WO2017033985A1 - Current cut-off device and manufacturing method therefor - Google Patents

Current cut-off device and manufacturing method therefor Download PDF

Info

Publication number
WO2017033985A1
WO2017033985A1 PCT/JP2016/074709 JP2016074709W WO2017033985A1 WO 2017033985 A1 WO2017033985 A1 WO 2017033985A1 JP 2016074709 W JP2016074709 W JP 2016074709W WO 2017033985 A1 WO2017033985 A1 WO 2017033985A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
terminal
current
deformation
energization
Prior art date
Application number
PCT/JP2016/074709
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 弘瀬
幹也 栗田
竜二 大井手
俊昭 岩
小川 義博
淳 光安
騎慎 秋吉
Original Assignee
株式会社豊田自動織機
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, イーグル工業株式会社 filed Critical 株式会社豊田自動織機
Publication of WO2017033985A1 publication Critical patent/WO2017033985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/16Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against electric overloads, e.g. including fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a current interrupting device that is housed in a case and interrupts the energization path when the pressure in the case increases.
  • a current interrupting device disclosed in Japanese Patent Application Laid-Open No. 2013-215862 has an energizing plate and a deforming plate.
  • the energization plate is electrically connected to the electrode assembly in the case.
  • the deformation plate electrically connects the terminal fixed to the mounting hole on the wall surface of the case and the current-carrying plate.
  • the deformable plate is located above the energizing plate and below the terminals. When the pressure in the case increases, the deformation plate is deformed, and the electrical connection between the terminal and the electrode assembly is interrupted.
  • a terminal disclosed in Japanese Patent Laid-Open No. 2013-215862 is formed with a through hole extending in the vertical direction, and the inside and outside of the case communicate with each other through the through hole.
  • a laser beam is irradiated from the outside of the case toward the deformable plate through the through hole of the terminal in a state where they are in contact with each other.
  • this specification discloses the technique which can weld a deformation
  • the current interrupt device disclosed in this specification is housed in a case.
  • the current interrupting device electrically connects the electrode assembly housed in the case to the positive or negative terminal fixed to the mounting hole on the wall surface of the case, and the internal pressure of the case rises above a predetermined value.
  • the current-carrying path for electrically connecting the electrode assembly and the terminal is cut off.
  • the current interrupt device includes an energization plate and a first deformation plate.
  • the energization plate is electrically connected to the electrode assembly.
  • the first deforming plate is electrically connected to the terminal and is disposed on one side of the energizing plate so as to face the energizing plate.
  • the energization plate has a contact portion that is in contact with the first deformation plate in a state where the electrode assembly and the terminal are electrically connected.
  • the first deformation plate is electrically connected in a state where it is in contact with the contact portion of the current-carrying plate when the electrode assembly and the terminal are in a conductive state, and the electrode assembly and the terminal are in a non-conductive state. Then, it is electrically disconnected from the energizing plate while being separated from the energizing plate.
  • the contact portion of the energization plate is in surface contact with the first deformation plate.
  • the contact surface of the contact portion with the first deformation plate is flat, and the contact surface of the first deformation plate with the contact portion is flat.
  • a welding portion is provided at the contact portion on the surface on the other side of the energization plate. At the position where the welded portion is provided, the energization plate and the first deformation plate are joined, and the thickness of the energization plate is equal to or less than the thickness of the first deformation plate.
  • the thickness of one plate member on which the weld is provided (that is, the plate member directly irradiated with the laser beam) is larger than the thickness of the other plate member, the heat of the laser beam is It may diffuse inside the plate material and the two plate materials may not be properly welded.
  • the thickness of an electricity supply board is below the thickness of a 1st deformation board in the position which provides a welding part. For this reason, even when the laser beam is irradiated from the other side of the energization plate toward the energization plate, the heat of the laser beam becomes difficult to diffuse inside the energization plate, and the energization plate and the first deformation plate are joined.
  • the “thickness of the current plate at the position where the welded part is provided” means the height of the raised part of the welded part. It means the thickness of the current-carrying plate excluded.
  • the thickness of the current plate before welding means the thickness of the current plate before welding. Therefore, even if the thickness of the current-carrying plate is greater than the thickness of the first deformation plate due to the rise of the welded portion after welding, if the thickness of the current-carrying plate before welding is equal to or less than the thickness of the first deformation plate, At the position where the portion is provided, the thickness of the current-carrying plate is less than or equal to the thickness of the first deformable plate.
  • the present specification discloses a novel manufacturing method of the current interrupting device.
  • the manufacturing method of this electric current interruption apparatus is equipped with a terminal fixing process, a 1st deformation board welding process, an electricity supply board arrangement
  • the terminal fixing step the terminal is fixed in a mounting hole provided in the wall surface of the case.
  • the first deformation plate welding step the surface on one side of the first deformation plate is welded to the surface on the other side of the terminal.
  • the energizing plate arranging step the energizing plate is arranged so as to contact at least partly with the surface on the other side of the first deforming plate after the terminal fixing step and the first deforming plate welding step.
  • the energizing plate and the first deformation plate are welded by irradiating the energizing plate with the laser beam from the other side to the other side of the energizing plate.
  • the thickness of the current plate at the position where the laser beam is irradiated is equal to or less than the thickness of the first deformation plate at the position where the current plate is joined by welding.
  • the energizing plate and the first deformable plate can be joined without going through the terminal through-hole, so that there are other members between the energized plate and the welded portion of the first deformable plate and the laser beam irradiation port.
  • the laser beam can be irradiated without being interposed, and the energization plate and the first deformation plate can be more easily welded.
  • the present specification discloses a power storage device including the above-described current interrupt device.
  • the power storage device may be a secondary battery. According to this configuration, current can appropriately flow between the terminals.
  • FIG. 1 is a longitudinal sectional view of a power storage device according to Embodiment 1.
  • FIG. The elements on larger scale of the dashed-two dotted line part 200 of FIG.
  • the manufacturing method of the electric current interruption apparatus of Example 1 is shown (terminal fixing process, 1st deformation board welding process).
  • the manufacturing method of the electric current interruption apparatus of Example 1 is shown (electricity plate arrangement
  • the welded portion may be disposed at a part of the contact portion of the energizing plate.
  • the thickness of the energization plate may be equal to or less than the thickness of the first deformation plate in the entire area of the contact portion. According to this configuration, it is not necessary to strictly control the position where the energization plate is irradiated with the laser beam, and the energization plate and the first deformation plate can be joined relatively easily.
  • a groove portion that goes around the outer periphery of the welded portion may be provided on the other surface of the energization plate.
  • the thickness of the energizing plate in the portion where the groove is provided may be smaller than the thickness of the energizing plate in the portion where the groove is not provided.
  • the mechanical strength of the energizing plate in the portion where the groove is provided is lower than the mechanical strength of the energizing plate in the portion where the groove is not provided. For this reason, the timing at which the first deformable plate changes from the conductive state to the non-conductive state can be controlled by adjusting the thickness of the conductive plate in the portion where the groove is provided.
  • the groove may have a circular shape with a radius r.
  • the thickness of the current-carrying plate in the portion where the groove is provided is t and the area of the contact part of the current-carrying plate is A, the following relational expression: May be established. According to this configuration, in the energization path, the resistance value of the energization plate in the portion where the groove is provided can be made higher than the resistance value of the energization plate in the contact portion.
  • the contact portion can be designed without affecting the maximum value of the resistance of the energization path.
  • the current interrupting device disclosed in the present specification further includes a second deformation plate that is disposed on the other side with respect to the energization plate and provided with a protrusion protruding toward the energization plate. It may be.
  • the second deformable plate includes a first state in which the protrusion is positioned at the first position and the energizing plate and the first deformable plate are in contact with each other when the electrode assembly and the terminal are electrically connected; When the terminal is in a non-conducting state, the protrusion may move from the first position to the second position on the energizing plate side to switch to the second state in which the energizing plate and the first deforming plate are separated from each other.
  • the power storage device 100 is a lithium ion secondary battery that is a type of secondary battery.
  • the power storage device 100 includes a case 1, an electrode assembly 3 accommodated in the case 1, and terminals 5 and 7 fixed to the case 1.
  • the electrode assembly 3 and the terminals 5 and 7 are electrically connected.
  • the power storage device 100 also includes a current interrupt device 10 disposed between the electrode assembly 3 and the terminal 7.
  • the inside of the case 1 is injected with an electrolytic solution, and the electrode assembly 3 is immersed in the electrolytic solution.
  • the groove portion 20 a and the contact portion 22 (described later) of the energizing plate 20 are shown enlarged to make the drawing easier to see.
  • Case 1 is made of metal and is a substantially rectangular parallelepiped box-shaped member.
  • the case 1 includes a main body 111 and a lid portion 112 fixed to the main body 111.
  • the lid part 112 covers the upper part of the main body 111.
  • Mounting holes 11 and 13 are formed in the lid portion 112 of the case 1.
  • the terminal 5 is fixed to the mounting hole 11 and communicates with the inside and outside of the case 1.
  • the terminal 7 is fixed to the mounting hole 13 and communicates with the inside and outside of the case 1.
  • the lid 112 corresponds to an example of a “case wall surface”.
  • the electrode assembly 3 includes a positive electrode sheet, a negative electrode sheet, and a separator disposed between the positive electrode sheet and the negative electrode sheet.
  • the electrode assembly 3 is configured by laminating a plurality of positive electrode sheets, a plurality of negative electrode sheets, and a plurality of separators.
  • the positive electrode sheet and the negative electrode sheet include a current collecting member and an active material layer formed on the current collecting member.
  • the current collecting member one used for the positive electrode sheet is, for example, an aluminum foil, and one used for the negative electrode sheet is, for example, a copper foil.
  • the electrode assembly 3 includes a positive current collecting tab 41 and a negative current collecting tab 42.
  • the positive electrode current collecting tab 41 is formed on the upper end portion of the positive electrode sheet.
  • the negative electrode current collecting tab 42 is formed on the upper end portion of the negative electrode sheet.
  • the positive electrode current collecting tab 41 and the negative electrode current collecting tab 42 protrude above the electrode assembly 3.
  • the positive electrode current collecting tab 41 is fixed to the positive electrode lead 43.
  • the negative electrode current collecting tab 42 is fixed to the negative electrode lead 44.
  • the positive electrode lead 43 is connected to the positive electrode current collecting tab 41 and the terminal 5.
  • the positive electrode current collecting tab 41 and the terminal 5 are electrically connected via the positive electrode lead 43.
  • An insulating member 72 is disposed between the positive electrode lead 43 and the case 1. The insulating member 72 insulates the positive electrode lead 43 from the lid portion 112 of the case 1.
  • the negative electrode lead 44 is connected to the negative electrode current collecting tab 42 and the connection terminal 46.
  • the connection terminal 46 is electrically connected to the terminal 7 via the current interrupt device 10. Therefore, the negative electrode current collecting tab 42 and the terminal 7 are electrically connected via the negative electrode lead 44, the connection terminal 46, and the current interrupt device 10. Thereby, an energization path for connecting the electrode assembly 3 and the terminal 7 is formed.
  • the current interrupt device 10 can interrupt this energization path.
  • the configuration of the current interrupt device 10 will be described later.
  • An insulating member 73 is disposed between the negative electrode lead 44 and the case 1. The insulating member 73 insulates the negative electrode lead 44 from the case 1.
  • Resin gaskets 62 and 63 are disposed on the upper surface of the lid portion 112.
  • the gasket 62 is fixed to the terminal 5.
  • a flat plate-like external terminal 60 is disposed on the upper surface of the gasket 62.
  • a through hole 60 a is formed in the external terminal 60.
  • the through hole 60a is larger in size on the lower surface side than on the upper surface side.
  • the gasket 62 insulates the lid portion 112 from the external terminal 60.
  • the bolt 64 passes through the through hole 60a. Specifically, the head of the bolt 64 is accommodated in the through hole 60a. Further, the shaft portion of the bolt 64 protrudes above the external terminal 60 through the through hole 60a.
  • the terminal 5, the external terminal 60, and the bolt 64 are electrically connected to each other and constitute a positive terminal.
  • the gasket 63 is fixed to the terminal 7.
  • a flat plate-like external terminal 61 is disposed on the upper surface of the gasket 63.
  • a through hole similar to the through hole 60a of the external terminal 60 is formed in the external terminal 61.
  • the head of the bolt 65 is accommodated in the through hole, and the shaft portion of the bolt 65 passes through the through hole and the external terminal 61 is passed through. Projecting upward.
  • the configuration of the gasket 63, the external terminal 61, and the bolt 65 is the same as the configuration of the gasket 62, the external terminal 60, and the bolt 64 described above.
  • the terminal 7, the external terminal 61, and the bolt 65 are electrically connected to each other and constitute a negative terminal.
  • the terminal 7 will be described with reference to FIG. As shown in FIG. 2, the terminal 7 is caulked and fixed to the case 1.
  • the terminal 7 includes a cylindrical portion 14, a base portion 15, and a fixing portion 16.
  • the cylindrical portion 14 is inserted through the mounting hole 13.
  • a through hole 14 a is formed in the cylindrical portion 14.
  • the base portion 15 is formed in an annular shape.
  • the base portion 15 is located at the lower end portion of the cylindrical portion 14 and is disposed inside the case 1.
  • a recess 15 a is formed in the base portion 15.
  • the recess 15a communicates with the through hole 14a, and the interior of the recess 15a is maintained at atmospheric pressure.
  • the fixed portion 16 is formed in an annular shape.
  • the fixed portion 16 is located at the upper end portion of the cylindrical portion 14 and is disposed outside the case 1.
  • the terminal 7 is fixed to the lid portion 112 of the case 1 by a fixing portion 16.
  • a seal member 19 is disposed between the lid portion 112 of the case 1 and the terminal 7.
  • the seal member 19 has an annular shape and goes around the cylindrical portion 14 of the terminal 7.
  • the seal member 19 is in contact with the lower surface of the lid portion 112 of the case 1 and the inner peripheral surface of the mounting hole 13, and the base portion 15 and the cylindrical portion 14 of the terminal 7, thereby sealing the inside and outside of the case 1. Yes.
  • the seal member 19 is made of a material having insulating properties and electrolyte resistance (perfluoroalkoxyalkane (PFA) in this embodiment).
  • PFA perfluoroalkoxyalkane
  • the lid portion 112 and the terminal 7 are insulated by the seal member 19.
  • the material of the seal member 19 is not limited to this, and may be, for example, ethylene-propylene rubber (EPM).
