JP2014127284A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014127284A
JP2014127284A JP2012281831A JP2012281831A JP2014127284A JP 2014127284 A JP2014127284 A JP 2014127284A JP 2012281831 A JP2012281831 A JP 2012281831A JP 2012281831 A JP2012281831 A JP 2012281831A JP 2014127284 A JP2014127284 A JP 2014127284A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
separator
active material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012281831A
Other languages
Japanese (ja)
Inventor
Toshihiko Mihashi
利彦 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012281831A priority Critical patent/JP2014127284A/en
Publication of JP2014127284A publication Critical patent/JP2014127284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which, even after repeated battery charges and discharges, can surely actuate a pressure-sensitive current breaking mechanism, for increased safety.SOLUTION: A nonaqueous electrolyte secondary battery 1 comprises: a cathode plate 20 having a cathode active material layer 21; an anode plate 30 having an anode active material layer 31; a separator 40; a nonaqueous electrolyte 50 charged inside a battery case 80; an overcharge additive for generating a gas when overcharged; and a current breaking mechanism 62 which is actuated when the internal pressure of the battery case exceeds a working pressure. In the cathode active material layer 21, a maximum frequency pore diameter is 0.7 μm or greater. In the separator 40, a depth of dent when it is pressed with a force of 0.05 gf is 1.2 μm or less. According to this nonaqueous electrolyte secondary battery 1, separator deformation is small even when the battery is repeatedly charged and discharged, so that a hole, which is a reaction space for the overcharge additive, is not closed up. Therefore, a sufficient amount of gas to actuate the current breaking mechanism can be generated when the battery is overcharged.

Description

本発明は,リチウムイオン二次電池等の非水電解液二次電池に関する。詳しくは,電池ケースの内圧が作動圧を超えたときに作動する電流遮断機構を備えた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. Specifically, the present invention relates to a non-aqueous electrolyte secondary battery provided with a current interruption mechanism that operates when the internal pressure of the battery case exceeds the operating pressure.

近年,リチウムイオン二次電池などの非水電解液二次電池は,携帯電話やパーソナルコンピュータ等の電子機器,ハイブリッド自動車や電気自動車等の車両等,多岐にわたる分野で利用されている。特にリチウムイオン二次電池は,エネルギー密度が高いため,各種の機器に搭載する上で好適である。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been used in various fields such as electronic devices such as mobile phones and personal computers, vehicles such as hybrid cars and electric cars. In particular, a lithium ion secondary battery has a high energy density and is suitable for mounting in various devices.

リチウムイオン二次電池は,一般に,正極板と負極板との間にフィルム状のセパレータを介在させて積層又は捲回した電極体を備えている。正極板は,正極集電箔に正極活物質層を形成したものである。正極活物質層は,正極集電箔に,正極活物質を含む正極用ペーストを塗工して乾燥させることで形成される。一方,負極板は,負極集電箔に負極活物質層を形成したものである。負極活物質層は,負極集電箔に,負極活物質を含む負極用ペーストを塗工して乾燥させることで形成される。電極体は,電気エネルギーを外部に取り出すための端子部材を接続した状態で,電池ケース内に収容され,密閉される。電池ケース内の電極体には,電解液が含浸してある。   Generally, a lithium ion secondary battery includes an electrode body that is laminated or wound with a film-like separator interposed between a positive electrode plate and a negative electrode plate. The positive electrode plate is obtained by forming a positive electrode active material layer on a positive electrode current collector foil. The positive electrode active material layer is formed by applying a positive electrode paste containing a positive electrode active material to a positive electrode current collector foil and drying it. On the other hand, the negative electrode plate is obtained by forming a negative electrode active material layer on a negative electrode current collector foil. The negative electrode active material layer is formed by applying and drying a negative electrode paste containing a negative electrode active material on a negative electrode current collector foil. The electrode body is housed in a battery case and sealed in a state where a terminal member for taking out electric energy is connected. The electrode body in the battery case is impregnated with an electrolytic solution.

このようなリチウムイオン二次電池は,誤動作や不正使用により過充電されると発熱することがある。そこで,過充電時の発熱を防止するため,例えば,過充電時には予め添加しておいた過充電添加剤が反応してガスを発生させ,これにより,電池の内圧を上昇させて,その内圧上昇により電流遮断機構を作動させることが提案されている。この種の技術に関する特許文献としては,下記特許文献1がある。なお下記特許文献1に記載の技術では,過充電添加剤(内圧上昇剤)として炭酸リチウムを,正極活物質層に含まれる導電材の表面に保持させている。過充電時には,この炭酸リチウムが電気化学的に分解されて炭酸ガスが発生し,電池の内圧が上昇するようになっている。   Such lithium ion secondary batteries may generate heat when overcharged due to malfunction or unauthorized use. Therefore, in order to prevent heat generation during overcharge, for example, the overcharge additive added in advance during overcharge reacts to generate gas, thereby increasing the internal pressure of the battery and increasing the internal pressure. It has been proposed to activate the current interrupt mechanism. As a patent document relating to this type of technology, there is the following Patent Document 1. In the technique described in Patent Document 1 below, lithium carbonate is retained on the surface of the conductive material included in the positive electrode active material layer as an overcharge additive (internal pressure increasing agent). During overcharge, the lithium carbonate is electrochemically decomposed to generate carbon dioxide, which increases the internal pressure of the battery.

しかしながら,下記特許文献1に示す技術には,次のような問題点があった。すなわち,リチウムイオン二次電池を繰り返し使用する(充放電する)ことにより,セパレータと正極活物質層との間,及び,セパレータと負極活物質層との間の隙間(空孔,図15の符号S参照)を埋めるように,セパレータが変形してしまうのである(図16参照)。詳細には,リチウムイオン二次電池を繰り返し充放電すると,負極活物質が膨張・収縮を繰り返す。これにより,セパレータに圧力が加わる。そのため,セパレータが変形し,セパレータと正極活物質層との間,及び,セパレータと負極活物質層との間の空孔に入り込み,空孔を塞いでしまうのである。   However, the technique shown in Patent Document 1 below has the following problems. That is, by repeatedly using (charging / discharging) a lithium ion secondary battery, gaps between the separator and the positive electrode active material layer and between the separator and the negative electrode active material layer (holes, symbols in FIG. 15). The separator is deformed so as to fill in (see S) (see FIG. 16). Specifically, when a lithium ion secondary battery is repeatedly charged and discharged, the negative electrode active material repeatedly expands and contracts. As a result, pressure is applied to the separator. For this reason, the separator is deformed and enters the pores between the separator and the positive electrode active material layer and between the separator and the negative electrode active material layer, thereby closing the pores.

なお,下記特許文献2には,セパレータを,所定のパラメータで構成することにより,セパレータの柔軟性を高めたリチウムイオン二次電池が記載されている。所定のパラメータとは,「接触底面が直径0.5cmの円状の接触端子を有した接触式膜厚計を用いて,印加荷重36g/cmで測定した膜厚をL1とし,印加荷重1.2kg/cmで測定した膜厚をL2とした場合に,L1−L2=2.0〜10μmとなること」である。この文献に記載の技術によれば,セパレータの柔軟性を高めた分,電池の充放電に伴う電極の膨張・収縮に対して,セパレータが追随できるようになったとされている。そのため,電池を100サイクル程度繰り返し充放電しても,セパレータにシワや折れが生じず,電池のサイクル特性(放電容量保持率)が低下しないとされている。 Patent Document 2 listed below describes a lithium ion secondary battery in which the separator is configured with predetermined parameters to increase the flexibility of the separator. The predetermined parameter is “a film thickness measured with an applied load of 36 g / cm 2 using a contact-type film thickness meter having a circular contact terminal with a contact bottom surface of 0.5 cm in diameter is L1, and an applied load of 1 When the film thickness measured at 2 kg / cm 2 is L2, L1−L2 = 2.0 to 10 μm ”. According to the technique described in this document, it is said that the separator can follow the expansion / contraction of the electrode accompanying the charging / discharging of the battery, as the flexibility of the separator is increased. Therefore, even if the battery is repeatedly charged and discharged for about 100 cycles, the separator is not wrinkled or broken, and the cycle characteristics (discharge capacity retention rate) of the battery are not deteriorated.

特開2010−171020号公報JP 2010-171020 A 特開2010−218749号公報JP 2010-218749 A

しかしながら,上記特許文献2に記載の技術を用いたとしても,上述の問題点,すなわち,セパレータの変形による空孔の閉塞という問題点を解決することはできない。それどころか,上記特許文献2に記載の技術を用いた場合には,セパレータの柔軟性が向上し
ている分,電極の膨張時に変形したセパレータが,セパレータと正極活物質層との間,及び,セパレータと負極活物質層との間の空孔に隙間なく入り込み,空孔を塞いだままとなるおそれがある。
However, even if the technique described in Patent Document 2 is used, the above-described problem, that is, the problem of pore blocking due to the deformation of the separator cannot be solved. On the contrary, when the technique described in Patent Document 2 is used, since the flexibility of the separator is improved, the separator deformed during the expansion of the electrode is between the separator and the positive electrode active material layer, and the separator. There is a possibility that the air gap between the anode and the negative electrode active material layer enters the gap without any gap and the hole is blocked.

セパレータ40により空孔を塞いでしまうと,過充電添加剤の反応スペースがなくなってしまう。そのため,過充電時であっても,十分にガスを発生させることができず,電池の内圧を上昇させることができなくなってしまう。電池の内圧を上昇させることができないと,感圧式の電流遮断機構を作動させることができず,電池が発熱するおそれが生じる。その結果,電池の安全性が確保されなくなってしまう。   If the pores are blocked by the separator 40, the reaction space for the overcharge additive is lost. For this reason, even during overcharging, gas cannot be generated sufficiently, and the internal pressure of the battery cannot be increased. If the internal pressure of the battery cannot be increased, the pressure-sensitive current interruption mechanism cannot be operated, and the battery may generate heat. As a result, the safety of the battery cannot be ensured.

本発明は,上記のような事情に鑑みてなされたものである。すなわちその課題とするところは,電池を繰り返し充放電しても,感圧式の電流遮断機構を確実に作動させ得る安全性の高い非水電解液二次電池を提供することにある。   The present invention has been made in view of the above circumstances. That is, the object is to provide a highly safe non-aqueous electrolyte secondary battery that can reliably operate a pressure-sensitive current interrupting mechanism even when the battery is repeatedly charged and discharged.

この課題の解決を目的としてなされた本発明の非水電解液二次電池は,正極集電箔と,正極集電箔に塗工されている正極活物質層とを有する正極板と,負極集電箔と,負極集電箔に塗工されている負極活物質層とを有する負極板と,正極板と負極板との間に介在して正極板と負極板とを電気的に絶縁するセパレータと,正極板,負極板,及びセパレータを捲回又は積層してなる電極体を収容する電池ケースと,電池ケース内に充填された非水電解液と,過充電により通常の動作電圧を上回ったときに反応してガスを発生させる過充電添加剤と,電池ケースの内圧が作動圧を超えたときに電極体に流れる電流を遮断する電流遮断機構と,を備えている。正極活物質層は,最大頻度細孔径が0.7μm以上である。セパレータは,0.05gfの力で押したときの凹み量が1.2μm以下である。   In order to solve this problem, the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode current collector foil, a positive electrode plate having a positive electrode active material layer coated on the positive electrode current collector foil, and a negative electrode current collector. A negative electrode plate having an electric foil and a negative electrode active material layer coated on the negative electrode current collector foil, and a separator interposed between the positive electrode plate and the negative electrode plate to electrically insulate the positive electrode plate and the negative electrode plate A battery case containing an electrode body formed by winding or laminating a positive electrode plate, a negative electrode plate, and a separator, a non-aqueous electrolyte filled in the battery case, and exceeding a normal operating voltage due to overcharging. An overcharge additive that sometimes reacts to generate gas, and a current interrupt mechanism that interrupts the current flowing through the electrode body when the internal pressure of the battery case exceeds the operating pressure. The positive electrode active material layer has a maximum frequency pore diameter of 0.7 μm or more. The separator has a dent amount of 1.2 μm or less when pressed with a force of 0.05 gf.

本発明の発明者は,実験の結果,正極活物質層の最大頻度細孔径が0.7μm以上であれば,過充電時における過充電添加剤をガス発生源とするガス発生量は,セパレータの変形し易さ(柔軟性)と相関があることを発見した。そして,セパレータを,0.05gfの力で押したときの凹み量(変形量)が1.2μm以下となるように構成することで,電流遮断機構の作動に必要な内圧(作動圧)を確保するのに十分なガス発生量となることをつきとめた。そこで本発明では,正極活物質層は,最大頻度細孔径が0.7μm以上となるように構成し,セパレータは,0.05gfの力で押したときの凹み量が1.2μm以下となるように構成している。これにより,電池を繰り返し充放電してもセパレータが変形して空孔を塞ぐことのない非水電解液二次電池とすることができる。すなわち,電池を繰り返し充放電してもセパレータの変形が少ないため空孔が塞がれず,その結果,過充電添加剤の反応スペースが十分にとれることとなり,感圧式の電流遮断機構を確実に作動させ得る安全性の高い非水電解液二次電池とすることができる。   As a result of the experiment, the inventors of the present invention have determined that if the maximum frequency pore diameter of the positive electrode active material layer is 0.7 μm or more, the amount of gas generated using the overcharge additive as a gas generation source during overcharge is We found that there is a correlation with the ease of deformation (flexibility). And, the internal pressure (operating pressure) necessary for the operation of the current interrupting mechanism is secured by configuring the separator so that the dent amount (deformation amount) when pressed with a force of 0.05 gf is 1.2 μm or less. It was found that the amount of gas generated was sufficient to do so. Therefore, in the present invention, the positive electrode active material layer is configured so that the maximum frequency pore diameter is 0.7 μm or more, and the separator has a dent amount of 1.2 μm or less when pressed with a force of 0.05 gf. It is configured. Thereby, even if it charges / discharges a battery repeatedly, it can be set as a non-aqueous-electrolyte secondary battery with which a separator deform | transforms and does not block a void | hole. In other words, even if the battery is repeatedly charged and discharged, the deformation of the separator is small and the pores are not blocked. As a result, the reaction space of the overcharge additive can be taken up sufficiently, and the pressure-sensitive current interruption mechanism operates reliably. A highly safe non-aqueous electrolyte secondary battery can be obtained.

ここで本発明の非水電解液二次電池では,セパレータは,0.05gfの力で押したときの凹み量が0.3μm以上であることが望ましい。
本発明の発明者は,実験の結果,セパレータを,0.05gfの力で押したときの凹み量が0.3μm以上とした方が,0.3μm未満とするよりも,過充電時のガス発生量が多いことをつきとめた。従って,このように構成することで,過充電時のガス発生量を十分に確保し,感圧式の電流遮断機構を確実に作動させ得る安全性の高い非水電解液二次電池とすることができる。
Here, in the nonaqueous electrolyte secondary battery of the present invention, the separator preferably has a dent amount of 0.3 μm or more when pressed with a force of 0.05 gf.
As a result of the experiment, the inventor of the present invention has found that when the separator is pressed with a force of 0.05 gf, the dent amount is 0.3 μm or more, but the gas during overcharge is less than 0.3 μm. I found out that there was a lot of generation. Therefore, by configuring in this way, a highly safe non-aqueous electrolyte secondary battery capable of ensuring a sufficient amount of gas generation during overcharge and reliably operating the pressure-sensitive current interrupting mechanism can be obtained. it can.

また本発明の非水電解液二次電池では,セパレータは,多孔質ポリオレフィン樹脂及びエンジニアリングプラスチックからなり,エンジニアリングプラスチックの含有量が50〜80%である第1層及び第3層と,第1層と第3層の間に配されており,多孔質ポリオレフィン樹脂からなる第2層と,から構成されていることが望ましい。
このように第1層及び第3層のエンジニアリングプラスチックの含有量を50〜80%とすることで,0.05gfの力で押したときの凹み量が0.3μm以上1.2μm以下のセパレータ40を形成することができるからである。
この場合,第1層及び第3層は,多孔質ポリオレフィン樹脂としてポリエチレンを用いるとともに,エンジニアリングプラスチックとしてポリエーテルケトンを用いることにより好適に構成することができ,第2層は,多孔質ポリオレフィン樹脂としてポリエチレンを用いることにより好適に構成することができる。
In the nonaqueous electrolyte secondary battery of the present invention, the separator is made of a porous polyolefin resin and an engineering plastic, and the first layer and the third layer having a content of the engineering plastic of 50 to 80%, and the first layer And a second layer made of a porous polyolefin resin.
Thus, by setting the content of the engineering plastics of the first layer and the third layer to 50 to 80%, the dent amount when pressed with a force of 0.05 gf is 0.3 μm or more and 1.2 μm or less. It is because it can form.
In this case, the first layer and the third layer can be suitably configured by using polyethylene as the porous polyolefin resin and using polyetherketone as the engineering plastic, and the second layer as the porous polyolefin resin. It can be suitably configured by using polyethylene.

また本発明の非水電解液二次電池では,正極活物質層は,最大頻度細孔径が1.2μm以下であることが望ましい。
正極活物質層の最大頻度細孔径を1.2μmより大きくすると,電池の内部抵抗(IV抵抗)が急激に大きくなるところ,このように正極活物質層の最大頻度細孔径を1.2μm以下とすることで,内部抵抗が過剰に大きい電池となるのを防ぐことができるからである。
In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material layer preferably has a maximum frequency pore diameter of 1.2 μm or less.
When the maximum frequency pore diameter of the positive electrode active material layer is larger than 1.2 μm, the internal resistance (IV resistance) of the battery rapidly increases. Thus, the maximum frequency pore diameter of the positive electrode active material layer is 1.2 μm or less. By doing so, it is possible to prevent a battery having an excessively high internal resistance.

本発明によれば,電池を繰り返し充放電しても,感圧式の電流遮断機構を確実に作動させ得る安全性の高い非水電解液二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it charges / discharges a battery repeatedly, the highly safe non-aqueous-electrolyte secondary battery which can operate a pressure-sensitive type electric current interruption mechanism reliably can be provided.

実施形態にかかる非水電解液二次電池の斜視図である。1 is a perspective view of a non-aqueous electrolyte secondary battery according to an embodiment. 同電池の縦断面図である。It is a longitudinal cross-sectional view of the battery. 同電池の正極板の斜視図である。It is a perspective view of the positive electrode plate of the battery. 同電池の負極板の斜視図である。It is a perspective view of the negative electrode plate of the battery. 図2のA部拡大図である。It is the A section enlarged view of FIG. 図5のB部拡大図である。It is the B section enlarged view of FIG. 電流遮断機構の作用を説明する図である。It is a figure explaining an effect | action of an electric current interruption mechanism. 正極活物質層の最大頻度細孔径と,過充電時に発生する単位電池容量あたりのガス量との関係を示すグラフである。It is a graph which shows the relationship between the maximum frequency pore diameter of a positive electrode active material layer, and the gas amount per unit battery capacity which generate | occur | produces at the time of overcharge. 正極活物質層の最大頻度細孔径と,非水電解液二次電池の内部抵抗(IV抵抗)との関係を示すグラフである。It is a graph which shows the relationship between the maximum frequency pore diameter of a positive electrode active material layer, and the internal resistance (IV resistance) of a nonaqueous electrolyte secondary battery. 同電池のセパレータの構造を示す概略図である。It is the schematic which shows the structure of the separator of the battery. PE+エンジニアリングプラスチック層の厚みと,セパレータの変形量との関係を示すグラフである。It is a graph which shows the relationship between the thickness of PE + engineering plastic layer, and the deformation amount of a separator. PE層の厚みと,セパレータの変形量との関係を示すグラフである。It is a graph which shows the relationship between the thickness of PE layer, and the deformation amount of a separator. エンジニアリングプラスチックの含有量と,セパレータの変形量との関係を示すグラフである。It is a graph which shows the relationship between content of an engineering plastic, and the deformation amount of a separator. セパレータの変形量と,過充電時に発生する単位電池容量あたりのガス量との関係を示すグラフである。It is a graph which shows the relationship between the deformation amount of a separator, and the gas amount per unit battery capacity which generate | occur | produces at the time of overcharge. 初期状態(充放電サイクルを経る前)の非水電解液二次電池におけるセパレータ近傍の構造を示す図である。It is a figure which shows the structure of the separator vicinity in the nonaqueous electrolyte secondary battery of an initial state (before going through a charging / discharging cycle). 変形し易いセパレータを用いた場合の,充放電サイクルを経た後の非水電解液二次電池におけるセパレータ近傍の構造を示す図である。It is a figure which shows the structure of the separator vicinity in the non-aqueous-electrolyte secondary battery after passing through a charging / discharging cycle at the time of using the separator which is easy to deform | transform. 変形し難いセパレータを用いた場合の,充放電サイクルを経た後の非水電解液二次電池におけるセパレータ近傍の構造を示す図である。It is a figure which shows the structure of the separator vicinity in the non-aqueous-electrolyte secondary battery after passing through a charging / discharging cycle at the time of using the separator which is hard to deform | transform.

以下,本発明の実施形態について,図面を参照しつつ説明する。本実施形態の非水電解液二次電池1は,図1及び図2に示すように,ハイブリッド自動車や電気自動車等の車両や,ハンマードリル等の電池使用機器に搭載される角型のリチウムイオン二次電池である。このリチウムイオン二次電池1は,電極体10と,電極体10を収容する電池ケース80とを備える。電極体10には,電解液50が含浸している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the non-aqueous electrolyte secondary battery 1 of the present embodiment is a rectangular lithium ion mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-operated device such as a hammer drill. It is a secondary battery. The lithium ion secondary battery 1 includes an electrode body 10 and a battery case 80 that houses the electrode body 10. Electrode body 10 is impregnated with electrolytic solution 50.

電解液50は,エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを,体積比でEC:DMC:EMC=30:40:30に調整した混合有機溶媒に,溶質として六フッ化リン酸リチウム(LiPF)を添加し,リチウムイオン濃度を1mol/lとした非水電解液である。また,電解液50は,リチウムイオン二次電池1が過充電状態となった場合にガスを発生させるための添加剤(過充電添加剤)を,4%程度含んでいる。過充電添加剤としては,CHB(シクロヘキシンベンゼン)を使用している。 The electrolytic solution 50 is prepared by mixing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) with a volume ratio of EC: DMC: EMC = 30: 40: 30 as a solute. This is a non-aqueous electrolyte in which lithium hexafluorophosphate (LiPF 6 ) is added to adjust the lithium ion concentration to 1 mol / l. Further, the electrolytic solution 50 contains about 4% of an additive (overcharge additive) for generating gas when the lithium ion secondary battery 1 is overcharged. CHB (cyclohexynebenzene) is used as an overcharge additive.

電池ケース80は,ケース本体部材81と封口蓋82とを有する(図1,図2参照)。ケース本体部材81は,金属からなり,矩形箱形状をなしている。封口蓋82は,金属からなり,矩形板状をなしている。この封口蓋82は,ケース本体部材81の開口を閉塞して,このケース本体部材81に溶接されている。   The battery case 80 includes a case main body member 81 and a sealing lid 82 (see FIGS. 1 and 2). The case body member 81 is made of metal and has a rectangular box shape. The sealing lid 82 is made of metal and has a rectangular plate shape. The sealing lid 82 closes the opening of the case body member 81 and is welded to the case body member 81.

電極体10は,帯状の正極板20と負極板30とが,帯状のセパレータ40を間に介在させて,扁平形状に捲回された捲回型の電極体である(図1参照)。正極板20は,図3に示すように,帯状の正極集電箔28と,この正極集電箔28の両主面上に形成した正極活物質層21,21とを有する。正極活物質層21は,正極活物質を含む層で,正極集電箔28の長手方向DAに延びる一方長辺に沿って配置されている。   The electrode body 10 is a wound electrode body in which a belt-like positive electrode plate 20 and a negative electrode plate 30 are wound into a flat shape with a belt-like separator 40 interposed therebetween (see FIG. 1). As shown in FIG. 3, the positive electrode plate 20 includes a strip-shaped positive electrode current collector foil 28 and positive electrode active material layers 21 and 21 formed on both main surfaces of the positive electrode current collector foil 28. The positive electrode active material layer 21 is a layer containing a positive electrode active material, and is disposed along one long side extending in the longitudinal direction DA of the positive electrode current collector foil 28.

正極板20のうち,正極活物質層21が塗工されている部位を,正極活物質層塗工部20bという(図3参照)。一方,正極活物質層21を有することなく,正極集電箔28のみからなる部位を,正極活物質層未塗工部20cという。正極活物質層未塗工部20cは,正極板20の他方長辺に沿って,正極板20の長手方向DAに帯状に延びている。この正極活物質層未塗工部20cは,捲回されて渦巻き状をなし,電極体10の軸線方向(図2において左右方向)一方端部(図2において右端部)に位置している。   A portion of the positive electrode plate 20 on which the positive electrode active material layer 21 is applied is referred to as a positive electrode active material layer application portion 20b (see FIG. 3). On the other hand, a portion made only of the positive electrode current collector foil 28 without having the positive electrode active material layer 21 is referred to as a positive electrode active material layer uncoated portion 20c. The positive electrode active material layer uncoated portion 20 c extends in a strip shape in the longitudinal direction DA of the positive electrode plate 20 along the other long side of the positive electrode plate 20. The positive electrode active material layer uncoated portion 20c is wound to form a spiral shape, and is located at one end (right end in FIG. 2) in the axial direction (left and right direction in FIG. 2) of the electrode body 10.

リチウムイオン二次電池1の正極板20では,正極集電箔28としてアルミ箔を用いている。正極活物質層21は,正極集電箔28に塗布された正極用塗工液(正極用ペースト)が乾燥して形成された層である。正極用塗工液は,スラリー状のものであり,通常少なくとも,正極活物質と,導電材と,結着材と,溶媒とを含有し,必要に応じてさらに,増粘材を含有するものである。正極活物質,導電材,結着材,増粘材としては,下記の材料を用いることができる。
正極活物質:ニッケル酸リチウム(LiNiO),マンガン酸リチウム(LiMnO),コバルト酸リチウム(LiCoO)等のリチウム複合酸化物等
導電材:アセチレンブラック,ファーネスブラック,ケッチェンブラック等のカーボンブラック,グラファイト粉末等のカーボン粉末等
結着材:ポリテトラフルオロエチレン(PTFE),スチレンブタジエンラバー(SBR),ポリフッ化ビニリデン(PVDF)等
増粘材:カルボキシメチルセルロース(CMC)等
また,正極用塗工液を調製する溶媒としては,下記の材料を用いることができる。
溶媒:トルエン,メチルエチルケトン,N−メチル−2−ピロリドン或いはこれらの混合物のような有機溶媒等
In the positive electrode plate 20 of the lithium ion secondary battery 1, an aluminum foil is used as the positive electrode current collector foil 28. The positive electrode active material layer 21 is a layer formed by drying a positive electrode coating liquid (positive electrode paste) applied to the positive electrode current collector foil 28. The positive electrode coating liquid is in a slurry state, and usually contains at least a positive electrode active material, a conductive material, a binder, and a solvent, and further contains a thickener as necessary. It is. The following materials can be used as the positive electrode active material, conductive material, binder, and thickener.
Positive electrode active material: lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium cobaltate (LiCoO 2 ), etc. Conductive material: Carbon black such as acetylene black, furnace black, ketjen black , Carbon powder such as graphite powder, etc. Binder: Polytetrafluoroethylene (PTFE), Styrene Butadiene Rubber (SBR), Polyvinylidene Fluoride (PVDF), etc. Thickener: Carboxymethylcellulose (CMC), etc. The following materials can be used as the solvent for preparing the liquid.
Solvent: organic solvent such as toluene, methyl ethyl ketone, N-methyl-2-pyrrolidone or a mixture thereof

負極板30は,図4に示すように,帯状の負極集電箔38と,この負極集電箔38の両主面上に形成した負極活物質層31,31とを有する。負極活物質層31は,負極活物質を含む層で,負極集電箔38の長手方向DAに延びる一方長辺に沿って配置されている。   As shown in FIG. 4, the negative electrode plate 30 includes a strip-shaped negative electrode current collector foil 38 and negative electrode active material layers 31 and 31 formed on both main surfaces of the negative electrode current collector foil 38. The negative electrode active material layer 31 is a layer containing a negative electrode active material, and is disposed along one long side extending in the longitudinal direction DA of the negative electrode current collector foil 38.

負極板30のうち,負極活物質層31が塗工されている部位を,負極活物質層塗工部30bという(図4参照)。一方,負極活物質層31を有することなく,負極集電箔38のみからなる部位を,負極活物質層未塗工部30cという。負極活物質層未塗工部30cは,負極板30の他方長辺に沿って,負極板30の長手方向DAに帯状に延びている。この負極活物質層未塗工部30cは,捲回されて渦巻き状をなし,電極体10の軸線方向(図2において左右方向)一方端部(図2において左端部)に位置している。   A portion of the negative electrode plate 30 where the negative electrode active material layer 31 is coated is referred to as a negative electrode active material layer coating portion 30b (see FIG. 4). On the other hand, a portion made only of the negative electrode current collector foil 38 without having the negative electrode active material layer 31 is referred to as a negative electrode active material layer uncoated portion 30c. The negative electrode active material layer uncoated portion 30 c extends in a strip shape in the longitudinal direction DA of the negative electrode plate 30 along the other long side of the negative electrode plate 30. The negative electrode active material layer uncoated portion 30c is wound to form a spiral shape, and is positioned at one end (left end in FIG. 2) in the axial direction (left and right direction in FIG. 2) of the electrode body 10.

リチウムイオン二次電池1の負極板30では,負極集電箔38として銅箔を用いている。負極活物質層31は,負極集電箔38に塗布された負極用塗工液(負極用ペースト)が乾燥して形成された層である。負極用塗工液は,スラリー状のものであり,通常少なくとも,負極活物質と,結着材と,溶媒とを含有し,必要に応じてさらに,導電材や増粘材を含有するものである。負極活物質としては,下記の材料を用いることができる。また,結着材,導電材,増粘材,溶媒としては,上述した正極用塗工液と同様の材料を用いることができる。
負極活物質:非晶質炭素,難黒鉛化炭素,易黒鉛化炭素,天然黒鉛等の炭素系物質
In the negative electrode plate 30 of the lithium ion secondary battery 1, a copper foil is used as the negative electrode current collector foil 38. The negative electrode active material layer 31 is a layer formed by drying a negative electrode coating liquid (negative electrode paste) applied to the negative electrode current collector foil 38. The negative electrode coating liquid is in a slurry form, and usually contains at least a negative electrode active material, a binder, and a solvent, and further contains a conductive material and a thickener as necessary. is there. The following materials can be used as the negative electrode active material. In addition, as the binder, the conductive material, the thickener, and the solvent, the same materials as those for the positive electrode coating liquid described above can be used.
Negative electrode active material: Carbon materials such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, natural graphite

電極体10のうち正極板20の正極活物質層未塗工部20cには,正極端子構造体60が溶接されることによって電気的に接続している(図2参照)。この正極端子構造体60は,電池ケース80の外部に位置する正極外部端子部材68を有している。また,負極板30の負極活物質層未塗工部30cには,負極端子構造体70が溶接されることによって電気的に接続している。この負極端子構造体70は,電池ケース80の外部に位置する負極外部端子部材78を有している。   The positive electrode active material layer uncoated portion 20c of the positive electrode plate 20 in the electrode body 10 is electrically connected by welding the positive electrode terminal structure 60 (see FIG. 2). The positive terminal structure 60 has a positive external terminal member 68 located outside the battery case 80. The negative electrode active material layer uncoated portion 30c of the negative electrode plate 30 is electrically connected to the negative electrode terminal structure 70 by welding. The negative terminal structure 70 has a negative external terminal member 78 located outside the battery case 80.

負極端子構造体70は,負極内部端子部材71と,負極外部端子部材78と,ガスケット79とを有している(図2参照)。負極内部端子部材71は,銅からなり,主として電池ケース80の内部に位置している。この負極内部端子部材71は,電池ケース80内で,負極板30の負極活物質層未塗工部30cに接合している一方,電池ケース80の封口蓋82を貫通して,負極外部端子部材78及びガスケット79を封口蓋82にかしめると共に,負極外部端子部材78に導通している。   The negative terminal structure 70 includes a negative internal terminal member 71, a negative external terminal member 78, and a gasket 79 (see FIG. 2). The negative electrode internal terminal member 71 is made of copper and is mainly located inside the battery case 80. The negative electrode internal terminal member 71 is bonded to the negative electrode active material layer uncoated portion 30c of the negative electrode plate 30 in the battery case 80, and passes through the sealing lid 82 of the battery case 80 to be connected to the negative electrode external terminal member. 78 and the gasket 79 are caulked to the sealing lid 82 and are electrically connected to the negative external terminal member 78.

また,負極外部端子部材78は,銅からなり,クランク状に屈曲した形状をなし,電池ケース80の外部に位置している。この負極外部端子部材78は,その先端側に,バスバー等をボルト締結する貫通孔78Hを有している。また,ガスケット79は,電気絶縁性樹脂からなり,負極外部端子部材78及び負極内部端子部材71と電池ケース80との間に介在し,これらを電気的に絶縁している。   The negative external terminal member 78 is made of copper, is bent in a crank shape, and is located outside the battery case 80. The negative external terminal member 78 has a through-hole 78H for fastening a bus bar or the like with a bolt on the tip side. The gasket 79 is made of an electrically insulating resin and is interposed between the negative electrode external terminal member 78 and the negative electrode internal terminal member 71 and the battery case 80 to electrically insulate them.

一方,正極端子構造体60は,正極内部端子構造体61と,正極外部端子部材68と,ガスケット69とを有している(図2参照)。正極内部端子構造体61は,主として電池ケース80の内部に位置している。なお,正極内部端子構造体61は,電流遮断機構62を含んでいる。電流遮断機構62は,電池ケース80の内圧が作動圧を超えた場合に,電極体10に流れる電流を遮断する機構である。   On the other hand, the positive terminal structure 60 includes a positive internal terminal structure 61, a positive external terminal member 68, and a gasket 69 (see FIG. 2). The positive electrode internal terminal structure 61 is mainly located inside the battery case 80. The positive electrode internal terminal structure 61 includes a current interruption mechanism 62. The current interrupt mechanism 62 is a mechanism that interrupts the current flowing through the electrode body 10 when the internal pressure of the battery case 80 exceeds the operating pressure.

正極外部端子部材68は,アルミニウムからなり,クランク状に屈曲した形状をなし,電池ケース80の外部に位置している。この正極外部端子部材68は,その先端側に,バスバー等をボルト締結する貫通孔68Hを有している。また,ガスケット69は,電気絶縁性樹脂からなる。ガスケット69は,封口蓋82の外側に配された第1絶縁部材69Aと,封口蓋82の内側に配された第2絶縁部材69Bとからなる。ガスケット69は,正極外部端子部材68及び正極内部端子構造体61と電池ケース80との間に介在し,これらを電気的に絶縁している。   The positive external terminal member 68 is made of aluminum, has a shape bent in a crank shape, and is located outside the battery case 80. The positive external terminal member 68 has a through hole 68H on the front end side for fastening a bus bar or the like with a bolt. The gasket 69 is made of an electrically insulating resin. The gasket 69 includes a first insulating member 69 </ b> A disposed outside the sealing lid 82 and a second insulating member 69 </ b> B disposed inside the sealing lid 82. The gasket 69 is interposed between the positive electrode external terminal member 68 and the positive electrode internal terminal structure 61 and the battery case 80, and electrically insulates them.

また,正極内部端子構造体61は,図2,図5に示すように,正極集電端子部材63と,包囲部材66と,平板状のダイヤフラム64と,矩形凹状の中継部材65と,かしめ部材67とを有する。正極集電端子部材63,ダイヤフラム64,中継部材65,及びかしめ部材67は,いずれもアルミニウム製である。また,包囲部材66は,電気絶縁性樹脂からなり,正極集電端子部材63の破断部材63Xを包囲している。   2 and 5, the positive electrode internal terminal structure 61 includes a positive electrode current collecting terminal member 63, an enclosing member 66, a flat plate diaphragm 64, a rectangular concave relay member 65, and a caulking member. 67. The positive current collecting terminal member 63, the diaphragm 64, the relay member 65, and the caulking member 67 are all made of aluminum. The surrounding member 66 is made of an electrically insulating resin and surrounds the breaking member 63X of the positive electrode current collecting terminal member 63.

かしめ部材67は,封口蓋82の貫通孔82Hを貫通してかしめ変形されて,中継部材65,正極外部端子部材68,及びガスケット69を,封口蓋82に結合している(図5参照)。このかしめ部材67を通じて,中継部材65と正極外部端子部材68とが電気的に接続する。さらには,中継部材65に接続するダイヤフラム64が,正極外部端子部材68に電気的に接続する。   The caulking member 67 is caulked and deformed through the through hole 82H of the sealing lid 82, and couples the relay member 65, the positive external terminal member 68, and the gasket 69 to the sealing lid 82 (see FIG. 5). Through the caulking member 67, the relay member 65 and the positive external terminal member 68 are electrically connected. Further, the diaphragm 64 connected to the relay member 65 is electrically connected to the positive external terminal member 68.

また,正極集電端子部材63は,図5に示すように,封口蓋82と平行な矩形板状の破断部材63Xと,この破断部材63Xから下方に延出している細長板状の集電接続部材63Yとが一体に形成されてなる。このうち,集電接続部材63Yは,正極板20の正極活物質層未塗工部20cに接合している(図2参照)。これにより,破断部材63Xが,電極体10(詳細には正極板20)に電気的に接続する。また,破断部材63Xには,この破断部材63Xの中央部を上下方向に沿って貫通する貫通孔63Gと,この貫通孔63Gの両側に位置する2つの上下方向に沿う貫通孔63H,63Hが形成されている。   Further, as shown in FIG. 5, the positive electrode current collecting terminal member 63 includes a rectangular plate-shaped breaking member 63X parallel to the sealing lid 82, and an elongated plate-shaped current collecting connection extending downward from the breaking member 63X. The member 63Y is integrally formed. Among these, the current collector connection member 63Y is joined to the positive electrode active material layer uncoated portion 20c of the positive electrode plate 20 (see FIG. 2). Thereby, the breaking member 63X is electrically connected to the electrode body 10 (specifically, the positive electrode plate 20). The breaking member 63X is formed with a through hole 63G that penetrates the center of the breaking member 63X along the vertical direction, and two through holes 63H and 63H that are located on both sides of the through hole 63G along the vertical direction. Has been.

また,破断部材63Xは,図6に示すように,貫通孔63Gの周縁の位置に,ダイヤフラム64に溶接される溶接部63Fを有している。この溶接部63Fの全体の形状は,平面で見て,貫通孔63Gの周縁に沿ったリング状である。さらに,破断部材63Xには,溶接部63Fの径方向外側の位置に,リング状の切り欠き部63Eが形成されている(図6参照)。この切り欠き部63Eは,破断部材63Xにおける脆弱部(破断部)となっている。   Moreover, the fracture | rupture member 63X has the welding part 63F welded to the diaphragm 64 in the position of the periphery of the through-hole 63G, as shown in FIG. The overall shape of the welded portion 63F is a ring shape along the periphery of the through hole 63G when viewed in plan. Furthermore, a ring-shaped notch 63E is formed in the fracture member 63X at a position radially outside the weld 63F (see FIG. 6). The notch 63E is a fragile portion (a rupture portion) in the rupture member 63X.

また,包囲部材66は,板状の絶縁樹脂部材66Aと,板状の絶縁樹脂部材66Bとからなる(図5参照)。この包囲部材66には,この包囲部材66の中央部を貫通する貫通孔66Gと,この貫通孔66Gの両側に位置する2つの貫通孔66H,66Hが形成されている。   The surrounding member 66 includes a plate-like insulating resin member 66A and a plate-like insulating resin member 66B (see FIG. 5). The surrounding member 66 is formed with a through hole 66G penetrating the central portion of the surrounding member 66 and two through holes 66H and 66H located on both sides of the through hole 66G.

図5に示すように,この包囲部材66によって破断部材63Xを包囲した状態では,破断部材63Xの貫通孔63Hと包囲部材66の貫通孔66Hとが重なっており,さらに,破断部材63Xの貫通孔63Gと包囲部材66の貫通孔66Gとが重なっている。さらに,図6に示すように,包囲部材66の貫通孔66G内に,破断部材63Xの溶接部63Fと切り欠き部63Eが露出しており,破断部材63Xの貫通孔63Gは,包囲部材66の貫通孔66Gに連通している。   As shown in FIG. 5, in a state where the surrounding member 66 surrounds the breaking member 63X, the through hole 63H of the breaking member 63X overlaps the through hole 66H of the surrounding member 66, and further, the through hole of the breaking member 63X. 63G and the through-hole 66G of the surrounding member 66 overlap. Further, as shown in FIG. 6, the welded portion 63 </ b> F and the cutout portion 63 </ b> E of the breaking member 63 </ b> X are exposed in the through hole 66 </ b> G of the surrounding member 66, and the through hole 63 </ b> G of the breaking member 63 </ b> X It communicates with the through hole 66G.

また,ダイヤフラム64は,自身の中央の位置に,正極集電端子部材63の破断部材63X側に突出する突出部64Aを有している。ダイヤフラム64の突出部64Aの下面側には,図6に示すように,破断部材63Xにおけるリング状(円環状)の溶接部63Fが溶接されている。これにより,破断部材63Xとダイヤフラム64とが電気的に接続される。なお,図6では,破断部材63Xの溶接部63Fとダイヤフラム64の突出部64Aとが溶接された部位を,溶接導通部Wとして,クロスハッチングで示している。   In addition, the diaphragm 64 has a protruding portion 64 </ b> A that protrudes toward the breaking member 63 </ b> X side of the positive electrode current collecting terminal member 63 at the center position of the diaphragm 64. As shown in FIG. 6, a ring-shaped (annular) welded portion 63F of the fracture member 63X is welded to the lower surface side of the protruding portion 64A of the diaphragm 64. Thereby, the breaking member 63X and the diaphragm 64 are electrically connected. In FIG. 6, a portion where the welded portion 63 </ b> F of the fracture member 63 </ b> X and the protruding portion 64 </ b> A of the diaphragm 64 are welded is indicated by cross hatching as a welding conduction portion W.

また,図5に示すように,ダイヤフラム64の周縁部64Eは,中継部材65の周縁部65Eと気密に接合している。これにより,中継部材65とダイヤフラム64とかしめ部材67とによって,空間C(図5参照)が形成されている。なお,本実施形態では,この空間Cは,かしめ部材67の貫通孔67Hを通じて,電池ケース80の外部と連通しているため,この空間Cの気圧は大気圧になっている。   Further, as shown in FIG. 5, the peripheral edge portion 64 </ b> E of the diaphragm 64 is airtightly joined to the peripheral edge portion 65 </ b> E of the relay member 65. Thus, a space C (see FIG. 5) is formed by the relay member 65, the diaphragm 64, and the caulking member 67. In the present embodiment, the space C communicates with the outside of the battery case 80 through the through hole 67H of the caulking member 67, so that the pressure in the space C is atmospheric pressure.

このように構成された本実施形態にかかるリチウムイオン二次電池1では,上述した正極内部端子構造体61のうち,正極集電端子部材63,ダイヤフラム64,中継部材65,及び包囲部材66が,電流遮断機構62をなしている(図2参照)。この電流遮断機構62は,電池ケース80の内圧が作動圧を超えたときに,電極体10に流れる電流を遮断する。   In the lithium ion secondary battery 1 according to the present embodiment configured as described above, in the positive electrode internal terminal structure 61 described above, the positive electrode current collecting terminal member 63, the diaphragm 64, the relay member 65, and the surrounding member 66 are: A current interruption mechanism 62 is provided (see FIG. 2). The current interruption mechanism 62 interrupts the current flowing through the electrode body 10 when the internal pressure of the battery case 80 exceeds the operating pressure.

具体的には,例えば,リチウムイオン二次電池1の過充電により,所定の最大動作電圧(例えば,4.1V)より大きい反応電圧(すなわち,通常の動作電圧よりも大きい異常な高電圧)となると,電解液50が分解し始め,電池の温度が高まるとともに,電解液50に添加されているCHBが酸化分解され,大量のガスが放出される。そして,放出された大量のガスにより,電池ケース80の内圧が上昇して,電流遮断機構62の作動圧(例えば,750kPa)以上となったときには,次のように電流遮断機構62が作動して電極体10に流れる電流を遮断する。   Specifically, for example, due to overcharging of the lithium ion secondary battery 1, a reaction voltage (that is, an abnormal high voltage larger than a normal operation voltage) greater than a predetermined maximum operation voltage (for example, 4.1 V) and As a result, the electrolytic solution 50 starts to decompose, the temperature of the battery increases, and CHB added to the electrolytic solution 50 is oxidized and decomposed to release a large amount of gas. When the internal pressure of the battery case 80 rises due to a large amount of released gas and exceeds the operating pressure of the current interrupt mechanism 62 (for example, 750 kPa), the current interrupt mechanism 62 operates as follows. The current flowing through the electrode body 10 is cut off.

すなわち,大量のガスが放出されると,図5に示すように,ダイヤフラム64には,包囲部材66の貫通孔66H,66Hと,包囲部材66の貫通孔66G及び破断部材63Xの貫通孔63Gを通じて,図5の下方から上方に向かって,電池ケース80の内圧F(図5参照)がかかる。そして,電池ケース80の内圧Fの上昇に伴って,空間Cとの気圧差により,ダイヤフラム64が,電池ケース80の外方(図5において上方)に押されて変形する。このとき,ダイヤフラム64の突出部64Aに溶接されている破断部材63Xのうち,包囲部材66の貫通孔66G内に露出している部位(溶接部63F及び切り欠き部63Eが含まれる部位)も,ダイヤフラム64の突出部64Aと共に,電池ケース80の外方(図5において上方)に押されて変形する。   That is, when a large amount of gas is released, as shown in FIG. 5, the diaphragm 64 passes through the through holes 66H and 66H of the surrounding member 66, the through hole 66G of the surrounding member 66, and the through hole 63G of the breaking member 63X. The internal pressure F (see FIG. 5) of the battery case 80 is applied from the lower side to the upper side in FIG. Then, as the internal pressure F of the battery case 80 increases, the diaphragm 64 is pushed outward (upward in FIG. 5) from the battery case 80 due to a pressure difference with the space C and deforms. At this time, of the breaking member 63X welded to the projecting portion 64A of the diaphragm 64, a portion exposed in the through hole 66G of the surrounding member 66 (a portion including the welded portion 63F and the notch portion 63E) is also included. Together with the protrusion 64A of the diaphragm 64, the battery case 80 is pushed outward (upward in FIG. 5) to be deformed.

そして,電池ケース80の内圧Fが電流遮断機構62の作動圧を超えると,図7に示すように,破断部材63Xが切り欠き部63Eの位置で破断し,ダイヤフラム64と正極集電端子部材63とが切り離される。これにより,ダイヤフラム64と電極体10との間の通電が遮断される。詳細には,「正極外部端子部材68」→「かしめ部材67」→「中継部材65」→「ダイヤフラム64」→「正極集電端子部材63」の経路で電極体10に流れる電流が遮断される。これにより,リチウムイオン二次電池1の充電(過充電)が停止する。   When the internal pressure F of the battery case 80 exceeds the operating pressure of the current interrupt mechanism 62, as shown in FIG. 7, the breaking member 63X breaks at the position of the notch 63E, and the diaphragm 64 and the positive current collecting terminal member 63 And are separated. Thereby, the energization between the diaphragm 64 and the electrode body 10 is interrupted. Specifically, the current flowing through the electrode body 10 is cut off through the path of “positive electrode external terminal member 68” → “caulking member 67” → “relay member 65” → “diaphragm 64” → “positive electrode current collector terminal member 63”. . Thereby, the charging (overcharge) of the lithium ion secondary battery 1 is stopped.

ここで,本実施形態のリチウムイオン二次電池1では,正極活物質層21は,最大頻度細孔径が0.7μm以上1.2μm以下のものである。これは,次の理由による。すなわち,図8に示すように,正極活物質層21の最大頻度細孔径が0.7μmより小さい場合には,過充電時に発生する単位容量あたりのガス量が20cc/Ah程度以下と少ない。これに対して,正極活物質層21の最大頻度細孔径が0.7μm以上である場合には,過充電時に発生する単位容量あたりのガス量が60cc/Ah程度以上と多い。従って,過充電時に発生するガス量が少なくなり過ぎるのを防ぐため,正極活物質層21の最大頻度細孔径は,0.7μm以上とすることが望ましいのである。   Here, in the lithium ion secondary battery 1 of the present embodiment, the positive electrode active material layer 21 has a maximum frequency pore diameter of 0.7 μm or more and 1.2 μm or less. This is due to the following reason. That is, as shown in FIG. 8, when the maximum frequency pore diameter of the positive electrode active material layer 21 is smaller than 0.7 μm, the amount of gas generated per unit capacity during overcharge is as small as about 20 cc / Ah or less. On the other hand, when the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.7 μm or more, the amount of gas per unit capacity generated at the time of overcharging is as high as about 60 cc / Ah or more. Accordingly, it is desirable that the maximum frequency pore diameter of the positive electrode active material layer 21 be 0.7 μm or more in order to prevent the amount of gas generated during overcharging from becoming too small.

また,図9に示すように,正極活物質層21の最大頻度細孔径を1.2μmより大きくすると,リチウムイオン二次電池1の内部抵抗(IV抵抗)が70mΩ程度から急増する。これに対して,正極活物質層21の最大頻度細孔径を1.2μm以下にすると,リチウムイオン二次電池1の内部抵抗(IV抵抗)が70mΩ程度までの間に分布する。従って,リチウムイオン二次電池1の内部抵抗(IV抵抗)が大きくなり過ぎるのを防ぐため,正極活物質層21の最大頻度細孔径は,1.2μm以下とすることが望ましいのである。   Further, as shown in FIG. 9, when the maximum frequency pore diameter of the positive electrode active material layer 21 is larger than 1.2 μm, the internal resistance (IV resistance) of the lithium ion secondary battery 1 rapidly increases from about 70 mΩ. On the other hand, when the maximum frequency pore diameter of the positive electrode active material layer 21 is 1.2 μm or less, the internal resistance (IV resistance) of the lithium ion secondary battery 1 is distributed up to about 70 mΩ. Therefore, in order to prevent the internal resistance (IV resistance) of the lithium ion secondary battery 1 from becoming too large, it is desirable that the maximum frequency pore diameter of the positive electrode active material layer 21 be 1.2 μm or less.

また,本実施形態のリチウムイオン二次電池1では,セパレータ40は,帯状の合成樹脂からなる微多孔膜である。詳細には,セパレータ40は,図10に示すように,多孔質ポリオレフィン樹脂であるポリエチレン(PE)に,高い耐熱性をもつエンジニアリングプラスチックを混合した第1層41及び第3層43と,この第1層41と第3層43との間に挟まれた第2層42とからなる。第2層42は,ポリエチレン(PE)からなる層である。本実施形態では,第1層41及び第3層43に混合されているエンジニアリングプラスチックは,ポリエーテルケトン(PEK)である。   In the lithium ion secondary battery 1 of the present embodiment, the separator 40 is a microporous film made of a strip-shaped synthetic resin. Specifically, as shown in FIG. 10, the separator 40 includes a first layer 41 and a third layer 43 in which polyethylene (PE), which is a porous polyolefin resin, is mixed with an engineering plastic having high heat resistance, and the first layer 41 and the third layer 43. The second layer 42 is sandwiched between the first layer 41 and the third layer 43. The second layer 42 is a layer made of polyethylene (PE). In the present embodiment, the engineering plastic mixed in the first layer 41 and the third layer 43 is polyether ketone (PEK).

第1層41及び第3層43の層厚は,7μm程度である。第2層42の層厚は,6μm程度である。第1層41,第2層42,及び第3層43の層厚を,このような厚さにしたのは,セパレータ40のシャットダウン機能や強度,電池特性のバランスを図ってのことである。   The layer thickness of the first layer 41 and the third layer 43 is about 7 μm. The layer thickness of the second layer 42 is about 6 μm. The thicknesses of the first layer 41, the second layer 42, and the third layer 43 are set to such a thickness in order to balance the shutdown function, strength, and battery characteristics of the separator 40.

なお,第1層41及び第3層43の厚さと,セパレータ40の変形量との関係を調べたところ,図11に示すように,第1層41及び第3層43の厚さを3μmから9μmまで1μmずつ増加させても,セパレータ40の変形量は0.80μm程度と変わらないことがわかった。ここで,セパレータ40の変形量とは,株式会社島津製作所製,ダイナミック超微小硬度計DUH-W201を用いて,三角錐圧子にて0.05gf(グラム重)の力でセパレータ40を押したときの凹み量(押し込み深さ,単位はμm)のことであり,セパレータ40の変形し易さを示す指標である。   When the relationship between the thickness of the first layer 41 and the third layer 43 and the amount of deformation of the separator 40 was examined, the thickness of the first layer 41 and the third layer 43 was changed from 3 μm as shown in FIG. It was found that even when the thickness was increased by 1 μm up to 9 μm, the deformation amount of the separator 40 was not changed to about 0.80 μm. Here, the deformation amount of the separator 40 means that the separator 40 was pressed with a force of 0.05 gf (gram weight) with a triangular pyramid indenter using a dynamic ultra-micro hardness meter DUH-W201 manufactured by Shimadzu Corporation. Is the amount of depression (push-in depth, unit is μm), and is an index indicating the ease of deformation of the separator 40.

また,第2層42の厚さと,セパレータ40の変形量との関係を調べたところ,図12に示すように,第2層42の厚さを3μmから9μmまで1μmずつ増加させても,セパレータ40の変形量は0.80μm程度と変わらないことがわかった。従って,第1層41,第2層42,及び第3層43の層厚は,セパレータ40の変形量にほとんど影響しないことがわかった。   Further, when the relationship between the thickness of the second layer 42 and the deformation amount of the separator 40 was examined, as shown in FIG. 12, even if the thickness of the second layer 42 was increased from 3 μm to 9 μm by 1 μm, the separator It was found that the deformation amount of 40 was not changed from about 0.80 μm. Therefore, it was found that the layer thicknesses of the first layer 41, the second layer 42, and the third layer 43 hardly affect the deformation amount of the separator 40.

これに対して,第1層41及び第3層43に含まれるエンジニアリングプラスチックの含有量と,セパレータ40の変形量との関係を調べたところ,図13に示すように,エンジニアリングプラスチックの含有量を増加させるほど,セパレータ40の変形量は小さくなる(変形しにくくなる)ことがわかった。そして,エンジニアリングプラスチックの含有量を50〜80%程度とすることで,後述する望ましい硬さのセパレータ40,すなわち,変形量0.3μm以上1.2μm以下のセパレータ40を構成できることがわかった。なお,エンジニアリングプラスチック(本実施形態ではポリエーテルケトン)の含有量を変更することで,セパレータ40の変形量が変わるのは,エンジニアリングプラスチック(ポリエーテルケトン)は,ポリオレフィン樹脂であるポリエチレンよりも硬いからである。   On the other hand, when the relationship between the content of the engineering plastic contained in the first layer 41 and the third layer 43 and the deformation amount of the separator 40 was examined, as shown in FIG. It was found that the amount of deformation of the separator 40 becomes smaller (harder to deform) as it is increased. It was found that by setting the content of the engineering plastic to about 50 to 80%, a separator 40 having a desirable hardness described later, that is, a separator 40 having a deformation amount of 0.3 μm or more and 1.2 μm or less can be configured. The amount of deformation of the separator 40 is changed by changing the content of engineering plastic (in this embodiment, polyetherketone) because engineering plastic (polyetherketone) is harder than polyethylene, which is a polyolefin resin. It is.

次に,セパレータ40の変形量(変形し易さ)と,過充電時に発生するガス量との関係について,図14〜図17に基づいて説明する。図14は,セパレータ40の変形量(変形し易さ)と,過充電時に発生するガス量との関係を調べた結果を示すグラフである。図14に示すグラフにおいて,横軸は,セパレータ40の変形量を示し,縦軸は,過充電時に発生する単位容積あたりのガス量を示している。同グラフにおける●プロットは,正極活物質層21の最大頻度細孔径を0.20μmとした場合を示し,*プロットは,正極活物質層21の最大頻度細孔径を0.35μmとした場合を示し,×プロットは,正極活物質層21の最大頻度細孔径を0.56μmとした場合を示し,△プロットは,正極活物質層21の最大頻度細孔径を0.73μmとした場合を示し,■プロットは,正極活物質層21の最大頻度細孔径を0.78μmとした場合を示し,◆プロットは,正極活物質層21の最大頻度細孔径を0.96μmとした場合を示している。   Next, the relationship between the amount of deformation (ease of deformation) of the separator 40 and the amount of gas generated during overcharging will be described with reference to FIGS. FIG. 14 is a graph showing the results of examining the relationship between the amount of deformation (ease of deformation) of the separator 40 and the amount of gas generated during overcharging. In the graph shown in FIG. 14, the horizontal axis indicates the deformation amount of the separator 40, and the vertical axis indicates the amount of gas per unit volume generated during overcharge. The ● plot in the graph shows the case where the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.20 μm, and the * plot shows the case where the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.35 μm. , X plot shows the case where the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.56 μm, Δ plot shows the case where the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.73 μm, The plot shows the case where the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.78 μm, and the ♦ plot shows the case where the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.96 μm.

図14に示すように,正極活物質層21の最大頻度細孔径がおよそ0.70μm以上でなければ,セパレータ40の変形量(変形し易さ)を変えても,過充電時に発生するガス量はあまり変化しない。また,図14に示すグラフから,セパレータ40の変形量(変形し易さ)を1.2μm以下とすると,過充電時のガス発生量を多くすることができて望ましいことがわかる。なお,繰り返しになるが,セパレータ40の変形量とは,株式会社島津製作所製,ダイナミック超微小硬度計DUH-W201を用いて,三角錐圧子にて0.05gfの力でセパレータ40を押したときの凹み量(押し込み深さ,単位はμm)のことであり,セパレータ40の変形し易さを示す指標である。   As shown in FIG. 14, if the maximum frequency pore diameter of the positive electrode active material layer 21 is not about 0.70 μm or more, the amount of gas generated during overcharge even if the deformation amount (ease of deformation) of the separator 40 is changed. Does not change much. Further, it can be seen from the graph shown in FIG. 14 that when the deformation amount (ease of deformation) of the separator 40 is 1.2 μm or less, the amount of gas generated during overcharge can be increased. In addition, although it repeats, the deformation amount of the separator 40 means that the separator 40 was pushed with a force of 0.05 gf with a triangular pyramid indenter using Shimadzu Corporation's dynamic ultra micro hardness tester DUH-W201. Is the amount of depression (push-in depth, unit is μm), and is an index indicating the ease of deformation of the separator 40.

このように,セパレータ40の変形量が1.2μmよりも大きい場合と,1.2μm以下である場合とで,過充電時に発生するガス量が異なるのは次の理由による。すなわち,初期状態(後述する充放電サイクルを経る前)のリチウムイオン二次電池1では,図15に示すように,正極活物質層21とセパレータ40との間,及び,負極活物質層31とセパレータ40との間に,隙間(空孔)Sが存在している。この隙間Sは,過充電時の高温高電圧下において過充電添加剤が反応するために必要な空間である。   As described above, the amount of gas generated during overcharge differs depending on whether the deformation amount of the separator 40 is greater than 1.2 μm or less than 1.2 μm. That is, in the lithium ion secondary battery 1 in an initial state (before passing through a charge / discharge cycle described later), as shown in FIG. 15, between the positive electrode active material layer 21 and the separator 40 and between the negative electrode active material layer 31 and A gap (hole) S exists between the separator 40. This gap S is a space necessary for the overcharge additive to react under high temperature and high voltage during overcharge.

ところが,セパレータ40の変形量が1.2μmよりも大きい場合,すなわち,セパレータ40が変形し易いものである場合には,図16に示すように,空孔Sは,充放電サイクルを経て変形したセパレータ40によって閉塞されてしまうのである。すなわち,リチウムイオン二次電池1の充放電に伴って,負極活物質層31に含まれる負極活物質が,膨張したり収縮したりする。この膨張する負極活物質によってセパレータ40が押され,空孔Sを埋めるように変形してしまうのである。このように空孔Sがセパレータ40によって塞がれてしまうと,過充電添加剤の反応場所が小さくなってしまう。従って,過充電添加剤が十分に反応することができず,結果として,過充電時に発生するガス量が少なくなってしまうのである。過充電時のガス発生量が少なくなってしまうと,過充電であっても内圧が所定の作動圧以上に上昇せず,電流遮断機構62が作動しない。これでは,リチウムイオン二次電池1の熱暴走を止めることができない。   However, when the amount of deformation of the separator 40 is larger than 1.2 μm, that is, when the separator 40 is easily deformed, the holes S are deformed through a charge / discharge cycle as shown in FIG. It is blocked by the separator 40. That is, as the lithium ion secondary battery 1 is charged / discharged, the negative electrode active material included in the negative electrode active material layer 31 expands or contracts. The separator 40 is pushed by the expanding negative electrode active material, and is deformed so as to fill the void S. When the holes S are thus blocked by the separator 40, the reaction site for the overcharge additive is reduced. Therefore, the overcharge additive cannot react sufficiently, and as a result, the amount of gas generated during overcharge decreases. If the amount of gas generated during overcharging decreases, the internal pressure does not rise above a predetermined operating pressure even during overcharging, and the current interrupt mechanism 62 does not operate. With this, the thermal runaway of the lithium ion secondary battery 1 cannot be stopped.

これに対して,セパレータ40の変形量を1.2μm以下とした場合,すなわち,セパレータ40が変形し難いものである場合には,図17に示すように,リチウムイオン二次電池1の充放電サイクルを経ても,セパレータ40があまり変形しないため,空孔Sは塞がれず,過充電添加剤が反応するのに十分なスペースが残る。従って,過充電時に十分なガス発生量を確保することができるため(図14参照),リチウムイオン二次電池1の内圧が所定の作動圧以上に上昇することとなり,これにより,電流遮断機構62が作動する。よって,リチウムイオン二次電池1の熱暴走を止めることができる。   On the other hand, when the deformation amount of the separator 40 is 1.2 μm or less, that is, when the separator 40 is not easily deformed, as shown in FIG. 17, the charging / discharging of the lithium ion secondary battery 1 is performed. Even after the cycle, the separator 40 is not deformed so much that the pores S are not blocked, and a sufficient space remains for the overcharge additive to react. Accordingly, since a sufficient amount of gas generation can be ensured during overcharge (see FIG. 14), the internal pressure of the lithium ion secondary battery 1 rises to a predetermined operating pressure or higher. Operates. Therefore, the thermal runaway of the lithium ion secondary battery 1 can be stopped.

また,図14に示すグラフから,セパレータ40の変形量(変形し易さ)は,0.3μm以上であることが望ましいことがわかる。セパレータ40の変形量を0.3μmよりも小さくした場合には,すなわち,セパレータ40を変形し難くし過ぎた場合には,セパレータ40の変形量を0.3μm以上1.2μm以下とした場合に比べて,発生するガス量が少なくなってしまうからである。   Further, it can be seen from the graph shown in FIG. 14 that the amount of deformation (ease of deformation) of the separator 40 is desirably 0.3 μm or more. When the deformation amount of the separator 40 is smaller than 0.3 μm, that is, when it is difficult to deform the separator 40, the deformation amount of the separator 40 is set to 0.3 μm or more and 1.2 μm or less. This is because the amount of generated gas is reduced.

なお,図14に示す実験結果は,次に示すサイクル試験条件にて充放電サイクルを行ったリチウムイオン二次電池1に対して,次に示す条件の過充電試験を行ったときの結果を示したものである。充放電サイクルは以下のように行った。すなわち,リチウムイオン二次電池1について,環境温度を60℃とし,SOCが0%から100%となるまで,2Cの充電レートでCC充電(Constant Current充電)し,その後,SOC100%から0%になるまで,2Cの放電レートでCC放電(Constant Current放電)するのを1サイクルとして,1000サイクルの充放電を行った。   In addition, the experimental result shown in FIG. 14 shows the result when an overcharge test under the following conditions is performed on the lithium ion secondary battery 1 that has been charged and discharged under the following cycle test conditions. It is a thing. The charge / discharge cycle was performed as follows. That is, with respect to the lithium ion secondary battery 1, CC charging (Constant Current charging) is performed at a charging rate of 2C until the SOC becomes 0% to 100%, and the environmental temperature is changed from 100% to 0%. Until then, CC discharge (Constant Current discharge) at a discharge rate of 2 C was taken as one cycle, and 1000 cycles of charge / discharge were performed.

ここで,充放電レートを示す1Cとは,定格容量値(公称容量値)の容量を有する電池を定電流放電して,1時間で放電終了となる電流値である。例えば,リチウムイオン二次電池の定格容量(公称容量)が1.0Ahである場合は,1C=1.0Aとなる。また,SOCとは,State Of Charge(充電状態,充電率)の略である。   Here, 1C indicating the charge / discharge rate is a current value at which discharge is completed in 1 hour after a battery having a rated capacity value (nominal capacity value) is discharged at a constant current. For example, when the rated capacity (nominal capacity) of the lithium ion secondary battery is 1.0 Ah, 1C = 1.0 A. Also, SOC is an abbreviation for State Of Charge (charging state, charging rate).

また,過充電試験は以下のように行った。すなわち,まず,充放電サイクルを行ったリチウムイオン二次電池1の正極板20,負極板30,及びセパレータ40をラミネートセルに組み直した。そして,このラミネートセルを,SOCが100%(4.1V)となるまで,1Cの充電レートで2.5時間,CCCV充電(Constant Current/Constant Voltage充電)した。その後,環境温度を25℃として,SOCが160%となるまで,1C(1A)の充電レートでCC充電した。   The overcharge test was performed as follows. That is, first, the positive electrode plate 20, the negative electrode plate 30, and the separator 40 of the lithium ion secondary battery 1 subjected to the charge / discharge cycle were reassembled into a laminate cell. The laminate cell was CCCV charged (Constant Current / Constant Voltage charge) for 2.5 hours at a charge rate of 1 C until the SOC reached 100% (4.1 V). Thereafter, CC charging was performed at a charging rate of 1C (1A) until the SOC became 160% at an environmental temperature of 25 ° C.

また,発生したガス量は,過充電試験前のラミネートセルの体積と過充電試験後のラミネートセルの体積をアルキメデス法で測定し,過充電試験前後の体積変化から求めた。測定したガス量(cc若しくはml)を,ラミネートセルの電池容量(Ah)で除すことで,単位電池容量あたりのガス発生量(cc/Ah)を求めた。なお,図8に示したガス量も同様の方法により求めたものである。   The amount of gas generated was determined from the volume change before and after the overcharge test by measuring the volume of the laminate cell before the overcharge test and the volume of the laminate cell after the overcharge test by the Archimedes method. The gas generation amount (cc / Ah) per unit battery capacity was determined by dividing the measured gas amount (cc or ml) by the battery capacity (Ah) of the laminate cell. Note that the gas amount shown in FIG. 8 is obtained by the same method.

また,この実験に使用したリチウムイオン二次電池1では,負極板30は,負極集電箔38として銅箔を用い,負極活物質層31となる負極用塗工液として,負極活物質である天然黒鉛と,増粘剤であるCMCと,結着材であるSBRとを,重量比率98:1:1で混合したものを用いた。電解液50は,段落[0019]に示す条件のものを用いた。   Further, in the lithium ion secondary battery 1 used in this experiment, the negative electrode plate 30 uses a copper foil as the negative electrode current collector foil 38 and is a negative electrode active material as a negative electrode coating liquid that becomes the negative electrode active material layer 31. A mixture of natural graphite, CMC as a thickener, and SBR as a binder in a weight ratio of 98: 1: 1 was used. As the electrolytic solution 50, one having the conditions shown in paragraph [0019] was used.

以上詳細に説明したように,本実施形態のリチウムイオン二次電池1は,正極集電箔28と,正極集電箔28に塗工されている正極活物質層21とを有する正極板20と,負極集電箔38と,負極集電箔38に塗工されている負極活物質層31とを有する負極板30と,正極板20と負極板30との間に介在して正極板20と負極板30とを電気的に絶縁するセパレータ40と,正極板20,負極板30,及びセパレータ40を捲回してなる電極体10を収容する電池ケース80と,電池ケース80内に充填された電解液50と,過充電時に通常の動作電圧を上回ったときに反応してガスを発生させる過充電添加剤と,電池ケース80の内圧が所定の作動圧を超えたときに作動する電流遮断機構62と,を備えている。正極活物質層21は,最大頻度細孔径が0.7μm以上である。セパレータ40は,0.05gfの力で押したときの凹み量(変形量)が1.2μm以下である。   As described in detail above, the lithium ion secondary battery 1 of this embodiment includes a positive electrode plate 20 having a positive electrode current collector foil 28 and a positive electrode active material layer 21 coated on the positive electrode current collector foil 28. , A negative electrode plate 30 having a negative electrode current collector foil 38 and a negative electrode active material layer 31 coated on the negative electrode current collector foil 38, and a positive electrode plate 20 interposed between the positive electrode plate 20 and the negative electrode plate 30. A separator 40 that electrically insulates the negative electrode plate 30, a battery case 80 that houses the positive electrode plate 20, the negative electrode plate 30, and the electrode body 10 that is formed by winding the separator 40, and an electrolytic solution that is filled in the battery case 80 The liquid 50, an overcharge additive that reacts to generate gas when it exceeds a normal operating voltage during overcharging, and a current interruption mechanism 62 that operates when the internal pressure of the battery case 80 exceeds a predetermined operating pressure. And. The positive electrode active material layer 21 has a maximum frequency pore diameter of 0.7 μm or more. The separator 40 has a dent amount (deformation amount) of 1.2 μm or less when pressed with a force of 0.05 gf.

本実施形態のリチウムイオン二次電池1では,正極活物質層21の最大頻度細孔径が0.7μm以上であるため,過充電時における過充電添加剤をガス発生源とするガス発生量は,セパレータ40の変形し易さ(柔軟性)の影響を受ける(図8,図14参照)。そして,セパレータ40は,0.05gfの力で押したときの凹み量(変形量)が1.2μm以下であるため,リチウムイオン二次電池1を繰り返し充放電してもセパレータ40が変形して空孔Sを塞ぐことがない(図17参照)。すなわち,リチウムイオン二次電池1を繰り返し充放電してもセパレータ40の変形が少ないため,空孔Sが塞がれず,その結果,過充電添加剤の反応スペースが十分にとれることとなる。よって,感圧式の電流遮断機構62を確実に作動させ得る安全性の高い電池とすることができる。   In the lithium ion secondary battery 1 of this embodiment, since the maximum frequency pore diameter of the positive electrode active material layer 21 is 0.7 μm or more, the amount of gas generated using the overcharge additive as a gas generation source during overcharge is: The separator 40 is affected by ease of deformation (flexibility) (see FIGS. 8 and 14). Since the dent amount (deformation amount) of the separator 40 when pressed with a force of 0.05 gf is 1.2 μm or less, the separator 40 is deformed even when the lithium ion secondary battery 1 is repeatedly charged and discharged. The air holes S are not blocked (see FIG. 17). That is, even when the lithium ion secondary battery 1 is repeatedly charged and discharged, the separator 40 is not deformed so much that the holes S are not blocked, and as a result, a sufficient reaction space for the overcharge additive can be obtained. Therefore, it is possible to obtain a highly safe battery that can reliably operate the pressure-sensitive current interrupting mechanism 62.

また本実施形態のリチウムイオン二次電池1では,セパレータ40は,0.05gfの力で押したときの凹み量(変形量)が0.3μm以上である。そのため,セパレータ40を変形し難くし過ぎる(凹み量0.3μm未満のセパレータとする)ことにより,返って発生するガス量が少なくなってしまうのを防ぐことができる(図14参照)。   Further, in the lithium ion secondary battery 1 of the present embodiment, the separator 40 has a dent amount (deformation amount) of 0.3 μm or more when pressed with a force of 0.05 gf. For this reason, it is possible to prevent the amount of gas generated from returning by making the separator 40 difficult to deform (a separator having a dent amount of less than 0.3 μm) (see FIG. 14).

また本実施形態のリチウムイオン二次電池1では,セパレータ40は,多孔質ポリオレフィン樹脂であるポリエチレン及びエンジニアブラスチックであるポリエーテルケトンからなり,エンジニアリングプラスチック(ポリエーテルケトン)の含有量が50〜80%である第1層41及び第3層43と,第1層41と第3層43の間に配されており,ポリエチレンからなる第2層42と,から構成されている。これにより,過充電時のガス発生量を十分に確保するために最適な硬さのセパレータ40,すなわち,0.05gfの力で押したときの凹み量(変形量)が0.3μm以上1.2μm以下のセパレータ40を,好適に形成することができる(図13,図14参照)。   In the lithium ion secondary battery 1 of the present embodiment, the separator 40 is made of polyethylene, which is a porous polyolefin resin, and polyetherketone, which is an engineered plastic, and the content of engineering plastic (polyetherketone) is 50 to 80. % Of the first layer 41 and the third layer 43, and the second layer 42 made of polyethylene and disposed between the first layer 41 and the third layer 43. As a result, the separator 40 having the optimum hardness to ensure a sufficient amount of gas generated during overcharge, that is, the dent amount (deformation amount) when pressed with a force of 0.05 gf is 0.3 μm or more. A separator 40 of 2 μm or less can be suitably formed (see FIGS. 13 and 14).

また本実施形態のリチウムイオン二次電池1では,正極活物質層21は,最大頻度細孔径が1.2μm以下である。正極活物質層21の最大頻度細孔径を1.2μmより大きくすると,リチウムイオン二次電池1の内部抵抗(IV抵抗)が急激に大きくなるところ(図9参照),本実施形態では,このように正極活物質層21の最大頻度細孔径を1.2μm以下としているため,内部抵抗が過剰に大きな電池となることがない。   Moreover, in the lithium ion secondary battery 1 of this embodiment, the positive electrode active material layer 21 has a maximum frequency pore diameter of 1.2 μm or less. When the maximum frequency pore diameter of the positive electrode active material layer 21 is made larger than 1.2 μm, the internal resistance (IV resistance) of the lithium ion secondary battery 1 suddenly increases (see FIG. 9). Further, since the maximum frequency pore diameter of the positive electrode active material layer 21 is set to 1.2 μm or less, the battery does not have an excessively large internal resistance.

以上において本発明を実施形態に即して説明したが,本発明は上述の各実施形態に限定されるものではなく,その要旨を逸脱しない範囲で,適宜変更して適用できることは言うまでもない。例えば,実施形態では,捲回型の電極体10を有するリチウムイオン二次電池1を例示したが,積層型の電極体を有する非水電解液二次電池などにも,本発明の技術的思想を適用できる。また上記実施形態では,角型の電池ケース80を有するリチウムイオン二次電池1を例示したが,円筒型の電池ケースを有する非水電解液二次電池などにも,本発明の技術的思想を適用できる。   Although the present invention has been described above with reference to the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. For example, in the embodiment, the lithium ion secondary battery 1 having the wound electrode body 10 is exemplified, but the technical idea of the present invention is also applied to a non-aqueous electrolyte secondary battery having a stacked electrode body. Can be applied. In the above embodiment, the lithium ion secondary battery 1 having the square battery case 80 is exemplified. However, the technical idea of the present invention is applied to a non-aqueous electrolyte secondary battery having a cylindrical battery case. Applicable.

また実施形態では,多孔質ポリオレフィン樹脂として,ポリエチレンを用いたが,ポリプロピレンなど,他の多孔質ポリオレフィン樹脂を用いてもよい。また実施形態では,エンジニアリングプラスチックとして,ポリエーテルケトンを用いたが,ポリエーテルエーテルケトン(PEEK)など他の芳香族ポリエーテルケトンやその他のエンジニアリングプラスチックを用いてもよい。   In the embodiment, polyethylene is used as the porous polyolefin resin, but other porous polyolefin resins such as polypropylene may be used. In the embodiment, polyether ketone is used as the engineering plastic, but other aromatic polyether ketones such as polyether ether ketone (PEEK) and other engineering plastics may be used.

また実施形態では,過電流添加剤としてCHBを使用したが,他の添加剤を用いてもよい。例えば,芳香族モノマーであるビフェニルやチオフェンなどのモノマー添加剤を用いてもよい。これらのモノマー添加剤を電解液に含有させた場合であっても,リチウムイオン二次電池が最大動作電圧を超えて,添加剤の反応電圧に至ったときには,モノマー添加剤が重合反応してガスが発生する。また,正極活物質層21に,過電流添加剤として炭酸リチウムを含ませてもよい。この場合には,リチウムイオン二次電池が過充電状態となると,正極板の電位上昇にともない,炭酸リチウムの分解反応がすすみ,炭酸ガスが発生する。   In the embodiment, CHB is used as the overcurrent additive, but other additives may be used. For example, a monomer additive such as an aromatic monomer such as biphenyl or thiophene may be used. Even when these monomer additives are included in the electrolyte solution, when the lithium ion secondary battery exceeds the maximum operating voltage and reaches the reaction voltage of the additive, the monomer additive undergoes a polymerization reaction to cause a gas reaction. Will occur. The positive electrode active material layer 21 may contain lithium carbonate as an overcurrent additive. In this case, when the lithium ion secondary battery is overcharged, as the potential of the positive electrode plate increases, the decomposition reaction of lithium carbonate proceeds and carbon dioxide gas is generated.

また実施形態では,電流遮断機構62を正極端子構造体60の一部として構成し,過充電時には,ダイヤフラム64の変形により正極集電端子部材63と正極外部端子部材68との電気的接続が切断されるよう構成したが,電流遮断機構としては,過充電時の内圧上昇に伴って正極集電端子部材63と正極外部端子部材68との電気的接続が切断される構成であれば,適宜構成を変更してもよい。   In the embodiment, the current interrupting mechanism 62 is configured as a part of the positive electrode terminal structure 60, and the electrical connection between the positive electrode current collector terminal member 63 and the positive electrode external terminal member 68 is cut off due to the deformation of the diaphragm 64 during overcharge. However, the current interrupting mechanism is appropriately configured as long as the electrical connection between the positive current collecting terminal member 63 and the positive external terminal member 68 is cut off as the internal pressure increases during overcharging. May be changed.

1…リチウムイオン二次電池(非水電解液二次電池)
10…電極体
28…正極集電箔
21…正極活物質層
20…正極板
38…負極集電箔
31…負極活物質層
30…負極板
40…セパレータ
41…第1層
42…第2層
43…第3層
50…電解液
62…電流遮断機構
80…電池ケース
S…空孔
1 ... Lithium ion secondary battery (non-aqueous electrolyte secondary battery)
DESCRIPTION OF SYMBOLS 10 ... Electrode body 28 ... Positive electrode collector foil 21 ... Positive electrode active material layer 20 ... Positive electrode plate 38 ... Negative electrode collector foil 31 ... Negative electrode active material layer 30 ... Negative electrode plate 40 ... Separator 41 ... First layer 42 ... Second layer 43 ... 3rd layer 50 ... Electrolyte solution 62 ... Current interruption mechanism 80 ... Battery case S ... Hole

Claims (5)

正極集電箔と,前記正極集電箔に塗工されている正極活物質層とを有する正極板と,
負極集電箔と,前記負極集電箔に塗工されている負極活物質層とを有する負極板と,
前記正極板と前記負極板との間に介在して前記正極板と前記負極板とを電気的に絶縁するセパレータと,
前記正極板,前記負極板,及び前記セパレータを捲回又は積層してなる電極体を収容する電池ケースと,
前記電池ケース内に充填された非水電解液と,
過充電により通常の動作電圧を上回ったときに反応してガスを発生させる過充電添加剤と,
前記電池ケースの内圧が作動圧を超えたときに前記電極体に流れる電流を遮断する電流遮断機構と,を備えた非水電解液二次電池であって,
前記正極活物質層は,最大頻度細孔径が0.7μm以上であり,
前記セパレータは,0.05gfの力で押したときの凹み量が1.2μm以下であることを特徴とする非水電解液二次電池。
A positive electrode plate having a positive electrode current collector foil and a positive electrode active material layer coated on the positive electrode current collector foil;
A negative electrode plate having a negative electrode current collector foil and a negative electrode active material layer coated on the negative electrode current collector foil;
A separator interposed between the positive electrode plate and the negative electrode plate to electrically insulate the positive electrode plate and the negative electrode plate;
A battery case containing an electrode body formed by winding or laminating the positive electrode plate, the negative electrode plate, and the separator;
A non-aqueous electrolyte filled in the battery case;
An overcharge additive that reacts to generate gas when it exceeds normal operating voltage due to overcharge;
A non-aqueous electrolyte secondary battery comprising a current interruption mechanism for interrupting a current flowing through the electrode body when an internal pressure of the battery case exceeds an operating pressure,
The positive electrode active material layer has a maximum frequency pore diameter of 0.7 μm or more,
The nonaqueous electrolyte secondary battery, wherein the separator has a dent amount of 1.2 μm or less when pressed with a force of 0.05 gf.
請求項1に記載の非水電解液二次電池であって,
前記セパレータは,0.05gfの力で押したときの凹み量が0.3μm以上であることを特徴とする非水電解液二次電池。
The nonaqueous electrolyte secondary battery according to claim 1,
The non-aqueous electrolyte secondary battery, wherein the separator has a dent amount of 0.3 μm or more when pressed with a force of 0.05 gf.
請求項2に記載の非水電解液二次電池であって,
前記セパレータは,
多孔質ポリオレフィン樹脂及びエンジニアリングプラスチックからなり,エンジニアリングプラスチックの含有量が50〜80%である第1層及び第3層と,
前記第1層と前記第3層の間に配されており,多孔質ポリオレフィン樹脂からなる第2層と,から構成されていることを特徴とする非水電解液二次電池。
The nonaqueous electrolyte secondary battery according to claim 2,
The separator is
A first layer and a third layer comprising a porous polyolefin resin and an engineering plastic, wherein the content of the engineering plastic is 50 to 80%;
A non-aqueous electrolyte secondary battery comprising a second layer made of a porous polyolefin resin and disposed between the first layer and the third layer.
請求項3に記載の非水電解液二次電池であって,
前記第1層及び前記第3層は,多孔質ポリオレフィン樹脂としてポリエチレンを用いているとともに,エンジニアリングプラスチックとしてポリエーテルケトンを用いているものであり,
前記第2層は,多孔質ポリオレフィン樹脂としてポリエチレンを用いているものであることを特徴とする非水電解液二次電池。
The nonaqueous electrolyte secondary battery according to claim 3,
The first layer and the third layer are made of polyethylene as the porous polyolefin resin and polyether ketone as the engineering plastic.
The non-aqueous electrolyte secondary battery, wherein the second layer uses polyethylene as a porous polyolefin resin.
請求項1から請求項4までのいずれかに記載の非水電解液二次電池であって,
前記正極活物質層は,最大頻度細孔径が1.2μm以下であることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery according to any one of claims 1 to 4,
The non-aqueous electrolyte secondary battery, wherein the positive electrode active material layer has a maximum frequency pore diameter of 1.2 μm or less.
JP2012281831A 2012-12-25 2012-12-25 Nonaqueous electrolyte secondary battery Pending JP2014127284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281831A JP2014127284A (en) 2012-12-25 2012-12-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281831A JP2014127284A (en) 2012-12-25 2012-12-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014127284A true JP2014127284A (en) 2014-07-07

Family

ID=51406635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281831A Pending JP2014127284A (en) 2012-12-25 2012-12-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014127284A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068353A1 (en) * 2013-11-05 2015-05-14 三洋電機株式会社 Stopper for sealed battery, and sealed battery
WO2017033985A1 (en) * 2015-08-27 2017-03-02 株式会社豊田自動織機 Current cut-off device and manufacturing method therefor
WO2017110548A1 (en) * 2015-12-24 2017-06-29 株式会社 豊田自動織機 Power storage device
WO2023281886A1 (en) * 2021-07-05 2023-01-12 株式会社Gsユアサ Power storage element and power storage device
JP7537197B2 (en) 2020-09-15 2024-08-21 東レ株式会社 Polyolefin microporous membrane, battery separator and secondary battery.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179562A (en) * 2003-12-22 2005-07-07 Mitsubishi Chemicals Corp Porous film and its manufacturing method, and battery separator using it
JP2008004536A (en) * 2006-05-22 2008-01-10 Matsushita Electric Ind Co Ltd Separator, and nonaqueous electrolyte secondary battery
JP2010171020A (en) * 2010-03-15 2010-08-05 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
JP2012119225A (en) * 2010-12-02 2012-06-21 Teijin Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2012216500A (en) * 2011-03-30 2012-11-08 Toyota Central R&D Labs Inc Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179562A (en) * 2003-12-22 2005-07-07 Mitsubishi Chemicals Corp Porous film and its manufacturing method, and battery separator using it
JP2008004536A (en) * 2006-05-22 2008-01-10 Matsushita Electric Ind Co Ltd Separator, and nonaqueous electrolyte secondary battery
JP2010171020A (en) * 2010-03-15 2010-08-05 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
JP2012119225A (en) * 2010-12-02 2012-06-21 Teijin Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2012216500A (en) * 2011-03-30 2012-11-08 Toyota Central R&D Labs Inc Lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068353A1 (en) * 2013-11-05 2015-05-14 三洋電機株式会社 Stopper for sealed battery, and sealed battery
US9806323B2 (en) 2013-11-05 2017-10-31 Sanyo Electric Co., Ltd. Sealing body for sealed battery and sealed battery
WO2017033985A1 (en) * 2015-08-27 2017-03-02 株式会社豊田自動織機 Current cut-off device and manufacturing method therefor
WO2017110548A1 (en) * 2015-12-24 2017-06-29 株式会社 豊田自動織機 Power storage device
KR20180081109A (en) * 2015-12-24 2018-07-13 가부시키가이샤 도요다 지도숏키 Power storage device
CN108370020A (en) * 2015-12-24 2018-08-03 株式会社丰田自动织机 Electrical storage device
JPWO2017110548A1 (en) * 2015-12-24 2018-10-11 株式会社豊田自動織機 Power storage device
KR102053560B1 (en) 2015-12-24 2019-12-06 가부시키가이샤 도요다 지도숏키 Power storage device
US10862098B2 (en) 2015-12-24 2020-12-08 Kabushiki Kaisha Toyota Jidoshokki Power storage device
JP7537197B2 (en) 2020-09-15 2024-08-21 東レ株式会社 Polyolefin microporous membrane, battery separator and secondary battery.
WO2023281886A1 (en) * 2021-07-05 2023-01-12 株式会社Gsユアサ Power storage element and power storage device

Similar Documents

Publication Publication Date Title
US10985400B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR101601123B1 (en) Secondary battery comprising two electrode lead detachable from each other
JP5668993B2 (en) Sealed nonaqueous electrolyte secondary battery and method for manufacturing the same
KR101812388B1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR101049331B1 (en) Lithium secondary battery
US9337459B2 (en) Sealed secondary battery
JP5916401B2 (en) Non-aqueous electrolyte secondary battery, manufacturing method thereof, and vehicle including the non-aqueous electrolyte secondary battery
KR20170033443A (en) Nonaqueous electrolyte secondary battery
KR101871231B1 (en) Lithium ion secondary battery
KR20170026610A (en) Non-aqueous secondary battery
KR20160078457A (en) Separator for nonaqueous electrolyte secondary battery, and battery including same
JP2014127284A (en) Nonaqueous electrolyte secondary battery
KR20200131791A (en) Nonaqueous electrolyte secondary battery
JP2013026123A (en) Secondary battery and electrode plate
KR20150037405A (en) Cap assembly and secondary battery comprising the same
JP6005363B2 (en) Method for producing lithium ion secondary battery
US9406924B2 (en) Nonaqueous electrolyte secondary battery
JP5699890B2 (en) Non-aqueous electrolyte secondary battery
JP6585365B2 (en) Nonaqueous electrolyte secondary battery
JP2016062778A (en) Sealed type nonaqueous electrolyte secondary battery
US20240204340A1 (en) Secondary battery
JP2015097163A (en) Nonaqueous electrolyte secondary battery
JP2015146262A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160412