WO2017036099A1 - 开关电路、电源系统和供电系统 - Google Patents

开关电路、电源系统和供电系统 Download PDF

Info

Publication number
WO2017036099A1
WO2017036099A1 PCT/CN2016/074006 CN2016074006W WO2017036099A1 WO 2017036099 A1 WO2017036099 A1 WO 2017036099A1 CN 2016074006 W CN2016074006 W CN 2016074006W WO 2017036099 A1 WO2017036099 A1 WO 2017036099A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching device
mechanical
circuit
switching
power source
Prior art date
Application number
PCT/CN2016/074006
Other languages
English (en)
French (fr)
Inventor
张国卿
唐倬
朱洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16840531.4A priority Critical patent/EP3312994A4/en
Publication of WO2017036099A1 publication Critical patent/WO2017036099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/002Switching arrangements with several input- or output terminals
    • H03K17/005Switching arrangements with several input- or output terminals with several inputs only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K2017/515Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais

Definitions

  • Embodiments of the present invention relate to the field of circuits, and more particularly, to a switch circuit, a power supply system, and a power supply system.
  • the load circuit can be designed two or more times.
  • the circuit power input, one of the two or more power inputs is an AC input, and the other part is a DC input. Inside the power supply unit, the AC and DC are switched.
  • Switching between AC and DC can be implemented in various forms in the prior art. For example, switching between AC and DC is achieved by switching between two sets of parallel semiconductor switching devices and mechanical switching devices. Although this method can solve the problem of arcing of existing mechanical switching devices (such as relays) and the large heat generation of semiconductor switching devices, in this mode, there is a problem of current reflow, that is, two circuits of AC and DC. In the meantime, isolation is achieved by the semiconductor device, and current recirculation is likely to occur when the semiconductor switching device is broken down, which is potentially dangerous.
  • Embodiments of the present invention provide a switch circuit, a power supply system, and a power supply system, which can improve safety.
  • a switching circuit comprising:
  • the switching module (120) includes a first switching circuit (121) and a second switching circuit (122),
  • the first switching circuit (121) includes a first mechanical switching device (102) and a first semiconductor switching device (103) connected in parallel, a second mechanical switching device (202) in parallel, and a second semiconductor switching device ( 203),
  • the second switching circuit (122) includes a third mechanical switching device (302) and a third semiconductor switching device (303) connected in parallel, a fourth mechanical switching device (402) in parallel, and a fourth semiconductor switching a switching device (403), wherein the first mechanical switching device (102), the second mechanical switching device (202), the third mechanical switching device (302), and the fourth mechanical switching device (402)
  • the first semiconductor switching device (103), the first semiconductor switching device (103), the first semiconductor switching device (103), and the first semiconductor are switching devices that can be physically disconnected or closed
  • the switching device (103) is a semiconductor switching device;
  • the first isolation circuit (131) includes a first end, a second end, a third end, and a fourth end; the first end of the first isolation circuit (131) and the first input end of the first power source (111) Connecting, the second end of the first isolation circuit (131) is connected to the second input end (112) of the first power source, the third end of the first isolation circuit (131) and the first mechanical switch device ( One end of the first isolation circuit (131) is connected to one end of the second mechanical switching device (202);
  • the control module (140) is configured to control the first isolation circuit (131) and the first switching circuit (121) to be turned on when the first power source is powered on and the second power source is powered off, and control the second The switching circuit (122) is disconnected such that the first power source is a power supply for the load circuit; and the first isolation circuit is controlled when the input end of the second power source is powered and the input end of the first power source is powered off ( 131) disconnecting from the first switching circuit (121), and controlling the second switching circuit (122) to be turned on, so that the second power source is a power supply for the load circuit, and preventing the first switching circuit ( 121) In the case of a short circuit, current flowing through the load circuit is returned to the first input terminal and the second input terminal side through the first switching circuit (121).
  • the first isolation circuit (131) specifically includes a first mechanical isolation switching device (101) and a second mechanical isolation switching device (201), the first mechanical isolation A switching device (101) is located between the first input terminal (111) and the first mechanical switching device (102), and the second mechanical isolation switching device (201) is located at the second input terminal (112) and the first A mechanical switching device (202) is provided, wherein the first mechanically isolating switching device (101) and the second mechanically isolating switching device (201) are switching devices that can be physically opened or closed.
  • the switch circuit further includes a second isolation circuit (132), the second isolation circuit (132) including a third mechanical isolation switch a device (301) and a fourth mechanically isolating switching device (401), the third mechanically isolating switching device (301) is located between the third input terminal (113) and the third mechanical switching device (302), the first A fourth mechanically isolating switching device (401) is disposed between the fourth input terminal (114) and the fourth mechanical switching device (402), wherein the third mechanically isolating switching device (301) and the fourth mechanically isolating switching device (401) is a switching device that can be physically opened or closed,
  • the control module (140) is specifically configured to:
  • the second switching circuit (122) is disconnected such that the first power source is a power supply for the load circuit, and the current flowing through the load circuit is prevented from passing through the second circuit if the second switching circuit (122) is short-circuited
  • the switching circuit (122) is reflowed to the third input end and the fourth input end side;
  • the first mechanical isolation switching device (101) and the second mechanical isolation switching device (201) are relays.
  • the third mechanical isolation switching device (301) and the fourth mechanical isolation switching device (401) are relays.
  • any one of the first to the fourth possible implementation manners in a fifth possible implementation manner,
  • control module controls the conduction of the first switching circuit (121), first controlling the first semiconductor switching device (103) and the second semiconductor switching device (203), and then controlling the first a mechanical switching device (102) and the second mechanical switching device (202) for quickly turning on the first switching circuit (121) and avoiding the first mechanical switching device (102) and the second mechanical Switching switching device (202) generates an arc;
  • control module controls the disconnection of the first switching circuit (121), first controlling to open the first mechanical switching device (102) and the second mechanical switching device (202), and then controlling to disconnect the first a semiconductor switching device (103) and the second semiconductor switching device (203) for preventing arcing of the first mechanical switching device (102) and the second mechanical switching device (202);
  • control module controls the conduction of the second switching circuit (122), first controlling the third semiconductor switching device (303) and the fourth semiconductor switching device (403), and then controlling the third a mechanical switching device (302) and the fourth mechanical switching device (402) for quickly turning on the second switching circuit (122) and avoiding the third mechanical switching device (302) and the fourth mechanism Switching switching device (402) generates an arc;
  • control module controls the disconnection of the second switching circuit (122), first control off the third mechanical switching device (302) and the fourth mechanical switching device (402), and then control to disconnect the third
  • the semiconductor switching device (303) and the fourth semiconductor switching device (403) are configured to prevent the third mechanical switching device (302) and the fourth mechanical switching device (402) from generating an arc.
  • any one of the first to the fifth possible implementation manners, in a sixth possible implementation manner is possible.
  • the first input terminal (111) and the second input terminal (112) are used for inputting alternating current, and the third input terminal (113) and the fourth input terminal (114) are used for inputting direct current,
  • the first input terminal (111) and the second input terminal (112) are configured to input a first alternating current
  • the third input terminal (113) and the fourth input terminal (114) are configured to input a second alternating current
  • the first alternating current and the second alternating current have different power supply voltages.
  • first input terminal (111) and the second input terminal (112) are configured to input a first direct current
  • third input terminal (113) and the fourth input terminal (114) are configured to input a second direct current
  • the first direct current and the second direct current have different power supply voltages.
  • any one of the first to the sixth possible implementation manners in a seventh possible implementation manner,
  • the first mechanical switch device (102), the second mechanical switch device (202), the third mechanical switch device (302), and the fourth mechanical switch device (402) are relays;
  • the first semiconductor switching device (103), the second semiconductor switching device (203), the third semiconductor switching device (303), and the fourth semiconductor switching device (403) are One of a metal-oxide semiconductor field effect transistor MOSFET, an insulated gate bipolar transistor IGBT, a thyristor SCR, and a triac TRIAC.
  • a power supply system comprising a first power supply, a second power supply, and a possible implementation of any one of the first to fifth possible implementations of the first aspect, the first aspect Switch circuit in the mode,
  • the first power source and the second power source are respectively connected to the switch circuit for supplying power to the power system.
  • a power supply system comprising a load device and a power system as in the second aspect, the power system for powering the load device.
  • the embodiment of the present invention ensures that when the input end of the second power source is powered on, even if the first switching circuit is provided, the first isolation circuit is disposed between the switching module and the first input end and the second input end. Short circuit, due to the existence of the first isolation circuit, the return current cannot reach the first input end and the second input side side through the first isolation circuit, thereby ensuring the safety of the use/maintenance personnel and improving the safety performance of the product.
  • FIG. 1 is a schematic block diagram of a switching circuit in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a switching circuit in accordance with another embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a switching circuit in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a switching circuit in accordance with another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a power supply system in accordance with one embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a power supply system in accordance with one embodiment of the present invention.
