WO2017036801A1 - Verfahren zur filtration von seewasser an bord eines schiffes - Google Patents

Verfahren zur filtration von seewasser an bord eines schiffes Download PDF

Info

Publication number
WO2017036801A1
WO2017036801A1 PCT/EP2016/069529 EP2016069529W WO2017036801A1 WO 2017036801 A1 WO2017036801 A1 WO 2017036801A1 EP 2016069529 W EP2016069529 W EP 2016069529W WO 2017036801 A1 WO2017036801 A1 WO 2017036801A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter element
pressure
concentrate
pressure difference
filtration device
Prior art date
Application number
PCT/EP2016/069529
Other languages
English (en)
French (fr)
Inventor
Peter Klomfas
Heiko Sims
Original Assignee
Gea Mechanical Equipment Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gea Mechanical Equipment Gmbh filed Critical Gea Mechanical Equipment Gmbh
Priority to RU2018109723A priority Critical patent/RU2717067C2/ru
Priority to KR1020187008529A priority patent/KR20180048797A/ko
Priority to JP2018529722A priority patent/JP2018531792A/ja
Priority to CN201680050095.5A priority patent/CN108025236A/zh
Priority to EP16753380.1A priority patent/EP3344360A1/de
Priority to US15/755,626 priority patent/US20180251204A1/en
Publication of WO2017036801A1 publication Critical patent/WO2017036801A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/117Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements arranged for outward flow filtration
    • B01D29/118Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements arranged for outward flow filtration open-ended
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/60Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration
    • B01D29/603Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration by flow measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/60Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration
    • B01D29/606Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration by pressure measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/147Bypass or safety valves
    • B01D35/1475Pressure relief valves or pressure control valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/157Flow control valves: Damping or calibrated passages
    • B01D35/1573Flow control valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Definitions

  • the invention relates to a method for the filtration of seawater, in particular on board a ship.
  • seawater When seawater is taken from a body of water to refuel ballast water, it contains a variety of pollutants and organisms such as bacteria, algae, plants, etc. Under existing environmental regulations it is therefore necessary to purify, for example filter, the ballast water taken on board and then optionally subject it to UV irradiation and / or ultrasonication before it can be filled as purified ballast water into dedicated ballast water tanks.
  • Such a filter device is e.g. known from DE102009054387A1 or WO 201 1 064 260 A1.
  • This device has the disadvantage that a relatively large amount of water is flushed out together with the concentrate and does not enter the ballast water tank.
  • the object of the invention is therefore to provide an efficient process for the filtration of seawater, which can then be subjected to a post-treatment, such as UV irradiation, and then used as ballast water.
  • the invention achieves this goal by the subject matter of claim 1.
  • an adaptive filter control is realized, which always adapts the filter cleaning the actual requirements.
  • the reliability of the filtration is thereby greatly improved and at the same time the filtrate flow to the ballast water tanks is maximized.
  • a monitoring of the state of soiling of a filter by determining the differential pressure is known per se, for example, from DE10 2006 045 558 A1 or WO 2007 130 029 A1.
  • the exceeding of a differential pressure limit value is used here in order to flush the filter again with the aid of a reversal of the flow direction of the medium to be filtered.
  • This procedure has the disadvantage that the filter process or the filtering process has to be interrupted while, for example, using fe of appropriate valves and piping this backwashing is performed.
  • the invention in contrast, the claimed, more advantageous way.
  • Figure 1 is a schematic representation of a plant for the filtration of ballast water.
  • FIG. 2 is a schematic representation of a part of a second system for the filtration of ballast water.
  • FIG. 3 shows a table for illustrating an exemplary realization of a method according to the invention.
  • the plant of Fig. 1 has an inlet line 1, through which seawater from a body of water - for example, a sea or a river or a channel - can be pumped aboard a ship.
  • the feed line 1 opens at an inlet 3 in a filtration device 2.
  • a pump 4 is connected, with the water on board, then in the filtration device 2 and preferably through this can be pushed into other parts of the system.
  • the filtration device has a tank 5, in which a cylindrical filter element 6 is arranged.
  • the inlet 3 opens at one end of the tank 5 in such a way in the tank 5, that the seawater, which is pumped with the pump 4 from the water (not shown) in the tank 5, into the interior of the cylindrical filter element 6 is passed.
  • the seawater flows through the filter element 6, wherein a "dirt phase" of impurity particles and living beings and a proportion of seawater is separated as a concentrate.
  • the purified seawater flows through the filter element from the inside to the outside and forms the filtrate by passing through further purification stages - usable on board the ship as ballast water.
  • a drain 7 of the tank 5 for the filtered ballast water is located radially outside the filter element 6.
  • a drain line 8 is provided, with which the filtered ballast water directly or via further purification stages (eg one or more filtration stages and / or irradiation stages or the like. ) into at least one ballast water tank 9 for filtered ballast water.
  • a preferably controllable control valve 10 is connected, with which the cross section of the drain line 8 is variable.
  • a cleaning device 1 1 is arranged within the cylindrical filter element 6.
  • the cleaning device 1 1 is designed for dissolving contaminants from the filter element 6 and for discharging, in particular suction, a dirt concentrate phase consisting of water and contaminants from the filter element 6.
  • the cleaning device has for this purpose a means 12 for cleaning the filter element 6, a drive 18 (preferably a motor) for moving the means 12 on the filter element 6 and a discharge line 13 for discharging the dirt concentrate phase.
  • the cleaning device 1 1 in a preferred and advantageous embodiment as the means 12 one or more - according to an advantageous embodiment, in particular brush-like suction - 14, which are arranged on a rotatable shaft 16 via arms 15.
  • the shaft 1 6 is aligned with a central axis / symmetry axis 17 of the cylindrical filter element 6.
  • the arms 15 are preferably aligned radially.
  • the suction elements 14 are preferably on the inside of the filter element 6.
  • a drive 18 is used to rotate the shaft 1 6. If the shaft 1 6 is rotated, the suction 14 move inside the surface of the filter element 6 along and clean it of dirt particles, which they solve there and suck.
  • an adjustment of the suction elements 14 and / or the shaft 16 can be provided in particular in the axial direction in the tank, which makes it possible to clean the entire inside of the filter element 6.
  • the suction elements 14 may overlap axially when they are angularly offset (viewed in the circumferential direction of the shaft 1 6) are arranged.
  • a suction pump 25 (FIG. 2) can be connected in the discharge section 19 of the discharge line 13.
  • the pump 4 can also build up the pressure with which the concentrate through the derivative 13 is pressed.
  • suction elements 14 is not to be construed as being too narrow, but describes the basic suitability of these elements, if necessary, with a suction pump 25 connected downstream of them.
  • Contaminants are released on / with the suction elements 14 and, together with a seawater content as a concentrate or as a dirt phase through the arms 15 or lines on the arms and through the shaft 1 6 or a line on the shaft 1 6 out of the tank 5.
  • a seawater content as a concentrate or as a dirt phase
  • a controllable control valve 20 and / or the aforementioned speed-controlled suction pump 25 (FIG. 2) can be arranged.
  • a control (and control) device 21 - not shown in FIG. 2 but also provided there - serves to control and regulate the system. It can be connected wirelessly, by bus system or lines shown here with dashed lines with components of the system, so with the control valves 10 and 20, the drive 18, the pump 4, optionally the optional suction pump 25 and preferably with sensors 22, 23, 24th , so with those for measuring pressures. In particular, the following pressures are sensed with the sensors 22, 23, 24:
  • Sensor 23 a Filtratablaufdruck / output pressure of the filtrate or ballast water P_aus outside of the filter element 6; and sensor 24: a concentrate pressure P_konz (concentrate in the discharge 13.
  • the sensors 22, 23, 24 and corresponding pressure transmitters for P_ein, P_aus and P_konz can be mounted in the filter tank 5 inside and outside the filter element 6 or in adjacent (pipe) lines (supply lines or leads 1, 8, 13). With the illustrated system, advantageous methods for the filtration of a seawater taken from a water can be realized in order to obtain ballast water.
  • control device The following parameters are determined with the control device:
  • Contamination pressure difference AP F : P_ein - P_off
  • a method for the filtration of seawater on board a ship to obtain ballast water is thus realized, with the filtration device 2, which has the arranged in the tank 5, in particular cylindrical filter element 6 and the cleaning device 1 1 for releasing contaminants from the filter element. 6 and for discharging the concentrate phase consisting of water and pollutants from the filter element and from the filtration device 2; comprising the following steps: a) seawater is pumped into the filtration device 2; b) the seawater is conducted into the filtration device 2 with an inlet pressure P_ein, flows through the filter element 6 in the filtration device 2 and has an outlet pressure P_out downstream of the filter element 6 as filtered seawater (filtrate); c) a with the cleaning device 1 1 on the filter element 6 of the filtration device 2 remote and derived from the filter element 6 concentrate phase has a concentrate pressure P_konz on; d) the inlet pressure P_ein, the outlet pressure P_out and the concentrate pressure P_konz are measured with sensors (22, 23, 24) and the measured pressures are
  • the suction of the dirt particles or the dirt phase and a part of the seawater takes place on the inside of the filter element 6 in the tank 5 by means of the operating constantly or at least temporarily with the shaft 1 6 rotating suction 14th
  • the suction elements 14 roll motor-driven on the inside of the filter element 6. With increasing dirt load of seawater also increases the load of the filter element 6 and it increases the pollution pressure difference (P_ein - P_aus).
  • the seawater extracted by means of the suction pressure difference ⁇ ⁇ is disposed of - for example, discharged directly back into the sea - is thus lost to the ballast water and thus does not reach the ballast water tanks. This effect should be minimized as much as possible.
  • a condition for increasing the filter efficiency of the filter element 6 is that the contamination pressure difference AP F increases.
  • the suction pressure difference AP K and thus the extracted water quantity are increased.
  • this regulation also works in the opposite direction: With decreasing contamination pressure difference APF, the suction pressure difference AP K and thus the amount of water sucked off or with the dirt phase is reduced or reduced. The loss of water by the extracted water is reduced in this case and the efficiency of the process or the system increases. This also shortens the time required for ballasting.
  • the suction pressure difference AP K is set as a function of the contamination pressure difference AP F , in particular in a range of 0 to 5 bar, preferably 1, 2 - 2.2 bar. Because these values have proved to be particularly advantageous for efficient operation of the system. It is also advantageous if, according to a further variant of the invention, the extraction frequency (f_motor) per m 2 of filter surface is increased in order to reduce the contamination pressure difference AP F. This means that the engine speed of the drive 1 8 and the shaft 1 6 is changed or adjusted. An increasing contamination pressure difference AP F accordingly leads in this process variant to a speed increase of the shaft 16 and vice versa. The mechanical load of the suction elements 14 is adapted to the actual needs. An unnecessary wear is avoided. In addition / alternatively - if present - also with the suction pump 25 extracted volume flow [m 3 / h] can be increased and / or the control valve 20 can be opened further.
  • the volume flow (filtrate flow) to seawater through the filter element 6 of the filtration device 2 is reduced when the contamination pressure difference AP F exceeds an upper limit value (of, for example, 1.1 bar).
  • an upper limit value of, for example, 1.1 bar.
  • the described regulations on the valves 10, 20 and / or a suction pump 25 and / or a rotational speed of the shaft 1 6 then already run on the maximum values.
  • the volume flow [m 3 / h] is reduced until the contamination pressure difference AP F falls below a lower limit value (for example, 0.9 bar).
  • the volume flow [m 3 / h] and thus the filter load are thereby adapted to the maximum possible filter cleaning and blocking of the filter element 6 is prevented.
  • the maximum or the possible volume flow [m 3 / h], in particular in stages, can be increased via a parallel connection of further filtration devices 1 or filter units 6 in the tank 5.
  • the increase in the suction pressure difference AP K is preferably carried out by changing the cross section in the discharge line 1 3 by opening the control valve 20. If this is not sufficient, if necessary, in addition to the preferably speed-controlled suction pump 25 - see Fig. 2 - in particular in the discharge section 1 9 for the concentrate of pressure P_konz further lowered.
  • the drive 18 with M1, the pump 4 with P1, the suction pump 25 with P2, the control valve 10 with V1 and the control valve 20 are designated V2.
  • the sensors 22, 23 and 24 are shown in simplified form only by the measured values P_in, P_out and P_konz. Unlike the embodiment of FIG. 1, the embodiment of the system of FIG. 2, the concentrate pump (suction pump) 25 and P2 on.
  • the control valve V1 is open, to reduce the concentrate discharge, the valve V2 is throttled and it is a low speed of the drive M1 for the shaft 1 6 set.
  • the control valve V1 is open, the valve V2 is opened further to increase the removal of the concentrate, and a higher speed of the drive M1 for the shaft 16 is set.
  • the condition AP F > 1, 1 bar is referred to as "heavily soiled filter” or "heavily contaminated filter element".
  • the control valve V1 is throttled, the valve V2 is opened to increase the concentrate discharge and it is set a higher speed of the drive M1 for the shaft 1 6.
  • the suction pump P2 can additionally be started in order to further increase the concentrate discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Ein Verfahren zur Filtration von Seewasser an Bord eines Schiffes, mit einer Filtrationseinrichtung (2), die ein in einem Tank (5) angeordnetes, insbesondere zylindrisches Filterelement (6) aufweist sowie eine Reinigungsvorrichtung zum Lösen von Schmutzstoffen von dem Filterelement (6) und zum Ableiten einer aus Wasser und den Schmutzstoffen bestehenden Schmutzkonzentratphase von dem Filterelement (6) und aus der Filtrationseinrichtung (2); mit folgenden Schritten: a) Seewasser wird in die Filtrationseinrichtung (2) gepumpt; b) das Seewasser wird mit einem Eingangsdruck P_ein in die Filtrationseinrichtung (2) geleitet, strömt in der Filtrationseinrichtung (2) durch das Filterelement (6) und weist nach dem Filterelement (6) als filtriertes Seewasser – Filtrat - einen Ausgangsdruck P_aus auf; c) eine mit der Reinigungsvorrichtung (11) an dem Filterelement (6) der Filtrationseinrichtung (2) entfernte und von dem Filterelement (6) abgeleitete Konzentratphase – Konzentrat - weist einen Konzentratdruck P_konz auf; d) der Eingangsdruck P_ein, der Ausgangsdruck P_aus und der Konzentratdruck P_konz werden vorzugsweise mit Sensoren (22, 23, 24) gemessen und an eine Steuerungseinrichtung (21) übertragen; e) eine Veränderung einer Filtereffizienz des Filterelementes (6) wird daran erkannt, dass eine Veränderung einer Verschmutzungsdruckdifferenz ∆PF= P_ein – P_aus zwischen dem Eingangsdruck P_ein und dem Ausgangsdruck P_aus ermittelt wird; und/oder f) eine als Differenz zwischen dem Ausgangsdruck und dem Konzentratdruck definierte Absaugdruckdifferenz ∆PK= P_aus – P_konz wird in Abhängigkeit von der Verschmutzungsdruckdifferenz ∆PF = P_ein – P_aus geregelt.

Description

Verfahren zur Filtration von Seewasser an Bord eines Schiffes
Die Erfindung betrifft ein Verfahren zur Filtration von Seewasser, insbesondere an Bord eins Schiffes. Wird Seewasser auf Schiffen aus einem Gewässer genommen, um Ballastwasser zu tanken, enthält es eine Vielzahl von Verunreinigungen und Lebewesen wie Bakterien, Algen, Pflanzen usw.. Nach geltenden Umweltvorschriften ist es daher notwendig, dass an Bord genommene Ballastwasser zu reinigen, beispielsweise zu filtrieren, und es sodann ggf. noch einer UV-Bestrahlung und/oder Ultraschallbehandlung zu unterziehen, bevor es als gereinigtes Ballastwasser in dafür vorgesehene Ballastwassertanks gefüllt werden kann.
Eine solche Filtervorrichtung ist z.B. aus der DE102009054387A1 bzw. der WO 201 1 064 260 A1 bekannt. Diese Vorrichtung hat den Nachteil, dass eine relativ große Menge Wasser zusammen mit dem Konzentrat ausgespült wird und nicht in den Ballastwassertank gelangt.
Die Erfindung hat vor diesem Hintergrund das Ziel, ein effizientes Verfahren zur Filtration von Seewasser zu schaffen, das sodann einer Nachbehandlung wie einer UV- Bestrahlung unterzogen werden kann und dann als Ballastwasser verwendbar ist.
Die Erfindung erreicht dieses Ziel durch den Gegenstand des Anspruchs 1 . Mit der Erfindung wird eine adaptive Filterregelung realisiert, welche die Filterreinigung immer den tatsächlich vorliegenden Erfordernissen anpasst. Die Zuverlässigkeit der Filtration wird dadurch stark verbessert und gleichzeitig wird der Filtratfluss zu den Ballastwassertanks maximiert.
Eine Überwachung des Verschmutzungszustandes eines Filters durch Ermittlung des Differenzdruckes (Druck im Filterzulauf minus Druck im Filterablauf) ist zwar an sich z.B. bereits aus der DE10 2006 045 558 A1 bzw. der WO 2007 130 029 A1 bekannt. Allerdings wird hier das Überschreiten eines Differenzdruckgrenzwerts dazu genutzt, um mit Hilfe einer Umkehr der Fließrichtung des zu filternden Mediums den Filter wieder frei zu spülen. Diese Vorgehensweise hat den Nachteil, dass der Filterpro- zess bzw. das Filterungsverfahren unterbrochen werden muss, während z.B. mit Hil- fe von entsprechenden Ventilen und Rohrleitungen dieses Rückspülen durchzuführen ist. Die Erfindung geht demgegenüber den beanspruchten, vorteilhafteren Weg.
Vorteilhafte Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen. Nachfolgend wird die Erfindung unter Bezug auf die Zeichnung anhand von Ausführungsbeispielen näher beschrieben. Es zeigen:
Fig. 1 eine schematische Darstellung einer Anlage zur Filtration von Ballastwasser;
Fig. 2 eine schematische Darstellung eines Teils einer zweiten Anlage zur Filtration von Ballastwasser; und Fig. 3 eine Tabelle zur Veranschaulichung einer beispielhaften Realisierung eines erfindungsgemäßen Verfahrens.
Die Anlage der Fig. 1 weist eine Zulaufleitung 1 auf, durch welche Seewasser aus einem Gewässer - beispielsweise ein Meer oder ein Fluss oder ein Kanal - an Bord eines Schiffes gepumpt werden kann. Die Zulaufleitung 1 mündet an einem Zulauf 3 in eine Filtrationsvorrichtung 2. In die Zulaufleitung 1 ist eine Pumpe 4 geschaltet, mit der das Wasser an Bord, sodann in die Filtrationsvorrichtung 2 und vorzugsweise durch diese hindurch bis in weitere Anlagenteile gedrückt werden kann.
Die Filtrationsvorrichtung weist einen Tank 5 auf, in welchem ein zylindrisches Fil- terelement 6 angeordnet ist. Der Zulauf 3 mündet an einem Ende des Tanks 5 derart in den Tank 5, dass das Seewasser, das mit der Pumpe 4 aus dem Gewässer (nicht dargestellt) in den Tank 5 gepumpt wird, in den Innenraum des zylindrischen Filterelements 6 geleitet wird. In der Filtrationseinrichtung 2 durchströmt das Seewasser das Filterelement 6, wobei eine„Schmutzphase" aus Verunreinigungspartikeln und Lebewesen sowie einem Anteil Seewasser als Konzentrat abgetrennt wird. Das gereinigte Seewasser durchströmt das Filterelement von innen nach außen und bildet das Filtrat. Es ist - ggf. nach einem Durchlaufen weiterer Reinigungsstufen - an Bord des Schiffes als Ballastwasser verwendbar. Ein Ablauf 7 des Tanks 5 für das filtrierte Ballastwasser liegt radial außerhalb des Filterelementes 6. Am Ablauf 7 ist eine Ablaufleitung 8 vorgesehen, mit welcher das filtrierte Ballastwasser direkt oder über weitere Reinigungsstufen (z.B eine oder mehrere Filtrationsstufen und/oder eine Bestrahlungsstufen oder dgl.) in wenigstens ei- nen Ballastwassertank 9 für filtriertes Ballastwasser geleitet werden kann. In die Ablaufleitung 8 ist ein vorzugsweise ansteuerbares Regelventil 10 geschaltet, mit dem der Querschnitt der Ablaufleitung 8 veränderlich ist.
Vorzugsweise innerhalb des zylindrischen Filterelementes 6 ist eine Reinigungseinrichtung 1 1 angeordnet. Die Reinigungsvorrichtung 1 1 ist zum Lösen von Schmutz- Stoffen von dem Filterelement 6 und zum Ableiten, insbesondere Absaugen, einer aus Wasser und den Schmutzstoffen bestehenden Schmutzkonzentratphase von dem Filterelement 6 ausgelegt. Die Reinigungsvorrichtung weist dazu ein Mittel 12 zum Reinigen des Filterelementes 6 auf, einen Antrieb 18 (vorzugsweise ein Motor) zum Bewegen des Mittels 12 an dem Filterelement 6 und eine Ableitung 13 zum Ableiten der Schmutzkonzentratphase.
Nach Fig.1 weist die Reinigungsvorrichtung 1 1 in bevorzugter und vorteilhafter Ausgestaltung als das Mittel 12 eines oder mehrere - nach einer vorteilhaften Ausgestaltung insbesondere bürstenartige - Absaugelemente 14 auf, die über Arme 15 an einer drehbaren Welle 16 angeordnet sind. Vorzugsweise fluchtet die Welle 1 6 mit ei- ner Mittelachse/Symmetrieachse 17 des zylindrischen Filterelements 6. Die Arme 15 sind vorzugsweise radial ausgerichtet. Die Absaugelemente 14 liegen vorzugsweise innen an dem Filterelement 6 an.
