WO2017035696A1 - 多轴的负荷力及重心量测装置 - Google Patents

多轴的负荷力及重心量测装置 Download PDF

Info

Publication number
WO2017035696A1
WO2017035696A1 PCT/CN2015/088390 CN2015088390W WO2017035696A1 WO 2017035696 A1 WO2017035696 A1 WO 2017035696A1 CN 2015088390 W CN2015088390 W CN 2015088390W WO 2017035696 A1 WO2017035696 A1 WO 2017035696A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensing
center
axis load
sensing element
gravity measuring
Prior art date
Application number
PCT/CN2015/088390
Other languages
English (en)
French (fr)
Inventor
郭蓝远
严成文
廖丽君
程政群
Original Assignee
高雄医学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高雄医学大学 filed Critical 高雄医学大学
Priority to PCT/CN2015/088390 priority Critical patent/WO2017035696A1/zh
Priority to EP15902503.0A priority patent/EP3342341B1/en
Publication of WO2017035696A1 publication Critical patent/WO2017035696A1/zh
Priority to US15/906,269 priority patent/US10506967B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • A61B5/4023Evaluating sense of balance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • G01G19/50Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons having additional measuring devices, e.g. for height
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0252Load cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/23Support or suspension of weighing platforms

Definitions

  • the invention relates to a multi-axis load force and center of gravity measuring device, in particular to a linear sliding rail matched with a piezoelectric pressure sensing element to replace the load force and the center of gravity of the high-priced electronic three-dimensional sensor. Measuring device.
  • the pace of life is compact, the work pressure is high, and the three meals are not normal.
  • the long-term accumulation has an impact on the body. Therefore, health tests such as blood test, vision and balance test are also very important. When the body appears to be alert, warnings can be provided in advance to improve early treatment.
  • the balance scale or functional test was used to represent the patient's balance ability.
  • the Berg Balance Scale and the Timed “Up&Go” Test were used.
  • the Berg Balance Scale-Berg Balance Scale was first designed by Berg et al. in 1989 to evaluate the functional standing balance of the elderly in the community. In 1992 and 1995, it was successively introduced. Used in elderly and acute stroke patients, the results show that this balance scale has excellent In-Rater and Between-Rater reliability (ICC is 0.98).
  • This test combines daily functions such as sitting, walking, turning and standing to sit, although the research results show This is a fast and practical balanced function test, but its scoring standard is too short and its shortcomings, only according to the subjective scoring of the observer, the action execution is divided into five levels of 1 to 5 points, and the result is only extreme. A score of 1 and 5 has a more consistent consensus, but the definition of an intermediate score of 2 to 4 is less objective.
  • an electronic force plate makes the position of the weight of the measuring object more precise.
  • the principle of the force plate uses a uniaxial pressure sensor or a three-axis pressure sensor to measure the pressure information in different directions and convert it into a The distribution of the position of the center of gravity of the object.
  • Taiwan Patent No. M404973 "New Three-dimensional Center of Gravity Force Measuring Plate” discloses a three-dimensional center of gravity measuring force plate having a balance plate, four legs, a bottom plate, and four sets of pressure sensor modules;
  • the pressure sensor module is a combination of pressure sensors of different specifications to achieve measurement accuracy.
  • the foot column is arranged on the bottom plate, and the pressure sensor group is orthogonally contacted with the top of the foot column respectively, and the object to be tested is placed on the balance plate, and the information of the X-axis, the Y-axis, and the Z-axis direction force can be obtained, and the calculation is performed.
  • the position of the weight of the object can be obtained.
  • the above-mentioned new three-dimensional center-of-gravity force measuring board utilizes the modular design of the pressure sensor as a core, and when the object is placed on the measuring force plate, information on the position of the center of gravity of the object can be obtained, which can be applied to game machines and medical facilities. , sports measurement, and educational equipment.
  • the center of gravity measuring plates on the market today mostly use single-axis or three-axis pressure sensing components, which are respectively placed on the four corners of the center of gravity measuring plate or the four-sided beam to measure the weight of the calculated object. s position.
  • three-dimensional pressure sensors are high-priced products, which are currently imported from abroad. If one of the sensing components is damaged, it is inconvenient to repair and replace parts. It is not economical and it is not easy to develop home. Sex, for patients or those who want to check, they often need to go to the medical center for an examination.
  • the object of the present invention is to improve the shortcomings of the conventional number monitoring system, and to actively carry out development, and has finally developed the present invention through continuous experimentation and efforts.