  • switch circuit of the embodiment of the present invention may be located inside the user equipment, or may be located outside the user equipment, which is not limited by the embodiment of the present invention.
  • FIG. 1 is a schematic block diagram of a switching circuit 100 in accordance with one embodiment of the present invention.
  • the switch circuit 100 shown in FIG. 1 may include a first input terminal 111, a second input terminal 112, a third input terminal 113, a fourth input terminal 114, a switching module 120, a first isolation circuit 131, and a control module 140.
  • the switch circuit 100 can include:
  • a third input terminal 113 and a fourth input terminal 114 for connecting the second power source, wherein the first power source is different from the power source type and the power source voltage of the second power source;
  • the switching module 120 includes a first switching circuit 121 and a second switching circuit 122.
  • the first switching circuit 121 includes a first mechanical switching device 102 and a first semiconductor switching device 103 connected in parallel, and a second mechanical switching device 202 in parallel.
  • the second switching circuit 122 includes a third mechanical switching device 302 and a third semiconductor switching device 303 connected in parallel, a fourth mechanical switching device 402 in parallel, and a fourth semiconductor switching device 403
  • the first mechanical switching device 102, the second mechanical switching device 202, the third mechanical switching device 302, and the fourth mechanical switching device 402 are switching devices that can be physically opened or closed, the first semiconductor switching
  • the switching device 103, the first semiconductor switching device 103, the first semiconductor switching device 103, and the first semiconductor switching device 103 are semiconductor switching devices;
  • the first isolation circuit 131 includes a first end, a second end, a third end, and a fourth end.
  • the first end of the first isolation circuit 131 is connected to the first input end 111 of the first power source, and the first isolation circuit 131
  • the second end is connected to the second input end 112 of the first power supply, the third end of the first isolation circuit 131 is connected to one end of the first mechanical switching device 102, and the fourth end of the first isolation circuit 131 is switched to the second mechanical One end of the switching device 202 is connected;
  • first isolation circuit 131 can be used to physically open or close the circuit between the first power source and the first switching circuit 121;
  • the control module 140 is configured to control the first isolation circuit 131 and the first switching circuit 121 to be turned on when the first power source is powered on and the second power source is powered off, and control the second switching circuit 122 to be turned off to enable the first power source a power supply for the electric device; and when the input end of the second power source is powered on and the input end of the first power source is powered off, the first isolation circuit 131 and the first switching circuit 121 are controlled to be disconnected, and the control is The switching circuit 122 is turned on, so that the second power source is the power supply of the power device, and the current flowing through the load circuit is prevented from flowing back to the first input through the first switching circuit 121 when the first switching circuit 121 is short-circuited. End and second input side.
  • the first isolation circuit is disposed between the switching module and the first power source according to the embodiment of the invention, which ensures that when the input end of the second power source is powered on, even if the first switching circuit is short-circuited, In the presence of the isolation circuit, the return current cannot pass through the first isolation circuit to the first input end and the second input end side, thereby ensuring the safety of the use/maintenance personnel and improving the safety performance of the product.
  • the return current cannot reach the first power supply side through the first isolation circuit, thereby ensuring the safety of the use/maintenance personnel and improving the safety of the product. performance.
  • the specific embodiment of the first isolation circuit is not limited as long as the first isolation circuit can physically disconnect or close the first power supply and the first switching circuit 121. The circuit between them can be.
  • the first isolation circuit 131 specifically includes a first mechanical isolation switching device 101 and a second mechanical isolation switching device 201.
  • the first mechanical isolation switching device 101 is located between the first input end 111 and the first mechanical switching device 102, and the second mechanical The isolating switch device 201 is located between the second input terminal 112 and the first mechanical switching device 202, wherein the first mechanically isolating switching device 101 and the second mechanically isolating switching device 201 are switching devices that can be physically disconnected or closed .
  • a first isolation circuit is disposed between the switching module and the first power source to ensure that when the input end of the second power source is powered on, even if the first switching circuit is short-circuited, due to the existence of the first isolation circuit, That is, the first isolation circuit is physically disconnected, and the return current cannot reach the first input end and the second input end side through the first isolation circuit, thereby ensuring the safety of the use/maintenance personnel and improving the safety performance of the product.
  • the first end of the first isolation circuit 131 may be an input end of the first mechanical isolation switching device 101, and the second end may be an output end of the first mechanical isolation switching device 101;
  • the terminal may be the input of the second mechanically isolating switching device 201, and the fourth terminal may be the output of the second mechanically isolating switching device 201.
  • the first mechanical switch device 102, the second mechanical switch device 202, the third mechanical switch device 302, and the fourth mechanical switch device 402 are relays;
  • the first semiconductor switching device 103, the second semiconductor switching device 203, the third semiconductor switching device 303, and the fourth semiconductor switching device 403 are metal-oxide semiconductor field effect transistor MOSFETs, insulated gate bipolar transistors IGBTs, One of a thyristor SCR and a triac TRIAC.
  • the first power source is different from the power source type and the power source voltage of the second power source, in other words, the current input by the first input terminal and the second input terminal is input to the third input terminal and the fourth input terminal.
  • the type of current or the voltage of the current is different.
  • the first input terminal 111 and the second input terminal 112 are used for inputting alternating current
  • the third input terminal 113 and the fourth input terminal 114 are for inputting direct current
  • the third input terminal 113 and the fourth input terminal 114 are used for inputting direct current, that is, the second power source HVDC.
  • the first input terminal 111 and the second input terminal 112 are used to input the first alternating current
  • the third input terminal 113 and the fourth input terminal 114 are used to input the second alternating current
  • the power voltages of the first alternating current and the second alternating current are different.
  • the first input terminal 111 and the second input terminal 112 are used to input the first direct current
  • the third input terminal 113 and the fourth input terminal 114 are used to input the second direct current
  • the first direct current and the second direct current have different power supply voltages.
  • the switch circuit 300 further includes a second isolation circuit 132.
  • the second isolation circuit 132 includes a third mechanical isolation switch device 301 and a fourth mechanical isolation switch device 401.
  • the third mechanical isolation switching device 301 is located between the third input terminal 113 and the third mechanical switching device 302
  • the fourth mechanical isolation switching device 401 is located between the fourth input terminal 114 and the fourth mechanical switching device 402, wherein
  • the three mechanically isolating switching device 301 and the fourth mechanically isolating switching device 401 are switching devices that can be physically disconnected or closed,
  • the control module 140 is specifically configured to:
  • the first isolation circuit 131 and the first switching circuit 121 are controlled to be turned on, and the second isolation circuit 132 and the second switching circuit 122 are controlled to be disconnected to enable the first power source.
  • the current flowing through the load circuit is returned to the third input terminal and the fourth input terminal through the second switching circuit 122. side;
  • the first isolation circuit 131 and the first switching circuit 121 are controlled to be disconnected, and the second isolation circuit 132 and the second switching circuit 122 are controlled to be turned on, so that the second The power source is a power source for the electric device, and prevents the current flowing through the load circuit from flowing back to the first input end and the second input end side through the first switching circuit 121 in the case where the first switching circuit 121 is short-circuited.
  • the first isolation circuit is disposed between the switching module and the first power source according to the embodiment of the invention, which ensures that when the input end of the second power source is powered on, even if the first switching circuit is short-circuited, The physical disconnection of the isolation circuit, the return current cannot reach the first input end and the second input end side through the first isolation, and likewise, because the second isolation circuit is disposed between the switching module and the second power supply, the first power supply When the input terminal is powered on, even if the second switching circuit is short-circuited, due to the existence of the first isolation circuit, the return current cannot pass through the first isolation circuit to reach the third input end and the fourth input end side, thereby ensuring the safety of the user/maintenance personnel. Improve the safety of the product.
  • the control module 140 detects whether the first input terminal 111, the second input terminal 112, the third input terminal 113, and the fourth input terminal 114 have a power input. If an input has an electrical input, the corresponding mechanical switch is controlled.
  • the device (101/201/301/401) is in a "closed” state.
  • the mechanical switching device described above is a relay. When there is no electrical input to an input terminal, the relay controlling the circuit is in an "on" state.
  • the relays 101 and 201 are turned on, in a closed state, when the first input terminal 111 and the second input terminal of the first power source are connected When there is no current input, the relays 101 and 201 are turned off and are turned on.
  • the relays 301 and 401 are turned on, in a closed state, when the third input terminal 113 and the second power source are connected.
  • the relays 301 and 401 are turned off and are in an open state.
  • the semiconductor switching device in the switching module has a single failure, since the first isolation circuit and the second isolation circuit are isolated, the dangerous voltage inside the product is isolated and not transmitted to the outside of the product. That is, the danger of current backflow in the prior art is avoided, the safety of the use/maintenance personnel is ensured, and the safety performance is improved.