  • the current interrupt device 10 includes a deformable plate 30 and a current plate 20.
  • the deformable plate 30 is a circular conductive diaphragm convex downward, and is formed of copper or a copper alloy in this embodiment.
  • the deformation plate 30 is disposed above the energizing plate 20 so as to face the energizing plate 20.
  • the deformation plate 30 has a substantially constant thickness t1 (see FIG. 3), and has a central portion 32 on the radially inner side and an outer peripheral portion 31 on the radially outer side.
  • the lower surface of the central portion 32 is flat and is substantially parallel to the lid portion 112 of the case 1.
  • the central portion 32 is in surface contact (surface contact) with a contact portion 22 (described later) of the energization plate 20.
  • the outer peripheral portion 31 is connected to the outer peripheral portion of the base portion 15 of the terminal 7. That is, the deformation plate 30 is electrically connected to the terminal 7.
  • the recess 15 a of the base portion 15 is covered with the deformation plate 30. Since the inside of the recess 15 a is maintained at atmospheric pressure, atmospheric pressure acts on the upper surface of the deformation plate 30.
  • the deformation plate 30 corresponds to an example of “first deformation plate”, and the upper side of the energization plate 20 corresponds to an example of “one side of the energization plate”.
  • the current plate 20 is a conductive metal member, and is formed of copper or a copper alloy in this embodiment.
  • the energization plate 20 is formed in a circular shape having a larger diameter than the deformation plate 30 in plan view, and is disposed below the deformation plate 30.
  • the upper surface of the energization plate 20 is flat and substantially parallel to the lid portion 112 of the case 1.
  • a connection terminal 46 is connected to the energization plate 20. That is, the energization plate 20 is electrically connected to the electrode assembly 3 through the connection terminal 46 and the negative electrode lead 44.
  • a circular groove 20a is formed on the lower surface of the energizing plate 20 in a bottom view (see FIG. 4). As shown in FIGS.
  • the cross section when the groove 20 a is cut in the thickness direction of the current-carrying plate 20, the cross section has a triangular shape having an apex v above.
  • the radius of the groove 20a that is, the distance from the center O of the groove 20a to the vertex v) when the energizing plate 20 is viewed from the bottom is r (see FIG. 4).
  • the energizing plate 20 has a substantially constant thickness t4 in the circumferential direction at the apex v of the groove 20a.
  • the energizing plate 20 is divided into a contact portion 22 positioned radially inward of the vertex v and an outer peripheral portion 21 positioned radially outward of the vertex v by the groove 20a.
  • the lower surface of the central portion 32 of the deformation plate 30 and the upper surface of the contact portion 22 of the energizing plate 20 are both substantially parallel to the lid portion 112 of the case 1 and are both flat.
  • the upper surface of the contact portion 22 is in surface contact (surface contact) with the lower surface of the central portion 32 of the deformation plate 30 in the entire contact portion 22.
  • the contact area is A.
  • the current interrupting device 10 has an energization path that connects the connection terminal 46, the energization plate 20, the deformation plate 30, and the terminal 7 in series in this order.
  • the resistance value of the energizing plate 20 in the groove 20 a can be made higher than the resistance value of the energizing plate 20 in the contact portion 22.
  • the resistance value of the energizing plate 20 in the portion where the groove 20 a is provided can be made higher than the resistance value of the energizing plate 20 in the contact portion 22, the maximum resistance of the energization path becomes the energizing plate 20 in the contact portion 22. It is no longer determined by the resistance value. Therefore, it is possible to design the contact portion 22 without affecting the maximum value of the resistance of the energization path.
  • the flatness of the lower surface of the central portion 32 and the upper surface of the contact portion 22 can be appropriately set in consideration of the contact resistance and welding quality of both.
  • the flatness of the lower surface of the central portion 32 and the upper surface of the contact portion 22 can be 0.0 to 0.2 mm, and more preferably 0.0 to 0.05 mm. By maintaining the flatness within such a range, the contact resistance and welding quality of both can be suitably secured.
  • the contact portion 22 has a substantially constant thickness t2, and the outer peripheral portion 21 has a substantially constant thickness t3.
  • the thickness t2 of the contact portion 22 is smaller than the thickness t3 of the outer peripheral portion 21 and smaller than the thickness t1 of the deformable plate 30.
  • the thickness t3 of the outer peripheral portion 21 is larger than the thickness t1 of the deformation plate 30.
  • a plurality of weld beads 40 are formed on the lower surface of the current-carrying plate 20 at the contact portion 22. That is, at the position where the weld bead 40 is formed, the thickness t ⁇ b> 2 of the energization plate 20 is smaller than the thickness t ⁇ b> 1 of the deformation plate 30.
  • the thickness t4 of the energizing plate 20 in the portion where the groove 20a is formed is smaller than the thickness (ie, the thickness t2 or t3) of the energizing plate 20 in the portion where the groove 20a is not formed.
  • the mechanical strength of the current-carrying plate 20 in the portion where the groove portion 20a is formed is the mechanical strength of the current-carrying plate 20 (that is, the contact portion 22 and the outer peripheral portion 21) in the portion where the groove portion 20a is not formed. Lower than. For this reason, the timing at which the deformable plate 30 changes from the conductive state to the nonconductive state can be controlled by adjusting the thickness t4 of the conductive plate 20 in the groove 20a.
  • the lower surface of the energizing plate 20 corresponds to an example of “the surface on the other side of the energizing plate”, and the weld bead 40 corresponds to an example of a “welded portion”.
  • the energization plate 20 is formed with a vent hole 20b, and the space 50 between the deformation plate 30 and the energization plate 20 communicates with the space in the case 1 through the vent hole 20b. Yes.
  • a plurality of through holes 20c are formed in the energizing plate 20 on the radially outer side than the air holes 20b.
  • a heat caulking boss 79 of a holder 80 described later is inserted into the through hole 20c.
  • the energization plate 20 is fixed to the holder 80 by subjecting the heat caulking boss 79 to heat caulking.
  • An annular insulating member 75 is disposed between the outer peripheral portion 31 of the deformation plate 30 and the outer peripheral portion 21 of the energizing plate 20.
  • the holder 80 accommodates and holds the base portion 15 of the terminal 7, the deformation plate 30, and the insulating member 75 therein.
  • the holder 80 is annular, and the terminal 7 is inserted through the center thereof.
  • the holder 80 is formed of a material having insulation properties and resistance to electrolytic solution (in this embodiment, polyphenylene sulfide (PPS)).
  • PPS polyphenylene sulfide
  • the material of the holder 80 is not limited to the above, and may be, for example, PFA, polytetrafluoroethylene (PTFE), polypropylene (PP), or the like.
  • the holder 80 has an upper end portion 77 and a side portion 78.
  • the upper end portion 77 is disposed between the lid portion 112 of the case 1 and the base portion 15 of the terminal 7.
  • the upper end portion 77 is in contact with the lower surface of the lid portion 112 and the upper surface of the base portion 15, and serves as a spacer that determines the distance between the lid portion 112 and the base portion 15.
  • the lid portion 112 and the base portion 15 are insulated by the upper end portion 77.
  • the side portion 78 extends downward from the outer peripheral edge of the upper end portion 77.
  • the side portion 78 accommodates the base portion 15, the deformation plate 30, and the insulating member 75 therein.
  • a lower surface 78 a of the side portion 78 is flat and substantially parallel to the lid portion 112 of the case 1.
  • a plurality of heat caulking bosses 79 are formed on the lower surface 78 a of the side portion 78.
  • the heat caulking boss 79 is formed at a position corresponding to the through hole 20c of the energizing plate 20, and is inserted into the through hole 20c.
  • the heat caulking boss 79 is in close contact with the inner peripheral surface of the through hole 20c by the heat caulking process, and the diameter of the lower end thereof is larger than the diameter of the through hole 20c.
  • the current interrupt device 10 has an energization path that connects the connection terminal 46, the energization plate 20, the deformation plate 30, and the terminal 7 in series. For this reason, the electrode assembly 3 and the terminal 7 are electrically connected via the energization path of the current interrupt device 10.
  • the deformable plate 30 is electrically connected to the energizing plate 20 while being in contact with the abutting portion 22 of the energizing plate 20, and the terminal 5 and the terminal 7 are energized. It is possible to conduct.
  • the pressure in the case 1 increases due to overcharging of the power storage device 100 or the like, the pressure that acts on the lower surface of the deformation plate 30 through the vent hole 20b increases.
  • atmospheric pressure acts on the upper surface of the deformation plate 30. For this reason, when the internal pressure of the case 1 rises and reaches a predetermined value, the deformable plate 30 is reversed and changes to a convex state upward.
  • the current-carrying plate 20 connected to the central portion 32 of the deformable plate 30 breaks starting from the mechanically fragile groove 20a, and the deformable plate 30 is separated from the remaining portion (that is, the outer peripheral portion 21) of the current-carrying plate 20.
  • the energization path connecting the energization plate 20 and the deformation plate 30 is interrupted, and the electrode assembly 3 and the terminal 7 are brought out of electrical conduction.
  • the deformation plate 30 is insulated from the connection terminal 46, and the energization plate 20 is insulated from the terminal 7.
  • Terminal fixing process In this step, as shown in FIG. 5, the terminal 7 is fixed to the mounting hole 13 of the lid portion 112 of the case 1.
  • a rivet bolt is used as the terminal 7.
  • the cylindrical portion of the terminal 7 that is, the cylindrical portion constituted by the cylindrical portion 14 and the fixing portion 16 before caulking
  • the cylindrical portion (14, 16) is inserted into the seal member 19, and the seal member 19 is disposed on the upper surface of the base portion 15.
  • the gasket 63 and the external terminal 61 are disposed on the upper surface of the lid portion 112 of the case 1.
  • the cylindrical portion (14, 16) is inserted from the inside of the case 1 into the mounting hole 13, the opening of the gasket 63 and the opening of the external terminal 61.
  • the upper end of the cylindrical portion (14, 16) is bent radially outward and pushed outward radially.
  • the upper ends of the cylindrical portions (14, 16) abut on the upper surface of the external terminal 61, and the terminal 7 is caulked and fixed to the lid portion 112 of the case 1.
  • the upper surface of the outer peripheral portion of the deformable plate 30 is in contact with the lower surface of the outer peripheral portion of the base portion 15 of the terminal 7, and is indicated by an arrow in FIG. 5 from below toward the lower surface of the outer peripheral portion of the deformable plate 30. Irradiate with a laser beam. The laser beam is irradiated so as to go around the lower surface of the outer peripheral portion of the deformation plate 30. Thereby, the deformation plate 30 is welded to the base portion 15 of the terminal 7 so as to cover the recess 15 a of the terminal 7.
  • an annular insulating member 75 is disposed on the lower surface of the outer peripheral portion of the deformable plate 30, and the heat caulking boss 79 of the holder 80 is inserted into the through hole 20 c of the energizing plate 20.
  • the energization plate 20 is arranged so that the upper surface of the 20 contact portions 22 contacts the lower surface of the central portion 32 of the deformation plate 30.
  • the caulking process is applied to the heat caulking boss 79 to fix the energizing plate 20 to the holder 80, and the central portion 32 of the deformable plate 30 and the abutting portion 22 of the energizing plate 20 are brought into contact with each other.
  • the thickness t2 of the energizing plate 20 at the position where the weld bead 40 is formed is the thickness t1 of the deforming plate 30 (that is, the energizing plate). 20 and the thickness of the deformable plate 30 at a position to be joined by welding.
  • the laser beam is irradiated from below the energizing plate 20 toward the lower surface of the energizing plate 20
  • the heat of the laser beam is difficult to diffuse inside the energizing plate 20, and the energizing plate 20 and the deformable plate 30 It becomes possible to join.
  • the diameter of the through hole 14a of the terminal 7 can be reduced, and the amount of moisture entering the inside of the case 1 can be reduced.
  • the laser beam is irradiated from below the energizing plate 20.
  • the relative position of the laser with respect to the lid 112 in the energization plate welding process is the same as the relative position of the laser with respect to the lid 112 in the first deformation plate welding process. Accordingly, it is not necessary to change the relative position of the laser with respect to the lid 112 in the current plate welding process, and workability is improved.
  • the contact portion 22 of the energization plate 20 is in surface contact (surface contact) with the central portion 32 of the deformation plate 30, and the thickness t ⁇ b> 2 of the energization plate 20 is in the entire contact portion 22.
  • the deformation plate 30 is smaller than the thickness t1. For this reason, even if it irradiates any position of the contact part 22 with a laser beam, the electricity supply board 20 and the deformation
  • the upper surface of the contact portion 22 of the energizing plate 20 and the lower surface of the central portion 32 of the deformation plate 30 are substantially parallel to each other and are both flat. That is, the contact portion 22 of the energization plate 30 and the central portion 32 of the deformation plate 30 are in close contact with each other over the entire contact portion 22. For this reason, even if it irradiates any position of the contact part 22 with a laser beam, the electricity supply board 20 and the deformation
  • a two-dot chain line portion 300 in FIG. 6 corresponds to the two-dot chain line portion 200 in FIG. 1.
  • the current interrupting device 110 includes a first deformation plate 130, an energization plate 120, and a second deformation plate 140. All of the first deformation plate 130, the energization plate 120, and the second deformation plate 140 are made of copper.
  • the first deformable plate 130 and the energizing plate 120 have substantially the same configuration as the deformable plate 30 and the energized plate 20 of the first embodiment, respectively.
  • the space 150 between the first deformable plate 130 and the energizing plate 120 communicates with a space 154 (described later) between the energized plate 120 and the second deformable plate 140 through the vent hole 120b of the energized plate 120.
  • a notch 78 b is formed in the lower surface 78 a on the inner peripheral side of the holder 80.
  • a seal member 190 is disposed in the notch 78b. The seal member 190 is in contact with both the holder 80 and the energization plate 120, thereby sealing the space in the case 1, the space 150, and the space 154.
  • the second deformation plate 140 is disposed below the energization plate 120. That is, the second deformation plate 140 is disposed on the opposite side of the first deformation plate 130 with respect to the energization plate 120. The center part of the second deformation plate 140 protrudes downward. The outer peripheral portion of the second deformation plate 140 is connected to the outer peripheral portion 121 of the energization plate 120. A projecting portion 142 projecting upward is provided at the center of the upper surface of the second deformable plate 140. Above the protrusion 142, a contact portion 122 (a portion surrounded by the groove 120a) of the energization plate 120 is located. The pressure of the space 154 acts on the upper surface of the second deformation plate 140, and the pressure of the space in the case 1 acts on the lower surface of the second deformation plate 140.
  • the protruding portion 142 corresponds to an example of a “projection”.
  • the current interrupt device 110 has an energization path that connects the connection terminal 46, the energization plate 120, the first deformation plate 130, and the terminal 7 in series. For this reason, the electrode assembly 3 and the terminal 7 are electrically connected via the energization path of the current interrupt device 110.
  • the interruption operation of the current interruption device 110 will be described.
  • the terminal 5 and the terminal 7 can be energized.
  • the pressure acting on the lower surface of the second deformation plate 140 increases.
  • the pressure of the space 154 sealed from the space in the case 1 acts on the upper surface of the second deformation plate 140.
  • the second deformable plate 140 changes from a downwardly convex state to a upwardly displaced state (see FIG. 8).
  • the air in the space 154 moves to the space 150 through the vent hole 120b, and the pressure in the space 150 increases.
  • the second deformable plate 140 When the second deformable plate 140 is displaced upward, the projecting portion 142 of the second deformable plate 140 collides with the contact portion 122 of the energizing plate 120, and the energizing plate 120 is broken at the groove 120a. Thereby, the 1st deformation board 130 reverses and the contact part 122 of the 1st deformation board 130 and the electricity supply board 120 displaces upwards (refer FIG. 8). For this reason, the electricity supply path which connects the electricity supply plate 120 and the 1st deformation plate 130 is interrupted
  • the position of the protrusion 142 when the second deformation plate 140 is convex downward corresponds to an example of “first position”, and the protrusion 142 when the second deformation plate 140 is displaced upward.
  • the position corresponds to an example of a “second position”.
  • the state where the energization plate 120 is not broken and is in contact with the first deformable plate 130 at the contact portion 122 corresponds to an example of the “first state”.
  • the state where the first deformation plate 130 and the first deformation plate 130 are electrically separated corresponds to an example of the “second state”. Also with this configuration, the same effects as the power storage device 100 of the first embodiment can be obtained.
  • the thickness t2 of the energizing plate 20 is smaller than the thickness t1 of the deforming plate in the entire area of the contact portion 22.
  • the present invention is not limited to this configuration. If the relationship of t2 ⁇ t1 is established at the position where the weld bead 40 is formed (that is, the welded portion), t2> t1 may be satisfied at the position where the weld bead 40 is not formed in the contact portion 22. . That is, the thickness of the current-carrying plate 20 and the deformation plate 30 in the contact portion 22 may not be constant.
  • the contact portion 22 of the energizing plate 20 is in surface contact with the deformable plate 30, but is not limited to this configuration.
  • an unevenness may be formed on the upper surface of the contact portion 22, and the convex portion of the contact portion 22 may be in contact with the lower surface of the deformation plate 30.
  • the welding is not limited to spot welding but may be continuous welding.
  • the thickness t2 of the contact portion 22 of the energization plate 20 and the thickness t1 of the deformation plate 30 may be equal.
  • the current-carrying plate 20 is divided into the contact portion 22 and the outer peripheral portion 21 by the groove portion 20a, but is not limited to this configuration.
  • the outline of the contact portion 22 may be located on the radially outer side of the groove portion 20a, and conversely, the outline of the contact portion 22 may be located on the radially inner side of the groove portion 20a.
  • the weld bead 40 is formed in a portion surrounded by the groove 20a.
  • the groove portion 20a may not be circular or may have a circular shape as long as the conduction between the energization plate 20 and the deformation plate 30 is interrupted when the internal pressure of the case 1 reaches a predetermined value. Also good.
  • a plurality of arc-shaped groove portions may be formed at intervals.
  • the thickness t4 of the energizing plate 20 in the groove 20a is smaller than the thickness t2 of the abutting portion 22 of the energizing plate 20.
  • the present invention is not limited to this configuration.
  • the mechanical strength of the energizing plate 20 is lowest at the contact portion 22.
  • the current interrupt device 10 may be provided on the terminal 5 side, or may be provided on both the terminal 5 and the terminal 7.
  • electrical_connection with the electricity supply board 20 is interrupted
  • the deformation method of the deformation plate 30 is not limited to inversion.
  • the configuration may be such that the central portion of the deformable plate 30 is bent upward so that the energizing plate 20 breaks starting from the groove portion 20a and the conduction between the deformable plate 30 and the energizing plate 20 is interrupted.
  • the deformation plate 30 may be deformed in any way as long as the conduction between the deformation plate 30 and the energization plate 20 is interrupted.
  • the method is not limited to the method of irradiating the laser beam so as to make a round toward the first deformation plate 130, but spot welding. May be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

A current cut-off device 10 is housed within a case 1 and is provided with a conducting plate 20 and a first deformation plate 30. The conducting plate 20 is electrically connected to an electrode assembly 3. The first deformation plate 30 is electrically connected to a terminal 7 and is disposed on one side of the conducting plate 20. The conducting plate 20 includes a contact part 22 which contacts the first deformation plate 30 when the electrode assembly 3 and the terminal 7 are in an electrical conducting state. The first deformation plate 30 is electrically connected when the electrode assembly 3 and the terminal 7 are in an electrical conducting state, but is not electrically connected to the conducting plate 20 when the electrode assembly 3 and the terminal 7 are in a non-conducting state. A weld part 40 is provided to the contact part 22 at the other side of the conducting plate 20. At the position at which the weld part 40 is disposed, the conducting plate 20 and the first deformation plate 30 are connected, and the thickness of the conducting plate 20 is no greater than the thickness of the first deformation plate 30.

Description

電流遮断装置及びその製造方法Current interrupting device and manufacturing method thereof
 本出願は、2015年8月27日に出願された日本国特許出願第2015-168269号に基づく優先権を主張する。その出願の全ての内容はこの明細書中に参照により援用される。本明細書に開示の技術は、電流遮断装置及びその製造方法に関する。 This application claims priority based on Japanese Patent Application No. 2015-168269 filed on August 27, 2015. The entire contents of that application are incorporated herein by reference. The technology disclosed in the present specification relates to a current interrupting device and a manufacturing method thereof.
 ケース内に収容されており、ケース内の圧力が上昇したときに、通電経路を遮断する電流遮断装置が知られている。例えば、特開2013-215862号公報に開示の電流遮断装置は、通電板と変形板を有する。通電板は、ケース内の電極組立体に電気的に接続されている。変形板は、ケースの壁面の取付孔に固定された端子と、通電板とを電気的に接続している。変形板は、通電板の上方、かつ、端子の下方に位置している。ケース内の圧力が上昇すると、変形板が変形して、端子と電極組立体との電気的接続が遮断される。 There is known a current interrupting device that is housed in a case and interrupts the energization path when the pressure in the case increases. For example, a current interrupting device disclosed in Japanese Patent Application Laid-Open No. 2013-215862 has an energizing plate and a deforming plate. The energization plate is electrically connected to the electrode assembly in the case. The deformation plate electrically connects the terminal fixed to the mounting hole on the wall surface of the case and the current-carrying plate. The deformable plate is located above the energizing plate and below the terminals. When the pressure in the case increases, the deformation plate is deformed, and the electrical connection between the terminal and the electrode assembly is interrupted.
 特開2013-215862号公報の端子には、上下方向に延びる貫通孔が形成されており、貫通孔を介してケースの内外が連通している。従来の技術では、変形板と通電板とを溶接する際は、両者を当接させた状態で、ケースの外部から端子の貫通孔を介して変形板に向かってレーザビームを照射する。この構成では、レーザビーム照射口と変形板及び通電板の被溶接部との間に他の部材が介在しているため、溶接が困難であるという問題があった。本明細書は、変形板と通電板とをより容易に溶接することができる技術を開示する。 A terminal disclosed in Japanese Patent Laid-Open No. 2013-215862 is formed with a through hole extending in the vertical direction, and the inside and outside of the case communicate with each other through the through hole. In the conventional technique, when welding the deformable plate and the current-carrying plate, a laser beam is irradiated from the outside of the case toward the deformable plate through the through hole of the terminal in a state where they are in contact with each other. In this configuration, there is a problem that welding is difficult because another member is interposed between the laser beam irradiation port and the welded portion of the deformation plate and the current plate. This specification discloses the technique which can weld a deformation | transformation board and an electricity supply board more easily.
 本明細書に開示する電流遮断装置は、ケース内に収容されている。電流遮断装置は、ケースに収容された電極組立体と、ケースの壁面の取付孔に固定された正極又は負極の端子とを電気的に接続し、ケースの内圧が所定値を超えて上昇したときに電極組立体と端子とを電気的に接続する通電経路を遮断する。電流遮断装置は、通電板と、第1変形板とを備える。通電板は、電極組立体に電気的に接続されている。第1変形板は、端子に電気的に接続されていると共に、通電板の一方の側に、通電板に対向して配置される。通電板は、電極組立体と端子とが導通している状態では第1変形板と当接した状態である当接部を有する。第1変形板は、電極組立体と端子とが導通している状態では通電板の当接部と当接した状態で電気的に接続しており、電極組立体と端子とが非導通の状態では通電板から離間した状態で通電板と電気的に非接続である。通電板の当接部は、第1変形板と面接触している。当接部の第1変形板との接触面が平坦であると共に、第1変形板の当接部との接触面が平坦である。通電板の他方の側の面には、当接部において溶接部が設けられている。溶接部が設けられる位置において、通電板と第1変形板は接合されており、かつ、通電板の厚みが第1変形板の厚み以下である。 The current interrupt device disclosed in this specification is housed in a case. The current interrupting device electrically connects the electrode assembly housed in the case to the positive or negative terminal fixed to the mounting hole on the wall surface of the case, and the internal pressure of the case rises above a predetermined value. The current-carrying path for electrically connecting the electrode assembly and the terminal is cut off. The current interrupt device includes an energization plate and a first deformation plate. The energization plate is electrically connected to the electrode assembly. The first deforming plate is electrically connected to the terminal and is disposed on one side of the energizing plate so as to face the energizing plate. The energization plate has a contact portion that is in contact with the first deformation plate in a state where the electrode assembly and the terminal are electrically connected. The first deformation plate is electrically connected in a state where it is in contact with the contact portion of the current-carrying plate when the electrode assembly and the terminal are in a conductive state, and the electrode assembly and the terminal are in a non-conductive state. Then, it is electrically disconnected from the energizing plate while being separated from the energizing plate. The contact portion of the energization plate is in surface contact with the first deformation plate. The contact surface of the contact portion with the first deformation plate is flat, and the contact surface of the first deformation plate with the contact portion is flat. A welding portion is provided at the contact portion on the surface on the other side of the energization plate. At the position where the welded portion is provided, the energization plate and the first deformation plate are joined, and the thickness of the energization plate is equal to or less than the thickness of the first deformation plate.
 2つの板材を溶接により接合する場合、溶接部が設けられる一方の板材(即ち、レーザビームが直接照射される板材)の厚みが他方の板材の厚みよりも大きいと、レーザビームの熱が一方の板材の内部で拡散してしまい、2つの板材を適切に溶接できないことがある。上記の電流遮断装置では、溶接部を設ける位置において、通電板の厚みが第1変形板の厚み以下である。このため、通電板の他方の側から、通電板に向かってレーザビームを照射しても、レーザビームの熱が通電板の内部で拡散し難くなり、通電板と第1変形板を接合することが可能になる。この結果、通電板及び第1変形板の被溶接部とレーザビーム照射口との間に他の部材が介在していない状態でレーザビームを照射することができ、通電板と第1変形板とをより容易に溶接することができる。また、通電板の当接部と第1変形板との接触面は、互いに平坦になっている。このため、通電板と第1変形板とをより精度よく溶接することができる。なお、溶接部が、溶接前の通電板の他方の側の面から盛り上がっている場合は、上記の「溶接部を設ける位置における通電板の厚み」とは、溶接部の盛り上がり部分の高さを除いた通電板の厚みを意味する。即ち、溶接前の通電板の厚みを意味する。したがって、溶接後に溶接部の盛り上がりによって通電板の厚みが第1変形板の厚みより大きくなっていても、溶接前の通電板の厚みが第1変形板の厚み以下の場合は、上記の「溶接部を設ける位置において、通電板の厚みは第1変形板の厚み以下である」を満足することとなる。 When two plate members are joined by welding, if the thickness of one plate member on which the weld is provided (that is, the plate member directly irradiated with the laser beam) is larger than the thickness of the other plate member, the heat of the laser beam is It may diffuse inside the plate material and the two plate materials may not be properly welded. In said electric current interruption apparatus, the thickness of an electricity supply board is below the thickness of a 1st deformation board in the position which provides a welding part. For this reason, even when the laser beam is irradiated from the other side of the energization plate toward the energization plate, the heat of the laser beam becomes difficult to diffuse inside the energization plate, and the energization plate and the first deformation plate are joined. Is possible. As a result, it is possible to irradiate the laser beam with no other member interposed between the current-carrying plate and the welded portion of the first deformation plate and the laser beam irradiation port. Can be welded more easily. Further, the contact surfaces of the contact portion of the energization plate and the first deformation plate are flat with each other. For this reason, an electricity supply board and a 1st deformation board can be welded more accurately. When the welded part is raised from the surface on the other side of the current plate before welding, the “thickness of the current plate at the position where the welded part is provided” means the height of the raised part of the welded part. It means the thickness of the current-carrying plate excluded. That is, it means the thickness of the current plate before welding. Therefore, even if the thickness of the current-carrying plate is greater than the thickness of the first deformation plate due to the rise of the welded portion after welding, if the thickness of the current-carrying plate before welding is equal to or less than the thickness of the first deformation plate, At the position where the portion is provided, the thickness of the current-carrying plate is less than or equal to the thickness of the first deformable plate.