Ein Antrieb 18 dient zum Drehen der Welle 1 6. Wird die Welle 1 6 gedreht, bewegen sich die Absaugelemente 14 innen an der Oberfläche des Filterelementes 6 entlang und reinigen dieses von Verschmutzungspartikel, die sie dort lösen und absaugen. Zusätzlich kann eine Verstellung der Absaugelemente 14 und/oder der Welle 16 insbesondere in axialer Richtung im Tank vorgesehen sein, die es ermöglicht, das Filterelement 6 innen vollflächig zu reinigen. Alternativ können sich die Absaugelemente 14 axial überlappen, wenn sie winkelversetzt (in Umfangsrichtung der Welle 1 6 betrachtet) angeordnet sind. In den Ableitungsabschnitt 19 der Ableitung 13 kann optional eine Absaugpumpe 25 (Fig. 2) geschaltet sein. Alternativ/Ergänzend kann die Pumpe 4 auch den Druck aufbauen, mit dem das Konzentrat durch die Ableitung 13 gedrückt wird. Der Begriff der„Absaugelemente" 14 ist insofern nicht zu eng zu fassen sondern beschreibt die grundsätzliche Eignung dieser Elemente ggf. auch mit einer ihnen nachgeschalteten Absaugpumpe 25 eingesetzt werden zu können.
Schmutzstoffe werden an/mit den Absaugelementen 14 gelöst und nebst einem Seewasseranteil als Konzentrat bzw. als Schmutzphase durch die Arme 15 oder Leitungen an den Armen und durch die Welle 1 6 oder eine Leitung an der Welle 1 6 aus dem Tank 5 geleitet. Dort erfolgt durch einen der Welle 1 6 nachgeschaltete Leitungsabschnitt 19 der Ableitung 13 eine Entsorgung der Schmutzphase beispielsweise in einen Entsorgungsbereich (nicht dargestellt). Es ist wünschenswert, dass ein möglichst geringer Seewasseranteil in der Schmutzphase enthalten ist.
In der Ableitung 13, insbesondere in dem Ableitungsabschnitt 19, können ein ansteuerbares Regelventil 20 und/oder die bereits erwähnte drehzahlgeregelte Absaugpumpe 25 (Fig. 2) angeordnet sein. Eine Steuerungs(und Regel-)Vorrichtung 21 - in Fig. 2 nicht dargestellt aber auch dort vorgesehen - dient zur Steuerung und Regelung der Anlage. Sie kann drahtlos, per Bussystem oder über hier gestrichelt dargestellte Leitungen mit Komponenten der Anlage verbunden sein, so mit den Regelventilen 10 und 20, dem Antrieb 18, der Pumpe 4, ggf. der optionalen Absaugpumpe 25 und vorzugsweise mit Sensoren 22, 23, 24, so mit solchen zur Messung von Drücken. Insbesondere werden mit den Sensoren 22, 23, 24 folgende Drücke sensiert:
Sensor 22: ein Zulaufdruck/Eingangsdruck P_ein innerhalb des Filterelementes 6,
Sensor 23: ein Filtratablaufdruck/Ausgangsdruck des Filtrats bzw. Ballastwassers P_aus außerhalb des Filterelementes 6; und - Sensor 24: ein Konzentratdruck P_konz (Konzentrat in der Ableitung 13.
Die Sensoren 22, 23, 24 bzw. entsprechende Drucktransmitter für P_ein, P_aus und P_konz können im Filtertank 5 innerhalb und außerhalb des Filterelements 6 oder in angrenzenden (Rohr-)Leitungen (Zuleitungen bzw. Ableitungen 1 , 8, 13) montiert werden. Mit der dargestellten Anlage lassen sich vorteilhafte Verfahren zur Filtration eines einem Gewässer entnommenen Seewassers realisieren, um Ballastwasser zu erhalten.
Dabei werden folgende Parameter mit der Steuerungsvorrichtung ermittelt:
Verschmutzungsdruckdifferenz APF := P_ein - P_aus; und
Absaugdruckdifferenz ΔΡΚ := P_aus - P_konz.
Insbesondere wird damit ein Verfahren zur Filtration von Seewasser an Bord eines Schiffes zum Erhalt von Ballastwasser realisiert, mit der Filtrationseinrichtung 2, die das in dem Tank 5 angeordnete, insbesondere zylindrische Filterelement 6 aufweist sowie die Reinigungsvorrichtung 1 1 zum Lösen von Schmutzstoffen von dem Filterelement 6 und zum Ableiten der aus Wasser und den Schmutzstoffen bestehenden Konzentratphase von dem Filterelement und aus der Filtrationseinrichtung 2; mit folgenden Schritten: a) Seewasser wird in die Filtrationseinrichtung 2 gepumpt; b) das Seewasser wird mit einem Eingangsdruck P_ein in die Filtrationseinrichtung 2 geleitet, strömt in der Filtrationseinrichtung 2 durch das Filterelement 6 und weist nach dem Filterelement 6 als filtriertes Seewasser (Filtrat) einen Ausgangsdruck P_aus auf; c) eine mit der Reinigungsvorrichtung 1 1 an dem Filterelement 6 der Filtrationseinrichtung 2 entfernte und von dem Filterelement 6 abgeleitete Konzentratphase weist einen Konzentratdruck P_konz auf; d) der Eingangsdruck P_ein, der Ausgangsdruck P_aus und der Konzentratdruck P_konz werden mit Sensoren (22, 23, 24) gemessen und die gemessenen Drücke werden an eine Steuerungseinrichtung (21 ) übertragen; e) eine Veränderung einer Filtereffizienz des Filterelementes (6) wird daran erkannt, dass eine Veränderung einer Verschmutzungsdruckdifferenz APF = P_ein - P_aus zwischen dem Eingangsdruck P_ein und dem Ausgangsdruck P_aus ermittelt wird; und/oder f) eine als Differenz zwischen dem Ausgangsdruck und dem Konzentratdruck definierte Absaugdruckdifferenz ΔΡΚ = P_aus - P_konz wird in Abhängigkeit von der Verschmutzungsdruckdifferenz APF = P_ein - P_aus geregelt. Dabei wird eine Veränderung der Filtereffizienz einfach daran erkannt, dass eine Veränderung der Verschmutzungsdruckdifferenz APF ermittelt wird.
Vorzugsweise und konstruktiv einfach erfolgt die Absaugung der Schmutzpartikel bzw. der Schmutzphase und eines Teil des Seewassers auf der Innenseite des Filterelementes 6 im Tank 5 mittels der im Betrieb sich ständig oder jedenfalls zeitweise mit der Welle 1 6 drehenden Absaugelemente 14.
Die Absaugelemente 14 rollen derart motorgetrieben auf der Innenseite des Filterelementes 6. Mit steigender Schmutzbeladung des Seewassers steigt auch die Belastung des Filterelements 6 und es erhöht sich die Verschmutzungsdruckdifferenz ( P_ein - P_aus). Das mittels der Absaugdruckdifferenz ΔΡΚ abgesaugte See- wasser wird entsorgt - beispielsweise direkt zurück in die See geleitet -, geht derart dem Ballastwasser verloren und gelangt somit nicht in die Ballastwassertanks. Dieser Effekt soll möglichst minimiert werden.