  • FIG. 3 As those in FIGS. 1 and 2 are given the same reference numerals, and the detailed description of the same devices in FIG. 3 as those in FIGS. 1 and 2 can be referred to the corresponding descriptions in FIG. 1 and FIG. Avoid repetition, no more details here.
  • the first mechanical isolation switching device 101, the second mechanical isolation switching device 201, the third mechanical isolation switching device 301, and the fourth mechanical isolation switching device 401 may be relays.
  • first mechanical isolation switching device 101 the second mechanical isolation switching device 201, the third mechanical isolation switching device 301, and the fourth mechanical isolation switching device 401 may also be other switching devices as long as they can be physically disconnected and closed. That is, the embodiment of the invention is not limited thereto.
  • the control module controls the conduction of the first switching circuit 121
  • the first semiconductor switching device 103 and the second semiconductor switching device 203 are first controlled to be turned on, and then the first mechanical device is turned on.
  • the switching device 102 and the second mechanical switching device 202 are configured to quickly turn on the first switching circuit 121 and prevent the first mechanical switching device 102 and the second mechanical switching device 202 from generating an arc;
  • the control module controls the disconnection of the first switching circuit 121
  • the first mechanical switching device 102 and the second mechanical switching device 202 are first controlled to be turned off, and then the first semiconductor switching device 103 and the second semiconductor switching switch are controlled to be disconnected.
  • the device 203 is configured to prevent the first mechanical switching device 102 and the second mechanical switching device 202 from generating an arc;
  • the control module controls the conduction of the second switching circuit 122
  • the third semiconductor switching device 303 and the fourth semiconductor switching device 403 are first controlled to be turned on, and then the third mechanical switching device 302 and the fourth mechanical switching switch are turned on.
  • the device 402 is configured to quickly turn on the second switching circuit 122 and prevent the third mechanical switching device 302 and the fourth mechanical switching device 402 from generating an arc;
  • the control module controls the disconnection of the second switching circuit 122
  • the first mechanical switching device 302 and the fourth mechanical switching device 402 are first turned off, and then the third semiconductor switching device 303 and the fourth semiconductor switching switch are turned off.
  • the device 403 is configured to prevent the third mechanical switching device 302 and the fourth mechanical switching device 402 from generating an arc.
  • the semiconductor switching device of the parallel component when the power is turned on, the semiconductor switching device of the parallel component is energized after the mechanical switching device is energized, so that the fast energization is achieved and the mechanical switching device does not arc. Moreover, since the semiconductor switching device is only subjected to short-time current flow, the mechanical switch is subjected to normal working current flow, and the semiconductor switching device has no problem of large heat generation; when the power is off, the mechanical switching device of the parallel component first turns off the semiconductor switching device. The power is turned off, which realizes that the mechanical switching device does not oscillate.
  • the switching function is realized by a parallel component of the semiconductor switching device and the mechanical switching device.
  • the first mechanical switching device 102 and the first semiconductor switching device 203 are connected, for example, when the power is on, the first semiconductor switching device 203 is turned on, and then the first mechanical switching device is turned on. 102. Since the response speed of the first semiconductor switching device 203 is faster than that of the first mechanical switching device 102, the first semiconductor switching device 203 is turned on to quickly turn on the first switching circuit, and the first mechanical device is turned on. No arcing occurs when the switching device is switched. After the conduction, when the first mechanical switching device 102 and the first semiconductor switching device 203 are continuously turned on, since the resistance of the first mechanical switching device 102 is smaller than the resistance of the first semiconductor switching device 203, most of the current is passed.
  • the first mechanical switching device 102 is circulated, and only a small amount of current flows through the first semiconductor switching device 203, thereby avoiding the problem that the first semiconductor switching device 203 generates a large amount of heat.
  • the first mechanical switching device 102 is powered off first, and the first semiconductor switches the switching device 203, so that the first mechanical switching device 102 is not arced.
  • the embodiment of the invention can quickly realize the switching of the current, and avoids the problem that the mechanical switch generates an arc and the semiconductor switch generates a large amount of heat. Further, since the switching circuit has the first isolation circuit and the second isolation circuit, safety performance can be improved.
  • the medium control module in the embodiment of the above text may include a plurality of control submodules.
  • the control module of the switch circuit 400 as shown in FIG. 4 includes: a first control submodule 141 and a second control submodule. 142 and a third control sub-module 143. 4 differs from FIG. 1, FIG. 2, and FIG. 3 only in that all of the control circuits are collectively referred to as one control module 140 in FIGS. 1, 2, and 3.
  • the first control sub-module 141, the second control sub-module 142, and the third control sub-module 143 in FIG. 4 are collectively referred to as a control module, and are capable of implementing the respective functions of the control module 140 of FIGS. 1, 2, and 3.
  • the first isolation circuit 131, the second isolation circuit 132, and the switching module 120 in FIG. 4 are the same as described above. In order to avoid repetition, a detailed description is omitted as appropriate herein.
  • the first control sub-module 141 is configured to control the first isolation circuit 131 to be turned on when the first power source is powered on, and to cause the first isolation circuit 131 to be turned off when the first power source is powered off.
  • the second control sub-module 142 is configured to power on the second power source, the control is such that the second isolation circuit 132 is turned on, and when the second power source is powered off, the control causes the second isolation circuit 132 to be turned off.
  • the third control sub-module 143 is configured to control the first switching circuit 121 to be turned on and the second switching circuit 122 to be turned off when the first power source is powered on and the second power source is powered off, and the first power source is powered on the second power source.
  • the control causes the first switching circuit 121 to be turned off and the second switching circuit 122 to be turned on.
  • the third control sub-module 143 controls the conduction of the first switching circuit 121
  • the first semiconductor switching device 103 and the second semiconductor switching device 203 are controlled to be turned on first, and then the first mechanical switching switch is turned on.
  • the device 102 and the second mechanical switching device 202 are configured to quickly turn on the first switching circuit 121 and prevent the first mechanical switching device 102 and the second mechanical switching device 202 from generating an arc;
  • the third control sub-module 143 controls the disconnection of the first switching circuit 121
  • the first mechanical switching device 102 and the second mechanical switching device 202 are first controlled to be turned off, and then the first semiconductor switching device 103 is turned off.
  • the semiconductor switching device 203 is configured to prevent the first mechanical switching device 102 and the second mechanical switching device 202 from generating an arc;
  • the third control sub-module 143 controls the conduction of the second switching circuit 122, first controls the conduction of the third semiconductor switching device 303 and the fourth semiconductor switching device 403, and then controls the conduction of the third mechanical switching device 302 and the
  • the four mechanical switching device 402 is configured to quickly turn on the second switching circuit 122 and prevent the third mechanical switching device 302 and the fourth mechanical switching device 402 from generating an arc;
  • the third control sub-module 143 controls the disconnection of the second switching circuit 122
  • the third mechanical switching device 302 and the fourth mechanical switching device 402 are first controlled to be turned off, and then the third semiconductor switching device 303 is turned off.
  • the semiconductor switching device 403 is configured to prevent the third mechanical switching device 302 and the fourth mechanical switching device 402 from generating an arc.
  • FIG. 4 As those in FIG. 1, FIG. 2 and FIG. 3 are given the same reference numerals, and the detailed description of the same devices in FIG. 4 as those in FIG. 1, FIG. 2 and FIG. 3 can be seen in FIG. 1 and FIG. Corresponding descriptions in FIG. 3 are not repeated here to avoid repetition.
  • FIG. 1 to FIG. 4 are merely intended to assist those skilled in the art to understand the embodiments of the present invention, and the embodiments of the present invention are not limited to the specific numerical values or specific examples illustrated. A person skilled in the art will be able to make various modifications or changes in the embodiments according to the examples of FIG. 1 to FIG. 4, and such modifications or variations are also within the scope of the embodiments of the present invention.
  • FIG. 5 is a schematic block diagram of a power supply system in accordance with one embodiment of the present invention.
  • the source system 500 includes a first power source 510, a second power source 520, and a switching circuit 530 as in any of Figures 1-4.
  • the first power source 510 and the second power source 520 are respectively connected to the switch circuit 530 for power supply of the power system.
  • the first power source is different from at least one of the power source type and the power source voltage of the second power source.
  • the switch circuit 530 in FIG. 5 corresponds to the switch circuits 100, 200, 300, and 400 in FIGS. 1 to 4.
  • the specific functions of the switch circuit 530 can be referred to the above-mentioned for the switch circuits 100, 200, 300, and 400. Corresponding descriptions are not detailed here to avoid repetition.
  • FIG. 6 is a schematic block diagram of a power supply system in accordance with one embodiment of the present invention.
  • the power supply system 600 as shown in FIG. 6 includes a load circuit 610 and a power supply system 620 as shown in FIG. 5 for powering the load circuit 610.
  • the power system 620 in FIG. 6 corresponds to the power system 500 in FIG. 5.
  • the specific functions of the power system 620 can be referred to the corresponding descriptions for the power system 500. To avoid repetition, details are not described herein.
  • FIG. 4 to FIG. 6 are merely for facilitating the understanding of the embodiments of the present invention, and the embodiments of the present invention are not limited to the specific numerical values or specific examples illustrated. A person skilled in the art will be able to make various modifications or changes in accordance with the examples of FIG. 4 to FIG. 6 which are within the scope of the embodiments of the present invention.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk removable disk
  • CD-ROM computer-readable media