 また、本明細書は、上記の電流遮断装置の新規な製造方法を開示する。この電流遮断装置の製造方法は、端子固定工程と、第1変形板溶接工程と、通電板配置工程と、通電板溶接工程とを備える。端子固定工程では、ケースの壁面に設けられた取付孔に、端子を固定する。第1変形板溶接工程では、第1変形板の一方の側の面を端子の他方の側の面に溶接する。通電板配置工程では、端子固定工程及び第1変形板溶接工程後に、第1変形板の他方の側の面と少なくとも一部において当接するように通電板を配置する。通電板溶接工程では、通電板配置工程後に、通電板に対して他方の側から、通電板の他方の側の面にレーザビームを照射して通電板と第1変形板とを溶接する。通電板溶接工程を実施する前は、レーザビームが照射されることになる位置における通電板の厚みは、通電板と溶接によって接合されることになる位置における第1変形板の厚み以下である。この製造方法によると、端子の貫通孔を介さずに通電板と第1変形板を接合できるため、通電板及び第1変形板の被溶接部とレーザビーム照射口との間に他の部材が介在していない状態でレーザビームを照射することができ、通電板と第1変形板とをより容易に溶接することができる。 Also, the present specification discloses a novel manufacturing method of the current interrupting device. The manufacturing method of this electric current interruption apparatus is equipped with a terminal fixing process, a 1st deformation board welding process, an electricity supply board arrangement | positioning process, and an electricity supply board welding process. In the terminal fixing step, the terminal is fixed in a mounting hole provided in the wall surface of the case. In the first deformation plate welding step, the surface on one side of the first deformation plate is welded to the surface on the other side of the terminal. In the energizing plate arranging step, the energizing plate is arranged so as to contact at least partly with the surface on the other side of the first deforming plate after the terminal fixing step and the first deforming plate welding step. In the energizing plate welding step, after the energizing plate placement step, the energizing plate and the first deformation plate are welded by irradiating the energizing plate with the laser beam from the other side to the other side of the energizing plate. Before the current plate welding step is performed, the thickness of the current plate at the position where the laser beam is irradiated is equal to or less than the thickness of the first deformation plate at the position where the current plate is joined by welding. According to this manufacturing method, the energizing plate and the first deformable plate can be joined without going through the terminal through-hole, so that there are other members between the energized plate and the welded portion of the first deformable plate and the laser beam irradiation port. The laser beam can be irradiated without being interposed, and the energization plate and the first deformation plate can be more easily welded.
 また、本明細書は、上記の電流遮断装置を備えた蓄電装置を開示する。また、上記の蓄電装置は、二次電池であってもよい。この構成によると、電流が端子間を適切に流れることができる。 Also, the present specification discloses a power storage device including the above-described current interrupt device. The power storage device may be a secondary battery. According to this configuration, current can appropriately flow between the terminals.
 本明細書が開示する技術の詳細、及び、さらなる改良は、発明を実施するための形態、及び、実施例にて詳しく説明する。 Details of the technology disclosed in the present specification and further improvements will be described in detail in embodiments and examples for carrying out the invention.
実施例1の蓄電装置の縦断面図。1 is a longitudinal sectional view of a power storage device according to Embodiment 1. FIG. 図1の二点鎖線部200の部分拡大図。The elements on larger scale of the dashed-two dotted line part 200 of FIG. 通電板と第1変形板が当接している部分の部分拡大図。The elements on larger scale of the part which the electricity supply board and the 1st deformation | transformation board are contact | abutting. 第1変形板の底面図。The bottom view of a 1st deformation board. 実施例1の電流遮断装置の製造方法を示す(端子固定工程、第1変形板溶接工程)。The manufacturing method of the electric current interruption apparatus of Example 1 is shown (terminal fixing process, 1st deformation board welding process). 実施例1の電流遮断装置の製造方法を示す(通電板配置工程、通電板溶接工程)。The manufacturing method of the electric current interruption apparatus of Example 1 is shown (electricity plate arrangement | positioning process, electric current plate welding process). 実施例2の蓄電装置の負極端子近傍の部分拡大図であり、電流遮断装置が動作していない状態を示す。It is the elements on larger scale near the negative electrode terminal of the electrical storage apparatus of Example 2, and shows the state which the electric current interruption apparatus does not operate | move. 実施例2の蓄電装置の負極端子近傍の部分拡大図であり、電流遮断装置が動作した状態を示す。It is the elements on larger scale near the negative electrode terminal of the electrical storage apparatus of Example 2, and shows the state which the electric current interruption apparatus operated.
 以下に説明する実施例の主要な特徴を列記しておく。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。 The main features of the embodiment described below are listed. The technical elements described below are independent technical elements and exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Absent.
(特徴1) 本明細書に開示する電流遮断装置では、溶接部は、通電板の当接部の一部に配置されていてもよい。当接部の全域において、通電板の厚みが第1変形板の厚み以下であってもよい。この構成によると、通電板にレーザビームを照射する位置を厳密に制御する必要がなくなり、通電板と第1変形板を比較的に容易に接合できる。 (Feature 1) In the current interrupt device disclosed in the present specification, the welded portion may be disposed at a part of the contact portion of the energizing plate. The thickness of the energization plate may be equal to or less than the thickness of the first deformation plate in the entire area of the contact portion. According to this configuration, it is not necessary to strictly control the position where the energization plate is irradiated with the laser beam, and the energization plate and the first deformation plate can be joined relatively easily.
(特徴2) 本明細書に開示する電流遮断装置では、通電板の他方の側の面に、溶接部の外周を一巡する溝部が設けられていてもよい。溝部が設けられている部分における通電板の厚みは、溝部が設けられていない部分における通電板の厚みよりも小さくてもよい。この構成によると、溝部が設けられている部分における通電板の機械的強度が、溝部が設けられていない部分における通電板の機械的強度よりも低くなる。このため、溝部が設けられている部分における通電板の厚みを調節することによって、第1変形板が通電板と導通した状態から非導通の状態に変化するタイミングを制御することができる。 (Characteristic 2) In the current interrupting device disclosed in the present specification, a groove portion that goes around the outer periphery of the welded portion may be provided on the other surface of the energization plate. The thickness of the energizing plate in the portion where the groove is provided may be smaller than the thickness of the energizing plate in the portion where the groove is not provided. According to this configuration, the mechanical strength of the energizing plate in the portion where the groove is provided is lower than the mechanical strength of the energizing plate in the portion where the groove is not provided. For this reason, the timing at which the first deformable plate changes from the conductive state to the non-conductive state can be controlled by adjusting the thickness of the conductive plate in the portion where the groove is provided.
(特徴3) 本明細書に開示する電流遮断装置では、通電板を平面視すると、溝部が、半径rの円形状であってもよい。溝部が設けられている部分における通電板の厚みをtとし、通電板の当接部の面積をAとすると、次の関係式;
Figure JPOXMLDOC01-appb-M000002
が成立してもよい。この構成によると、通電経路において、溝部が設けられている部分における通電板の抵抗値を、当接部における通電板の抵抗値よりも高くし得る。溝部が設けられている部分における通電板の抵抗値を当接部における通電板の抵抗値よりも高くできると、通電経路の抵抗の最大値が、当接部における通電板の抵抗値によって決まることがない。従って、通電経路の抵抗の最大値に影響を及ぼすことなく当接部を設計できる。
(Characteristic 3) In the current interrupting device disclosed in this specification, when the energization plate is viewed in plan, the groove may have a circular shape with a radius r. When the thickness of the current-carrying plate in the portion where the groove is provided is t and the area of the contact part of the current-carrying plate is A, the following relational expression:
Figure JPOXMLDOC01-appb-M000002
May be established. According to this configuration, in the energization path, the resistance value of the energization plate in the portion where the groove is provided can be made higher than the resistance value of the energization plate in the contact portion. If the resistance value of the current-carrying plate in the portion where the groove is provided can be made higher than the resistance value of the current-carrying plate in the contact portion, the maximum resistance value of the current-carrying path is determined by the resistance value of the current-carrying plate in the contact portion There is no. Therefore, the contact portion can be designed without affecting the maximum value of the resistance of the energization path.
(特徴4) 本明細書に開示する電流遮断装置は、通電板に対して他方の側に配置されているとともに、通電板に向かって突出した突起が設けられている第2変形板をさらに備えていてもよい。第2変形板は、電極組立体と端子とが導通している状態では突起が第1位置に位置して通電板と第1変形板とが当接している第1状態と、電極組立体と端子とが非導通の状態では突起が第1位置から通電板側の第2位置に移動して通電板と第1変形板とを離間させる第2状態とに切り替えられてもよい。 (Characteristic 4) The current interrupting device disclosed in the present specification further includes a second deformation plate that is disposed on the other side with respect to the energization plate and provided with a protrusion protruding toward the energization plate. It may be. The second deformable plate includes a first state in which the protrusion is positioned at the first position and the energizing plate and the first deformable plate are in contact with each other when the electrode assembly and the terminal are electrically connected; When the terminal is in a non-conducting state, the protrusion may move from the first position to the second position on the energizing plate side to switch to the second state in which the energizing plate and the first deforming plate are separated from each other.
 以下、図1~図4を参照して実施例1の蓄電装置100について説明する。蓄電装置100は、二次電池の一種であるリチウムイオン二次電池である。図1に示すように、蓄電装置100は、ケース1と、ケース1に収容された電極組立体3と、ケース1に固定された端子5、7とを備えている。電極組立体3と端子5、7とは電気的に接続されている。また、蓄電装置100は、電極組立体3と端子7との間に配置された電流遮断装置10を備えている。ケース1の内部は、電解液が注入されており、電極組立体3は、電解液に浸漬している。なお、図4では、図面を見易くするために、通電板20の溝部20a及び当接部22(後述)を拡大して示している。 Hereinafter, the power storage device 100 according to the first embodiment will be described with reference to FIGS. 1 to 4. The power storage device 100 is a lithium ion secondary battery that is a type of secondary battery. As shown in FIG. 1, the power storage device 100 includes a case 1, an electrode assembly 3 accommodated in the case 1, and terminals 5 and 7 fixed to the case 1. The electrode assembly 3 and the terminals 5 and 7 are electrically connected. The power storage device 100 also includes a current interrupt device 10 disposed between the electrode assembly 3 and the terminal 7. The inside of the case 1 is injected with an electrolytic solution, and the electrode assembly 3 is immersed in the electrolytic solution. In FIG. 4, the groove portion 20 a and the contact portion 22 (described later) of the energizing plate 20 are shown enlarged to make the drawing easier to see.
 ケース1は、金属製であり、略直方体形状の箱型部材である。ケース1は、本体111と、本体111に固定された蓋部112とを備えている。蓋部112は、本体111の上部を覆っている。ケース1の蓋部112には、取付孔11、13が形成されている。端子5は、取付孔11に固定されており、ケース1の内外に通じている。端子7は、取付孔13に固定されており、ケース1の内外に通じている。なお、蓋部112は「ケースの壁面」の一例に相当する。 Case 1 is made of metal and is a substantially rectangular parallelepiped box-shaped member. The case 1 includes a main body 111 and a lid portion 112 fixed to the main body 111. The lid part 112 covers the upper part of the main body 111. Mounting holes 11 and 13 are formed in the lid portion 112 of the case 1. The terminal 5 is fixed to the mounting hole 11 and communicates with the inside and outside of the case 1. The terminal 7 is fixed to the mounting hole 13 and communicates with the inside and outside of the case 1. The lid 112 corresponds to an example of a “case wall surface”.
 電極組立体3は、正極シートと、負極シートと、正極シートと負極シートとの間に配置されたセパレータとを備えている。電極組立体3は、複数の正極シート、複数の負極シート及び複数のセパレータが積層されて構成されている。正極シート及び負極シートは、集電部材と、集電部材上に形成されている活物質層とを備えている。集電部材としては、正極シートに用いられるものは例えばアルミ箔であり、負極シートに用いられるものは例えば銅箔である。また、電極組立体3は、正極集電タブ41及び負極集電タブ42を備えている。正極集電タブ41は、正極シートの上端部に形成されている。負極集電タブ42は、負極シートの上端部に形成されている。正極集電タブ41及び負極集電タブ42は、電極組立体3の上方に突出している。正極集電タブ41は正極リード43に固定されている。負極集電タブ42は負極リード44に固定されている。 The electrode assembly 3 includes a positive electrode sheet, a negative electrode sheet, and a separator disposed between the positive electrode sheet and the negative electrode sheet. The electrode assembly 3 is configured by laminating a plurality of positive electrode sheets, a plurality of negative electrode sheets, and a plurality of separators. The positive electrode sheet and the negative electrode sheet include a current collecting member and an active material layer formed on the current collecting member. As the current collecting member, one used for the positive electrode sheet is, for example, an aluminum foil, and one used for the negative electrode sheet is, for example, a copper foil. The electrode assembly 3 includes a positive current collecting tab 41 and a negative current collecting tab 42. The positive electrode current collecting tab 41 is formed on the upper end portion of the positive electrode sheet. The negative electrode current collecting tab 42 is formed on the upper end portion of the negative electrode sheet. The positive electrode current collecting tab 41 and the negative electrode current collecting tab 42 protrude above the electrode assembly 3. The positive electrode current collecting tab 41 is fixed to the positive electrode lead 43. The negative electrode current collecting tab 42 is fixed to the negative electrode lead 44.
 正極リード43は、正極集電タブ41と端子5とに接続されている。正極リード43を介して、正極集電タブ41と端子5とが電気的に接続されている。正極リード43とケース1との間には、絶縁部材72が配置されている。絶縁部材72は、正極リード43とケース1の蓋部112とを絶縁している。 The positive electrode lead 43 is connected to the positive electrode current collecting tab 41 and the terminal 5. The positive electrode current collecting tab 41 and the terminal 5 are electrically connected via the positive electrode lead 43. An insulating member 72 is disposed between the positive electrode lead 43 and the case 1. The insulating member 72 insulates the positive electrode lead 43 from the lid portion 112 of the case 1.
 負極リード44は、負極集電タブ42と接続端子46とに接続されている。接続端子46は、電流遮断装置10を介して端子7に電気的に接続されている。よって、負極リード44、接続端子46及び電流遮断装置10を介して、負極集電タブ42と端子7とが電気的に接続されている。これにより、電極組立体3と端子7とを接続する通電経路が形成されている。電流遮断装置10は、この通電経路を遮断可能である。電流遮断装置10の構成については後述する。負極リード44とケース1との間には、絶縁部材73が配置されている。絶縁部材73は、負極リード44とケース1とを絶縁している。 The negative electrode lead 44 is connected to the negative electrode current collecting tab 42 and the connection terminal 46. The connection terminal 46 is electrically connected to the terminal 7 via the current interrupt device 10. Therefore, the negative electrode current collecting tab 42 and the terminal 7 are electrically connected via the negative electrode lead 44, the connection terminal 46, and the current interrupt device 10. Thereby, an energization path for connecting the electrode assembly 3 and the terminal 7 is formed. The current interrupt device 10 can interrupt this energization path. The configuration of the current interrupt device 10 will be described later. An insulating member 73 is disposed between the negative electrode lead 44 and the case 1. The insulating member 73 insulates the negative electrode lead 44 from the case 1.
 蓋部112の上面には、樹脂製のガスケット62、63が配置されている。ガスケット62は、端子5に固定されている。ガスケット62の上面には、平板状の外部端子60が配置されている。外部端子60には、貫通孔60aが形成されている。貫通孔60aは、上面側に比べ、下面側のサイズが大きくなっている。ガスケット62は、蓋部112と外部端子60を絶縁している。ボルト64が、貫通孔60aを通過している。具体的には、ボルト64の頭部が、貫通孔60a内に収容されている。また、ボルト64の軸部が、貫通孔60aを通って外部端子60の上方に突出している。端子5、外部端子60及びボルト64は、互いに電気的に接続されており、正極端子を構成している。ガスケット63は、端子7に固定されている。ガスケット63の上面には、平板状の外部端子61が配置されている。外部端子61には外部端子60の貫通孔60aと同様の貫通孔が形成されており、貫通孔内にボルト65の頭部が収容され、ボルト65の軸部が貫通孔を通って外部端子61の上方に突出している。ガスケット63、外部端子61及びボルト65の構成は、上述したガスケット62、外部端子60及びボルト64の構成と同様である。端子7、外部端子61及びボルト65は、互いに電気的に接続されており、負極端子を構成している。 Resin gaskets 62 and 63 are disposed on the upper surface of the lid portion 112. The gasket 62 is fixed to the terminal 5. A flat plate-like external terminal 60 is disposed on the upper surface of the gasket 62. A through hole 60 a is formed in the external terminal 60. The through hole 60a is larger in size on the lower surface side than on the upper surface side. The gasket 62 insulates the lid portion 112 from the external terminal 60. The bolt 64 passes through the through hole 60a. Specifically, the head of the bolt 64 is accommodated in the through hole 60a. Further, the shaft portion of the bolt 64 protrudes above the external terminal 60 through the through hole 60a. The terminal 5, the external terminal 60, and the bolt 64 are electrically connected to each other and constitute a positive terminal. The gasket 63 is fixed to the terminal 7. A flat plate-like external terminal 61 is disposed on the upper surface of the gasket 63. A through hole similar to the through hole 60a of the external terminal 60 is formed in the external terminal 61. The head of the bolt 65 is accommodated in the through hole, and the shaft portion of the bolt 65 passes through the through hole and the external terminal 61 is passed through. Projecting upward. The configuration of the gasket 63, the external terminal 61, and the bolt 65 is the same as the configuration of the gasket 62, the external terminal 60, and the bolt 64 described above. The terminal 7, the external terminal 61, and the bolt 65 are electrically connected to each other and constitute a negative terminal.
 ここで、図2を参照して端子7について説明する。図2に示すように、端子7は、ケース1にカシメ固定されている。端子7は、円筒部14、基底部15及び固定部16を備えている。円筒部14は取付孔13に挿通されている。円筒部14には貫通孔14aが形成されている。基底部15は環状に形成されている。基底部15は円筒部14の下端部に位置しており、ケース1の内部に配置されている。基底部15には、凹所15aが形成されている。凹所15aは貫通孔14aと連通しており、凹所15a内は大気圧に保たれる。固定部16は環状に形成されている。固定部16は円筒部14の上端部に位置しており、ケース1の外部に配置されている。端子7は、固定部16によりケース1の蓋部112に固定されている。 Here, the terminal 7 will be described with reference to FIG. As shown in FIG. 2, the terminal 7 is caulked and fixed to the case 1. The terminal 7 includes a cylindrical portion 14, a base portion 15, and a fixing portion 16. The cylindrical portion 14 is inserted through the mounting hole 13. A through hole 14 a is formed in the cylindrical portion 14. The base portion 15 is formed in an annular shape. The base portion 15 is located at the lower end portion of the cylindrical portion 14 and is disposed inside the case 1. A recess 15 a is formed in the base portion 15. The recess 15a communicates with the through hole 14a, and the interior of the recess 15a is maintained at atmospheric pressure. The fixed portion 16 is formed in an annular shape. The fixed portion 16 is located at the upper end portion of the cylindrical portion 14 and is disposed outside the case 1. The terminal 7 is fixed to the lid portion 112 of the case 1 by a fixing portion 16.
 ケース1の蓋部112と端子7との間には、シール部材19が配置されている。シール部材19は環状であり、端子7の円筒部14を一巡している。シール部材19は、ケース1の蓋部112の下面及び取付孔13の内周面と、端子7の基底部15及び円筒部14に当接しており、これにより、ケース1の内外をシールしている。シール部材19は、絶縁性及び耐電解液性を有する材料(本実施例ではパーフルオロアルコキシアルカン(PFA))によって形成されている。蓋部112と端子7とは、シール部材19によって絶縁されている。なお、シール部材19の材料はこれに限られず、例えば、エチレン-プロピレン系ゴム(EPM)であってもよい。 A seal member 19 is disposed between the lid portion 112 of the case 1 and the terminal 7. The seal member 19 has an annular shape and goes around the cylindrical portion 14 of the terminal 7. The seal member 19 is in contact with the lower surface of the lid portion 112 of the case 1 and the inner peripheral surface of the mounting hole 13, and the base portion 15 and the cylindrical portion 14 of the terminal 7, thereby sealing the inside and outside of the case 1. Yes. The seal member 19 is made of a material having insulating properties and electrolyte resistance (perfluoroalkoxyalkane (PFA) in this embodiment). The lid portion 112 and the terminal 7 are insulated by the seal member 19. The material of the seal member 19 is not limited to this, and may be, for example, ethylene-propylene rubber (EPM).
 次に、図2~図4を参照して電流遮断装置10について説明する。図2に示すように、電流遮断装置10は、変形板30と、通電板20を備えている。変形板30は、下方に凸となった円形の導電性のダイアフラムであり、本実施例では銅又は銅合金によって形成されている。変形板30は、通電板20の上方に、通電板20に対向して配置されている。変形板30は、略一定の厚みt1(図3参照)を有しており、径方向内側に中央部32を、径方向外側に外周部31を有している。中央部32の下面は平坦であり、ケース1の蓋部112と略平行である。中央部32は、通電板20の当接部22(後述)と面接触(面当接)している。外周部31は、端子7の基底部15の外周部と接続されている。即ち、変形板30は端子7に電気的に接続されている。基底部15の凹所15aは変形板30により覆われている。凹所15a内は大気圧に保たれているため、変形板30の上面には大気圧が作用する。なお、変形板30は、「第1変形板」の一例に相当し、通電板20の上方は、「通電板の一方の側」の一例に相当する。 Next, the current interrupting device 10 will be described with reference to FIGS. As shown in FIG. 2, the current interrupt device 10 includes a deformable plate 30 and a current plate 20. The deformable plate 30 is a circular conductive diaphragm convex downward, and is formed of copper or a copper alloy in this embodiment. The deformation plate 30 is disposed above the energizing plate 20 so as to face the energizing plate 20. The deformation plate 30 has a substantially constant thickness t1 (see FIG. 3), and has a central portion 32 on the radially inner side and an outer peripheral portion 31 on the radially outer side. The lower surface of the central portion 32 is flat and is substantially parallel to the lid portion 112 of the case 1. The central portion 32 is in surface contact (surface contact) with a contact portion 22 (described later) of the energization plate 20. The outer peripheral portion 31 is connected to the outer peripheral portion of the base portion 15 of the terminal 7. That is, the deformation plate 30 is electrically connected to the terminal 7. The recess 15 a of the base portion 15 is covered with the deformation plate 30. Since the inside of the recess 15 a is maintained at atmospheric pressure, atmospheric pressure acts on the upper surface of the deformation plate 30. The deformation plate 30 corresponds to an example of “first deformation plate”, and the upper side of the energization plate 20 corresponds to an example of “one side of the energization plate”.
 通電板20は、導電性を有する金属部材であり、本実施例では銅又は銅合金によって形成されている。通電板20は、平面視において変形板30よりも大径である円形状に形成されており、変形板30の下方に配置されている。通電板20の上面は平坦であり、ケース1の蓋部112と略平行である。通電板20には接続端子46が接続されている。即ち、通電板20は、接続端子46及び負極リード44を介して電極組立体3に電気的に接続されている。通電板20の下面には、底面視において円形状の溝部20aが形成されている(図4参照)。図2、3に示すように、溝部20aを通電板20の厚み方向に切断すると、その断面は、上方に頂点vを有する三角形状をしている。通電板20を底面視したときの溝部20aの半径(即ち、溝部20aの中心Oから頂点vまでの距離)はrである(図4参照)。図3に示すように、通電板20は、溝部20aの頂点vにおいて、周方向において略一定の厚みt4を有する。通電板20は、溝部20aによって、頂点vよりも径方向内側に位置する当接部22と、頂点vよりも径方向外側に位置する外周部21に区分されている。上述したように、変形板30の中央部32の下面と通電板20の当接部22の上面は、共にケース1の蓋部112と略平行であり、かつ、共に平坦である。このため、図3に太線で示すように、当接部22の上面は、当接部22の全域において変形板30の中央部32の下面と面接触(面当接)しており、また、その当接面積はAである。当接部22が変形板30の中央部32と面接触することにより、変形板30が通電板20と電気的に接続し、電極組立体3と端子7とが導通する(図1参照)。溝部20aの半径r、溝部20aにおける通電板20の厚みt4、当接部22の面積Aの間には、次の関係式;
Figure JPOXMLDOC01-appb-M000003
が成立する。電流遮断装置10は、接続端子46と、通電板20と、変形板30と、端子7とをこの順に直列につなぐ通電経路を有している。上記の関係式によると、溝部20aにおける通電板20の抵抗値を、当接部22における通電板20の抵抗値よりも高くし得る。溝部20aが設けられている部分における通電板20の抵抗値を当接部22における通電板20の抵抗値よりも高くできると、通電経路の抵抗の最大値が、当接部22における通電板20の抵抗値によって決まることがなくなる。従って、通電経路の抵抗の最大値に影響を及ぼすことなく当接部22を設計することが可能となる。なお、中央部32の下面と当接部22の上面の平面度(JISに定められた幾何公差)は、両者の接触抵抗や溶接品質を考慮して適宜設定することができる。例えば、中央部32の下面と当接部22の上面の平面度をそれぞれ0.0~0.2mmとすることができ、さらに好ましくは0.0~0.05mmとすることができる。このような範囲に平面度を保つことで、両者の接触抵抗と溶接品質を好適に確保することができる。
The current plate 20 is a conductive metal member, and is formed of copper or a copper alloy in this embodiment. The energization plate 20 is formed in a circular shape having a larger diameter than the deformation plate 30 in plan view, and is disposed below the deformation plate 30. The upper surface of the energization plate 20 is flat and substantially parallel to the lid portion 112 of the case 1. A connection terminal 46 is connected to the energization plate 20. That is, the energization plate 20 is electrically connected to the electrode assembly 3 through the connection terminal 46 and the negative electrode lead 44. A circular groove 20a is formed on the lower surface of the energizing plate 20 in a bottom view (see FIG. 4). As shown in FIGS. 2 and 3, when the groove 20 a is cut in the thickness direction of the current-carrying plate 20, the cross section has a triangular shape having an apex v above. The radius of the groove 20a (that is, the distance from the center O of the groove 20a to the vertex v) when the energizing plate 20 is viewed from the bottom is r (see FIG. 4). As shown in FIG. 3, the energizing plate 20 has a substantially constant thickness t4 in the circumferential direction at the apex v of the groove 20a. The energizing plate 20 is divided into a contact portion 22 positioned radially inward of the vertex v and an outer peripheral portion 21 positioned radially outward of the vertex v by the groove 20a. As described above, the lower surface of the central portion 32 of the deformation plate 30 and the upper surface of the contact portion 22 of the energizing plate 20 are both substantially parallel to the lid portion 112 of the case 1 and are both flat. For this reason, as shown by a thick line in FIG. 3, the upper surface of the contact portion 22 is in surface contact (surface contact) with the lower surface of the central portion 32 of the deformation plate 30 in the entire contact portion 22. The contact area is A. When the contact portion 22 is in surface contact with the central portion 32 of the deformable plate 30, the deformable plate 30 is electrically connected to the energizing plate 20, and the electrode assembly 3 and the terminal 7 are electrically connected (see FIG. 1). Between the radius r of the groove 20a, the thickness t4 of the current-carrying plate 20 in the groove 20a, and the area A of the contact portion 22, the following relational expression:
Figure JPOXMLDOC01-appb-M000003
Is established. The current interrupting device 10 has an energization path that connects the connection terminal 46, the energization plate 20, the deformation plate 30, and the terminal 7 in series in this order. According to the above relational expression, the resistance value of the energizing plate 20 in the groove 20 a can be made higher than the resistance value of the energizing plate 20 in the contact portion 22. When the resistance value of the energizing plate 20 in the portion where the groove 20 a is provided can be made higher than the resistance value of the energizing plate 20 in the contact portion 22, the maximum resistance of the energization path becomes the energizing plate 20 in the contact portion 22. It is no longer determined by the resistance value. Therefore, it is possible to design the contact portion 22 without affecting the maximum value of the resistance of the energization path. The flatness of the lower surface of the central portion 32 and the upper surface of the contact portion 22 (geometric tolerance defined in JIS) can be appropriately set in consideration of the contact resistance and welding quality of both. For example, the flatness of the lower surface of the central portion 32 and the upper surface of the contact portion 22 can be 0.0 to 0.2 mm, and more preferably 0.0 to 0.05 mm. By maintaining the flatness within such a range, the contact resistance and welding quality of both can be suitably secured.
 図3に示すように、当接部22は略一定の厚みt2を有しており、外周部21は略一定の厚みt3を有している。当接部22の厚みt2は、外周部21の厚みt3よりも小さく、かつ、変形板30の厚みt1よりも小さい。また、外周部21の厚みt3は、変形板30の厚みt1より大きい。通電板20の下面には、当接部22において、複数の溶接ビード40が形成されている。即ち、溶接ビード40が形成された位置では、通電板20の厚みt2は、変形板30の厚みt1よりも小さい。また、溝部20aが形成された部分における通電板20の厚みt4は、溝部20aが形成されていない部分における通電板20の厚み(即ち、厚みt2又はt3)よりも小さい。この構成によると、溝部20aが形成された部分における通電板20の機械的強度は、溝部20aが形成されていない部分における通電板20(即ち、当接部22及び外周部21)の機械的強度よりも低くなる。このため、溝部20aにおける通電板20の厚みt4を調節することにより、変形板30が通電板20と導通した状態から非導通の状態に変化するタイミングを制御することができる。なお、通電板20の下面は、「通電板の他方の側の面」の一例に相当し、溶接ビード40は、「溶接部」の一例に相当する。 As shown in FIG. 3, the contact portion 22 has a substantially constant thickness t2, and the outer peripheral portion 21 has a substantially constant thickness t3. The thickness t2 of the contact portion 22 is smaller than the thickness t3 of the outer peripheral portion 21 and smaller than the thickness t1 of the deformable plate 30. The thickness t3 of the outer peripheral portion 21 is larger than the thickness t1 of the deformation plate 30. A plurality of weld beads 40 are formed on the lower surface of the current-carrying plate 20 at the contact portion 22. That is, at the position where the weld bead 40 is formed, the thickness t <b> 2 of the energization plate 20 is smaller than the thickness t <b> 1 of the deformation plate 30. In addition, the thickness t4 of the energizing plate 20 in the portion where the groove 20a is formed is smaller than the thickness (ie, the thickness t2 or t3) of the energizing plate 20 in the portion where the groove 20a is not formed. According to this configuration, the mechanical strength of the current-carrying plate 20 in the portion where the groove portion 20a is formed is the mechanical strength of the current-carrying plate 20 (that is, the contact portion 22 and the outer peripheral portion 21) in the portion where the groove portion 20a is not formed. Lower than. For this reason, the timing at which the deformable plate 30 changes from the conductive state to the nonconductive state can be controlled by adjusting the thickness t4 of the conductive plate 20 in the groove 20a. The lower surface of the energizing plate 20 corresponds to an example of “the surface on the other side of the energizing plate”, and the weld bead 40 corresponds to an example of a “welded portion”.
 図2に示すように、通電板20には通気孔20bが形成されており、変形板30と通電板20との間の空間50が通気孔20bを介してケース1内の空間と連通している。また、通電板20には通気孔20bよりも径方向外側に複数の貫通孔20cが形成されている。貫通孔20cには、後述するホルダ80の熱カシメ用ボス79が挿入されている。熱カシメ用ボス79を熱カシメ処理することにより、通電板20がホルダ80に固定される。変形板30の外周部31と通電板20の外周部21との間には環状の絶縁部材75が配置されている。 As shown in FIG. 2, the energization plate 20 is formed with a vent hole 20b, and the space 50 between the deformation plate 30 and the energization plate 20 communicates with the space in the case 1 through the vent hole 20b. Yes. In addition, a plurality of through holes 20c are formed in the energizing plate 20 on the radially outer side than the air holes 20b. A heat caulking boss 79 of a holder 80 described later is inserted into the through hole 20c. The energization plate 20 is fixed to the holder 80 by subjecting the heat caulking boss 79 to heat caulking. An annular insulating member 75 is disposed between the outer peripheral portion 31 of the deformation plate 30 and the outer peripheral portion 21 of the energizing plate 20.
 図2に示すように、ホルダ80は、その内部に端子7の基底部15と、変形板30と、絶縁部材75を収容し、これらを保持する。ホルダ80は環状であり、その中心には端子7が挿通されている。ホルダ80は、絶縁性及び耐電解液性を有する材料(本実施例ではポリフェニレンサルファイド(PPS))によって形成されている。なお、ホルダ80の材料は上記に限られず、例えば、PFA、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン(PP)等であってもよい。 As shown in FIG. 2, the holder 80 accommodates and holds the base portion 15 of the terminal 7, the deformation plate 30, and the insulating member 75 therein. The holder 80 is annular, and the terminal 7 is inserted through the center thereof. The holder 80 is formed of a material having insulation properties and resistance to electrolytic solution (in this embodiment, polyphenylene sulfide (PPS)). The material of the holder 80 is not limited to the above, and may be, for example, PFA, polytetrafluoroethylene (PTFE), polypropylene (PP), or the like.
 ホルダ80は、上端部77と側部78を有する。上端部77は、ケース1の蓋部112と端子7の基底部15の間に配置されている。上端部77は、蓋部112の下面と基底部15の上面に当接しており、蓋部112と基底部15との間隔を決定するスペーサの役割を果たす。蓋部112と基底部15とは、上端部77によって絶縁されている。側部78は、上端部77の外周縁から下方に延びている。側部78は、その内部に基底部15と変形板30と絶縁部材75を収容する。側部78の下面78aは平坦であり、ケース1の蓋部112と略平行である。側部78の下面78aには、複数の熱カシメ用ボス79が形成されている。熱カシメ用ボス79は、通電板20の貫通孔20cと対応する位置に形成されており、貫通孔20cに挿入されている。熱カシメ用ボス79は、熱カシメ処理によって貫通孔20cの内周面に密着すると共に、その下端の径が貫通孔20cの径よりも大きくなっている。これにより、通電板20の上面が側部78の下面78aに当接した状態で、通電板20がホルダ80に固定される。 The holder 80 has an upper end portion 77 and a side portion 78. The upper end portion 77 is disposed between the lid portion 112 of the case 1 and the base portion 15 of the terminal 7. The upper end portion 77 is in contact with the lower surface of the lid portion 112 and the upper surface of the base portion 15, and serves as a spacer that determines the distance between the lid portion 112 and the base portion 15. The lid portion 112 and the base portion 15 are insulated by the upper end portion 77. The side portion 78 extends downward from the outer peripheral edge of the upper end portion 77. The side portion 78 accommodates the base portion 15, the deformation plate 30, and the insulating member 75 therein. A lower surface 78 a of the side portion 78 is flat and substantially parallel to the lid portion 112 of the case 1. A plurality of heat caulking bosses 79 are formed on the lower surface 78 a of the side portion 78. The heat caulking boss 79 is formed at a position corresponding to the through hole 20c of the energizing plate 20, and is inserted into the through hole 20c. The heat caulking boss 79 is in close contact with the inner peripheral surface of the through hole 20c by the heat caulking process, and the diameter of the lower end thereof is larger than the diameter of the through hole 20c. As a result, the energizing plate 20 is fixed to the holder 80 in a state where the upper surface of the energizing plate 20 is in contact with the lower surface 78 a of the side portion 78.
 上述した説明から明らかなように、電流遮断装置10は、接続端子46と、通電板20と、変形板30と、端子7とを直列につなぐ通電経路を有している。このため、電極組立体3と端子7は、電流遮断装置10の通電経路を介して電気的に接続されている。 As is clear from the above description, the current interrupt device 10 has an energization path that connects the connection terminal 46, the energization plate 20, the deformation plate 30, and the terminal 7 in series. For this reason, the electrode assembly 3 and the terminal 7 are electrically connected via the energization path of the current interrupt device 10.
 ここで、電流遮断装置10の遮断動作について説明する。上述した蓄電装置100においては、変形板30は、通電板20と、通電板20の当接部22において当接した状態で電気的に接続しており、端子5と端子7との間が通電可能な導通状態となっている。蓄電装置100の過充電等によってケース1内の圧力が上昇すると、通気孔20bを介して変形板30の下面に作用する圧力が上昇する。一方、変形板30の上面には大気圧が作用する。このため、ケース1の内圧が上昇して所定値に達すると、変形板30が反転して、上方に凸の状態に変化する。すると、変形板30の中央部32に接続されていた通電板20が、機械的に脆弱な溝部20aを起点に破断し、変形板30が通電板20の残部(即ち、外周部21)から離間する。これによって、通電板20と変形板30とを接続する通電経路が遮断され、電極組立体3と端子7とが非導通状態となる。このとき、変形板30は接続端子46から絶縁されると共に、通電板20は端子7から絶縁される。 Here, the interruption operation of the current interruption device 10 will be described. In the power storage device 100 described above, the deformable plate 30 is electrically connected to the energizing plate 20 while being in contact with the abutting portion 22 of the energizing plate 20, and the terminal 5 and the terminal 7 are energized. It is possible to conduct. When the pressure in the case 1 increases due to overcharging of the power storage device 100 or the like, the pressure that acts on the lower surface of the deformation plate 30 through the vent hole 20b increases. On the other hand, atmospheric pressure acts on the upper surface of the deformation plate 30. For this reason, when the internal pressure of the case 1 rises and reaches a predetermined value, the deformable plate 30 is reversed and changes to a convex state upward. Then, the current-carrying plate 20 connected to the central portion 32 of the deformable plate 30 breaks starting from the mechanically fragile groove 20a, and the deformable plate 30 is separated from the remaining portion (that is, the outer peripheral portion 21) of the current-carrying plate 20. To do. As a result, the energization path connecting the energization plate 20 and the deformation plate 30 is interrupted, and the electrode assembly 3 and the terminal 7 are brought out of electrical conduction. At this time, the deformation plate 30 is insulated from the connection terminal 46, and the energization plate 20 is insulated from the terminal 7.
 次に、図5、6を参照して電流遮断装置10の製造方法について説明する。以下では、従来の製造方法と同一の工程については、その説明を省略する。 Next, a method for manufacturing the current interrupting device 10 will be described with reference to FIGS. Below, the description is abbreviate | omitted about the process same as the conventional manufacturing method.
(端子固定工程)
 この工程では、図5に示すように、端子7をケース1の蓋部112の取付孔13に固定する。本実施例では、端子7としてリベットボルトを用いる。まず、端子7の円筒部分(即ち、円筒部14と、かしめ前の固定部16とによって構成される円筒状の部分)を、ホルダ80の上端部77の開口に挿通して、上端部77を基底部15の上面に配置させる。次に、円筒部分(14,16)をシール部材19に挿通して、シール部材19を基底部15の上面に配置させる。一方、ケース1の蓋部112の上面にガスケット63及び外部端子61を配置する。この状態で、円筒部分(14,16)をケース1の内部から取付孔13、ガスケット63の開口及び外部端子61の開口に挿通する。その後、円筒部分(14,16)の上端を径方向外側に屈曲させて径方向外側に押し広げる。これにより、円筒部分(14,16)の上端が外部端子61の上面に当接し、端子7がケース1の蓋部112にカシメ固定される。端子7がケース1の蓋部112にカシメ固定されると、ホルダ80の上端部77、シール部材19、ガスケット63及び外部端子61が端子7とケース1の蓋部112との間に挟持される。
(Terminal fixing process)
In this step, as shown in FIG. 5, the terminal 7 is fixed to the mounting hole 13 of the lid portion 112 of the case 1. In this embodiment, a rivet bolt is used as the terminal 7. First, the cylindrical portion of the terminal 7 (that is, the cylindrical portion constituted by the cylindrical portion 14 and the fixing portion 16 before caulking) is inserted through the opening of the upper end portion 77 of the holder 80, and the upper end portion 77 is moved. It is arranged on the upper surface of the base part 15. Next, the cylindrical portions (14, 16) are inserted into the seal member 19, and the seal member 19 is disposed on the upper surface of the base portion 15. On the other hand, the gasket 63 and the external terminal 61 are disposed on the upper surface of the lid portion 112 of the case 1. In this state, the cylindrical portion (14, 16) is inserted from the inside of the case 1 into the mounting hole 13, the opening of the gasket 63 and the opening of the external terminal 61. Thereafter, the upper end of the cylindrical portion (14, 16) is bent radially outward and pushed outward radially. As a result, the upper ends of the cylindrical portions (14, 16) abut on the upper surface of the external terminal 61, and the terminal 7 is caulked and fixed to the lid portion 112 of the case 1. When the terminal 7 is caulked and fixed to the lid portion 112 of the case 1, the upper end portion 77 of the holder 80, the seal member 19, the gasket 63, and the external terminal 61 are sandwiched between the terminal 7 and the lid portion 112 of the case 1. .
(第1変形板溶接工程)
 次に、変形板30の外周部の上面を端子7の基底部15の外周部の下面に当接させた状態で、下方から変形板30の外周部の下面に向けて図5の矢印で示すレーザビームを照射する。レーザビームは変形板30の外周部の下面を一巡するように照射される。これにより、端子7の凹所15aを覆うように、変形板30が端子7の基底部15に溶接される。
(First deformation plate welding process)
Next, the upper surface of the outer peripheral portion of the deformable plate 30 is in contact with the lower surface of the outer peripheral portion of the base portion 15 of the terminal 7, and is indicated by an arrow in FIG. 5 from below toward the lower surface of the outer peripheral portion of the deformable plate 30. Irradiate with a laser beam. The laser beam is irradiated so as to go around the lower surface of the outer peripheral portion of the deformation plate 30. Thereby, the deformation plate 30 is welded to the base portion 15 of the terminal 7 so as to cover the recess 15 a of the terminal 7.
(通電板配置工程)
 続いて、図6に示すように、変形板30の外周部の下面に環状の絶縁部材75を配置し、通電板20の貫通孔20cにホルダ80の熱カシメ用ボス79を挿入し、通電板20の当接部22の上面が変形板30の中央部32の下面に当接するように通電板20を配置する。次いで、熱カシメ用ボス79に熱カシメ処理を施して通電板20をホルダ80に固定し、変形板30の中央部32と通電板20の当接部22とを当接させる。
(Electric plate placement process)
Subsequently, as shown in FIG. 6, an annular insulating member 75 is disposed on the lower surface of the outer peripheral portion of the deformable plate 30, and the heat caulking boss 79 of the holder 80 is inserted into the through hole 20 c of the energizing plate 20. The energization plate 20 is arranged so that the upper surface of the 20 contact portions 22 contacts the lower surface of the central portion 32 of the deformation plate 30. Next, the caulking process is applied to the heat caulking boss 79 to fix the energizing plate 20 to the holder 80, and the central portion 32 of the deformable plate 30 and the abutting portion 22 of the energizing plate 20 are brought into contact with each other.
(通電板溶接工程)
 次に、通電板20の下方から、通電板20の当接部22の下面に向かって、図6の矢印で示すレーザビームを照射する。レーザビームは、周方向に等間隔で照射される(図4参照)。これにより、通電板20と変形板30が当接部22において溶接される。この結果、当接部22の下面には複数の溶接ビード40が形成される。上述した工程を実施することにより、電流遮断装置10が製造される。
(Electric plate welding process)
Next, a laser beam indicated by an arrow in FIG. 6 is irradiated from below the energizing plate 20 toward the lower surface of the contact portion 22 of the energizing plate 20. Laser beams are irradiated at equal intervals in the circumferential direction (see FIG. 4). Thereby, the current-carrying plate 20 and the deformation plate 30 are welded at the contact portion 22. As a result, a plurality of weld beads 40 are formed on the lower surface of the contact portion 22. By implementing the above-described steps, the current interrupt device 10 is manufactured.
 実施例1の電流遮断装置10の作用効果について説明する。上記の電流遮断装置10では、溶接ビード40が形成される位置(即ち、レーザビームが照射されることになる位置)における通電板20の厚みt2は、変形板30の厚みt1(即ち、通電板20と溶接によって接合されることになる位置における変形板30の厚み)よりも小さい。このため、通電板20の下方から、通電板20の下面に向かってレーザビームを照射しても、レーザビームの熱が通電板20の内部で拡散し難くなり、通電板20と変形板30を接合することが可能になる。この結果、端子7の貫通孔14aの径を小さくでき、ケース1の内部に進入する水分量を低減できる。また、通電板溶接工程では、通電板20の下方からレーザビームを照射する。このため、レーザビーム照射口から、被溶接部との間に他の部材が介在していない状態で溶接することができ、通電板20と変形板30とをより容易に溶接することができる。さらに、通電板溶接工程における蓋部112に対するレーザの相対位置は、第1変形板溶接工程における蓋部112に対するレーザの相対位置と同一である。従って、通電板溶接工程において蓋部112に対するレーザの相対位置を変更する必要がなくなり、作業性が向上する。 The operation and effect of the current interrupt device 10 of the first embodiment will be described. In the current interrupt device 10, the thickness t2 of the energizing plate 20 at the position where the weld bead 40 is formed (that is, the position where the laser beam is irradiated) is the thickness t1 of the deforming plate 30 (that is, the energizing plate). 20 and the thickness of the deformable plate 30 at a position to be joined by welding. For this reason, even if the laser beam is irradiated from below the energizing plate 20 toward the lower surface of the energizing plate 20, the heat of the laser beam is difficult to diffuse inside the energizing plate 20, and the energizing plate 20 and the deformable plate 30 It becomes possible to join. As a result, the diameter of the through hole 14a of the terminal 7 can be reduced, and the amount of moisture entering the inside of the case 1 can be reduced. In the energizing plate welding process, the laser beam is irradiated from below the energizing plate 20. For this reason, welding can be performed in a state where no other member is interposed between the laser beam irradiation port and the welded portion, and the energizing plate 20 and the deformable plate 30 can be welded more easily. Furthermore, the relative position of the laser with respect to the lid 112 in the energization plate welding process is the same as the relative position of the laser with respect to the lid 112 in the first deformation plate welding process. Accordingly, it is not necessary to change the relative position of the laser with respect to the lid 112 in the current plate welding process, and workability is improved.
 特に、実施例1では、通電板20の当接部22が変形板30の中央部32と面接触(面当接)しており、当接部22の全域において、通電板20の厚みt2が変形板30の厚みt1よりも小さくなっている。このため、レーザビームを当接部22のいずれの位置に照射しても、通電板20と変形板30を適切に接合することができる。従って、当接部22にレーザビームを照射する限り、レーザビームを照射する位置を厳密に制御する必要がなくなり、通電板20と変形板30を比較的に容易に接合できる。また、通電板20の当接部22の上面と変形板30の中央部32の下面は、互いに略平行であり、かつ、共に平坦になっている。即ち、通電板30の当接部22と変形板30の中央部32は、当接部22の全域において密着して接触している。このため、レーザビームを当接部22のいずれの位置に照射しても、通電板20と変形板30をより確実に接合することができる。従って、通電板20と変形板30とをより精度よく接合できる。 In particular, in Example 1, the contact portion 22 of the energization plate 20 is in surface contact (surface contact) with the central portion 32 of the deformation plate 30, and the thickness t <b> 2 of the energization plate 20 is in the entire contact portion 22. The deformation plate 30 is smaller than the thickness t1. For this reason, even if it irradiates any position of the contact part 22 with a laser beam, the electricity supply board 20 and the deformation | transformation board 30 can be joined appropriately. Therefore, as long as the contact portion 22 is irradiated with the laser beam, it is not necessary to strictly control the position where the laser beam is irradiated, and the energization plate 20 and the deformation plate 30 can be joined relatively easily. Further, the upper surface of the contact portion 22 of the energizing plate 20 and the lower surface of the central portion 32 of the deformation plate 30 are substantially parallel to each other and are both flat. That is, the contact portion 22 of the energization plate 30 and the central portion 32 of the deformation plate 30 are in close contact with each other over the entire contact portion 22. For this reason, even if it irradiates any position of the contact part 22 with a laser beam, the electricity supply board 20 and the deformation | transformation board 30 can be joined more reliably. Therefore, the current-carrying plate 20 and the deformation plate 30 can be joined with higher accuracy.
 次に、図7及び図8を参照して実施例2の蓄電装置について説明する。以下では、実施例1と相違する点についてのみ説明し、実施例1と同一の構成についてはその詳細な説明を省略する。図6の二点鎖線部300は、図1の二点鎖線部200に相当する。この蓄電装置では、電流遮断装置110の構成が実施例1の電流遮断装置10と異なっている。電流遮断装置110は、第1変形板130と、通電板120と、第2変形板140を備えている。第1変形板130、通電板120及び第2変形板140はいずれも銅によって形成されている。 Next, the power storage device of Example 2 will be described with reference to FIGS. Hereinafter, only differences from the first embodiment will be described, and detailed description of the same configurations as those of the first embodiment will be omitted. A two-dot chain line portion 300 in FIG. 6 corresponds to the two-dot chain line portion 200 in FIG. 1. In this power storage device, the configuration of the current interrupt device 110 is different from the current interrupt device 10 of the first embodiment. The current interrupting device 110 includes a first deformation plate 130, an energization plate 120, and a second deformation plate 140. All of the first deformation plate 130, the energization plate 120, and the second deformation plate 140 are made of copper.
 第1変形板130及び通電板120は、実施例1の変形板30及び通電板20とそれぞれ略同一の構成を有する。第1変形板130と通電板120との間の空間150は、通電板120の通気孔120bを介して、通電板120と第2変形板140との間の空間154(後述)と連通している。ホルダ80の内周側の下面78aには、切欠部78bが形成されている。切欠部78bには、シール部材190が配置されている。シール部材190は、ホルダ80と通電板120の両者に当接しており、これにより、ケース1内の空間と、空間150及び空間154とをシールしている。 The first deformable plate 130 and the energizing plate 120 have substantially the same configuration as the deformable plate 30 and the energized plate 20 of the first embodiment, respectively. The space 150 between the first deformable plate 130 and the energizing plate 120 communicates with a space 154 (described later) between the energized plate 120 and the second deformable plate 140 through the vent hole 120b of the energized plate 120. Yes. A notch 78 b is formed in the lower surface 78 a on the inner peripheral side of the holder 80. A seal member 190 is disposed in the notch 78b. The seal member 190 is in contact with both the holder 80 and the energization plate 120, thereby sealing the space in the case 1, the space 150, and the space 154.
 第2変形板140は、通電板120の下方に配置されている。即ち、第2変形板140は、通電板120に対して第1変形板130とは反対側に配置されている。第2変形板140は、その中央部が下方に突出している。第2変形板140の外周部は、通電板120の外周部121に接続されている。第2変形板140の上面中央には、上方に突出する突出部142が設けられている。突出部142の上方には通電板120の当接部122(溝部120aに囲まれた部分)が位置している。第2変形板140の上面には空間154の圧力が作用し、第2変形板140の下面にはケース1内の空間の圧力が作用する。なお、突出部142は、「突起」の一例に相当する。 The second deformation plate 140 is disposed below the energization plate 120. That is, the second deformation plate 140 is disposed on the opposite side of the first deformation plate 130 with respect to the energization plate 120. The center part of the second deformation plate 140 protrudes downward. The outer peripheral portion of the second deformation plate 140 is connected to the outer peripheral portion 121 of the energization plate 120. A projecting portion 142 projecting upward is provided at the center of the upper surface of the second deformable plate 140. Above the protrusion 142, a contact portion 122 (a portion surrounded by the groove 120a) of the energization plate 120 is located. The pressure of the space 154 acts on the upper surface of the second deformation plate 140, and the pressure of the space in the case 1 acts on the lower surface of the second deformation plate 140. The protruding portion 142 corresponds to an example of a “projection”.
 図7に示すように、電流遮断装置110は、接続端子46と、通電板120と、第1変形板130と、端子7とを直列につなぐ通電経路を有している。このため、電極組立体3と端子7は、電流遮断装置110の通電経路を介して電気的に接続されている。 As shown in FIG. 7, the current interrupt device 110 has an energization path that connects the connection terminal 46, the energization plate 120, the first deformation plate 130, and the terminal 7 in series. For this reason, the electrode assembly 3 and the terminal 7 are electrically connected via the energization path of the current interrupt device 110.
 ここで、電流遮断装置110の遮断動作について説明する。上述した蓄電装置では端子5と端子7の間が通電可能な状態となっている。ケース1の内圧が上昇すると、第2変形板140の下面に作用する圧力が上昇する。一方、第2変形板140の上面には、ケース1内の空間からシールされた空間154の圧力が作用する。このため、ケース1内の圧力が所定値を超えると、第2変形板140が下方に凸の状態から上方に変位した状態に変化する(図8参照)。このとき、空間154内の空気は通気孔120bを通って空間150に移動し、空間150内の圧力が上昇する。また、第2変形板140が上方に変位すると、第2変形板140の突出部142が通電板120の当接部122に衝突し、通電板120が溝部120aで破断する。これにより、第1変形板130が反転し、第1変形板130及び通電板120の当接部122が上方に変位する(図8参照)。このため、通電板120と第1変形板130を接続する通電経路が遮断され、電極組立体3と端子7との間の導通が遮断される。このとき、第1変形板130は接続端子46から絶縁されると共に、通電板120は端子7から絶縁されている。なお、第2変形板140が下方に凸の状態のときの突出部142の位置が「第1位置」の一例に相当し、第2変形板140が上方に変位した状態のときの突出部142の位置が「第2位置」の一例に相当する。また、通電板120が破断しておらず、当接部122において第1変形板130と当接している状態が「第1状態」の一例に相当し、通電板120が破断し、通電板120と第1変形板130とが電気的に離間した状態が「第2状態」の一例に相当する。この構成によっても、実施例1の蓄電装置100と同様の作用効果を奏することができる。 Here, the interruption operation of the current interruption device 110 will be described. In the power storage device described above, the terminal 5 and the terminal 7 can be energized. When the internal pressure of the case 1 increases, the pressure acting on the lower surface of the second deformation plate 140 increases. On the other hand, the pressure of the space 154 sealed from the space in the case 1 acts on the upper surface of the second deformation plate 140. For this reason, when the pressure in the case 1 exceeds a predetermined value, the second deformable plate 140 changes from a downwardly convex state to a upwardly displaced state (see FIG. 8). At this time, the air in the space 154 moves to the space 150 through the vent hole 120b, and the pressure in the space 150 increases. When the second deformable plate 140 is displaced upward, the projecting portion 142 of the second deformable plate 140 collides with the contact portion 122 of the energizing plate 120, and the energizing plate 120 is broken at the groove 120a. Thereby, the 1st deformation board 130 reverses and the contact part 122 of the 1st deformation board 130 and the electricity supply board 120 displaces upwards (refer FIG. 8). For this reason, the electricity supply path which connects the electricity supply plate 120 and the 1st deformation plate 130 is interrupted | blocked, and the electrical connection between the electrode assembly 3 and the terminal 7 is interrupted | blocked. At this time, the first deformation plate 130 is insulated from the connection terminal 46, and the energization plate 120 is insulated from the terminal 7. The position of the protrusion 142 when the second deformation plate 140 is convex downward corresponds to an example of “first position”, and the protrusion 142 when the second deformation plate 140 is displaced upward. The position corresponds to an example of a “second position”. In addition, the state where the energization plate 120 is not broken and is in contact with the first deformable plate 130 at the contact portion 122 corresponds to an example of the “first state”. The state where the first deformation plate 130 and the first deformation plate 130 are electrically separated corresponds to an example of the “second state”. Also with this configuration, the same effects as the power storage device 100 of the first embodiment can be obtained.
 以上、本明細書が開示する技術の実施例について詳細に説明したが、これらは例示に過ぎず、本明細書が開示する電流遮断装置及びその製造方法は、上記の実施例を様々に変形、変更したものが含まれる。 As described above, the embodiments of the technology disclosed in the present specification have been described in detail. However, these are merely examples, and the current interrupting device and the manufacturing method disclosed in the present specification are variously modified from the above-described embodiments. Includes changes.
 例えば、上記の実施例では、当接部22の全域において通電板20の厚みt2が変形板の厚みt1よりも小さかったが、この構成に限られない。溶接ビード40が形成される位置(即ち、溶接部位)においてt2<t1の関係が成立すれば、当接部22のうち溶接ビード40が形成されていない位置では、t2>t1であってもよい。即ち、当接部22における通電板20及び変形板30の厚みは一定でなくてもよい。また、上記の実施例では、通電板20の当接部22は変形板30と面接触していたが、この構成に限られない。例えば、当接部22の上面に凹凸が形成されており、当接部22の凸部において変形板30の下面と当接する構成であってもよい。また、溶接はスポット的な溶接に限られず、連続的な溶接であってもよい。また、通電板20の当接部22の厚みt2と変形板30の厚みt1が等しくてもよい。 For example, in the above-described embodiment, the thickness t2 of the energizing plate 20 is smaller than the thickness t1 of the deforming plate in the entire area of the contact portion 22. However, the present invention is not limited to this configuration. If the relationship of t2 <t1 is established at the position where the weld bead 40 is formed (that is, the welded portion), t2> t1 may be satisfied at the position where the weld bead 40 is not formed in the contact portion 22. . That is, the thickness of the current-carrying plate 20 and the deformation plate 30 in the contact portion 22 may not be constant. In the above embodiment, the contact portion 22 of the energizing plate 20 is in surface contact with the deformable plate 30, but is not limited to this configuration. For example, an unevenness may be formed on the upper surface of the contact portion 22, and the convex portion of the contact portion 22 may be in contact with the lower surface of the deformation plate 30. Further, the welding is not limited to spot welding but may be continuous welding. Further, the thickness t2 of the contact portion 22 of the energization plate 20 and the thickness t1 of the deformation plate 30 may be equal.
 また、上記の実施例では、通電板20は、溝部20aによって当接部22と外周部21に区分されたが、この構成に限られない。例えば、当接部22の外郭が溝部20aの径方向外側に位置していてもよいし、反対に、当接部22の外郭が溝部20aの径方向内側に位置していてもよい。なお、前者の場合は、溶接ビード40は、溝部20aに囲まれた部分に形成される。 In the above-described embodiment, the current-carrying plate 20 is divided into the contact portion 22 and the outer peripheral portion 21 by the groove portion 20a, but is not limited to this configuration. For example, the outline of the contact portion 22 may be located on the radially outer side of the groove portion 20a, and conversely, the outline of the contact portion 22 may be located on the radially inner side of the groove portion 20a. In the former case, the weld bead 40 is formed in a portion surrounded by the groove 20a.
 また、ケース1の内圧が所定値に達したときに通電板20と変形板30の導通が遮断される構成であれば、溝部20aは円形状でなくてもよいし、一巡する形状でなくてもよい。例えば、円弧状の溝部が間隔をおいて複数形成されていてもよい。 In addition, the groove portion 20a may not be circular or may have a circular shape as long as the conduction between the energization plate 20 and the deformation plate 30 is interrupted when the internal pressure of the case 1 reaches a predetermined value. Also good. For example, a plurality of arc-shaped groove portions may be formed at intervals.
 また、上記の実施例では、溝部20aにおける通電板20の厚みt4は、通電板20の当接部22の厚みt2よりも小さかったが、この構成に限られない。例えば、溝部20aを形成する代わりに、通電板20において当接部22の厚みが最も小さくなるように構成してもよい。この場合、通電板20の機械的強度は当接部22において最も低くなる。 In the above-described embodiment, the thickness t4 of the energizing plate 20 in the groove 20a is smaller than the thickness t2 of the abutting portion 22 of the energizing plate 20. However, the present invention is not limited to this configuration. For example, you may comprise so that the thickness of the contact part 22 may become the smallest in the electricity supply board 20, instead of forming the groove part 20a. In this case, the mechanical strength of the energizing plate 20 is lowest at the contact portion 22.
 また、電流遮断装置10は、端子5側に設けられてもよいし、端子5と端子7の双方に設けられてもよい。また、上記の実施例では、変形板30が反転することで通電板20との導通が遮断される。しかしながら、変形板30の変形の仕方は反転に限られない。例えば、変形板30の中央部が上方に撓むことで通電板20が溝部20aを起点に破断し、変形板30と通電板20との導通が遮断される構成であってもよい。変形板30は、変形板30と通電板20との導通が遮断されるのであればどのように変形してもよい。第2変形板140についても同様である。また、実施例2における第1変形板130を端子7の基底部15に溶接する工程では、レーザビームを第1変形板130に向かって一巡するように照射する方法に限られず、スポット的な溶接を採用してもよい。 Further, the current interrupt device 10 may be provided on the terminal 5 side, or may be provided on both the terminal 5 and the terminal 7. Moreover, in said Example, conduction | electrical_connection with the electricity supply board 20 is interrupted | blocked because the deformation | transformation board 30 inverts. However, the deformation method of the deformation plate 30 is not limited to inversion. For example, the configuration may be such that the central portion of the deformable plate 30 is bent upward so that the energizing plate 20 breaks starting from the groove portion 20a and the conduction between the deformable plate 30 and the energizing plate 20 is interrupted. The deformation plate 30 may be deformed in any way as long as the conduction between the deformation plate 30 and the energization plate 20 is interrupted. The same applies to the second deformation plate 140. In the step of welding the first deformation plate 130 to the base portion 15 of the terminal 7 in the second embodiment, the method is not limited to the method of irradiating the laser beam so as to make a round toward the first deformation plate 130, but spot welding. May be adopted.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (8)

  1.  ケース内に収容されており、前記ケースに収容された電極組立体と、前記ケースの壁面の取付孔に固定された正極又は負極の端子とを電気的に接続し、前記ケースの内圧が所定値を超えて上昇したときに前記電極組立体と前記端子とを電気的に接続する通電経路を遮断する電流遮断装置であり、
     前記電極組立体に電気的に接続されている通電板と、
     前記端子に電気的に接続されていると共に、前記通電板の一方の側に、前記通電板に対向して配置される第1変形板と、を備えており、
     前記通電板は、前記電極組立体と前記端子とが導通している状態では前記第1変形板と当接した状態である当接部を有しており、
     前記第1変形板は、前記電極組立体と前記端子とが導通している状態では前記通電板の前記当接部と当接した状態で電気的に接続しており、前記電極組立体と前記端子とが非導通の状態では前記通電板から離間した状態で前記通電板と電気的に非接続であり、
     前記通電板の前記当接部は、前記第1変形板と面接触しており、
     前記当接部の前記第1変形板との接触面が平坦であると共に、前記第1変形板の前記当接部との接触面が平坦であり、
     前記通電板の他方の側の面には、前記当接部において溶接部が設けられており、
     前記溶接部が設けられる位置において、前記通電板と前記第1変形板は接合されており、かつ、前記通電板の厚みが前記第1変形板の厚み以下である、電流遮断装置。
    The electrode assembly housed in the case is electrically connected to the positive or negative terminal fixed to the mounting hole on the wall surface of the case, and the internal pressure of the case is a predetermined value. A current interrupting device that interrupts an energization path that electrically connects the electrode assembly and the terminal when rising beyond
    An energization plate electrically connected to the electrode assembly;
    A first deformation plate that is electrically connected to the terminal and is disposed on one side of the energization plate so as to face the energization plate;
    The energization plate has a contact portion that is in contact with the first deformation plate in a state where the electrode assembly and the terminal are electrically connected,
    The first deformation plate is electrically connected in a state where the electrode assembly and the terminal are in contact with the contact portion of the current supply plate in a state where the electrode assembly and the terminal are electrically connected to each other. In a non-conducting state with the terminal, it is electrically disconnected from the energizing plate in a state separated from the energizing plate,
    The contact portion of the energization plate is in surface contact with the first deformation plate,
    The contact surface of the contact portion with the first deformation plate is flat, and the contact surface of the first deformation plate with the contact portion is flat,
    On the other side surface of the energization plate, a welding portion is provided in the contact portion,
    The current interrupting device, wherein the current-carrying plate and the first deformation plate are joined at a position where the weld is provided, and the thickness of the current-carrying plate is equal to or less than the thickness of the first deformation plate.
  2.  前記溶接部は、前記通電板の前記当接部の一部に配置されており、
     前記当接部の全域において、前記通電板の厚みが前記第1変形板の厚み以下である、請求項1に記載の電流遮断装置。
    The welded portion is disposed at a part of the contact portion of the energization plate,
    2. The current interrupting device according to claim 1, wherein a thickness of the energization plate is equal to or less than a thickness of the first deformation plate in the entire area of the contact portion.
  3.  前記通電板の前記他方の側の面には、前記溶接部の外周を一巡する溝部が設けられており、前記溝部が設けられている部分における前記通電板の厚みは、前記溝部が設けられていない部分における前記通電板の厚みよりも小さい、請求項1又は2に記載の電流遮断装置。 On the other side surface of the energization plate, a groove portion that makes a round of the outer periphery of the welded portion is provided, and the thickness of the energization plate in the portion where the groove portion is provided is provided with the groove portion. The current interrupting device according to claim 1, wherein the current interrupting device is smaller than a thickness of the energizing plate at a portion where there is no current.
  4.  前記通電板を平面視すると、前記溝部は、半径rの円形状であり、
     前記溝部が設けられている部分における前記通電板の前記厚みをtとし、前記通電板の前記当接部の面積をAとすると、次の関係式;
    Figure JPOXMLDOC01-appb-M000001
    が成立する、請求項3に記載の電流遮断装置。
    When the current plate is viewed in plan, the groove is circular with a radius r,
    When the thickness of the energizing plate in the portion where the groove is provided is t, and the area of the abutting portion of the energizing plate is A, the following relational expression:
    Figure JPOXMLDOC01-appb-M000001
    The current interrupting device according to claim 3, wherein:
  5.  前記通電板に対して他方の側に配置されているとともに、前記通電板に向かって突出した突起が設けられている第2変形板をさらに備えており、
     前記第2変形板は、前記電極組立体と前記端子とが導通している状態では前記突起が第1位置に位置して前記通電板と前記第1変形板とが当接している第1状態と、前記電極組立体と前記端子とが非導通の状態では前記突起が前記第1位置から前記通電板側の第2位置に移動して前記通電板と前記第1変形板とを離間させる第2状態とに切り替えられる、請求項1~4のいずれか一項に記載の電流遮断装置。
    A second deformation plate that is disposed on the other side with respect to the energization plate, and further provided with a protrusion protruding toward the energization plate;
    The second deformable plate is in a first state in which the protrusion is located at the first position and the energizing plate and the first deformable plate are in contact with each other when the electrode assembly and the terminal are electrically connected. When the electrode assembly and the terminal are non-conductive, the protrusion moves from the first position to the second position on the current plate side to separate the current plate and the first deformation plate. The current interrupting device according to any one of claims 1 to 4, wherein the current interrupting device can be switched between two states.
  6.  請求項1~5のいずれか一項に記載の電流遮断装置を備える蓄電装置。 A power storage device comprising the current interrupt device according to any one of claims 1 to 5.
  7.  前記蓄電装置は、二次電池である請求項6に記載の蓄電装置。 The power storage device according to claim 6, wherein the power storage device is a secondary battery.
  8.  請求項1~5のいずれか一項に記載の電流遮断装置の製造方法であって、
     前記ケースの前記壁面に設けられた前記取付孔に、前記端子を固定する端子固定工程と、
     前記第1変形板の一方の側の面を前記端子の他方の側の面に溶接する第1変形板溶接工程と、
     前記端子固定工程及び前記第1変形板溶接工程後に、前記第1変形板の他方の側の面と少なくとも一部において当接するように前記通電板を配置する通電板配置工程と、
     前記通電板配置工程後に、前記通電板に対して他方の側から、前記通電板の他方の側の面にレーザビームを照射して前記通電板と前記第1変形板とを溶接する通電板溶接工程と、を備え、
     前記通電板溶接工程を実施する前は、レーザビームが照射されることになる位置における前記通電板の厚みは、前記通電板と溶接によって接合されることになる位置における前記第1変形板の厚み以下である、電流遮断装置の製造方法。
    A method for manufacturing a current interrupting device according to any one of claims 1 to 5,
    A terminal fixing step of fixing the terminal to the mounting hole provided in the wall surface of the case;
    A first deformation plate welding step of welding a surface on one side of the first deformation plate to a surface on the other side of the terminal;
    An energizing plate arranging step of arranging the energizing plate so as to come into contact with at least part of the surface of the other side of the first deforming plate after the terminal fixing step and the first deforming plate welding step;
    After the energizing plate placement step, energizing plate welding for welding the energizing plate and the first deformed plate by irradiating the energizing plate with a laser beam from the other side to the other side of the energizing plate. A process,
    Before performing the current plate welding step, the thickness of the current plate at the position where the laser beam is to be irradiated is the thickness of the first deformation plate at the position where the current plate is joined by welding. The manufacturing method of the electric current interruption apparatus which is the following.
PCT/JP2016/074709 2015-08-27 2016-08-24 Current cut-off device and manufacturing method therefor WO2017033985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-168269 2015-08-27
JP2015168269A JP2018170069A (en) 2015-08-27 2015-08-27 Current cutoff device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2017033985A1 true WO2017033985A1 (en) 2017-03-02

Family

ID=58100290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074709 WO2017033985A1 (en) 2015-08-27 2016-08-24 Current cut-off device and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2018170069A (en)
WO (1) WO2017033985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114776A1 (en) * 2017-12-13 2019-06-20 比亚迪股份有限公司 Battery system and electric automobile

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149862A (en) * 2003-11-14 2005-06-09 Shin Kobe Electric Mach Co Ltd Sealed battery
JP2007227283A (en) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd Sealed battery
JP2014127284A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014186949A (en) * 2013-03-25 2014-10-02 Toyota Industries Corp Power storage apparatus and secondary battery
JP2014232690A (en) * 2013-05-30 2014-12-11 株式会社豊田自動織機 Current interrupter and power storage device
JP2015138672A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Current cut-off device of secondary battery
JP2015144095A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Secondary battery manufacturing method
JP2016096014A (en) * 2014-11-14 2016-05-26 日立オートモティブシステムズ株式会社 Secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149862A (en) * 2003-11-14 2005-06-09 Shin Kobe Electric Mach Co Ltd Sealed battery
JP2007227283A (en) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd Sealed battery
JP2014127284A (en) * 2012-12-25 2014-07-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014186949A (en) * 2013-03-25 2014-10-02 Toyota Industries Corp Power storage apparatus and secondary battery
JP2014232690A (en) * 2013-05-30 2014-12-11 株式会社豊田自動織機 Current interrupter and power storage device
JP2015138672A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Current cut-off device of secondary battery
JP2015144095A (en) * 2014-01-31 2015-08-06 トヨタ自動車株式会社 Secondary battery manufacturing method
JP2016096014A (en) * 2014-11-14 2016-05-26 日立オートモティブシステムズ株式会社 Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114776A1 (en) * 2017-12-13 2019-06-20 比亚迪股份有限公司 Battery system and electric automobile

Also Published As

Publication number Publication date
JP2018170069A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6204850B2 (en) Current interrupting device and manufacturing method thereof
JP6699563B2 (en) Storage element
US10256456B2 (en) Rectangular secondary battery and method of making the same
EP3467906A1 (en) Battery and battery manufacturing method
JP7163932B2 (en) Storage element
JP2014127411A (en) Sealed battery and manufacturing method of sealed battery
JP2021125304A (en) Power storage device
WO2014017091A1 (en) Secondary battery
WO2017110480A1 (en) Electrical storage device, and manufacturing method for same
US10381631B2 (en) Sealed-type battery having a current interrupt device
WO2017033985A1 (en) Current cut-off device and manufacturing method therefor
JP6453726B2 (en) Current interrupt device, power storage device, method of manufacturing current interrupt device, and method of manufacturing power storage device
JP6573975B2 (en) Current interrupt device and power storage device including the same
JP6498556B2 (en) Current interrupt device and power storage device using the same
KR20190104687A (en) Cylindrical Battery Having no Beading Part and Method For Manufacturing Thereof
JP6393245B2 (en) Current interrupt device and power storage device using the same
JP6456802B2 (en) Current interrupt device and power storage device using the same
JP6716343B2 (en) Current interruption device, power storage device, and method of manufacturing power storage device
JP6520304B2 (en) Power storage device
WO2014068869A1 (en) Storage battery module
JP6404620B2 (en) Current interrupt device, power storage device, method of manufacturing current interrupt device, and method of manufacturing power storage device
WO2023054135A1 (en) Power storage device and method for manufacturing power storage device
JP2017022113A (en) Power storage device
JP6879124B2 (en) Current breaker
JP6453725B2 (en) Current interrupt device and power storage device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP