WO2012096345A1 - 表示装置の階調補正方法、および、表示装置の製造方法 - Google Patents

表示装置の階調補正方法、および、表示装置の製造方法 Download PDF

Info

Publication number
WO2012096345A1
WO2012096345A1 PCT/JP2012/050491 JP2012050491W WO2012096345A1 WO 2012096345 A1 WO2012096345 A1 WO 2012096345A1 JP 2012050491 W JP2012050491 W JP 2012050491W WO 2012096345 A1 WO2012096345 A1 WO 2012096345A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
pixel
pixels
color
display device
Prior art date
Application number
PCT/JP2012/050491
Other languages
English (en)
French (fr)
Inventor
繁田 光浩
信生 岡野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280005005.2A priority Critical patent/CN103314405B/zh
Priority to US13/978,952 priority patent/US9251761B2/en
Publication of WO2012096345A1 publication Critical patent/WO2012096345A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/506Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by screens, monitors, displays or CRTs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/02Diagnosis, testing or measuring for television systems or their details for colour television signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • H04N9/69Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits for modifying the colour signals by gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a display device gradation correction method and a display device manufacturing method.
  • a video signal of an image broadcasted by a normal television broadcast is corrected so as to match the current-luminance characteristics of a cathode ray tube (CRT). Therefore, when such a video signal is displayed on a display device other than a cathode ray tube, it is necessary to perform gradation correction suitable for the drive voltage-luminance characteristics of the display device. By performing such tone correction, the original image can be accurately reproduced in accordance with the video signal created at the beginning. Further, in the case of color display, such gradation correction is individually performed for each of the three primary colors, whereby the color temperature setting and white balance can be adjusted to faithfully reproduce the hue of the original image.
  • CTR cathode ray tube
  • tone correction gamma characteristic correction
  • the luminance and chromaticity of a color display pixel are measured after correcting (finely adjusting) the gradation of each pixel. Such gradation correction and measurement are repeated until the luminance and chromaticity of the color display pixels show desired values.
  • one color display pixel is configured by three pixels that display red, green, and blue, which are the three primary colors of light, but in recent years, four different colors are displayed.
  • a display device including a color display pixel composed of the above pixels has been proposed.
  • Such a display device is also called a multi-primary color display device.
  • another color is added to three colors of red, green, and blue, and display can be performed in a wide color reproduction range (see, for example, Patent Document 1).
  • Patent Document 1 describes a display device in which, in addition to the RGB three primary color light emitting cells, another light emitting cell (Gb, Bb) having a light emitting color outside the triangle surrounded by the chromaticity diagram of the RGB light emitting cell is described. Has been.
  • the display device of Patent Document 1 when displaying colors within the range surrounded by the chromaticity diagram of RGB light emitting cells, only RGB light emitting cells are emitted without causing light emitting cells other than RGB (Gb, Bb) to emit light. Light up.
  • the light emitting cells (Gb, Bb) are caused to emit light, thereby suppressing an increase in power consumption. is doing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gradation correction method for a display device and a method for manufacturing the display device that enable efficient correction of gradation.
  • a gradation correction method for a display device is a gradation correction method for a display device including a color display pixel having a plurality of pixels, and sets a target value including target luminance and target chromaticity of the color display pixel.
  • the gradation of any one of the plurality of pixels is a reference gradation and the gradation of the remaining pixels is fixed for each of the plurality of pixels in accordance with a predetermined gamma characteristic
  • Measuring the tristimulus values of each of a plurality of comparative colors indicating the color of the color display pixel when the tone is adjacent to the tone and the tone of the remaining pixels is the fixed tone; and Measured Obtaining a reference value and a comparison value from tristimulus values, wherein the reference value is obtained from a reference luminance indicating a sum of luminances of the plurality of reference colors and a sum of tristimulus values of the plurality of reference colors.
  • Each of the plurality of reference colors includes a reference color other than any one of the plurality of reference colors, and the plurality of comparison colors.
  • a plurality of comparison luminances indicating a sum of luminances of one comparison color in which a gradation of a pixel corresponding to the reference gradation of any one of the reference colors is the adjacent gradation, and any one of the above
  • a plurality of comparison chromaticities obtained from a reference color other than one reference color and a tristimulus value of the one comparison color, and the reference scale based on the target value, the reference value, and the comparison value Correcting the key.
  • the step of correcting the reference gradation includes a step of using a steepest descent method.
  • using the steepest descent method includes using a function obtained by subtracting 1 from the reference value divided by the target value.
  • the step of measuring the tristimulus value according to the corrected gamma characteristic of the reference gradation as the predetermined gamma characteristic, the reference value and the comparison value are The step of obtaining and the step of correcting the reference gradation are further repeated.
  • the step of measuring the tristimulus value fixes the gradation of the remaining pixels other than any one of the plurality of pixels to the fixed gradation for each of the plurality of pixels.
  • the gradation of the one pixel is changed in the range from the lowest gradation to the highest gradation.
  • the plurality of pixels includes three pixels.
  • the three pixels include a red pixel, a green pixel, and a blue pixel.
  • the plurality of pixels include four pixels
  • the target value further includes a target area of a color reproduction range
  • the reference value is the plurality of the plurality of pixels.
  • a reference area of a color reproduction range defined by a reference color; and the comparison value is determined by a reference color other than the one reference color and the one comparison color for each of the plurality of reference colors. It further includes a comparison area of a plurality of defined color reproduction ranges.
  • the four pixels include a red pixel, a green pixel, a blue pixel, and a yellow pixel.
  • the plurality of pixels include a first pixel, a second pixel, a third pixel, a fourth pixel, and a fifth pixel
  • the target values are a first target area and a second target in a color reproduction range.
  • the reference value is a value of the first, second, third, and fourth pixels in a color reproduction range defined by the plurality of reference colors.
  • the comparison value further includes a second reference area of a second portion defined by a reference color, and the comparison value is obtained when any four pixels of the first pixel to the fifth pixel of the plurality of reference colors are Four reference colors to be a reference gradation and the plurality of colors Of the color reproduction range defined by the one comparison color in which the remaining one of the comparison colors is the adjacent gradation, the gradations of the first pixel, the second, the third, and the fourth pixels are The first comparison area of the first portion defined by four colors that are either the reference gradation or the adjacent gradation, and the gradations of the first, fourth, and fifth pixels are the reference gradation and the And a second comparison area of the second portion defined by three colors that are any of the adjacent gradations.
  • the first, second, third, fourth and fifth pixels include a yellow pixel, a green pixel, a cyan pixel, a blue pixel and a red pixel.
  • a method for manufacturing a display device includes a step of preparing a display device having a predetermined gamma characteristic and a step of correcting the gradation of the display device according to the gradation correction method of the display device described above. To do.
  • a display device manufacturing method includes a step of preparing a display device including a video signal input unit, a signal processing unit, and a display unit, and a gradation correction method according to the display device gradation correction method described above. And setting the signal processing unit so as to show the corrected gamma characteristic.
  • gradation correction can be performed efficiently.
  • FIG. 1 is a schematic diagram of a first embodiment of a display device according to the present invention.
  • 3 is a flowchart of a first embodiment of a display device gradation correction method according to the present invention;
  • (A) is a graph showing normalized luminance (target luminance) with respect to gradation, and
  • (b) is a graph showing chromaticity (target chromaticity) u ′ and v ′ with respect to gradation. It is a graph which shows the normalization brightness
  • It is a block diagram which shows an example of the display apparatus of this embodiment. It is a schematic diagram of 2nd Embodiment of the display apparatus by this invention.
  • FIG. 6 is a flowchart of a second embodiment of a gradation correction method for a display device according to the present invention; It is a chromaticity diagram showing the target area of the color reproduction range. It is a schematic diagram of 3rd Embodiment of the display apparatus by this invention.
  • 10 is a flowchart of a third embodiment of a gradation correction method for a display device according to the present invention; It is a chromaticity diagram showing the first and second target areas of the first and second portions in which the color reproduction range is divided.
  • the display device 100 of this embodiment includes color display pixels having a plurality of pixels.
  • the plurality of pixels include a red pixel R, a green pixel G, and a blue pixel B.
  • the number of gradations of each pixel is indicated as N.
  • the number of gradations of each pixel is 256, which is represented by 8 bits.
  • the gradation is an integer from 1 to 256, the lowest gradation is the first gradation, and the highest gradation is the 256th gradation.
  • Each pixel shows higher luminance as the gradation is higher.
  • it represents a red pixel, green pixel, the gradation of the gradation in the case where the blue pixel shows the first n-gradation respectively R n, G n, and B n.
  • the color of each pixel of the color display pixel (here, the red pixel R, the green pixel G, and the blue pixel B) is equal (for example, in the case of the gradations R n , G n , and B n ).
  • the gradation of the display pixel is expressed as gradation n (1 ⁇ n ⁇ 256).
  • the display device 100 has a predetermined gamma characteristic, and each pixel exhibits a predetermined luminance (typically, the front direction) in accordance with each of the gradations R n , G n , and B n .
  • a predetermined voltage is applied to the liquid crystal layers of red, green, and blue pixels according to the gradations R n , G n , and B n .
  • the display device 100 before gradation correction is performed when the lightness of the achromatic color changes in the input signal, the displayed color changes according to a predetermined gamma characteristic. At this time, the luminance and chromaticity of the color display pixel may deviate from desired values. This is because the gradations R n , G n , and B n of the red pixel, the green pixel, and the blue pixel are not accurately set, and the gradations R n , G n , and B n can be set optimally. desired.
  • target luminance (Y T ) and target chromaticity (u ′ T , v ′ T ) are set as target values corresponding to 3N conditions for N gray levels of color display pixels.
  • a target value including the target luminance and target chromaticity of the color display pixel is set.
  • the target values are white-black target luminance (Y T ) and target chromaticity (u ′ T , v ′ T ).
  • the target luminance and the target chromaticity are set for the gradation of the color display pixel.
  • the target value may be input from the outside. Alternatively, the target value may be read from a storage device provided in the display device 100.
  • the target luminance is expressed as Y n T
  • the target chromaticity is expressed as u ′ n T and v ′ n T.
  • FIG. 3 (a) shows the change in luminance of the color display pixel with respect to the gradation.
  • the luminance is normalized to 1.0 at the highest gradation (here, the 256th gradation), and the change in the normalized luminance may be indicated as a gamma value of 2.2.
  • Such normalized luminance is set as the target luminance.
  • FIG. 3B shows the chromaticities u ′ and v ′ for each gradation of the color display pixel.
  • Such chromaticities u ′ and v ′ are set as target chromaticities.
  • the chromaticities u ′ and v ′ are preferably constant with respect to the change in gradation of the color display pixel. As a result, the chromaticities u ′ and v ′ change.
  • the tristimulus values X, Y, and Z of the plurality of reference colors and the plurality of comparison colors are measured for each of the plurality of pixels according to a predetermined gamma characteristic.
  • Each of the plurality of reference colors is a color when the gradation of any one of the plurality of pixels is a reference gradation and the gradation of the remaining pixels is a fixed gradation. The color of the display pixel.
  • Each of the plurality of comparative colors is an adjacent gradation in which the gradation of any one of the plurality of pixels is continuous with the reference gradation for each of the plurality of pixels, and the gradation of the remaining pixels is This is the color of the color display pixel in the case of a fixed gradation.
  • the reference gradation may be larger or smaller than the adjacent gradation.
  • the reference gradations are gradations R 256 , G 256 , and B 256
  • the adjacent gradations are gradations R 255 , G 255 , and B 255 .
  • the fixed gradation is the lowest gradation (first gradation).
  • the reference color is a color in the case of gradation (R 256 , G 1 , B 1 ), (R 1 , G 256 , B 1 ), (R 1 , G 1 , B 256 ), and is a comparative color
  • gradation R 256 , G 1 , B 1
  • R 1 , G 256 , B 1 R 1 , G 1 , B 256
  • the tristimulus values X, Y, and Z at the gradation (R 256 , G 1 , B 1 ) are denoted as X 256 R , Y 256 R , and Z 256 R , respectively, and the gradation (R 1 , G 256).
  • the tristimulus values X, Y, and Z are indicated as X 256 G , Y 256 G , and Z 256 G , respectively
  • the tristimulus values X in the gradation (R 1 , G 1 , B 256 ) , Y, and Z are denoted as X 256 B , Y 256 B , and Z 256 B , respectively.
  • the tristimulus values X, Y, and Z at the gradation (R 255 , G 1 , B 1 ) are denoted as X 255 R , Y 255 R , and Z 255 R , respectively, and the gradation (R 1 , G 255).
  • B 1 the tristimulus values X, Y, and Z are indicated as X 255 G , Y 255 G , and Z 255 G , respectively, and the tristimulus values X in the gradation (R 1 , G 1 , B 255 ) , Y, and Z are denoted as X 255 B , Y 255 B , and Z 255 B , respectively.
  • the gradation of the red pixel is changed to the 256th gradation and the 255th gradation in a state where the gradation of the green pixel and the blue pixel is set to the minimum gradation, and the gradation (R 256 , G 1 , B 1 is changed). ), (R 255 , G 1 , B 1 ) tristimulus values are measured. Further, the gradation of the green pixel is changed to the 256th gradation and the 255th gradation while the gradation of the red pixel and the blue pixel is set to the lowest gradation, and the gradations (R 1 , G 256 , B 1 are changed).
  • chromaticities u ′ and v ′ are obtained by using tristimulus values X, Y, and Z.
  • u ′ 4X / (X + 15Y + 3Z)
  • v ′ 9Y / (X + 15Y + 3Z) It is expressed.
  • Measurement is performed from the front of the display device 100, for example. Alternatively, the measurement may be performed from an oblique direction of the display device 100. As will be described below, the gradation is corrected so that the display characteristic from the measurement direction is close to the target value.
  • the tristimulus value is measured after setting the target value (S22) (S24). However, after the tristimulus value is measured (S24), the target value is set (S22). Good.
  • a reference value and a comparison value are obtained from the measured tristimulus values X, Y, and Z.
  • the reference values are three reference colors represented by gradations (R 256 , G 1 , B 1 ), (R 1 , G 256 , B 1 ), and (R 1 , G 1 , B 256 ). It includes the luminance indicating the sum of luminance and the chromaticity obtained from the sum of the tristimulus values of the three reference colors. In this specification, the luminance and chromaticity are also referred to as reference luminance and chromaticity, respectively.
  • each of the comparison values includes, for each of a plurality of reference colors, two reference colors other than any one of the three reference colors, and any one of the three comparison colors.
  • a plurality of comparison luminances indicating the sum of luminances of one comparison color whose gradation corresponding to the reference gradation of the reference color is an adjacent gradation, and the three stimuli of the two reference colors and the one comparison color Contains multiple comparative chromaticities obtained from the sum of values.
  • the luminance and chromaticity are also referred to as comparative luminance and comparative chromaticity, respectively.
  • X 256 W 1 , Y 256 W 1 and Z 256 W 1 are represented by gradations (R 256 , G 1 , B 1 ), (R 1 , G 256 , B 1 ), (R 1 , G 1 , B 256 ).
  • gradations R 256 , G 1 , B 1
  • R 1 , G 256 , B 1 R 1 , G 1 , B 256
  • Each of the tristimulus values X, Y, and Z of a plurality of reference colors are represented by gradations (R 256 , G 1 , B 1 ), (R 1 , G 256 , B 1 ), (R 1 , G 1 , B 256 ).
  • X 256 W1 , Y 256 W1 , Z 256 W1 , X 256 W1 X 256 R + X 256 G + X 256 B
  • Y 256 W1 Y 256 R + Y 256 G + Y 256 B
  • Z 256 W1 Z 256 R + Z 256 G + Z 256 B It is expressed.
  • Y 256 W1 represents the reference luminance.
  • the reference chromaticities u ′ 256 W1 and v ′ 256 W1 are represented by gradations (R 256 , G 1 , B 1 ), (R 1 , G 256 , B 1 ), (R 1 , G 1 , B 256 ).
  • the chromaticity obtained from the sum of the tristimulus values of a plurality of reference colors.
  • X 256 W 2 , Y 256 W 2 , and Z 256 W 2 are one comparative color represented by gradation (R 255 , G 1 , B 1 ) and gradation (R 1 , G 256 , B 1 ).
  • gradation R 255 , G 1 , B 1
  • gradation R 1 , G 256 , B 1
  • X, Y, and Z in two reference colors are shown.
  • X 256 W 3 , Y 256 W 3 , and Z 256 W 3 are one comparative color represented by gradations (R 1 , G 255 , B 1 ), gradations (R 256 , G 1 , B 1 ), (R 1 , G 1 , B 256 ) represents the sum of the tristimulus values X, Y, and Z in the two reference colors.
  • X 256 W3 , Y 256 W3 , Z 256 W3 X 256 R + X 255 G + X 256 B
  • Y 256 W3 Y 256 R + Y 255 G + Y 256 B
  • Z 256 W3 Z 256 R + Z 255 G + Z 256 B It is expressed.
  • X 256 W 4 , Y 256 W 4 , and Z 256 W 4 are one comparison color represented by gradation (R 1 , G 1 , B 255 ), gradation (R 256 , G 1 , B 1 ), (R 1 , G 256 , B 1 ) represents the sum of the tristimulus values X, Y, and Z in the two reference colors.
  • the comparison chromaticities u ′ 256 W3 and v ′ 256 W3 are one comparison color and gradation (R 256 , G 1 , B 1 ), (R 1 ) represented by gradation (R 1 , G 255 , B 1 ).
  • the comparison chromaticities u ′ 256 W4 and v ′ 256 W4 are one comparison color and gradation (R 256 , G 1 , B 1 ) represented by gradations (R 1 , G 1 , B 255 ), ( The chromaticity obtained from the sum of the tristimulus values of the two reference colors represented by R 1 , G 256 , B 1 ) is shown.
  • the reference gradation is corrected based on the target value, the reference value, and the comparison value.
  • This correction is performed using the steepest descent method.