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

一种开关电路、电源系统和供电系统,该开关电路包括:用于连接第一电源的第一输入端(111)和第二输入端(112);用于连接第二电源的第三输入端(113)和第四输入端(114);切换模块(120),包括第一切换电路(121)和第二切换电路(122);第一隔离电路(131);控制模块(140),用于在第一电源上电和断电时,分别控制第一隔离电路(131)的导通和断开。通过在切换模块(120)与第一电源的输入端之间设置了第一隔离电路(131),能够提高产品的安全性能。

Description

开关电路、电源系统和供电系统
本申请要求于2015年08月31日提交中国专利局、申请号为201510543592.6、发明名称为“开关电路、电源系统和供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及电路领域,更具体地,涉及一种开关电路、电源系统和供电系统。
背景技术
为了提高用电可靠性,随着交流(Alternating Current,AC)与直流(Direct Current,DC)例如,高压直流(high-voltage direct current,HVDC)混合供电的出现,负载电路可以设计两路或者多路电源输入,该两路或者多路电源输入中一部分为AC输入,另一部分为DC输入。在供电设备内部,AC与DC进行切换。
现有技术中可以采用多种形式实现AC与DC的切换,例如,AC与DC的切换通过两组并联的半导体开关器件与机械开关器件之间的闭合和断开的切换来实现。虽然这种方式中能够解决现有的机械开关器件(如继电器)产生电弧的问题及半导体开关器件发热量大的问题,然而,该方式中,存在电流回流问题,即AC与DC两个电路之间,通过半导体器件实现隔离,在半导体开关器件击穿时容易出现电流的回流,存在潜在的危险。
因此,希望提供一种技术,在实现电流的切换的同时,能够提高安全性。
发明内容
本发明实施例提供了一种开关电路、电源系统和供电系统,该开关电路能够提高安全性。
第一方面,提供了一种开关电路,包括:
用于连接第一电源的第一输入端(111)和第二输入端(112);
用于连接第二电源的第三输入端(113)和第四输入端(114),其中,该第一电源与该第二电源的电源类型和电源电压中的至少一种不同;
切换模块(120),包括第一切换电路(121)和第二切换电路(122), 该第一切换电路(121)包括并联的第一机械切换开关器件(102)和第一半导体切换开关器件(103)、并联的第二机械切换开关器件(202)和第二半导体切换开关器件(203),该第二切换电路(122)包括并联的第三机械切换开关器件(302)和第三半导体切换开关器件(303)、并联的第四机械切换开关器件(402)和第四半导体切换开关器件(403),其中,该第一机械切换开关器件(102)、该第二机械切换开关器件(202)该第三机械切换开关器件(302)和该第四机械切换开关器件(402)为能够在物理上断开或闭合的开关器件,该第一半导体切换开关器件(103)、该第一半导体切换开关器件(103)、该第一半导体切换开关器件(103)和该第一半导体切换开关器件(103)为半导体开关器件;
第一隔离电路(131),包括第一端、第二端、第三端和第四端;该第一隔离电路(131)的第一端与该第一电源的第一输入端(111)连接,该第一隔离电路(131)的第二端与该第一电源的第二输入端(112)连接,该第一隔离电路(131)的第三端与该第一机械切换开关器件(102)的一端连接,该第一隔离电路(131)的第四端与该第二机械切换开关器件(202)的一端连接;
控制模块(140),用于在该第一电源上电且该第二电源断电时,控制该第一隔离电路(131)和该第一切换电路(121)导通,且控制该第二切换电路(122)断开,以使该第一电源为负载电路的供电源;以及在该第二电源的输入端上电且第一电源的输入端断电时,控制该第一隔离电路(131)和该第一切换电路(121)断开,且控制该第二切换电路(122)导通,以使该第二电源为该负载电路的供电源,且防止在该第一切换电路(121)短路的情况下,流经该负载电路的电流通过该第一切换电路(121)回流到该第一输入端和该第二输入端侧。
结合第一方面,在第一种可能的实现方式中,该第一隔离电路(131)具体包括第一机械隔离开关器件(101)和第二机械隔离开关器件(201),该第一机械隔离开关器件(101)位于该第一输入端(111)与该第一机械切换开关器件(102)之间,该第二机械隔离开关器件(201)位于该第二输入端(112)与该第一机械切换开关器件(202)之间,其中,该第一机械隔离开关器件(101)和第二机械隔离开关器件(201)为能够在物理上断开或闭合的开关器件。
结合第一方面和第一种可能的实现方式,在第二种可能的实现方式中,该开关电路还包括第二隔离电路(132),该第二隔离电路(132)包括第三机械隔离开关器件(301)和第四机械隔离开关器件(401),该第三机械隔离开关器件(301)位于该第三输入端(113)与该第三机械切换开关器件(302)之间,该第四机械隔离开关器件(401)位于该第四输入端(114)与该第四机械切换开关器件(402)之间,其中,该第三机械隔离开关器件(301)和第四机械隔离开关器件(401)为能够在物理上断开或闭合的开关器件,
该控制模块(140)具体用于:
在该第一电源上电且该第二电源断电时,控制该第一隔离电路(131)和该第一切换电路(121)导通,且控制该第二隔离电路(132)和该第二切换电路(122)断开,以使该第一电源为该负载电路的供电源,且防止在该第二切换电路(122)短路的情况下,流经该负载电路的电流通过该第二切换电路(122)回流到该第三输入端和该第四输入端侧;
以及在该第二电源上电且该第一电源断电时,控制该第一隔离电路(131)和该第一切换电路(121)断开,且控制该第二隔离电路(132)和该第二切换电路(122)导通,以使该第二电源为该负载电路的供电源,且防止在该第一切换电路(121)短路的情况下,流经该负载电路的电流通过该第一切换电路(121)回流到该第一输入端和该第二输入端侧。
结合第一或第二种可能的实现方式,在第三种可能的实现方式中,
该第一机械隔离开关器件(101)和该第二机械隔离开关器件(201)为继电器。
结合第二种可能的实现方式,在第四种可能的实现方式中,
该第三机械隔离开关器件(301)和该第四机械隔离开关器件(401)为继电器。
结合第一方面、第一至第四种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,
该控制模块控制该第一切换电路(121)的导通时,先控制导通该第一半导体切换开关器件(103)和该第二半导体切换开关器件(203),后控制导通该第一机械切换开关器件(102)和该第二机械切换开关器件(202),用于快速导通该第一切换电路(121),且避免该第一机械切换开关器件(102)和该第二机械切换开关器件(202)产生电弧;
该控制模块控制该第一切换电路(121)的断开时,先控制断开该第一机械切换开关器件(102)和该第二机械切换开关器件(202),后控制断开该第一半导体切换开关器件(103)和该第二半导体切换开关器件(203),用于避免该第一机械切换开关器件(102)和该第二机械切换开关器件(202)产生电弧;
该控制模块控制该第二切换电路(122)的导通时,先控制导通该第三半导体切换开关器件(303)和该第四半导体切换开关器件(403),后控制导通该第三机械切换开关器件(302)和该第四机械切换开关器件(402),用于快速导通该第二切换电路(122),且避免该第三机械切换开关器件(302)和该第四机械切换开关器件(402)产生电弧;
该控制模块控制该第二切换电路(122)的断开时,先控制断开该第三机械切换开关器件(302)和该第四机械切换开关器件(402),后控制断开该第三半导体切换开关器件(303)和该第四半导体切换开关器件(403),用于避免该第三机械切换开关器件(302)和该第四机械切换开关器件(402)产生电弧。
结合第一方面、第一至第五种可能的实现方式中的任一种可能的实现方式,在第六种可能的实现方式中,
该第一输入端(111)和该第二输入端(112)用于输入交流电,该第三输入端(113)和该第四输入端(114)用于输入直流电,
或者,该第一输入端(111)和该第二输入端(112)用于输入第一交流电,该第三输入端(113)和该第四输入端(114)用于输入第二交流电,该第一交流电和该第二交流电的电源电压不同,
或者,该第一输入端(111)和该第二输入端(112)用于输入第一直流电,该第三输入端(113)和该第四输入端(114)用于输入第二直流电,该第一直流电和该第二直流电的电源电压不同。
结合第一方面、第一至第六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,
该第一机械切换开关器件(102)、该第二机械切换开关器件(202)、该第三机械切换开关器件(302)和该第四机械切换开关器件(402)为继电器;
该第一半导体切换开关器件(103)、该第二半导体切换开关器件(203)、该第三半导体切换开关器件(303)和该第四半导体切换开关器件(403)为 金属-氧化物半导体场效应晶体管MOSFET、绝缘栅双极型晶体管IGBT、可控硅SCR和三端双向控硅开关TRIAC中的一种。
第二方面,提供了一种电源系统,该电源系统包括第一电源、第二电源和如第一方面、第一方面的第一至第五种可能的实现方式中的任一种可能的实现方式中的开关电路,
该第一电源和该第二电源分别与该开关电路连接,用于该电源系统的供电源。
第三方面,提供了一种供电系统,包括负载设备和如第二方面的电源系统,该电源系统用于向该负载设备供电。
基于上述技术方案,本发明实施例通过在切换模块与第一输入端和第二输入端之间设置了第一隔离电路,保证了在第二电源的输入端上电时,即使第一切换电路短路,由于第一隔离电路的存在,回流电流无法通过第一隔离电路到达第一输入端和所述第二输入端侧侧,保障了使用/维护人员的安全,提高了产品的安全性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一个实施例的一种开关电路的示意性框图。
图2是根据本发明另一实施例的一种开关电路的示意性框图。
图3是根据本发明另一实施例的一种开关电路的示意性框图。
图4是根据本发明另一实施例的一种开关电路的示意性框图。
图5是根据本发明一个实施例的电源系统的示意性框图。
图6是根据本发明一个实施例的供电系统的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的开关电路可以位于用户设备的内部,也可以位于用户设备的外部,本发明实施例并不对此做限定。
图1是根据本发明一个实施例的一种开关电路100的示意性框图。如图1所示的开关电路100可以包括第一输入端111、第二输入端112、第三输入端113、第四输入端114、切换模块120、第一隔离电路131和控制模块140。
具体而言,开关电路100可以包括:
用于连接第一电源的第一输入端111和第二输入端112;
用于连接第二电源的第三输入端113和第四输入端114,其中,第一电源与第二电源的电源类型和电源电压中的至少一种不同;
切换模块120,包括第一切换电路121和第二切换电路122,第一切换电路121包括并联的第一机械切换开关器件102和第一半导体切换开关器件103、并联的第二机械切换开关器件202和第二半导体切换开关器件203,第二切换电路122包括并联的第三机械切换开关器件302和第三半导体切换开关器件303、并联的第四机械切换开关器件402和第四半导体切换开关器件403,其中,第一机械切换开关器件102、第二机械切换开关器件202第三机械切换开关器件302和第四机械切换开关器件402为能够在物理上断开或闭合的开关器件,第一半导体切换开关器件103、第一半导体切换开关器件103、第一半导体切换开关器件103和第一半导体切换开关器件103为半导体开关器件;
第一隔离电路131,包括第一端、第二端、第三端和第四端;第一隔离电路131的第一端与第一电源的第一输入端111连接,第一隔离电路131的第二端与第一电源的第二输入端112连接,第一隔离电路131的第三端与第一机械切换开关器件102的一端连接,第一隔离电路131的第四端与第二机械切换开关器件202的一端连接;
应理解,第一隔离电路131可以用于物理上断开或闭合第一电源与第一切换电路121之间的电路;
控制模块140,用于在第一电源上电且第二电源断电时,控制第一隔离电路131和第一切换电路121导通,且控制第二切换电路122断开,以使第一电源为用电设备的供电源;以及在第二电源的输入端上电且第一电源的输入端断电时,控制第一隔离电路131和第一切换电路121断开,且控制第 二切换电路122导通,以使第二电源为用电设备的供电源,且防止在第一切换电路121短路的情况下,流经负载电路的电流通过第一切换电路121回流到第一输入端和第二输入端侧。
因此,基于上述技术方案,本发明实施例在切换模块与第一电源之间设置了第一隔离电路,保证了在第二电源的输入端上电时,即使第一切换电路短路,由于第一隔离电路的存在,回流电流无法通过第一隔离电路到达第一输入端和第二输入端侧,保障了使用/维护人员的安全,提高了产品的安全性能。
应理解,由于第一输入端和第二输入端与第一电源连接,因此,回流电流同样无法通过第一隔离电路到达第一电源侧,保障了使用/维护人员的安全,提高了产品的安全性能。
需要说明的是,在本发明实施例中,本发明实施例并不对第一隔离电路的具体形式做限定,只要第一隔离电路能够实现物理上断开或闭合第一电源与第一切换电路121之间的电路即可。
进一步地,作为另一实施例,在如图2所示的开关电路200中,
第一隔离电路131具体包括第一机械隔离开关器件101和第二机械隔离开关器件201,第一机械隔离开关器件101位于第一输入端111与第一机械切换开关器件102之间,第二机械隔离开关器件201位于第二输入端112与第一机械切换开关器件202之间,其中,第一机械隔离开关器件101和第二机械隔离开关器件201为能够在物理上断开或闭合的开关器件。
因此,本发明实施例在切换模块与第一电源之间设置了第一隔离电路,保证了在第二电源的输入端上电时,即使第一切换电路短路,由于第一隔离电路的存在,即第一隔离电路物理上断开,回流电流无法通过第一隔离电路到达第一输入端和第二输入端侧,保障了使用/维护人员的安全,提高了产品的安全性能。
应理解,在本发明实施例中,第一隔离电路131的第一端可以为第一机械隔离开关器件101的输入端,第二端可以为第一机械隔离开关器件101的输出端;第三端可以为第二机械隔离开关器件201的输入端,第四端可以为第二机械隔离开关器件201的输出端。
还应理解,图2中与图1中相同的装置采用相同的标号,图2中的与图1中相同装置的具体描述可参见图1中的相应描述,为避免重复,此处不再 赘述。
可选地,第一机械切换开关器件102、第二机械切换开关器件202、第三机械切换开关器件302和第四机械切换开关器件402为继电器;
第一半导体切换开关器件103、第二半导体切换开关器件203、第三半导体切换开关器件303和第四半导体切换开关器件403为金属-氧化物半导体场效应晶体管MOSFET、绝缘栅双极型晶体管IGBT、可控硅SCR和三端双向控硅开关TRIAC中的一种。
应理解,第一电源与第二电源的电源类型和电源电压中的至少一种不同,换句话说,第一输入端和第二输入端输入的电流与第三输入端和第四输入端输入的电流的类型或电流的电压不同。
相应的,作为另一实施例,第一输入端111和第二输入端112用于输入交流电,第三输入端113和第四输入端114用于输入直流电,
例如,第三输入端113和第四输入端114用于输入的直流电即第二电源HVDC。
或者,第一输入端111和第二输入端112用于输入第一交流电,第三输入端113和第四输入端114用于输入第二交流电,第一交流电和第二交流电的电源电压不同,
或者,第一输入端111和第二输入端112用于输入第一直流电,第三输入端113和第四输入端114用于输入第二直流电,第一直流电和第二直流电的电源电压不同。
可选地,作为另一实施例,如图3所示,开关电路300还包括第二隔离电路132,第二隔离电路132包括第三机械隔离开关器件301和第四机械隔离开关器件401,第三机械隔离开关器件301位于第三输入端113与第三机械切换开关器件302之间,第四机械隔离开关器件401位于第四输入端114与第四机械切换开关器件402之间,其中,第三机械隔离开关器件301和第四机械隔离开关器件401为能够在物理上断开或闭合的开关器件,
控制模块140具体用于:
在第一电源上电且第二电源断电时,控制第一隔离电路131和第一切换电路121导通,且控制第二隔离电路132和第二切换电路122断开,以使第一电源为用电设备的供电源,且防止在第二切换电路122短路的情况下,流经负载电路的电流通过第二切换电路122回流到第三输入端和第四输入端 侧;
以及在第二电源上电且第一电源断电时,控制第一隔离电路131和第一切换电路121断开,且控制第二隔离电路132和第二切换电路122导通,以使第二电源为用电设备的供电源,且防止在第一切换电路121短路的情况下,流经负载电路的电流通过第一切换电路121回流到第一输入端和第二输入端侧。
因此,基于上述技术方案,本发明实施例在切换模块与第一电源之间设置了第一隔离电路,保证了在第二电源的输入端上电时,即使第一切换电路短路,由于第一隔离电路的物理断开,回流电流无法通过第一隔离到达第一输入端和第二输入端侧,同样地,由于在切换模块与第二电源之间设置了第二隔离电路,在第一电源的输入端上电时,即使第二切换电路短路,由于第一隔离电路的存在,回流电流无法通过第一隔离电路到达第三输入端和第四输入端侧,保障了使用/维护人员的安全,提高了产品的安全性能。
