WO2017035849A1 - 一种四色像素系统的白平衡方法 - Google Patents

一种四色像素系统的白平衡方法 Download PDF

Info

Publication number
WO2017035849A1
WO2017035849A1 PCT/CN2015/089134 CN2015089134W WO2017035849A1 WO 2017035849 A1 WO2017035849 A1 WO 2017035849A1 CN 2015089134 W CN2015089134 W CN 2015089134W WO 2017035849 A1 WO2017035849 A1 WO 2017035849A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel unit
color
white
pixel
Prior art date
Application number
PCT/CN2015/089134
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/897,665 priority Critical patent/US10291892B2/en
Publication of WO2017035849A1 publication Critical patent/WO2017035849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/73Colour balance circuits, e.g. white balance circuits or colour temperature control
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • H04N9/69Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits for modifying the colour signals by gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a white balance method for a four-color pixel system.
  • each pixel unit is generally composed of three sub-pixel units, which are a red (R) sub-pixel unit, a green (G) sub-pixel unit, and a blue color (B). ) Sub-pixel unit.
  • R red
  • G green
  • B blue color
  • Sub-pixel unit a new four-color pixel system, which adds a sub-pixel unit to the traditional three-color pixel system, which can improve the performance of the system in display color.
  • FIG. 1(a) is a schematic diagram of a gamma curve test of a four-color pixel system of the prior art
  • FIG. 1(b) is a schematic diagram of a standard gamma curve when a white color is normally displayed.
  • curves 1, 2, 3, and 4 are gamma curves of a four-color pixel liquid crystal display in displaying red, green, blue, and white, respectively, and a standard white gamma curve.
  • the normal range should be within an interval of ⁇ 0.2 to 0.3 centered at 2.2. Such an interval ensures that the white brightness changes in accordance with the human eye's perception curve, as shown in Figure 1(b).
  • the change in brightness of the four curves in Fig. 1(a) deviates significantly from the above range at higher gray levels, resulting in an over-bright effect.
  • One of the technical problems to be solved by the present invention is that the white balance of the four-color pixel system needs to be adjusted so as to conform to the perception curve of the human eye when displaying colors.
  • the embodiment of the present application first provides a white balance method for a four-color pixel system, which is composed of a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a fourth Sub-pixel unit composition, the method comprises: respectively lighting a plurality of sub-pixel units to display white according to two different combinations according to the input white gray scale value; adjusting gray scale values of each sub-pixel unit, and The gray scale value of each sub-pixel unit when the white displayed by the different combinations satisfies the set condition is used as the four-color gray scale value of the output corresponding to the input white gray scale.
  • the brightness of the white displayed by the first combination is equal to the brightness of the white corresponding to the gamma curve corresponding to the input white gray scale value
  • the chromaticity coordinates of the white of the second combination display are equal to
  • the gray scale values of the red sub-pixel unit, the green sub-pixel unit, and the blue sub-pixel unit of the white chromaticity coordinates of the reference are selected as the output gray scale values corresponding to the input white gray scale.
  • the output of the fourth sub-pixel unit is obtained according to a three-color to four-color calculation algorithm of the four-color pixel system and an output grayscale value of the red sub-pixel unit, the green sub-pixel unit, and the blue sub-pixel unit. Grayscale value.
  • the grayscale value of the fourth sub-pixel unit and the grayscale value of the red sub-pixel unit, the green sub-pixel unit, and the blue sub-pixel unit are maintained in a process of adjusting a grayscale value of each sub-pixel unit.
  • the mapping relationship conforms to the three- to four-color calculation algorithm of the four-color pixel system.
  • the grayscale value of the fourth sub-pixel unit is kept unchanged during the process of adjusting the grayscale value of each sub-pixel unit.
  • the first combination includes a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a fourth sub-pixel unit
  • the second combination includes a red sub-pixel unit, a green sub-pixel unit, and a blue sub-pixel unit .
  • the brightness of the white color of the first combination display is obtained according to the stimulation value Y of each sub-pixel unit in the first combination
  • the second combination display is obtained according to the tristimulus value XYZ of each sub-pixel unit in the second combination.
  • White chromaticity coordinates are obtained according to the stimulation value Y of each sub-pixel unit in the first combination
  • the second combination display is obtained according to the tristimulus value XYZ of each sub-pixel unit in the second combination.
  • the grayscale value of each sub-pixel unit is adjusted according to the following expression:
  • L v (W i ) is the luminance of white with a gray-scale value of i
  • x i , y i is the chromaticity coordinate of white
  • R i , G i , B i , M i are based on three to four colors
  • the calculus algorithm is a four-color grayscale value obtained by converting the input three-color grayscale value
  • R o , G o , B o , M o is the output four-color grayscale value
  • X( ⁇ ), Y( ⁇ ), Z ( ⁇ ) represents the tristimulus value of each sub-pixel unit
  • f represents the gray scale value to the fourth sub-pixel of the red sub-pixel unit, the green sub-pixel unit, and the blue sub-pixel unit that conform to the three-color to four-color calculation algorithm.
  • the brightness of the white color of the first combined display is obtained according to the stimulation value Y of the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the fourth sub-pixel unit, according to the tristimulus values of the four sub-pixel units.
  • XYZ obtains the white chromaticity coordinates of the second combination display.
  • the grayscale value of each sub-pixel unit is adjusted according to the following expression:
  • L v (W i ) is the brightness of white with a gray-scale value of i
  • x i , y i is the chromaticity coordinate of white
  • R o , G o , B o , M o are the four-color gray scale of the output.
  • Values, X( ⁇ ), Y( ⁇ ), Z( ⁇ ) represent the tristimulus values of each sub-pixel unit, and f represents the red sub-pixel unit, the green sub-pixel unit, and the blue that conform to the three-color to four-color calculation algorithm.
  • the four-color pixel system is adjusted to achieve white balance by grouping and lighting different sub-pixel units, and the display effect of the four-color pixel system is improved.
  • the method is simple, efficient, and easy to implement.
  • FIG. 1(a) is a schematic diagram of a gamma curve test of a four-color pixel system of the prior art
  • FIG. 1(b) is a schematic diagram of a standard gamma curve when a white color is normally displayed;
  • FIG. 2 is a schematic flow chart of a white balance method of a four-color pixel system according to an embodiment of the present application.
  • the input signal of the four-color pixel system is the same as the conventional three-color pixel system.
  • the red sub-pixel unit is driven by the input RGB gray scale value.
  • Four sub-pixel units such as a green sub-pixel unit, a blue sub-pixel unit, and a fourth sub-pixel unit, need to map the input three-color grayscale value to the output four-color grayscale value.
  • the built-in algorithms are generally different for different four-color pixel systems. For example, the minimum value of the input three-color grayscale values is used as the grayscale value of the fourth sub-pixel unit, which is the simplest mapping method.
  • the most basic requirement for a four-color pixel system is to increase the transmittance of the display panel while ensuring that the displayed color is the same as the color to be displayed by the original three-color pixel system, and when white balance debugging is performed on the four-color pixel system. It must also be ensured that the four-color grayscale value used to drive each sub-pixel unit enables the four-color pixel system to display the same color as the original three-color pixel system.
  • FIG. 2 is a schematic flow chart of a white balance method of a four-color pixel system according to an embodiment of the present application, and the method is described in detail below according to FIG. 2 .
  • a white as the benchmark for debugging Before performing white balance debugging, you first need to determine a white as the benchmark for debugging, that is, after During the white balance debugging process, the white color displayed is the same as the white color of the reference as the target of debugging.
  • various factors are generally considered, such as the display performance of the actual four-color pixel system, the application environment of the four-color pixel system, and the visual requirements of the observer.
  • the input signal of the four-color pixel system is 24 bits, and the 8-bit signal represents the grayscale value of each color of the three colors of RGB, and when the grayscale values of RGB are equal, the system will display white, then the four-color pixel system When displaying white, 256 different gray scales can be displayed. When white balance is reached, the relationship between the input grayscale value and the output luminance needs to be in accordance with the gamma curve.
  • the white color is the same as the white color as the reference for debugging, and the white luminance is equal to the white luminance of the gamma curve at the input white grayscale.
  • different sub-pixel units are respectively illuminated in different combinations, and the white color and the white brightness are adjusted according to the white displayed by the different combinations to achieve a white balance of the four-color pixel system.
  • the white debugging displayed by the combination method is used to adjust the white brightness when the four-color pixel system reaches the white balance, and then the red sub-pixel unit is illuminated at the same time.
  • the green sub-pixel unit and the blue sub-pixel unit use the white chromaticity coordinates displayed by this combination to debug the white chromaticity coordinates when the four-color pixel system reaches white balance.
  • the four-color grayscale values R i , G i , B i , M i used to illuminate each sub-pixel unit at this time are based on the gray scale values of the RGB three colors of the input gray scale values of i.
  • the three-color to four-color calculation algorithm inside the four-color pixel system is calculated.
  • the tristimulus value XYZ of each sub-pixel unit in different combinations is measured by a color analyzer, and the brightness of the displayed white is calculated based on the measured three-stimulus value XYZ of the four sub-pixel units in the first combination mode.
  • L v (W i ) based on the measured tristimulus value XYZ of the three sub-pixel units in the second combination mode, the chromaticity coordinates x i , y i of the displayed white color can be calculated.
  • the grayscale value M' for lighting the fourth sub-pixel unit and the other three sub-pixel units are illuminated.
  • the gray scale values R', G', B' have strong dependence.
  • a gray scale value from the gray scale value of the red sub-pixel unit, the green sub-pixel unit, and the blue sub-pixel unit to the fourth sub-pixel unit can be further obtained.
  • the mapping relationship f When the mapping relationship is a linear relationship, that is, the grayscale value M' of the fourth sub-pixel unit and the grayscale values R', G', B' of the other three sub-pixel units have a relationship as shown in the expression (1) :
  • M′ can be obtained by linear transformation from R′, G′, B′.
  • R′ red sub-pixel unit
  • the pixel unit debugs the white chromaticity coordinates, and the influence of the fourth sub-pixel unit on the white chromaticity coordinates has been compensated by the coefficients a 1 , a 2 , a 3 being passed to the other three sub-pixel units.
  • This debugging method can simplify the constraints while meeting the accuracy requirements and reduce the complexity of white balance debugging.
  • L v (W i ) is the luminance of white with a gray-scale value of i
  • x i , y i is the chromaticity coordinate of white
  • R i , G i , B i , M i are based on three to four colors
  • the calculus algorithm is a four-color grayscale value obtained by converting the input three-color grayscale value
  • R o , G o , B o , M o is the output four-color grayscale value
  • X( ⁇ ), Y( ⁇ ), Z ( ⁇ ) represents the tristimulus value of each sub-pixel unit
  • f represents the gray scale value to the fourth sub-pixel of the red sub-pixel unit, the green sub-pixel unit, and the blue sub-pixel unit that conform to the three-color to four-color calculation algorithm.
  • L v (W i ) is the brightness of white with a gray-scale value of i
  • x i , y i is the chromaticity coordinate of white
  • R o , G o , B o , M o are the four-color gray scale of the output.
  • Values, X( ⁇ ), Y( ⁇ ), Z( ⁇ ) represent the tristimulus values of each sub-pixel unit, and f represents the red sub-pixel unit, the green sub-pixel unit, and the blue that conform to the three-color to four-color calculation algorithm.
  • the gray scale values R o , G o , B o , M o of each sub-pixel unit debugged by the method of the embodiment of the present application are arranged into a 256*4 dimensional white balance corresponding to each input gray scale value i.
  • the matrix is stored in a four-color pixel system in the form of a look-up table. Since each gray-scale value in the white balance matrix achieves white balance of the system, it conforms to the three-to-four-color calculation algorithm inside the four-color pixel system. Therefore, the display effect of the four-color pixel system can be remarkably improved.
  • the white balance method of the four-color pixel system of the embodiment of the present application is suitable for the existing four-color pixel system, and the specific form of the fourth sub-pixel unit is not limited, and may be a yellow (Y) sub-pixel unit. It can be a white (W) sub-pixel unit or other form of sub-pixel unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Of Color Television Signals (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Color Image Communication Systems (AREA)

Abstract

一种四色像素系统的白平衡方法,该方法包括:按照两种不同的组合分别点亮多个子像素单元以显示出白色;调整各子像素单元的灰阶值,并将使两种不同的组合所显示出的白色满足设定条件时的各子像素单元的灰阶值作为输出的四色灰阶值。该方法能够有效改善四色像素系统的显示效果,简单、高效、易实施。

Description

一种四色像素系统的白平衡方法
相关申请的交叉引用
本申请要求享有2015年08月31日提交的名称为“一种四色像素系统的白平衡方法”的中国专利申请CN201510546100.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示领域,尤其涉及一种四色像素系统的白平衡方法。
背景技术
目前普遍应用的三色像素系统,以液晶显示器为例,其每个像素单元一般由三个子像素单元组成,分别为红色(R)子像素单元、绿色(G)子像素单元以及蓝色(B)子像素单元。而一种新的四色像素系统,其在传统的三色像素系统的基础上增加了一个子像素单元,进而可以提升系统在显示色彩方面的表现力。
随着四色像素系统的发展,其三色(RGB)到四色(RGBM)的转换技术已经基本成熟,相应的产品也已经开始进入实际应用阶段,但由于现有的大部分采用四色像素的产品缺乏有效的白平衡调节技术,致使显示效果不佳,因而未能充分发挥四色像素系统的优势。
图1(a)为现有技术的四色像素系统的伽马曲线测试示意图,图1(b)为正常显示白色时的标准伽马曲线示意图。如图1(a)所示,曲线1、2、3、4分别为四色像素液晶显示器在显示红色、绿色、蓝色以及白色时的伽马曲线,而一个标准的白色的伽马曲线的正常范围应当在以2.2为中心±0.2~0.3的一个区间内,这样的一个区间可以保证白色的亮度变化符合人眼的感知曲线,如图1(b)所示。图1(a)中的四条曲线的亮度变化在较高的灰阶处均严重偏离了上述范围,会产生一种过亮的效果。
综上,亟需对四色像素系统的白平衡进行调节以使其在显示色彩时符合人眼的感知曲线。
发明内容
本发明所要解决的技术问题之一是需要对四色像素系统的白平衡进行调节以使其在显示色彩时符合人眼的感知曲线。
为了解决上述技术问题,本申请的实施例首先提供了一种四色像素系统的白平衡方法,所述四色像素系统由红色子像素单元、绿色子像素单元、蓝色子像素单元和第四子像素单元组成,该方法包括:根据输入的白色灰阶值,按照两种不同的组合分别点亮多个子像素单元以显示出白色;调整各子像素单元的灰阶值,并将使两种不同的组合所显示出的白色满足设定条件时的各子像素单元的灰阶值作为与输入的白色灰阶相对应的输出的四色灰阶值。
优选地,将使第一种组合显示的白色的亮度等于与所述输入的白色灰阶值相对应的符合伽马曲线的白色的亮度,且使第二种组合显示的白色的色度坐标等于选做基准的白色的色度坐标的红色子像素单元、绿色子像素单元与蓝色子像素单元的灰阶值作为与输入的白色灰阶相对应的输出灰阶值。
优选地,根据所述四色像素系统的三色到四色的演算算法以及红色子像素单元、绿色子像素单元与蓝色子像素单元的输出灰阶值得到所述第四子像素单元的输出灰阶值。
优选地,在调整各子像素单元的灰阶值的过程中保持所述第四子像素单元的灰阶值与所述红色子像素单元、绿色子像素单元与蓝色子像素单元的灰阶值的映射关系符合所述四色像素系统的三色到四色的演算算法。
优选地,在调整各子像素单元的灰阶值的过程中保持所述第四子像素单元的灰阶值不变。
优选地,第一种组合包括红色子像素单元、绿色子像素单元、蓝色子像素单元和第四子像素单元,第二种组合包括红色子像素单元、绿色子像素单元和蓝色子像素单元。
优选地,根据第一种组合中各子像素单元的刺激值Y得到第一种组合显示的白色的亮度,根据第二种组合中各子像素单元的三刺激值XYZ得到第二种组合显示的白色的色度坐标。
优选地,根据如下表达式调整各子像素单元的灰阶值:
Figure PCTCN2015089134-appb-000001
Figure PCTCN2015089134-appb-000002
式中,Lv(Wi)为灰阶值为i的白色的亮度,xi,yi为白色的色度坐标,Ri,Gi,Bi,Mi为基于三色到四色的演算算法由输入的三色灰阶值转换得到的四色灰阶值,Ro,Go,Bo,Mo为输出的四色灰阶值,X(·),Y(·),Z(·)表示各子像素单元的三刺激值,f表示符合三色到四色的演算算法的由红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值到第四子像素单元的灰阶值的映射关系。
优选地,根据红色子像素单元、绿色子像素单元、蓝色子像素单元以及第四子像素单元的刺激值Y得到第一种组合显示的白色的亮度,根据这四个子像素单元的三刺激值XYZ得到第二种组合显示的白色的色度坐标。
优选地,根据如下表达式调整各子像素单元的灰阶值:
Figure PCTCN2015089134-appb-000003
Figure PCTCN2015089134-appb-000004
式中,Lv(Wi)为灰阶值为i的白色的亮度,xi,yi为白色的色度坐标,Ro,Go,Bo,Mo为输出的四色灰阶值,X(·),Y(·),Z(·)表示各子像素单元的三刺激值,f表示符合三色到四色的演算算法的由红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值到第四子像素单元的灰阶值的映射关系。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
通过分组点亮不同的子像素单元调节四色像素系统达到白平衡,改善四色像素系统的显示效果,该方法简单、高效、易实施。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行 阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书,权利要求书,以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1(a)为现有技术的四色像素系统的伽马曲线测试示意图,图1(b)为正常显示白色时的标准伽马曲线示意图;
图2为本申请实施例的四色像素系统的白平衡方法的流程示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
四色像素系统的输入信号与传统的三色像素系统相同,为表示红色R、绿色G与蓝色B的灰阶值的一组数据,要利用输入的RGB灰阶值驱动红色子像素单元、绿色子像素单元、蓝色子像素单元以及第四子像素单元等四个子像素单元,则需要将输入的三色灰阶值映射到输出的四色灰阶值。对于不同的四色像素系统,其内建算法一般不同。例如以输入的三色灰阶值中的最小值作为第四子像素单元的灰阶值,即为一种最简单的映射方法。对于四色像素系统的最基本的要求是在提高显示面板的穿透率的同时保证其显示的颜色与原三色像素系统所要显示的颜色相同,而在对四色像素系统进行白平衡调试时,也必须保证用于驱动各子像素单元的四色灰阶值能够使四色像素系统显示的颜色与原三色像素系统所要显示的颜色相同。
图2为本申请实施例的四色像素系统的白平衡方法的流程示意图,下面根据图2详细说明该方法。
在进行白平衡调试前,首先需要确定一个作为调试的基准的白色,即在之后 的白平衡调试过程中,以显示的白色与基准的白色颜色相同作为调试的目标。选取该作为调试的基准的白色时一般会考虑多方面的因素,例如实际的四色像素系统的显示性能、四色像素系统所处的应用环境以及观察者的视觉上的需求等。
假设四色像素系统的输入信号为24位,分别以8位信号表示RGB三色的每一种颜色的灰阶值,当RGB的灰阶值相等时系统将显示白色,则该四色像素系统在显示白色时可以表现出256个不同的灰阶,达到白平衡时,需要使输入的灰阶值与输出的亮度之间的关系符合伽马曲线。
因此,在对不同的输入的白色灰阶值进行调试时,白色的颜色均与作为调试的基准的白色的颜色相同,白色的亮度等于输入的白色灰阶处的符合伽马曲线的白色的亮度。进一步地,在本申请中,分别以不同的组合点亮不同的子像素单元,并根据不同的组合所显示的白色来调试白色的颜色以及白色的亮度使四色像素系统达到白平衡。
在本申请的一个实施例中,先同时点亮四个子像素单元,利用这种组合方式所显示出的白色调试当四色像素系统达到白平衡时白色的亮度,再同时点亮红色子像素单元、绿色子像素单元和蓝色子像素单元,利用这种组合方式所显示出的白色的色度坐标调试当四色像素系统达到白平衡时白色的色度坐标。具体的,假设此时用于点亮各子像素单元的四色灰阶值Ri,Gi,Bi,Mi是由输入的灰阶值均为i的RGB三色的灰阶值根据四色像素系统内部的三色到四色的演算算法计算得到的。利用彩色分析仪分别测量不同组合方式下各子像素单元的三刺激值XYZ,基于测量得到的第一种组合方式下的四个子像素单元的三刺激值XYZ可以计算出其所显示的白色的亮度Lv(Wi),基于测量得到的第二种组合方式下的三个子像素单元的三刺激值XYZ可以计算出其所显示的白色的色度坐标xi,yi
需要注意的是,由于四色像素系统基于其内部的三色到四色的演算算法进行工作,因此用于点亮第四子像素单元的灰阶值M′与点亮其他三个子像素单元的灰阶值R′,G′,B′具有较强的依存关系。根据四色像素系统内部的三色到四色的演算算法,可以进一步得到一个由红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值到第四子像素单元的灰阶值的映射关系f。当该映射关系为线性关系时,即第四子像素单元的灰阶值M′与其他三个子像素单元的灰阶值R′,G′,B′具有如表达式(1)所示的关系:
M′=a1·R′+a2·G′+a3·B′   (1)
当系数a1,a2,a3均为常数时,M′可以由R′,G′,B′经过线性变换得到,此时可 以仅利用红色子像素单元、绿色子像素单元以及蓝色子像素单元调试白色的色度坐标,而第四子像素单元对白色的色度坐标的影响已经通过系数a1,a2,a3传递给其他三个子像素单元进行了补偿。这种调试方式可以在满足精度要求的同时简化约束,降低白平衡调试的复杂度。
如果第一种组合方式所显示的白色的亮度Lv(Wi)不符合与灰阶值i相对应的伽马曲线上的白色的亮度,和/或第二种组合方式所显示的白色的色度坐标xi,yi与作为调试的基准的白色的色度坐标不相同,则需要调整各子像素单元或部分子像素单元的灰阶值,然后再测量各子像素单元的三刺激值XYZ,计算所显示的白色的亮度Lv(Wi)和色度坐标xi,yi,并再次与基准值进行比较判断。重复多次的调整、测量、比较以及判断直至所显示的白色的亮度Lv(Wi)和色度坐标xi,yi均符合设定的条件后,则认为在灰阶值i处达到白平衡,将此时各子像素单元的灰阶值Ro,Go,Bo,Mo作为与输入的白色灰阶i相对应的输出灰阶值。上述过程可以利用表达式(2)来表示:
Figure PCTCN2015089134-appb-000005
Figure PCTCN2015089134-appb-000006
式中,Lv(Wi)为灰阶值为i的白色的亮度,xi,yi为白色的色度坐标,Ri,Gi,Bi,Mi为基于三色到四色的演算算法由输入的三色灰阶值转换得到的四色灰阶值,Ro,Go,Bo,Mo为输出的四色灰阶值,X(·),Y(·),Z(·)表示各子像素单元的三刺激值,f表示符合三色到四色的演算算法的由红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值到第四子像素单元的灰阶值的映射关系。
从表达式(2)可以看出,在根据白色的亮度调整各子像素单元的灰阶值的过程中,使用于点亮第四子像素单元的灰阶值保持不变,即让该值始终维持在点亮第四子像素单元的第一个值Mi上。这是一种简化处理,实验表明,当四色像素系统的线性度较好时,利用Mi进行调试即可以达到需要的精度。
进一步地,若四色像素系统具有明显的非线性,为了满足调试的精度要求,需要在调整各子像素单元的灰阶值的过程中保持第四子像素单元的灰阶值与红色子像素单元、绿色子像素单元与蓝色子像素单元的灰阶值的映射关系符合四色 像素系统的三色到四色的演算算法,即使Mo=f(Ro,Go,Bo)。此时表达式(2)中的第一个式子变为如下形式:
Lv(Wi)=Y(Ro)+Y(Go)+Y(Bo)+Y(Mo)   (3)
Mo在调试的过程中随着Ro,Go,Bo的变化而变化,但始终保持确定的映射关系。
还需要注意的是,在表达式(2)中,在调试结束后,根据映射关系f以及得到的红色子像素单元、绿色子像素单元与蓝色子像素单元的输出灰阶值Ro,Go,Bo计算得到第四子像素单元的输出灰阶值,即Mo=f(Ro,Go,Bo)。这样最终得到的四个子像素单元的输出灰阶值既能满足白平衡的要求,也符合四色像素系统的三色到四色的演算算法,可以保证从三色转换到四色时颜色没有发生变化。
在本申请的另一个实施例中,同时点亮四个子像素单元,根据此时显示出的白色同时调试当四色像素系统达到白平衡时白色的亮度以及白色的色度坐标。其调试过程如表达式(4)所示:
Figure PCTCN2015089134-appb-000007
Figure PCTCN2015089134-appb-000008
式中,Lv(Wi)为灰阶值为i的白色的亮度,xi,yi为白色的色度坐标,Ro,Go,Bo,Mo为输出的四色灰阶值,X(·),Y(·),Z(·)表示各子像素单元的三刺激值,f表示符合三色到四色的演算算法的由红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值到第四子像素单元的灰阶值的映射关系。
由于在调试过程中,Mo=f(Ro,Go,Bo)的关系始终满足,所以可以直接得到每个子像素单元的输出值,适用于精度要求较高的白平衡的调试中。
将利用本申请实施例的方法调试得到的各子像素单元的灰阶值Ro,Go,Bo,Mo排列成与各输入的灰阶值i相对应的256*4维的白平衡矩阵以查找表的形式存储于四色像素系统中,由于该白平衡矩阵内的各灰阶值在使系统达到白平衡的同时均符合四色像素系统内部的三色到四色的演算算法,因此可以显著地改善四色像素系统的显示效果。
另外,本申请实施例的四色像素系统的白平衡方法普适于现有的四色像素系统,对第四子像素单元的具体形式不做限定,可以为黄色(Y)子像素单元,也可以为白色(W)子像素单元或其他形式的子像素单元。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (12)

  1. 一种四色像素系统的白平衡方法,所述四色像素系统由红色子像素单元、绿色子像素单元、蓝色子像素单元和第四子像素单元组成,该方法包括:
    根据输入的白色灰阶值,按照两种不同的组合分别点亮多个子像素单元以显示出白色;
    调整各子像素单元的灰阶值,并将使两种不同的组合所显示出的白色满足设定条件时的各子像素单元的灰阶值作为与输入的白色灰阶相对应的输出的四色灰阶值。
  2. 根据权利要求1所述的方法,其中,将使第一种组合显示的白色的亮度等于与所述输入的白色灰阶值相对应的符合伽马曲线的白色的亮度,且使第二种组合显示的白色的色度坐标等于选做基准的白色的色度坐标的红色子像素单元、绿色子像素单元与蓝色子像素单元的灰阶值作为与输入的白色灰阶相对应的输出灰阶值。
  3. 根据权利要求2所述的方法,其中,根据所述四色像素系统的三色到四色的演算算法以及红色子像素单元、绿色子像素单元与蓝色子像素单元的输出灰阶值得到所述第四子像素单元的输出灰阶值。
  4. 根据权利要求3所述的方法,其中,在调整各子像素单元的灰阶值的过程中保持所述第四子像素单元的灰阶值与所述红色子像素单元、绿色子像素单元与蓝色子像素单元的灰阶值的映射关系符合所述四色像素系统的三色到四色的演算算法。
  5. 根据权利要求4所述的方法,其中,在调整各子像素单元的灰阶值的过程中保持所述第四子像素单元的灰阶值不变。
  6. 根据权利要求5所述的方法,其中,第一种组合包括红色子像素单元、绿色子像素单元、蓝色子像素单元和第四子像素单元,第二种组合包括红色子像素单元、绿色子像素单元和蓝色子像素单元。
  7. 根据权利要求6所述的方法,其中,根据第一种组合中各子像素单元的刺激值Y得到第一种组合显示的白色的亮度,根据第二种组合中各子像素单元的三刺激值XYZ得到第二种组合显示的白色的色度坐标。
  8. 根据权利要求7所述的方法,其中,根据如下表达式调整各子像素单元的灰阶值:
    Figure PCTCN2015089134-appb-100001
    Figure PCTCN2015089134-appb-100002
    式中,Lv(Wi)为灰阶值为i的白色的亮度,xi,yi为白色的色度坐标,Ri,Gi,Bi,Mi为基于三色到四色的演算算法由输入的三色灰阶值转换得到的四色灰阶值,Ro,Go,Bo,Mo为输出的四色灰阶值,X(·),Y(·),Z(·)表示各子像素单元的三刺激值,f表示符合三色到四色的演算算法的由红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值到第四子像素单元的灰阶值的映射关系。
  9. 根据权利要求4所述的方法,其中,在调整各子像素单元的灰阶值的过程中保持所述第四子像素单元的灰阶值与所述红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值具有确定的映射关系。
  10. 根据权利要求9所述的方法,其中,根据红色子像素单元、绿色子像素单元、蓝色子像素单元以及第四子像素单元的刺激值Y得到第一种组合显示的白色的亮度,根据这四个子像素单元的三刺激值XYZ得到第二种组合显示的白色的色度坐标。
  11. 根据权利要求10所述的方法,其中,根据如下表达式调整各子像素单元的灰阶值:
    Figure PCTCN2015089134-appb-100003
    Figure PCTCN2015089134-appb-100004
    式中,Lv(Wi)为灰阶值为i的白色的亮度,xi,yi为白色的色度坐标,Ro,Go,Bo,Mo为输出的四色灰阶值,X(·),Y(·),Z(·)表示各子像素单元的三刺激值,f表示符合三色到四色的演算算法的由红色子像素单元、绿色子像素单元以及蓝色子像素单元的灰阶值到第四子像素单元的灰阶值的映射关系。
  12. 根据权利要求1所述的方法,其中,所述第四子像素单元包括黄色子像素单元或白色子像素单元。
PCT/CN2015/089134 2015-08-31 2015-09-08 一种四色像素系统的白平衡方法 WO2017035849A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/897,665 US10291892B2 (en) 2015-08-31 2015-09-08 White balance method of four-color pixel system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510546100.9A CN105096890B (zh) 2015-08-31 2015-08-31 一种四色像素系统的白平衡方法
CN201510546100.9 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017035849A1 true WO2017035849A1 (zh) 2017-03-09

Family

ID=54577182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089134 WO2017035849A1 (zh) 2015-08-31 2015-09-08 一种四色像素系统的白平衡方法

Country Status (3)

Country Link
US (1) US10291892B2 (zh)
CN (1) CN105096890B (zh)
WO (1) WO2017035849A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105575351B (zh) 2016-02-26 2018-09-14 京东方科技集团股份有限公司 一种灰阶电压调试方法、装置及显示装置
CN105679235A (zh) * 2016-03-31 2016-06-15 广东欧珀移动通信有限公司 一种像素调用方法及装置
CN106128382B (zh) * 2016-08-24 2019-02-22 深圳市华星光电技术有限公司 一种四色显示器白平衡过程中颜色漂移的调整方法
CN106652962B (zh) * 2017-02-15 2019-09-10 深圳市华星光电技术有限公司 四色显示器的白平衡方法
CN107316609B (zh) 2017-08-21 2019-05-24 京东方科技集团股份有限公司 一种woled显示装置的补色方法、woled显示装置
CN107358933B (zh) * 2017-09-15 2019-10-11 深圳市华星光电技术有限公司 液晶显示面板的白平衡方法及装置
CN109559683A (zh) * 2017-09-25 2019-04-02 上海和辉光电有限公司 一种有机发光显示面板的灰阶补偿方法、装置和系统
CN107967899B (zh) * 2017-12-21 2020-03-27 惠科股份有限公司 显示装置的驱动方法、驱动装置及显示装置
CN109410889B (zh) * 2018-12-20 2020-08-04 惠州市华星光电技术有限公司 一种白平衡调整方法、装置及电子设备
CN109961735B (zh) * 2019-04-29 2022-12-20 上海天马微电子有限公司 一种显示面板、显示装置及白平衡调节方法
CN110223650B (zh) * 2019-05-29 2021-06-04 惠科股份有限公司 四色像素的白平衡参数生成方法和显示装置
CN110189720B (zh) * 2019-05-31 2021-07-06 惠科股份有限公司 四色像素的白平衡参数生成方法和显示装置
CN112365858B (zh) * 2020-12-10 2022-03-08 深圳市华星光电半导体显示技术有限公司 伽玛校正中目标色点捕获方法及伽玛校正系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681053B1 (en) * 1999-08-05 2004-01-20 Matsushita Electric Industrial Co., Ltd. Method and apparatus for improving the definition of black and white text and graphics on a color matrix digital display device
JP2006163068A (ja) * 2004-12-08 2006-06-22 Sanyo Electric Co Ltd 自発光型ディスプレイの信号処理回路
CN102509541A (zh) * 2011-12-15 2012-06-20 深圳市华星光电技术有限公司 色彩调整装置、色彩调整方法以及显示器
US20140043357A1 (en) * 2011-04-08 2014-02-13 Sharp Kabushiki Kaisha Display device and display method
CN103747223A (zh) * 2014-01-15 2014-04-23 京东方科技集团股份有限公司 色域调整装置、方法及显示系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020191130A1 (en) * 2001-06-19 2002-12-19 Wei-Chen Liang Color display utilizing combinations of four colors
US7033316B2 (en) * 2001-07-06 2006-04-25 Pentax Corporation Endoscope system
US7495722B2 (en) * 2003-12-15 2009-02-24 Genoa Color Technologies Ltd. Multi-color liquid crystal display
KR100610620B1 (ko) * 2005-06-30 2006-08-09 엘지.필립스 엘시디 주식회사 액정표시장치와 그 화이트밸런스 보정방법
CN101494039B (zh) * 2009-02-27 2012-05-30 福建华映显示科技有限公司 色序法显示器中调整白平衡的装置及方法
JP2012039463A (ja) * 2010-08-09 2012-02-23 Funai Electric Co Ltd ホワイトバランス調整システム、表示装置、及び、ホワイトバランス調整方法
WO2012096345A1 (ja) * 2011-01-13 2012-07-19 シャープ株式会社 表示装置の階調補正方法、および、表示装置の製造方法
US8743140B2 (en) * 2011-12-15 2014-06-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. Color adjustment device, method for adjusting color and display for the same
CN103761947B (zh) * 2013-12-26 2017-10-17 深圳市华星光电技术有限公司 调整白平衡的方法、液晶显示器的制造方法及液晶显示器
CN103985348B (zh) * 2014-05-29 2017-04-05 深圳市华星光电技术有限公司 四色转换器、显示装置及三色数据到四色数据的转换方法
WO2015186593A1 (ja) * 2014-06-04 2015-12-10 シャープ株式会社 表示装置
TWI547931B (zh) * 2014-08-11 2016-09-01 友達光電股份有限公司 控制顯示器的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681053B1 (en) * 1999-08-05 2004-01-20 Matsushita Electric Industrial Co., Ltd. Method and apparatus for improving the definition of black and white text and graphics on a color matrix digital display device
JP2006163068A (ja) * 2004-12-08 2006-06-22 Sanyo Electric Co Ltd 自発光型ディスプレイの信号処理回路
US20140043357A1 (en) * 2011-04-08 2014-02-13 Sharp Kabushiki Kaisha Display device and display method
CN102509541A (zh) * 2011-12-15 2012-06-20 深圳市华星光电技术有限公司 色彩调整装置、色彩调整方法以及显示器
CN103747223A (zh) * 2014-01-15 2014-04-23 京东方科技集团股份有限公司 色域调整装置、方法及显示系统

Also Published As

Publication number Publication date
US20180160091A1 (en) 2018-06-07
CN105096890A (zh) 2015-11-25
US10291892B2 (en) 2019-05-14
CN105096890B (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
WO2017035849A1 (zh) 一种四色像素系统的白平衡方法
CN107945729B (zh) 转换方法及电路、显示装置及驱动方法和电路、存储介质
WO2018113248A1 (zh) 显示装置及其显示面板的驱动方法
WO2018113615A1 (zh) 液晶显示器件及其驱动方法
US10789897B2 (en) Method for regulating color shift in white balance procedure of four-color display device
US10008148B2 (en) Image processing apparatus, image processing method, display device, computer program and computer-readable medium
US9886881B2 (en) Method and device for image conversion from RGB signals into RGBW signals
WO2018214188A1 (zh) 图像处理方法、图像处理装置及显示装置
CN108053797B (zh) 一种显示装置的驱动方法及驱动装置
CN104869378B (zh) 基于源图像色域的色域匹配方法
WO2017004817A1 (zh) 一种图像显示方法以及显示系统
WO2019119791A1 (zh) 一种显示装置的驱动方法及驱动装置
US20190172404A1 (en) Adjustment method and device for gamma circuit
WO2016070447A1 (zh) 一种rgb数据到wrgb数据的转换系统及转换方法
US20180322832A1 (en) Image displaying methods and display devices
CN109147689A (zh) 液晶显示器及其伽马曲线的调整方法
WO2019071782A1 (zh) 显示装置的驱动方法与驱动装置
RU2656700C1 (ru) Жидкокристаллическое устройство отображения и способ управления им
CN109119023A (zh) Gamma曲线设定方法及其系统
CN108932936B (zh) 灰阶亮度的调节方法及显示装置
US20130229430A1 (en) Method and device for simulation of image at oblique view angle
CN109119046B (zh) 灰阶亮度的调节系统及调节方法、存储器
CN102547372B (zh) 确定液晶电视颜色查找表参数的方法及系统装置
CN105280124B (zh) 四色显示系统的伽马测量方法和装置
WO2019114480A1 (zh) 多基色转换方法、显示面板的驱动方法及驱动装置、和显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897665

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902656

Country of ref document: EP

Kind code of ref document: A1