  • the multi-axis load force and center of gravity measuring device of the present invention comprises: a first carrier plate, further comprising: a first slidable component, The first slidable member has one end connected to the first carrier plate, the first slidable member is movable along a first direction, and a first pressure sensing member having one end connected to the first carrier plate; a second carrier plate further comprising: a second slidable member, one end of the second slidable member being coupled to the second carrier plate, the second slidable member being movable in a second direction; and a a second pressure sensing element, one end of which is connected to the second carrier plate; a connecting plate between the first carrier plate and the second carrier plate, the connecting plate and the first slidable component respectively a pressure sensing element, the second slidable element, and the second pressure sensing element are coupled; and; and a plurality of third pressure sensing elements coupled to the
  • the multi-axis load force and center-of-gravity measuring device further includes: a signal capturing device, the first pressure sensing element, the second pressure sensing element, and the third pressure sensing element An electrical connection for taking a pressure change and converting it into a digital signal; a computing unit electrically connected to the signal extraction device for calculating the digital signal and generating a calculation result; and a display unit The computing unit is electrically connected to display the calculation result.
  • the multi-axis load force and center of gravity measuring device further includes a level adjusting unit for adjusting the level.
  • the multi-axis load force and center of gravity measuring device further includes a weight measuring unit for measuring the weight.
  • the first direction, the second direction, and the third direction are perpendicular to each other.
  • the first slidable member is one of a linear slide, a ball slide, an axial slide, and a bearing.
  • the second slidable member is one of a linear slide, a ball slide, an axial slide, and a bearing.
  • the first pressure sensing element is one of the strain gauge, the load cell, the piezoelectric material, the accelerometer, or any combination thereof.
  • the second pressure sensing element is one of the strain gauge, the load cell, the piezoelectric material, the accelerometer, or any combination thereof.
  • the third pressure sensing element is one of the strain gauge, the load cell, the piezoelectric material, the accelerometer, or any combination thereof.
  • FIG. 1 is a perspective view of an embodiment of a multi-axis load force and center of gravity measuring device according to the present invention.
  • FIG. 2 is a perspective exploded view of an embodiment of a multi-axis load force and center of gravity measuring device according to the present invention.
  • FIG 3 is a side view showing an embodiment of a multi-axis load force and center of gravity measuring device according to the present invention.
  • FIG. 4 is another side view of an embodiment of a multi-axis load force and center of gravity measuring device according to the present invention.
  • FIG. 5 is a perspective view of another embodiment of a multi-axis load force and center of gravity measuring device according to the present invention.
  • FIG. 1 and FIG. 2 are a schematic structural view and a perspective exploded view of an embodiment of a multi-axis load force and center of gravity measuring device according to the present invention.
  • the multi-axis load force and center-of-gravity measuring device 1 includes a first carrier plate 2, a second carrier plate 3, a connecting plate 4, and a plurality of third pressure sensing elements 5.
  • the first carrier plate 2 can be a metal plate.
  • the first carrier plate 2 comprises two first slidable elements (21a, 21b) and two first pressure sensing elements 22.
  • the first slidable elements (21a, 21b) have one end 21a connected to the first carrier plate 2 and the other end 21b connected to one side of the connecting plate 4.
  • the first slidable members (21a, 21b) are movable in the first direction when subjected to an external force in a first direction (X-axis direction).
  • the first slidable component (21a, 21b) is one of a linear slide rail, a ball slide rail, an axial slide rail and a bearing, and a slide rail of different precision can be selected according to requirements. Or bearing.
  • One end of the first pressure sensing element 22 is connected to the first carrier plate 2 through a connecting unit 221, and the other end is connected to the connecting plate 4 through another connecting unit 222, and the first pressure is
  • the sensing element 22 is symmetrically disposed on the first carrier plate 2.
  • the first pressure sensing element 22 is one of the strain gauge, the load cell, the piezoelectric material, the accelerometer, or any combination thereof.
  • the second carrier plate 3 can be a metal plate, and the second carrier plate 3 comprises two second slidable elements (31a, 31b) and two second pressure sensing elements 32.
  • the second slidable elements (31a, 31b) have one end 31a connected to the second carrier plate 3 and the other end 31b connected to the other side of the connecting plate 4.
  • the second slidable members (31a, 31b) are movable in the second direction when subjected to an external force in a second direction (Y-axis direction).
  • the second slidable component (31a, 31b) is one of a linear slide rail, a ball slide rail, an axial slide rail and a bearing, and a slide rail of different precision can be selected according to requirements. Or bearing.
  • the second pressure sensing element 32 has one end connected to the second carrier plate 3 through the connecting unit 321, and the other end connected to the connecting plate 4 through another connecting unit 322, and the second pressure sensing The component 32 is symmetrically disposed on the second carrier plate 3.
  • the second pressure sensing member 32 When the second slidable member (31a, 31b) is moved by the external force in the second direction, a force is simultaneously generated to press the second pressure sensing member 32, and the second pressure sensing member 32 senses the force.
  • the pressure change in the second direction can be known.
  • the second pressure sensing element 32 is one of the strain gauge, the load cell, the piezoelectric material, the acceleration gauge, or any combination thereof.
  • FIG. 3 and FIG. 4 are schematic side views and another side view of an embodiment of a multi-axis load force and center of gravity measuring device according to the present invention.
  • the connecting board 4 is located between the first carrying board 2 and the second carrying board 3, and may be a metal flat plate and slightly smaller than the first carrying board 2 and the second carrying board 3.
  • the web 4 is connected to the first slidable elements (21a, 21b), the first pressure sensing element 22, the second slidable element (31a, 31b) and the second pressure sensing element 32, respectively.
  • the third pressure sensing element 5 is coupled to the first carrier plate 2 for measuring a pressure change in a third direction (Z-axis direction).
  • the number of the third pressure sensing elements 5 is four, and is respectively disposed at four corners of the first carrier plate 2, so that the pressure change in the third direction can be accurately measured, and the calculation is calculated.
  • the center of gravity of the measured object is one of the strain gauge, the load cell, the piezoelectric material, the acceleration gauge, or any combination thereof.
  • the first slidable member (21a, 21b) when a subject is operated on the multi-axis load force and center-of-gravity measuring device 1, the first slidable member (21a, 21b) can sense the force in the first direction and penetrate Passing the connecting plate 4 to conduct the force to the first
  • the pressure sensing element 22, the first pressure sensing element 22, can know the pressure change in the first direction.
  • the second slidable element (31a, 31b) can sense the force in the second direction and transmit the force to the second pressure sensing element 32 through the connecting plate 4, and the second pressure sensing element 32 can Know the pressure change in the second direction.
  • the third pressure sensing element 5 senses a third direction force (weight) generated by the subject by gravity and a change in pressure thereof. Therefore, the multi-axis load force and center-of-gravity measuring device 1 can measure the force information in the first direction, the second direction, and the third direction, respectively.
  • the multi-axis load force and center-of-gravity measuring device 1 further includes a weight measuring unit 51 for measuring the weight and providing a function of simultaneously measuring the balance and the weight.
  • the weight measuring unit 51 can be an independent measuring mechanism, which can also be integrated with the third pressure sensing element 5 for measurement. The specific embodiment is based on the third pressure sensing elements 5 . The sum of the measured weights is the weight of the measured object.
  • FIG. 5 is a perspective view of another embodiment of the multi-axis load force and center of gravity measuring device of the present invention.
  • the multi-axis load and center-of-gravity measuring device 1 further includes a signal capturing device 6, a computing unit 7, and a display unit 8.
  • the signal capturing device 6 is electrically connected to the first pressure sensing component 22, the second pressure sensing component 32, and the third pressure sensing component 5 for taking pressure changes and converting them into a digital signal.
  • the computing unit 7 is electrically connected to the signal extracting device 6, and can receive the digital signal from the signal extracting device 6, and use the algorithm to perform balance pointer calculation.
  • the algorithm calculates the pointer as a center of pressure (COP). Derivative indicators of its COP indicators, such as the center of mass (COM). According to the calculation, a calculation result can be generated, and the calculation result is a balance sense measurement index.
  • COP center of pressure
  • COM center of mass
  • the display unit is electrically connected to the computing unit 7, and the calculation result can be displayed, and the related information of the real-time balance degree and the center of gravity measurement is displayed.
  • the multi-axis load force and center-of-gravity measuring device 1 further includes a horizontal adjusting unit 23, and the horizontal adjusting unit 23 is disposed on the first carrier plate 2, which may be a stop bolt.
  • the level adjusting unit 23 can be used to adjust the level of the overall device to accommodate uneven or inclined terrain.
  • the monitoring system and method for detecting the change of the intensity of the radio signal in the predetermined space proposed by the present invention has the following advantages compared with the conventional technology:
  • the multi-axis load force and center-of-gravity measuring device of the present invention uses a linear slide rail in combination with a piezoelectric pressure sensing element to replace a high-priced electronic three-dimensional direction sensor, which can reduce manufacturing costs and is easy to develop at home.
  • the multi-axis load force and center-of-gravity measuring device of the present invention uses the zero-components as commercially available products, which is quite convenient for maintenance and repair.
  • the multi-axis load force and center of gravity measuring device of the present invention can select differently slidable components according to requirements, and has better freedom and fitness than the commercially available three-axis center-of-gravity force measuring plate. .

Abstract

一种多轴的负荷力及重心量测装置,包括一第一承载板(2)、一第二承载板(3)、一连接板(4)以及多个第三压力感知元件(5),该第一承载板(2)还包括一第一可滑动元件(21a,21b)以及一第一压力感知元件(22),该第二承载板(3)还包括一第二可滑动元件(31a,31b)以及一第二压力感知元件(32),该连接板(4)分别与该第一可滑动元件(21a,21b)、该第一压力感知元件(22)、该第二可滑动元件(31a,31b)以及该第二压力感知元件(32)相连接,该第三压力感知元件(5)与该第一承载板(2)相连接。该装置通过第一、第二及第三压力感知元件分别量测X轴、Y轴及Z轴方向的压力变化,量测负荷力、平衡度及重心,可以取代单价较高的电子三维方向感测器,维修方便。

Description

多轴的负荷力及重心量测装置 技术领域
本发明关于一种多轴的负荷力及重心量测装置,特别是指一种利用线性滑轨配合压电式压力感知元件,以取代高单价的电子三维方向感测器的负荷力及重心量测装置。
背景技术
按,现代人生活步调紧凑、工作压力大,加上三餐饮食不正常,长期累积下来对身体造成影响,因此,健康检查繁如血液检测、视力、平衡力检测等亦变得格外重要,当身体出现警讯时,可以预先提供警示,及早治疗改善。
以往临床上常用平衡量表或功能性的测试来代表病患的平衡能力,常见的有伯格氏平衡量表(Berg Balance Scale)及起立行走计时测试(Timed“Up&Go”Test)等。伯格氏平衡量表(Berg Balance Scale)-伯格氏平衡量表最早由Berg等学者于1989年设计于临床上用来评估小区老年人的功能性站立平衡,于1992年及1995年则陆续被使用于老年人及急性期中风病患,研究结果显示此一平衡量表有极佳的测试者内(Within-Rater)及测试者间(Between-Rater)信度(ICC皆为0.98),且具极佳的内在一致性表现(Cronbach’sα=0.96);1996年Bogle等学者利用此一平衡量表的分数来预测老年人跌倒的机率,结果发现当得分于45分以下者相较于得分45分以上者有较高的跌倒机率,虽不能以此量表预测是否得分数愈低有愈高跌倒的机率,但在临床上却提供一分数的切点(Cut Off Score)来预测跌倒的可能性。起立行走计时测试(Timed“Up&Go”Test)-起立行走测试(“Get-up and Go”Test)最早于1986年Mathias等学者研究40位有平衡功能障碍的老年人,利用摄影的方式观察其由一有把手的坐椅站起并行走于三公尺的步道后转身走回再执行坐下的动作,此一测试结合由坐到站、步行、转身及站到坐等日常功能活动,虽然研究结果显示此为一快速且实用的平衡功能测试,但关于其评分标准却太过于简略为其缺点,只依照观察者主观地评分将动作执行情况分为1至5分五种等级,对于评分结果只有极端值1分及5分有较一致的共识,但针对中间分数2至4分的定义则较不客观。
而由于科技及医学的进步,近年来社会已渐渐进入高龄化,以往运用人力判断的健康检查如视力、平衡力检测已经逐渐被仪器所取代。例如电子测力板的出现使得测量物体重心位置变得更加精确,测力板的原理利用单轴压力感测器或三轴压力感测器测得不同方向的压力信息,并将其转换成所测物重心位置的分布情形。
中国台湾专利第M404973号「新型三维重心量测力板」即公开揭示了一种三维重心量测力板,其具有一组平衡板、四支脚柱、一个底板、以及四组压力传感器模组;其中压力传感器模组为不同规格的压力传感器组合而成,以达到量测的精确度。脚柱配置于底板上,压力传感器组则分别正交接触于脚柱的顶部,将待测物体放置于平衡板上,便可得到X轴、Y轴、以及Z轴方向力量的信息,计算便可得到物体重心的位置。
上述的新型三维重心量测力板利用压力传感器的模组化设计作为核心,当物体放置于量测力板上时,便可以获得物体重心位置的信息,其可以运用于游戏机台、医疗设施、运动量测、以及教育设备等。
然而,现今市场上的重心量测力板,多是利用单轴或三轴的压力感知元件,分别放置于重心量测力板内部四个角落或是四边的梁上,以便量测计算物体重心的位置。就商业的角度而言,三维压力传感器其属于高价位产品,目前皆是由国外进口,若其中一个感知元件损坏,其维修、更换零件存在着不便利性,不符合经济考虑,亦不易发展居家性,就病患或欲做检查的人来说,常需要前往医疗中心做检查。
是以,如何解决上述电子测力板成本太高、维修不便且不易发展居家性等问题,便成为相关厂商以及相关研发人员所共同努力的目标,也必定成为未来趋势的一项课题。
发明内容
本发明的目的是为了改善习用人数监控系统所存在的缺点,乃积极着手进行开发,经过不断地试验及努力,终于开发出本发明。
为了达到上述目的,本发明采取以下的技术手段予以达成,其中,本发明的多轴的负荷力及重心量测装置,包括:一第一承载板,更包括:一第一可滑动元件,该第一可滑动元件其一端与该第一承载板相连接,该第一可滑动元件可沿着一第一方向运动;以及一第一压力感知元件,其一端与该第一承载板相连接;一第二承载板,更包括:一第二可滑动元件,该第二可滑动元件其一端与该第二承载板相连接,该第二可滑动元件可沿着一第二方向运动;以及一第二压力感知元件,其一端与该第二承载板相连接;一连接板,位于该第一承载板以及该第二承载板之间,该连接板分别与该第一可滑动元件、该第一压力感知元件、该第二可滑动元件以及该第二压力感知元件相连接;以及;以及多个第三压力感知元件,与该第一承载板相连接;其中,该第一压力感知元件用以量测该第一方向的压力变化,该第二压力感知元件用以量测该第二方向的压力变化,以及该第三压力感知元件用以量测一第三方向的压力变化。
在本发明较佳实施例中,该多轴的负荷力及重心量测装置更包括:一讯号撷取装置,与该第一压力感知元件、该第二压力感知元件以及该第三压力感知元件电性连接,用以撷取压力变化并转换为一数字讯号;一计算单元,与该讯号撷取装置电性连接,用以计算该数字讯号并产生一计算结果;以及一显示单元,与该计算单元电性连接,用以显示该计算结果。
在本发明较佳实施例中,该多轴的负荷力及重心量测装置更包括一水平调整单元,用以调整水平。
在本发明较佳实施例中,该多轴的负荷力及重心量测装置更包括一重量量测单元,用以量测重量。
在本发明较佳实施例中,该第一方向、该第二方向以及该第三方向是两两互相垂直。
在本发明较佳实施例中,该第一可滑动元件为线性滑轨、滚珠滑轨、轴心式滑轨以及轴承其中之一。
在本发明较佳实施例中,该第二可滑动元件为线性滑轨、滚珠滑轨、轴心式滑轨以及轴承其中之一。
在本发明较佳实施例中,该第一压力感知元件为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
在本发明较佳实施例中,该第二压力感知元件为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
在本发明较佳实施例中,该第三压力感知元件为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
附图说明
图1为本发明多轴的负荷力及重心量测装置一实施例的立体示意图。
图2为本发明多轴的负荷力及重心量测装置一实施例的立体分解示意图。
图3为本发明多轴的负荷力及重心量测装置一实施例的一侧面示意图。
图4为本发明多轴的负荷力及重心量测装置一实施例的另一侧面示意图。
图5为本发明多轴的负荷力及重心量测装置另一实施例的立体示意图。
符号说明
1                                      多轴的负荷力及重心量测装置
2                                      第一承载板
21a,21b                               第一可滑动元件
22                                     第一压力感知元件
221,222                               连接单元
23                                     水平调整单元
3                                      第二承载板
31a,31b                               第二可滑动元件
32                                     第二压力感知元件
321,322                               连接单元
4                                      连接板
5                                      第三压力感知元件
51                                     重量量测单元
6                                      讯号撷取装置
7                                      计算单元
8                                      显示单元
具体实施方式
为达成上述目的及功效,本发明所采用的技术手段及构造,兹绘图就本发明较佳实施例详加说明其特征与功能如下,俾利完全了解,但须注意的是,该等内容不构成本发明的限定。
请同时参阅图1及2所示,其为本发明多轴的负荷力及重心量测装置一实施例的结构示意图及立体分解示意图。多轴的负荷力及重心量测装置1包括:一第一承载板2、一第二承载板3、一连接板4、多个第三压力感知元件5。
该第一承载板2可以为一金属平板,该第一承载板2包括:两个第一可滑动元件(21a,21b)以及两个第一压力感知元件22。
该等第一可滑动元件(21a,21b)其一端21a与该第一承载板2相连接,其另一端21b则与该连接板4一侧面相连接。当受到一第一方向(X轴方向)的外力作用时,该等第一可滑动元件(21a,21b)可沿着该第一方向运动。于本发明一实施例中,该第一可滑动元件(21a,21b)为线性滑轨、滚珠滑轨、轴心式滑轨以及轴承其中之一,且可以根据需求选择使用不同精度的滑轨或轴承。
该等第一压力感知元件22其一端透过一连接单元221与该第一承载板2相连接,其另端透过另一连接单元222与该连接板4相连接,且该等第一压力感知元件22对称设置于该第一承载板2上。
当该第一可滑动元件(21a,21b)受到外力作用沿着该第一方向运动时,会同时产生一作用力压迫该第一压力感知元件22,该第一压力感知元件22感知该作用力,可得知第一方向的压力变化情形。较佳的,该第一压力感知元件22为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
该第二承载板3可以为一金属平板,该第二承载板3包括:两个第二可滑动元件(31a,31b)以及两个第二压力感知元件32。
该等第二可滑动元件(31a,31b)其一端31a与该第二承载板3相连接,其另一端31b则与该连接板4另一侧面相连接。当受到一第二方向(Y轴方向)的外力作用时,该等第二可滑动元件(31a,31b)可沿着该第二方向运动。于本发明一实施例中,该第二可滑动元件(31a,31b)为线性滑轨、滚珠滑轨、轴心式滑轨以及轴承其中之一,且可以根据需求选择使用不同精度的滑轨或轴承。
该等第二压力感知元件32其一端透过连接单元321与该第二承载板3相连接,其另端透过另一连接单元322与该连接板4相连接,且该等第二压力感知元件32对称设置于该第二承载板3上。
当该第二可滑动元件(31a,31b)受到外力作用沿着该第二方向运动时,会同时产生一作用力压迫该第二压力感知元件32,该第二压力感知元件32感知该作用力,可得知第二方向的压力变化情形。较佳的,该第二压力感知元件32为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
请同时参阅图3及4所示,其为本发明多轴的负荷力及重心量测装置一实施例的一侧面示意图及另一侧面示意图。该连接板4位于该第一承载板2以及该第二承载板3之间,其可以为一金属平板,并且略小于该第一承载板2以及该第二承载板3。该连接板4分别与上述该等第一可滑动元件(21a,21b)、第一压力感知元件22、第二可滑动元件(31a,31b)以及第二压力感知元件32相连接。
该等第三压力感知元件5与该第一承载板2相连接,用以量测一第三方向(Z轴方向)的压力变化情形。于本实施例中,该第三压力感知元件5数量为四组,并分别设置于该第一承载板2四个角落,可以较精确的量测该第三方向的压力变化情形,并推算出所量测物的重心所在。较佳的,该第三压力感知元件5为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
透过上述结构,当一受测者位于该多轴的负荷力及重心量测装置1上作动时,该第一可滑动元件(21a,21b)可感测第一方向的作用力并透过该连接板4将该作用力传导至该第一 压力感知元件22,该第一压力感知元件22即可得知第一方向的压力变化情形。该第二可滑动元件(31a,31b)可感测第二方向的作用力并透过该连接板4将该作用力传导至该第二压力感知元件32,该第二压力感知元件32即可得知第二方向的压力变化情形。该第三压力感知元件5感测该受测者受重力作用产生的第三方向作用力(重量)以及其压力变化。因此,该多轴的负荷力及重心量测装置1可以分别测量到第一方向、第二方向及第三方向的作用力信息。
在本发明一实施例中,该多轴的负荷力及重心量测装置1更包括一重量量测单元51,用以量测重量,提供同时量测平衡度以及重量的功能。值得一提的是,该重量量测单元51可以为独立的量测机构,其亦可以与该第三压力感知元件5整合进行量测,其具体实施方式是根据该等第三压力感知元件5所量测的重量总和,即为所量测物的重量。
请同时参阅图5所示,其为本发明多轴的负荷力及重心量测装置另一实施例的立体示意图。在本发明一实施例中,该多轴的负荷力及重心量测装置1更包括、一讯号撷取装置6、一计算单元7以及一显示单元8。
该讯号撷取装置6,分别与该第一压力感知元件22、该第二压力感知元件32以及该第三压力感知元件5电性连接,用以撷取压力变化并转换为一数字讯号。
该计算单元7与该讯号撷取装置6电性连接,可从该讯号撷取装置6接收该数字讯号,并利用算法进行平衡指针计算,其算法计算指针为压力中心(center of pressure,COP)、其COP指标的衍生指标,例如:质量中心(center of mass,COM)等。根据计算后可以产生一计算结果,该计算结果即为平衡感量测指标。
该显示单元与该计算单元7电性连接,可以显示该计算结果,显示出实时平衡度及重心量测的相关信息。
在本发明一实施例中,该多轴的负荷力及重心量测装置1更包括一水平调整单元23,该水平调整单元23设置于该第一承载板2上,其可以为一止步螺栓,但不限于此,该水平调整单元23可用以调整整体装置的水平,以适应地板不平或倾斜的地形。
综合上述,本发明提出的预定空间中侦测电波讯号强度变化的人数监控系统及方法与习用技术相较,确实具有下列优点:
(1)本发明的多轴的负荷力及重心量测装置,利用线性滑轨配合压电式压力感知元件取代高单价的电子三维方向感测器,可降低制造成本,易发展于居家使用。
(2)本发明的多轴的负荷力及重心量测装置,所使用的零元件皆为市售产品,对于维护整修上相当方便。
(3)本发明的多轴的负荷力及重心量测装置,可根据需求选择不同精度的可滑动元件,相较于市售的三轴重心量测力板具有更佳的自由度以及适应度。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

  1. 一种多轴的负荷力及重心量测装置,其特征在于,包括:
    一第一承载板,更包括:
    一第一可滑动元件,该第一可滑动元件其一端与该第一承载板相连接,该第一可滑动元件可沿着一第一方向运动;以及
    一第一压力感知元件,其一端与该第一承载板相连接;
    一第二承载板,更包括:
    一第二可滑动元件,该第二可滑动元件其一端与该第二承载板相连接,该第二可滑动元件可沿着一第二方向运动;以及
    一第二压力感知元件,其一端与该第二承载板相连接;
    一连接板,位于该第一承载板以及该第二承载板之间,该连接板分别与该第一可滑动元件、该第一压力感知元件、该第二可滑动元件以及该第二压力感知元件相连接;以及
    多个第三压力感知元件,与该第一承载板相连接;
    其中,该第一压力感知元件用以量测该第一方向的压力变化,该第二压力感知元件用以量测该第二方向的压力变化,以及该第三压力感知元件用以量测一第三方向的压力变化。
  2. 如权利要求1所述的多轴的负荷力及重心量测装置,其特征在于,该多轴的负荷力及重心量测装置更包括:
    一讯号撷取装置,与该第一压力感知元件、该第二压力感知元件以及该第三压力感知元件电性连接,用以撷取压力变化并转换为一数字讯号;
    一计算单元,与该讯号撷取装置电性连接,用以计算该数字讯号并产生一计算结果;以及
    一显示单元,与该计算单元电性连接,用以显示该计算结果。
  3. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该多轴的负荷力及重心量测装置更包括一水平调整单元,用以调整水平。
  4. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该多轴的负荷力及重心量测装置更包括一重量量测单元,用以量测重量。
  5. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该第一方向、该第二方向以及该第三方向是两两互相垂直。
  6. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该第一可滑动元件为线性滑轨、滚珠滑轨、轴心式滑轨以及轴承其中之一。
  7. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该第二可滑动 元件为线性滑轨、滚珠滑轨、轴心式滑轨以及轴承其中之一。
  8. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该第一压力感知元件为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
  9. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该第二压力感知元件为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
  10. 如权利要求1或2所述的多轴的负荷力及重心量测装置,其特征在于,该第三压力感知元件为应变规、荷重元件、压电材料、加速规上述其中之一或其任意组合。
PCT/CN2015/088390 2015-08-28 2015-08-28 多轴的负荷力及重心量测装置 WO2017035696A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/088390 WO2017035696A1 (zh) 2015-08-28 2015-08-28 多轴的负荷力及重心量测装置
EP15902503.0A EP3342341B1 (en) 2015-08-28 2015-08-28 Multi-axis load bearing and gravity center measuring device
US15/906,269 US10506967B2 (en) 2015-08-28 2018-02-27 Multi-axis measurement device for loading force and center of gravity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088390 WO2017035696A1 (zh) 2015-08-28 2015-08-28 多轴的负荷力及重心量测装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/906,269 Continuation US10506967B2 (en) 2015-08-28 2018-02-27 Multi-axis measurement device for loading force and center of gravity

Publications (1)

Publication Number Publication Date
WO2017035696A1 true WO2017035696A1 (zh) 2017-03-09

Family

ID=58186389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088390 WO2017035696A1 (zh) 2015-08-28 2015-08-28 多轴的负荷力及重心量测装置

Country Status (3)

Country Link
US (1) US10506967B2 (zh)
EP (1) EP3342341B1 (zh)
WO (1) WO2017035696A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000811A (ja) * 2018-07-02 2020-01-09 マイクロストーン株式会社 片脚立位計測システム
CN113091981A (zh) * 2021-03-16 2021-07-09 南京航空航天大学 一种设置预紧力的传感器及测量方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977233A (zh) * 2019-05-22 2020-11-24 深圳市瑞微智能有限责任公司 一种物料出入库定位方法、装置及系统
WO2021102295A1 (en) 2019-11-21 2021-05-27 Thomas Baer Systems and methods for detecting running and walking strides and foot strikes
CN112665699B (zh) * 2020-11-23 2022-03-04 超越工场(东莞)科技有限公司 一种高精度体重秤三维度测量计算的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146830A (ja) * 1999-11-19 2001-05-29 Matsushita Electric Works Ltd 手摺及び体力判断方法
CN101949752A (zh) * 2010-08-02 2011-01-19 浙江大学 用于离心机的三轴向自适应式动平衡执行装置
TW201119627A (en) * 2009-12-04 2011-06-16 Univ Nat Yang Ming System for training and evaluating dynamic capability while standing with lower limbs
CN104083175A (zh) * 2014-06-10 2014-10-08 宋箭 基于区域力效验的压力分布平台

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4261428A (en) * 1980-02-25 1981-04-14 The A. H. Emery Company Platform weighing apparatus
US4493220A (en) * 1982-11-23 1985-01-15 Advanced Mechanical Technology, Inc. Force measuring platform and load cell therefor using strain gages to measure shear forces
SE526846C2 (sv) * 2005-01-12 2005-11-08 Konsult Ab Balans- och kraftplatta
TWM404973U (en) * 2010-10-01 2011-06-01 Injoy Motion Corp The new three-dimensional force plate
US9255859B2 (en) * 2010-11-15 2016-02-09 Advanced Mechanical Technology, Inc. Force platform system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146830A (ja) * 1999-11-19 2001-05-29 Matsushita Electric Works Ltd 手摺及び体力判断方法
TW201119627A (en) * 2009-12-04 2011-06-16 Univ Nat Yang Ming System for training and evaluating dynamic capability while standing with lower limbs
CN101949752A (zh) * 2010-08-02 2011-01-19 浙江大学 用于离心机的三轴向自适应式动平衡执行装置
CN104083175A (zh) * 2014-06-10 2014-10-08 宋箭 基于区域力效验的压力分布平台

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000811A (ja) * 2018-07-02 2020-01-09 マイクロストーン株式会社 片脚立位計測システム
JP7117764B2 (ja) 2018-07-02 2022-08-15 マイクロストーン株式会社 片脚立位計測システム
CN113091981A (zh) * 2021-03-16 2021-07-09 南京航空航天大学 一种设置预紧力的传感器及测量方法

Also Published As

Publication number Publication date
EP3342341A4 (en) 2019-04-03
EP3342341B1 (en) 2019-12-18
US10506967B2 (en) 2019-12-17
US20180184966A1 (en) 2018-07-05
EP3342341A1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
US10506967B2 (en) Multi-axis measurement device for loading force and center of gravity
Kilanowski et al. Validation of an electronic pedometer for measurement of physical activity in children
Doheny et al. An instrumented sit-to-stand test used to examine differences between older fallers and non-fallers
Vincent et al. Determining measurement error in digital pedometers
CN108968965A (zh) 便携式人体平衡评测训练系统
JP6158294B2 (ja) 手掌の握る力を測定するシステム
Jagos et al. A multimodal approach for insole motion measurement and analysis
Shin et al. Reliability of the pinch strength with digitalized pinch dynamometer
CN109820476A (zh) 一种平衡能力评估方法及应用该方法的装置和系统
Alqahtani et al. Standing balance and strength measurements in older adults living in residential care communities
Thiel et al. Accelerometer based performance assessment of basic routines in classical ballet
US8968219B2 (en) Muscle tonus measuring apparatus
Mauch et al. Reliability and Validity of Two Measurement Systems in the Quantification of Jump Performance.
Kim et al. The relationship between trunk control and upper limb function in children with cerebral palsy
CN109394231A (zh) 一种站起运动平衡监测与动力学解析系统
WO2010111596A1 (en) Intrinsic hand strength measurement device
Dzhagaryan et al. Smart Button: A wearable system for assessing mobility in elderly
CN102210584B (zh) 一种悬吊式人体重心测试平台
TWI530275B (zh) 多軸的負荷力及重心量測裝置
Caña-Pino et al. A novel determination of energy expenditure efficiency during a balance task using accelerometers. A pilot study
Kim et al. Ambulatory balance monitoring using a wireless attachable three-axis accelerometer
Boukhenous et al. Force platform for postural balance analysis
JPH07250822A (ja) 重心動揺計
Yang et al. Evaluation of standing balance of the elderly with different balance abilities by using Kinect and Wii balance board
CN215272761U (zh) 一种人体平衡检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015902503

Country of ref document: EP