社 Wiring substrate, position input device, display panel with position input function, and method for manufacturing wiring substrate
CN110073319A (en) * 2016-12-14 2019-07-30 夏普株式会社 The manufacturing method of wiring substrate, location input device, the display panel with position input function and wiring substrate
US10719185B2 (en) 2016-12-14 2020-07-21 Sharp Kabushiki Kaisha Wiring board, position input device, position input function-equipped display panel, and method of producing wiring board
CN110073319B (en) * 2016-12-14 2022-05-03 夏普株式会社 Wiring board, position input device, display panel with position input function, and method for manufacturing wiring board
CN107506082A (en) * 2017-08-31 2017-12-22 广东欧珀移动通信有限公司 Array base palte, self-tolerant touch-control display panel and electronic equipment
CN110032293A (en) * 2018-01-11 2019-07-19 夏普株式会社 The manufacturing method of substrate, display device and substrate

Also Published As

Publication number Publication date
TW201629589A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
US9727195B2 (en) Touch panel and method for fabricating the same
JP4473238B2 (en) Liquid crystal display device and manufacturing method thereof
KR20210066773A (en) Display substrate, display panel and method of manufacturing a polarizer
KR20170050653A (en) Flexible Display and Method for Manufacturing the Same
WO2016098268A1 (en) Electrode-equipped color filter substrate, display device including that substrate and method for manufacturing that substrate
US10942390B2 (en) Display substrate and fabricating method thereof, and display panel
US20140240624A1 (en) Touch panel, display device provided with touch panel, and method for manufacturing touch panel
WO2012165221A1 (en) Liquid crystal display device and method for manufacturing same
JP2011075809A (en) Liquid crystal display panel
JP4410776B2 (en) Manufacturing method of liquid crystal display device
WO2016120913A1 (en) Electrode-attached color filter substrate, display device using same, and methods for manufacturing electrode-attached color filter substrate and display device
US20120147453A1 (en) Electronic paper display substrate and the manufacturing method thereof
JP2015004710A (en) Method for manufacturing substrate for display device, substrate for display device, and display device
JP5736913B2 (en) Color filter substrate and liquid crystal display device including the same
JP2017142382A (en) Color filter substrate with electrode and liquid crystal display
JP2006309117A (en) Panel for optical modulation device and manufacturing method of same
JP2012215764A (en) Color filter substrate and liquid crystal display device including the same
WO2017068744A1 (en) Electrode release film, color filter substrate with electrode, and method for manufacturing same
JP2017102177A (en) Color filter substrate with electrodes, display device having the same, and methods of manufacturing aforementioned products
JP2017004367A (en) Electrode-attached color filter substrate, display device including the same substrate, as well as manufacturing method of the same substrate and display device
JP5921260B2 (en) Liquid crystal display
JP2013041471A (en) Touch panel member, display device with touch panel, and touch panel
WO2017038020A1 (en) Color filter and liquid crystal display using same
KR20180092850A (en) Polarizing plate, method for manufacturing polarizing plate, and display apparatus
JP2013130607A (en) Color filter substrate and liquid crystal display device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP