WO2017035689A1 - 充电方法和电子设备 - Google Patents

充电方法和电子设备 Download PDF

Info

Publication number
WO2017035689A1
WO2017035689A1 PCT/CN2015/088350 CN2015088350W WO2017035689A1 WO 2017035689 A1 WO2017035689 A1 WO 2017035689A1 CN 2015088350 W CN2015088350 W CN 2015088350W WO 2017035689 A1 WO2017035689 A1 WO 2017035689A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
battery
electronic device
increment
Prior art date
Application number
PCT/CN2015/088350
Other languages
English (en)
French (fr)
Inventor
李招峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580064370.4A priority Critical patent/CN107005075A/zh
Priority to PCT/CN2015/088350 priority patent/WO2017035689A1/zh
Publication of WO2017035689A1 publication Critical patent/WO2017035689A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a charging method and an electronic device.
  • Embodiments of the present invention provide a charging method and an electronic device capable of increasing a charging current within a safe range and thereby increasing a charging speed.
  • a charging method in a first aspect, forms a charging circuit with a charger through a charging interface to charge a battery.
  • the charging method includes: determining a current power of the battery; and determining to input the charging according to the power amount. a charging voltage of the interface; charging the battery according to the charging voltage.
  • the battery voltage is an open circuit voltage of the battery, and determining, according to the power quantity, the charging voltage input to the charging interface, Open circuit voltage; determining the charging voltage according to the open circuit voltage and the first voltage increment.
  • the determining the charging voltage according to the open circuit voltage and the first voltage increment comprises: determining the charging voltage according to the following formula V DPM ,
  • V DPM V 0 + ⁇ V+ ⁇ V ⁇
  • V 0 is the open circuit voltage
  • ⁇ V is the first voltage increment
  • ⁇ V′ is a preset second voltage increment
  • the second voltage increment is a voltage of the battery caused by a charging current.
  • the virtual high increment is the open circuit voltage
  • ⁇ V is the first voltage increment
  • ⁇ V′ is a preset second voltage increment
  • the second voltage increment is a voltage of the battery caused by a charging current. The virtual high increment.
  • the determining, according to the power quantity, the charging voltage input to the charging interface includes: determining the charging voltage according to the preset voltage configuration table of the power quantity query,
  • the voltage configuration table includes a correspondence between the power amount and the charging voltage system.
  • a charging method in a second aspect, forms a charging circuit with a charger through a charging interface to charge a battery.
  • the charging method includes: determining a current voltage of the battery; and according to the voltage and a preset voltage The increment determines a charging voltage input to the charging interface; charging the battery according to the charging voltage.
  • the determining, by the voltage and the preset voltage increment, the charging voltage input to the charging interface includes: determining, according to the following formula Charging voltage V DPM ,
  • V DPM V 1 + ⁇ V
  • V 1 is the voltage and ⁇ V is the voltage increment.
  • an electronic device comprising: a battery and a charging interface, wherein the electronic device forms a charging circuit with the charger through the charging interface to charge the battery, and the electronic device further includes processing The memory, the memory and the bus system, the battery, the processor and the memory are connected by the bus system; wherein the processor calls a program stored in the memory for:
  • the battery is charged according to the charging voltage.
  • the battery voltage is an open circuit voltage of the battery
  • the processor is specifically configured to: determine an open circuit voltage corresponding to the power quantity; The open circuit voltage and the first voltage increment determine the charging voltage.
  • the processor is specifically configured to determine the charging voltage V DPM according to the following formula,
  • V DPM V 0 + ⁇ V+ ⁇ V ⁇
  • V 0 is the open circuit voltage
  • ⁇ V is the first voltage increment
  • ⁇ V′ is a preset second voltage increment
  • the second voltage increment is a voltage of the battery caused by a charging current.
  • the virtual high increment is the open circuit voltage
  • ⁇ V is the first voltage increment
  • ⁇ V′ is a preset second voltage increment
  • the second voltage increment is a voltage of the battery caused by a charging current. The virtual high increment.
  • the processor is configured to determine the charging voltage according to the preset voltage configuration table of the power query, where the voltage configuration table includes Corresponding relationship between the electric quantity and the charging voltage.
  • an electronic device including a battery and a charging interface, the electronic device Charging the battery by forming a charging circuit with the charger through the charging interface, the electronic device further comprising a processor, a memory and a bus system, wherein the battery, the processor and the memory are connected by the bus system ;
  • processor calls a program stored in the memory for:
  • the battery is charged according to the charging voltage.
  • the processor is specifically configured to determine the charging voltage V DPM according to the following formula,
  • V DPM V 1 + ⁇ V
  • V 1 is the voltage and ⁇ V is the voltage increment.
  • FIG. 1 is a schematic diagram of the charging principle.
  • FIG. 2 is a schematic flow chart of a charging method in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a charging method according to another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of an electronic device in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an electronic device in accordance with another embodiment of the present invention.
  • the electronic device in the embodiment of the present invention may be a terminal device, such as a mobile terminal.
  • a terminal device such as a mobile terminal.
  • Mobile Terminal mobile telephone
  • Mobile Telephone mobile phone
  • handset mobile phone
  • portable equipment portable equipment
  • an integrated circuit In order to protect the battery, an integrated circuit (IC) is usually provided in the electronic device for providing input current limiting protection and input voltage protection.
  • the input current limit protection is used to limit the current on the Universal Serial Bus (USB) line, which protects the charger's output current from exceeding the set value.
  • the input voltage protection is used to limit the voltage value on the input line of the charging IC on the USB line not lower than the set value.
  • the input voltage protection technology usually sets the input voltage of the input pin of the charging IC to a constant value during the charging process to protect the electronic device while ensuring the charging speed as much as possible.
  • FIG. 1 is a schematic diagram of a conventional charging principle.
  • the charger IC and the charging IC of the electronic device are connected by a USB cable.
  • the output voltage of the charger is V a
  • the input voltage at the input pin of the charging IC is V b
  • the voltage drop on the USB cable is V. a -V b .
  • the input current at the input pin of the charging IC is (V a - V b ) / R.
  • FIG. 2 is a schematic flow diagram of a charging method 200 in accordance with an embodiment of the present invention.
  • the charging method 200 can be performed by an electronic device.
  • the electronic device forms a charging circuit with the charger through the charging interface to charge the battery.
  • the charging method 200 includes:
  • the current battery power can be determined by reading the measurement results of a hardware test circuit such as a fuel gauge.
  • a hardware test circuit such as a fuel gauge.
  • the specific method used for measuring the power quantity is not limited, and any method for measuring the power quantity falls within the protection scope of the embodiment of the present invention.
  • the voltage can be determined according to the relationship between voltage and power, or the current flowing through the battery can be measured by a coulomb meter to measure the battery power.
  • the voltage of the input charging interface can be configured as the charging voltage determined in step 220 to charge the battery.
  • the voltage of the charging interface of the charger input through the USB cable should be higher than the battery voltage by the first voltage increment.
  • the first voltage increment can be obtained by querying the manual provided by the manufacturer.
  • the voltage of the battery is different when the battery is in different state of charge, and the battery is less charged, the voltage of the battery is lower.
  • the output capability of the charger within a safe range, that is, to increase the input charging current within a safe range. Since the internal resistance of the USB cable does not change, it is considered that the charging voltage of the input electronic device is dynamically reduced according to the power of the battery, and the input current at the charging interface is increased by increasing the voltage drop on the USB line, thereby increasing the charging speed. .
  • the charging voltage of the charging interface of the input electronic device is dynamically adjusted according to the power of the battery, and the input current can be increased as much as possible, thereby increasing the charging speed.
  • the battery's power can be expressed in terms of State Of Charge (SOC), which is the percentage of power.
  • SOC State Of Charge
  • the charging current can be increased within a safe range, thereby increasing the charging speed.
  • the battery power can also be determined periodically. Accordingly, the input charging voltage is periodically determined according to the amount of power of the battery.
  • the battery voltage is an open circuit voltage of the battery
  • step 220 may include:
  • the charging voltage is determined according to the open circuit voltage and the first voltage increment.
  • determining the charging voltage according to the open circuit voltage and the first voltage increment includes: determining a charging voltage V DPM according to the following formula (1),
  • V DPM V 0 + ⁇ V+ ⁇ V ⁇ (1)
  • V 0 is an open circuit voltage
  • ⁇ V is a first voltage increment
  • ⁇ V′ is a preset second voltage increment
  • the second voltage increment is a virtual high increment of a voltage of the battery caused by the charging current.
  • V DPM should be less than the output voltage of the charger.
  • the charging current may cause the battery voltage to be artificially high.
  • the charging voltage of the input electronic device should be higher than the measured voltage during charging by the first voltage increment. It should be understood that V 0 + ⁇ V' in the formula (1) can be equivalent to the measured voltage at the time of charging corresponding to the current amount of electricity.
  • the electronic device forms a charging circuit with the charger through the charging interface.
  • the charging voltage at the charging interface of the input electronic device is a constant voltage.
  • the constant charging voltage is higher than the measured voltage ⁇ V when the battery is charged at 100% of the battery power.
  • the open circuit voltage of the battery or the measured voltage at the time of charging is lower.
  • the corresponding charging voltage is less than the current when the battery is less than 100%.
  • the virtual high increment ⁇ V' can be obtained experimentally before the virtual high increment ⁇ V' of the voltage of the battery caused by the charging current is placed into the electronic device. For example, it can be obtained by comparing the measured voltage and the open circuit voltage of the battery.
  • the virtual high increment ⁇ V' pre-configured in the electronic device may be a constant value, but the embodiment of the present invention is not limited thereto.
  • the virtual high increment ⁇ V' pre-configured in the electronic device may further include a plurality of values corresponding to the power amount.
  • the method for measuring the measured voltage of the battery during charging includes: charging the battery by using the standard charger and the USB cable; when the battery power reaches the corresponding power value, measuring the battery voltage at the time with the multimeter, that is, when the battery state is The measured voltage of the battery.
  • the open circuit voltage can be determined by querying the correspondence table between the battery power provided by the device manufacturer and the open circuit voltage of the battery.
  • Table 1 shows the correspondence between the power of a certain type of battery (indicated by SOC) and the open circuit voltage provided by a certain manufacturer.
  • the step 220 may further include: querying a preset voltage configuration table according to the power quantity, where the voltage configuration table includes a correspondence between the power quantity and the charging voltage.
  • the charging voltage in the voltage configuration table can be determined according to equation (1). It should be understood that the amount of electricity in the voltage configuration table may also be a specific percentage value, for example, 100, 90, etc.; or may be a certain range, for example, 91 to 100, 81 to 90, etc., which is not limited by the present invention.
  • the charging voltage in the voltage configuration table can be determined based on the first voltage increment and the open circuit voltage.
  • the specific method refer to the corresponding content of the above formula (1), and details are not described herein again.
  • the charging voltage in the voltage configuration table can be determined based on the first voltage increment and the measured voltage.
  • the charging voltage V DPM can be determined by using the following formula (2).
  • V DPM V 1 + ⁇ V (2)
  • V 1 is the measured voltage and ⁇ V is the first voltage increment. It should be understood that V 1 in the formula (2) may correspond to V 0 + ⁇ V' in the formula (1).
  • the charging current can be increased within a safe range, thereby increasing the charging speed.
  • FIG. 3 is a schematic flow chart of a charging method 300 in accordance with another embodiment of the present invention.
  • the electronic device forms a charging circuit with the charger through the charging interface to charge the battery.
  • the charging method 300 includes:
  • the current voltage of the battery can be determined by reading the measurement results of a hardware test circuit (eg, a voltage sensor).
  • a hardware test circuit eg, a voltage sensor
  • the specific method used for measuring the voltage is not limited, and any method for measuring the power amount falls within the protection scope of the embodiment of the present invention.
  • the voltage of the input charging interface can be configured as the charging voltage determined in step 320 to charge the battery.
  • the charging current may cause the battery voltage to be artificially high.
  • the charging voltage of the input electronic device should be higher than the current voltage by a preset voltage increment.
  • the charging current can be increased within a safe range, thereby increasing the charging speed.
  • step 310 the current voltage of the battery can be determined periodically.
  • step 320 includes: determining a charging voltage V DPM according to the following formula (3),
  • V DPM V 1 + ⁇ V (3)
  • V 1 is the current voltage of the battery and ⁇ V is the preset voltage increment.
  • V DPM should be less than the output voltage of the charger.
  • the electronic device forms a charging circuit with the charger through the charging interface.
  • the charging voltage at the charging interface of the input electronic device is a constant voltage.
  • the constant charging voltage is higher than the measured voltage at the two ends of the battery when the battery is 100% higher than the measured voltage ⁇ V.
  • the measured voltage across the battery is different when the battery is in a different state of charge, and the battery is less charged, the measured voltage of the battery is lower. That is to say, during the charging process, the measured voltage of the battery is gradually changed.
  • the current voltage is dynamically determined, and the charging voltage is dynamically determined according to the voltage according to the method described above, so that the charging voltage is smaller than the constant charging voltage in the prior art.
  • the input current at the charging interface can be increased by increasing the voltage drop on the USB line, thereby increasing the charging speed.
  • the charging current can be increased within a safe range, thereby increasing the charging speed.
  • the electronic device 400 includes a battery 410 and a charging interface 420.
  • the electronic device 400 forms a charging circuit with the charger through the charging interface 420 to charge the battery 410.
  • the electronic device 400 further includes a processor 430, a memory 440, and a bus system 450 connected by a bus system 450; wherein the processor 430 calls a program stored in the memory 440 for:
  • the battery 410 is charged according to the charging voltage.
  • the charging current can be increased within a safe range, thereby increasing the charging speed.
  • the processor 430 may be a central processing unit (CPU), and the processor 430 may also be other general-purpose processors, digital signal processing (Digital Signal Processing, referred to as DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 440 can include read only memory and random access memory and provides instructions and data to the processor 430. A portion of the memory 440 may also include a non-volatile random access memory. For example, the memory 440 can also store information of the device type.
  • the bus system 450 includes a data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 450 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 430 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 440, and processor 430 reads the information in memory 440 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the battery voltage is an open circuit voltage of the battery
  • the processor 430 is specifically configured to:
  • the charging voltage is determined according to the open circuit voltage and the first voltage increment.
  • the processor 430 may be specifically configured to determine a charging voltage V DPM according to the following formula (1).
  • V DPM V 0 + ⁇ V+ ⁇ V ⁇ (1)
  • V 0 is an open circuit voltage
  • ⁇ V is a first voltage increment
  • ⁇ V′ is a preset second voltage increment
  • the second voltage increment is a virtual high increment of a voltage of the battery caused by the charging current.
  • the processor 430 is specifically configured to query a preset voltage configuration table according to the power quantity, and the voltage configuration table includes a correspondence between the current power quantity and the charging voltage.
  • the charging voltage may be determined based on the first voltage increment and the open circuit voltage, and specifically, the charging voltage may be determined by using Equation (1).
  • the present invention is not limited thereto, and the charging voltage may be determined based on the first voltage increment and the measured voltage of the battery.
  • the electronic device 400 may correspond to an electronic device in the charging method 200 according to an embodiment of the present invention, and the above and other operations and/or functions of the respective units in the electronic device 400 are respectively implemented for The corresponding flow of the charging method 200 of 2, for brevity, will not be repeated here.
  • the charging current can be increased within a safe range, thereby increasing the charging speed.
  • FIG. 5 is a schematic block diagram of an electronic device 500 in accordance with another embodiment of the present invention.
  • the electronic device includes a battery 510 and a charging interface 520.
  • the electronic device 500 forms a charging circuit with the charger through the charging interface 520 to charge the battery 510.
  • the electronic device 500 further includes a processor 530, a memory 540, and a bus system 550 connected by a bus system 550; wherein the processor 530 calls a program stored in the memory 540 for:
  • the battery 510 is charged according to the charging voltage.
  • the charging current can be increased within a safe range, thereby increasing the charging speed.
  • the processor 530 may be a CPU, and the processor 530 may also be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices. Discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 540 can include read only memory and random access memory and provides instructions and data to the processor 530. A portion of the memory 540 may also include a non-volatile random access memory. For example, the memory 540 can also store information of the device type.
  • the bus system 550 includes a data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 550 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 530 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 540, and the processor 530 reads the information in the memory 540 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 530 is specifically configured to determine the charging voltage V DPM according to the following formula (3),
  • V DPM V 1 + ⁇ V (3)
  • V 1 is the current measured voltage of the battery
  • ⁇ V is the voltage increment
  • the electronic device 500 may correspond to an electronic device in the charging method 300 according to an embodiment of the present invention, and the above and other operations and/or functions of the respective units in the electronic device 500 are respectively implemented for The corresponding flow of the charging method 300 of 3, for brevity, will not be repeated here.
  • the charging current can be increased within a safe range, thereby increasing the charging speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电方法(200)和电子设备(400)。电子设备(400)通过充电接口(420)与充电器形成充电回路,对电池(410)充电,所述充电方法(200)包括:确定电池当前的电量(210);根据所述电量确定输入所述充电接口的充电电压(220);根据所述充电电压对所述电池进行充电(230)。通过根据电池(410)的电量动态地确定输入电子设备(400)的充电接口(420)的充电电压,能够提高充电时的充电电流,进而提高充电速度。

Description

充电方法和电子设备 技术领域
本发明涉及电子技术领域,尤其涉及充电方法和电子设备。
背景技术
随着便携式电子设备的广泛使用,人们需要经常对电子设备的电池充电,如何在安全的范围内尽可能提高电池的充电速度是目前需要解决的问题。
发明内容
本发明实施例提供了一种充电方法和电子设备,能够在安全范围内增大充电电流,进而提高充电速度。
第一方面,提供了一种充电方法,电子设备通过充电接口与充电器形成充电回路,对电池充电,所述充电方法包括:确定所述电池当前的电量;根据所述电量确定输入所述充电接口的充电电压;根据所述充电电压对所述电池充电。
结合第一方面,在第一种可能的实现方式中,所述电池电压为所述电池的开路电压,所述根据所述电量确定输入所述充电接口的充电电压,包括:确定所述电量对应的开路电压;根据所述开路电压和所述第一电压增量确定所述充电电压。
结合第一种可能的实现方式,在第二种可能的实现方式中,所述根据所述开路电压和所述第一电压增量确定所述充电电压,包括:根据以下算式确定所述充电电压VDPM
VDPM=V0+ΔV+ΔV`
其中,V0为所述开路电压,ΔV为所述第一电压增量,ΔV`为预设的第二电压增量,所述第二电压增量为由充电电流引起的所述电池的电压的虚高增量。
结合第一方面,在第三种可能的实现方式中,所述根据所述电量确定输入所述充电接口的充电电压,包括:根据所述电量查询预设的电压配置表确定所述充电电压,所述电压配置表包括所述电量与所述充电电压的对应关 系。
第二方面,提供了一种充电方法,电子设备通过充电接口与充电器形成充电回路,对电池充电,所述充电方法包括:确定所述电池当前的电压;根据所述电压和预设的电压增量确定输入所述充电接口的充电电压;根据所述充电电压对所述电池充电。
结合第二方面,在第二方面的第一种可能的实现方式中,所述根据所述电压和预设的电压增量确定输入所述充电接口的充电电压,包括:根据以下算式确定所述充电电压VDPM
VDPM=V1+ΔV
其中,V1为所述电压,ΔV为所述电压增量。
第三方面,提供了一种电子设备,其特征在于,包括电池和充电接口,所述电子设备通过所述充电接口与充电器形成充电回路,对所述电池充电,所述电子设备还包括处理器、存储器和总线系统,所述电池、所述处理器和所述存储器通过所述总线系统相连;其中,所述处理器调用所述存储器中存储的程序,以用于:
确定所述电池当前的电量;
根据所述电量确定输入所述充电接口的充电电压;
根据所述充电电压对所述电池充电。
结合第三方面,在第三方面的第一种可能的实现方式中,所述电池电压为所述电池的开路电压,所述处理器具体用于:确定所述电量对应的开路电压;根据所述开路电压和所述第一电压增量确定所述充电电压。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述处理器具体用于,根据以下算式确定所述充电电压VDPM
VDPM=V0+ΔV+ΔV`
其中,V0为所述开路电压,ΔV为所述第一电压增量,ΔV`为预设的第二电压增量,所述第二电压增量为由充电电流引起的所述电池的电压的虚高增量。
结合第三方面,在第三方面的第三种可能的实现方式中,所述处理器具体用于,根据所述电量查询预设的电压配置表确定所述充电电压,所述电压配置表包括所述电量与所述充电电压的对应关系。
第四方面,提供了一种电子设备,包括电池和充电接口,所述电子设备 通过所述充电接口与充电器形成充电回路,对所述电池充电,所述电子设备还包括处理器、存储器和总线系统,所述电池、所述处理器和所述存储器通过所述总线系统相连;
其中,所述处理器调用所述存储器中存储的程序,以用于:
确定所述电池当前的电压;
根据所述电压和预设的电压增量确定输入所述充电接口的充电电压;
根据所述充电电压对所述电池充电。
结合第四方面,在第四方面的第一种可能的实现方式中,所述处理器具体用于,根据以下算式确定所述充电电压VDPM
VDPM=V1+ΔV
其中,V1为所述电压,ΔV为所述电压增量。
基于上述技术方案,通过根据电池的电量动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是充电原理示意图。
图2是根据本发明一个实施例的充电方法的示意性流程图。
图3是根据本发明另一实施例的充电方法的示意性流程图。
图4是根据本发明一个实施例的电子设备的示意性框图。
图5是根据本发明另一实施例的电子设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例中的电子设备可以为终端设备,例如移动终端 (Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等。
为保护电池,电子设备中通常设置有充电集成电路(Integrated Circuit,简称IC)用于提供输入限流保护和输入电压保护。输入限流保护用于限制通用串行总线(Universal Serial Bus,简称USB)线路上的电流,可保护充电器的输出电流不超出设定值。输入电压保护用于限制USB线路上在充电IC的输入管脚处电压值不低于设定值。输入电压保护技术通常会在充电过程中使充电IC的输入管脚的输入电压为一个定值,以在保护电子设备的同时尽可能保证充电速度。
图1是现有的充电原理示意图。如图1所示,充电器和电子设备的充电IC通过USB线连接,充电器的输出电压为Va,充电IC的输入管脚处的输入电压为Vb,USB线上的压降为Va-Vb。假设USB线的内阻为R,则充电IC的输入管脚处的输入电流为(Va-Vb)/R。
图2是根据本发明实施例的充电方法200的示意性流程图。充电方法200可以由电子设备执行。电子设备通过充电接口与充电器形成充电回路,对电池充电,如图2所示,充电方法200包括:
210、确定电池当前的电量;
220、根据该电量确定输入该充电接口的充电电压;
230、根据充电电压对电池充电。
例如,步骤210中可以通过读取硬件测试电路(如电量计)的测量结果来确定电池当前的电量。本发明实施例中对测量电量时采用的具体方法不作限定,任何测量电量的方法均落入本发明实施例的保护范围内。例如:可以根据电压与电量之间的关系,采用测量电压的方法来确定相对应的电量;或者,还可以采用库仑计测量流过电池的电流来测量电池的电量。
步骤230中,可以将输入充电接口的电压配置为步骤220中确定的充电电压,对该电池充电。
为了保证电池的充电功能,充电器通过USB线输入电子设备的充电接口的电压应比电池电压高出第一电压增量。第一电压增量可以通过查询厂商提供的手册得到。
由于当电池处于不同电量状态时,电池的电压是不同的,而且电池的电量越少,电池的电压越低。对于充电过程而言,为进一步提高充电速度应尽 可能在安全的范围内发挥充电器的输出能力,即在安全范围内增大输入的充电电流。由于USB线的内阻不变,因此可以考虑根据电池的电量动态地减小输入电子设备的充电电压,通过增大USB线上的电压降来增大充电接口处的输入电流,进而提高充电速度。本发明实施例中,在充电过程中,根据电池的电量动态地调整输入电子设备的充电接口的充电电压,能够尽可能地增大输入电流,进而提高充电速度。
电池的电量可以用荷电状态(State Of Charge,简称SOC),也就是电量百分比来表示。
因此,本发明实施例中,通过根据电池的电量动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
具体地,步骤210中,还可以周期性地确定电池的电量。相应地,周期性地根据电池的电量确定输入的充电电压。
可选地,作为一个实施例,电池电压为电池的开路电压,步骤220可以包括:
确定当前的电量对应的开路电压;
根据开路电压和第一电压增量确定充电电压。
具体地,根据开路电压和第一电压增量确定充电电压,包括:根据以下算式(1)确定充电电压VDPM
VDPM=V0+ΔV+ΔV`  (1)
其中,V0为开路电压,ΔV为第一电压增量,ΔV`为预设的第二电压增量,所述第二电压增量为由充电电流引起的电池的电压的虚高增量。
其中,ΔV`大于或等于0,且VDPM应小于充电器的输出电压。
应理解,电量与开路电压V0的对应关系、ΔV和ΔV`可以预先配置在电子设备中。
在实际使用过程中,当电池充电时,充电电流可能导致电池的电压虚高,此时为保证充电功能,输入电子设备的充电电压应比充电时实测电压高第一电压增量。应理解,算式(1)中V0+ΔV`即可相当于当前电量对应的充电时实测电压。
现有技术中,电子设备通过充电接口与充电器形成充电回路,对电池充电时,输入电子设备的充电接口处的充电电压为恒定电压。为了保证电池的 充电功能,该恒定的充电电压比电池电量为100%时电池两端充电时实测电压高ΔV。
由于当电池处于不同电量状态时,电池的开路电压或充电时实测电压是不同的,而且电池的电量越少,电池的开路电压或充电时实测电压越低。本发明实施例中,在对电池充电过程中,通过确定电池当前的电量,并根据该电量采用上文描述的方法动态地确定充电电压,使得电池的电量小于100%时对应的充电电压小于现有技术中的恒定的充电电压,相对于现有技术来说能够通过增大USB线上的电压降来增大充电接口处的输入电流,进而提高充电速度。
具体地,在将充电电流引起的电池的电压的虚高增量ΔV`配置到电子设备中之前,虚高增量ΔV`可以通过实验得到。例如,可以通过对比电池的实测电压和开路电压得到。应理解,预先配置在电子设备中的虚高增量ΔV`可以是一恒定值,但本发明实施例并不限于此。例如,预先配置在电子设备中的虚高增量ΔV`还可以包括与电量具有对应关系的多个值。
其中充电时电池的实测电压的测量方法包括:采用标配充电器和USB线对电池进行充电;当电池的电量达到相应的电量数值时,用万用表测量此时电池电压,即为该电量状态时电池的实测电压。
在将电量对应的开路电压配置到电子设备中之前,开路电压可以通过查询设备厂商提供的电池的电量与电池的开路电压的对应表确定。下表1所示为某厂商提供的某型号电池的电量(采用SOC表示)与开路电压的对应表。
表1
SOC(%) 开路电压(V)
100 4.328
95 4.2576
90 4.2009
85 4.1457
80 4.0971
75 4.0497
70 4.0057
65 3.9633
60 3.9176
55 3.877
50 3.846
45 3.8222
40 3.8053
35 3.7873
30 3.773
25 3.7563
20 3.7367
15 3.7133
10 3.6798
可替代地,作为另一实施例,步骤220还可以包括:根据电量查询预设的电压配置表,电压配置表包括电量与充电电压的对应关系。
也就是说,还可以在电子设备中预先存储预设的电压配置表。下表2所示为电压配置表的一个具体例子。电压配置表中的充电电压可以根据算式(1)确定。应理解,电压配置表中电量还可以为具体的百分数值,例如100、90等;或者还可以为某一范围,例如91~100、81~90等,本发明对此并不限定。
表2
SOC(%) 充电电压(mv)
<100 4.6
<90 4.44
 
应理解,电压配置表中的充电电压可以基于第一电压增量和开路电压确定。具体方法可以参见上面算式(1)对应的内容,在此不再赘述。
或者,电压配置表中的充电电压可以基于第一电压增量和实测电压确定。具体可以采用以下算式(2)确定充电电压VDPM
VDPM=V1+ΔV  (2)
其中,V1为实测电压,ΔV为第一电压增量。应理解,算式(2)中的V1可相当于算式(1)中的V0+ΔV`。
本发明实施例中,通过根据电池的电量动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
图3所示为根据本发明另一实施例的充电方法300的示意性流程图。电子设备通过充电接口与充电器形成充电回路,对电池充电,如图3所述,充电方法300包括:
310、确定电池当前的电压;
320、根据该电压和预设的电压增量确定输入充电接口的充电电压;
330、根据充电电压对电池充电。
例如,步骤310中可以通过读取硬件测试电路(例如电压感应器)的测量结果来确定电池当前的电压。本发明实施例中对测量电压时采用的具体方法不作限定,任何测量电量的方法均落入本发明实施例的保护范围内。
步骤330中,可以将输入充电接口的电压配置为步骤320中确定的充电电压,对该电池充电。
当电池充电时,充电电流可能导致电池的电压虚高。此时为保证充电功能,输入电子设备的充电电压应比当前的电压高出预设的电压增量。
本发明实施例中,通过根据电池当前的电压动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
步骤310中,可以周期性地确定电池当前的电压。
具体地,步骤320包括:根据以下算式(3)确定充电电压VDPM
VDPM=V1+ΔV  (3)
其中,V1为电池当前的电压,ΔV为预设的电压增量。
VDPM应小于充电器的输出电压。
现有技术中,电子设备通过充电接口与充电器形成充电回路,对电池充电时,输入电子设备的充电接口处的充电电压为恒定电压。为了保证电池的充电功能,该恒定的充电电压比电池电量为100%时电池两端的充电时实测电压高ΔV。
由于当电池充电过程中处于不同电量状态时,电池两端的实测电压是不同的,而且电池的电量越少,电池的实测电压越低。也就是说,在充电的过程中,电池的实测电压是逐渐变化的。本发明实施例中,在对电池充电过程中,通过动态地确定当前的电压,并根据该电压采用上文描述的方法动态地确定充电电压,使得充电电压小于现有技术中的恒定的充电电压,相对于现有技术来说能够通过增大USB线上的电压降来增大充电接口处的输入电流,进而提高充电速度。
本发明实施例中,通过根据电池当前的电压动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
图4是根据本发明实施例的电子设备400的示意性框图。如图4所示,电子设备包括电池410和充电接口420。电子设备400通过充电接口420与充电器形成充电回路,对电池410充电。如图4所示,电子设备400还包括处理器430、存储器440和总线系统450通过总线系统450相连;其中,处理器430调用存储器440中存储的程序,以用于:
确定电池410当前的电量;
根据该电量确定输入充电接口420的充电电压;
根据充电电压对电池410充电。
本发明实施例中,通过根据电池的电量动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
应理解,在本发明实施例中,该处理器430可以是中央处理单元(Central Processing Unit,简称CPU),该处理器430还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器440可以包括只读存储器和随机存取存储器,并向处理器430提供指令和数据。存储器440的一部分还可以包括非易失性随机存取存储器。例如,存储器440还可以存储设备类型的信息。
该总线系统450包括数据总线、电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统450。
在实现过程中,上述方法的各步骤可以通过处理器430中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器440,处理器430读取存储器440中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,电池电压为电池的开路电压,处理器430具体用于:
确定当前的电量对应的开路电压;
根据开路电压和第一电压增量确定充电电压。
其中,处理器430可以具体用于,根据以下算式(1)确定充电电压VDPM
VDPM=V0+ΔV+ΔV`  (1)
其中,V0为开路电压,ΔV为第一电压增量,ΔV`为预设的第二电压增量,该第二电压增量为由充电电流引起的电池的电压的虚高增量。
可替代地,作为另一实施例,处理器430具体用于,根据电量查询预设的电压配置表,电压配置表包括当前的电量与充电电压的对应关系。
其中,充电电压可以是基于第一电压增量和开路电压确定的,具体可以采用算式(1)确定充电电压。但本发明并不限于此,充电电压还可以是基于第一电压增量和电池的实测电压确定的。
应理解,根据本发明实施例的电子设备400可对应于根据本发明实施例的充电方法200中的电子设备,并且电子设备400中的各个单元的上述和其他操作和/或功能分别为了实现图2的充电方法200的相应流程,为了简洁,在此不再赘述。
本发明实施例中,通过根据电池的电量动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
图5是根据本发明另一实施例的电子设备500的示意性框图。如图5所示,电子设备包括电池510和充电接口520。电子设备500通过充电接口520与充电器形成充电回路,对电池510充电。如图5所示,电子设备500还包括处理器530、存储器540和总线系统550通过总线系统550相连;其中,处理器530调用存储器540中存储的程序,以用于:
确定电池当前的电压;
根据该电压和预设的电压增量确定输入充电接口的充电电压;
根据充电电压对电池510充电。
本发明实施例中,通过根据电池当前的电压动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
应理解,在本发明实施例中,该处理器530可以是CPU,该处理器530还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器540可以包括只读存储器和随机存取存储器,并向处理器530提供指令和数据。存储器540的一部分还可以包括非易失性随机存取存储器。例如,存储器540还可以存储设备类型的信息。
该总线系统550包括数据总线、电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
在实现过程中,上述方法的各步骤可以通过处理器530中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器540,处理器530读取存储器540中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
处理器530可以具体用于,根据以下算式(3)确定所述充电电压VDPM
VDPM=V1+ΔV  (3)
其中,V1为电池当前的实测电压,ΔV为所述电压增量。
应理解,根据本发明实施例的电子设备500可对应于根据本发明实施例的充电方法300中的电子设备,并且电子设备500中的各个单元的上述和其他操作和/或功能分别为了实现图3的充电方法300的相应流程,为了简洁,在此不再赘述。
本发明实施例中,通过根据电池当前的电压动态地确定输入电子设备的充电接口的充电电压,能够在安全范围内增大充电电流,进而提高充电速度。
以上仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种充电方法,其特征在于,电子设备通过充电接口与充电器形成充电回路,对电池充电,所述充电方法包括:
    确定所述电池当前的电量;
    根据所述电量确定输入所述充电接口的充电电压;
    根据所述充电电压对所述电池充电。
  2. 根据权利要求1所述的充电方法,其特征在于,所述电池电压为所述电池的开路电压,所述根据所述电量确定输入所述充电接口的充电电压,包括:
    确定所述电量对应的开路电压;
    根据所述开路电压和所述第一电压增量确定所述充电电压。
  3. 根据权利要求2所述的充电方法,其特征在于,所述根据所述开路电压和所述第一电压增量确定所述充电电压,包括:
    根据以下算式确定所述充电电压VDPM
    VDPM=V0+ΔV+ΔV`
    其中,V0为所述开路电压,ΔV为所述第一电压增量,ΔV`为预设的第二电压增量,所述第二电压增量为由充电电流引起的所述电池的电压的虚高增量。
  4. 根据权利要求1所述的充电方法,其特征在于,所述根据所述电量确定输入所述充电接口的充电电压,包括:
    根据所述电量查询预设的电压配置表确定所述充电电压,所述电压配置表包括所述电量与所述充电电压的对应关系。
  5. 一种充电方法,其特征在于,电子设备通过充电接口与充电器形成充电回路,对电池充电,所述充电方法包括:
    确定所述电池当前的电压;
    根据所述电压和预设的电压增量确定输入所述充电接口的充电电压;
    根据所述充电电压对所述电池充电。
  6. 根据权利要求5所述的充电方法,其特征在于,所述根据所述电压和预设的电压增量确定输入所述充电接口的充电电压,包括:
    根据以下算式确定所述充电电压VDPM
    VDPM=V1+ΔV
    其中,V1为所述电压,ΔV为所述电压增量。
  7. 一种电子设备,其特征在于,包括电池和充电接口,所述电子设备通过所述充电接口与充电器形成充电回路,对所述电池充电,所述电子设备还包括处理器、存储器和总线系统,所述电池、所述处理器和所述存储器通过所述总线系统相连;
    其中,所述处理器调用所述存储器中存储的程序,以用于:
    确定所述电池当前的电量;
    根据所述电量确定输入所述充电接口的充电电压;
    根据所述充电电压对所述电池充电。
  8. 根据权利要求7所述的电子设备,其特征在于,所述电池电压为所述电池的开路电压,所述处理器具体用于:
    确定所述电量对应的开路电压;
    根据所述开路电压和所述第一电压增量确定所述充电电压。
  9. 根据权利要求8所述的电子设备,其特征在于,所述处理器具体用于,根据以下算式确定所述充电电压VDPM
    VDPM=V0+ΔV+ΔV`
    其中,V0为所述开路电压,ΔV为所述第一电压增量,ΔV`为预设的第二电压增量,所述第二电压增量为由充电电流引起的所述电池的电压的虚高增量。
  10. 根据权利要求7所述的电子设备,其特征在于,所述处理器具体用于,根据所述电量查询预设的电压配置表确定所述充电电压,所述电压配置表包括所述电量与所述充电电压的对应关系。
  11. 一种电子设备,其特征在于,包括电池和充电接口,所述电子设备通过所述充电接口与充电器形成充电回路,对所述电池充电,所述电子设备还包括处理器、存储器和总线系统,所述电池、所述处理器和所述存储器通过所述总线系统相连;
    其中,所述处理器调用所述存储器中存储的程序,以用于:
    确定所述电池当前的电压;
    根据所述电压和预设的电压增量确定输入所述充电接口的充电电压;
    根据所述充电电压对所述电池充电。
  12. 根据权利要求11所述的电子设备,其特征在于,所述处理器具体用于,根据以下算式确定所述充电电压VDPM
    VDPM=V1+ΔV
    其中,V1为所述电压,ΔV为所述电压增量。
PCT/CN2015/088350 2015-08-28 2015-08-28 充电方法和电子设备 WO2017035689A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580064370.4A CN107005075A (zh) 2015-08-28 2015-08-28 充电方法和电子设备
PCT/CN2015/088350 WO2017035689A1 (zh) 2015-08-28 2015-08-28 充电方法和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088350 WO2017035689A1 (zh) 2015-08-28 2015-08-28 充电方法和电子设备

Publications (1)

Publication Number Publication Date
WO2017035689A1 true WO2017035689A1 (zh) 2017-03-09

Family

ID=58186399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088350 WO2017035689A1 (zh) 2015-08-28 2015-08-28 充电方法和电子设备

Country Status (2)

Country Link
CN (1) CN107005075A (zh)
WO (1) WO2017035689A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371156A (zh) * 2005-12-13 2009-02-18 科巴西斯有限责任公司 在混合机车应用中的无ir的电压确定
CN101917032A (zh) * 2010-07-23 2010-12-15 中兴通讯股份有限公司 一种移动终端及其电池充电的方法
CN102025174A (zh) * 2010-10-28 2011-04-20 惠州Tcl移动通信有限公司 一种根据电池电压自动调整输出的新型充电器
CN103138325A (zh) * 2011-12-01 2013-06-05 英特赛尔美国有限公司 用于共享电感器调节器的控制系统和方法
CN103606716A (zh) * 2013-11-30 2014-02-26 华为技术有限公司 一种充电方法及装置
CN103683387A (zh) * 2013-11-15 2014-03-26 小米科技有限责任公司 充电器、充电方法、装置和控制芯片
US20140375280A1 (en) * 2013-06-25 2014-12-25 Samsung Electronics Co., Ltd. Method for charging battery and electronic device thereof
CN104362404A (zh) * 2014-09-25 2015-02-18 天津三星电子有限公司 一种充电器及充电方法
CN104600384A (zh) * 2015-01-04 2015-05-06 宇龙计算机通信科技(深圳)有限公司 一种充电方法、充电装置及相关装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392943C (zh) * 2006-04-11 2008-06-04 广州市番禺丰江电池制造有限公司 快速充电方法及充电装置
WO2014087450A1 (ja) * 2012-12-04 2014-06-12 トヨタ自動車株式会社 充電制御装置、充電制御方法、コンピュータプログラム、記録媒体
KR102082866B1 (ko) * 2013-04-18 2020-04-14 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371156A (zh) * 2005-12-13 2009-02-18 科巴西斯有限责任公司 在混合机车应用中的无ir的电压确定
CN101917032A (zh) * 2010-07-23 2010-12-15 中兴通讯股份有限公司 一种移动终端及其电池充电的方法
CN102025174A (zh) * 2010-10-28 2011-04-20 惠州Tcl移动通信有限公司 一种根据电池电压自动调整输出的新型充电器
CN103138325A (zh) * 2011-12-01 2013-06-05 英特赛尔美国有限公司 用于共享电感器调节器的控制系统和方法
US20140375280A1 (en) * 2013-06-25 2014-12-25 Samsung Electronics Co., Ltd. Method for charging battery and electronic device thereof
CN103683387A (zh) * 2013-11-15 2014-03-26 小米科技有限责任公司 充电器、充电方法、装置和控制芯片
CN103606716A (zh) * 2013-11-30 2014-02-26 华为技术有限公司 一种充电方法及装置
CN104362404A (zh) * 2014-09-25 2015-02-18 天津三星电子有限公司 一种充电器及充电方法
CN104600384A (zh) * 2015-01-04 2015-05-06 宇龙计算机通信科技(深圳)有限公司 一种充电方法、充电装置及相关装置

Also Published As

Publication number Publication date
CN107005075A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
CN108475935B (zh) 一种电池充电管理方法和终端
CN111239624B (zh) 一种电池容量校准方法、装置、电子设备及存储介质
US20190089166A1 (en) Charging Method and Mobile Terminal
TWI642959B (zh) 電池之電量估測方法及裝置
EP3677925B1 (en) Adapter testing apparatus and method
US20130093430A1 (en) Battery state measuring method and apparatus
US9146261B2 (en) Electronic device and method of electronic device for determining power source device
CN109991545B (zh) 一种电池包电量检测方法、装置及终端设备
TW201403105A (zh) 電池電量計算方法及系統
CN111308354A (zh) 电池健康度状态的检测方法、装置、电子设备及存储介质
US20100217552A1 (en) Battery Management System for Measuring Remaining Charges in a Battery Packet with Multi-Cells
JP2013192442A (ja) 電池充電保護回路
US9026387B2 (en) Battery voltage measurement
US20180267587A1 (en) Comparing electrical quantity output by power adapter to electrical quantity input by computing device
CN103616551B (zh) 能在充电时精确获取电池电压的终端及电池电压获取方法
TWI678543B (zh) 電池電量估計方法與電子裝置
CN112698229B (zh) 短路电流检测方法、装置、可读存储介质及电子设备
CN114137415A (zh) 电池组的发热量检测方法、装置、车辆及存储介质
CN107994652B (zh) 一种监测电池充放电的电路及基于该电路的电量计量系统
WO2017035689A1 (zh) 充电方法和电子设备
WO2023155514A1 (zh) 缓冲电阻的校验方法、终端和存储介质
CN112654877A (zh) 一种充电检测方法、充电检测装置及终端设备
CN113169385B (zh) 电池包、测量电池电流的电路系统及测量电池电流的设备
CN113748438B (zh) 电量预测方法和设备
CN106772092A (zh) 基于移动终端获取电池电压的充电电流设置系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902496

Country of ref document: EP

Kind code of ref document: A1