Eine Bedingung für eine Erhöhung der Filtereffizienz des Filterelementes 6 besteht definitionsgemäß darin, dass die Verschmutzungsdruckdifferenz APF ansteigt. Nach einer vorteilhaften Variante der Erfindung werden bei steigender Verschmutzungsdruckdifferenz APF die Absaugdruckdifferenz APK und damit die abgesaugte Wassermenge erhöht. Außerdem arbeitet diese Regelung auch in umgekehrter Richtung: Bei sinkender Verschmutzungsdruckdifferenz APF werden die Absaugdruckdifferenz APK und damit die abgesaugte bzw. mit der Schmutzphase verlorene bzw. abgeleitete Wassermenge reduziert. Der Wasserverlust durch das abgesaugte Wasser wird in diesem Fall verringert und die Effizienz des Verfahrens bzw. der Anlage steigt. Hierdurch wird zudem die benötigte Zeit für das Ballasten verkürzt.
Vorzugsweise wird die Absaugdruckdifferenz APK in Abhängigkeit von der Verschmutzungsdruckdifferenz APF eingestellt, insbesondere in einen Bereich von 0 bis 5 bar, vorzugsweise 1 ,2 - 2,2 bar. Denn diese Werte haben sich für einen effizienten Betrieb der Anlage als besonders vorteilhaft erwiesen. Es ist ferner vorteilhaft, wenn nach einer weiteren Variante der Erfindung die Absaughäufigkeit (f_motor) pro m2 Filterfläche zur Verringerung der Verschmutzungs- druckdifferenz APF erhöht wird. Dies bedeutet, dass die Motordrehzahl des Antriebs 1 8 bzw. der Welle 1 6 verändert wird bzw. angepasst wird. Eine steigende Ver- schmutzungsdruckdifferenz APF führt demnach bei dieser Verfahrensvariante zu einer Drehzahlerhöhung der Welle 1 6 und umgekehrt. Die mechanische Belastung der Absaugelemente 14 wird dem tatsächlichen Bedarf angepasst. Ein unnötiger Verschleiß wird vermieden. Ergänzend/Alternativ kann - wenn vorhanden - auch der mit der Absaugpumpe 25 abgesaugte Volumenstrom [m3/h] erhöht werden und/oder das Regelventil 20 weiter geöffnet werden.
Als Drehzahl der Welle 1 6 bzw. damit der Absaugelemente 14 wird eine Drehzahl zwischen 0 - 100 U/min, vorzugsweise zwischen 1 2-50 U/min eingestellt.
Nach einer weiteren vorteilhaften Variante der Erfindung wird der Volumenstrom (Filt- rat-Flow) an Seewasser durch das Filterelement 6 der Filtrationseinrichtung 2 redu- ziert, wenn die Verschmutzungsdruckdifferenz APF einen oberen Grenzwert (von beispielsweise 1 ,1 bar) überschreitet. Die beschriebenen Regelungen an den Ventilen 10, 20 und/oder einer Absaugpumpe 25 und/oder einer Drehzahl der Welle 1 6 laufen dann bereits auf den Maximalwerten. Der Volumenstrom [m3/h] wird solange reduziert, bis die Verschmutzungsdruckdifferenz APF unter einen unteren Grenzwert (bei- spielsweise 0,9 bar) fällt. Der Volumenstrom [m3/h] und damit die Filterbelastung werden dadurch der maximal möglichen Filterreinigung angepasst und ein Verblocken des Filterelements 6 wird verhindert. Es wird sichergestellt, dass die Ballastwasseraufnahme nicht unterbrochen werden muss, wenn eine sehr hohe Schmutzbeladung im Wasser vorhanden ist. Optional kann über eine Parallelschaltung von weiteren Filtrationseinrichtungen 1 oder Filtereinsäten 6 in dem Tank 5 der maximale bzw. der mögliche Volumenstrom [m3/h] insbesondere in Stufen erhöht werden.
Die Erhöhung der Absaugdruckdifferenz APK erfolgt vorzugsweise mittels Änderung des Querschnitts in der Ableitung 1 3 durch Öffnen des Regelventils 20. Falls dies nicht ausreicht wird ggf. ergänzend mit der vorzugsweise drehzahlgeregelte Absaugpumpe 25 - siehe Fig. 2 - insbesondere in dem Ableitungsabschnitt 1 9 für das Konzentrat der Druck P_konz weiter gesenkt. In Fig. 2 und 3 werden der Antrieb 18 mit M1 , die Pumpe 4 mit P1 , die Absaugpumpe 25 mit P2, das Regelventil 10 mit V1 und das Regelventil 20 mit V2 bezeichnet. Die Sensoren 22, 23 und 24 sind vereinfacht nur durch die gemessenen Werte P_ein, P_aus und P_konz dargestellt. Anders als das Ausführungsbeispiel nach Fig. 1 weist das Ausführungsbeispiel der Anlage nach Fig. 2 die Konzentratpumpe (Saugpumpe) 25 bzw. P2 auf.
Beispielhaft wird das erfindungsgemäße Verfahren hier hinsichtlich der Schritte e) und f) so implementiert, wie es Fig.3 veranschaulicht.
Danach wird die Verschmutzungsdruckdifferenz wiederum als APF = P_ein - P_aus bezeichnet und die Absaugdruckdifferenz als ΔΡΚ = P_aus - P_konz.
Der Zustand APF <= 0.8 bar wird als„Filter sauber" bzw.„Filterelement sauber" bezeichnet. Das Regelventil V1 ist offen, zur Verringerung der Konzentratableitung wird das Ventil V2 angedrosselt und es wird eine niedrige Drehzahl des Antriebs M1 für die Welle 1 6 eingestellt. Der Zustand 0.8 bar <APF <= 1 ,1 bar wird als„Filter verschmutzt" bzw.„Filterelement verschmutzt" bezeichnet. Das Regelventil V1 ist offen, zur Erhöhung der Konzentratableitung wird das Ventil V2 weiter geöffnet und es wird eine höhere Drehzahl des Antriebs M1 für die Welle 1 6 eingestellt.
Der Zustand APF > 1 ,1 bar wird als„Filter stark verschmutzt" bzw.„Filterelement stark verschmutzt" bezeichnet. Um eine Überlastung des Filterelementes zu vermeiden, wird das Regelventil V1 angedrosselt, zur Erhöhung der Konzentratableitung wird das Ventil V2 geöffnet und es wird eine höhere Drehzahl des Antriebs M1 für die Welle 1 6 eingestellt. Falls erforderlich kann ergänzend die Absaugpumpe P2 gestartet werden, um die Konzentratableitung weiter zu erhöhen. Das eigentliche Erhöhen oder Senken kann nach vorgespeicherten Funktionen bzw. funktionalen Zusammenhängen erfolgen, die im Versuch ermittelt worden sind. Derart können Zusammenhänge ΔΡΚ = Funktion_1 (APF) und Drehzahl M1 = Funktion_2 (APF) ermittelt werden, die dann bei den genannten Zuständen APF für die Einstellung/Regelung verwendet werden. Bezugszeichen
Zulaufleitung 1
Filtrationsvorrichtung 2 Zulauf 3
Pumpe 4
Tank 5
Filterelement 6
Ablaufleitung 7 Ableitung 8
Ballastwassertank 9
Regelventil 10
Reinigungseinrichtung 1 1
Mittel 12 Ableitung 13
Absaugelemente 14
Arme 15
Welle 1 6 Mittelachse/Symmetrieachse 17 Antrieb 18
Ableitungsabschnitt 19
Regelventil 20
Steuerungsvorrichtung 21
Sensoren 22 - 24 Konzentratpumpe 25

Claims

Ansprüche
1 . Verfahren zur Filtration von Seewasser an Bord eines Schiffes, mit einer Filtrationseinrichtung (2), die ein in einem Tank (5) angeordnetes, insbesondere zylindrisches Filterelement (6) aufweist sowie eine Reinigungsvorrichtung zum Lösen von Schmutzstoffen von dem Filterelement (6) und zum Ableiten einer aus Wasser und den Schmutzstoffen bestehenden Schmutzkonzentratphase von dem Filterelement (6) und aus der Filtrationseinrichtung (2) ; mit folgenden Schritten : a) Seewasser wird in die Filtrationseinrichtung (2) gepumpt; b) das Seewasser wird mit einem Eingangsdruck P_ein in die Filtrationseinrichtung (2) geleitet, strömt in der Filtrationseinrichtung (2) durch das Filterelement (6) und weist nach dem Filterelement (6) als filtriertes Seewasser - Filtrat - einen Ausgangsdruck P_aus auf; c) eine mit der Reinigungsvorrichtung (1 1 ) an dem Filterelement (6) der Filtrationseinrichtung (2) entfernte und von dem Filterelement (6) abgeleitete Konzentratphase - Konzentrat - weist einen Konzentratdruck P_konz auf; d) der Eingangsdruck P_ein, der Ausgangsdruck P_aus und der Konzentratdruck P_konz werden vorzugsweise mit Sensoren (22, 23, 24) gemessen und an eine Steuerungseinrichtung (21 ) übertragen ; e) eine Veränderung einer Filtereffizienz des Filterelementes (6) wird daran erkannt, dass eine Veränderung einer Verschmutzungsdruckdifferenz APF = P_ein - P_aus zwischen dem Eingangsdruck P_ein und dem Ausgangsdruck P_aus ermittelt wird; und/oder f) eine als Differenz zwischen dem Ausgangsdruck und dem Konzentratdruck definierte Absaugdruckdifferenz ΔΡΚ = P_aus - P_konz wird in Abhängigkeit von der Verschmutzungsdruckdifferenz APF = P_ein - P_aus geregelt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Absaugung der Schmutzphase auf einer Innenseite des Filtereinsatzes (6) mittels mit einer gemeinsamen Welle (1 6) drehbaren Absaugelemente (14) erfolgt, welche an der Innenseite des Filterelementes (6) entlang bewegt werden und mit denen dort Ver- schmutzungen von dem Filterelement (6) abgesaugt werden.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass bei sinkender Verschmutzungsdruckdifferenz APF die Absaugdruckdifferenz ΔΡΚ verringert wird.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass bei stei- gender Verschmutzungsdruckdifferenz APF die Absaugdruckdifferenz ΔΡΚ erhöht wird.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Absaugdruckdifferenz ΔΡΚ in einen Bereich von 0 bis 5 bar, vorzugsweise
1 ,2 - 2,2 bar, eingeregelt wird.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Absaugdruckdifferenz APK in Abhängigkeit von der Verschmutzungsdruckdifferenz APF in einen Bereich von 1 ,2 bis 2,2 bar eingeregelt wird.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zur Reglung der Absaugdruckdifferenz APK wenigstens ein Ansteuern eines Regelventils (20) in einer Ableitung (13) für das Konzentrat aus der Filtrationsvorrichtung (2) erfolgt.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zur Reglung der Absaugdruckdifferenz APK ein Verändern wenigstens einer Pumpenleistung, insbesondere einer Pumpendrehzahl, wenigstens einer Absaug- pumpe (25) in dem Ableitungsabschnitt (19) für das Konzentrat erfolgt.
9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zur Reglung der Verschmutzungsdruckdifferenz APF die Absaughäufigkeit pro m2 Filterfläche des Filterelementes (6) verändert wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass zur Reglung der Verschmutzungsdruckdifferenz APF ein Verändern einer Drehzahl eines Antriebs (18) der Reinigungsvorrichtung (1 1 ) erfolgt.
1 1 . Verfahren nach Anspruch 9 oder 1 0, dadurch gekennzeichnet, dass eine Drehzahl einer Welle (1 6) zum Drehen der Absaugelemente (14) auf 0 - 100 U/min, vorzugsweise 2 - 50 U/min eingestellt wird.
12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Volumenstrom [m3/h] an Seewasser durch die Filtrationseinrichtung (2) mit Hilfe des Regelventils 1 0 oder der regelbaren Pumpe 4 reduziert wird, wenn die Ver- schmutzungsdruckdifferenz APF einen oberen Grenzwert - insbesondere 1 ,1 bar - überschreitet und dass der Volumenstrom [m3/h] solange reduziert wird, bis die Verschmutzungsdruckdifferenz APF unter einen unteren Grenzwert - insbesondere 0,9 bar - fällt.
PCT/EP2016/069529 2015-08-31 2016-08-17 Verfahren zur filtration von seewasser an bord eines schiffes WO2017036801A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2018109723A RU2717067C2 (ru) 2015-08-31 2016-08-17 Способ фильтрации морской воды на борту судна
KR1020187008529A KR20180048797A (ko) 2015-08-31 2016-08-17 선상 해수 여과 방법
JP2018529722A JP2018531792A (ja) 2015-08-31 2016-08-17 船上で海水を濾過する方法
CN201680050095.5A CN108025236A (zh) 2015-08-31 2016-08-17 用于在船上过滤海水的方法
EP16753380.1A EP3344360A1 (de) 2015-08-31 2016-08-17 Verfahren zur filtration von seewasser an bord eines schiffes
US15/755,626 US20180251204A1 (en) 2015-08-31 2016-08-17 Method for filtering seawater onboard a ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015114473.5A DE102015114473B4 (de) 2015-08-31 2015-08-31 Verfahren zur Filtration von Seewasser an Bord eines Schiffes
DE102015114473.5 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017036801A1 true WO2017036801A1 (de) 2017-03-09

Family

ID=56694163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/069529 WO2017036801A1 (de) 2015-08-31 2016-08-17 Verfahren zur filtration von seewasser an bord eines schiffes

Country Status (8)

Country Link
US (1) US20180251204A1 (de)
EP (1) EP3344360A1 (de)
JP (1) JP2018531792A (de)
KR (1) KR20180048797A (de)
CN (1) CN108025236A (de)
DE (1) DE102015114473B4 (de)
RU (1) RU2717067C2 (de)
WO (1) WO2017036801A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019150804A (ja) * 2018-03-06 2019-09-12 三浦工業株式会社 水処理装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10751648B1 (en) * 2019-08-09 2020-08-25 Durwood Nelson Renfrow Apparatus and system for removing liquid from slurry
CN114641455A (zh) * 2019-11-08 2022-06-17 碧然德有限公司 用于过滤液体的过滤装置和用于过滤液体的方法
DE102019132463A1 (de) * 2019-11-29 2021-06-02 Exergene Technologie Gmbh Leitungsanordnung zur Vorbehandlung von Trinkwasser und Verfahren zum Betreiben der Leitungsanordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059821A1 (en) * 2002-01-09 2003-07-24 Birgir Nilsen Apparatus and method for separating and filtering particles and organisms from flowing liquids
EP2325081A2 (de) * 2009-10-29 2011-05-25 Panasia Co., Ltd. Ballastwasseraufbereitungsvorrichtung
EP2394962A1 (de) * 2010-06-11 2011-12-14 Panasia Co., Ltd. Ballastwasserbehandlungssystem mit Hinterdruckbildung und Steuerungsverfahren dafür
EP2767319A1 (de) * 2011-10-14 2014-08-20 Panasia Co., Ltd. Mehrfachkäfig-vorrichtung zum filtern von ballastwasser zur verhinderung eines gegendrucks

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1761211A1 (ru) * 1990-10-23 1992-09-15 Краснодарское высшее военное командно-инженерное училище ракетных войск Система непрерывного фильтровани рабочей жидкости с противоточной регенерацией
DE19852119C1 (de) 1998-11-12 2000-07-27 Martin Systems Ag Vorrichtung zum Abscheiden von Schmutzwasser
DE10340366B4 (de) * 2003-09-02 2008-12-18 Khs Ag Filtervorrichtung
EP1778381A1 (de) 2004-07-21 2007-05-02 Amiad Filtration Systems (1997) Ltd. Filterreinigungskopf
RU2322283C2 (ru) * 2006-01-31 2008-04-20 Государственное унитарное предприятие нефтегазового направления "Авитрон-Ойл" ГУПНН "Авитрон-Ойл" Система автоматического управления технологическим процессом очистки воды на скорых фильтрах
WO2007130029A1 (en) 2006-05-02 2007-11-15 Birgir Nilsen Apparatus and method for separating and filtering particles and organisms from a high volume flowing liquid
DE102006045558A1 (de) 2006-09-25 2008-04-03 Rwo Gmbh Wasseraufbereitungsanlage
DE202007004912U1 (de) 2007-04-03 2007-07-26 Blum, Holger Vorrichtung zur Behandlung von Ballastwasser mit wässriger Acroleinlösung
DE102009054387A1 (de) * 2009-11-24 2011-06-01 Aquaworx Holding Ag Flüssigkeitsbehandlungsvorrichtung
JP5632779B2 (ja) 2011-03-15 2014-11-26 水野ストレーナー工業株式会社 逆洗型ろ過装置
JP5866876B2 (ja) 2011-08-30 2016-02-24 住友電気工業株式会社 バラスト水の処理装置およびバラスト水の処理方法
KR101287122B1 (ko) 2011-10-14 2013-07-23 주식회사 파나시아 순차적 역세척을 자동제어하는 멀티케이지 타입 밸러스트수 여과장치 및 그 방법
CN102580388B (zh) 2012-03-09 2015-02-11 黄庆 一种自洁抽吸式过滤器
US9115013B2 (en) * 2012-08-15 2015-08-25 Green Age Technologies Llc Fluid filtration system
JP2014104389A (ja) * 2012-11-26 2014-06-09 Miura Co Ltd フィルタ洗浄機構
CN102961910A (zh) 2012-12-09 2013-03-13 深圳市福尔沃机电设备有限公司 一种排沙自洁式过滤器及自洁方法
WO2015068245A1 (ja) 2013-11-07 2015-05-14 三浦工業株式会社 バラスト水処理装置
CN103785209B (zh) 2013-11-22 2015-08-05 江苏大学 一种反冲洗滤网过滤器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059821A1 (en) * 2002-01-09 2003-07-24 Birgir Nilsen Apparatus and method for separating and filtering particles and organisms from flowing liquids
EP2325081A2 (de) * 2009-10-29 2011-05-25 Panasia Co., Ltd. Ballastwasseraufbereitungsvorrichtung
EP2394962A1 (de) * 2010-06-11 2011-12-14 Panasia Co., Ltd. Ballastwasserbehandlungssystem mit Hinterdruckbildung und Steuerungsverfahren dafür
EP2767319A1 (de) * 2011-10-14 2014-08-20 Panasia Co., Ltd. Mehrfachkäfig-vorrichtung zum filtern von ballastwasser zur verhinderung eines gegendrucks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019150804A (ja) * 2018-03-06 2019-09-12 三浦工業株式会社 水処理装置

Also Published As

Publication number Publication date
RU2018109723A3 (de) 2019-10-18
DE102015114473B4 (de) 2022-02-10
RU2018109723A (ru) 2019-10-02
JP2018531792A (ja) 2018-11-01
US20180251204A1 (en) 2018-09-06
DE102015114473A1 (de) 2017-03-02
KR20180048797A (ko) 2018-05-10
RU2717067C2 (ru) 2020-03-17
CN108025236A (zh) 2018-05-11
EP3344360A1 (de) 2018-07-11

Similar Documents

Publication Publication Date Title
EP2039893B1 (de) Einrichtung und Verfahren zum Reinigen von Schmiermitteln sowie Schmiermittelkreislauf
DE2529614C2 (de)
WO2017036801A1 (de) Verfahren zur filtration von seewasser an bord eines schiffes
EP1993694B1 (de) Vorrichtung und verfahren zum aufbereiten von rückgespültem fluid
EP1993698B1 (de) Filtervorrichtung und filterverfahren
EP3321079B1 (de) Schneckenfilterpresse zur filtrierung und/oder aufkonzentrierung eines fluiden, feststoffbeladenen suspensionsstroms und verfahren zur filtrierung und/oder aufkonzentrierung
EP3265202B1 (de) System zum filtrieren von fluiden
DE1761106C3 (de) Filter zur Reinigung von mit Feststoffen vermischten Flüssigkeiten
AT11727U1 (de) Verfahren zur filtration von fluiden sowie filterapparat zur durchführung des verfahrens
EP2709840A1 (de) Schneckenpresse
AT503567B1 (de) Vorrichtung zum filtrieren von flüssigkeiten
DE1536784C3 (de) Trommeldrehfilter zum Reinigen von Flüssigkeiten
EP2896444A1 (de) Vorrichtung und Verfahren zum Filtern einer Flüssigkeit mit Abreinigungsvorrichtung ohne Prozessunterbrechung
DE69215879T2 (de) Auf motor- oder handbetrieb umstellbares fluidsieb
AT515428B1 (de) Filter
DE202006003680U1 (de) Vorrichtung zum Aufbereiten von rückgespültem Fluid
DE60104564T2 (de) Rückspülung eines statisch betriebenen hohlfaserfilters
EP3838371B1 (de) Fluidfilter und verfahren zur abreinigung eines fluidfilters
DE2203512A1 (de) Vorrichtung fuer trink- und brauchwasserleitungen zur entfernung von chlorund/oder metall- und/oder mangansubstanzen bzw. -verbindungen aus dem wasser
DE10247635A1 (de) Fahrzeug, insbesondere Kanalreinigungsfahrzeug zum Reinigen verschmutzter Abwasserkanäle
WO2007028261A1 (de) Verfahren und vorrichtung zur mikrofiltration feststoffbelasteter fluide
EP1441829B1 (de) Vorrichtung und verfahren zur reinigung von abwasser
DE202020105401U1 (de) Filtrationssystem für die Ölfiltration insbesondere für Schiffsaggregate wie Schiffsmotoren
EP4126291A1 (de) Anlage zur trennung suspendierter stoffe aus einer flüssigkeit mit einer filteranordnung nach art eines zyklonfilters
WO2014135502A1 (de) Fest/flüssig-separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16753380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529722

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008529

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018109723

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002794

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016753380

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018002794

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180209