具体而言,控制模块140检测第一输入端111、第二输入端112、第三输入端113和第四输入端114是否有电源输入,如果某输入端有电输入时,控制相应机械切换开关器件(101/201/301/401)处于“闭合”状态,例如上述机械切换开关器件为继电器,当某路输入端无电输入时,则控制这一路的继电器处于“打开”状态。
例如,如表一所示。当连接第一电源的第一输入端111和第二输入端112有电流输入时开,继电器101和201导通,处于闭合状态,当连接第一电源的第一输入端111和第二输入端112无电流输入时关,继电器101和201断开,处于打开状态。同样地,当连接第二电源的第三输入端113和第四输入端114有电流输入时开,继电器301和401导通,处于闭合状态,当连接第二电源的第三输入端113和第四输入端114无电流输入时关,继电器301和401断开,处于打开状态。
表一
Figure PCTCN2016074006-appb-000001
Figure PCTCN2016074006-appb-000002
因此,当切换模块中的半导体开关器件单一失效时,由于第一隔离电路和第二隔离电路实现隔离,将产品内部的危险电压隔离,不传递到产品外部。即,避免了现有技术中电流回流的危险,保障使用/维护人员的安全,提高了安全性能。
应理解,图3中与图1和图2中相同的装置采用相同的标号,图3中的与图1和图2中相同装置的具体描述可参见图1和图2中的相应描述,为避免重复,此处不再赘述。
可选地,作为另一实施例,第一机械隔离开关器件101、第二机械隔离开关器件201、第三机械隔离开关器件301和第四机械隔离开关器件401可以为继电器。
应理解,第一机械隔离开关器件101、第二机械隔离开关器件201、第三机械隔离开关器件301和第四机械隔离开关器件401还可以为其他的开关器件,只要物理上能够断开和闭合即可,本发明实施例并不限于此。
可选地,作为另一实施例,控制模块控制第一切换电路121的导通时,先控制导通第一半导体切换开关器件103和第二半导体切换开关器件203,后控制导通第一机械切换开关器件102和第二机械切换开关器件202,用于快速导通第一切换电路121,且避免第一机械切换开关器件102和第二机械切换开关器件202产生电弧;
控制模块控制第一切换电路121的断开时,先控制断开第一机械切换开关器件102和第二机械切换开关器件202,后控制断开第一半导体切换开关器件103和第二半导体切换开关器件203,用于避免第一机械切换开关器件102和第二机械切换开关器件202产生电弧;
控制模块控制第二切换电路122的导通时,先控制导通第三半导体切换开关器件303和第四半导体切换开关器件403,后控制导通第三机械切换开关器件302和第四机械切换开关器件402,用于快速导通第二切换电路122,且避免第三机械切换开关器件302和第四机械切换开关器件402产生电弧;
控制模块控制第二切换电路122的断开时,先控制断开第三机械切换开关器件302和第四机械切换开关器件402,后控制断开第三半导体切换开关器件303和第四半导体切换开关器件403,用于避免第三机械切换开关器件302和第四机械切换开关器件402产生电弧。
也就是说,通电时,并联组件的半导体开关器件先通电机械开关器件后通电,这样实现了快速通电而且机械开关器件不起弧。并且,由于半导体开关器件只承受短时的通流,机械开关承受正常工作的通流,半导体开关器件没有发热量大的问题;断电时,并联组件的机械开关器件先断电半导体开关器件后断电,这样实现了机械开关器件不起弧。利用半导体开关器件与机械开关器件的并联组件实现切换功能。
以第一切换电路中并联的第一机械切换开关器件102和第一半导体切换开关器件203举例而言,在通电时,先导通第一半导体切换开关器件203,后导通第一机械切换开关器件102,由于第一半导体开关器件203的响应速度快于第一机械切换开关器件102,先导通第一半导体切换开关器件203实现了快速导通该第一切换电路,且,后导通第一机械切换开关器件时不会产生电弧。在导通后,第一机械开关器件102和第一半导体切换开关器件203持续闭合通电时,由于第一机械切换开关器件102的电阻小于第一半导体切换开关器件203的电阻,大部分的电流经由第一机械开关器件102流通,只有少量的电流经由第一半导体切换开关器件203流通,避免了第一半导体切换开关器件203发热量大的问题。断电时,第一机械切换开关器件102先断电,第一半导体切换开关器件203,这样实现了第一机械切换开关器件102不起弧。
因此,本发明实施例能够快速的实现电流的切换,同时避免了机械开关起电弧、半导体开关发热量大的问题。更进一步地,由于开关电路具有第一隔离电路和第二隔离电路,能够提高安全性能。
还应理解,上文本发明实施例中的中控制模块可以包括多个控制子模块,例如,如图4所示的开关电路400的控制模块包括:第一控制子模块141、第二控制子模块142和第三控制子模块143。图4与图1、图2和图3的区别在于仅仅在于,在图1、图2和图3中将所有的控制电路统一称为一个控制模块140。图4中的第一控制子模块141、第二控制子模块142和第三控制子模块143统称为控制模块,能够实现图1、图2和图3中的控制模块140的各个功能。图4中的第一隔离电路131、第二隔离电路132和切换模块120与上文描述相同。为了避免重复,此处适当省略详细描述。
具体而言,第一控制子模块141用于在第一电源上电时,控制使得第一隔离电路131导通,在第一电源断电时,控制使得第一隔离电路131断开。
第二控制子模块142用于在第二电源上电,控制使得第二隔离电路132导通,在第二电源断电时,控制使得第二隔离电路132断开。
第三控制子模块143用于在第一电源上电且第二电源断电时,控制使得第一切换电路121导通且第二切换电路122断开,在第二电源上电且第一电源断电时,控制使得第一切换电路121断开且第二切换电路122导通。
具体而言,第三控制子模块143控制第一切换电路121的导通时,先控制导通第一半导体切换开关器件103和第二半导体切换开关器件203,后控制导通第一机械切换开关器件102和第二机械切换开关器件202,用于快速导通第一切换电路121,且避免第一机械切换开关器件102和第二机械切换开关器件202产生电弧;
第三控制子模块143控制第一切换电路121的断开时,先控制断开第一机械切换开关器件102和第二机械切换开关器件202,后控制断开第一半导体切换开关器件103和第二半导体切换开关器件203,用于避免第一机械切换开关器件102和第二机械切换开关器件202产生电弧;
第三控制子模块143控制第二切换电路122的导通时,先控制导通第三半导体切换开关器件303和第四半导体切换开关器件403,后控制导通第三机械切换开关器件302和第四机械切换开关器件402,用于快速导通第二切换电路122,且避免第三机械切换开关器件302和第四机械切换开关器件402产生电弧;
第三控制子模块143控制第二切换电路122的断开时,先控制断开第三机械切换开关器件302和第四机械切换开关器件402,后控制断开第三半导体切换开关器件303和第四半导体切换开关器件403,用于避免第三机械切换开关器件302和第四机械切换开关器件402产生电弧。
应理解,图4中与图1、图2和图3中相同的装置采用相同的标号,图4中的与图1、图2和图3中相同装置的具体描述可参见图1、图2和图3中的相应描述,为避免重复,此处不再赘述。
应注意,图1至图4的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1至图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
图5是根据本发明一个实施例的电源系统的示意框图。如图5所示的电 源系统500包括第一电源510、第二电源520和如如图1至图4中任一图中的开关电路530。
所述第一电源510和所述第二电源520分别与所述开关电路530连接,用于所述电源系统的供电源。
应理解,第一电源与第二电源的电源类型和电源电压中的至少一种不同。
应理解,图5中的开关电路530与图1至图4中的开关电路100、200、300和400相对应,开关电路530的具体功能可参见上述针对开关电路100、200、300和400的相应描述,为避免重复,此处不再详述。
图6是根据本发明一个实施例的供电系统的示意框图。如图6所示的供电系统600包括负载电路610和如图5所示的电源系统620,所述电源系统620用于向所述负载电路610供电。
应理解,图6中的电源系统620与图5中的电源系统500相对应,电源系统620的具体功能可参见上述针对电源系统500的相应描述,为避免重复,此处不再详述。
应注意,图4至图6的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图4至图6的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或步骤可以用硬件、处理器执行的软件程序,或者二者的结合来实施。软件程序可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内。