  • the steepest descent method the variation of the variable is determined in order to reach the target value quickly with respect to the initial value given to the variable.
  • the gradations to be obtained are gradations R 256 + ⁇ R 256 , G 256 + ⁇ G 256 , B 256 + ⁇ B 256, and variations are ⁇ R 256 , ⁇ G 256 , and ⁇ B 256 .
  • E 1 ((Y 256 W1 / Y 256 T ) ⁇ 1)
  • E 2 ((u ′ 256 W1 / u ′ 256 T ) ⁇ 1)
  • E 3 ((v ′ 256 W 1 / v ′ 256 T ) ⁇ 1) ⁇
  • is a power.
  • is 2.
  • may be 1.
  • the functions E 1 to E 3 may be powers of absolute values. Thus, it is preferable to use a function obtained by subtracting 1 from the reference value divided by the target value. If Y 256 W1 , u ′ 256 W1 , and v ′ 256 W1 are equal to the target values, E 1 , E 2 , and E 3 are zero.
  • Equation 2 The partial differentiation on the left side of this equation is shown as a difference.
  • Equation 2 the partial differentiation in the first row on the left side of Equation 1 is expressed as Equation 2.
  • the partial differentiation in the first row on the left side of Equation 1 relates to the luminance.
  • the partial differentiations in the second and third rows on the left side of Equation 1 relate to chromaticity u ′ and chromaticity v ′, respectively. .
  • Equation 1 since the left side of Equation 1 is represented by a specific value, ⁇ R 256 , ⁇ G 256 , and ⁇ B 256 can be obtained by inversely transforming Equation 1, respectively.
  • ⁇ R 256 , ⁇ G 256 , and ⁇ B 256 may be obtained, for example, by solving simultaneous equations obtained by the LU decomposition method. In this way, ⁇ R 256 , ⁇ G 256 and ⁇ B 256 are determined for the target luminance Y 256 T and the target chromaticities u ′ 256 T and v ′ 256 T.
  • the reference gradation is corrected so that R 256 + ⁇ R 256 ⁇ R 256 , G 256 + ⁇ G 256 ⁇ G 256 , and B 256 + ⁇ B 256 ⁇ B 256 . That is, a fine adjustment of the luminance and chromaticity (voltage applied to the liquid crystal layer in the case of a liquid crystal display device) corresponding to the original 256th gradation of each pixel newly corresponds to the 256th gradation of each pixel.
  • the luminance and chromaticity corresponding to the gradation n of the color display pixel are adjusted.
  • tristimulus value measurement S24
  • reference value and comparison value acquisition S26
  • reference gradation correction S28
  • R 256 , G 256 and B 256 can be further corrected with respect to the target luminance Y 256 T and the target chromaticities u ′ 256 T and v ′ 256 T. .
  • This repetition may be performed a plurality of times until ⁇ R 256 , ⁇ G 256 , and ⁇ B 256 converge to predetermined values.
  • gradations R 256 , G 256 , and B 256 corrected for the target luminance Y 256 T and the target chromaticities u ′ 256 T and v ′ 256 T can be obtained.
  • the reference value is set to the target by utilizing the difference between the reference value corresponding to the three reference gradations and the comparison value corresponding to one adjacent gradation and two reference gradations.
  • reference gray R 256 to approach the value, G 256, variation [Delta] R 256 of B 256, ⁇ G 256, and obtains the .DELTA.B 256, it is possible to perform efficiently the tone correction in operation.
  • the gradations R 256 , G 256 and B 256 can be corrected at high speed and with high accuracy. Since the correction is performed so that the luminance and chromaticity from the direction measured in S24 are close to the target value, the display characteristics from the front direction or the oblique direction can be adjusted according to the application.
  • the gradations R 255 , G 255 , and B 255 are set as the reference gradations, and the gradations R 254 , G 254 , and B 254 are set to the adjacent floors.
  • the gradations R 255 , G 255 , and B 255 may be corrected in the same manner as described above.
  • the reference tone may be corrected by measuring the tristimulus values of the reference color and the comparison color according to a predetermined gamma characteristic.
  • the tristimulus values of the reference color and the comparison color are measured using the gradations R 255 , G 255 , and B 255 as the reference gradation and the corrected gradations R 256 , G 256 , and B 256 as the adjacent gradations.
  • the reference gradation may be corrected.
  • the measurement of the tristimulus values X, Y, and Z may be performed by changing the gradation of a specific pixel from the lowest gradation to the highest gradation.
  • the tone correction method of the present embodiment will be described with reference to FIG. 2 again.
  • the gradation of the red pixel is changed from the lowest gradation to the highest gradation, and gradations (R n , G 1 , B 1 ) ( Tristimulus values of 1 ⁇ R n ⁇ 256) are measured.
  • gradations R n , G 1 , B 1
  • X n R , Y n R , and Z n R are denoted as X n R , Y n R , and Z n R , respectively.
  • the gradation of the green pixel is changed from the lowest gradation to the highest gradation with the gradations of the red pixel and the blue pixel being set to the lowest gradation, and the gradation (R 1 , G n , B 1 ) (1
  • the tristimulus values of ⁇ G n ⁇ 256) are measured.
  • the tristimulus values X, Y, and Z when the green pixel has the gradation G n are denoted as X n G , Y n G , and Z n G , respectively.
  • the gradation of the blue pixel is changed from the lowest gradation to the highest gradation with the gradations of the red pixel and the green pixel being set to the lowest gradation, and gradations (R 1 , G 1 , B n ) ( Tristimulus values of 1 ⁇ B n ⁇ 256) are measured.
  • gradations (R 1 , G 1 , B n ) Tristimulus values of 1 ⁇ B n ⁇ 256) are measured.
  • the tristimulus values X, Y, and Z when the blue pixel has the gradation B n are denoted as X n B , Y n B , and Z n B , respectively.
  • a plurality of reference colors whose reference gradations are gradations R n , G n and B n , and adjacent gradations are gradations R n ⁇ 1 , G n ⁇ 1 and B n ⁇ 1 .
  • Tristimulus values of a plurality of comparative colors can be obtained over a plurality of gradations n (2 ⁇ n ⁇ 256).
  • This measurement result shows that a plurality of reference colors whose reference gradations are gradations R n ⁇ 1 , G n ⁇ 1 , and B n ⁇ 1 , and adjacent gradations are gradations R n , G n , and B n.
  • reference gradations are gradations R n , G n , and B n
  • adjacent gradations are gradations R n ⁇ 1 , G n ⁇ 1 , and B n ⁇ 1 .
  • a reference value and a comparison value are obtained from the measured tristimulus values X, Y, and Z.
  • X n W1, Y n W1, Z n W1 is gradation (R n, G 1, B 1), is represented by (R 1, G n, B 1), (R 1, G 1, B n)
  • R 1, G 1, B n Are the sums of the tristimulus values X, Y, and Z of the three reference colors.
  • the reference chromaticities u ′ n W1 and v ′ n W1 are gradations (R n , G 1 , B 1 ), (R 1 , G n , B 1 ), (R 1 , G 1 , B n ).
  • the chromaticity obtained from the sum of the tristimulus values of the three reference colors represented is shown.
  • v 'n W1 9Y n W1 / (X n W1 + 15Y n W1 + 3Z n W1) It is expressed.
  • the reference luminance and the reference chromaticity are obtained.
  • X n W2, Y n W2, Z n W2 is tone one and comparative color represented by (R n-1, G 1 , B 1), tone (R 1, G n, B 1), The sum of tristimulus values X, Y, and Z in two reference colors represented by (R 1 , G 1 , B n ) is shown.
  • n is set to 2 or more so that n-1 does not become smaller than 1 (the lowest gradation).
  • X n W3 , Y n W3 , and Z n W3 are one comparison color represented by gradations (R 1 , G n ⁇ 1 , B 1 ), gradations (R n , G 1 , B 1 ), The sum of tristimulus values X, Y, and Z in two reference colors represented by (R 1 , G 1 , B n ) is shown.
  • X n W4, Y n W4 , Z n W4 one and comparative color represented by a gray level (R 1, G 1, B n-1), tone (R n, G 1, B 1 ), (R 1 , G n , B 1 ), the respective tristimulus values X, Y, and Z in the two reference colors are shown.
  • Y n W4 Y n R + Y n G + Y n-1 B
  • Z n W4 Z n R + Z n G + Z n-1 B It is expressed.
  • E 1 ((Y n W1 / Y n T ) ⁇ 1)
  • E 2 ((u ′ n W 1 / u ′ n T ) ⁇ 1)
  • E 3 ((v ′ n W 1 / v ′ n T ) ⁇ 1) ⁇
  • Equation 4 The partial differentiation on the left side of this equation is shown as a difference.
  • Equation 4 the partial differentiation of the first row on the left side of Equation 3 is expressed as Equation 4.
  • Equation 3 since the left side of Equation 3 is represented by a specific value, ⁇ R n , ⁇ G n , and ⁇ B n can be obtained by inversely transforming Equation 3, respectively.
  • ⁇ R n , ⁇ G n , and ⁇ B n may be obtained, for example, by solving simultaneous equations obtained by the LU decomposition method. In this way, ⁇ R n , ⁇ G n and ⁇ B n are determined for the target luminance Y n T and the target chromaticities u ′ n T and v ′ n T.
  • the reference gradation is corrected so that R n + ⁇ R n ⁇ R n , G n + ⁇ G n ⁇ G n , and B n + ⁇ B n ⁇ B n .
  • the tristimulus value is measured (S24)
  • the reference value and the comparison value are acquired (S26)
  • the reference gradation is corrected (S28). Also good.
  • R n , G n and B n can be further corrected for the target luminance Y n T and the target chromaticity u ′ n T and v ′ n T. .
  • This repetition may be performed a plurality of times until ⁇ R n , ⁇ G n , and ⁇ B n converge to predetermined values.
  • the gradations R n , G n , and B n corrected for the target luminance Y n T and the target chromaticities u ′ n T and v ′ n T can be obtained.
  • the gradations R n ⁇ 1 , G n ⁇ 1 , and B n ⁇ 1 are set as reference gradations, and the gradations R n ⁇ 2 , Let G n-2 and B n-2 be adjacent gradations.
  • correction can be performed over the entire gradations R n , G n , and B n (2 ⁇ n ⁇ 256) by sequentially decreasing the reference gradation and the adjacent gradation. If the reference gradation has already been corrected for many gradations, the gradation obtained by extrapolation to the gradation that has not yet been corrected may be set as the initial gradation. Good.
  • the relationship between the gradation after gradation correction and the (front) normalized luminance differs depending on the pixel, but the gradation and (front) normalized before the gradation correction is performed.
  • the relationship with luminance may vary depending on the pixel.
  • the normalized luminance with respect to the gradation may be different depending on the pixel before the gradation correction is performed.
  • the normalized luminance of the red pixel is lower than that of the green pixel
  • the normalized luminance of the blue pixel is higher than that of the green pixel.
  • the normalized luminance of the blue pixel decreases when it exceeds the 250th gradation, and inversion of the gradation is observed.
  • a separate adjustment is made before the gradation correction so as to avoid the use of the portion where the gradation is inverted (the portion where the decrease in the normalized luminance starts).
  • FIG. 5 schematically shows an example of the display device 100.
  • the display device 100 includes a video signal input unit 12, a signal processing unit 14, and a display unit 16.
  • the gamma characteristic subjected to the above-described tone correction is set in a storage device in the signal processing unit 14.
  • the signal processing unit 14 performs signal processing according to the corrected gamma characteristic for the video signal received by the video signal input unit 12. When this processing is performed digitally, this processing is also called digital gamma processing.
  • the tone correction is performed for a short time by reflecting the result of the tone correction obtained using the tristimulus values measured in S24 of FIG. 2 in the storage device in the signal processing unit 14 shown in FIG. Can be done automatically. In this manner, the display device 100 may be manufactured.
  • the tristimulus value of the display device 100 that performs gradation correction is measured, but the present invention is not limited to this.
  • the tristimulus value is measured for one display device 100 of a specific type to correct the gamma characteristic, and the video signal input unit 12 is corrected.
  • the corrected gamma characteristic may be set in the storage device in the signal processing unit 14. In this way, the display device 100 itself can be manufactured without directly measuring the tristimulus values of the reference color and the comparison color. Note that even when the gamma characteristic corrected in this way is set as the predetermined gamma characteristic, even if the display apparatus 100 is taken into account, the gradation or gamma characteristic may be finely adjusted for each display apparatus 100. Good.
  • the signal processing unit 14 preferably has an overshoot circuit or a quick shoot circuit. For example, overshoot driving or quick shoot driving is performed on a signal with a corrected gamma characteristic.
  • the color display pixel has three pixels, but the present invention is not limited to this.
  • the color display pixel may have four pixels.
  • the color display pixel includes four pixels.
  • the four pixels are a red pixel, a green pixel, a blue pixel, and a yellow pixel.
  • a display device in which the color display pixels include four or more pixels having different colors is also referred to as a multi-primary color display device.
  • the gray levels R n , G n , B n , and Y n are set to 4N.
  • 4N conditions are required.
  • target luminance (Y T ) and target chromaticity (u ′ T , v ′ T ) are set as target values.
  • these conditions are only 3N, there are N insufficient conditions. is doing.
  • N conditions that further maximize the area of the color reproduction range are set.
  • the target value including the target luminance of the color display pixel, the target chromaticity, and the target area of the color reproduction range is set.
  • a target value from white to black of the color display pixel is set.
  • the target values are white-black target luminance (Y T ) and target chromaticity (u ′ T , v ′ T ), and are the target area (S T ) of the color reproduction range.
  • the target value setting may be input from the outside.
  • the target value may be set by reading from a storage device provided in the display device.
  • the target luminance is expressed as Y n T
  • the target chromaticity is expressed as u ′ n T and v ′ n T
  • the target area is expressed as S n T.
  • FIG. 3 (a) shows the change in luminance of the color display pixel with respect to the gradation.
  • the luminance is normalized to 1.0 at the highest gradation (here, 256th gradation). Such normalized luminance is set as the target luminance.
  • FIG. 3B shows the chromaticities u ′ and v ′ for each gradation of the color display pixel.
  • Such chromaticities u ′ and v ′ are set as the target chromaticity.
  • the chromaticities u ′ and v ′ are preferably constant with respect to the change in gradation of the color display pixel. As a result, the chromaticities u ′ and v ′ change.
  • the area of such a color reproduction range is set as the target area.
  • the higher the reference gradation the larger the area of the color reproduction range of the reference color.
  • the area of the color reproduction range when the reference gradation is an intermediate gradation may be larger than the area of the color reproduction range when the reference gradation is the highest gradation.
  • the area of the color reproduction range is an additional condition, and the area of the color reproduction range may not be preset as the target area for all gradations.
  • the gradation of one pixel other than one pixel is fixed and the gradation of one pixel is changed for each of the plurality of pixels.
  • the tristimulus values X, Y and Z are measured. The measurement is performed from the front of the display device 100, for example. Alternatively, the measurement may be performed from an oblique direction of the display device 100.
  • the gradation of the red pixel is changed from the lowest gradation to the highest gradation with the gradations of the green pixel, the blue pixel, and the yellow pixel set to the lowest gradation, and the gradation (R n , G 1 , B 1 , Ye 1 ) (1 ⁇ R n ⁇ 256) are measured.
  • the tristimulus values X, Y, and Z when the red pixel has the gradation R n are denoted as X n R , Y n R , and Z n R , respectively.
  • the gradation of the green pixel is changed from the lowest gradation to the highest gradation with the gradations of the red pixel, blue pixel, and yellow pixel set to the lowest gradation (R 1 , G n , B 1 , Ye). 1 ) Measure tristimulus values (1 ⁇ G n ⁇ 256).
  • the tristimulus values X, Y, and Z when the green pixel has the gradation G n are denoted as X n G , Y n G , and Z n G , respectively.
  • the gradation of the blue pixel is changed from the lowest gradation to the highest gradation with the gradations of the red pixel, the green pixel, and the yellow pixel set to the lowest gradation, and the gradations (R 1 , G 1 , B n). , Ye 1 ) (1 ⁇ B n ⁇ 256) are measured.
  • the tristimulus values X, Y, and Z when the blue pixel has the gradation B n are denoted as X n B , Y n B , and Z n B , respectively.
  • the gradation of the yellow pixel is changed from the lowest gradation to the highest gradation with the gradations of the red pixel, the green pixel, and the blue pixel set to the lowest gradation, and the gradations (R 1 , G 1 , B 1, to measure the tristimulus values of Ye n) (1 ⁇ Ye n ⁇ 256).
  • the tristimulus values X, Y, and Z when the yellow pixel has the gradation Yen are denoted as X n Ye , Y n Ye , and Z n Ye , respectively.
  • a plurality of reference colors whose reference gradations are gradations R n , G n , B n , and Y n and adjacent gradations are gradations R n ⁇ 1 , G n ⁇ 1 , B n. ⁇ 1 , Yen ⁇ 1 , tristimulus values of a plurality of comparative colors can be obtained over a plurality of gradations n (2 ⁇ n ⁇ 256).
  • the reference gradations are gradations R n ⁇ 1 , G n ⁇ 1 , B n ⁇ 1 , Ye n ⁇ 1
  • the adjacent gradations are gradations R n , G n, B n
  • the reference gradations are gradations R n , G n , B n , and Y n
  • the adjacent gradations are gradations R n ⁇ 1 , G n ⁇ 1 , B n ⁇ 1 , Ye n ⁇ 1. It is said.
  • the tristimulus value is measured (S74) after the target value is set (S72). However, after the tristimulus value is measured (S74), the target value is set (S72). It may be done.
  • a reference value and a comparison value are obtained from the measured tristimulus values X, Y, and Z.
  • the reference value includes the reference area of the color reproduction range in addition to the reference luminance and the reference chromaticity.
  • the comparison value includes a comparison area of the color reproduction range in addition to the comparison luminance and the comparison chromaticity.
  • X n W1 , Y n W1 , and Z n W1 are gradations (R n , G 1 , B 1 , Ye 1 ), (R 1 , G n , B 1 , Ye 1 ), (R 1 , G 1 , B n , Ye 1 ) and (R 1 , G 1 , B 1 , Ye n ) are the respective sums of the tristimulus values X, Y, and Z of the four reference colors.
  • Y n W1 represents the reference luminance.
  • the reference chromaticities u ′ n W1 and v ′ n W1 are gradations (R n , G 1 , B 1 , Ye 1 ), (R 1 , G n , B 1 , Ye 1 ), (R 1 , G 1 , B n , Ye 1 ), and the chromaticity obtained from the sum of the tristimulus values of the four reference colors represented by (R 1 , G 1 , B 1 , Ye n ).
  • the reference area S n 1 has gradations (R n , G 1 , B 1 , Ye 1 ), (R 1 , G n , B 1 , Ye 1 ), (R 1 , G 1 , B n , Ye 1 ). shows the area of the color reproduction range defined by the four reference colors represented by (R 1, G 1, B 1, Ye n).
  • the chromaticity of the reference color represented by the gradation (R n , G 1 , B 1 , Ye 1 ) is represented as (u ′ n R , v ′ n R ), and similarly, the gradation (R 1 , G n , B 1 , Ye 1 ), (R 1 , G 1 , B n , Ye 1 ), and (R 1 , G 1 , B 1 , Ye n ), the chromaticities of the reference colors represented by ( u 'n G, v' n G), expressed as (u 'n B, v' n B), (u 'n Ye, v' n Ye).
  • X n W2 , Y n W2 , and Z n W2 are one comparison color represented by gradation (R n ⁇ 1 , G 1 , B 1 , Ye 1 ) and gradation (R 1 , G n , B 1 , Ye 1 ), (R 1 , G 1 , B n , Ye 1 ), (R 1 , G 1 , B 1 , Ye n ), tristimulus values X, Y, Z in three reference colors The sum of each is shown.
  • n is set to 2 or more so that n-1 does not become smaller than 1 (the lowest gradation).
  • X n W3 , Y n W3 , and Z n W3 are one comparison color represented by gradation (R 1 , G n ⁇ 1 , B 1 , Ye 1 ) and gradation (R n , G 1 , B 1 , Ye 1 ), (R 1 , G 1 , B n , Ye 1 ), tristimulus values X in three reference colors represented by (R 1 , G 1 , B 1 , Ye n ), The sum of Y and Z is shown.
  • X n W4, Y n W4 , Z n W4 is one of the comparative color represented by a gray level (R 1, G 1, B n-1, Ye 1), tone (R n, G 1 , B 1 , Ye 1 ), (R 1 , G n , B 1 , Ye 1 ), tristimulus values X in three reference colors represented by (R 1 , G 1 , B 1 , Ye n ), The sum of Y and Z is shown.
  • X n W5 , Y n W5 , and Z n W5 are one comparison color represented by gradations (R 1 , G 1 , B 1 , Yen -1 ) and gradations (R n , G 1 , B 1 , Ye 1 ), (R 1 , G n , B 1 , Ye 1 ), tristimulus values X in three reference colors represented by (R 1 , G 1 , B n , Ye 1 ), The sum of Y and Z is shown.
  • v 'n WJ 9Y n WJ / (X n WJ + 15Y n WJ + 3Z n WJ) It is expressed.
  • the comparison area S n 2 includes one comparison color represented by gradations (R n ⁇ 1 , G 1 , B 1 , Ye 1 ) and gradations (R 1 , G n , B 1 , Ye 1 ), ( R 1 , G 1 , B n , Ye 1 ), (R 1 , G 1 , B 1 , Ye n ), the area of the color reproduction range defined by the three reference colors.
  • the comparison area S n 3 is the tone (R 1, G n-1 , B 1, Ye 1) 1 one comparison color and gradation represented by (R n, G 1, B 1, Ye 1) , (R 1 , G 1 , B n , Ye 1 ), (R 1 , G 1 , B 1 , Ye n ), the area of the color reproduction range defined by the three reference colors.
  • the comparison area S n 4 is gradation (R 1, G 1, B n-1, Ye 1) 1 one comparison color and gradation represented by (R n, G 1, B 1, Ye 1) , (R 1 , G n , B 1 , Ye 1 ), (R 1 , G 1 , B 1 , Ye n ), the area of the color reproduction range defined by the three reference colors.
  • the comparison area S n 5 has one comparison color and gradation (R n , G 1 , B 1 , Ye 1 ) represented by gradations (R 1 , G 1 , B 1 , Ye n ⁇ 1 ).
  • R 1 , G n , B 1 , Ye 1 the area of the color reproduction range defined by the three reference colors.
  • the reference gradation is corrected based on the target value, the reference value, and the comparison value.
  • the correction is performed using the steepest descent method.
  • the tone gradation should seek R n + ⁇ R n, G n + ⁇ G n, B n + ⁇ B n, and Ye n + ⁇ Ye n, has a variation ⁇ R n, ⁇ G n, ⁇ B n , and DerutaYe.
  • E 1 ((Y n W1 / Y n T) -1)
  • E 2 ((u ′ n W 1 / u ′ n T ) ⁇ 1)
  • E 3 ((v ′ n W 1 / v ′ n T ) ⁇ 1)
  • E 4 ((S n 1 / S n T ) ⁇ 1) ⁇
  • is a power.
  • is 2.
  • may be 1.
  • the function may be a power of an absolute value.
  • the partial differentiation on the left side of Equation 5 is expressed as a difference.
  • the partial differentiation in the first row on the left side of Equation 5 is expressed as follows.
  • Equation 5 For this left-hand side of equation 5 is represented by a specific value as, by performing the inverse transform of Equation 5 can be obtained ⁇ R n, ⁇ G n, ⁇ B n , the DerutaYe n respectively.
  • ⁇ R n, ⁇ G n, ⁇ B n, ⁇ Ye n may, for example, may be obtained by solving the simultaneous equations obtained by the LU decomposition method.
  • R n + ⁇ R n ⁇ R n, G n + ⁇ G n ⁇ G n, B n + ⁇ B n ⁇ B n the correction of the reference gradation so that Ye n + ⁇ Ye n ⁇ Ye n performs.
  • tristimulus value measurement (S74), reference value and comparison value acquisition (S76), and reference gradation correction (S78) are further performed. It may be repeated. In addition, this repetition is, ⁇ R n, ⁇ G n, ⁇ B n, may be performed multiple times until ⁇ Ye n converges to some extent.
  • the gradations R n ⁇ 1 , G n ⁇ 1 , B n ⁇ 1 , and Ye n ⁇ 1 are set as reference gradations.
  • Gradations R n-2 , G n-2 , B n-2 , and Ye n-2 are adjacent gradations, and S76 and S78 (including S74 as necessary) are repeated. If the reference gradation has already been corrected for many gradations, the gradation obtained by extrapolation to the gradation that has not yet been corrected may be set as the initial gradation. Good.
  • gradations R n ⁇ 1 , G n ⁇ 1 , B n ⁇ 1, and Y n ⁇ 1 are used as reference gradations, and corrected gradations R n , G n , B n, and Y n are used as adjacent gradations.
  • the reference tone may be corrected by measuring the tristimulus values of the reference color and the comparative color.
  • the target area S 256 T is equal to S 256 1
  • the target area S n T is equal to S n + 1 1 .
  • the function E 4 when the nth gradation is the 255th gradation, the function E 4 is expressed as (S 255 1 / S 256 1 ⁇ 1) ⁇ , and when the nth gradation is the 254th gradation, the function E 4 is (S 254 1 / S 255 1 ⁇ 1) ⁇ .
  • the function E 4 When the nth gradation is the first gradation, the function E 4 is expressed as (S 1 1 / S 2 1 ⁇ 1) ⁇ .
  • the result of gradation correction obtained using the tristimulus values measured in S74 of FIG. 7 is reflected in the storage device in the signal processing unit 14 (FIG. 5). As a result, gradation correction can be performed automatically and in a short time.
  • the color display pixel includes the yellow pixel in addition to the red, green, and blue pixels, but the present invention is not limited to this.
  • the color display pixel may include other pixels in addition to the red, green, and blue pixels.
  • the color display pixel may have four pixels without having some or all of the red, green and blue pixels.
  • the color display pixel has three or four pixels, but the present invention is not limited to this.
  • FIG. 9 shows a schematic diagram of a third embodiment of the display device according to the present invention.
  • the color display pixel includes five pixels.
  • the five pixels are a red pixel, a green pixel, a blue pixel, a yellow pixel, and a cyan pixel.
  • the gradations R n , G n , B n , Ye n , and C n are set. It can be said that 5N multivariate optimization problems. In general, if there are 5N variables that are not yet determined, 5N conditions are required. In the first embodiment described above, the target luminance (Y T ) and the target chromaticity (u ′ T , v ′ T ) are set as target values. However, since these conditions are only 3N, there are insufficient 2N conditions. is doing.
  • the pentagonal color reproduction range defined by the five reference colors is divided into a quadrangular shape and a triangular shape.
  • the quadrangular portion is also referred to as a first portion, and the area of the first portion is represented as a first area S1.
  • the triangular part is also called a second part, and the area of the second part is represented as a second area S2.
  • the first portion S1 is defined by the color when the gradation of four of the five pixels of the color display pixel is either the reference gradation or the adjacent gradation, and the area S2 of the second portion remains.
  • the gradation of one pixel and two of the four pixels is defined by the color when the gradation is the reference gradation or the adjacent gradation.
  • the gradation is the reference gradation on the chromaticity diagram.
  • adjacent gradation pixels are referred to as first, second, third, fourth, and fifth pixels in order clockwise or counterclockwise.
  • the first part is defined by the color when the gradation of the first to fourth pixels is either the reference gradation or the adjacent gradation
  • the second part is defined by the first, fourth, and second gradations. It is defined by the color when the gradation of 5 pixels is the reference gradation or the adjacent gradation.
  • 2N conditions for maximizing each of the first and second areas S1 and S2 are set as target values.
  • FIG. 3 FIG. 10, and FIG. 11, a gradation correction method of the display device 100 of the present embodiment will be described.
  • a target value including target luminance, target chromaticity, first target area, and second target area is set.
  • the first target area is the target area of the first portion
  • the second target area is the target area of the second portion.
  • the target values are white-black target luminance (Y T ) and target chromaticity (u ′ T , v ′ T ), and the first and second target areas (S1 T , S2 T ). is there.
  • the target value setting may be input from the outside.
  • the target value may be set by reading from a storage device provided in the display device.
  • the target luminance is expressed as Y n T
  • the target chromaticity is expressed as u ′ n T and v ′ n T
  • the first target area is S1 n T.
  • the second target area is represented as S2 n T.
  • FIG. 3 (a) shows the change in luminance of the color display pixel with respect to the gradation.
  • the luminance is normalized to 1.0 at the highest gradation (here, 256th gradation). Such normalized luminance is set as the target luminance.
  • FIG. 3B shows chromaticities u ′ and v ′ for each gradation of the color display pixel. Such chromaticities u ′ and v ′ are set as target chromaticities.
  • FIG. 11 shows an example of the first and second target areas S1 and S2.
  • the first target area S1 is defined by the chromaticities of yellow, green, cyan, and blue pixels
  • the second target area S2 is defined by the chromaticities of yellow, blue, and red pixels.
  • the pixel that defines one of the two portions includes a yellow pixel
  • the pixel that defines the other portion includes a cyan pixel.
  • the fifth pixel is a red pixel, but the present invention is not limited to this.
  • the fifth pixel may be any of yellow, green, cyan, and blue pixels.
  • the gradation of one pixel is changed by fixing the gradation of a pixel other than one of the plurality of pixels according to a predetermined gamma characteristic.
  • the tristimulus values X, Y and Z are measured.
  • the tristimulus values X, Y, and Z when the red pixel has the gradation R n are denoted as X n R , Y n R , and Z n R , respectively.
  • the gradation of the green pixel is changed from the lowest gradation to the highest gradation (R 1 , G n , B 1 , Ye 1 , C 1 ) (1 ⁇ G n ⁇ 256) are measured.
  • the tristimulus values X, Y, and Z when the green pixel has the gradation G n are denoted as X n G , Y n G , and Z n G , respectively.
  • the gradation of the blue pixel is changed from the lowest gradation to the highest gradation with the gradations of the red pixel, the green pixel, the yellow pixel, and the cyan pixel being set to the lowest gradation, and the gradations (R 1 , G 1 , B n , Ye 1 , C 1 ) (1 ⁇ B n ⁇ 256) are measured.
  • the tristimulus values X, Y, and Z when the blue pixel has the gradation B n are denoted as X n B , Y n B , and Z n B , respectively.
  • the gradation of the yellow pixel is changed from the lowest gradation to the highest gradation with the gradations of the red pixel, the green pixel, the blue pixel, and the cyan pixel set to the lowest gradation (R 1 , G 1, B 1, Ye n, measuring the C 1) tristimulus values (1 ⁇ Ye n ⁇ 256) .
  • the tristimulus values X, Y, and Z when the yellow pixel has the gradation Yen are denoted as X n Ye , Y n Ye , and Z n Ye , respectively.
  • an cyan pixel gradation C n a is the tristimulus value X when, Y, respectively Z X n C, Y n C , and Z n C.
  • B n ⁇ 1 , Ye n ⁇ 1 , and C n ⁇ 1 tristimulus values of a plurality of comparative colors can be obtained over a plurality of gradations n (2 ⁇ n ⁇ 256).
  • This measurement result shows that a plurality of reference colors whose reference gradations are gradations R n ⁇ 1 , G n ⁇ 1 , B n ⁇ 1 , Ye n ⁇ 1 , C n ⁇ 1 , and adjacent gradations gradation R n, G n, B n , Ye n, may be used as a result of over a plurality of gradation n (2 ⁇ n ⁇ 256) of the tristimulus values of a plurality of comparative color is C n.
  • the reference tone is tone R n, G n, B n , Ye n, C n, adjacent tone gradation R n-1, G n- 1, B n-1, Ye n-1 and Cn -1 .
  • measurement of tristimulus values (S104) is performed after setting target values (S102), but setting of target values (S102) is performed after measurement of tristimulus values (S104). It may be done.
  • a reference value and a comparison value are obtained from the measured tristimulus values X, Y, and Z.
  • the reference value includes a first reference area and a second reference area in addition to the reference luminance and the reference chromaticity.
  • the first reference area is the area of the first part defined by the four reference colors
  • the second reference area is the area of the second part defined by the three reference colors.
  • the comparison value includes the first comparison area and the second comparison area in addition to the comparison luminance and the comparison chromaticity.
  • the first comparison area is an area of the first portion defined by four colors in which the gradation of the first pixel to the fourth pixel is either the reference gradation or the adjacent gradation
  • the second reference area is the first reference area
  • the area of the second portion is defined by three colors in which the gradation of the first, fourth, and fifth pixels is either the reference gradation or the adjacent gradation.
  • X n W1, Y n W1 , Z n W1 is gradation (R n, G 1, B 1, Ye 1, C 1), (R 1, G n, B 1, Ye 1, C 1 ), (R 1 , G 1 , B n , Ye 1 , C 1 ), (R 1 , G 1 , B 1 , Ye n , C 1 ), (R 1 , G 1 , B 1 , Ye 1 , C 1 ) 1n ) is the sum of the tristimulus values X, Y, Z of the five reference colors represented by 1n ).
  • Y n W1 represents the reference luminance.
  • the reference chromaticities u ′ n W1 and v ′ n W1 have gradations (R n , G 1 , B 1 , Ye 1 , C 1 ), (R 1 , G n , B 1 , Ye 1 , C 1). ), (R 1 , G 1 , B n , Ye 1 , C 1 ), (R 1 , G 1 , B 1 , Ye n , C 1 ), (R 1 , G 1 , B 1 , Ye 1 , C 1 ) 1n ) indicates the chromaticity obtained from the sum of the tristimulus values of the five reference colors.
  • the first reference area S1 n 1 has gradations (R 1 , G n , B 1 , Ye 1 , C 1 ), (R 1 , G 1 , B n , Ye 1 , C 1 ), (R 1 , G 1 ). 1 , B 1 , Ye n , C 1 ), and (R 1 , G 1 , B 1 , Ye 1 , C n ), the area of the first portion defined by the four reference colors represented.
  • the second reference area S2 n 1 has gradations (R n , G 1 , B 1 , Ye 1 , C 1 ), (R 1 , G 1 , B n , Ye 1 , C 1 ), (R 1 , G 1 , B 1 , Ye n , C 1 ), the area of the second part defined by the three reference colors.
  • the chromaticity of the reference color represented by the gradation (R n , G 1 , B 1 , Ye 1 , C 1 ) is represented as (u ′ n R , v ′ n R ).
  • X n W2, Y n W2, Z n W2 one and comparative color represented by a gray level (R n-1, G 1 , B 1, Ye 1, C 1), tone (R 1, G n , B 1, Ye 1, C 1), (R 1, G 1, B n, Ye 1, C 1), (R 1, G 1, B 1, Ye n, C 1), (R 1, G 1 , B 1 , Ye 1 , C n ), the respective tristimulus values X, Y, and Z in the four reference colors are shown.
  • n is set to 2 or more so that n-1 does not become smaller than 1 (the lowest gradation).
  • X n W3, Y n W3 , Z n W3 is gradation (R 1, G n-1 , B 1, Ye 1, C 1) 1 single and comparative color represented by the gray level (R n , G 1 , B 1 , Ye 1 , C 1 ), (R 1 , G 1 , B n , Ye 1 , C 1 ), (R 1 , G 1 , B 1 , Ye n , C 1 ), ( R 1 , G 1 , B 1 , Ye 1 , C n ), the respective tristimulus values X, Y, and Z in the four reference colors are shown.
  • X n W4, Y n W4 , Z n W4 is one of the comparative color represented by a gray level (R 1, G 1, B n-1, Ye 1, C 1), tone (R n , G 1 , B 1 , Ye 1 , C 1 ), (R 1 , G n , B 1 , Ye 1 , C 1 ), (R 1 , G 1 , B 1 , Ye n , C 1 ), ( R 1 , G 1 , B 1 , Ye 1 , C n ), the respective tristimulus values X, Y, and Z in the four reference colors are shown.
  • X n W5 , Y n W5 , and Z n W5 are one comparison color represented by gradations (R 1 , G 1 , B 1 , Ye n ⁇ 1 , C 1 ) and gradation (R n , G 1 , B 1 , Ye 1 , C 1 ), (R 1 , G n , B 1 , Ye 1 , C 1 ), (R 1 , G 1 , B n , Ye 1 , C 1 ), ( R 1 , G 1 , B 1 , Ye 1 , C n ), the respective tristimulus values X, Y, and Z in the four reference colors are shown.
  • X n W6 , Y n W6 , and Z n W6 are one comparison color represented by gradations (R 1 , G 1 , B 1 , Ye 1 , C n-1 ) and gradation (R n , G 1 , B 1 , Ye 1 , C 1 ), (R 1 , G n , B 1 , Ye 1 , C 1 ), (R 1 , G 1 , B n , Ye 1 , C 1 ), ( R 1, G 1, B 1 , Ye n, tristimulus values in the four reference colors represented by the C 1) X, Y, indicating each of the sum of Z.
  • u ′ n WJ 4X n WJ / (X n WJ + 15Y n WJ + 3Z n WJ )
  • v 'n WJ 9Y n WJ / (X n WJ + 15Y n WJ + 3Z n WJ) It is expressed.
  • the first comparison area S1 n 2 has gradations (R 1 , G n , B 1 , Ye 1 , C 1 ), (R 1 , G 1 , B n , Ye 1 , C 1 ), (R 1 , G 1 ). 1 , B 1 , Ye n , C 1 ), and (R 1 , G 1 , B 1 , Ye 1 , C n ), the area of the first portion defined by the four reference colors represented.
  • the first comparison area S1 n 2 is equal to the first reference area S1 n 1 .
  • the first comparison area S1 n 3 includes one comparison color represented by gradations (R 1 , G n ⁇ 1 , B 1 , Ye 1 , C 1 ) and gradations (R 1 , G 1 , B n , Ye 1, C 1), defining (R 1, G 1, B 1, Ye n, C 1), by three reference colors represented by (R 1, G 1, B 1, Ye 1, C n) The area of the second part to be performed is shown.
  • S1 n 5 ⁇ (v ′ n ⁇ 1 Ye ⁇ v ′ n C ) ⁇ (u ′ n B ⁇ u ′ n G ) ⁇ (u ′ n ⁇ 1 Ye ⁇ u ′ n C ) ⁇ (v ′ n B -v 'n G) ⁇ / 2
  • S1 n 6 ⁇ (v ′ n Ye ⁇ v ′ n ⁇ 1 C ) ⁇ (u ′ n B ⁇ u ′ n G ) ⁇
  • the second comparison area S2 n 2 includes one comparison color represented by gradations (R n ⁇ 1 , G 1 , B 1 , Ye 1 , C 1 ) and gradations (R 1 , G 1 , B 1) . n , Ye 1 , C 1 ), (R 1 , G 1 , B 1 , Ye n , C 1 ), the area of the first portion defined by the two reference colors.
  • the second comparison area S2 n 3 is equal to the second reference area S2 n 1 .
  • the second comparison area S2 n 4 includes one comparison color represented by gradations (R 1 , G 1 , B n ⁇ 1 , Ye 1 , C 1 ) and gradations (R n , G 1 , B 1) . 1 , Ye 1 , C 1 ), and (R 1 , G 1 , B 1 , Ye n , C 1 ), the area of the second portion defined by the two reference colors.
  • the second comparison area S2 n 6 is equal to the second reference area S2 n 1 .
  • the comparative luminance, the comparative chromaticity, and the first and second comparative areas are obtained.
  • the reference gradation is corrected based on the target value, the reference value, and the comparison value.
  • the correction is performed using the steepest descent method.
  • the tone gradation should seek R n + ⁇ R n, G n + ⁇ G n, B n + ⁇ B n, Ye n + ⁇ Ye n, and C n + ⁇ C n, the variation ⁇ R n, ⁇ G n, ⁇ B n , ⁇ Ye n , ⁇ C n .
  • E 1 ((Y n W1 / Y n T ) ⁇ 1) ⁇
  • E 2 ((u ′ n W 1 / u ′ n T ) ⁇ 1)
  • E 3 ((v ′ n W 1 / v ′ n T ) ⁇ 1)
  • E 4 ((S1 n 1 / S1 n T ) ⁇ 1)
  • E 5 ((S2 n 1 / S2 n T ) ⁇ 1) ⁇
  • is a power.
  • is 2.
  • may be 1.
  • the function may be a power of an absolute value.
  • the partial differentiation on the left side of this equation is shown as a difference.
  • the partial differentiation in the first row is expressed as follows.
  • ⁇ R n , ⁇ G n , ⁇ B n , ⁇ Y n , and ⁇ C n can be obtained by performing the inverse transformation of Expression 7, respectively.
  • ⁇ R n, ⁇ G n, ⁇ B n, ⁇ Ye n, ⁇ C n is, for example, may be obtained by solving the simultaneous equations obtained by the LU decomposition method.
  • the tristimulus value is measured (S104), the reference value and the comparison value are acquired (S106), and the reference gradation is corrected (S108). It may be repeated. Further, this repetition may be performed a plurality of times until ⁇ R n , ⁇ G n , ⁇ B n , ⁇ Yen , and ⁇ C n converge to some extent.
  • Gradation R n, G n, B n , Ye n the correction of C n is completed, then, the gradation R n-1, G n- 1, B n-1, Ye n-1, C n- 1 is a reference gradation, and gradations R n ⁇ 2 , G n ⁇ 2 , B n ⁇ 2 , Ye n ⁇ 2 , and C n ⁇ 2 are adjacent gradations. (Including). If the reference gradation has already been corrected for many gradations, the gradation obtained by extrapolation to the gradation that has not yet been corrected may be set as the initial gradation. Good.
  • the gradations R n ⁇ 1 , G n ⁇ 1 , B n ⁇ 1 , Ye n ⁇ 1 , C n ⁇ 1 are used as reference gradations, and the corrected gradations R n , G n , B n , Ye n are used. it may be corrected in the reference gray to C n by measuring the tristimulus values of the reference color and the comparative color as the adjacent gradations.
  • the result of gradation correction obtained using the tristimulus values measured in S102 of FIG. 10 is reflected in the storage device in the signal processing unit 14 (FIG. 5).
  • gradation correction can be performed automatically and in a short time.
  • the color display pixel may include six or more pixels.
  • the color reproduction range is divided into 3 or more parts (one square part and 2 or more triangle parts), so that the gradations R n and G are the same as described above.
  • n, B n, Ye n it is possible to correct the C n.
  • the display device 100 may be another display device such as a cathode ray tube, a plasma display device, or an organic EL display device.
  • the color display pixel in the display device 100 has a plurality of pixels, but the display device of the present invention is not limited to this.
  • the display device 100 may perform color expression by driving in a field sequential manner.
  • gradation correction of a display device can be performed efficiently with high accuracy in a short time.
  • gradation correction can be performed so as to effectively use the color reproduction range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Color, Gradation (AREA)
  • Processing Of Color Television Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

 表示装置の階調補正方法は、カラー表示画素の目標輝度および目標色度を含む目標値を設定する工程(S22)と、所定のガンマ特性に従い、複数の基準色および複数の比較色のそれぞれの三刺激値を測定する工程(S24)と、測定された三刺激値から基準値および比較値を求める工程(S26)と、目標値、基準値および比較値に基づいて基準階調を補正する工程(S28)とを包含する。

Description

表示装置の階調補正方法、および、表示装置の製造方法
 本発明は、表示装置の階調補正方法、および、表示装置の製造方法に関する。
 通常のテレビジョン放送によって放映されている画像の映像信号には、ブラウン管(Cathode Tube Ray:CRT)の電流-輝度特性と整合するように補正が行われている。したがって、このような映像信号をブラウン管以外の表示装置で表示する場合には、その表示装置の駆動電圧-輝度特性に適合する階調補正を行う必要がある。このような階調補正を行うことにより、当初作成された映像信号と合致し、原画像を正確に再現することができる。また、カラー表示の場合ではこのような階調補正を3原色の各々について個別に行うことにより、色温度の設定やホワイトバランスを調整して、原画像の色相を忠実に再現することができる。
 典型的には、各色の階調補正(ガンマ特性の補正)はカットアンドトライ法で行われている。カットアンドトライ法では、各画素の階調を補正(微調整)した後で、カラー表示画素の輝度および色度を測定する。このような階調の補正および測定は、カラー表示画素の輝度および色度が所望な値を示すまで繰り返し行われる。
 また、従来の一般的な表示装置では、光の3原色である赤、緑および青を表示する3つの画素によって1つのカラー表示画素が構成されていたが、近年、互いに異なる色を表示する4以上の画素から構成されたカラー表示画素を備える表示装置が提案されている。このような表示装置は多原色表示装置とも呼ばれる。典型的な多原色表示装置では、赤、緑および青という3つの色に別の色が追加されており、広い色再現範囲で表示を行うことができる(例えば、特許文献1参照)。
 特許文献1には、RGB3原色発光セルに加えて、RGB発光セルの色度図で囲まれた三角形の外に発光色を有する別の発光セル(Gb、Bb)が設けられた表示装置が記載されている。特許文献1の表示装置では、RGBの発光セルの色度図で囲まれた範囲内の色を表示する場合に、RGB以外の発光セル(Gb、Bb)を発光させることなくRGB発光セルのみを点灯させる。これに対して、RGBの発光セルの色度図で囲まれた範囲外の色を表示する場合には、発光セル(Gb、Bb)を発光させており、これにより、消費電力の増大を抑制している。
特開2005-227586号公報
 カットアンドトライ法では、必要となる階調の補正の程度を正確に把握することができず、階調の補正を効率的に行うことができない。また、特許文献1に記載されているように消費電力の低減を優先させると、白を表示する場合でも、特定の画素が発光しないため、充分な輝度が得られないことがある。
 本発明は、上記課題を鑑みてなされたものであり、その目的は、階調の効率的な補正を可能にする表示装置の階調補正方法および表示装置の製造方法を提供することにある。
 本発明による表示装置の階調補正方法は、複数の画素を有するカラー表示画素を備える表示装置の階調補正方法であって、前記カラー表示画素の目標輝度および目標色度を含む目標値を設定する工程と、所定のガンマ特性に従い、それぞれが、前記複数の画素のそれぞれについて前記複数の画素のうちのいずれか1つの画素の階調が基準階調であり、残りの画素の階調が固定階調である場合の前記カラー表示画素の色を示す複数の基準色、および、それぞれが、前記複数の画素のそれぞれについて前記複数の画素のうちのいずれか1つの画素の階調が前記基準階調に連続する隣接階調であり、残りの画素の階調が前記固定階調である場合の前記カラー表示画素の色を示す複数の比較色のそれぞれの三刺激値を測定する工程と、前記測定された三刺激値から基準値および比較値を求める工程であって、前記基準値は、前記複数の基準色の輝度の和を示す基準輝度、および、前記複数の基準色の三刺激値の和から得られる基準色度を含み、前記比較値は、それぞれが、前記複数の基準色のそれぞれについて、前記複数の基準色のうちのいずれか1つの基準色以外の基準色、および、前記複数の比較色のうちの前記いずれか1つの基準色の前記基準階調に対応する画素の階調が前記隣接階調である1つの比較色の輝度の和を示す複数の比較輝度、ならびに、前記いずれか1つの基準色以外の基準色および前記1つの比較色の三刺激値の和から得られる複数の比較色度を含む、工程と、前記目標値、前記基準値および前記比較値に基づいて前記基準階調を補正する工程とを包含する。
 ある実施形態において、前記基準階調を補正する工程は、最急降下法を用いる工程を含む。
 ある実施形態において、前記最急降下法を用いる工程は、前記基準値を前記目標値で除算したものから1を引いた関数を用いる工程を含む。
 ある実施形態において、前記基準階調を補正する工程の後、前記所定のガンマ特性として前記基準階調の補正されたガンマ特性に従い、前記三刺激値を測定する工程、前記基準値および比較値を求める工程、ならびに、前記基準階調を補正する工程をさらに繰り返す。
 ある実施形態において、前記三刺激値を測定する工程は、前記複数の画素のそれぞれについて前記複数の画素のうちのいずれか1つの画素以外の残りの画素の階調を前記固定階調に固定して、前記1つの画素の階調を最低階調から最高階調の範囲で変化させる。
 ある実施形態において、前記複数の画素は3つの画素を含む。
 ある実施形態において、前記3つの画素は、赤画素、緑画素および青画素を含む。
 ある実施形態において、前記複数の画素は4つの画素を含み、前記目標値は、色再現範囲の目標面積をさらに含み、前記基準値および比較値を求める工程において、前記基準値は、前記複数の基準色によって規定される色再現範囲の基準面積をさらに含み、前記比較値は、前記複数の基準色のそれぞれについて、前記いずれか1つの基準色以外の基準色、および、前記1つの比較色によって規定される複数の色再現範囲の比較面積をさらに含む。
 ある実施形態において、前記4つの画素は、赤画素、緑画素、青画素および黄画素を含む。
 ある実施形態において、前記複数の画素は、第1画素、第2画素、第3画素、第4画素および第5画素を含み、前記目標値は、色再現範囲の第1目標面積および第2目標面積をさらに含み、前記基準値および比較値を求める工程において、前記基準値は、前記複数の基準色によって規定される色再現範囲のうち、前記第1、第2、第3および第4画素の階調が前記基準階調となる4つの基準色によって規定される第1部分の第1基準面積、および、前記第1、第4および第5画素の階調が前記基準階調となる3つの基準色によって規定される第2部分の第2基準面積をさらに含み、前記比較値は、前記複数の基準色のうち前記第1画素から前記第5画素のうちのいずれか4つの画素がそれぞれ前記基準階調となる4つの基準色と、前記複数の比較色のうち残りの1つの画素が前記隣接階調となる1つの比較色とによって規定される色再現範囲のうち、前記第1画素、第2、第3および第4画素の階調が前記基準階調および前記隣接階調のいずれかである4つの色によって規定される第1部分の第1比較面積と、前記第1、第4および第5画素の階調が前記基準階調および前記隣接階調のいずれかである3つの色によって規定される第2部分の第2比較面積とをさらに含む。
 ある実施形態において、前記第1、第2、第3、第4および第5画素は、黄画素、緑画素、シアン画素、青画素および赤画素を含む。
 本発明による表示装置の製造方法は、所定のガンマ特性を有する表示装置を用意する工程と、上記に記載の表示装置の階調補正方法にしたがって前記表示装置の階調を補正する工程とを包含する。
 本発明による表示装置の製造方法は、映像信号入力部と、信号処理部と、表示部とを備える表示装置を用意する工程と、上記に記載の表示装置の階調補正方法にしたがって階調の補正されたガンマ特性を示すように、前記信号処理部の設定を行う工程とを包含する。
 本発明によれば、階調補正を効率的に行うことができる。
本発明による表示装置の第1実施形態の模式図である。 本発明による表示装置の階調補正方法の第1実施形態のフローチャートである。 (a)は階調に対する規格化輝度(目標輝度)を示すグラフであり、(b)は階調に対する色度(目標色度)u’、v’を示すグラフである。 階調補正前の規格化輝度を示すグラフである。 本実施形態の表示装置の一例を示すブロック図である。 本発明による表示装置の第2実施形態の模式図である。 本発明による表示装置の階調補正方法の第2実施形態のフローチャートである。 色再現範囲の目標面積を示す色度図である。 本発明による表示装置の第3実施形態の模式図である。 本発明による表示装置の階調補正方法の第3実施形態のフローチャートである。 色再現範囲の分けられた第1、第2部分の第1、第2目標面積を示す色度図である。
 以下、図面を参照して、本発明による表示装置の階調補正方法の実施形態を説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
 (実施形態1)
 以下、図1を参照して本実施形態の表示装置100を説明する。本実施形態の表示装置100は、複数の画素を有するカラー表示画素を備えている。例えば、複数の画素は、赤画素R、緑画素Gおよび青画素Bを含む。
 本明細書において、各画素の階調数をNと示す。例えば、各画素の階調数は256であり、これは8ビットで表される。ここでは、階調は1から256までの整数であり、最低階調は第1階調であり、最高階調は第256階調である。各画素は、階調が高いほど、高い輝度を示す。本明細書において、赤画素、緑画素、青画素が第n階調を示す場合の階調をそれぞれ階調Rn、Gn、Bnと表す。また、カラー表示画素の各画素(ここでは、赤画素R、緑画素G、青画素B)の階調がいずれも等しい場合(例えば、階調Rn、Gn、Bnの場合)のカラー表示画素の階調を階調n(1≦n≦256)と表す。
 表示装置100は所定のガンマ特性を有しており、階調Rn、Gn、Bnのそれぞれに応じて、各画素は所定の輝度(典型的には、正面方向)を呈する。例えば、表示装置100が液晶表示装置である場合、階調Rn、Gn、Bnに応じて、赤、緑および青画素の液晶層に所定の電圧が印加される。
 階調補正が行われる前の表示装置100でも、入力信号において無彩色の明度が変化すると、所定のガンマ特性に従って表示される色が変化する。このとき、カラー表示画素の輝度および色度が所望な値からずれていることがある。これは、赤画素、緑画素および青画素の階調Rn、Gn、Bnが正確に設定されていないからであり、階調Rn、Gn、Bnを最適に設定することが望まれる。
 3つの画素のそれぞれにN個の階調が存在するため、この問題は3N個の多変量最適化問題といえる。一般に、未決定の変数が3N個存在する場合、3N個の条件が必要となる。ここでは、3N個の条件に相当する目標値として、カラー表示画素のN個の階調に対して、目標輝度(YT)および目標色度(u’T、v’T)を設定する。
 なお、3N個の条件から、赤、緑および青画素の階調を適切に設定するためには、演算を高速に行うことが必要となる。しかしながら、第1階調(n=1)の輝度および色度に対して、第256階調(n=256)の輝度および色度はほとんど影響しない。このように、階調が大きく異なる場合、互いの影響はほとんどないと考えられる。したがって、階調Rn、Gn、Bnの3変数の最適化問題として取り扱うことができる。
 以下、図2および図3を参照して、本実施形態の表示装置100の階調補正方法を説明する。
 図2のS22に示すように、カラー表示画素の目標輝度および目標色度を含む目標値を設定する。ここでは、入力信号において黒から白にわたって無彩色のまま明度が変化する場合を想定しており、目標値は、白-黒の目標輝度(YT)、および、目標色度(u’T、v’T)である。目標輝度および目標色度は、カラー表示画素の階調に対して設定される。目標値は、外部から入力されてもよい。あるいは、目標値は、表示装置100内に設けられた記憶装置から読み出されてもよい。
 階調n(1≦n≦256)に対して、目標輝度はYn Tと表され、目標色度はu’n T、v’n Tと表される。
Figure JPOXMLDOC01-appb-M000001
 図3(a)に階調に対するカラー表示画素の輝度の変化を示す。ここで、輝度は、最高階調(ここでは、第256階調)で1.0に規格化されており、この規格化輝度の変化は、ガンマ値2.2と示されることもある。このような規格化輝度が目標輝度として設定される。
 図3(b)に、カラー表示画素の各階調に対する色度u’、v’を示す。このような色度u’、v’が目標色度として設定される。なお、理想的には、色度u’、v’はそれぞれカラー表示画素の階調の変化に対して一定であることが好ましいが、ここでは、現実的な観点から、階調の変化に対して色度u’、v’は変化している。
 図2のS24に示すように、複数の画素のそれぞれについて、所定のガンマ特性に従い、複数の基準色および複数の比較色のそれぞれの三刺激値X、Y、Zを測定する。複数の基準色のそれぞれは、複数の画素のそれぞれについて複数の画素のうちのいずれか1つの画素の階調が基準階調であり、残りの画素の階調が固定階調である場合のカラー表示画素の色である。また、複数の比較色のそれぞれは、複数の画素のそれぞれについて複数の画素のうちのいずれか1つの画素の階調が基準階調に連続する隣接階調であり、残りの画素の階調が固定階調である場合のカラー表示画素の色である。なお、基準階調は隣接階調よりも大きくてもよく、小さくてもよい。ここでは、基準階調は階調R256、G256、B256であり、隣接階調は階調R255、G255、B255である。また、固定階調は最低階調(第1階調)である。この場合、基準色は、階調(R256,G1,B1)、(R1,G256,B1)、(R1,G1,B256)の場合の色であり、比較色は、階調(R255,G1,B1)、(R1,G255,B1)、(R1,G1,B255)の場合の色である。
 ここでは、階調(R256,G1,B1)のときの三刺激値X、Y、ZをそれぞれX256 R、Y256 R、Z256 Rと示し、階調(R1,G256,B1)のときの三刺激値X、Y、ZをそれぞれX256 G、Y256 G、Z256 Gと示し、階調(R1,G1,B256)のときの三刺激値X、Y、ZをそれぞれX256 B、Y256 B、Z256 Bと示す。同様に、階調(R255,G1,B1)のときの三刺激値X、Y、ZをそれぞれX255 R、Y255 R、Z255 Rと示し、階調(R1,G255,B1)のときの三刺激値X、Y、ZをそれぞれX255 G、Y255 G、Z255 Gと示し、階調(R1,G1,B255)のときの三刺激値X、Y、ZをそれぞれX255 B、Y255 B、Z255 Bと示す。
 例えば、緑画素および青画素の階調を最低階調に設定した状態で赤画素の階調を第256階調、第255階調と変化させて、階調(R256,G1,B1)、(R255,G1,B1)の三刺激値を測定する。また、赤画素および青画素の階調を最低階調に設定した状態で緑画素の階調を第256階調、第255階調と変化させて、階調(R1,G256,B1)、(R1,G255,B1)の三刺激値を測定する。同様に、赤画素および緑画素の階調を最低階調に設定した状態で青画素の階調を第256階調、第255階調と変化させて、階調(R1,G1,B256)、(R1,G1,B255)の三刺激値を測定する。
 なお、一般に、色度u’、v’は、三刺激値X、Y、Zを用いて
   u’=4X/(X+15Y+3Z)
   v’=9Y/(X+15Y+3Z)
と表される。
 測定は、例えば、表示装置100の正面から行われる。あるいは、測定は、表示装置100の斜め方向から行われてもよい。以下に説明するように、この測定方向からの表示特性が目標値に近くなるように階調が補正される。なお、図2では、目標値を設定した(S22)後に、三刺激値を測定している(S24)が、三刺激値を測定した(S24)後に、目標値を設定して(S22)もよい。
 次に、図2のS26に示すように、測定された三刺激値X、Y、Zから基準値および比較値を求める。ここで、基準値は、階調(R256,G1,B1)、(R1,G256,B1)、(R1,G1,B256)で表される3つの基準色の輝度の和を示す輝度、および、3つの基準色の三刺激値の和から得られる色度を含む。なお、本明細書において、この輝度、色度をそれぞれ基準輝度、基準色度とも呼ぶ。
 また、比較値は、それぞれが、複数の基準色のそれぞれについて、3つの基準色のうちのいずれか1つの基準色以外の2つの基準色、および、3つの比較色のうち上記いずれか1つの基準色の基準階調に対応する画素の階調が隣接階調である1つの比較色の輝度の和を示す複数の比較輝度、ならびに、上記2つの基準色および上記1つの比較色の三刺激値の和から得られる複数の比較色度を含む。なお、本明細書において、この輝度、色度をそれぞれ比較輝度、比較色度とも呼ぶ。
 以下に、基準輝度および基準色度を具体的に説明する。X256 W1、Y256 W1、Z256 W1は、階調(R256,G1,B1)、(R1,G256,B1)、(R1,G1,B256)で表される複数の基準色の三刺激値X、Y、Zのそれぞれの和である。X256 W1、Y256 W1、Z256 W1は、
 X256 W1 = X256 R+X256 G+X256 B
 Y256 W1 = Y256 R+Y256 G+Y256 B
 Z256 W1 = Z256 R+Z256 G+Z256 B
と表される。Y256 W1は基準輝度を示す。
 基準色度u’256 W1、v’256 W1は階調(R256,G1,B1)、(R1,G256,B1)、(R1,G1,B256)で表される複数の基準色の三刺激値の和から得られる色度を示す。u’256 W1、v’256 W1は、
  u’256 W1 =4X256 W1/(X256 W1+15Y256 W1+3Z256 W1
  v’256 W1 =9Y256 W1/(X256 W1+15Y256 W1+3Z256 W1
と表される。以上のようにして、基準輝度Y256 W1および基準色度u’256 W1、v’256 W1が求められる。
 次に、比較輝度および比較色度を具体的に説明する。ここでは、X256 W2、Y256 W2、Z256 W2は、階調(R255,G1,B1)で表される1つの比較色と、階調(R1,G256,B1)、(R1,G1,B256)で表される2つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。X256 W2、Y256 W2、Z256 W2は、
 X256 W2 = X255 R+X256 G+X256 B
 Y256 W2 = Y255 R+Y256 G+Y256 B
 Z256 W2 = Z255 R+Z256 G+Z256 B
と表される。
 X256 W3、Y256 W3、Z256 W3は階調(R1,G255,B1)で表される1つの比較色と、階調(R256,G1,B1)、(R1,G1,B256)で表される2つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。X256 W3、Y256 W3、Z256 W3は、
 X256 W3 = X256 R+X255 G+X256 B
 Y256 W3 = Y256 R+Y255 G+Y256 B
 Z256 W3 = Z256 R+Z255 G+Z256 B
と表される。