Claims (10)

  1. 一种开关电路,其特征在于,包括:
    用于连接第一电源的第一输入端(111)和第二输入端(112);
    用于连接第二电源的第三输入端(113)和第四输入端(114),其中,所述第一电源与所述第二电源的电源类型和电源电压中的至少一种不同;
    切换模块(120),包括第一切换电路(121)和第二切换电路(122),所述第一切换电路(121)包括并联的第一机械切换开关器件(102)和第一半导体切换开关器件(103)、并联的第二机械切换开关器件(202)和第二半导体切换开关器件(203),所述第二切换电路(122)包括并联的第三机械切换开关器件(302)和第三半导体切换开关器件(303)、并联的第四机械切换开关器件(402)和第四半导体切换开关器件(403),其中,所述第一机械切换开关器件(102)、所述第二机械切换开关器件(202)所述第三机械切换开关器件(302)和所述第四机械切换开关器件(402)为能够在物理上断开或闭合的开关器件,所述第一半导体切换开关器件(103)、所述第一半导体切换开关器件(103)、所述第一半导体切换开关器件(103)和所述第一半导体切换开关器件(103)为半导体开关器件;
    第一隔离电路(131),包括第一端、第二端、第三端和第四端;所述第一隔离电路(131)的第一端与所述第一电源的第一输入端(111)连接,所述第一隔离电路(131)的第二端与所述第一电源的第二输入端(112)连接,所述第一隔离电路(131)的第三端与所述第一机械切换开关器件(102)的一端连接,所述第一隔离电路(131)的第四端与所述第二机械切换开关器件(202)的一端连接;
    控制模块(140),用于在所述第一电源上电且所述第二电源断电时,控制所述第一隔离电路(131)和所述第一切换电路(121)导通,且控制所述第二切换电路(122)断开,以使所述第一电源为负载电路的供电源;以及在所述第二电源的输入端上电且第一电源的输入端断电时,控制所述第一隔离电路(131)和所述第一切换电路(121)断开,且控制所述第二切换电路(122)导通,以使所述第二电源为所述负载电路的供电源,且防止在所述第一切换电路(121)短路的情况下,流经所述负载电路的电流通过所述第一切换电路(121)回流到所述第一输入端和所述第二输入端侧。
  2. 根据权利要求1所述的开关电路,其特征在于,
    所述第一隔离电路(131)具体包括第一机械隔离开关器件(101)和第二机械隔离开关器件(201),所述第一机械隔离开关器件(101)位于所述第一输入端(111)与所述第一机械切换开关器件(102)之间,所述第二机械隔离开关器件(201)位于所述第二输入端(112)与所述第一机械切换开关器件(202)之间,其中,所述第一机械隔离开关器件(101)和第二机械隔离开关器件(201)为能够在物理上断开或闭合的开关器件。
  3. 根据权利要求1或2所述的开关电路,其特征在于,
    所述开关电路还包括第二隔离电路(132),所述第二隔离电路(132)包括第三机械隔离开关器件(301)和第四机械隔离开关器件(401),所述第三机械隔离开关器件(301)位于所述第三输入端(113)与所述第三机械切换开关器件(302)之间,所述第四机械隔离开关器件(401)位于所述第四输入端(114)与所述第四机械切换开关器件(402)之间,其中,所述第三机械隔离开关器件(301)和第四机械隔离开关器件(401)为能够在物理上断开或闭合的开关器件,
    所述控制模块(140)具体用于:
    在所述第一电源上电且所述第二电源断电时,控制所述第一隔离电路(131)和所述第一切换电路(121)导通,且控制所述第二隔离电路(132)和所述第二切换电路(122)断开,以使所述第一电源为所述负载电路的供电源,且防止在所述第二切换电路(122)短路的情况下,流经所述负载电路的电流通过所述第二切换电路(122)回流到所述第三输入端和所述第四输入端侧;
    以及在所述第二电源上电且所述第一电源断电时,控制所述第一隔离电路(131)和所述第一切换电路(121)断开,且控制所述第二隔离电路(132)和所述第二切换电路(122)导通,以使所述第二电源为所述负载电路的供电源,且防止在所述第一切换电路(121)短路的情况下,流经所述负载电路的电流通过所述第一切换电路(121)回流到所述第一输入端和所述第二输入端侧。
  4. 根据权利要求2或3所述的开关电路,其特征在于,
    所述第一机械隔离开关器件(101)和所述第二机械隔离开关器件(201)为继电器。
  5. 根据权利要求3所述的开关电路,其特征在于,
    所述第三机械隔离开关器件(301)和所述第四机械隔离开关器件(401)为继电器。
  6. 根据权利要求1至5中任一项所述的开关电路,其特征在于,
    所述控制模块控制所述第一切换电路(121)的导通时,先控制导通所述第一半导体切换开关器件(103)和所述第二半导体切换开关器件(203),后控制导通所述第一机械切换开关器件(102)和所述第二机械切换开关器件(202),用于快速导通所述第一切换电路(121),且避免所述第一机械切换开关器件(102)和所述第二机械切换开关器件(202)产生电弧;
    所述控制模块控制所述第一切换电路(121)的断开时,先控制断开所述第一机械切换开关器件(102)和所述第二机械切换开关器件(202),后控制断开所述第一半导体切换开关器件(103)和所述第二半导体切换开关器件(203),用于避免所述第一机械切换开关器件(102)和所述第二机械切换开关器件(202)产生电弧;
    所述控制模块控制所述第二切换电路(122)的导通时,先控制导通所述第三半导体切换开关器件(303)和所述第四半导体切换开关器件(403),后控制导通所述第三机械切换开关器件(302)和所述第四机械切换开关器件(402),用于快速导通所述第二切换电路(122),且避免所述第三机械切换开关器件(302)和所述第四机械切换开关器件(402)产生电弧;
    所述控制模块控制所述第二切换电路(122)的断开时,先控制断开所述第三机械切换开关器件(302)和所述第四机械切换开关器件(402),后控制断开所述第三半导体切换开关器件(303)和所述第四半导体切换开关器件(403),用于避免所述第三机械切换开关器件(302)和所述第四机械切换开关器件(402)产生电弧。
  7. 根据权利要求1至6中任一项所述的开关电路,其特征在于,
    所述第一输入端(111)和所述第二输入端(112)用于输入交流电,所述第三输入端(113)和所述第四输入端(114)用于输入直流电,
    或者,所述第一输入端(111)和所述第二输入端(112)用于输入第一交流电,所述第三输入端(113)和所述第四输入端(114)用于输入第二交流电,所述第一交流电和所述第二交流电的电源电压不同,
    或者,所述第一输入端(111)和所述第二输入端(112)用于输入第一直流电,所述第三输入端(113)和所述第四输入端(114)用于输入第二直 流电,所述第一直流电和所述第二直流电的电源电压不同。
  8. 根据权利要求1至7中任一项所述的开关电路,其特征在于,
    所述第一机械切换开关器件(102)、所述第二机械切换开关器件(202)、所述第三机械切换开关器件(302)和所述第四机械切换开关器件(402)为继电器;
    所述第一半导体切换开关器件(103)、所述第二半导体切换开关器件(203)、所述第三半导体切换开关器件(303)和所述第四半导体切换开关器件(403)为金属-氧化物半导体场效应晶体管MOSFET、绝缘栅双极型晶体管IGBT、可控硅SCR和三端双向控硅开关TRIAC中的一种。
  9. 一种电源系统,其特征在于,所述电源系统包括第一电源、第二电源和如权利要求1至8任一项所述的开关电路,
    所述第一电源和所述第二电源分别与所述开关电路连接,用于所述电源系统的供电源。
  10. 一种供电系统,其特征在于,包括负载电路和如权利要求9所述的电源系统,所述电源系统用于向所述负载电路供电。
PCT/CN2016/074006 2015-08-31 2016-02-18 开关电路、电源系统和供电系统 WO2017036099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16840531.4A EP3312994A4 (en) 2015-08-31 2016-02-18 Switch circuit, power source system, and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510543592.6 2015-08-31
CN201510543592.6A CN106487370A (zh) 2015-08-31 2015-08-31 开关电路、电源系统和供电系统

Publications (1)

Publication Number Publication Date
WO2017036099A1 true WO2017036099A1 (zh) 2017-03-09

Family

ID=58186759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074006 WO2017036099A1 (zh) 2015-08-31 2016-02-18 开关电路、电源系统和供电系统

Country Status (3)

Country Link
EP (1) EP3312994A4 (zh)
CN (1) CN106487370A (zh)
WO (1) WO2017036099A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872312A (zh) * 2021-08-27 2021-12-31 杭州云电科技能源有限公司 自动切换开关的时序控制方法、装置和供电系统
CN114132223A (zh) * 2021-12-17 2022-03-04 国创移动能源创新中心(江苏)有限公司 一种电动汽车充电机在线输出串并联自动投切装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2565203Y (zh) * 2002-03-12 2003-08-06 华为技术有限公司 一种控制多路电源上电时序的电路
CN2655309Y (zh) * 2003-07-16 2004-11-10 华为技术有限公司 一种上电时序控制电路
CN102025177A (zh) * 2010-12-07 2011-04-20 中国农业大学 蓄电池组电压均衡器
US20130033786A1 (en) * 2011-08-04 2013-02-07 Futurewei Technologies, Inc. High Efficiency Power Regulator and Method
CN103036308A (zh) * 2012-12-14 2013-04-10 华为技术有限公司 逆变器、电源、控制逆变器辅助电源的方法及装置
CN103092099A (zh) * 2013-01-09 2013-05-08 宁夏电力公司电力科学研究院 智能高速开关及智能高速开关控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201156190Y (zh) * 2008-02-19 2008-11-26 尚新民 智能电源供给装置
TWI456616B (zh) * 2011-11-01 2014-10-11 Delta Electronics Inc 具有電源自動切換功能之供電系統及其控制方法
CN104022565B (zh) * 2013-02-28 2016-03-02 华为技术有限公司 一种配电装置和方法
CN104578383B (zh) * 2013-10-21 2019-07-12 雅达电子国际有限公司 输入冗余电路
CN103701198B (zh) * 2013-12-25 2015-11-25 华为技术有限公司 一种直流电路和直流用电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2565203Y (zh) * 2002-03-12 2003-08-06 华为技术有限公司 一种控制多路电源上电时序的电路
CN2655309Y (zh) * 2003-07-16 2004-11-10 华为技术有限公司 一种上电时序控制电路
CN102025177A (zh) * 2010-12-07 2011-04-20 中国农业大学 蓄电池组电压均衡器
US20130033786A1 (en) * 2011-08-04 2013-02-07 Futurewei Technologies, Inc. High Efficiency Power Regulator and Method
CN103036308A (zh) * 2012-12-14 2013-04-10 华为技术有限公司 逆变器、电源、控制逆变器辅助电源的方法及装置
CN103092099A (zh) * 2013-01-09 2013-05-08 宁夏电力公司电力科学研究院 智能高速开关及智能高速开关控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312994A4 *

Also Published As

Publication number Publication date
EP3312994A4 (en) 2018-10-03
EP3312994A1 (en) 2018-04-25
CN106487370A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
US10134551B2 (en) Galvanically isolated hybrid contactor
JP2013017346A (ja) 電力変換装置
CN108183472B (zh) 包括换向装置的配电系统
JP2012248445A (ja) 開閉器
ES2710331T3 (es) Circuito de carga y terminal móvil
JP2012165509A (ja) 電力供給装置の突入電流防止回路
WO2017036099A1 (zh) 开关电路、电源系统和供电系统
CN111712982B (zh) 故障处理
CN104979851B (zh) 一种开关电路及其控制方法
TWI528714B (zh) 閘流體直流開關之快速截止裝置及其操作方法
JP2008104276A (ja) インバータ装置
JP2005510167A (ja) 電気回路の確実な切り換えを行うための回路装置
JP6353094B2 (ja) スイッチ装置
US10069298B2 (en) Inverter and control method thereof
WO2018207231A1 (ja) リレー制御装置
JP6768860B2 (ja) インバータ保護装置
US11217985B2 (en) Low-voltage circuit breaker device
JP2015230849A (ja) 開閉器
TWI597920B (zh) 開關裝置
US11831267B2 (en) Systems and methods for controlling inverter active discharge using power device switching losses
KR101786520B1 (ko) 단로기와 접지 개폐기의 통합 제어기
US20240047151A1 (en) Hybrid circuit breaker system with integrated galvanic isolating switch
WO2012083738A1 (zh) 防止输入反接损坏的方法和装置
CN110070999B (zh) 电路断路器组合件
JP2014508586A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016840531

Country of ref document: EP