 X256 W4、Y256 W4、Z256 W4は、階調(R1,G1,B255)で表される1つの比較色と、階調(R256,G1,B1)、(R1,G256,B1)で表される2つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。X256 W4、Y256 W4、Z256 W4は、
 X256 W4 = X256 R+X256 G+X255 B
 Y256 W4 = Y256 R+Y256 G+Y255 B
 Z256 W4 = Z256 R+Z256 G+Z255 B
と表される。
 Y256 WJ(ここで、J=2、3、4)は比較輝度を示す。また、比較色度u’256 W2、v’256 W2は階調(R255,G1,B1)で表される1つの比較色および階調(R1,G256,B1)、(R1,G1,B256)で表される2つの基準色の三刺激値の和から得られる色度を示す。比較色度u’256 W3、v’256 W3は階調(R1,G255,B1)で表される1つの比較色および階調(R256,G1,B1)、(R1,G1,B256)で表される2つの基準色の三刺激値の和から得られる色度を示す。また、比較色度u’256 W4、v’256 W4は階調(R1,G1,B255)で表される1つの比較色および階調(R256,G1,B1)、(R1,G256,B1)で表される2つの基準色の三刺激値の和から得られる色度を示す。以上から、比較色度u’256 WJ、v’256 WJ(ここで、J=2、3、4)は、
  u’256 WJ = 4X256 WJ/(X256 WJ+15Y256 WJ+3Z256 WJ
  v’256 WJ = 9Y256 WJ/(X256 WJ+15Y256 WJ+3Z256 WJ
と表される。以上のようにして、比較輝度および比較色度が求められる。
 その後、図2のS28に示すように、目標値、基準値および比較値に基づいて基準階調を補正する。この補正は、最急降下法を用いて行われる。最急降下法では、変数に与えた初期値に対して、目標値に早く到達するために変数の変分が決定される。ここでは、求めるべき階調を階調R256+ΔR256、G256+ΔG256、B256+ΔB256とし、変分をΔR256、ΔG256、ΔB256としている。
 最適化する関数EJ(J=1、2、3)は、例えば、以下のように表される。関数EJにおいて目標輝度および目標色度で規格化を行うことにより、収束を早くすることができる。
   1  = ((Y256 W1/Y256 T)-1)α
   2  = ((u’256 W1/u’256 T)-1)α
   3  = ((v’256 W1/v’256 T)-1)α
 αはべき乗である。例えば、αは2である。または、αは1であってもよい。関数E1~E3は絶対値のべき乗であってもよい。このように、基準値を目標値でそれぞれ除算したものから1を引いた関数を用いることが好ましい。仮に、Y256 W1、u’256 W1、v’256 W1がそれぞれ目標値と等しいとすると、E1、E2、E3はゼロである。
 最急降下法を用いると、ΔR256、ΔG256、ΔB256と関数E1、E2、E3とは以下の関係式で表される。
Figure JPOXMLDOC01-appb-M000002
 この式の左辺の偏微分は差分で示される。例えば、式1の左辺の第1行目の偏微分は式2のように表される。
Figure JPOXMLDOC01-appb-M000003
 式1の左辺の第1行目の偏微分は、基準輝度Y256 W1、比較輝度Y256 WJ(J=2、3、4)および目標輝度Y256 Tを用いて表される。このように、式1の左辺の第1行目の偏微分は輝度に関している。なお、冗長を避けるためにここでは詳細な記載を省略するが、式1の左辺の第2行目および第3行目の偏微分は、色度u’および色度v’にそれぞれ関している。
 このように式1の左辺は特定の値で表されるため、式1を逆変換することにより、ΔR256、ΔG256、ΔB256をそれぞれ求めることができる。あるいは、ΔR256、ΔG256、ΔB256は、例えば、LU分解法によって得られた連立方程式を解くことによって求めてもよい。このようにして、目標輝度Y256 Tおよび目標色度u’256 T、v’256 Tに対してΔR256、ΔG256およびΔB256が決定される。
 その後、R256+ΔR256 → R256、 G256+ΔG256 → G256、 B256+ΔB256 → B256 となるように基準階調を補正する。すなわち、各画素の元々の第256階調に相当する輝度および色度(液晶表示装置の場合は液晶層に印加する電圧)を微調整したものを新たに各画素の第256階調に相当すると設定する。このような基準階調の補正により、カラー表示画素の階調nに対応する輝度および色度が調整される。
 また、好ましくは、この基準階調の補正されたガンマ特性に従い、三刺激値の測定(S24)、基準値および比較値の取得(S26)、および、基準階調の補正(S28)をさらに行う。このように、S24からS28までを再び繰り返すことにより、目標輝度Y256 Tおよび目標色度u’256 T、v’256 Tに対してR256、G256およびB256をさらに補正することができる。この繰り返しは、ΔR256、ΔG256、ΔB256が所定の値に収束するまで複数回行ってもよい。以上のようにして、目標輝度Y256 Tおよび目標色度u’256 T、v’256 Tに対して補正された階調R256、G256、B256を得ることができる。
 本実施形態の階調補正方法では、3つの基準階調に対応する基準値と、1つの隣接階調および2つの基準階調に対応する比較値との違いを利用して、基準値が目標値に近づくように基準階調R256、G256、B256の変分ΔR256、ΔG256、ΔB256を求めており、階調補正を演算で効率的に行うことができる。また、ここでは、最急降下法を用いるため、階調R256、G256、B256の補正を高速かつ高精度に行うことができる。なお、S24において測定した方向からの輝度および色度が目標値に近づけるように補正が行われるため、用途に応じて正面方向または斜め方向からの表示特性を調整することができる。
 上述のように階調R256、G256、B256の補正を行った後、階調R255、G255、B255を基準階調とし、階調R254、G254、B254を隣接階調として、上述したのと同様に階調R255、G255、B255の補正を行ってもよい。この場合、所定のガンマ特性に従って基準色および比較色の三刺激値を測定して基準階調の補正を行ってもよい。あるいは、階調R255、G255、B255を基準階調とし、補正された階調R256、G256、B256を隣接階調として、基準色および比較色の三刺激値を測定して基準階調の補正を行ってもよい。
 なお、上述した説明では、図2のS24の測定は、特定の基準階調に対する基準色および比較色に対してのみ行われたが、本発明はこれに限定されない。
 三刺激値X、Y、Zの測定は、特定の画素の階調を最低階調から最高階調にわたって変化させて行ってもよい。ここで、再び図2を参照して、本実施形態の階調補正方法を説明する。
 例えば、緑画素および青画素の階調を最低階調に設定した状態で赤画素の階調を最低階調から最高階調まで変化させて、階調(Rn,G1,B1)(1≦Rn≦256)の三刺激値を測定する。ここでは、赤画素が階調Rnであるときの三刺激値X、Y、ZをそれぞれXn R、Yn R、Zn Rと示す。
 また、赤画素および青画素の階調を最低階調に設定した状態で緑画素の階調を最低階調から最高階調まで変化させて階調(R1,Gn,B1)(1≦Gn≦256)の三刺激値を測定する。ここでは、緑画素が階調Gnであるときの三刺激値X、Y、ZをそれぞれXn G、Yn G、Zn Gと示す。
 同様に、赤画素および緑画素の階調を最低階調に設定した状態で青画素の階調を最低階調から最高階調まで変化させて階調(R1,G1,Bn)(1≦Bn≦256)の三刺激値を測定する。ここでは、青画素が階調Bnであるときの三刺激値X、Y、ZをそれぞれXn B、Yn B、Zn Bと示す。
 このような測定により、基準階調が階調Rn、Gn、Bnである複数の基準色、および、隣接階調が階調Rn-1、Gn-1、Bn-1である複数の比較色の三刺激値を複数の階調n(2≦n≦256)にわたって得ることができる。なお、この測定結果は、基準階調が階調Rn-1、Gn-1、Bn-1である複数の基準色、および、隣接階調が階調Rn、Gn、Bnである複数の比較色の三刺激値の複数の階調n(2≦n≦256)にわたった結果として用いてもよい。なお、ここでは、基準階調は階調Rn、Gn、Bnであり、隣接階調は階調Rn-1、Gn-1、Bn-1としている。
 次に、図2のS26に示すように、測定された三刺激値X、Y、Zから基準値および比較値を求める。Xn W1、Yn W1、Zn W1は、階調(Rn,G1,B1)、(R1,Gn,B1)、(R1,G1,Bn)で表される3つの基準色の三刺激値X、Y、Zのそれぞれの和である。Xn W1、Yn W1、Zn W1は、
 Xn W1 = Xn R+Xn G+Xn B
 Yn W1 = Yn R+Yn G+Yn B
 Zn W1 = Zn R+Zn G+Zn B
と表される。Yn W1は基準輝度を示す。
 また、基準色度u’n W1、v’n W1は階調(Rn,G1,B1)、(R1,Gn,B1)、(R1,G1,Bn)で表される3つの基準色の三刺激値の和から得られる色度を示す。u’n W1、v’n W1は、
  u’n W1 =4Xn W1/(Xn W1+15Yn W1+3Zn W1
  v’n W1 =9Yn W1/(Xn W1+15Yn W1+3Zn W1
と表される。以上のようにして、基準輝度および基準色度が求められる。
 次に、比較輝度および比較色度を説明する。Xn W2、Yn W2、Zn W2は、階調(Rn-1,G1,B1)で表される1つの比較色と、階調(R1,Gn,B1)、(R1,G1,Bn)で表される2つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W2、Yn W2、Zn W2は、
 Xn W2 = Xn-1 R+Xn G+Xn B
 Yn W2 = Yn-1 R+Yn G+Yn B
 Zn W2 = Zn-1 R+Zn G+Zn B
と表される。ここで、n-1が1(最低階調)よりも小さくならないようにnは2以上に設定される。
 Xn W3、Yn W3、Zn W3は、階調(R1,Gn-1,B1)で表される1つの比較色と、階調(Rn,G1,B1)、(R1,G1,Bn)で表される2つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W3、Yn W3、Zn W3は、
 Xn W3 = Xn R+Xn-1 G+Xn B
 Yn W3 = Yn R+Yn-1 G+Yn B
 Zn W3 = Zn R+Zn-1 G+Zn B
と表される。
 同様に、Xn W4、Yn W4、Zn W4は階調(R1,G1,Bn-1)で表される1つの比較色と、階調(Rn,G1,B1)、(R1,Gn,B1)で表される2つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W4、Yn W4、Zn W4は、
 Xn W4 = Xn R+Xn G+Xn-1 B
 Yn W4 = Yn R+Yn G+Yn-1 B
 Zn W4 = Zn R+Zn G+Zn-1 B
と表される。
 Yn WJ(ここで、J=2、3、4)は比較輝度を示す。また、比較色度u’n WJ、v’n WJ(ここで、J=2、3、4)は、
  u’n WJ = 4Xn WJ/(Xn WJ+15Yn WJ+3Zn WJ
  v’n WJ = 9Yn WJ/(Xn WJ+15Yn WJ+3Zn WJ
と表される。以上のようにして、比較輝度および比較色度が求められる。
 その後、図2のS28に示すように、目標値、基準値および比較値に基づいて基準階調を補正する。この補正は、最急降下法を用いて行われる。最適化する関数EJ(J=1、2、3)は、例えば、以下のように表される。
   1  = ((Yn W1/Yn T)-1)α
   2  = ((u’n W1/u’n T)-1)α
   3  = ((v’n W1/v’n T)-1)α
 最急降下法を用いると、ΔRn、ΔGn、ΔBnと関数E1、E2、E3とは以下の関係式で表される。
Figure JPOXMLDOC01-appb-M000004
 この式の左辺の偏微分は差分で示される。例えば、式3の左辺の第1行目の偏微分は式4のように表される。
Figure JPOXMLDOC01-appb-M000005
 このように式3の左辺は特定の値で表されるため、式3を逆変換することにより、ΔRn、ΔGn、ΔBnをそれぞれ求めることができる。あるいは、ΔRn、ΔGn、ΔBnは、例えば、LU分解法によって得られた連立方程式を解くことによって求めてもよい。このようにして、目標輝度Yn Tおよび目標色度u’n T、v’n Tに対してΔRn、ΔGnおよびΔBnが決定される。
 その後、Rn+ΔRn → Rn、 Gn+ΔGn → Gn、 Bn+ΔBn → Bとなるように基準階調を補正する。さらに必要に応じて、基準階調の補正されたガンマ特性に従い、三刺激値の測定(S24)、基準値および比較値の取得(S26)、ならびに、基準階調の補正(S28)を行ってもよい。このように、S24からS28までを再び繰り返すことにより、目標輝度Yn Tおよび目標色度u’n T、v’n Tに対してRn、GnおよびBnをさらに補正することができる。なお、この繰り返しは、ΔRn、ΔGn、ΔBnが所定の値に収束するまで複数回行ってもよい。以上のようにして、目標輝度Yn Tおよび目標色度u’n T、v’n Tに対して補正された階調Rn、Gn、Bnを得ることができる。
 階調Rn、Gn、Bnの補正が終了すると、次に、階調Rn-1、Gn-1、Bn-1を基準階調とするとともに、階調Rn-2、Gn-2、Bn-2を隣接階調とする。この場合、上述したように、先の三刺激値の測定(S22)において、階調(Rn-1,G1,B1)、(Rn-2,G1,B1)、(R1,Gn-1,B1)、(R1,Gn-2,B1)、(R1,G1,Bn-1)、(R1,G1,Bn-2)の三刺激値はすでに測定しているため、S26およびS28(必要に応じてS24を含めて)を再び繰り返せばよい。以下同様に、基準階調および隣接階調を順番に低下させることにより、階調Rn、Gn、Bn全体(2≦n≦256)にわたって補正を行うことができる。なお、すでに多くの階調について基準階調の補正が行われている場合は、まだ補正を行っていない階調に対して外挿で得られた階調を初期の階調として設定してもよい。
 なお、典型的には、階調補正後における階調と(正面)規格化輝度との関係は、画素に応じて異なるが、階調補正を行う前においても、階調と(正面)規格化輝度との関係は画素に応じて異なってもよい。例えば、図4に示すように、階調補正を行う前において、画素に応じて階調に対する規格化輝度は異なってもよい。ここでは、同一階調の場合、赤画素の規格化輝度は緑画素よりも低く、青画素の規格化輝度は緑画素よりも高い。また、ここでは、青画素の規格化輝度は、第250階調を超えると低下しており、階調の反転がみられる。この場合、階調の反転する部分(規格化輝度の低下が開始する部分)の使用を避けるように、階調補正前に別途調整が行われる。
 図5に、表示装置100の一例を模式的に示す。表示装置100は、映像信号入力部12と、信号処理部14と、表示部16とを有している。上述した階調補正の行われたガンマ特性は、信号処理部14内の記憶装置に設定される。信号処理部14は、映像信号入力部12において受け取られた映像信号に対して補正されたガンマ特性にしたがって信号処理を行う。この処理がデジタルで行われる場合、この処理はデジタルガンマ処理とも呼ばれる。なお、図2のS24において測定された三刺激値を用いて求められた階調補正の結果を図5に示した信号処理部14内の記憶装置に反映させることにより、階調補正を短時間に自動的に行うことができる。このようにして表示装置100の製造が行われてもよい。
 上述した説明では、階調の補正を行う表示装置100の三刺激値を測定したが、本発明はこれに限定されない。典型的には、同一タイプの表示装置100が大量に生産されるため、特定のタイプの1つの表示装置100に対して三刺激値を測定してガンマ特性の補正を行い、映像信号入力部12、信号処理部14および表示部16を有する同一タイプの表示装置100において、信号処理部14内の記憶装置に、補正されたガンマ特性を設定してもよい。このようにすると表示装置100自体では基準色および比較色の三刺激値を直接測定することなく表示装置100を製造できる。なお、所定のガンマ特性として、このように補正されたガンマ特性が設定されている場合でも、表示装置100のばらつきを考慮して表示装置100ごとに階調またはガンマ特性の微調整を行ってもよい。
 表示装置100が液晶表示装置である場合、信号処理部14がオーバーシュート回路またはクイックシュート回路を有していることが好ましい。例えば、オーバーシュート駆動またはクイックシュート駆動はガンマ特性の補正された信号に対して行われる。
 (実施形態2)
 上述した説明では、カラー表示画素は3つの画素を有していたが、本発明はこれに限定されない。カラー表示画素は4つの画素を有していてもよい。
 以下、図6を参照して本発明による表示装置の第2実施形態を説明する。本実施形態の表示装置100においてカラー表示画素は4つの画素を含む。例えば、4つの画素は、赤画素、緑画素、青画素および黄画素である。このように、カラー表示画素が色の異なる4以上の画素を含む表示装置は多原色表示装置とも呼ばれる。
 カラー表示画素が4つの画素を含む表示装置100では、4つの画素のそれぞれにN個の階調が存在するため、階調Rn、Gn、Bn、Yenの設定は、4N個の多変量最適化問題といえる。一般に、未決定の変数が4N個の場合、4N個の条件が必要となる。上述した実施形態1では、目標値として、目標輝度(YT)および目標色度(u’T、v’T)を設定したが、これらの条件は3N個しかないため、条件がN個不足している。ここでは、目標値として、さらに色再現範囲の面積を最大にする条件をN個設定する。
 なお、4N個の条件から、赤、緑、青および黄画素の階調を適切に設定するためには、演算を高速に行うことが必要となる。しかしながら、第1階調(n=1)の輝度および色度に対して、第256階調(n=256)の輝度および色度はほとんど影響しない。このように、階調が大きく異なる場合、互いの影響はほとんどないと考えられる。このため、階調Rn、Gn、Bn、Yenの4変数の最適化問題として取り扱うことができる。
 以下、図3、図7および図8を参照して、本実施形態の表示装置100の階調補正方法を説明する。
 図7のS72に示すように、カラー表示画素の目標輝度、目標色度および色再現範囲の目標面積を含む目標値を設定する。なお、ここでは、入力信号が黒から白にわたって無彩色のまま明度が変化する場合を想定しており、ここで、カラー表示画素の白から黒にわたる目標値を設定する。ここでは、目標値は、白-黒の目標輝度(YT)、および、目標色度(u’T、v’T)であり、色再現範囲の目標面積(ST)である。
 目標値の設定は、外部から入力されてもよい。あるいは、目標値の設定は、表示装置内に設けられた記憶装置からの読み出しによって行われてもよい。
 階調n(1≦n≦256)に対して、目標輝度はYn Tと表され、目標色度はu’n T、v’n Tと表され、目標面積はSn Tと表される。
Figure JPOXMLDOC01-appb-M000006
 図3(a)に階調に対するカラー表示画素の輝度の変化を示す。ここで、輝度は、最高階調(ここでは、第256階調)で1.0に規格化されている。このような規格化輝度が目標輝度として設定される。
 図3(b)に、カラー表示画素の各階調に対する色度u’、v’を示す。このような色度u’、v’が目標色度として設定さる。なお、理想的には、色度u’、v’はそれぞれカラー表示画素の階調の変化に対して一定であることが好ましいが、ここでは、現実的な観点から、階調の変化に対して色度u’、v’は変化している。
 図8に、基準階調が階調Rn、Gn、Bn、Yenの場合の基準色によって規定される色再現範囲の面積の変化を示す。このような色再現範囲の面積が目標面積として設定される。典型的には、基準階調が高くなるほど、基準色の色再現範囲の面積が増大する。ただし、場合によっては、基準階調が中間階調である場合の色再現範囲の面積が、基準階調が最高階調である場合の色再現範囲の面積よりも大きくてもよい。なお、ここで、色再現範囲の面積は付加的な条件であり、すべての階調に対して色再現範囲の面積が目標面積として予め設定されていなくてもよい。
 図7のS74に示すように、複数の画素のそれぞれについて、所定のガンマ特性に従い、複数の画素のうちの1つの画素以外の画素の階調を固定して1つの画素の階調を変化させて三刺激値X、Y、Zを測定する。測定は、例えば、表示装置100の正面から行われる。あるいは、測定は、表示装置100の斜め方向から行われてもよい。
 例えば、緑画素、青画素および黄画素の階調を最低階調に設定した状態で赤画素の階調を最低階調から最高階調まで変化させて階調(Rn,G1,B1,Ye1)(1≦Rn≦256)の三刺激値を測定する。ここでは、赤画素が階調Rnであるときの三刺激値X、Y、ZをそれぞれXn R、Yn R、Zn Rと示す。
 赤画素、青画素および黄画素の階調を最低階調に設定した状態で緑画素の階調を最低階調から最高階調まで変化させて階調(R1,Gn,B1,Ye1)(1≦Gn≦256)の三刺激値を測定する。ここでは、緑画素が階調Gnであるときの三刺激値X、Y、ZをそれぞれXn G、Yn G、Zn Gと示す。
 また、赤画素、緑画素および黄画素の階調を最低階調に設定した状態で青画素の階調を最低階調から最高階調まで変化させて階調(R1,G1,Bn,Ye1)(1≦Bn≦256)の三刺激値を測定する。ここでは、青画素が階調Bnであるときの三刺激値X、Y、ZをそれぞれXn B、Yn B、Zn Bと示す。
 同様に、赤画素、緑画素および青画素の階調を最低階調に設定した状態で黄画素の階調を最低階調から最高階調まで変化させて階調(R1,G1,B1,Yen)(1≦Yen≦256)の三刺激値を測定する。ここでは、黄画素が階調Yenであるときの三刺激値X、Y、ZをそれぞれXn Ye、Yn Ye、Zn Yeと示す。
 このような測定により、基準階調が階調Rn、Gn、Bn、Yenである複数の基準色、および、隣接階調が階調Rn-1、Gn-1、Bn-1、Yen-1である複数の比較色の三刺激値を複数の階調n(2≦n≦256)にわたって得ることができる。なお、この測定結果は、基準階調が階調Rn-1、Gn-1、Bn-1、Yen-1である複数の基準色、および、隣接階調が階調Rn、Gn、Bn、Yenである複数の比較色の三刺激値の複数の階調n(2≦n≦256)にわたった結果として用いてもよい。なお、ここでは、基準階調は階調Rn、Gn、Bn、Yenであり、隣接階調は階調Rn-1、Gn-1、Bn-1、Yen-1としている。
 なお、図7では、目標値の設定(S72)の後に、三刺激値の測定(S74)が行われているが、三刺激値の測定(S74)の後に、目標値の設定(S72)が行われてもよい。
 図7のS76に示すように、測定された三刺激値X、Y、Zから基準値および比較値を求める。ここで、基準値は、基準輝度および基準色度に加えて、色再現範囲の基準面積を含む。また、比較値は、比較輝度および比較色度に加えて色再現範囲の比較面積を含む。
 以下に、基準輝度および基準色度を具体的に説明する。ここでは、Xn W1、Yn W1、Zn W1は、階調(Rn,G1,B1,Ye1)、(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される4つの基準色の三刺激値X、Y、Zのそれぞれの和である。Xn W1、Yn W1、Zn W1は、
 Xn W1 = Xn R+Xn G+Xn B+Xn Ye
 Yn W1 = Yn R+Yn G+Yn B+Yn Ye
 Zn W1 = Zn R+Zn G+Zn B+Zn Ye
と表される。Yn W1は基準輝度を示す。
 また、基準色度u’n W1、v’n W1は階調(Rn,G1,B1,Ye1)、(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される4つの基準色の三刺激値の和から得られる色度を示す。u’n W1、v’n W1は、
  u’n W1 = 4Xn W1/(Xn W1+15Yn W1+3Zn W1
  v’n W1 = 9Yn W1/(Xn W1+15Yn W1+3Zn W1
と表される。以上のようにして、基準輝度および基準色度が求められる。
 基準面積Sn 1は、階調(Rn,G1,B1,Ye1)、(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される4つの基準色によって規定される色再現範囲の面積を示す。ここでは、階調(Rn,G1,B1,Ye1)で表される基準色の色度を(u’n R,v’n R)と表し、同様に、階調(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される基準色の色度をそれぞれ(u’n G,v’n G)、(u’n B,v’n B)、(u’n Ye,v’n Ye)と表す。この場合、基準面積Sn 1は、
  Sn 1 = {(v’n Ye-v’n B)×(u’n R-u’n G)-(u’n Ye-u’n B)×(v’n R-v’n G)}/2
と表される。
 次に、比較輝度および比較色度を具体的に説明する。Xn W2、Yn W2、Zn W2は、階調(Rn-1,G1,B1,Ye1)で表される1つの比較色と、階調(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される3つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W2、Yn W2、Zn W2は、
 Xn W2 = Xn-1 R+Xn G+Xn B+Xn Ye
 Yn W2 = Yn-1 R+Yn G+Yn B+Yn Ye
 Zn W2 = Zn-1 R+Zn G+Zn B+Zn Ye
と表される。ここで、n-1が1(最低階調)よりも小さくならないようにnは2以上に設定される。
 同様に、Xn W3、Yn W3、Zn W3は、階調(R1,Gn-1,B1,Ye1)で表される1つの比較色と、階調(Rn,G1,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される3つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W3、Yn W3、Zn W3は、
 Xn W3 = Xn R+Xn-1 G+Xn B+Xn Ye
 Yn W3 = Yn R+Yn-1 G+Yn B+Yn Ye
 Zn W3 = Zn R+Zn-1 G+Zn B+Zn Ye
と表される。
 同様に、Xn W4、Yn W4、Zn W4は、階調(R1,G1,Bn-1,Ye1)で表される1つの比較色と、階調(Rn,G1,B1,Ye1)、(R1,Gn,B1,Ye1)、(R1,G1,B1,Yen)で表される3つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W4、Yn W4、Zn W4は、
 Xn W4 = Xn R+Xn G+Xn-1 B+Xn Ye
 Yn W4 = Yn R+Yn G+Yn-1 B+Yn Ye
 Zn W4 = Zn R+Zn G+Zn-1 B+Zn Ye
と表される。
 同様に、Xn W5、Yn W5、Zn W5は、階調(R1,G1,B1,Yen-1)で表される1つの比較色と、階調(Rn,G1,B1,Ye1)、(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)で表される3つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W5、Yn W5、Zn W5は、
 Xn W5 = Xn R+Xn G+Xn B+Xn-1 Ye
 Yn W5 = Yn R+Yn G+Yn B+Yn-1 Ye
 Zn W5 = Zn R+Zn G+Zn B+Zn-1 Ye
と表される。
 なお、Yn WJ(ここで、J=2、3、4、5)は比較輝度を示す。比較色度u’n WJ、v’n WJ(ここで、J=2、3、4、5)は、
  u’n WJ = 4Xn WJ/(Xn WJ+15Yn WJ+3Zn WJ
  v’n WJ = 9Yn WJ/(Xn WJ+15Yn WJ+3Zn WJ
と表される。
 比較面積Sn 2は、階調(Rn-1,G1,B1,Ye1)で表される1つの比較色および階調(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される3つの基準色によって規定される色再現範囲の面積を示す。階調(Rn-1,G1,B1,Ye1)で表される比較色の色度を(u’n-1 R,v’ n-1 R)と表すと、比較面積Sn 2は、
  Sn 2 = {(v’n Ye-v’n B)×(u’n-1 R-u’n G)-(u’n Ye-u’n B)×(v’n-1 R-v’n G)}/2
と表される。
 また、比較面積Sn 3は、階調(R1,Gn-1,B1,Ye1)で表される1つの比較色および階調(Rn,G1,B1,Ye1)、(R1,G1,Bn,Ye1)、(R1,G1,B1,Yen)で表される3つの基準色によって規定される色再現範囲の面積を示す。階調(R1,Gn-1,B1,Ye1)で表される比較色の色度を(u’n-1 G,v’ n-1 G)と表すと、比較面積Sn 3は、
  Sn 3 = {(v’n Ye-v’n B)×(u’n R-u’n-1 G)-(u’n Ye-u’n B)×(v’n R-v’n-1 G)}/2
と表される。
 また、比較面積Sn 4は、階調(R1,G1,Bn-1,Ye1)で表される1つの比較色および階調(Rn,G1,B1,Ye1)、(R1,Gn,B1,Ye1)、(R1,G1,B1,Yen)で表される3つの基準色によって規定される色再現範囲の面積を示す。階調(R1,G1,Bn-1,Ye1)で表される比較色の色度を(u’n-1 B,v’n-1 B)と表すと、比較面積Sn 4は、
  Sn 4 = {(v’n Ye-v’n-1 B)×(u’n R-u’n G)-(u’n Ye-u’n-1 B)×(v’n R-v’n G)}/2
と表される。
 また、比較面積Sn 5は、階調(R1,G1,B1,Yen-1)で表される1つの比較色および階調(Rn,G1,B1,Ye1)、(R1,Gn,B1,Ye1)、(R1,G1,Bn,Ye1)で表される3つの基準色によって規定される色再現範囲の面積を示す。階調(R1,G1,B1,Yen-1)で表される比較色の色度を(u’n-1 Ye,v’n-1 Ye)と表すと、比較面積Sn 5は、
  Sn 5 = {(v’n-1 Ye-v’n B)×(u’n R-u’n G)-(u’n-1 Ye-u’n B)×(v’n R-v’n G)}/2
と表される。以上のようにして、比較輝度、比較色度および比較面積が求められる。
 その後、図7のS78に示すように、目標値、基準値および比較値に基づいて基準階調を補正する。補正は、最急降下法を用いて行われる。ここでは、求めるべき階調を階調Rn+ΔRn、Gn+ΔGn、Bn+ΔBn、Yen+ΔYenとし、変分をΔRn、ΔGn、ΔBn、ΔYeとしている。
 最適化する関数EJ(J=1、2、3、4)は、例えば、以下のように表される。
   1  = ((Yn W1/Yn T)-1)α
   2  = ((u’n W1/u’n T)-1)α
   3  = ((v’n W1/v’n T)-1)α
   4  = ((Sn 1/Sn T)-1)α
 ここで、αはべき乗である。例えば、αは2である。また、αは1であってもよい。また、関数は、絶対値のべき乗であってもよい。このように、基準値を目標値でそれぞれ除算したものから1を引いた関数を用いることが好ましい。
 最急降下法を用いると、ΔRn、ΔGn、ΔBn、ΔYenと関数E1、E2、E3、E4は以下の関係式で表される。
Figure JPOXMLDOC01-appb-M000007
 式5の左辺の偏微分は差分で示される。例えば、式5の左辺の第1行目の偏微分は以下のように表される。
Figure JPOXMLDOC01-appb-M000008
 このように式5の左辺は特定の値で表されるため、式5の逆変換を行うことにより、ΔRn、ΔGn、ΔBn、ΔYenをそれぞれ求めることができる。あるいは、ΔRn、ΔGn、ΔBn、ΔYenは、例えば、LU分解法によって得られた連立方程式を解くことによって求めてもよい。
 その後、Rn+ΔRn → Rn、 Gn+ΔGn → Gn、 Bn+ΔBn → Bn、Yen+ΔYen → Yenとなるように基準階調の補正を行う。その後、必要に応じて、基準階調の補正されたガンマ特性に従い、三刺激値の測定(S74)、基準値および比較値の取得(S76)、および、基準階調の補正(S78)をさらに繰り返してもよい。また、この繰り返しは、ΔRn、ΔGn、ΔBn、ΔYenがある程度収束するまで複数回行ってもよい。
 また、階調Rn、Gn、Bn、Yenの補正が完了すると、次に、階調Rn-1、Gn-1、Bn-1、Yen-1を基準階調とし、階調Rn-2、Gn-2、Bn-2、Yen-2を隣接階調としてS76およびS78(必要に応じてS74を含めて)を繰り返す。また、すでに多くの階調について基準階調の補正が行われている場合は、まだ補正を行っていない階調に対して外挿で得られた階調を初期の階調として設定してもよい。あるいは、階調Rn-1、Gn-1、Bn-1、Yen-1を基準階調とし、補正された階調Rn、Gn、Bn、Yenを隣接階調として、基準色および比較色の三刺激値を測定して基準階調の補正を行ってもよい。
 なお、例えば、階調nが第256階調の場合、目標面積S256 TはS256 1と等しく、階調nが第255階調以下の場合(1≦n≦255)、目標面積Sn TはSn+1 1と等しい。この場合、n=256の場合、関数E4=((S256 1/S256 1)-1)α=0である。また、1≦n≦255の場合、関数E4は、以下のように表される。
  E4  = ((Sn 1/Sn+1 1)-1)α
 例えば、第n階調が第255階調の場合、関数E4は(S255 1/S256 1-1)αと表され、第n階調が第254階調の場合、関数E4は(S254 1/S255 1-1)αと表される。また、第n階調が第1階調の場合、関数E4は(S1 1/S2 1-1)αと表される。
 また、本実施形態の階調補正方法では、図7のS74において測定された三刺激値を用いて求められた階調補正の結果を信号処理部14(図5)内の記憶装置に反映させることにより、階調補正を自動に、かつ、短時間に行うことができる。
 なお、上述した説明では、カラー表示画素は赤、緑および青画素に加えて黄画素を備えていたが、本発明はこれに限定されない。カラー表示画素は赤、緑および青画素に加えて別の画素を備えていてもよい。あるいは、カラー表示画素は赤、緑および青画素の一部またはすべてを有することなく4つの画素を有していてもよい。
 (実施形態3)
 上述した説明では、カラー表示画素は、3つまたは4つの画素を有していたが、本発明はこれに限定されない。
 図9に、本発明による表示装置の第3実施形態の模式図を示す。本実施形態の表示装置100においてカラー表示画素は5つの画素を含む。例えば、5つの画素は、赤画素、緑画素、青画素、黄画素およびシアン画素である。
 カラー表示画素が5つの画素を含む表示装置100では、5個の画素のそれぞれにN個の階調が存在するため、階調Rn、Gn、Bn、Yen、Cnの設定は、5N個の多変量最適化問題といえる。一般に、未決定の変数が5N個の場合、5N個の条件が必要となる。上述した実施形態1では、目標値として、目標輝度(YT)および目標色度(u’T、v’T)を設定したが、これらの条件は3N個しかないため、条件が2N個不足している。
 ここでは、5つの基準色(または1つの比較色および4つの基準色)によって規定される5角形の色再現範囲を4角形と3角形の2つに分ける。本明細書の以下の説明において、4角形部分を第1部分とも呼び、第1部分の面積を第1面積S1と表す。また、3角形部分を第2部分とも呼び、第2部分の面積を第2面積S2と表す。第1部分S1は、カラー表示画素の5つの画素のうちの4つの画素の階調が基準階調および隣接階調のいずれかである場合の色よって規定され、第2部分の面積S2は残りの1つの画素および4つの画素のうちの2つの画素の階調が基準階調または隣接階調である場合の色によって規定される。
 また、本明細書の以下の説明において5つの基準色(または1つの比較色および4つの基準色)によって規定される5角形の色再現範囲において、色度図上で、階調が基準階調または隣接階調となる画素を時計回りまたは反時計回りに順番に第1、第2、第3、第4および第5画素と呼ぶ。この場合、第1部分は、第1~第4の画素の階調が基準階調および隣接階調のいずれかである場合の色よって規定され、第2部分は、第1、第4および第5画素の階調が基準階調または隣接階調である場合の色によって規定される。ここでは、目標値として、第1、第2面積S1、S2のそれぞれを最大にする条件を2N個設定する。
 なお、このような5N個の条件から、赤、緑、青、黄およびシアン画素の階調を適切に設定するためには、演算を高速に行うことが必要となる。しかしながら、第1階調(n=1)の輝度および色度に対して、第256階調(n=256)の輝度および色度はほとんど影響しない。このように、階調が大きく異なる場合、互いの影響はほとんどないと考えられる。このため、階調Rn、Gn、Bn、Yen、Cnの5変数の最適化問題として取り扱うことができる。
 以下、図3、図10および図11を参照して、本実施形態の表示装置100の階調補正方法を説明する。
 図10のS102に示すように、目標輝度、目標色度、第1目標面積、および、第2目標面積を含む目標値を設定する。第1目標面積は第1部分の目標面積であり、第2目標面積は第2部分の目標面積である。なお、ここでは、入力信号が黒から白にわたって無彩色のまま明度が変化する場合を想定しており、ここで、カラー表示画素の白から黒にわたる目標値を設定する。ここでは、目標値は、白-黒の目標輝度(YT)、および、目標色度(u’T、v’T)であり、第1、第2目標面積(S1T、S2T)である。
 目標値の設定は、外部から入力されてもよい。あるいは、目標値の設定は、表示装置内に設けられた記憶装置からの読み出しによって行われてもよい。
 階調n(1≦n≦256)に対して、目標輝度はYn Tと表され、目標色度はu’n T、v’n Tと表され、第1目標面積はS1n Tと表され、第2目標面積はS2n Tと表される。
 図3(a)に階調に対するカラー表示画素の輝度の変化を示す。ここで、輝度は、最高階調(ここでは、第256階調)で1.0に規格化されている。このような規格化輝度が目標輝度として設定される。図3(b)に、カラー表示画素の各階調に対する色度u’、v’を示す。このような色度u’、v’が目標色度として設定される。
 図11に、第1、第2目標面積S1、S2の一例を示す。第1目標面積S1は黄、緑、シアンおよび青画素の色度によって規定されており、第2目標面積S2は黄、青および赤画素の色度によって規定されている。例えば、2つの部分のうちの一方の部分を規定する画素が黄画素を含み、他方の部分を規定する画素がシアン画素を含むことが好ましい。なお、ここでは、第5画素は赤画素であるが、本発明はこれに限定されない。第5画素は、黄、緑、シアンおよび青画素のいずれであってもよい。
 図10のS104に示すように、複数の画素のそれぞれについて、所定のガンマ特性に従い、複数の画素のうちの1つの画素以外の画素の階調を固定して1つの画素の階調を変化させて三刺激値X、Y、Zを測定する。
 例えば、緑画素、青画素、黄画素およびシアン画素の階調を最低階調に設定した状態で赤画素の階調を最低階調から最高階調まで変化させて階調(Rn,G1,B1,Ye1,C1)(1≦Rn≦256)の三刺激値を測定する。ここでは、赤画素が階調Rnであるときの三刺激値X、Y、ZをそれぞれXn R、Yn R、Zn Rと示す。
 赤画素、青画素、黄画素およびシアン画素の階調を最低階調に設定した状態で緑画素の階調を最低階調から最高階調まで変化させて階調(R1,Gn,B1,Ye1,C1)(1≦Gn≦256)の三刺激値を測定する。ここでは、緑画素が階調Gnであるときの三刺激値X、Y、ZをそれぞれXn G、Yn G、Zn Gと示す。
 また、赤画素、緑画素、黄画素およびシアン画素の階調を最低階調に設定した状態で青画素の階調を最低階調から最高階調まで変化させて階調(R1,G1,Bn,Ye1,C1)(1≦Bn≦256)の三刺激値を測定する。ここでは、青画素が階調Bnであるときの三刺激値X、Y、ZをそれぞれXn B、Yn B、Zn Bと示す。
 同様に、赤画素、緑画素、青画素およびシアン画素の階調を最低階調に設定した状態で黄画素の階調を最低階調から最高階調まで変化させて階調(R1,G1,B1,Yen,C1)(1≦Yen≦256)の三刺激値を測定する。ここでは、黄画素が階調Yenであるときの三刺激値X、Y、ZをそれぞれXn Ye、Yn Ye、Zn Yeと示す。
 同様に、赤画素、緑画素、青画素および黄画素の階調を最低階調に設定した状態でシアン画素の階調を最低階調から最高階調まで変化させて階調(R1,G1,B1,Ye1,Cn)(1≦Cn≦256)の三刺激値を測定する。ここでは、シアン画素が階調Cnであるときの三刺激値X、Y、ZをそれぞれXn C、Yn C、Zn Cと示す。
 このような測定により、基準階調が階調Rn、Gn、Bn、Yen、Cnである複数の基準色、および、隣接階調が階調Rn-1、Gn-1、Bn-1、Yen-1、Cn-1である複数の比較色の三刺激値を複数の階調n(2≦n≦256)にわたって得ることができる。なお、この測定結果は、基準階調が階調Rn-1、Gn-1、Bn-1、Yen-1、Cn-1である複数の基準色、および、隣接階調が階調Rn、Gn、Bn、Yen、Cnである複数の比較色の三刺激値の複数の階調n(2≦n≦256)にわたった結果として用いてもよい。なお、ここでは、基準階調は階調Rn、Gn、Bn、Yen、Cnであり、隣接階調は階調Rn-1、Gn-1、Bn-1、Yen-1、Cn-1としている。
 なお、図10では、目標値の設定(S102)の後に、三刺激値の測定(S104)が行われているが、三刺激値の測定(S104)の後に、目標値の設定(S102)が行われてもよい。
 図10のS106に示すように、測定された三刺激値X、Y、Zから基準値および比較値を求める。ここで、基準値は、基準輝度および基準色度に加えて第1基準面積、第2基準面積を含む。第1基準面積は4つの基準色によって規定される第1部分の面積であり、第2基準面積は3つの基準色によって規定される第2部分の面積である。
 また、比較値は、比較輝度および比較色度に加えて第1比較面積、第2比較面積を含む。第1比較面積は、第1画素から第4画素の階調が基準階調および隣接階調のいずれかとなる4つの色によって規定される第1部分の面積であり、第2基準面積は、第1、第4および第5画素の階調が基準階調および隣接階調のいずれかとなる3つの色によって規定される第2部分の面積である。
 以下に、基準輝度および基準色度を具体的に説明する。ここでは、Xn W1、Yn W1、Zn W1は、階調(Rn,G1,B1,Ye1,C1)、(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)、(R1,G1,B1,Ye1,C1n)で表される5つの基準色の三刺激値X、Y、Zのそれぞれの和である。Xn W1、Yn W1、Zn W1は、
 Xn W1 = Xn R+Xn G+Xn B+Xn Ye+Xn C
 Yn W1 = Yn R+Yn G+Yn B+Yn Ye+Yn C
 Zn W1 = Zn R+Zn G+Zn B+Zn Ye+Zn C
と表される。Yn W1は基準輝度を示す。
 また、基準色度u’n W1、v’n W1は、階調(Rn,G1,B1,Ye1,C1)、(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)、(R1,G1,B1,Ye1,C1n)で表される5つの基準色の三刺激値の和から得られる色度を示す。u’n W1、v’n W1は、
  u’n W1 = 4Xn W1/(Xn W1+15Yn W1+3Zn W1
  v’n W1 = 9Yn W1/(Xn W1+15Yn W1+3Zn W1
と表される。以上のようにして、基準輝度および基準色度が求められる。
 以下に、第1、第2基準面積S1n 1、S2n 1を説明する。第1基準面積S1n 1は、階調(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)、(R1,G1,B1,Ye1,Cn)で表される4つの基準色によって規定される第1部分の面積を示す。また、第2基準面積S2n 1は、階調(Rn,G1,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)、で表される3つの基準色によって規定される第2部分の面積を示す。ここで、階調(Rn,G1,B1,Ye1,C1)で表される基準色の色度を(u’n R,v’n R)と表し、同様に、階調(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)、(R1,G1,B1,Ye1,Cn)で表される基準色の色度をそれぞれ(u’n G,v’n G)、(u’n B,v’n B)、(u’n Ye,v’n Ye)、(u’n C,v’n C)と表す。
 第1基準面積S1n 1は、
  S1n 1 = {(v’n Ye-v’n C)×(u’n B-u’n G)-(u’n Ye-u’n C)×(v’n B-v’n G)}/2
と表される。
 第2基準面積S2n 1は、
  S2n 1 = {(v’n R-v’n B)×(u’n Ye-u’n B)-(u’n R-u’n B)×(v’n Ye-v’ n B)}/2
と表される。
 次に、比較輝度および比較色度を具体的に説明する。Xn W2、Yn W2、Zn W2は階調(Rn-1,G1,B1,Ye1,C1)で表される1つの比較色と、階調(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1),(R1,G1,B1,Ye1,Cn)で表される4つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W2、Yn W2、Zn W2は、
 Xn W2 = Xn-1 R+Xn G+Xn B+Xn Ye+Xn C
 Yn W2 = Yn-1 R+Yn G+Yn B+Yn Ye+Yn C
 Zn W2 = Zn-1 R+Zn G+Zn B+Zn Ye+Zn C
と表される。ここで、n-1が1(最低階調)よりも小さくならないようにnは2以上に設定される。
 同様に、Xn W3、Yn W3、Zn W3は、階調(R1,Gn-1,B1,Ye1,C1)で表される1つの比較色と、階調(Rn,G1,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1),(R1,G1,B1,Ye1,Cn)で表される4つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W3、Yn W3、Zn W3は、
 Xn W3 = Xn R+Xn-1 G+Xn B+Xn Ye+Xn C
 Yn W3 = Yn R+Yn-1 G+Yn B+Yn Ye+Yn C
 Zn W3 = Zn R+Zn-1 G+Zn B+Zn Ye+Zn C
と表される。
 同様に、Xn W4、Yn W4、Zn W4は、階調(R1,G1,Bn-1,Ye1,C1)で表される1つの比較色と、階調(Rn,G1,B1,Ye1,C1)、(R1,Gn,B1,Ye1,C1)、(R1,G1,B1,Yen,C1),(R1,G1,B1,Ye1,Cn)で表される4つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W4、Yn W4、Zn W4は、
 Xn W4 = Xn R+Xn G+Xn-1 B+Xn Ye+Xn C
 Yn W4 = Yn R+Yn G+Yn-1 B+Yn Ye+Yn C
 Zn W4 = Zn R+Zn G+Zn-1 B+Zn Ye+Zn C
と表される。
 同様に、Xn W5、Yn W5、Zn W5は、階調(R1,G1,B1,Yen-1,C1)で表される1つの比較色と、階調(Rn,G1,B1,Ye1,C1)、(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1),(R1,G1,B1,Ye1,Cn)で表される4つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W5、Yn W5、Zn W5は、
 Xn W5 = Xn R+Xn G+Xn B+Xn-1 Ye+Xn C
 Yn W5 = Yn R+Yn G+Yn B+Yn-1 Ye+Yn C
 Zn W5 = Zn R+Zn G+Zn B+Zn-1 Ye+Zn C
と表される。
 同様に、Xn W6、Yn W6、Zn W6は、階調(R1,G1,B1,Ye1,Cn-1)で表される1つの比較色と、階調(Rn,G1,B1,Ye1,C1)、(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1),(R1,G1,B1,Yen,C1)で表される4つの基準色における三刺激値X、Y、Zのそれぞれの和を示す。Xn W6、Yn W6、Zn W6は、
 Xn W6 = Xn R+Xn G+Xn B+Xn Ye+Xn-1 C
 Yn W6 = Yn R+Yn G+Yn B+Yn Ye+Yn-1 C
 Zn W6 = Zn R+Zn G+Zn B+Zn Ye+Zn-1 C
と表される。
 なお、Yn WJ(ここで、J=2、3、4、5、6)は比較輝度を示す。また、比較色度u’n WJ、v’n WJは(ここで、J=2、3、4、5、6)
  u’n WJ = 4Xn WJ/(Xn WJ+15Yn WJ+3Zn WJ
  v’n WJ = 9Yn WJ/(Xn WJ+15Yn WJ+3Zn WJ
と表される。
 次に、第1比較面積S1を説明する。第1比較面積S1n 2は、階調(R1,Gn,B1,Ye1,C1)、(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)、(R1,G1,B1,Ye1,Cn)で表される4つの基準色によって規定される第1部分の面積を示す。第1比較面積S1n 2は、
  S1n 2 = {(v’n Ye-v’n C)×(u’n-1 B-u’n G)-(u’n Ye-u’n C)×(v’n-1 B-v’n G)}/2
と表される。なお、この第1比較面積S1n 2は第1基準面積S1n 1と等しい。
 第1比較面積S1n 3は、階調(R1,Gn-1,B1,Ye1,C1)で表される1つの比較色と階調(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)、(R1,G1,B1,Ye1,Cn)で表される3つの基準色によって規定される第2部分の面積を示す。階調(R1,Gn-1,B1,Ye1,C1)で表される比較色の色度を(u’n-1 G,v’ n-1 G)と表すと、第1比較面積S1n 3は、
  S1n 3 = {(v’n Ye-v’n C)×(u’n B-u’n-1 G)-(u’n Ye-u’n C)×(v’n B-v’n-1 G)}/2
と表される。
 以下、同様に、第1比較面積S1n 4、S1n 5、S1n 6は、それぞれ、
  S1n 4 = {(v’n Ye-v’n C)×(u’n-1 B-u’n G)-(u’n Ye-u’n C)×(v’n-1 B-v’n G)}/2
  S1n 5 = {(v’n-1 Ye-v’n C)×(u’n B-u’n G)-(u’n-1 Ye-u’n C)×(v’n B-v’n G)}/2
  S1n 6 = {(v’n Ye-v’n-1 C)×(u’n B-u’n G)-(u’n Ye-u’n-1 C)×(v’n B-v’n G)}/2
と表される。
 次に、第2比較面積S2を説明する。第2比較面積S2n 2は、階調(Rn-1,G1,B1,Ye1,C1)で表される1つの比較色、および、階調(R1,G1,Bn,Ye1,C1)、(R1,G1,B1,Yen,C1)で表される2つの基準色によって規定される第1部分の面積を示す。第2比較面積S2n 2は、
  S2n 2 = {(v’n-1 R-v’n B)×(u’n Ye-u’n B)-(u’n-1 R-u’n B)×(v’n Ye-v’ n B)}/2
と表される。なお、第2比較面積S2n 3は第2基準面積S2n 1と等しい。
 第2比較面積S2n 4は、階調(R1,G1,Bn-1,Ye1,C1)で表される1つの比較色、および、階調(Rn,G1,B1,Ye1,C1)、(R1,G1,B1,Yen,C1)で表される2つの基準色によって規定される第2部分の面積を示す。第2比較面積S2n 4は、
  S2n 4 = {(v’n R-v’n-1 B)×(u’n Ye-u’n-1 B)-(u’n R-u’ n-1 B)×(v’n Ye-v’n-1 B)}/2
と表される。
 同様に、S2n 5は、
  S2n 5 = {(v’n R-v’n B)×(u’n-1 Ye-u’n B)-(u’n R-u’ n B)×(v’n-1 Ye-v’n B)}/2
と表される。なお、第2比較面積S2n 6は第2基準面積S2n 1と等しい。
 以上のようにして、比較輝度、比較色度および第1、第2比較面積が求められる。
 その後、図10のS108に示すように、目標値、基準値および比較値に基づいて基準階調を補正する。補正は、最急降下法を用いて行われる。ここでは、求めるべき階調を階調Rn+ΔRn、Gn+ΔGn、Bn+ΔBn、Yen+ΔYen、Cn+ΔCnとし、変分をΔRn、ΔGn、ΔBn、ΔYen、ΔCnとしている。
 最適化する関数EJ(J=1、2、3、4、5)は、例えば、以下のように表される。このように、目標輝度および目標色度で規格化することにより、収束を早くすることができる。
   1  = ((Yn W1/Yn T)-1)α
   2  = ((u’n W1/u’n T)-1)α
   3  = ((v’n W1/v’n T)-1)α
   4  = ((S1n 1/S1n T)-1)α
   5  = ((S2n 1/S2n T)-1)α
 ここで、αはべき乗である。例えば、αは2である。また、αは1であってもよい。また、関数は、絶対値のべき乗であってもよい。このように、基準値を目標値でそれぞれ除算したものから1を引いた関数を用いることが好ましい。仮に、Yn W1、u’n W1、v’n W1、S1n 1、S2n 1がそれぞれ目標値であると、E1、E2、E3、E4、E5はゼロである。
 最急降下法を用いると、ΔRn、ΔGn、ΔBn、ΔYen、ΔCnと関数E1、E2、E3、E4、E5とは以下の関係式で表される。
Figure JPOXMLDOC01-appb-M000009
 この式の左辺の偏微分は差分で示される。例えば、第1行目の偏微分は以下のように表される。
Figure JPOXMLDOC01-appb-M000010
 このように式7の左辺は特定の値で表されるため、式7の逆変換を行うことにより、ΔRn、ΔGn、ΔBn、ΔYen、ΔCnをそれぞれ求めることができる。あるいは、ΔRn、ΔGn、ΔBn、ΔYen、ΔCnは、例えば、LU分解法によって得られた連立方程式を解くことによって求めてもよい。
 その後、Rn+ΔRn → Rn、 Gn+ΔGn → Gn、 Bn+ΔBn → Bn、Yen+ΔYen → Yen、Cn+ΔCn → Cnとなるように基準階調の補正を行う。その後、必要に応じて、基準階調の補正されたガンマ特性に従い、三刺激値の測定(S104)、基準値および比較値の取得(S106)、および、基準階調の補正(S108)をさらに繰り返してもよい。また、この繰り返しは、ΔRn、ΔGn、ΔBn、ΔYen、ΔCnがある程度収束するまで複数回行ってもよい。
 階調Rn、Gn、Bn、Yen、Cnの補正が完了すると、次に、階調Rn-1、Gn-1、Bn-1、Yen-1、Cn-1を基準階調とするとともに、階調Rn-2、Gn-2、Bn-2、Yen-2、Cn-2を隣接階調として、S106およびS108(必要に応じてS104を含めて)を繰り返す。また、すでに多くの階調について基準階調の補正が行われている場合は、まだ補正を行っていない階調に対して外挿で得られた階調を初期の階調として設定してもよい。あるいは、階調Rn-1、Gn-1、Bn-1、Yen-1、Cn-1を基準階調とし、補正された階調Rn、Gn、Bn、Yen、Cnを隣接階調として基準色および比較色の三刺激値を測定して基準階調の補正を行ってもよい。
 また、本実施形態の階調補正方法では、図10のS102において測定された三刺激値を用いて求められた階調補正の結果を信号処理部14(図5)内の記憶装置に反映させることにより、階調補正を自動的に、かつ、短時間に行うことができる。
 なお、カラー表示画素は6個以上の画素を含んでもよい。画素の数が6個以上の場合、色再現範囲を3個以上の部分(1つの四角形部分と2以上の三角形部分)に分割することにより、上述したのと同様に、階調Rn、Gn、Bn、Yen、Cnの補正を行うことができる。
 上述した説明では、表示装置100の一例として液晶表示装置を挙げたが、本発明はこれに限定されない。表示装置100は、ブラウン管、プラズマ表示装置や有機EL表示装置などの別の表示装置であってもよい。
 また、上述した説明では、表示装置100においてカラー表示画素は複数の画素を有していたが、本発明の表示装置はこれに限定されない。表示装置100は、フィールドシーケンシャル方式で駆動することにより、色表現を行ってもよい。
 本発明によれば、表示装置の階調補正を短時間に高精度に効率的に行うことができる。特に、多原色表示装置の場合、色再現範囲を有効に利用するように階調補正を行うことができる。
 12  映像信号入力部
 14  信号処理部
 16  表示部
 100 表示装置

Claims (13)

  1.  複数の画素を有するカラー表示画素を備える表示装置の階調補正方法であって、
     前記カラー表示画素の目標輝度および目標色度を含む目標値を設定する工程と、
     所定のガンマ特性に従い、それぞれが、前記複数の画素のそれぞれについて前記複数の画素のうちのいずれか1つの画素の階調が基準階調であり、残りの画素の階調が固定階調である場合の前記カラー表示画素の色を示す複数の基準色、および、それぞれが、前記複数の画素のそれぞれについて前記複数の画素のうちのいずれか1つの画素の階調が前記基準階調に連続する隣接階調であり、残りの画素の階調が前記固定階調である場合の前記カラー表示画素の色を示す複数の比較色のそれぞれの三刺激値を測定する工程と、
     前記測定された三刺激値から基準値および比較値を求める工程であって、
      前記基準値は、前記複数の基準色の輝度の和を示す基準輝度、および、前記複数の基準色の三刺激値の和から得られる基準色度を含み、
      前記比較値は、それぞれが、前記複数の基準色のそれぞれについて、前記複数の基準色のうちのいずれか1つの基準色以外の基準色、および、前記複数の比較色のうちの前記いずれか1つの基準色の前記基準階調に対応する画素の階調が前記隣接階調である1つの比較色の輝度の和を示す複数の比較輝度、ならびに、前記いずれか1つの基準色以外の基準色および前記1つの比較色の三刺激値の和から得られる複数の比較色度を含む、工程と、
     前記目標値、前記基準値および前記比較値に基づいて前記基準階調を補正する工程と
    を包含する、表示装置の階調補正方法。
  2.  前記基準階調を補正する工程は、最急降下法を用いる工程を含む、請求項1に記載の表示装置の階調補正方法。
  3.  前記最急降下法を用いる工程は、前記基準値を前記目標値で除算したものから1を引いた関数を用いる工程を含む、請求項2に記載の表示装置の階調補正方法。
  4.  前記基準階調を補正する工程の後、前記所定のガンマ特性として前記基準階調の補正されたガンマ特性に従い、前記三刺激値を測定する工程、前記基準値および比較値を求める工程、ならびに、前記基準階調を補正する工程をさらに繰り返す、請求項1から3のいずれかに記載の表示装置の階調補正方法。
  5.  前記三刺激値を測定する工程は、前記複数の画素のそれぞれについて前記複数の画素のうちのいずれか1つの画素以外の残りの画素の階調を前記固定階調に固定して、前記1つの画素の階調を最低階調から最高階調の範囲で変化させる、請求項1から4のいずれかに記載の表示装置の階調補正方法。
  6.  前記複数の画素は3つの画素を含む、請求項1から5のいずれかに記載の表示装置の階調補正方法。
  7.  前記3つの画素は、赤画素、緑画素および青画素を含む、請求項6に記載の表示装置の階調補正方法。
  8.  前記複数の画素は4つの画素を含み、
     前記目標値は、色再現範囲の目標面積をさらに含み、
     前記基準値および比較値を求める工程において、
     前記基準値は、前記複数の基準色によって規定される色再現範囲の基準面積をさらに含み、
     前記比較値は、前記複数の基準色のそれぞれについて、前記いずれか1つの基準色以外の基準色、および、前記1つの比較色によって規定される複数の色再現範囲の比較面積をさらに含む、請求項1から5のいずれかに記載の表示装置の階調補正方法。
  9.  前記4つの画素は、赤画素、緑画素、青画素および黄画素を含む、請求項8に記載の表示装置の階調補正方法。
  10.  前記複数の画素は、第1画素、第2画素、第3画素、第4画素および第5画素を含み、
     前記目標値は、色再現範囲の第1目標面積および第2目標面積をさらに含み、
     前記基準値および比較値を求める工程において、
     前記基準値は、前記複数の基準色によって規定される色再現範囲のうち、前記第1、第2、第3および第4画素の階調が前記基準階調となる4つの基準色によって規定される第1部分の第1基準面積、および、前記第1、第4および第5画素の階調が前記基準階調となる3つの基準色によって規定される第2部分の第2基準面積をさらに含み、
     前記比較値は、前記複数の基準色のうち前記第1画素から前記第5画素のうちのいずれか4つの画素がそれぞれ前記基準階調となる4つの基準色と、前記複数の比較色のうち残りの1つの画素が前記隣接階調となる1つの比較色とによって規定される色再現範囲のうち、前記第1、第2、第3および第4画素の階調が前記基準階調および前記隣接階調のいずれかである4つの色によって規定される第1部分の第1比較面積と、前記第1、第4および第5画素の階調が前記基準階調および前記隣接階調のいずれかである3つの色によって規定される第2部分の第2比較面積とをさらに含む、請求項1から5のいずれかに記載の表示装置の階調補正方法。
  11.  前記第1、第2、第3、第4および第5画素は、赤画素、緑画素、青画素、黄画素およびシアン画素を含む、請求項10に記載の表示装置の階調補正方法。
  12.  所定のガンマ特性を有する表示装置を用意する工程と、
     請求項1から11のいずれかに記載の表示装置の階調補正方法にしたがって前記表示装置の階調を補正する工程と
    を包含する、表示装置の製造方法。
  13.  映像信号入力部と、信号処理部と、表示部とを備える表示装置を用意する工程と、
     請求項1から11のいずれかに記載の表示装置の階調補正方法にしたがって階調の補正されたガンマ特性を示すように、前記信号処理部の設定を行う工程と
    を包含する、表示装置の製造方法。
PCT/JP2012/050491 2011-01-13 2012-01-12 表示装置の階調補正方法、および、表示装置の製造方法 WO2012096345A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280005005.2A CN103314405B (zh) 2011-01-13 2012-01-12 显示装置的灰度级校正方法和显示装置的制造方法
US13/978,952 US9251761B2 (en) 2011-01-13 2012-01-12 Gray-scale correction method for display device, and method of producing display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011004610 2011-01-13
JP2011-004610 2011-01-13

Publications (1)

Publication Number Publication Date
WO2012096345A1 true WO2012096345A1 (ja) 2012-07-19

Family

ID=46507237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050491 WO2012096345A1 (ja) 2011-01-13 2012-01-12 表示装置の階調補正方法、および、表示装置の製造方法

Country Status (3)

Country Link
US (1) US9251761B2 (ja)
CN (1) CN103314405B (ja)
WO (1) WO2012096345A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444176A (zh) * 2019-07-26 2019-11-12 厦门天马微电子有限公司 显示面板的像素色差补偿方法及系统、显示装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928012B (zh) * 2014-04-15 2016-06-08 深圳市华星光电技术有限公司 显示装置的白平衡调整方法
CN103955079B (zh) 2014-04-28 2017-01-18 深圳市华星光电技术有限公司 利用rgb显示装置获取rgbw显示装置白色的亮度和色度的方法
US9530343B2 (en) * 2014-06-23 2016-12-27 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for correcting gray-scale of display panel
CN104200791A (zh) * 2014-09-24 2014-12-10 深圳市兆驰股份有限公司 一种快速自适应白平衡矫正的方法
CN107403455A (zh) * 2014-10-23 2017-11-28 吴东辉 基于摄像的用于颜料调色的系统及方法
CN104680962B (zh) * 2015-03-25 2018-01-30 合肥京东方光电科技有限公司 一种测试显示模组的光学特性的方法、装置及系统
CN105096890B (zh) * 2015-08-31 2017-09-15 深圳市华星光电技术有限公司 一种四色像素系统的白平衡方法
CN105679263B (zh) * 2016-02-01 2018-07-20 深圳市华星光电技术有限公司 用于拼接显示装置显示颜色的方法及系统
CN105575367A (zh) * 2016-03-08 2016-05-11 京东方科技集团股份有限公司 显示屏亮度调节方法及系统
CN106409219B (zh) * 2016-06-06 2019-07-02 深圳市华星光电技术有限公司 调整面板亮度和色度的预补偿方法及装置
CN106328053B (zh) * 2016-10-19 2019-01-25 深圳市华星光电技术有限公司 一种OLED Mura补偿的最高亮度优化方法及装置
US10685607B2 (en) * 2016-11-02 2020-06-16 Innolux Corporation Adjustment method for display de-Mura
CN109559683A (zh) * 2017-09-25 2019-04-02 上海和辉光电有限公司 一种有机发光显示面板的灰阶补偿方法、装置和系统
WO2020100200A1 (ja) * 2018-11-12 2020-05-22 Eizo株式会社 画像処理システム、画像処理装置、およびコンピュータープログラム
CN113795879B (zh) * 2019-04-17 2023-04-07 深圳云英谷科技有限公司 用于确定显示面板中灰度映射相关性的方法及系统
WO2020216113A1 (en) * 2019-04-25 2020-10-29 Shenzhen University Displaying systems and methods
CN110364116B (zh) * 2019-07-15 2021-06-15 云谷(固安)科技有限公司 灰阶补偿方法、灰阶补偿装置及显示模组
CN110660352B (zh) * 2019-11-05 2021-03-02 深圳市奥拓电子股份有限公司 一种led显示屏逐点校正方法、装置、系统及存储介质
KR20210106625A (ko) * 2020-02-20 2021-08-31 삼성디스플레이 주식회사 표시 장치 및 그의 구동 방법
CN114038407A (zh) * 2021-11-19 2022-02-11 西安诺瓦星云科技股份有限公司 显示单元自动校正系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248467A (ja) * 2001-12-21 2003-09-05 Sharp Corp 補正特性決定装置、補正特性決定方法および表示装置
JP2006113151A (ja) * 2004-10-12 2006-04-27 Seiko Epson Corp 表示装置の画質調整方法、画質調整装置、表示装置
JP2006129456A (ja) * 2004-10-01 2006-05-18 Canon Inc 画像表示装置の補正データ生成方法及び画像表示装置の製造方法
JP2009225440A (ja) * 2008-02-21 2009-10-01 Panasonic Corp 液晶型映像表示装置とそのホワイトバランス制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080402A (ja) * 2002-08-19 2004-03-11 Nec Viewtechnology Ltd ダイナミックホワイトバランス調整回路及びマルチ画面表示装置
JP2005227586A (ja) 2004-02-13 2005-08-25 National Univ Corp Shizuoka Univ 多原色ディスプレイ
US7495679B2 (en) * 2005-08-02 2009-02-24 Kolorific, Inc. Method and system for automatically calibrating a color display
JP4913161B2 (ja) * 2007-01-25 2012-04-11 シャープ株式会社 多原色表示装置
CN100559440C (zh) * 2007-11-08 2009-11-11 友达光电股份有限公司 降低平面显示器功率消耗的驱动方法
KR100922042B1 (ko) * 2008-02-28 2009-10-19 삼성모바일디스플레이주식회사 휘도보정시스템 및 휘도보정알고리듬
CN100565658C (zh) * 2008-03-17 2009-12-02 钰创科技股份有限公司 设定目标显示装置的目标gamma曲线的色彩校正方法
KR101034755B1 (ko) * 2009-11-12 2011-05-17 삼성모바일디스플레이주식회사 휘도보정시스템 및 이를 이용한 휘도보정방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248467A (ja) * 2001-12-21 2003-09-05 Sharp Corp 補正特性決定装置、補正特性決定方法および表示装置
JP2006129456A (ja) * 2004-10-01 2006-05-18 Canon Inc 画像表示装置の補正データ生成方法及び画像表示装置の製造方法
JP2006113151A (ja) * 2004-10-12 2006-04-27 Seiko Epson Corp 表示装置の画質調整方法、画質調整装置、表示装置
JP2009225440A (ja) * 2008-02-21 2009-10-01 Panasonic Corp 液晶型映像表示装置とそのホワイトバランス制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444176A (zh) * 2019-07-26 2019-11-12 厦门天马微电子有限公司 显示面板的像素色差补偿方法及系统、显示装置
CN110444176B (zh) * 2019-07-26 2021-04-30 厦门天马微电子有限公司 显示面板的像素色差补偿方法及系统、显示装置

Also Published As

Publication number Publication date
CN103314405A (zh) 2013-09-18
CN103314405B (zh) 2015-03-04
US9251761B2 (en) 2016-02-02
US20130293567A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2012096345A1 (ja) 表示装置の階調補正方法、および、表示装置の製造方法
US7808462B2 (en) Display apparatus
CN110197642B (zh) 三基色亮度校正关系的获取方法、显示器的校正方法及校正装置
JP5395092B2 (ja) 表示装置
US7965300B2 (en) Methods and systems for efficient white balance and gamma control
KR101065406B1 (ko) 표시 장치, 영상 신호 보정 시스템, 및 영상 신호 보정 방법
US8279234B2 (en) Method and system of generating gamma data of display device
JP6351034B2 (ja) 表示装置、表示パネルドライバ、画像処理装置及び表示パネルの駆動方法
US9087482B2 (en) Optical compensation method and driving method for organic light emitting display device
JP5401728B2 (ja) ディスプレイ色彩校正に用いるルックアップテーブル作成方法
KR101282776B1 (ko) 디스플레이 디바이스 교정 방법
JP4934621B2 (ja) 補正方法、表示装置及びコンピュータプログラム
CN110634437B (zh) 多段显示亮度的伽马曲线获取方法、装置和显示设备
KR101137872B1 (ko) 액정 표시장치의 구동장치 및 구동방법
JP2015133606A (ja) ホワイトバランス調整方法、ホワイトバランス調整装置および表示装置
KR20110073376A (ko) 표시 장치의 휘도 및 색차 전이 특성들의 보상하기 위한 색상 교정
US7075503B2 (en) Method for adjusting color temperature in plasma display panel
JP2005530449A (ja) 平板表示装置の色補正装置及びその方法
JP4380617B2 (ja) 階調変換特性決定装置、階調変換特性決定方法、階調変換特性決定プログラム、画像処理装置、及び画像表示装置
JP6698462B2 (ja) 色補正装置、表示装置および色補正方法
JP2009003180A (ja) 表示方法及び表示装置
JP2014033361A (ja) ホワイトバランス調整装置、表示装置、ホワイトバランス調整方法、及びプログラム
US7518581B2 (en) Color adjustment of display screens
JPWO2011102260A1 (ja) 表示装置
CN112885300A (zh) 使用多个非线性模型的面板校准

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13978952

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12733971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP