WO2017033341A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2017033341A1
WO2017033341A1 PCT/JP2015/074294 JP2015074294W WO2017033341A1 WO 2017033341 A1 WO2017033341 A1 WO 2017033341A1 JP 2015074294 W JP2015074294 W JP 2015074294W WO 2017033341 A1 WO2017033341 A1 WO 2017033341A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
line
liquid crystal
electrode
discharge
Prior art date
Application number
PCT/JP2015/074294
Other languages
English (en)
French (fr)
Inventor
健太郎 入江
雅江 北山
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to JP2017536160A priority Critical patent/JPWO2017033341A1/ja
Priority to US15/753,951 priority patent/US10656477B2/en
Priority to PCT/JP2015/074294 priority patent/WO2017033341A1/ja
Priority to CN201580082732.2A priority patent/CN107924662A/zh
Publication of WO2017033341A1 publication Critical patent/WO2017033341A1/ja
Priority to US16/795,084 priority patent/US20200192167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device that improves the viewing angle dependency of gamma characteristics.
  • the liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight, and low power consumption, and is widely used for thin televisions, personal computer monitors, digital signage, and the like.
  • a commonly used TN (Twisted Nematic) mode liquid crystal display device has excellent productivity, but has a problem in viewing angle characteristics related to screen display. For example, when the display screen is viewed obliquely with respect to the normal line, the contrast ratio is remarkably lowered in the TN mode liquid crystal display device, and the luminance difference between gradations becomes remarkably unclear. In addition, a so-called gradation inversion phenomenon may be observed in which a portion that appears bright (or dark) when viewed from the front is viewed dark (or bright) when viewed from an oblique direction with respect to the normal.
  • Some liquid crystal display devices that improve the above-described viewing angle characteristics display in display modes such as an IPS (In-Plan Switching) mode and an MVA (Multi-domain Vertical Alignment) mode.
  • IPS In-Plan Switching
  • MVA Multi-domain Vertical Alignment
  • the gamma characteristics representing the gradation dependence of display luminance depend on the angle of the line of sight with respect to the normal of the display screen (hereinafter referred to as viewing angle dependence of the gamma characteristics).
  • This problem is that the gradation display state differs depending on the viewing direction with respect to the display screen, and the gamma characteristics differ between the case where the viewing direction is along the normal line of the display screen and the case where the viewing direction is oblique to the normal line. Is to be observed.
  • Non-Patent Document 1 discloses a liquid crystal display device that improves the viewing angle dependence of gamma characteristics (referred to as viewing angle dependence in some literatures).
  • each pixel includes a first subpixel and a second subpixel, and a discharge capacity (Cdown) is provided in the second subpixel.
  • the subpixel electrodes of the first and second subpixels are alternately different for each pixel in the vertical direction of the display screen via TFT1 and TFT2 to which a scanning signal (gate signal) is applied from the scanning signal line to the control electrode.
  • a scanning signal gate signal
  • the discharge capacity Connected to the data signal line (source signal line), two lines are scanned simultaneously.
  • the discharge capacity the discharge capacity electrode facing the counter electrode is connected to the sub-pixel electrode of the second sub-pixel via the TFT 3.
  • a discharge signal line for applying a discharge signal to the control electrode of the TFT 3 is connected to the scanning signal line behind two lines.
  • a discharge signal delayed by one horizontal scanning period (1H) from the scanning signal for each pixel is applied to the control electrode of the TFT 3 for each pixel.
  • the effective voltage applied to the liquid crystal layer by each of the first and second sub-pixels can be obtained.
  • each pixel is observed in a state in which different gamma characteristics are harmonized for each sub-pixel, so that the viewing angle dependency of the gamma characteristics is improved.
  • the liquid crystal display device described in Patent Document 1 includes first and second subpixels in which each pixel has a subpixel electrode, as in the liquid crystal display device described in Non-Patent Document 1.
  • the discharge capacitance (Cdown) is connected to the subpixel electrode of the second subpixel through a third TFT (corresponding to the TFT3).
  • the subpixel electrodes of the first and second subpixels are connected to different data signal lines alternately for each pixel via the first and second TFTs (corresponding to the TFTs 1 and 2), and two lines are scanned simultaneously. This is the same as in Non-Patent Document 1.
  • the control electrodes (gates) of the first and second TFTs are connected to a gate line (corresponding to the scanning signal line), and the control electrodes of the third TFT are connected to a charge control line (corresponding to the discharge signal line). .
  • the voltage of the sub-pixel electrode of the first sub-pixel is one previous level due to the influence of other parasitic capacitance existing between each sub-pixel electrode and the discharge signal line (or charge control line).
  • the discharge signal of this line rises and falls slightly at the rise and fall of the discharge signal may be observed. For example, when there is no signal overlap between the scanning signal and the discharge signal of the previous line, the effect at the time of rising and falling is appropriately canceled out by each subpixel electrode, and thus the above phenomenon is hardly observed.
  • the first subpixel of the first line is turned on at the same timing as the scanning signal of the first line in two lines scanned simultaneously.
  • the first subpixel of the second line is affected by the discharge signal of the first line that rises at substantially the same timing as the fall of the scanning signal of the second line.
  • the present invention has been made in view of such circumstances, and the object of the present invention is to make the counter voltage optimum for the counter electrode opposed to the sub-pixel electrode included in the pixel deviate from the preset counter voltage.
  • An object of the present invention is to provide a liquid crystal display device capable of preventing the above-described problem.
  • pixels having at least first and second sub-pixels defined including a sub-pixel electrode and a counter-electrode pair facing each other through a liquid crystal layer are arranged in a matrix.
  • the signal width of the scanning signal is longer than M times the length of one horizontal scanning period (M is an integer of 0 or more) and shorter than M + 1 times.
  • An inter-signal connection line connected to a scanning signal line of a row to be scanned after N horizontal scanning periods (N is an integer of M + 2 or more) is provided.
  • the first and second sub-pixels are arranged in a direction intersecting with the discharge signal line, and the discharge signal line is adjacent to each other in adjacent pixels in the direction. And the second sub-pixel.
  • the liquid crystal display device is characterized in that the polarity of the data signal applied to the first and second sub-pixels is inverted every frame period.
  • the signal width of the scanning signal is longer than a length obtained by subtracting a predetermined time from M + 1 times the length of one horizontal scanning period, and the inter-signal connection line is connected after the L horizontal scanning period ( L is an integer greater than or equal to M + 3) and is connected to a scanning signal line of a row to be scanned.
  • each of the first and second subpixels includes an electrode pair of an auxiliary capacitance electrode connected to the subpixel electrode and an auxiliary capacitance counter electrode connected to the predetermined potential. It is demarcated.
  • the liquid crystal display device is characterized in that the pixel is defined including an electrode pair having electrodes connected to the sub-pixel electrode of the first sub-pixel and the discharge capacitance electrode, respectively.
  • the liquid crystal display device further includes a liquid crystal panel in which the scanning signal lines and inter-signal connection lines are arranged at the edges, and the inter-signal connection lines intersect with the N ⁇ 1 scanning signal lines. It is characterized by.
  • the liquid crystal display device further includes two data signal lines for each column of the matrix for applying data signals alternately different for each row of the matrix to one end of the first and second switching elements. Two matching rows are scanned simultaneously.
  • the liquid crystal display device further comprises a liquid crystal panel in which the scanning signal lines and inter-signal connection lines are arranged at the edges, and the inter-signal connection lines intersect with 2N-1 scanning signal lines. It is characterized by.
  • the liquid crystal display device includes a scanning signal connection line connecting the scanning signal lines for the two rows, a discharge signal connection line connecting the discharge signal lines, and the scanning signal connection line in the two rows.
  • a common scanning signal line for applying a common scanning signal; and a liquid crystal panel in which the inter-signal connection line and the common scanning signal line are wired at an edge, and the inter-signal connection line includes the two rows. are commonly wired and intersect with N-1 common scanning signal lines.
  • the pixels arranged in a matrix have at least first and second subpixels defined including a subpixel electrode and an electrode pair of the counter electrode facing each other through the liquid crystal layer.
  • the control electrodes of the first and second switching elements for applying data signals to the subpixel electrodes included in the first and second subpixels are scanned from the scanning signal lines for each row of the matrix (that is, for each line). Apply a signal.
  • a discharge capacitor electrode is connected to the subpixel electrode of the second subpixel through a third switching element, and a discharge capacitor counter electrode connected to a predetermined potential is opposed to the discharge capacitor electrode.
  • the signal width of the scanning signal is in the range from M times (M is an integer of 0 or more) to M + 1 times the length of one horizontal scanning period, and the discharge signal line for applying the discharge signal for each line is N
  • the scanning signal lines in the row to be scanned after the horizontal scanning period (N is an integer greater than or equal to M + 2) are connected by the inter-signal connection line.
  • a discharge signal is applied to the control electrode of the third switching element of the previous line after the time when the data signal is no longer applied to the subpixel electrodes of the first and second subpixels of each line. Therefore, the influence of the voltage applied to the liquid crystal layer by at least the first and second subpixels included in the pixels of each line cancels the rise and fall of the discharge signal of the previous line.
  • the arrangement direction of the first and second subpixels is a direction intersecting the discharge signal line, and the discharge signal line is arranged between the adjacent first and second subpixels in the adjacent pixel.
  • the scanning signal line is arranged at a position overlapping each pixel, signal leakage between the discharge signal line and the scanning signal line is suppressed.
  • the voltage of the subpixel electrode of the second subpixel effectively changes when the third switching element is turned on. As a result, the difference in brightness between the two sub-pixels increases.
  • the signal width of the scanning signal is longer than the length obtained by subtracting the predetermined time from M + 1 times the length of one horizontal scanning period (M is an integer of 0 or more), and the length of one horizontal scanning period.
  • the discharge signal line is connected to the scanning signal line of the row to be scanned after the L horizontal scanning period (L is an integer of M + 3 or more) by an inter-signal connection line.
  • the discharge signal line is connected to the scanning signal line behind the L line that is scanned after the L horizontal scanning period (L is an integer larger than N described above). It is avoided that the discharge signal is applied to the control electrode of the third switching element of the previous line within a predetermined time from when the data signal is no longer applied to the subpixel electrode of the two subpixels.
  • the electrode pair defining each of the first and second subpixels of the pixel includes the electrode pair of the auxiliary capacitance electrode and the auxiliary capacitance counter electrode, and the auxiliary capacitance electrode serves as the subpixel electrode.
  • the auxiliary capacitor counter electrode is electrically connected, and is connected to a predetermined potential as a connection destination of the discharge capacitor counter electrode.
  • the auxiliary capacitance formed by the auxiliary capacitance electrode and the auxiliary capacitance counter electrode is connected in parallel to the liquid crystal capacitance formed by the subpixel electrode and the counter electrode of each of the first and second subpixels.
  • the voltage applied to the liquid crystal layer by the second subpixel is stably held for at least one frame period.
  • the third switching element when the third switching element is turned on, a part of the electric charge accumulated in the second subpixel is connected to the subpixel electrode and the discharge capacitor electrode of the first subpixel. It moves to the first sub-pixel through the electrode pair it has. As a result, the voltages of the subpixel electrodes of the first and second subpixels change with opposite polarities.
  • At least scanning signal lines and inter-signal connection lines are wired at the edge of the liquid crystal panel, and the inter-signal wiring intersects with the N ⁇ 1 scanning signal lines at the edge of the liquid crystal panel. . That is, since the inter-signal connection line connects the discharge signal line and the scanning signal line behind the N line scanned after the N horizontal scanning period on a one-to-one basis, When the signal connection lines are wired and the scanning signal is applied to the scanning signal lines of each row from the same side, the signal connection lines and the N ⁇ 1 scanning signal lines are connected to the liquid crystal panel. Inevitably intersect at one side edge.
  • data signals that are alternately different from line to line from two data signal lines arranged for each column of the matrix are transmitted to the first and second subpixels via the first and second switching elements, respectively.
  • Two lines are scanned within one horizontal scanning period in order to simultaneously turn on the scanning signals of two adjacent lines that are applied to the subpixel electrodes.
  • scanning signal lines and inter-signal connection lines are wired at the edge of the liquid crystal panel, and the inter-signal wiring intersects with 2N-1 scanning signal lines at the edge of the liquid crystal panel. That is, since the inter-signal connection line connects the discharge signal line and the scanning signal line behind the 2N line scanned after the N horizontal scanning period on a one-to-one basis, the edge on one side of the liquid crystal panel In the case where the inter-signal connection lines are wired to each other and the scanning signal is applied to each of the scanning signal lines from the same side, the inter-signal connection lines are 2N ⁇ at one side edge of the liquid crystal panel. It inevitably intersects with one scanning signal line.
  • the scanning signal lines are connected by the scanning signal connection lines and the discharge signal lines are connected by the discharge signal connection lines for the two rows that are scanned at the same time.
  • a common scanning signal line for applying a scanning signal to the scanning signal connection line
  • an inter-signal connection line for connecting between the discharge signal connection line and the scanning signal connection line.
  • the signal connection line intersects with the N-1 common scanning signal lines at the edge of the liquid crystal panel.
  • the inter-signal connection line connects the discharge signal connection line and the scanning signal connection line connecting the two lines scanned after N horizontal scanning periods one-to-one, one side of the liquid crystal panel
  • signal-to-signal connection lines are wired on one edge and a scanning signal is applied to each common scanning signal line from the same side, signal connection is made at one edge of the liquid crystal panel.
  • the line inevitably intersects with N-1 common scanning signal lines.
  • the discharge signal is applied to the third switching element of the previous line after the time when the data signal is no longer applied to the subpixel electrodes of the first and second subpixels of each line. Therefore, the influence of the voltage applied to the liquid crystal layer by at least the first and second subpixels included in the pixels of each line cancels the rise and fall of the discharge signal of the previous line. Accordingly, it is possible to prevent the counter voltage optimum for the counter electrode opposed to the sub-pixel electrode included in the pixel from deviating from the preset counter voltage.
  • FIG. 4 is an explanatory diagram schematically showing a configuration for defining pixels in the liquid crystal display device according to Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of a liquid crystal panel typically. It is explanatory drawing which shows the parasitic capacitance accompanying a pixel.
  • FIG. 5 is a timing chart showing a time change of a signal applied to each signal line and a voltage of a subpixel electrode.
  • FIG. 6 is a timing chart showing temporal changes in signals applied to signal lines and subpixel electrode voltages in the liquid crystal display device according to the first embodiment.
  • FIG. 6 is a timing chart showing temporal changes in signals applied to signal lines and subpixel electrode voltages in the liquid crystal display device according to the first embodiment.
  • FIG. 10 is an explanatory diagram illustrating a connection example of inter-signal connection lines in the liquid crystal panel according to the first modification of the first embodiment.
  • FIG. 10 is a timing chart showing temporal changes of a scanning signal and a discharge signal in a liquid crystal panel according to Modification 1 of Embodiment 1.
  • 10 is a block diagram illustrating a configuration example of a liquid crystal display device according to a second modification of the first embodiment.
  • FIG. 6 is an explanatory diagram schematically showing a configuration for defining pixels in a liquid crystal panel according to a second modification of the first embodiment.
  • FIG. 10 is an explanatory diagram schematically illustrating a configuration in which pixels are defined in a liquid crystal panel according to a third modification of the first embodiment. It is a block diagram which shows the structural example of the liquid crystal display device which concerns on Embodiment 2 of this invention. It is explanatory drawing which shows the connection relation of a pixel and a source signal line.
  • FIG. 10 is a timing chart showing temporal changes in signals applied to signal lines and sub-pixel electrode voltages in the liquid crystal display device according to the second embodiment.
  • FIG. 10 is a timing chart showing temporal changes in signals applied to signal lines and sub-pixel electrode voltages in the liquid crystal display device according to the second embodiment. It is a graph which shows the relationship between the delay time of a discharge signal, and the optimal counter voltage.
  • FIG. 10 is an explanatory diagram illustrating a connection example of inter-signal connection lines in a liquid crystal panel according to a fourth modification of the second embodiment.
  • FIG. 10 is a timing chart showing temporal changes of a scanning signal and a discharge signal in a liquid crystal panel according to Modification 4 of Embodiment 2. It is a graph which shows the relationship between the connecting point of a discharge signal line, and the optimal counter voltage difference.
  • FIG. 10 is a block diagram illustrating a configuration example of a liquid crystal display device according to Modification Example 5 of Embodiment 2.
  • FIG. 16 is an explanatory diagram illustrating a connection example of inter-signal connection lines in a liquid crystal panel according to Modification Example 5 of Embodiment 2.
  • FIG. 1 is a block diagram illustrating a configuration example of a liquid crystal display device according to Embodiment 1 of the present invention
  • FIG. 2 schematically illustrates a configuration in which pixels P are defined in the liquid crystal display device according to Embodiment 1. It is explanatory drawing shown.
  • a pixel P having at least two subpixels defined including an electrode pair to be described later includes a vertical direction (hereinafter also referred to as a row direction) and a horizontal direction (hereinafter referred to as a column direction) of the display screen.
  • a liquid crystal panel 100a arranged in a matrix.
  • the pixel P has at least a sub-pixel SP1 (corresponding to the first sub-pixel) and a sub-pixel SP2 (corresponding to the second sub-pixel) that are bisected in the vertical direction of the display screen of the liquid crystal panel 100a.
  • the sub-pixel SP1 is defined including an electrode pair of the sub-pixel electrode 11a and the counter electrode 21 facing each other through the liquid crystal layer 3, and an electrode pair of the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a.
  • the sub-pixel electrode 11a is connected to a drain electrode of a TFT (Thin Transistor: corresponding to the first switching element) 15a.
  • TFT Thin Transistor
  • the storage capacitor counter electrode 22a is connected to the potential of the counter electrode 21 (corresponding to a predetermined potential).
  • a liquid crystal capacitor Clc1 is formed by the sub-pixel electrode 11a and the counter electrode 21.
  • the auxiliary capacitance Ccs1 is formed by the auxiliary capacitance electrode 12a and the auxiliary capacitance counter electrode 22a.
  • the subpixel SP2 includes an electrode pair of the subpixel electrode 11b and the counter electrode 21, which are opposed to each other with the liquid crystal layer 3 interposed therebetween, an electrode pair of the auxiliary capacitor electrode 12b and the auxiliary capacitor counter electrode 22b, and a discharge capacitor electrode 13 and a discharge capacitor counter electrode. And 23 electrode pairs.
  • a drain electrode of a TFT (corresponding to the second switching element) 15b is connected to the subpixel electrode 11b.
  • the subpixel electrode 11b and the auxiliary capacitance electrode 12b are electrically connected.
  • the discharge capacity electrode 13 is connected to the sub-pixel electrode 11b through a TFT (corresponding to the third switching element) 14.
  • the auxiliary capacity counter electrode 22 b and the discharge capacity counter electrode 23 are connected to the potential of the counter electrode 21.
  • the counter electrode 21 is common to the subpixels SP1 and SP2, but is not limited thereto.
  • a liquid crystal capacitor Clc2 is formed by the sub-pixel electrode 11b and the counter electrode 21.
  • the auxiliary capacitance Ccs2 is formed by the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b.
  • the discharge capacity Cdc is formed by the discharge capacity electrode 13 and the discharge capacity counter electrode 23. Note that the ratio of the sizes of the subpixel electrode 11a and the subpixel electrode 11b is not limited to 1: 1, and the number of subpixels is not limited to two.
  • the source electrodes of the TFTs 15a and 15b are connected to the source signal line SL.
  • Gate electrodes (corresponding to control electrodes) of the TFTs 15a and 15b are connected to a scanning signal line Gm that is linearly arranged so as to cross the central portion of the pixel P in the horizontal direction.
  • the gate electrode of the TFT 14 is a discharge signal line Gs arranged linearly so as to cross the pixel P in the next row (hereinafter also referred to as a line) adjacent in the vertical direction (row direction) in the horizontal direction. It is connected to the.
  • the scanning signal line Gm and the discharge signal line Gs are arranged side by side in the row direction of the matrix. Since the scanning signal line Gm and the discharge signal line Gs in each row are appropriately separated, signal leakage between the scanning signal line Gm and the discharge signal line Gs is suppressed.
  • the discharge signal line Gs is connected to the edge 101a on one side.
  • Inter-signal connection lines Wsm that connect the scanning signal lines Gm behind two lines scanned after two horizontal scanning periods are wired separately.
  • a scanning signal line Gm extending from the display area is also provided on the edge 101a.
  • the inter-signal connection line Wsm intersects with one scanning signal line Gm at the end 101a.
  • the liquid crystal display device also applies a scanning signal to the scanning signal lines Gm, Gm,... Gm, and applies a discharging signal to the discharging signal lines Gs, Gs,.
  • a source driver SDa that applies a source signal to the source signal lines SL, SL,... SL, and a display control circuit 4a that controls display by the liquid crystal panel 100a using the gate driver GDa and the source driver SDa.
  • the display control circuit 4 a receives an image signal input circuit 40 that receives an image signal including image data representing an image, and the gate driver GDa and the source driver SDa based on the clock signal and the synchronization signal separated by the image signal input circuit 40. It has a scanning signal control circuit 42a and a source signal control circuit 41a to be controlled.
  • Each of the scanning signal control circuit 42a and the source signal control circuit 41a generates control signals such as a start signal, a clock signal, and an enable signal necessary for periodic operations of the gate driver GDa and the source driver SDa.
  • the source signal control circuit 41a also outputs the digital image data separated by the image signal input circuit 40 to the source driver SDa.
  • the gate driver GDa sequentially applies a scanning signal for each horizontal scanning period to the scanning signal lines Gm, Gm,... Gm within one frame period of the image data.
  • the source driver SDa accumulates digital image data (serial data) supplied from the source signal control circuit 41a for one horizontal scanning period (1H) and generates an analog source signal (parallel signal) representing an image for one line.
  • the generated source signal is applied in parallel to the source signal lines SL, SL,.
  • the source signal for one line here is updated every horizontal scanning period.
  • the scanning signal applied to one of the scanning signal lines Gm, Gm,... Gm is applied to the gate electrodes of the TFTs 15a and 15b included in the pixels P, P,. Applied. Discharge signals are applied from the discharge signal lines Gs, Gs,... Gs to the gate electrodes of the TFTs 14 included in the pixels P, P,.
  • the discharge signal of each line is delayed by two horizontal scanning periods with respect to the scanning signal of each line.
  • the source signal applied to the source signal lines SL, SL,... SL has a gate electrode connected to the one scanning signal line Gm in one horizontal scanning period in which the scanning signal is applied to one scanning signal line Gm. It is applied to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b, respectively, and also to the auxiliary capacitance electrodes 12a and 12b.
  • source signals are written into the liquid crystal capacitors Clc1 and Clc2 and the auxiliary capacitors Ccs1 and Ccs2 formed in the sub-pixels SP1 and SP2, respectively. In this way, one line of source signal is simultaneously written to one line of pixels P, P,... P in one horizontal scanning period.
  • the source signals written in the subpixels SP1 and SP2 are held for one frame period as long as there is no change in their combined capacitance.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the liquid crystal panel 100a.
  • the liquid crystal panel 100 a is configured by interposing a liquid crystal layer 3 between a first glass substrate (array substrate) 1 and a second glass substrate 2.
  • a sealing material 33 for sealing the liquid crystal sealed in the liquid crystal layer 3 is disposed between the opposing surfaces of the first glass substrate 1 and the second glass substrate 2. It is provided along.
  • subpixel electrodes 11a and 11b On one surface of the first glass substrate 1, subpixel electrodes 11a and 11b, auxiliary capacitance electrodes 12a and 12b, auxiliary capacitance counter electrodes 22a and 22b, discharge capacitance electrode 13 and discharge, each made of a transparent electrode, are formed.
  • An alignment film 31 is formed on the layer including the capacitor counter electrode 23, the TFT 14, and the TFTs 15a and 15b.
  • a polarizing plate 19 is attached to the other surface of the first glass substrate 1.
  • a flexible substrate 18 on which a gate driver GDa is surface-mounted is attached to one edge of one surface of the first glass substrate 1.
  • a counter electrode 21 made of a transparent electrode and an alignment film 32 are laminated on one surface of the second glass substrate 2.
  • a color filter CF is formed between the second glass substrate 2 and the counter electrode 21.
  • a polarizing plate 29 is attached to the other surface of the second glass substrate 2. The polarization direction (polarization plane) of light passing through the polarizing plate 19 and the polarizing plate 29 is different by 90 degrees.
  • the backlight (not shown) is provided on the other surface side of the first glass substrate 1 (the side on which the polarizing plate 19 is attached).
  • the polarization direction of the light transmitted through the pixel P does not change.
  • the light irradiated from the backlight and transmitted through the polarizing plate 19 is absorbed by the polarizing plate 29.
  • the polarization direction of the light transmitted through the pixel P changes according to the magnitude of the voltage.
  • the polarization direction of the light irradiated from the backlight and transmitted through the polarizing plate 19 is changed according to the magnitude of the voltage and is transmitted through the polarizing plate 29.
  • FIG. 4 is an explanatory diagram illustrating the parasitic capacitance associated with the pixel P.
  • the pixel P of the k-th line (k is an integer of 0 or more: the same applies hereinafter)
  • the scanning signal line Gm of the k-th line and the discharge signal line Gs of the k-th line are respectively represented by Pk It represents with Gmk and Gsk. Since every pixel Pk has a parasitic capacitance, it will be described without distinguishing each pixel Pk.
  • the TFTs 15a and 15b whose drain electrodes are connected to the subpixel electrodes 11a and 11b of the subpixels SP1 and SP2, respectively, have a parasitic capacitance between the drain and the gate. Further, stray capacitances exist between the scanning signal line Gmk connected to the gate electrodes of the TFTs 15a and 15b and the sub-pixel electrodes 11a and 11b, respectively. Since the parasitic capacitance between the drain and the gate and the stray capacitance act as a parallel capacitance, these capacitances are collectively referred to as a parasitic capacitance Cgd.
  • the TFT 14 in which the drain electrode (or source electrode) is connected to the subpixel electrode 11b of the subpixel SP2 has a parasitic capacitance between the drain and the gate (or between the source and the gate). Further, a stray capacitance exists between the discharge signal line Gsk connected to the gate electrode of the TFT 14 and the sub-pixel electrode 11b. Since the parasitic capacitance between the drain and gate (or between the source and gate) and the stray capacitance act as a parallel capacitance, these capacitances are collectively referred to as a parasitic capacitance Cgp.
  • FIG. 5 is a timing diagram showing temporal changes in the signal applied to each signal line and the voltage of the sub-pixel electrode 11a.
  • the horizontal axis is the same time axis
  • the vertical axis indicates the discharge signal line Gs0 for the 0th line, the scanning signal line Gm1 for the first line, The signal levels of the first discharge signal line Gs1, the second scan signal line Gm2, and the second discharge signal line Gs2, and the subpixel electrodes of the subpixel SP1 of the pixel P1 and the subpixel SP1 of the pixel P2, respectively. 11a voltage level.
  • the signal level is represented by a positive pulse indicating the ON state, and the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom.
  • the period between the broken lines is 1H.
  • the polarity of the data signal written to the pixel Pk is inverted every frame and every line.
  • the scanning signal from the scanning signal line Gmk is generated so as to have a signal width longer than the length of, for example, 1H with a delay of 1H for each line.
  • the scanning signal from the scanning signal line Gm1 (or Gm2) is turned on from time t0 to t1 (or from t1 to t2), the TFTs 15a and 15b of the pixel P1 (or P2) are turned on (conductive).
  • the data signal from the source signal line SL is applied to the sub-pixel electrodes 11a and 11b and the auxiliary capacitance electrodes 12a and 12b (see FIG. 2) of the pixel P1 (or P2).
  • the voltages of the sub-pixel electrodes 11a and 11b become the same level as the voltage of the source signal line SL until the time t2 (or until t3).
  • This voltage is a voltage applied to the liquid crystal capacitors Clc1 and Clc2.
  • the voltage level of the subpixel electrode 11b is not shown.
  • the voltage waveform of the subpixel electrode 11a of the pixel P1 is similar to that obtained by inverting the polarity with respect to Vcom after one frame and shifting the voltage waveform of the subpixel electrode 11a of the pixel P2 shown in FIG.
  • the TFTs 15a and 15b of the pixel P1 (or P2) are turned off (non-conducting state).
  • the voltage level of the subpixel electrodes 11a and 11b slightly decreases due to the so-called pull-in phenomenon (feedthrough) due to the parasitic capacitance Cgd.
  • the liquid crystal capacitance Clc1 is affected after being influenced by the pull-in phenomenon.
  • the average voltage applied to Clc2 is adjusted to Vcom.
  • the counter voltage adjusted in this way is referred to as an optimal counter voltage.
  • the discharge signal from the discharge signal line Gs1 (or Gs2) for turning on the TFT 14 of the pixel P1 (or P2) does not overlap the scan signal from the scan signal line Gm1 (or Gm2). is there.
  • the discharge signal lines Gs0, Gs1, and Gs3 are connected to the scanning signal lines Gm2, Gm3, and Gm4, respectively, behind the two lines (Gm3 and Gm4 are not shown) (see FIG. 1).
  • the discharge signal is delayed by 2H from the scanning signal.
  • the discharge capacitor Cdc shown in FIG. 2 is connected in parallel to the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2.
  • the charge accumulated in the discharge capacitor Cdc is accumulated one frame before, and the polarity is opposite to that of the charges accumulated in the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2. Therefore, positive charge (or negative charge) is transferred from the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2 to the discharge capacitor Cdc from time t3 to t4 (or from 4 to t5). As a result, the absolute value of the voltage applied to the liquid crystal capacitor Clc2 decreases.
  • the absolute value of the voltage applied to the liquid crystal capacitor Clc2 is smaller than the absolute value of the voltage applied to the liquid crystal capacitor Clc1, There is an effect that the viewing angle dependency of the gamma characteristic is improved.
  • the subpixel electrode 11a of the subpixel SP1 of the pixel P1 receives from the parasitic capacitance Csp existing between the subpixel electrode 11a and the discharge signal line Gs0 (or Gs1).
  • the discharge signal from the discharge signal line Gs0 rises 1H earlier than the rise time of the discharge signal from the discharge signal line Gs1, and falls at time t3.
  • the sub-pixel electrode 11a is connected to the source signal line SL by the TFT 15a. It is in a low impedance state.
  • the voltage of the sub-pixel electrode 11a of the pixel P1 (or P2) is affected by being pushed up or pushed down from the discharge signal line Gs0 (or Gs1) via the parasitic capacitance Csp.
  • the voltage of the subpixel electrode 11a of the pixel P1 (or P2) is the liquid crystal capacitance Clc1 and the auxiliary capacitance.
  • the voltage is held by Ccs1, and the voltage is likely to fluctuate due to the movement of charges between the outside.
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is not easily affected by the rising edge at the leading edge of the discharge signal, whereas at the time t3 (or t4), the voltage level of the pixel P1 (or P2).
  • the voltage level of the sub-pixel electrode 11a is pushed down due to the falling edge at the trailing edge of the discharge signal.
  • the optimum counter voltage for the subpixel electrode 11a of the subpixel SP1 is the actual counter voltage Vcom.
  • a phenomenon in which the voltage is shifted in a lower direction (counter voltage shift) occurs.
  • a counter voltage shift occurs, a DC voltage is applied to the liquid crystal capacitance Clc1, so that so-called image sticking or flicker occurs.
  • the subpixel electrode 11b of the subpixel SP2 of the pixel P1 (or P2) is discharged via the parasitic capacitance Cgp existing between the discharge signal line Gs1 (or Gs2). Since the influences of the push-up and push-down are almost equal from the signal line Gs1 (or Gs2), these influences are offset and no problem occurs.
  • the discharge signal is delayed 3H or more from the scan signal for any line, or the signal width of the scan signal and the discharge signal is made shorter than 1H
  • the discharge signal from the discharge signal line Gs0 (or Gs1) may not be overlapped with the scan signal from the scan signal line Gm1 (or Gm2).
  • the discharge signal line Gs of each line is connected to the scanning signal line Gm that is behind 2 lines to be scanned after 2H, and scanning is performed.
  • the discharge signal line Gs of each line is placed behind the M + 2 line or further behind it. It may be connected to the scanning signal line Gm.
  • FIGS. 6A and 6B are timing charts showing a time change of a signal applied to each signal line and a voltage of the sub-pixel electrode 11a in the liquid crystal display device according to the first embodiment.
  • the horizontal axis is the same time axis
  • the vertical axis is the discharge signal line Gs0 of the 0th line and the scanning signal of the 1st line from the top of the figure.
  • the signal level is represented by a positive pulse indicating the ON state
  • the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom.
  • the period between the broken lines is 1H.
  • the signal width of the scanning signal and the discharge signal is less than 1H
  • the signal width of the scanning signal and the discharge signal is longer than 1H and less than 2H.
  • the point that the scanning signal from the scanning signal line Gmk is delayed by 1H for each line and the leading edge (rising edge in FIGS. 6A and 6B) of the discharging signal from the discharging signal line Gsk-1 are the scanning signal.
  • 6A and 6B are common to the point delayed by a time (corresponding to a predetermined time) Td beyond the trailing edge of the scanning signal from the line Gmk (falling in FIGS. 6A and 6B). The same applies to the case where the signal width of the scanning signal and the discharge signal is longer than 2H.
  • the discharge signal lines Gs0, Gs1, and Gs3 are connected to the scanning signal lines Gm2, Gm3, and Gm4, respectively, behind the two lines, and the discharge signal is delayed by 2H from the scanning signal for any line.
  • the scanning signal from the scanning signal line Gm1 (or Gm2) rises from time t1 to time t2 (or from time t2 to time t3), and after the TFTs 15a and 15b are turned on, rises at time t2 (or time t3).
  • the voltage level of the subpixel electrode 11a slightly decreases due to the influence of the pull-in phenomenon (feedthrough).
  • the discharge signal from the discharge signal line Gs0 rises after a delay of Td or more, and the discharge signal falls at time t3 (or t4).
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1). The voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
  • the signal width of the scanning signal and the discharge signal is shorter than the length of 1H, and therefore the signal width of FIG. 5 is longer than the length of 1H.
  • the length of Td is preferably about 2 ⁇ s, as will be described in the second embodiment to be described later, but even if it is 2 ⁇ s or less, the effect of the present invention is not lost.
  • the discharge signal lines Gs0, Gs1, and Gs3 are connected to the scanning signal lines Gm2, Gm3, and Gm4 behind the three lines, and the discharge signal is delayed by 3H from the scanning signal for any line.
  • the scanning signal from the scanning signal line Gm1 (or Gm2) rises from time t0 to t1 (or from time t1 to t2), and after the TFTs 15a and 15b are turned on, rises at time t2 (or t3).
  • the voltage level of the subpixel electrode 11a slightly decreases due to the influence of the pull-in phenomenon (feedthrough).
  • the discharge signal from the discharge signal line Gs0 rises after a delay of Td or more, and the discharge signal falls at time t4 (or t5).
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1). The voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
  • the signal width of the scanning signal and the discharge signal is longer than the length of 1H and shorter than the length of 2H, but in the case of FIG. Since the delay of the discharge signal with respect to the scanning signal is increased by 1H as compared with the case of FIG. 5, the effect of preventing the counter voltage deviation by minimizing the delay of the discharge signal is obtained.
  • the pixels P arranged in a matrix are defined including the electrode pairs of the counter electrodes 21 and the sub-pixel electrodes 11 a and 11 b that are opposed to each other with the liquid crystal layer 3 interposed therebetween.
  • a TFT 15a for applying a data signal to the subpixel electrodes 11a and 11b included in the first subpixel SP1 and the second subpixel SP2, respectively.
  • a scanning signal is applied to the gate electrode of 15b from the scanning signal line Gm for each row (that is, for each line) of the matrix.
  • a discharge capacitor electrode 13 is connected to the subpixel electrode 11b of the second subpixel SP2 via a TFT 14, and a discharge capacitor counter electrode 23 connected to the potential of the counter electrode 21 is opposed to the discharge capacitor electrode 13. Yes.
  • the signal width of the scanning signal is within a range from M times (M is 0 or 1) to M + 1 times the length of 1H, and the discharge signal line Gs for applying the discharge signal for each line has an N horizontal scanning period.
  • the scanning signal line Gm behind the N line to be scanned later (N is M + 2, that is, 2 or 3) is connected by the inter-signal connection line Wsm.
  • the signal Since the signal is applied, the rise and fall of the discharge signal of the previous line with respect to the voltage applied to the liquid crystal layer 3 by at least the first subpixel SP1 and the second subpixel SP2 included in the pixels P of each line. Offsets the impact of. Accordingly, it is possible to prevent the counter voltage optimum for the counter electrode 21 facing the sub-pixel electrodes 11a and 11b defining the pixel P from deviating from the preset counter voltage.
  • the arrangement direction of the first subpixel SP1 and the second subpixel SP2 is the direction intersecting the discharge signal line Gs, that is, the row direction, and the pixels P
  • the discharge signal line Gs is disposed between the adjacent subpixels SP1 and SP2 in P
  • the scanning signal line is disposed between the first subpixel SP1 and the second subpixel SP2 in the pixel P. . Therefore, it is possible to suppress signal leakage between the discharge signal line Gs and the scanning signal line Gm, and the manufacturing yield of the liquid crystal panel 100a is improved.
  • the configuration described above increases the parasitic capacitance Csp between the discharge signal line Gs and the first subpixel SP1, but in such a case, the effect of preventing the counter voltage deviation is exhibited.
  • the polarity of the data signal applied to each pixel P is inverted every frame, so that the voltage of the subpixel electrode 11b of the second subpixel SP2 is effective when the TFT 14 is turned on. It is possible to change so that the contrast between the two sub-pixels increases.
  • the liquid crystal capacitors Clc1 and Clc2 formed by the subpixel electrodes 11a and 11b and the counter electrode 21 of the first subpixel SP1 and the second subpixel SP2 are formed by the auxiliary capacitor electrode 12a and the auxiliary capacitor counter electrode 22a. Since the auxiliary capacitance Ccs1 and the auxiliary capacitance Ccs2 formed by the auxiliary capacitance electrode 12b and the auxiliary capacitance counter electrode 22b are connected in parallel, they are applied to the liquid crystal layer 3 by the first subpixel SP1 and the second subpixel SP2. It is possible to keep the voltage to be stable for at least one water frame period. As described above, with the configuration in which the optimum counter voltage can be set stably, it is possible to highlight the effect of preventing the counter voltage deviation.
  • the scanning signal line Gm and the inter-signal connection line Wsm are wired to the edge 101a on one side of the liquid crystal panel 100a, and the inter-signal wiring Wsm is N ⁇ at the edge 101a.
  • the first embodiment is a form in which the signal widths of the scanning signal and the discharge signal are different from the length of 1H, whereas the first modification of the first embodiment is a signal width of the scanning signal and the discharge signal. Is a length of approximately 1H.
  • the first modification presents an effective solution when the effect of the present invention is diminished because Td shown in FIGS. 6A and 6B of the first embodiment is shorter than a predetermined time.
  • FIG. 7 is an explanatory diagram illustrating a connection example of the inter-signal connection line Wsm in the liquid crystal panel according to the first modification of the first embodiment
  • FIG. 8 scans with the liquid crystal panel according to the first modification of the first embodiment. It is a timing diagram which shows the time change of a signal and a discharge signal.
  • the liquid crystal panel according to the first modification is not illustrated because the connection destination of the inter-signal connection line Wsm is different from the liquid crystal panel 100a according to the first embodiment.
  • the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted, and the components different from those in the first embodiment will be described.
  • the pixel P of the nth line (n is a natural number), the scanning signal line Gm of the nth line, and the discharge signal line Gs of the nth line are represented by Pn, Gm_n, and Gs_n.
  • the symbols of the subpixels SP1 and SP2 and the symbols of the TFTs 15a, 15b, and 14 are displayed only for the pixel Pn on the nth line.
  • the TFTs 15a, 15b, and 14 are represented by ellipses filled in black for simplicity.
  • the discharge signal lines Gs_n, Gs_n + 1, and Gs_n + 2 are respectively connected to scanning signal lines Gm_n + 3, Gm_n + 4, and Gm_n + 5 that are scanned after three horizontal scanning periods by an inter-signal connection line Wsm. The same applies to the discharge signal lines Gs_n + 3, Gs_n + 4, and Gs_n + 5 whose connection destinations are not shown.
  • the horizontal axis is the same time axis, and the vertical axis indicates the scanning signal line Gm_n and the discharge signal line Gs_n of the nth line from the top of the figure.
  • the signal level represents the ON state with a positive pulse.
  • the period between the broken lines is 1H.
  • the signal widths of the scanning signal and the discharge signal are both approximately 1H.
  • the scanning signal is generated so as to be delayed by 1H for each line.
  • the discharge signal is delayed by 3H from the scanning signal in any line in FIG. 8 due to the connection shown in FIG.
  • the scanning signal from the scanning signal line Gm_n + 1 rises at the time t1 (or time t2, t3) and turns on the TFTs 15a and 15b and then falls at the time t2 (or t3, t4)
  • the voltage level of the subpixel electrode 11a slightly decreases due to the influence of the pull-in phenomenon (feedthrough).
  • the discharge signal from the discharge signal line Gs_n rises with a delay of 1H, and the discharge signal falls at time t4 (or t5, t6).
  • the voltage level of the sub-pixel electrode 11a of the pixel Pn + 1 is almost free from the effect of the rise and fall caused by the rising and falling of the discharge signal from the discharge signal line Gs_n (or Gs_n + 1, Gs_n + 2). Since it is received equally, it is maintained at substantially the same voltage as when it was not affected at all by these discharge signals, and the counter voltage deviation is prevented.
  • the discharge signal line Gs of each line is set. Connected to the scanning signal line Gm that is scanned 3 lines after 3H and the signal width of the scanning signal and the discharge signal is M + 1 times the length of 1H (M is an integer of 0 or more), a length obtained by subtracting a predetermined time. If it is longer than this and shorter than M + 1 times the length of 1H, the discharge signal line Gs of each line may be connected to the scanning signal line Gm behind the M + 3 line or further behind. Note that the difference in the configuration of the first modification with respect to the configuration of the first embodiment can be applied to other modifications and other embodiments described later.
  • the signal width of the scanning signal and the discharge signal is longer than the length obtained by subtracting the predetermined time Td from M + 1 times the length of 1H (M is an integer of 0 or more) and 1H.
  • the discharge signal line Gs is shorter than M + 1 times the length, and the discharge signal line Gs is connected to the scanning signal line Gm of the row scanned after the L horizontal scanning period (L is M + 3 or more, that is, 3 or more) by the inter-signal connection line Wsm.
  • L is M + 3 or more, that is, 3 or more
  • the discharge signal is applied to the gate electrode of the TFT 14 on the previous line within a predetermined time from when the data signal is no longer applied to the subpixel electrodes 11a and 11b of the pixel SP1 and the second subpixel SP2. This can be avoided, and the counter voltage deviation is prevented.
  • the first embodiment is a mode in which the auxiliary capacity counter electrodes 22a and 22b and the discharge capacity counter electrode 23 are connected to the potential of the counter electrode 21, whereas the second modification of the first embodiment is the auxiliary capacity counter electrode 22a. , 22b and the discharge capacitor counter electrode 23 are connected to a predetermined potential different from the potential of the counter electrode 21.
  • FIG. 9 is a block diagram illustrating a configuration example of a liquid crystal display device according to the second modification of the first embodiment
  • FIG. 10 illustrates a configuration in which the pixels P are defined by the liquid crystal panel according to the second modification of the first embodiment. It is explanatory drawing which shows this typically.
  • the liquid crystal display device according to the second modification includes a liquid crystal panel 100b, a gate driver GDa, a source driver SDa, a display control circuit 4b that controls display by the liquid crystal panel 100b using the gate driver GDa and the source driver SDa, A storage capacitor voltage main line CSL for relaying a voltage applied from the display control circuit 4b to the liquid crystal panel 100b is provided.
  • the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted, and the components different from those in the first embodiment will be described.
  • the liquid crystal panel 100b further includes auxiliary capacitance voltage lines CS1 and CS2 arranged so as to linearly cross both vertical ends of the pixel P in the horizontal direction as compared with the liquid crystal panel 100a of the first embodiment.
  • Each of the storage capacitor voltage lines CS1 and CS2 is connected to the storage capacitor voltage main line CSL outside the liquid crystal panel 100b, and is connected to the storage capacitor counter electrodes 22a and 22b inside the liquid crystal panel 100b (FIG. 10). reference).
  • the auxiliary capacitance voltage line CS ⁇ b> 2 is further connected to the discharge capacitance counter electrode 23.
  • the auxiliary capacitance voltage line CS2 is connected to the auxiliary capacitance voltage main line CSL outside the liquid crystal panel 100b.
  • the auxiliary capacitance voltage main line CSL may be arranged in the liquid crystal panel 100b.
  • the inter-signal connection lines Wsm for connecting each discharge signal line Gs and the scanning signal line Gm behind two lines scanned after two horizontal scanning periods are separately provided at one side edge 101b of the liquid crystal panel 100b. Wired.
  • the edge portion 101b is also wired with scanning signal lines Gm extending from the display area and storage capacitor voltage lines CS1 and CS2.
  • the inter-signal connection line Wsm intersects with one scanning signal line Gm at the end 101b as in the case of the first embodiment.
  • the display control circuit 4b Compared to the display control circuit 4a in the first embodiment, the display control circuit 4b generates an auxiliary capacitance voltage generation circuit 44 that generates a predetermined voltage to be applied to the auxiliary capacitance voltage lines CS1 and CS2 via the auxiliary capacitance voltage main line CSL. It has further.
  • the voltages applied to the auxiliary capacitance voltage lines CS1 and CS2 may be the same or different.
  • the auxiliary capacitors Ccs1 and Ccs2 are connected in parallel to the liquid crystal capacitors Clc1 and Clc2, respectively, to store charges, and the positive charge (moved from the liquid crystal capacitors Clc2 and auxiliary capacitors Ccs2 to the discharge capacitor Cdc when the TFT 14 is turned on) It is clear that there is no difference in the amount of (or negative charge).
  • FIG. 11 is an explanatory diagram schematically illustrating a configuration in which the pixels P are defined in the liquid crystal panel according to the third modification of the first embodiment.
  • Cdc2 is connected.
  • the difference between the liquid crystal panel in the third modification and the liquid crystal panel 100a in the first embodiment is only the presence or absence of the discharge capacity Cdc2.
  • symbol is attached
  • a change in voltage applied to the subpixel electrodes 11a and 11b when the TFT 14 is turned on will be described.
  • the absolute value of the voltage applied to the liquid crystal capacitor Clc2 is It has been explained that the absolute value of the voltage applied to the liquid crystal capacitor Clc1 does not change while it decreases. Further, the voltage of the discharge capacitor electrode 13 immediately before the TFT 14 was turned on was the voltage of the sub-pixel electrode 11b one frame before.
  • the voltage of the discharge capacitor electrode 13 immediately before the TFT 14 is turned on is different from the voltage of the sub-pixel electrode 11b one frame before, and the TFT 14 There is a difference that the absolute value of the voltage applied to the liquid crystal capacitance Clc1 also changes when turned on.
  • the capacitances of the liquid crystal capacitors Clc1, Clc2, auxiliary capacitors Ccs1, Ccs2, discharge capacitor Cdc, and second discharge capacitor Cdc2 are CLC, CCS, CDC, and CDC2.
  • the voltages of the sub-pixel electrodes 11a and 11b of the pixel P1 at the time t1 before the TFTs 15a and 15b are turned on by the scanning signal from the scanning signal line Gm1 and the data signal is applied.
  • V1 and V2 the voltage of the sub-pixel electrodes 11a and 11b of the pixel P1 at time t2 when the data signal is applied is set to V3.
  • the polarity of the voltage V3 is opposite to the polarity of the voltages V1 and V2.
  • the voltage of the discharge capacitor electrode 13 at time t1 is maintained at V2 which is the same as the voltage of the subpixel electrode 11b since the TFT 14 was turned on / off one frame before.
  • Vdc V2 + (V3-V1) ⁇ CDC2 / (CDC + CDC2) (1)
  • the polarity of the first term V2 is opposite to that of the second term (V3-V1).
  • the polarity of Vdc is opposite to the polarity of V3. (That is, the same polarity as V2) is preferable.
  • the size of CDC2 / (CDC + CDC2) is appropriately reduced so as to have such a polarity relationship.
  • the voltage Vdc is a voltage of a series circuit in which the second discharge capacitor Cdc2 is connected in series to a circuit in which the liquid crystal capacitor Clc1 and the auxiliary capacitor Ccs1 are connected in parallel, and a parallel circuit in which the discharge capacitor Cdc is connected in parallel.
  • V4 V3 + ⁇ V ⁇ CDC2 / (CLC + CCS + CDC2) (2)
  • the voltage of the sub-pixel electrode 11b after the positive charge (or negative charge) has moved from the liquid crystal capacitor Clc2 and the auxiliary capacitor Ccs2 to the parallel circuit surely decreases (or increases), so that the TFT 14 is turned on.
  • the voltage change generated in the sub-pixel electrodes 11a and 11b has the opposite polarity.
  • the absolute value of the voltage applied to the liquid crystal capacitor Clc2 becomes smaller than the absolute value of the voltage applied to the liquid crystal capacitor Clc1, and the effect of improving the viewing angle dependency of the gamma characteristic is obtained.
  • the timing indicating the time change of the signal applied to each signal line and the voltage of the subpixel electrode 11a in Modification 3 is the same as that shown in FIGS. 6A and 6B of the first embodiment. Note that the difference in the configuration of the present modification 3 with respect to the configuration of the first embodiment can be applied to the above-described modification 1, the modification 2, and other embodiments described later.
  • the TFT 14 when the TFT 14 is turned on, a part of the electric charge accumulated in the second subpixel SP2 is changed to the subpixel electrode 11a and the discharge capacitor electrode 13 of the first subpixel SP1, respectively. It moves to the first sub-pixel SP1 through the second discharge capacitor Cdc2 formed by the electrode pair having the electrodes connected to. Accordingly, it is possible to change the voltages of the subpixel electrode 11a of the first subpixel SP1 and the subpixel electrode 11b of the second subpixel SP2 with opposite polarities. Thus, even when the voltage of the subpixel electrodes 11a and 11b changes with the reverse polarity when the discharge signal is turned on, the effect of preventing the counter voltage deviation is not impaired.
  • Embodiment 2 In the first embodiment, the same data signal is applied to the sub-pixel electrodes 11a and 11b via the TFTs 15a and 15b from the source signal line SL arranged for each column of the matrix. In the second embodiment, different data signals are alternately applied to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b from the two source signal lines SL1 and SL2 arranged for each column of the matrix. It is a form.
  • FIG. 12 is a block diagram showing a configuration example of the liquid crystal display device according to Embodiment 2 of the present invention.
  • the liquid crystal display device according to the second embodiment includes a liquid crystal panel 100c, a gate driver GDb, a source driver SDb, and a display control circuit 4c that controls display by the liquid crystal panel 100c using the gate driver GDb and the source driver SDb.
  • a display control circuit 4c that controls display by the liquid crystal panel 100c using the gate driver GDb and the source driver SDb.
  • the source signal line arranged in the vertical direction on one side of the pixel P is SL1, and is arranged in the vertical direction on the other side of the pixel P.
  • the source signal line SL2 is further provided.
  • inter-signal connection lines Wsm for connecting each of the discharge signal lines Gs and the scanning signal line Gm behind the four lines scanned after two horizontal scanning periods are individually wired. has been.
  • the inter-signal connection line Wsm intersects the three scanning signal lines Gm at the end 101c.
  • the source signal control circuit 41b controls the two source signal lines SL1 and SL2 for each column of the matrix using the source driver SDb.
  • the difference is that the scanning signal control circuit 42b simultaneously controls the scanning signal lines Gm and Gm of two adjacent rows using the gate driver GDb.
  • FIG. 13 is an explanatory diagram showing a connection relationship between the pixel P and the source signal line SL1 or SL2. Since the parasitic capacitance associated with the pixel P is the same as that shown in FIG. 4 of the first embodiment, the description thereof is omitted.
  • the source electrodes of the TFTs 15a and 15b of the pixels P1, 3, 5,... Are connected to the source signal line SL1.
  • the source electrodes of the TFTs 15a and 15b of the pixels P2, 4, 6,... are connected to the source signal line SL2. That is, different data signals are alternately applied from the source signal lines SL1 and SL2 to the subpixel electrodes 11a and 11b via the TFTs 15a and 15b.
  • this configuration by simultaneously turning on the scanning signals from the scanning signal lines Gm1 and Gm2, it is possible to simultaneously scan two lines including the pixels P1 and P2 within 1H (horizontal scanning period).
  • the discharge signals from the discharge signal lines Gs1 and Gs2 are simultaneously turned on, but these discharge signals are prevented from overlapping with the scan signals from the scan signal lines Gm1 and Gm2. What is necessary is the same as in the first embodiment.
  • the subpixel electrodes 11b of the subpixels SP2 of the pixels P1 and P2 are connected to the discharge signal lines Gs1 and Gs2 via the parasitic capacitance Cgp existing between the subpixel electrodes 11b and Gs2. Since the influence of the push-up and push-down is substantially equal from Gs2, there is basically no counter voltage shift for the second subpixel SP2 of the pixels P1 and P2.
  • a counter voltage shift may occur in the configurations of the inventions described in Non-Patent Document 1 and Patent Document 1.
  • the discharge signal affected by the first subpixel SP1 is affected by the first and second lines while the scanning signal is the same. Because of the difference, the counter voltage shift is likely to occur significantly in the first subpixel SP1 in the first line. As a result, white horizontal stripes are visually recognized every two lines on the display screen.
  • 14A and 14B are timing charts showing time changes of signals applied to the signal lines and voltages of the sub-pixel electrodes 11a in the liquid crystal display device according to the second embodiment.
  • the horizontal axis is the same time axis
  • the vertical axis indicates the discharge signal line Gs0 for the 0th line and the scanning signal for the 1st line from the top of the figure.
  • the signal level is represented by a positive pulse indicating the ON state
  • the voltage level is represented as a potential difference with respect to the potential of the counter electrode 21, that is, the counter voltage Vcom.
  • the period between the broken lines is 1H.
  • the signal width of the scanning signal and the discharge signal is less than 1H
  • the signal width of the scanning signal and the discharge signal is longer than 1H and less than 2H.
  • the scanning signal line Gmk (k is an integer of 0 or more) is turned on simultaneously for two lines, the scanning signal and the discharge signal are turned on with a delay of 1H every two lines, and the discharge signal line Gsk ⁇
  • the leading edge of the discharge signal from 1 is delayed by Td or more than the trailing edge of the scanning signal from the scanning signal line Gmk (falling edge in FIGS. 14A and 14B).
  • 14A and 14B are common. The same applies to the case where the signal width of the scanning signal and the discharge signal is longer than 2H.
  • the voltage level of the sub-pixel electrode 11a of the pixel P1 (or P2) is substantially equally affected by the push-up and push-down caused by the rising and falling of the discharge signal from the discharge signal line Gs0 (or Gs1).
  • the voltage is maintained at substantially the same voltage as when it was not affected at all by the discharge signal.
  • FIG. 15 is a graph showing the relationship between the delay time of the discharge signal and the optimum counter voltage
  • FIG. 16 is an explanatory diagram for explaining the presence or absence of a horizontal stripe caused by the counter voltage deviation.
  • the horizontal axis in FIG. 15 represents the delay time ( ⁇ s) of the leading edge of the discharge signal one line before the trailing edge of the scanning signal
  • the vertical axis represents the optimum counter voltage (V).
  • the liquid crystal display device used for the actual measurement was measured for the case of full HD, frame rate of 120 Hz, and displayed gradation of 64/255.
  • a solid line represents the optimum counter voltage for the subpixel SP1 of the pixel P1
  • a broken line represents the optimum counter voltage for the subpixel SP1 of the pixel P2 shown for comparison. Note that when the value of Td is negative, it indicates that the rise of the discharge signal of the pixel P0 precedes the fall of the scan signal of the pixel P1.
  • the discharge signal for the pixel P0 rises with a delay of Td or more from the fall of the scanning signal for the pixel P1, and the discharge signal for the pixel P1 with a delay of 1H + Td or more after the fall of the scanning signal for the pixel P2. stand up.
  • the sub-pixel electrode 11a of the sub-pixel SP1 of the pixel P2 basically does not cause a counter-voltage shift, and the optimum counter-voltage is constant at about 6.4 V (see the broken line in FIG. 15).
  • the optimum counter voltage is Varies with 5.05V, 5.12V, 5.60V, 6.17V, and 6.42V. That is, it can be said that the counter voltage deviation still occurs when Td is 0 ⁇ s, and that the counter voltage deviation is eliminated if Td is secured to 1.5 ⁇ s or more. Note that if the value of Td that can prevent the counter voltage deviation differs depending on the position on the display screen, the maximum Td may be adopted.
  • the upper part of the figure shows the display screen of the liquid crystal panel 100c when the counter voltage deviation occurs
  • the lower part shows the display screen of the liquid crystal panel 100c when the counter voltage deviation does not occur. Since the luminance change of the pixel P with respect to the gradation change is non-linear, it is known that the luminance of the pixel P tends to shift to a brighter side than the ideal luminance when a counter voltage shift occurs. ing. For this reason, when a uniform halftone screen is displayed, a white horizontal stripe is visually recognized every two lines on the display screen (see the upper diagram). On the other hand, when the counter voltage deviation does not occur, white horizontal stripes are not visually recognized on the display screen (see the lower diagram).
  • the signal width of the scanning signal is in a range from M times (M is 0 or 1) to M + 1 times the length of 1H, and the discharge signal is applied to each line.
  • the discharge signal line Gs is connected by the inter-signal connection line Wsm and the scanning signal line Gm behind the 2N lines that are scanned after N horizontal scanning periods (N is M + 2, that is, 2 or 3).
  • the signal Since the signal is applied, the rise and fall of the discharge signal of the previous line with respect to the voltage applied to the liquid crystal layer 3 by at least the first subpixel SP1 and the second subpixel SP2 included in the pixels P of each line. Offsets the impact of. Accordingly, it is possible to prevent the counter voltage optimum for the counter electrode 21 facing the sub-pixel electrodes 11a and 11b defining the pixel P from deviating from the preset counter voltage.
  • data signals alternately different for each line from the two source signal lines SL1 and SL2 arranged for each column of the matrix are supplied to the first subpixel SP1 via the TFTs 15a and 15b, respectively.
  • the scanning signals of two adjacent lines are simultaneously turned on. Therefore, while it becomes possible to scan two lines within one horizontal scanning period, a counter voltage shift is likely to occur in the sub-pixel SP1 of the pixel P of the first line among the two lines scanned simultaneously. However, it is possible to prevent the counter voltage deviation.
  • the second embodiment is a form in which the signal width of the scanning signal and the discharge signal is different from an integral multiple of the length of 1H, whereas the modification 4 of the second embodiment is the same as the scanning signal and the discharge signal.
  • the signal width of the signal is approximately 1H.
  • the fourth modification presents an effective solution when the effect of the present invention is diminished because Td shown in FIGS. 14A and 14B of the second embodiment is shorter than a predetermined time.
  • FIG. 17 is an explanatory diagram illustrating a connection example of the inter-signal connection line Wsm in the liquid crystal panel according to the fourth modification of the second embodiment
  • FIG. 18 illustrates scanning with the liquid crystal panel according to the fourth modification of the second embodiment. It is a timing diagram which shows the time change of a signal and a discharge signal.
  • the liquid crystal panel in the present modification 4 is different from the liquid crystal panel 100c of the second embodiment only in the connection destination of the inter-signal connection line Wsm.
  • the same reference numerals are given to the same components as those in the second embodiment, and the description thereof will be omitted, and the components different from those in the second embodiment will be described.
  • the pixel P of the nth line (n is a natural number), the scanning signal line Gm of the nth line, and the discharge signal line Gs of the nth line are represented by Pn, Gm_n, and Gs_n.
  • the symbols of the sub-pixels SP1 and SP2 and the symbols of the TFTs 15a, 15b, and 14 are displayed only for the pixel Pn on the n-th line and the pixel Pn + 1 on the n + 1-th line.
  • the TFTs 15a, 15b, and 14 are represented by ellipses filled in black for simplicity.
  • the discharge signal lines Gs_n and Gs_n + 1 are respectively connected to the scanning signal lines Gm_n + 6 and Gm_n + 7, which are scanned six lines after the three horizontal scanning periods, by the inter-signal connection line Wsm.
  • the inter-signal connection line Wsm intersects the five scanning signal lines Gm at the end portion 101c of the liquid crystal panel 100c.
  • the horizontal axis is the same time axis, and the vertical axis indicates the scanning signal line Gm_n and the discharge signal line Gs_n of the nth line from the top of the figure.
  • the signal level represents the ON state with a positive pulse.
  • the period between the broken lines is 1H.
  • the signal widths of the scanning signal and the discharge signal are both approximately 1H.
  • the scanning signal is generated so as to be delayed by 1H every two lines.
  • the connection shown in FIG. 17 causes the discharge signal to be delayed by 3H from the scanning signal in any line in FIG.
  • the scanning signals from the scanning signal lines Gm_n and Gm_n + 1 rise at time t0 (or time t1, t2) and the TFTs 15a and 15b are turned on, time t1 (or t2, t3 ),
  • the voltage level of the sub-pixel electrode 11a slightly decreases due to the influence of the pull-in phenomenon (feedthrough).
  • the discharge signal from the discharge signal lines Gs_n and Gs_n + 1 rises with a delay of 2H, and the discharge signal falls at time t4 (or t5, t6).
  • the voltage level of the subpixel electrode 11a of each of the pixels Pn + 2 and Pn + 3 is increased and decreased by the rising and falling of the discharge signal from the discharge signal lines Gs_n + 1 and Gs_n + 2 (or Gs_n + 3 and Gs_n + 4), respectively. Since it is almost equally affected by the lowering, it is maintained at substantially the same voltage as when it was not affected at all by these discharge signals, and the counter voltage deviation is prevented.
  • the discharge signal line Gs of each line is set. Connected to the scanning signal line Gm behind 6 lines scanned after 3H, the signal width of the scanning signal and the discharge signal is a length obtained by subtracting a predetermined time from M + 1 times the length of 1H (M is an integer of 0 or more). If it is longer than that and shorter than M + 1 times the length of 1H, the discharge signal line Gs of each line may be connected to the scanning signal line Gm behind the M + 6 line or further behind.
  • a predetermined time for example, 2 ⁇ s as described above
  • FIG. 19 is a graph showing the relationship between the connection destination of the discharge signal line Gs_n and the optimum counter voltage difference.
  • the horizontal axis in the figure represents the scanning signal line Gm connected to the discharge signal line Gs_n via the inter-signal connection line Wsm, and the vertical axis represents the optimum counter voltage difference (V).
  • the optimum counter voltage difference shown on the vertical axis is the difference between the optimum counter voltage for the subpixel SP1 of the pixel Pn + 2 and the optimum counter voltage for the subpixel SP1 of the pixel Pn + 3.
  • Pixels Pn + 2 and Pn + 3 are included in two lines scanned simultaneously.
  • the liquid crystal display device used for actual measurement has full HD and a frame rate of 120 Hz, the signal width of the operation signal and the discharge signal is 1H, and the displayed gradation is 64/255. Measured.
  • the discharge signal for the pixel Pn + 1 rises with a delay of 1H from the fall of the scan signal for the pixel Pn + 2
  • the discharge signal for the pixel Pn + 2 rises with a delay of 2H from the fall of the scan signal for the pixel Pn + 3.
  • the subpixel electrode 11a of the subpixel SP1 of the pixel Pn + 3 for example, when Gs_n is connected to Gm_n + 4 (or Gm_n + 6) and Gs_n + 2 is connected to Gm_n + 6 (or Gm_n + 8), basically no counter voltage deviation occurs. .
  • the connection destination of the discharge signal line Gs_n is the scanning signal line Gm_n + 2
  • the above-mentioned optimum counter voltage difference is ⁇ 1.15 V (difference between ⁇ 1.40 V and ⁇ 0.25 V described above), and the discharge signal line Gs_n.
  • the connection destination is the scanning signal line Gm_n + 4
  • the optimum counter voltage difference is reduced to ⁇ 0.25V
  • the connection destination of the discharge signal line Gs_n is the scanning signal line Gm_n + 6, it corresponds to the timing shown in FIG.
  • the counter voltage difference becomes 0 V, and the counter voltage deviation is also eliminated.
  • the signal width of the scanning signal and the discharge signal is longer than the length obtained by subtracting the predetermined time Td from M + 1 times the length of 1H (M is an integer of 0 or more) and 1H.
  • the discharge signal line Gs is shorter than M + 1 times the length, and the discharge signal line Gs is connected to the scanning signal line Gm of the row scanned after the L horizontal scanning period (L is M + 3 or more, that is, 3 or more) by the inter-signal connection line Wsm.
  • L is M + 3 or more, that is, 3 or more
  • the discharge signal is applied to the gate electrode of the TFT 14 on the previous line within a predetermined time from when the data signal is no longer applied to the subpixel electrodes 11a and 11b of the pixel SP1 and the second subpixel SP2. This can be avoided, and the counter voltage deviation is prevented.
  • the scanning signal is applied to each scanning signal line Gm from the edge 101c side where the connecting line Wsm is wired, the inter-signal connecting line Wsm and 2N ⁇ 1 scanning signal lines Gm are connected to the liquid crystal panel 100c. Therefore, it will inevitably intersect at one side edge 101c.
  • the second embodiment and the fourth modification thereof are forms in which a scanning signal is applied to each scanning signal line Gm, and each discharge signal line Gs is connected to each subsequent scanning signal line Gm.
  • the scanning signal lines Gm and Gm are connected to each other and the discharge signal lines Gs and Gs are connected to each other, and the two rows that are scanned simultaneously are connected.
  • a common scanning signal is applied to the scanning signal lines Gm and Gm.
  • FIG. 20 is a block diagram showing a configuration example of a liquid crystal display device according to Modification 5 of Embodiment 2 of the present invention
  • FIG. 21 is a signal connection in the liquid crystal panel according to Modification 5 of Embodiment 2.
  • the liquid crystal display device according to the fifth modification includes a liquid crystal panel 100d, a gate driver GDc, a source driver SDb, and a display control circuit 4d that controls display by the liquid crystal panel 100d using the gate driver GDc and the source driver SDb.
  • the same reference numerals are given to the same configurations as those of the second embodiment and the modification 4 thereof, and most of the description thereof is omitted, and the configurations different from those of the second embodiment and the modification 4 are mainly described. .
  • the scanning signal lines Gm and Gm are connected by the scanning signal connection line Wmm and the discharge signal lines Gs and Gs are connected by the discharge signal connection line Wss for two lines scanned simultaneously.
  • a common scanning signal line Gmm for applying a common scanning signal to the scanning signal connection line Wmm is wired separately to the edge portion 101d on one side of the liquid crystal panel 100d.
  • inter-signal connection lines Wsm that connect each discharge signal connection line Wss to a common scanning signal line Gmm to which a scanning signal is applied after three horizontal scanning periods are wired to the edge portion 101d (see FIG. 5). 21).
  • the scanning signal control circuit 42c controls one common scanning signal line Gmm for every two rows of the matrix using the gate driver GDc. The difference is that.
  • the pixel P of the nth line (n is a natural number), the scanning signal line Gm of the nth line, and the discharge signal line Gs of the nth line are represented by Pn, Gm_n, and Gs_n.
  • a common scanning signal line common to the nth and n + 1th lines is represented by Gmm_n.
  • the description of the reference numerals and the display method of the TFTs 15a, 15b, and 14 are the same as in the case of FIG.
  • the inter-signal connection line Wsm intersects the two common scanning signal lines Gmm at the end 101d of the liquid crystal panel 100d.
  • the scanning signal lines Gm and Gm are connected by the scanning signal connection line Wmm and the discharge signal lines Gs and Gs are connected to each other by the discharge signal connection line for two lines that are scanned simultaneously.
  • Wss is connected, and the edge 101d of the liquid crystal panel 100d is connected between the common scanning signal line Gmm for applying the scanning signal to the scanning signal connection line Wmm, and the discharge signal connection line Wss and the scanning signal connection line Wmm.
  • the inter-signal connection line Wsm to be connected is wired.
  • the inter-signal connection line Wsm intersects with the N ⁇ 1 common scanning signal lines Gmm at the edge portion 101d.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

画素に含まれる副画素電極が対向する対向電極に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能な液晶表示装置を提供する。 マトリックス状に配列された画素Pが、液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有しており、第1及び第2副画素夫々に含まれる副画素電極にソース信号線SLからデータ信号を印加するためのTFTのゲート電極にマトリックスの行毎の走査信号線Gmから走査信号を印加する。第2副画素の副画素電極には他のTFTを介して放電容量電極が接続されている。走査信号の信号幅が1Hの長さのM倍(Mは0又は1)からM+1倍までの範囲内にある場合、放電信号線Gsは、N水平走査期間後(NはM+2、即ち2又は3)に走査される行の走査信号線Gmと信号間接続線Wsmにより接続されている。

Description

液晶表示装置
 本発明は、液晶表示装置に関し、特にガンマ特性の視野角依存性を改善する液晶表示装置に関する。
 液晶表示装置は、高精細、薄型、軽量、及び低消費電力等の優れた特長を有する平面表示装置であり、薄型テレビ、パソコンモニタ、デジタルサイネージ等に幅広く利用される。
 従来、一般的に用いられていたTN(Twisted Nematic )モードの液晶表示装置は、生産性に優れている一方で、画面表示に係る視野角特性に問題があった。例えば表示画面を法線に対して斜め方向から見た場合に、TNモードの液晶表示装置ではコントラスト比が著しく低下すると共に、階調間の輝度差が著しく不明瞭になる。また、表示画面を正面から見ると明るく(又は暗く)見える部分が、法線に対して斜め方向から見ると暗く(又は明るく)見える、いわゆる階調反転現象が観察される場合がある。
 上述の視野角特性の問題を改善する液晶表示装置として、IPS(In-Plan Switching )モード、MVA(Multi domain Vertical Alignment )モード等の表示モードで表示するものがある。これらの液晶表示装置における表示モードを実現する技術は、視野角特性を改善する技術として広く利用されている。
 さて、視野角特性の問題の一つに、表示輝度の階調依存性を表すガンマ特性が表示画面の法線に対する視線の角度に依存する(以下、ガンマ特性の視角依存性という)問題がある。この問題は、表示画面に対する観察方向によって階調表示状態が異なるものであり、観察方向が表示画面の法線に沿う方向の場合と法線に対して斜め方向の場合とで、ガンマ特性が異なって観察されるというものである。
 これに対し、非特許文献1には、ガンマ特性の視角依存性(文献によっては視野角依存性と称される)を改善する液晶表示装置が開示されている。非特許文献1に記載の液晶表示装置は、各画素の夫々が第1及び第2副画素を含んで構成されており、第2副画素に放電容量(Cdown)が設けられている。第1及び第2副画素夫々の副画素電極は、制御電極に走査信号線から走査信号(ゲート信号)が印加されるTFT1及びTFT2を介して、表示画面の垂直方向の画素毎に交互に異なるデータ信号線(ソース信号線)に接続されており、2ラインが同時に走査される。放電容量は、対向電極に対向する放電容量電極がTFT3を介して第2副画素の副画素電極に接続されている。そして、TFT3の制御電極に放電信号を印加するための放電信号線が、2ライン後方の走査信号線に接続されている。
 非特許文献1に記載の液晶表示装置では、各画素について、夫々の画素に対する走査信号より1水平走査期間(1H)だけ遅れた放電信号がTFT3の制御電極に印加される。このように第2副画素の副画素電極及び放電容量電極間を走査信号より1Hだけ遅れた信号に応じて接続することにより、第1及び第2副画素夫々が液晶層に印加する実効電圧を変えることができる。この場合、副画素毎に異なるガンマ特性が調和した状態で各画素が観察されることとなるため、ガンマ特性の視角依存性が改善される。
 また、特許文献1に記載の液晶表示装置は、非特許文献1に記載の液晶表示装置と同様に各画素の夫々が副画素電極を有する第1及び第2副画素を含んで構成されており、第2副画素の副画素電極に第3TFT(上記TFT3に相当)を介して放電容量(Cdown)が接続されている。第1及び第2副画素夫々の副画素電極が第1及び第2TFT(上記TFT1及び2に相当)を介して画素毎に交互に異なるデータ信号線に接続されており、2ラインが同時に走査されるのも非特許文献1の場合と同様である。第1及び第2TFTの制御電極(ゲート)はゲートライン(上記走査信号線に相当)に接続されており、第3TFTの制御電極はチャージコントロールライン(上記放電信号線に相当)に接続されている。
 特許文献1に記載の液晶表示装置では、同時に走査される2ラインについて、ゲートライン同士がゲートコネクションラインを介して接続され、チャージコントロールライン同士がチャージコネクションラインを介して接続されている。これらの接続は液晶パネル内で行われているため、ゲートコネクションライン及びチャージコネクションラインが液晶パネル内で交差している。このチャージコネクションラインは、上記2ラインより1H後に走査される2ラインについてのゲートコネクションラインに接続されている。このような接続により、非特許文献1に記載の液晶表示装置と同様に、各画素に対する走査信号より1Hだけ遅れた信号(放電信号に相当)が第3TFTの制御電極に印加されて第2副画素の副画素電極が放電容量に接続されるため、第2副画素が液晶層に印加する実効電圧が変化する。
 ところで、TFTではゲート-ドレイン間の寄生容量の影響により、ゲートに対する駆動電圧の立ち下がり時にフィードスルー電圧(所謂引き込み電圧)が発生して、ドレインの電圧(即ち副画素電極)が低下することが知られている。この現象に加えて、各副画素電極と放電信号線(又はチャージコントロールライン)との間に存在する他の寄生容量の影響により、特に第1副画素の副画素電極の電圧が、1つ前のラインの放電信号の立ち上がり時及び立ち下がり時に若干上昇及び低下する現象が観測されることがある。例えば走査信号と1つ前のラインの放電信号とで信号の重なりが無い場合、上記立ち上がり時及び立ち下がり時の影響が各副画素電極で適当に相殺されるため、上記現象は観測され難い。
Sang Soo Kim, Bong Hyun You, Jung Hwan Cho, Sung Jae Moon, Brian H. Berkeley and Nam Deog Kim著、「82″Ultra Definition LCD Using New Driving Scheme and Advanced Super PVA Technology」、SID Symposium Digest of Technical Papers、May 2008、Volume39、Issue1、p.196-199
米国特許第8952877号明細書
 しかしながら、非特許文献1及び特許文献1に記載された液晶表示装置では、同時に走査される2ラインにおいて、1ライン目の第1副画素が、1ライン目の走査信号と同じタイミングでオンする1つ前のラインの放電信号の影響を受け、2ライン目の第1副画素が、2ライン目の走査信号の立ち下がりと略同一タイミングで立ち上がる1ライン目の放電信号の影響を受ける。このため、何れの第1副画素にあっても、放電信号の立ち上がり時及び立ち下がり時に夫々発生する副画素電極の電圧の上昇及び低下の影響が十分に相殺されない虞があり、副画素電極が対向する対向電極に最適な対向電圧が、予め設定されている対向電圧からずれる(以下、対向電圧ずれという)という問題があった。
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、画素に含まれる副画素電極が対向する対向電極に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能な液晶表示装置を提供することにある。
 本発明に係る液晶表示装置は、液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有する画素がマトリックス状に配列されており、前記第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子と、該第1及び第2スイッチング素子の制御電極に走査信号をマトリックスの行毎に印加するための走査信号線と、前記第2副画素に含まれる放電容量電極及び所定電位に接続された放電容量対向電極の電極対と、前記第2副画素の副画素電極及び前記放電容量電極間に接続された第3スイッチング素子と、該第3スイッチング素子の制御電極に前記第3スイッチング素子をオンさせる放電信号をマトリックスの行毎に印加するための放電信号線とを備える液晶表示装置において、前記走査信号の信号幅は、1水平走査期間の長さのM倍(Mは0以上の整数)より長く、且つM+1倍より短く、前記放電信号線をN水平走査期間後(NはM+2以上の整数)に走査される行の走査信号線に接続する信号間接続線を備えることを特徴とする。
 本発明に係る液晶表示装置は、前記第1及び第2副画素は、前記放電信号線と交差する方向に配置されており、前記放電信号線は、前記方向に隣り合う画素における隣り合う第1及び第2副画素の間に配置されていることを特徴とする。
 本発明に係る液晶表示装置は、前記第1及び第2副画素に印加されるデータ信号の極性は、1フレーム期間毎に反転することを特徴とする。
 本発明に係る液晶表示装置は、前記走査信号の信号幅は、1水平走査期間の長さのM+1倍から所定時間を減じた長さより長く、前記信号間接続線は、L水平走査期間後(LはM+3以上の整数)に走査される行の走査信号線に接続してあることを特徴とする。
 本発明に係る液晶表示装置は、前記第1及び第2副画素の夫々は、前記副画素電極に接続された補助容量電極及び前記所定電位に接続された補助容量対向電極の電極対を含んで画定されていることを特徴とする。
 本発明に係る液晶表示装置は、前記画素は、前記第1副画素の副画素電極及び前記放電容量電極夫々に接続された電極を有する電極対を含んで画定されていることを特徴とする。
 本発明に係る液晶表示装置は、前記走査信号線及び信号間接続線が縁部に配線された液晶パネルを更に備え、前記信号間接続線は、N-1本の走査信号線と交差することを特徴とする。
 本発明に係る液晶表示装置は、マトリックスの行毎に交互に異なるデータ信号を前記第1及び第2スイッチング素子の一端に印加するための2つのデータ信号線をマトリックスの列毎に更に備え、隣り合う2つの行を同時に走査することを特徴とする。
 本発明に係る液晶表示装置は、前記走査信号線及び信号間接続線が縁部に配線された液晶パネルを更に備え、前記信号間接続線は、2N-1本の走査信号線と交差することを特徴とする。
 本発明に係る液晶表示装置は、前記2つの行について走査信号線同士を接続する走査信号接続線及び放電信号線同士を接続する放電信号接続線と、前記走査信号接続線に前記2つの行に共通の走査信号を印加するための共通走査信号線と、前記信号間接続線及び共通走査信号線が縁部に配線された液晶パネルとを更に備え、前記信号間接続線は、前記2つの行に共通に配線してあり、N-1本の共通走査信号線と交差することを特徴とする。
 本発明にあっては、マトリックス状に配列された画素が、液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有しており、第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子の制御電極にマトリックスの行毎(即ちライン毎)の走査信号線から走査信号を印加する。第2副画素の副画素電極には第3スイッチング素子を介して放電容量電極が接続されており、放電容量電極には所定電位に接続された放電容量対向電極が対向している。走査信号の信号幅が1水平走査期間の長さのM倍(Mは0以上の整数)からM+1倍までの範囲内にあり、放電信号をライン毎に印加するための放電信号線は、N水平走査期間後(NはM+2以上の整数)に走査される行の走査信号線と信号間接続線により接続されている。
 これにより、各ラインの第1及び第2副画素の副画素電極にデータ信号が印加されなくなった時点よりも後に、1つ前のラインの第3スイッチング素子の制御電極に放電信号が印加されるため、各ラインの画素が少なくとも有する第1及び第2副画素により液晶層に印加される電圧について、1つ前のラインの放電信号の立ち上がり及び立ち下がりから受ける影響が相殺される。
 本発明にあっては、第1及び第2副画素の配置方向が、放電信号線と交差する方向であり、隣り合う画素における隣り合う第1及び第2副画素の間に放電信号線が配置されている。
 これにより、各画素と重なる位置に走査信号線を配置した場合は、放電信号線及び走査信号線の間における信号の漏洩が抑制される。
 本発明にあっては、各画素に印加されるデータ信号の極性が1フレーム毎に反転するため、第3スイッチング素子がオンしたときに第2副画素の副画素電極の電圧が効果的に変化して2つの副画素間の明暗差が大きくなる。
 本発明にあっては、走査信号の信号幅が、1水平走査期間の長さのM+1倍(Mは0以上の整数)から所定時間を減じた長さより長く、且つ1水平走査期間の長さのM+1倍よりくしてあり、放電信号線は、L水平走査期間後(LはM+3以上の整数)に走査される行の走査信号線と信号間接続線により接続されている。
 これにより、放電信号線が、L水平走査期間後(Lは上述のNより1つ大きい整数)に走査されるLライン後方の走査信号線と接続されているため、各ラインの第1及び第2副画素の副画素電極にデータ信号が印加されなくなった時点から所定時間以内に、1つ前のラインの第3スイッチング素子の制御電極に放電信号が印加されることが回避される。
 本発明にあっては、画素が有する第1及び第2副画素夫々を画定する電極対に、補助容量電極及び補助容量対向電極の電極対が含まれており、補助容量電極は副画素電極に電気的に接続されており、補助容量対向電極は放電容量対向電極の接続先である所定電位に接続されている。
 これにより、第1及び第2副画素夫々の副画素電極及び対向電極により形成される液晶容量に、補助容量電極及び補助容量対向電極により形成される補助容量が並列に接続されるため、第1及び第2副画素により液晶層に印加される電圧が少なくとも1フレーム期間だけ安定に保持される。
 本発明にあっては、第3スイッチング素子がオンしたときに、第2副画素に蓄積された電荷の一部が、第1副画素の副画素電極及び放電容量電極夫々に接続された電極を有する電極対を介して第1副画素に移動する。
 これにより、第1及び第2副画素夫々の副画素電極の電圧が互いに逆極性で変化する。
 本発明にあっては、液晶パネルの縁部に少なくとも走査信号線及び信号間接続線が配線されており、液晶パネルの縁部にて信号間配線がN-1本の走査信号線と交差する。
 つまり、信号間接続線が、放電信号線とN水平走査期間後に走査されるNライン後方の走査信号線とを1対1に接続するものであるため、液晶パネルの一側方の縁部に信号間接続線が配線されており、且つ同じ一側方から各行の走査信号線夫々に走査信号が印加される場合は、信号間接続線とN-1本の走査信号線とが液晶パネルの一側方の縁部にて必然的に交差する。
 本発明にあっては、マトリックスの列毎に配された2つのデータ信号線からライン毎に交互に異なるデータ信号が、第1及び第2スイッチング素子夫々を介して第1及び第2副画素の副画素電極に印加されており、隣り合う2つのラインの走査信号を同時的にオンするため、1水平走査期間内に2ラインが走査される。
 本発明にあっては、液晶パネルの縁部に走査信号線及び信号間接続線が配線されており、液晶パネルの縁部にて信号間配線が2N-1本の走査信号線と交差する。
 つまり、信号間接続線が、放電信号線と、N水平走査期間後に走査される2Nライン後方の走査信号線とを1対1に接続するものであるため、液晶パネルの一側方の縁部に信号間接続線が配線されており、且つ同じ一側方から各走査信号線夫々に走査信号が印加される場合は、液晶パネルの一側方の縁部にて信号間接続線が2N-1本の走査信号線と必然的に交差する。
 本発明にあっては、同時に走査される2つの行について、走査信号線同士を走査信号接続線で接続すると共に、放電信号線同士を放電信号接続線で接続してあり、液晶パネルの縁部には走査信号接続線に走査信号を印加するための共通走査信号線と、放電信号接続線及び走査信号接続線の間を接続する信号間接続線とが配線されている。そして液晶パネルの縁部にて信号間接続線がN-1本の共通走査信号線と交差する。
 つまり、信号間接続線が、放電信号接続線と、N水平走査期間後に走査される2ライン間を接続する走査信号接続線とを1対1に接続するものであるため、液晶パネルの一側方の縁部に信号間接続線が配線されており、且つ同じ一側方から各共通走査信号線に走査信号が印加される場合は、液晶パネルの一側方の縁部にて信号間接続線がN-1本の共通走査信号線と必然的に交差する。
 本発明によれば、各ラインの第1及び第2副画素の副画素電極にデータ信号が印加されなくなった時点よりも後に、1つ前のラインの第3スイッチング素子に放電信号が印加されるため、各ラインの画素が少なくとも有する第1及び第2副画素により液晶層に印加される電圧について、1つ前のラインの放電信号の立ち上がり及び立ち下がりから受ける影響が相殺される。
 従って、画素に含まれる副画素電極が対向する対向電極に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能となる。
本発明の実施の形態1に係る液晶表示装置の構成例を示すブロック図である。 実施の形態1に係る液晶表示装置で画素を画定する構成を模式的に示す説明図である。 液晶パネルの構成を模式的に示す断面図である。 画素に付随する寄生容量を示す説明図である。 各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。 実施の形態1に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。 実施の形態1に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。 実施の形態1の変形例1に係る液晶パネルで信号間接続線の接続例を示す説明図である。 実施の形態1の変形例1に係る液晶パネルで走査信号及び放電信号の時間変化を示すタイミング図である。 実施の形態1の変形例2に係る液晶表示装置の構成例を示すブロック図である。 実施の形態1の変形例2に係る液晶パネルで画素を画定する構成を模式的に示す説明図である。 実施の形態1の変形例3に係る液晶パネルで画素を画定する構成を模式的に示す説明図である。 本発明の実施の形態2に係る液晶表示装置の構成例を示すブロック図である。 画素とソース信号線との接続関係を示す説明図である。 実施の形態2に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。 実施の形態2に係る液晶表示装置で各信号線に印加される信号及び副画素電極の電圧の時間変化を示すタイミング図である。 放電信号の遅れ時間と最適対向電圧との関係を示すグラフである。 対向電圧ずれにより発生する横スジの有無を説明するための説明図である。 実施の形態2の変形例4に係る液晶パネルで信号間接続線の接続例を示す説明図である。 実施の形態2の変形例4に係る液晶パネルで走査信号及び放電信号の時間変化を示すタイミング図である。 放電信号線の接続先と最適対向電圧差との関係を示すグラフである。 実施の形態2の変形例5に係る液晶表示装置の構成例を示すブロック図である。 実施の形態2の変形例5に係る液晶パネルで信号間接続線の接続例を示す説明図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る液晶表示装置の構成例を示すブロック図であり、図2は、実施の形態1に係る液晶表示装置で画素Pを画定する構成を模式的に示す説明図である。図1に示す液晶表示装置は、後述の電極対を含んで画定される副画素を少なくとも2つ有する画素Pが表示画面の垂直方向(以下、行方向ともいう)及び水平方向(以下、列方向ともいう)にマトリックス状に配列された液晶パネル100aを備える。図1では、行方向に連続する4つの画素P及び該画素Pに係る各信号線を中心に図示してある。以下では、液晶層3を介して対向する電極対以外の電極対が、不図示の絶縁層を介して対向することにより、静電容量(コンデンサ)を形成するものとする。
 図2において、画素Pは、液晶パネル100aの表示画面の垂直方向に二分された副画素SP1(第1副画素に相当)及び副画素SP2(第2副画素に相当)を少なくとも有する。副画素SP1は、液晶層3を介して対向する副画素電極11a及び対向電極21の電極対と、補助容量電極12a及び補助容量対向電極22aの電極対とを含んで画定される。副画素電極11aには、TFT(Thin Film Transistor :第1スイッチング素子に対応)15aのドレイン電極が接続されている。副画素電極11a及び補助容量電極12aは電気的に接続されている。補助容量対向電極22aは対向電極21の電位(所定電位に相当)に接続されている。副画素電極11a及び対向電極21により、液晶容量Clc1が形成される。そして、補助容量電極12a及び補助容量対向電極22aにより、補助容量Ccs1が形成される。
 副画素SP2は、液晶層3を介して対向する副画素電極11b及び対向電極21の電極対と、補助容量電極12b及び補助容量対向電極22bの電極対と、放電容量電極13及び放電容量対向電極23の電極対とを含んで画定される。副画素電極11bには、TFT(第2スイッチング素子に対応)15bのドレイン電極が接続されている。副画素電極11b及び補助容量電極12bは電気的に接続されている。放電容量電極13はTFT(第3スイッチング素子に対応)14を介して副画素電極11bに接続されている。補助容量対向電極22b及び放電容量対向電極23は対向電極21の電位に接続されている。対向電極21は、副画素SP1及びSP2について共通であるが、これに限定されるものではない。副画素電極11b及び対向電極21により、液晶容量Clc2が形成される。補助容量電極12b及び補助容量対向電極22bにより、補助容量Ccs2が形成される。また、放電容量電極13及び放電容量対向電極23により、放電容量Cdcが形成される。 なお、副画素電極11a及び副画素電極11bの大きさの比は、1対1に限定されず、副画素の数は2つに限定されない。
 画素Pの水平方向の一側方には、TFT15a及び15b夫々を介して副画素電極11a及び11bにソース信号(データ信号に相当)を印加するためのソース信号線(データ信号線に相当)SLが垂直方向に直線的に配されている。ソース信号線SLには、TFT15a及び15bのソース電極が接続されている。TFT15a及び15bのゲート電極(制御電極に相当)は、画素Pの中央部を水平方向に横切るように直線的に配された走査信号線Gmに接続されている。TFT14のゲート電極は、垂直方向(行方向)に隣り合う次の行(以下、行をラインともいう)の画素Pとの間を水平方向に横切るように直線的に配された放電信号線Gsに接続されている。走査信号線Gm及び放電信号線Gsは、マトリックスの行方向に行毎に並設されている。各行の走査信号線Gm及び放電信号線Gsが適当に離隔しているため、走査信号線Gm及び放電信号線Gsの間における信号の漏洩が抑制される。
 図1に移って、液晶パネル100aで画素Pが配列された表示領域(図の破線で囲まれた領域)を除く縁部のうち、一側方の縁部101aには、各放電信号線Gs夫々と2水平走査期間後に走査される2ライン後方の走査信号線Gmとを接続する信号間接続線Wsmが各別に配線されている。縁部101aには、また、表示領域から延伸する走査信号線Gmが配線されている。信号間接続線Wsmは、端部101aにて1本の走査信号線Gmと交差している。
 実施の形態1に係る液晶表示装置は、また、走査信号線Gm,Gm,・・Gmに走査信号を印加すると共に、放電信号線Gs,Gs,・・Gsに放電信号を印加するゲートドライバGDaと、ソース信号線SL,SL,・・SLにソース信号を印加するソースドライバSDaと、ゲートドライバGDa及びソースドライバSDaを用いて液晶パネル100aによる表示を制御する表示制御回路4aとを備える。
 表示制御回路4aは、画像を表す画像データを含む画像信号を受け付ける画像信号入力回路40と、画像信号入力回路40によって分離されたクロック信号及び同期信号に基づいてゲートドライバGDa及びソースドライバSDa夫々を制御する走査信号制御回路42a及びソース信号制御回路41aとを有する。
 走査信号制御回路42a及びソース信号制御回路41a夫々は、ゲートドライバGDa及びソースドライバSDaの周期的な動作に必要となるスタート信号、クロック信号、イネーブル信号等の制御信号を生成する。ソース信号制御回路41aは、また、画像信号入力回路40によって分離されたデジタルの画像データをソースドライバSDaへ出力する。
 ゲートドライバGDaは、画像データの1フレーム期間内に、走査信号線Gm,Gm,・・Gmに対して、1水平走査期間毎に順次走査信号を印加する。ソースドライバSDaは、ソース信号制御回路41aから与えられたデジタルの画像データ(直列データ)を1水平走査期間(1H)だけ蓄積して1ライン分の画像を表すアナログのソース信号(並列信号)を生成し、生成したソース信号を列毎のソース信号線SL,SL,・・SLに並列的に印加する。ここでの1ライン分のソース信号は、1水平走査期間毎に更新される。
 走査信号線Gm,Gm,・・Gmの1つに印加された走査信号は、列方向に配列された1ライン分の画素P,P,・・P夫々に含まれるTFT15a,15bのゲート電極に印加される。上記1ライン分の画素P,P,・・P夫々に含まれるTFT14のゲート電極には、放電信号線Gs,Gs,・・Gsから放電信号が印加される。各ラインの走査信号に対して、夫々のラインの放電信号は2水平走査期間だけ遅れている。
 ソース信号線SL,SL,・・SLに印加されたソース信号は、一の走査信号線Gmに走査信号が印加される1水平走査期間に、上記一の走査信号線Gmにゲート電極が接続されたTFT15a及び15b夫々を介して副画素電極11a及び11bに印加されると共に、補助容量電極12a及び12bにも印加される。これにより、副画素SP1及びSP2夫々に形成された液晶容量Clc1及びClc2と、補助容量Ccs1及びCcs2とにソース信号が書き込まれる。このようにして1水平走査期間に1ライン分のソース信号が1ライン分の画素P,P,・・Pに同時的に書き込まれる。副画素SP1及びSP2に書き込まれたソース信号は、夫々の合成容量に変化がない限り1フレーム期間だけ保持される。
 次に、液晶パネル100a及びこれと置き換え得る他の液晶パネルの光学的な構成について説明する。
 図3は、液晶パネル100aの構成を模式的に示す断面図である。液晶パネル100aは、第1ガラス基板(アレイ基板)1及び第2ガラス基板2の間に、液晶層3を介装させて構成されている。第1ガラス基板1及び第2ガラス基板2の対向する一の表面同士の間には、液晶層3に封入される液晶を封止するためのシール材33が、第2ガラス基板2の周縁部に沿って設けられている。
 第1ガラス基板1の一の表面上には、夫々が透明電極からなる副画素電極11a及び11bと、補助容量電極12a及び12bと、補助容量対向電極22a及び22bと、放電容量電極13及び放電容量対向電極23と、TFT14と、TFT15a及び15bとが含まれる層の上に配向膜31が形成されている。第1ガラス基板1の他の表面には、偏光板19が貼り付けられている。第1ガラス基板1の一の表面の一の縁部には、ゲートドライバGDaが表面実装されたフレキシブル基板18が取り付けられている。
 第2ガラス基板2の一の表面上には、透明電極からなる対向電極21と、配向膜32とが積層されて形成されている。特に液晶パネル100aでは、第2ガラス基板2と対向電極21との間にカラーフィルタCFが形成されている。第2ガラス基板2の他の表面には、偏光板29が貼り付けられている。偏光板19と偏光板29とでは、夫々を通過する光の偏光方向(偏光面)が90度異なるようにしてある。バックライト(不図示)は、第1ガラス基板1の他の表面側(偏光板19が貼り付けられている側)に設けられている。
 上述の構成において、例えばノーマリブラック方式の場合、画素Pの副画素電極11a及び11b夫々と対向電極21との間に電圧が印加されない場合、画素Pを透過する光の偏光方向が変化しないため、バックライトから照射されて偏光板19を透過した光は、偏光板29に吸収される。これに対し、画素Pの副画素電極11a及び11b夫々と対向電極21との間に電圧が印加された場合、画素Pを透過する光の偏光方向が電圧の大きさに応じて変化するため、バックライトから照射されて偏光板19を透過した光の偏光方向が電圧の大きさに応じて変化して偏光板29を透過するようになる。これにより、画素Pが表示する画像の明るさが変化する。
 次に、図2では明示的に示さなかった寄生容量について説明する。
 図4は、画素Pに付随する寄生容量を示す説明図である。図4では、後の説明のために、kライン目(kは0以上の整数:以下同様)の画素P、kライン目の走査信号線Gm及びkライン目の放電信号線Gs夫々をPk、Gmk及びGskで表す。どの画素Pkについても寄生容量が同様に付随しているため、ここでは各画素Pkを区別せずに説明する。
 副画素SP1及びSP2の夫々の副画素電極11a及び11bにドレイン電極が接続されたTFT15a及び15bは、ドレイン-ゲート間に寄生容量が存在している。また、TFT15a及び15bのゲート電極に接続されている走査信号線Gmkと副画素電極11a及び11b夫々との間には浮遊容量が存在している。これらドレイン-ゲート間の寄生容量と浮遊容量とは並列容量として作用するため、これらの容量をまとめて寄生容量Cgdとする。
 副画素SP2の副画素電極11bにドレイン電極(又はソース電極)が接続されたTFT14は、ドレイン-ゲート間(又はソース-ゲート間)に寄生容量が存在している。また、TFT14のゲート電極に接続されている放電信号線Gskと、副画素電極11bとの間には浮遊容量が存在している。これらドレイン-ゲート間(又はソース-ゲート間)の寄生容量と浮遊容量とは並列容量として作用するため、これらの容量をまとめて寄生容量Cgpとする。一方、副画素SP1の副画素電極11aと放電信号線Gsk-1との間(例えば画素P1の副画素SP1の副画素電極11aと放電信号線Gs0との間)には浮遊容量が存在している。これを寄生容量Cspとする。
 次に、上述した各寄生容量の影響について、先ず問題がある場合を例に説明する。
 図5は、各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミング図である。図5に示す7つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、0ライン目の放電信号線Gs0、1ライン目の走査信号線Gm1、1ライン目の放電信号線Gs1、2ライン目の走査信号線Gm2及び2ライン目の放電信号線Gs2夫々の信号レベルと、画素P1の副画素SP1及び画素P2の副画素SP1夫々の副画素電極11aの電圧レベルとを表す。信号レベルはオンの状態を正のパルスで表し、電圧レベルは対向電極21の電位、即ち対向電圧Vcomに対する電位差として表す。破線と破線との間の期間は、何れも1Hである。画素Pkに書き込まれるデータ信号の極性は、フレーム毎及びライン毎に反転する。
 走査信号線Gmkからの走査信号は、1ライン毎に1Hずつ遅れて例えば1Hの長さより長い信号幅となるように生成される。時刻t0からt1までの間(又はt1からt2までの間)で走査信号線Gm1(又はGm2)からの走査信号がオンとなった場合、画素P1(又はP2)のTFT15a及び15bがオン(導通状態)となり、ソース信号線SLからのデータ信号が画素P1(又はP2)の副画素電極11a及び11bと補助容量電極12a及び12b(図2参照)とに印加される。これにより、副画素電極11a及び11bの電圧は、時刻t2に至るまでの間(又はt3に至るまでの間)にソース信号線SLの電圧と同じレベルになる。この電圧が、液晶容量Clc1及びClc2に印加される電圧となる。なお、副画素電極11bの電圧レベルについては図示を省略する。画素P1の副画素電極11aの電圧波形は1フレーム後にVcomに対して極性反転し、図5に示す画素P2の副画素電極11aの電圧波形を1Hだけ左シフトしたものと類似する波形となる。
 その後、時刻t2(又はt3)で走査信号線Gm1(又はGm2)からの走査信号がオフとなった場合、画素P1(又はP2)のTFT15a及び15bがオフ(非導通状態)となる。時刻t2(又はt3)では寄生容量Cgdによる所謂引き込み現象(フィードスルー)の影響で、副画素電極11a及び11bの電圧レベルが若干低下する。この場合、副画素電極11a及び11bの電圧レベルは、Vcomに対する極性が正/負何れであるかによって絶対値が小/大に変化するため、引き込み現象の影響を受けた後で、液晶容量Clc1及びClc2に印加される電圧の平均的な電圧がVcomとなるように調整してある。このように調整された対向電圧を最適対向電圧という。
 さて、画素P1(又はP2)のTFT14をオンさせる放電信号線Gs1(又はGs2)からの放電信号は、走査信号線Gm1(又はGm2)からの走査信号に対して重なりがないようにする必要がある。このため、図5では放電信号線Gs0、Gs1及びGs3夫々を2ライン後方の走査信号線Gm2、Gm3及びGm4に接続(Gm3及びGm4は不図示)して(図1参照)、どのラインについても放電信号が走査信号より2Hだけ遅れるようにしてある。この放電信号によりTFT14がオンした場合、図2に示す放電容量Cdcが液晶容量Clc2及び補助容量Ccs2に並列に接続される。
 この場合、放電容量Cdcに蓄積されている電荷は、1フレーム前に蓄積されたものであり、液晶容量Clc2及び補助容量Ccs2に蓄積されている電荷とは極性が逆になっている。このため、時刻t3を経てt4に至るまでの間(又は4を経てt5に至るまでの間)に液晶容量Clc2及び補助容量Ccs2から放電容量Cdcに正の電荷(又は負の電荷)が移動して液晶容量Clc2に印加される電圧の絶対値が低下する。一方、液晶容量Clc1に印加される電圧はTFT14がオンすることによる影響を受けないから、液晶容量Clc2に印加される電圧の絶対値が液晶容量Clc1に印加される電圧の絶対値より小さくなり、ガンマ特性の視角依存性が改善されるという効果を奏する。
 ここで、画素P1(又はP2)の副画素SP1の副画素電極11aが、放電信号線Gs0(又はGs1)との間に存在する寄生容量Cspから受ける影響に着目する。放電信号線Gs0からの放電信号は、放電信号線Gs1からの放電信号の立ち上がり時点より1Hだけ早く立ち上がり、時刻t3で立ち下がる。走査信号線Gm1(又はGm2)からの走査信号がオンである少なくとも時刻t1からt2までの間(又はt2からt3までの間)では、副画素電極11aがTFT15aによりソース信号線SLに接続されて低インピーダンスの状態にある。このため、画素P1(又はP2)の副画素電極11aの電圧が、寄生容量Cspを介して放電信号線Gs0(又はGs1)から突き上げ又は突き下げられるような影響を受けることは無視できる。
 これに対し、走査信号線Gm1(又はGm2)からの走査信号がオフである時刻t2以降(又はt3以降)では、画素P1(又はP2)の副画素電極11aの電圧が液晶容量Clc1及び補助容量Ccs1によって保持されており、外部との間の電荷の移動により電圧が変動し易い。具体的に、画素P1(又はP2)の副画素電極11aの電圧レベルが放電信号の前縁で立ち上がりの影響を受け難いのに対し、時刻t3(又はt4)では、画素P1(又はP2)の副画素電極11aの電圧レベルが放電信号の後縁で立ち下がりの影響を受けて突き下げられる。
 上述の突き下げは、副画素電極11aの電圧が正/負何れの極性であっても同じ方向に発生するため、副画素SP1の副画素電極11aについての最適対向電圧が、実際の対向電圧Vcomより電圧が低い方向にずれる現象(対向電圧ずれ)が発生する。対向電圧ずれが発生した場合、液晶容量Clc1に対して直流電圧を印加することとなるため、所謂焼き付きやフリッカが発生することが問題となる。
 なお、図5に示すタイミング図の例では、画素P1(又はP2)の副画素SP2の副画素電極11bが、放電信号線Gs1(又はGs2)との間に存在する寄生容量Cgpを介して放電信号線Gs1(又はGs2)から突き上げ及び突き下げの影響を略等しく受けるため、これらの影響が相殺されて問題は生じない。
 図5の場合に発生する問題を回避するには、どのラインについても放電信号が走査信号より3H以上遅れるようにするか、又は走査信号及び放電信号の信号幅を1Hの長さより短くして、放電信号線Gs0(又はGs1)からの放電信号が走査信号線Gm1(又はGm2)からの走査信号と重ならないようにすればよい。一般的には、走査信号及び放電信号の信号幅が1Hの長さより短い場合に、各ラインの放電信号線Gsを2H後に走査される2ライン後方の走査信号線Gmに接続しておき、走査信号及び放電信号の信号幅が1Hの長さのM倍(Mは0以上の整数)より長くM+1倍より短い場合に、各ラインの放電信号線GsをM+2ライン後方、又はそれより更に後方の走査信号線Gmに接続しておけばよい。
 以下では、本願の課題が解決される具体例について説明する。
 図6A及び図6Bは、実施の形態1に係る液晶表示装置で各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミング図である。図6A及び図6Bに示す7つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、0ライン目の放電信号線Gs0、1ライン目の走査信号線Gm1、1ライン目の放電信号線Gs1、2ライン目の走査信号線Gm2及び2ライン目の放電信号線Gs2夫々の信号レベルと、画素P1及び画素P2夫々の副画素SP1の副画素電極11aの電圧レベルとを表す。信号レベルはオンの状態を正のパルスで表し、電圧レベルは対向電極21の電位、即ち対向電圧Vcomに対する電位差として表す。破線と破線との間の期間は、何れも1Hである。
 図6Aでは走査信号及び放電信号の信号幅が1Hの長さ未満であるのに対し、図6Bでは走査信号及び放電信号の信号幅が1Hの長さより長く2Hの長さ未満である点に違いがある。走査信号線Gmkからの走査信号が、1ライン毎に1Hずつ遅れるようにしてある点と、放電信号線Gsk-1からの放電信号の前縁(図6A及び図6Bでは立ち上がり)が、走査信号線Gmkからの走査信号の後縁(図6A及び図6Bでは立ち下がり)よりも時間(所定時間に相当)Td以上遅れている点とは、図6A及び図6Bで共通している。走査信号及び放電信号の信号幅が2Hの長さより長い場合についても同様である。
 図6Aの場合、放電信号線Gs0、Gs1及びGs3夫々が2ライン後方の走査信号線Gm2、Gm3及びGm4に接続されており、どのラインについても放電信号が走査信号より2Hだけ遅れている。走査信号線Gm1(又はGm2)からの走査信号が、時刻t1からt2までの間(又は時刻t2からt3までの間)で立ち上がってTFT15a及び15bがオンした後に、時刻t2(又はt3)で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t3(又はt4)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。
 図5の場合と図6Aの場合とを比較すると、図6Aの場合は、走査信号及び放電信号の信号幅が1Hの長さより短いため、これらの信号幅が1Hの長さより長い図5の場合で各ラインの放電信号を走査信号より3H分だけ遅らせたのと同様の効果を奏する。Tdの長さは、後述する実施の形態2で説明するように、2μs程度確保されていることが好ましいが、2μs以下であっても本願発明の効果が喪失するものではない。
 一方の図6Bの場合、放電信号線Gs0、Gs1及びGs3夫々が3ライン後方の走査信号線Gm2、Gm3及びGm4に接続されており、どのラインについても放電信号が走査信号より3H分だけ遅れている。走査信号線Gm1(又はGm2)からの走査信号が、時刻t0からt1までの間(又は時刻t1からt2までの間)で立ち上がってTFT15a及び15bがオンした後に、時刻t2(又はt3)で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t4(又はt5)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。
 図5の場合と図6Bの場合とを比較すると、走査信号及び放電信号の信号幅が1Hの長さより長く2Hの長さより短い点は共通しているが、図6Bの場合は、各ラインの走査信号に対する放電信号の遅れを、図5の場合よりも1H分だけ大きくしてあるため、放電信号の遅れを最小限に抑えて対向電圧ずれを防止する効果を奏する。
 以上のように本実施の形態1によれば、マトリックス状に配列された画素Pが、液晶層3を介して対向する副画素電極11a,11b夫々と対向電極21との電極対を含んで画定される第1副画素SP1及び第2副画素SP2を少なくとも有しており、第1副画素SP1及び第2副画素SP2夫々に含まれる副画素電極11a及び11bにデータ信号を印加するためのTFT15a及び15bのゲート電極にマトリックスの行毎(即ちライン毎)の走査信号線Gmから走査信号を印加する。第2副画素SP2の副画素電極11bにはTFT14を介して放電容量電極13が接続されており、放電容量電極13には対向電極21の電位に接続された放電容量対向電極23が対向している。走査信号の信号幅が1Hの長さのM倍(Mは0又は1)からM+1倍までの範囲内にあり、放電信号をライン毎に印加するための放電信号線Gsは、N水平走査期間後(NはM+2、即ち2又は3)に走査されるNライン後方の走査信号線Gmと信号間接続線Wsmにより接続されている。
 これにより、各ラインの第1副画素SP1及び第2副画素SP2夫々の副画素電極11a及び11bにデータ信号が印加されなくなった時点よりも後に、1つ前のラインのTFT14のゲート電極に放電信号が印加されるため、各ラインの画素Pが少なくとも有する第1副画素SP1及び第2副画素SP2により液晶層3に印加される電圧について、1つ前のラインの放電信号の立ち上がり及び立ち下がりから受ける影響が相殺される。
 従って、画素Pを画定する副画素電極11a及び11bが対向する対向電極21に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能となる。
 また、実施の形態1によれば、第1副画素SP1及び第2副画素SP2の配置方向が、放電信号線Gsと交差する方向、即ち行方向であって、行方向に隣り合う画素P,Pにおける隣り合う副画素SP1及び副画素SP2の間に放電信号線Gsが配置されており、画素Pにおける第1副画素SP1及び第2副画素SP2の間に走査信号線が配置されているいる。
 従って、放電信号線Gs及び走査信号線Gmの間における信号の漏洩を抑制することが可能となり、ひいては液晶パネル100aの製造歩留まりが向上する。その一方では上記構成により、放電信号線Gs及び第1副画素SP1の間の寄生容量Cspが大きくなるが、このような場合にこそ、対向電圧ずれの防止効果を奏する。
 更に、実施の形態1によれば、各画素Pに印加されるデータ信号の極性が1フレーム毎に反転するため、TFT14がオンしたときに第2副画素SP2の副画素電極11bの電圧が効果的に変化して2つの副画素間の明暗差が大きくなるようにすることが可能である。
 また、実施の形態1によれば、画素Pが有する第1副画素SP1及び第2副画素SP2夫々を画定する電極対に、補助容量電極12aと補助容量対向電極22aとの電極対、及び補助容量電極12bと補助容量対向電極22bとの電極対が含まれており、補助容量電極12a及び12b夫々は副画素電極11a及び11bに電気的に接続されており、補助容量対向電極22a及び22b夫々は放電容量対向電極23の接続先である対向電極21の電位に接続されている。
 従って、第1副画素SP1及び第2副画素SP2夫々の副画素電極11a及び11bと対向電極21とにより形成される液晶容量Clc1及びClc2に、補助容量電極12aと補助容量対向電極22aとにより形成される補助容量Ccs1、及び補助容量電極12bと補助容量対向電極22bとにより形成される補助容量Ccs2が並列に接続されるため、第1副画素SP1及び第2副画素SP2により液晶層3に印加される電圧を少なくとも1水フレーム期間だけ安定に保持することが可能となる。このように、最適対向電圧が安定的に設定され得る構成により、対向電圧ずれを防止するという効果を際だたせることが可能となる。
 更に、実施の形態1によれば、液晶パネル100aの一側方の縁部101aに走査信号線Gm及び信号間接続線Wsmが配線されており、縁部101aにて信号間配線WsmがN-1(=1)本の走査信号線Gmと交差する。
 つまり、信号間接続線Wsmが、放電信号線GsとN(=2)水平走査期間後に走査されるNライン後方の走査信号線Gmとを1対1に接続するものであって、信号間接続線Wsmが配線されている縁部101a側から各走査信号線Gm夫々に走査信号が印加されるため、信号間接続線WsmとN-1本の走査信号線Gmとが液晶パネル100aの一側方の縁部101aにて必然的に交差することとなる。
(変形例1)
 実施の形態1が、走査信号及び放電信号の信号幅を1Hの長さとは異なる長さにした形態であるのに対し、実施の形態1の変形例1は、走査信号及び放電信号の信号幅を略1Hの長さにした形態である。本変形例1は、実施の形態1の図6A及び6Bに示すTdが所定時間より短いために本願発明の効果が減殺される場合に、有効な解決策を提示するものである。
 図7は、実施の形態1の変形例1に係る液晶パネルで信号間接続線Wsmの接続例を示す説明図であり、図8は、実施の形態1の変形例1に係る液晶パネルで走査信号及び放電信号の時間変化を示すタイミング図である。本変形例1における液晶パネルは、実施の形態1の液晶パネル100aと比較して信号間接続線Wsmの接続先が異なるだけであるので、図示を省略する。以下、実施の形態1と同様の構成については同様の符号を付してその説明を省略し、実施の形態1と異なる構成について説明する。
 図7では、説明上、nライン目(nは自然数)の画素P、nライン目の走査信号線Gm及びnライン目の放電信号線Gs夫々をPn、Gm_n及びGs_nで表す。また、各画素Pn、Pn+1、・・Pn+5のうち、nライン目の画素Pnについてのみ副画素SP1及びSP2の符号とTFT15a,15b,14の符号とを表示する。TFT15a,15b,14は簡単のために黒で塗りつぶした楕円で表す。放電信号線Gs_n、Gs_n+1及びGs_n+2夫々は、3水平走査期間後に走査される3ライン後方の走査信号線Gm_n+3、Gm_n+4及びGm_n+5と、信号間接続線Wsmにより各別に接続されている。接続先が不図示である放電信号線Gs_n+3、Gs_n+4及びGs_n+5についても同様である。
 図8に移って、図に示す7つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、nライン目の走査信号線Gm_n及び放電信号線Gs_n、n+1ライン目の走査信号線Gm_n+1及び放電信号線Gs_n+1、n+2ライン目の走査信号線Gm_n+2及び放電信号線Gs_n+2、並びにn+3ライン目の走査信号線Gm_n+3夫々の信号レベルを表す。信号レベルはオンの状態を正のパルスで表す。破線と破線との間の期間は、何れも1Hである。走査信号及び放電信号の信号幅は、何れも略1Hの長さである。走査信号は、1ライン毎に1Hずつ遅れるように生成される。
 図7に示す接続により、図8では、どのラインについても放電信号が走査信号より3Hだけ遅れている。走査信号線Gm_n+1(又はGm_n+2,Gm_n+3)からの走査信号が、時刻t1(又は時刻t2,t3)で立ち上がってTFT15a及び15bがオンした後に、時刻t2(又はt3,t4)で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。
 その後、1Hだけ遅れて放電信号線Gs_n(又はGs_n+1,Gs_n+2)からの放電信号が立ち上がり、時刻t4(又はt5,t6)で放電信号が立ち下がる。この間、例えば画素Pn+1(又はPn+2,Pn+3)の副画素電極11aの電圧レベルは、放電信号線Gs_n(又はGs_n+1,Gs_n+2)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持されて対向電圧ずれが防止される。
 一般的には、走査信号及び放電信号の信号幅が1Hの長さから所定時間(例えば前述の2μs)を減じた長さより長く、1Hの長さより短い場合に、各ラインの放電信号線Gsを3H後に走査される3ライン後方の走査信号線Gmに接続しておき、走査信号及び放電信号の信号幅が1Hの長さのM+1倍(Mは0以上の整数)から所定時間を減じた長さより長く、1Hの長さのM+1倍より短い場合に、各ラインの放電信号線GsをM+3ライン後方、又はそれより更に後方の走査信号線Gmに接続しておけばよい。
 なお、実施の形態1の構成に対する本変形例1の構成の違いは、後述する他の変形例及び他の実施の形態に対して適用することが可能である。
 以上のように本変形例1によれば、走査信号及び放電信号の信号幅が1Hの長さのM+1倍(Mは0以上の整数)から所定時間Tdを減じた長さより長く、且つ1Hの長さのM+1倍より短くしてあり、放電信号線Gsは、L水平走査期間後(LはM+3以上、即ち3以上)に走査される行の走査信号線Gmと信号間接続線Wsmにより接続されている。
 従って、放電信号線Gsが、L水平走査期間後(Lは上述のNより1つ大きい整数)に走査されるLライン後方の走査信号線Gmと接続されているため、各ラインの第1副画素SP1及び第2副画素SP2夫々の副画素電極11a及び11bにデータ信号が印加されなくなった時点から所定時間以内に、1つ前のラインのTFT14のゲート電極に放電信号が印加されるのを回避することが可能となり、対向電圧ずれが防止される。
(変形例2)
 実施の形態1が、補助容量対向電極22a,22b及び放電容量対向電極23を対向電極21の電位に接続する形態であるのに対し、実施の形態1の変形例2は、補助容量対向電極22a,22b及び放電容量対向電極23を対向電極21の電位とは異なる所定電位に接続する形態である。
 図9は、実施の形態1の変形例2に係る液晶表示装置の構成例を示すブロック図であり、図10は、実施の形態1の変形例2に係る液晶パネルで画素Pを画定する構成を模式的に示す説明図である。本変形例2に係る液晶表示装置は、液晶パネル100bと、ゲートドライバGDaと、ソースドライバSDaと、ゲートドライバGDa及びソースドライバSDaを用いて液晶パネル100bによる表示を制御する表示制御回路4bと、該表示制御回路4bから液晶パネル100bに印加する電圧を中継するための補助容量電圧幹配線CSLとを備える。以下、実施の形態1と同様の構成については同様の符号を付してその説明を省略し、実施の形態1と異なる構成について説明する。
 液晶パネル100bは、実施の形態1の液晶パネル100aと比較して、画素Pの垂直方向の両端部を水平方向に直線的に横切るように配された補助容量電圧線CS1及びCS2を更に有する。補助容量電圧線CS1及びCS2の夫々は、液晶パネル100bの外部で補助容量電圧幹配線CSLに接続されると共に、液晶パネル100bの内部で補助容量対向電極22a及び22bに接続されている(図10参照)。補助容量電圧線CS2は、更に放電容量対向電極23に接続されている。本実変形例2では、補助容量電圧線CS2が液晶パネル100bの外部で補助容量電圧幹配線CSLに接続されているが、液晶パネル100b内に補助容量電圧幹配線CSLを配置してもよい。
 液晶パネル100bの一側方の縁部101bには、各放電信号線Gs夫々と、2水平走査期間後に走査される2ライン後方の走査信号線Gmとを接続する信号間接続線Wsmが各別に配線されている。縁部101bには、また、表示領域から延伸する走査信号線Gmと補助容量電圧線CS1及びCS2とが配線されている。信号間接続線Wsmが端部101bにて1本の走査信号線Gmと交差しているのは、実施の形態1の場合と同様である。
 表示制御回路4bは、実施の形態1における表示制御回路4aと比較して、補助容量電圧幹配線CSLを介して補助容量電圧線CS1及びCS2に印加する所定電圧を発生させる補助容量電圧発生回路44を更に有する。補助容量電圧線CS1及びCS2に印加される電圧は同じであっても異なっていてもよい。
 液晶パネル100aと液晶パネル100bとでは、補助容量対向電極22a,22b及び放電容量対向電極23夫々の接続先が、対向電極21の電位であるか補助容量電圧線CS1,CS2の電位であるかの違いがある。しかしながら、補助容量Ccs1及びCcs2夫々が液晶容量Clc1及びClc2に並列接続されて電荷を保存する効果と、TFT14がオンしたときに液晶容量Clc2及び補助容量Ccs2から放電容量Cdcに移動する正の電荷(又は負の電荷)の量については違いがないことが明らかである。このことから本変形例2によれば、実施の形態1と全く同様の効果を奏すると言える。
 なお、実施の形態1の構成に対する本変形例2の構成の違いは、上述の変形例1、後述する変形例3及び他の実施の形態に対して適用することが可能である。
(変形例3)
 実施の形態1が、TFT14がオンしたときに液晶容量Clc1に印加される実効電圧の絶対値が変化しない形態であるのに対し、実施の形態1の変形例3は、TFT14がオンしたときに液晶容量Clc1に印加される実効電圧の絶対値が変化する形態である。
 図11は、実施の形態1の変形例3に係る液晶パネルで画素Pを画定する構成を模式的に示す説明図である。
 本変形例3では、実施の形態1における画素Pの構成に対して、放電容量電極13及び補助容量電極12a夫々に接続された電極を有する電極対で形成された第2の放電容量(コンデンサ)Cdc2が接続されている。本変形例3における液晶パネルと実施の形態1における液晶パネル100aとの違いは放電容量Cdc2の有無のみである。その他、実施の形態1に対応する箇所には同様の符号を付してその説明を省略する。
 以下では、TFT14がオンしたときに副画素電極11a及び11bに印加される電圧の変化について説明する。
 実施の形態1では、TFT14がオンしたときに、液晶容量Clc2及び補助容量Ccs2から放電容量Cdcに正の電荷(又は負の電荷)が移動して液晶容量Clc2に印加される電圧の絶対値が低下するのに対して、液晶容量Clc1に印加される電圧の絶対値は変化しないことを説明した。また、TFT14がオンする直前の放電容量電極13の電圧は、1フレーム前の副画素電極11bの電圧であった。一方、本変形例3では、第2の放電容量Cdc2の存在により、TFT14がオンする直前の放電容量電極13の電圧は、1フレーム前の副画素電極11bの電圧とは異なる電圧となり、TFT14がオンしたときに、液晶容量Clc1に印加される電圧の絶対値も変化するという違いが生じる。
 これを具体的に説明するため、液晶容量Clc1,Clc2、補助容量Ccs1,Ccs2、放電容量Cdc及び第2の放電容量Cdc2夫々の静電容量をCLC、CCS、CDC及びCDC2とする。図6Aに示すタイミング図を参照して、走査信号線Gm1からの走査信号によりTFT15a及び15bがオンしてデータ信号が印加される前の時刻t1における画素P1の副画素電極11a及び11b夫々の電圧をV1及びV2とする。また、データ信号が印加されたときの時刻t2における画素P1の副画素電極11a及び11bの電圧をV3とする。この電圧V3の極性は電圧V1及びV2の極性と逆である。時刻t1における放電容量電極13の電圧は、1フレーム前にTFT14がオン/オフしたときから、副画素電極11bの電圧と同じV2に維持されている。
 画素P1の副画素電極11aにデータ信号が印加されることにより、副画素電極11aの電圧がV1からV3に上昇(又は低下)する。この電圧の変化分V3-V1が、第2の放電容量Cdc2及び放電容量Cdcの直列回路で分圧されて放電容量電極13の電圧に加算されるから、時刻t2における放電容量電極13の電圧Vdcは、以下の式(1)で表される。
Vdc=V2+(V3-V1)×CDC2/(CDC+CDC2)・・・・・・・(1)
 式(1)の右辺では、第1項のV2と第2項の(V3-V1)とで極性が逆である。後にTFT14がオンしたときに、液晶容量Clc2及び補助容量Ccs2から放電容量Cdc側に正の電荷(又は負の電荷)が移動するためには、Vdcの極性が、V3の極性と逆であること(つまりV2の極性と同じであること)が好ましい。このような極性の関係となるように、CDC2/(CDC+CDC2)の大きさを適当に小さくする。なお、電圧Vdcは、液晶容量Clc1及び補助容量Ccs1を並列接続した回路に第2の放電容量Cdc2を直列接続した直列回路と、放電容量Cdcとを並列接続した並列回路の電圧となっている。
 次に時刻t3からt4までの間で放電信号線Gs1からの放電信号によりTFT14がオンした場合、液晶容量Clc2及び補助容量Ccs2から上記並列回路に正の電荷(又は負の電荷)が移動してVdcがΔVだけ上昇(又は低下)したと仮定する。この場合、ΔVが上記直列回路で分圧されて液晶容量Clc1及び補助容量Ccs1の電圧(即ち画素P1の副画素電極11bの電圧)V3に加算されるから、時刻t4における副画素電極11aの電圧V4は、以下の式(2)で表されるように電圧V3から上昇(又は低下)する。
V4=V3+ΔV×CDC2/(CLC+CCS+CDC2)・・・・・・・・・(2)
 一方、液晶容量Clc2及び補助容量Ccs2から上記並列回路に正の電荷(又は負の電荷)が移動した後の副画素電極11bの電圧は確実に低下(又は上昇)するから、TFT14がオンしたことにより副画素電極11a及び11bに生じる電圧変化が違いに逆極性となる。これにより、液晶容量Clc2に印加される電圧の絶対値が液晶容量Clc1に印加される電圧の絶対値より小さくなり、ガンマ特性の視角依存性が改善されるという効果を奏する。
 その他、本変形例3で各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミングは、実施の形態1の図6A及び図6Bに示すものと同様である。
 なお、実施の形態1の構成に対する本変形例3の構成の違いは、前述の変形例1、変形例2及び後述する他の実施の形態に対して適用することが可能である。
 以上のように本変形例3によれば、TFT14がオンしたときに、第2副画素SP2に蓄積された電荷の一部が、第1副画素SP1の副画素電極11a及び放電容量電極13夫々に接続された電極を有する電極対で形成された第2の放電容量Cdc2を介して第1副画素SP1に移動する。
 従って、第1副画素SP1の副画素電極11a及び第2副画素SP2の副画素電極11bの電圧を互いに逆極性で変化させることが可能となる。このように、放電信号がオンしたときに副画素電極11a及び11bの電圧が逆極性で変化する構成であっても、対向電圧ずれの防止効果が損なわれることがない。
(実施の形態2)
 実施の形態1が、マトリックスの列毎に配されたソース信号線SLからライン毎に同一のデータ信号がTFT15a及び15b夫々を介して副画素電極11a及び11bに印加される形態であるのに対し、実施の形態2は、マトリックスの列毎に配された2つのソース信号線SL1及びSL2からライン毎に交互に異なるデータ信号がTFT15a及び15b夫々を介して副画素電極11a及び11bに印加される形態である。
 図12は、本発明の実施の形態2に係る液晶表示装置の構成例を示すブロック図である。本実施の形態2に係る液晶表示装置は、液晶パネル100cと、ゲートドライバGDbと、ソースドライバSDbと、ゲートドライバGDb及びソースドライバSDbを用いて液晶パネル100cによる表示を制御する表示制御回路4cとを備える。以下、実施の形態1と同様の構成については同様の符号を付してその説明の大部分を省略し、主に実施の形態1と異なる構成について説明する。
 液晶パネル100cは、実施の形態1の液晶パネル100aと比較して、画素Pの一側方に垂直方向に配されたソース信号線がSL1であり、画素Pの他側方に垂直方向に配されたソース信号線SL2を更に有する。液晶パネル100cの一側方の縁部101cには、各放電信号線Gs夫々と2水平走査期間後に走査される4ライン後方の走査信号線Gmとを接続する信号間接続線Wsmが各別に配線されている。信号間接続線Wsmは、端部101cにて3本の走査信号線Gmと交差している。
 表示制御回路4cは、実施の形態1における表示制御回路4aと比較して、ソース信号制御回路41bが、ソースドライバSDbを用いてマトリックスの列毎に2本のソース信号線SL1及びSL2を制御するようになっている点と、走査信号制御回路42bが、ゲートドライバGDbを用いて隣り合う2行の走査信号線Gm,Gmを同時に制御する点とが異なる。
 図13は、画素Pとソース信号線SL1又はSL2との接続関係を示す説明図である。画素Pに付随する寄生容量は、実施の形態1の図4に示すものと同様であるため、その説明を省略する。画素P1,3,5,・・のTFT15a及び15bのソース電極は、ソース信号線SL1に接続されている。画素P2,4,6,・・のTFT15a及び15bのソース電極は、ソース信号線SL2に接続されている。つまり、ソース信号線SL1及びSL2から、ライン毎に交互に異なるデータ信号がTFT15a及び15bを介して副画素電極11a及び11bに印加される。この構成にて、走査信号線Gm1及びGm2からの走査信号を同時にオンすることにより、1H(水平走査期間)内に画素P1及びP2夫々を含む2ラインを同時に走査することができる。
 本実施の形態2では、放電信号線Gs1及びGs2からの放電信号を同時にオンすることとなるが、これらの放電信号が走査信号線Gm1及びGm2からの走査信号に対して重なりがないようにする必要があるのは、実施の形態1と同様である。この条件が余裕をもってクリアされている限り、画素P1及びP2夫々の副画素SP2の副画素電極11bが、放電信号線Gs1及びGs2との間に存在する寄生容量Cgpを介して放電信号線Gs1及びGs2から突き上げ及び突き下げの影響を略等しく受けるため、基本的には画素P1及びP2の第2副画素SP2について対向電圧ずれが生じない。
 一方、画素P1の第1副画素SP1については、非特許文献1及び特許文献1に記載の発明の構成にて対向電圧ずれが発生する可能性がある。特に、本実施の形態2のように2ラインを同時に走査する場合は、走査信号が同一であるのに対して1ライン目と2ライン目とで第1副画素SP1が影響をうける放電信号が異なるため、1ライン目の第1副画素SP1で対向電圧ずれが顕著に発生し易い。その結果、表示画面上で2ライン毎に白い横スジが視認されることとなる。
 以下では、本願の課題が解決される具体例について説明する。
 図14A及び図14Bは、実施の形態2に係る液晶表示装置で各信号線に印加される信号及び副画素電極11aの電圧の時間変化を示すタイミング図である。図14A及び図14Bに示す7つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、0ライン目の放電信号線Gs0、1ライン目の走査信号線Gm1、1ライン目の放電信号線Gs1、2ライン目の走査信号線Gm2及び2ライン目の放電信号線Gs2夫々の信号レベルと、画素P1及び画素P2夫々の副画素SP1の副画素電極11aの電圧レベルとを表す。信号レベルはオンの状態を正のパルスで表し、電圧レベルは対向電極21の電位、即ち対向電圧Vcomに対する電位差として表す。破線と破線との間の期間は、何れも1Hである。
 図14Aでは走査信号及び放電信号の信号幅が1Hの長さ未満であるのに対し、図14Bでは走査信号及び放電信号の信号幅が1Hの長さより長く2Hの長さ未満である点に違いがある。走査信号線Gmkから(kは0以上の整数)の走査信号が2ライン同時にオンする点と、走査信号及び放電信号が、2ライン毎に1Hずつ遅れてオンする点と、放電信号線Gsk-1からの放電信号の前縁(図14A及び図14Bでは立ち上がり)が、走査信号線Gmkからの走査信号の後縁(図14A及び図14Bでは立ち下がり)よりもTd以上遅れている点とは、図14A及び図14Bで共通している。走査信号及び放電信号の信号幅が2Hの長さより長い場合についても同様である。
 図14Aにおいて、走査信号線Gm1及びGm2からの走査信号が、時刻t1からt2までの間で立ち上がってTFT15a及び15bがオンした後に、時刻t2で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t3(又はt4)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。
 図14Bにおいても同様であり、走査信号線Gm1及びGm2からの走査信号が、時刻t0からt1までの間で立ち上がってTFT15a及び15bがオンした後に、時刻t2で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。その後、Td以上遅れて放電信号線Gs0(又はGs1)からの放電信号が立ち上がり、時刻t4(又はt5)で放電信号が立ち下がる。この間、画素P1(又はP2)の副画素電極11aの電圧レベルは、放電信号線Gs0(又はGs1)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持される。
 以下では、上述のTdを変化させたときの対向電圧ずれを実測した結果と本発明の視覚的な効果とについて説明する。
 図15は、放電信号の遅れ時間と最適対向電圧との関係を示すグラフであり、図16は、対向電圧ずれにより発生する横スジの有無を説明するための説明図である。図15の横軸は、走査信号の後縁に対する1ライン前の放電信号の前縁の遅れ時間(μs)を表し、縦軸は最適対向電圧(V)を表す。ここで実測に用いた液晶表示装置は、フルHDでフレームレートが120Hzのものであり、表示される階調が64/255の場合について実測した。実線は画素P1の副画素SP1についての最適対向電圧を表し、破線は、比較のために示した画素P2の副画素SP1についての最適対向電圧を表す。なお、Tdの値が負である場合は、画素P1の走査信号の立ち下がりに対して画素P0の放電信号の立ち上がりが時間的に先行していることを表す。
 本実施の形態2にあっては、画素P1に対する走査信号の立ち下がりからTd以上遅れて画素P0に対する放電信号が立ち上がり、画素P2に対する走査信号の立ち下がりから1H+Td以上遅れて画素P1に対する放電信号が立ち上がる。このため、画素P2の副画素SP1の副画素電極11aについては基本的に対向電圧ずれが発生せず、最適対向電圧は略6.4Vで一定となる(図15の破線参照)。
 一方、画素P1の副画素SP1の副画素電極11aについては、上記Tdを-7.4μs、-3.0μs、-0.74μs、±0μs、及び+1.5μsと変化させると、最適対向電圧が5.05V、5.12V、5.60V、6.17V、及び6.42Vと変化する。つまり、Tdが0μsでは依然として対向電圧ずれが発生し、Tdが1.5μs以上確保されていれば対向電圧ずれが解消されると言える。
 なお、表示画面上の位置によって、対向電圧ずれが防止可能なTdの値が異なる場合は、最大のTdを採用すればよい。
 図16に移って、図の上段は対向電圧ずれが発生している場合の液晶パネル100cの表示画面を表し、下段は対向電圧ずれが発生していない場合の液晶パネル100cの表示画面を表す。階調変化に対する画素Pの輝度変化が非直線的であるため、対向電圧ずれが発生している場合に、画素Pの輝度が理想的な輝度よりも明るい方にずれる傾向があることが知られている。このため、一律な中間調の画面を表示させた場合に、表示画面上の2ライン毎に白い横スジが視認される(上段の図参照)。これに対して、対向電圧ずれが発生していない場合、表示画面上には白い横スジが視認されない(下段の図参照)。
 以上のように本実施の形態2によれば、走査信号の信号幅が1Hの長さのM倍(Mは0又は1)からM+1倍までの範囲内にあり、放電信号をライン毎に印加するための放電信号線Gsは、N水平走査期間後(NはM+2、即ち2又は3)に走査される2Nライン後方の走査信号線Gmと信号間接続線Wsmにより接続されている。
 これにより、各ラインの第1副画素SP1及び第2副画素SP2夫々の副画素電極11a及び11bにデータ信号が印加されなくなった時点よりも後に、1つ前のラインのTFT14のゲート電極に放電信号が印加されるため、各ラインの画素Pが少なくとも有する第1副画素SP1及び第2副画素SP2により液晶層3に印加される電圧について、1つ前のラインの放電信号の立ち上がり及び立ち下がりから受ける影響が相殺される。
 従って、画素Pを画定する副画素電極11a及び11bが対向する対向電極21に最適な対向電圧が、予め設定されている対向電圧からずれるのを防止することが可能となる。
 また、実施の形態2によれば、マトリックスの列毎に配された2つのソース信号線SL1及びSL2からライン毎に交互に異なるデータ信号が、TFT15a及び15b夫々を介して第1副画素SP1の副画素電極11a及び第2副画素SP2の副画素電極11bに印加されており、隣り合う2つのラインの走査信号を同時的にオンする。
 従って、1水平走査期間内に2ラインを走査することが可能となる一方で、同時に走査される2ラインのうち1ライン目の画素Pの副画素SP1に対向電圧ずれが発生し易い構成であっても、対向電圧ずれを防止することが可能となる。
(変形例4)
 実施の形態2が、走査信号及び放電信号の信号幅を1Hの長さの整数倍とは異なる長さにした形態であるのに対し、実施の形態2の変形例4は、走査信号及び放電信号の信号幅を略1Hの長さにした形態である。本変形例4は、実施の形態2の図14A及び14Bに示すTdが所定時間より短いために本願発明の効果が減殺される場合に、有効な解決策を提示するものである。
 図17は、実施の形態2の変形例4に係る液晶パネルで信号間接続線Wsmの接続例を示す説明図であり、図18は、実施の形態2の変形例4に係る液晶パネルで走査信号及び放電信号の時間変化を示すタイミング図である。本変形例4における液晶パネルは、実施の形態2の液晶パネル100cと比較して信号間接続線Wsmの接続先が異なるだけであるので、同じ符号を付与して図示を省略する。以下、実施の形態2と同様の構成については同様の符号を付してその説明を省略し、実施の形態2と異なる構成について説明する。
 図17では、説明上、nライン目(nは自然数)の画素P、nライン目の走査信号線Gm及びnライン目の放電信号線Gs夫々をPn、Gm_n及びGs_nで表す。また、各画素Pn、Pn+1、・・Pn+5のうち、nライン目の画素Pn及びn+1ライン目の画素Pn+1についてのみ副画素SP1及びSP2の符号とTFT15a,15b,14の符号とを表示する。TFT15a,15b,14は簡単のために黒で塗りつぶした楕円で表す。放電信号線Gs_n及びGs_n+1夫々は、3水平走査期間後に走査される6ライン後方の走査信号線Gm_n+6及びGm_n+7と、信号間接続線Wsmにより各別に接続されている。接続先が不図示である放電信号線Gs_n+2、Gs_n+3、・・Gs_n+7についても同様である。信号間接続線Wsmは、液晶パネル100cの端部101cにて5本の走査信号線Gmと交差している。
 図18に移って、図に示す11つのタイミング図では、何れも同一の時間軸を横軸にしてあり、縦軸は、図の上段から、nライン目の走査信号線Gm_n及び放電信号線Gs_n、n+1ライン目の走査信号線Gm_n+1及び放電信号線Gs_n+1、・・n+4ライン目の走査信号線Gm_n+4及び放電信号線Gs_n+4、並びにn+5ライン目の走査信号線Gm_n+5夫々の信号レベルを表す。信号レベルはオンの状態を正のパルスで表す。破線と破線との間の期間は、何れも1Hである。走査信号及び放電信号の信号幅は、何れも略1Hの長さである。走査信号は、2ライン毎に1Hずつ遅れるように生成される。
 図17に示す接続により、図18では、どのラインについても放電信号が走査信号より3Hだけ遅れている。走査信号線Gm_n及びGm_n+1(又は、Gm_n+2及びGm_n+3,Gm_n+4及びGm_n+5)からの走査信号が、時刻t0(又は時刻t1,t2)で立ち上がってTFT15a及び15bがオンした後に、時刻t1(又はt2,t3)で立ち下がった場合、引き込み現象(フィードスルー)の影響で副画素電極11aの電圧レベルが若干低下する。
 その後、2Hだけ遅れて放電信号線Gs_n及びGs_n+1(又はGs_n+2及びGs_n+3,Gs_n+4及びGs_n+5)からの放電信号が立ち上がり、時刻t4(又はt5,t6)で放電信号が立ち下がる。この間、例えば画素Pn+2及びPn+3(又はPn+4及びPn+5)夫々の副画素電極11aの電圧レベルは、放電信号線Gs_n+1及びGs_n+2(又はGs_n+3及びGs_n+4)からの放電信号の立ち上がり及び立ち下がり夫々による突き上げ及び突き下げの影響を略等しく受けるため、これらの放電信号の影響を全く受けなかったときと略同じ電圧に維持されて対向電圧ずれが防止される。
 一般的には、走査信号及び放電信号の信号幅が1Hの長さから所定時間(例えば前述の2μs)を減じた長さより長く、1Hの長さより短い場合に、各ラインの放電信号線Gsを3H後に走査される6ライン後方の走査信号線Gmに接続しておき、走査信号及び放電信号の信号幅が1Hの長さのM+1倍(Mは0以上の整数)から所定時間を減じた長さより長く、1Hの長さのM+1倍より短い場合に、各ラインの放電信号線GsをM+6ライン後方、又はそれより更に後方の走査信号線Gmに接続しておけばよい。
 以下では、後方のラインの走査信号線Gmに接続される放電信号線Gsの接続先を変化させたときの対向電圧ずれを実測した結果について説明する。
 図19は、放電信号線Gs_nの接続先と最適対向電圧差との関係を示すグラフである。図の横軸は、信号間接続線Wsmを介して放電信号線Gs_nと接続する走査信号線Gmを表し、縦軸は最適対向電圧差(V)を表す。縦軸に表す最適対向電圧差とは、画素Pn+3の副画素SP1についての最適対向電圧に対する、画素Pn+2の副画素SP1についての最適対向電圧の差分である。画素Pn+2及びPn+3は、同時に走査される2ラインに夫々含まれている。ここで実測に用いた液晶表示装置は、フルHDでフレームレートが120Hzのものであり、操作信号及び放電信号の信号幅が1Hの長さで、表示される階調が64/255の場合について実測した。
 本変形例4にあっては、画素Pn+2に対する走査信号の立ち下がりから1Hだけ遅れて画素Pn+1に対する放電信号が立ち上がり、画素Pn+3に対する走査信号の立ち下がりから2Hだけ遅れて画素Pn+2に対する放電信号が立ち上がる。このため、画素Pn+3の副画素SP1の副画素電極11aについて、例えばGs_nをGm_n+4(又はGm_n+6)に接続し、Gs_n+2をGm_n+6(又はGm_n+8)に接続する場合は、基本的に対向電圧ずれが発生しない。但し、Gs_nをGm_n+2に接続し、Gs_n+2をGm_n+4に接続する場合は、画素Pn+3に対する走査信号の立ち下がりと画素Pn+2に対する放電信号の立ち上がりとが略同時となり、最適対向電圧が0.25Vだけ低下する。
 一方、画素Pn+2の副画素SP1の副画素電極11aについては、放電信号線Gs_nの接続先を走査信号線Gm_n+6、Gm_n+4、及びGm_n+2と変化させると(即ち、放電信号線Gs_n+1の接続先を走査信号線Gm_n+7、Gm_n+5、及びGm_n+3と変化させると)、最適対向電圧が夫々0V、0.25V及び1.40Vだけ低下する。つまり、放電信号線Gs_nの接続先が走査信号線Gm_n+2であれば上述の最適対向電圧差が-1.15V(-1.40Vと前述の-0.25Vとの差分)となり、放電信号線Gs_nの接続先を走査信号線Gm_n+4とすれば最適対向電圧差が-0.25Vまで減少し、放電信号線Gs_nの接続先を走査信号線Gm_n+6とすれば、図18に示すタイミングに相当して最適対向電圧差が0Vとなり、対向電圧ずれも解消される。
 以上のように本変形例4によれば、走査信号及び放電信号の信号幅が1Hの長さのM+1倍(Mは0以上の整数)から所定時間Tdを減じた長さより長く、且つ1Hの長さのM+1倍より短くしてあり、放電信号線Gsは、L水平走査期間後(LはM+3以上、即ち3以上)に走査される行の走査信号線Gmと信号間接続線Wsmにより接続されている。
 従って、放電信号線Gsが、L水平走査期間後(Lは上述のNより1つ大きい整数)に走査される2Lライン後方の走査信号線Gmと接続されているため、各ラインの第1副画素SP1及び第2副画素SP2夫々の副画素電極11a及び11bにデータ信号が印加されなくなった時点から所定時間以内に、1つ前のラインのTFT14のゲート電極に放電信号が印加されるのを回避することが可能となり、対向電圧ずれが防止される。
 また、変形例4によれば、液晶パネル100cの一側方の縁部101cに走査信号線Gm及び信号間接続線Wsmが配線されており、縁部101cにて信号間配線Wsmが2N-1(=5)本の走査信号線Gmと交差する。
 つまり、信号間接続線Wsmが、放電信号線Gsと、N(=3)水平走査期間後に走査される2Nライン後方の走査信号線Gmとを1対1に接続するものであって、信号間接続線Wsmが配線されている縁部101c側から各ラインの走査信号線Gm夫々に走査信号が印加されるため、信号間接続線Wsmと2N-1本の走査信号線Gmとが液晶パネル100cの一側方の縁部101cにて必然的に交差することとなる。
(変形例5)
 実施の形態2及びその変形例4が、各走査信号線Gmに対して走査信号が各別に印加され、各放電信号線Gsが後方の走査信号線Gmに各別に接続されている形態であるのに対し、実施の形態2の変形例5は、同時に走査される2つの行について、走査信号線Gm,Gm同士が接続され、且つ放電信号線Gs,Gs同士が接続されており、接続された走査信号線Gm,Gmに対して共通の走査信号が印加される形態である。
 図20は、本発明の実施の形態2の変形例5に係る液晶表示装置の構成例を示すブロック図であり、図21は、実施の形態2の変形例5に係る液晶パネルで信号間接続線Wsmの接続例を示す説明図である。本変形例5に係る液晶表示装置は、液晶パネル100dと、ゲートドライバGDcと、ソースドライバSDbと、ゲートドライバGDc及びソースドライバSDbを用いて液晶パネル100dによる表示を制御する表示制御回路4dとを備える。以下、実施の形態2及びその変形例4と同様の構成については同様の符号を付してその説明の大部分を省略し、主に実施の形態2及びその変形例4と異なる構成について説明する。
 液晶パネル100dでは、同時に走査される2ラインについて、走査信号線Gm,Gm同士が走査信号接続線Wmmで接続されており、放電信号線Gs,Gs同士が放電信号接続線Wssで接続されている。液晶パネル100dの一側方の縁部101dには、走査信号接続線Wmmに対して共通の走査信号を印加するための共通走査信号線Gmmが各別に配線されている。縁部101dには、また、各放電信号接続線Wss夫々と3水平走査期間後に走査信号が印加される共通走査信号線Gmmとを接続する信号間接続線Wsmが各別に配線されている(図21参照)。
 表示制御回路4dは、実施の形態2における表示制御回路4cと比較して、走査信号制御回路42cが、ゲートドライバGDcを用いてマトリックスの2行毎に1本の共通走査信号線Gmmを制御するようになっている点が異なる。
 図21では、変形例4の場合と同様に、nライン目(nは自然数)の画素P、nライン目の走査信号線Gm及びnライン目の放電信号線Gs夫々をPn、Gm_n及びGs_nで表す。nライン目及びn+1ライン目に共通する共通走査信号線はGmm_nで表す。符号の記載の省略及びTFT15a,15b,14の表示方法についても変形例4における図17の場合と同様である。信号間接続線Wsmは、液晶パネル100dの端部101dにて2本の共通走査信号線Gmmと交差している。
 以上のように本変形例5によれば、同時に走査される2ラインについて、走査信号線Gm,Gm同士を走査信号接続線Wmmで接続すると共に、放電信号線Gs,Gs同士を放電信号接続線Wssで接続してあり、液晶パネル100dの縁部101dには走査信号接続線Wmmに走査信号を印加するための共通走査信号線Gmmと、放電信号接続線Wss及び走査信号接続線Wmmの間を接続する信号間接続線Wsmとが配線されている。そして縁部101dにて信号間接続線WsmがN-1本の共通走査信号線Gmmと交差する。
 つまり、信号間接続線Wsmが、放電信号接続線Wssと、N(=3)水平走査期間後に走査される2ライン間を接続する走査信号接続線Wmmとを1対1に接続するものであって、信号間接続線Wsmが配線されている縁部101d側から各共通走査信号線Gmm夫々に走査信号が印加されるため、信号間接続線WsmとN-1本の共通走査信号線Gmmとが液晶パネル100dの一側方の縁部101dにて必然的に交差することとなる。
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施の形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。
 P、P0、P1、P2、Pn、Pn+1、・・Pn+7 画素
 SP1、SP2 副画素
 Clc1、Clc2 液晶容量
 Ccs1、Ccs2 補助容量
 Cdc 放電容量
 Cdc2 第2の放電容量
 CS1、CS2 補助容量電圧線
 CSL 補助容量電圧幹配線
 Gm、Gm1、Gm2、Gm_n、Gm_n+1、・・Gm_n+7 走査信号線
 Gmm_n、Gmm_n+2、Gmm_n+4、Gmm_n+6 共通走査信号線
 GDa、GDb、GDc ゲートドライバ
 Gs、Gs0、Gs1、Gs2、Gs_n、・・Gs_n+7 放電信号線
 SDa、SDb ソースドライバ
 SL、SL1、SL2 ソース信号線
 Wsm 信号間接続線
 Wmm 走査信号接続線
 Wss 放電信号接続線
 11a、11b 副画素電極
 12a、12b 補助容量電極
 13 放電容量電極
 14、15a、15b TFT
 21 対向電極
 22a、22b 補助容量対向電極
 23 放電容量対向電極
 3 液晶層
 4a、4b、4c、4d 表示制御回路
 40 画像信号入力回路
 41a、41b ソース信号制御回路
 42a、42b、42c 走査信号制御回路
 44 補助容量電圧発生回路
 100a、100b、100c、100d 液晶パネル

Claims (10)

  1.  液晶層を介して対向する副画素電極及び対向電極の電極対を含んで画定される第1及び第2副画素を少なくとも有する画素がマトリックス状に配列されており、前記第1及び第2副画素夫々に含まれる副画素電極にデータ信号を印加するための第1及び第2スイッチング素子と、該第1及び第2スイッチング素子の制御電極に走査信号をマトリックスの行毎に印加するための走査信号線と、前記第2副画素に含まれる放電容量電極及び所定電位に接続された放電容量対向電極の電極対と、前記第2副画素の副画素電極及び前記放電容量電極間に接続された第3スイッチング素子と、該第3スイッチング素子の制御電極に前記第3スイッチング素子をオンさせる放電信号をマトリックスの行毎に印加するための放電信号線とを備える液晶表示装置において、
     前記走査信号の信号幅は、1水平走査期間の長さのM倍(Mは0以上の整数)より長く、且つM+1倍より短く、
     前記放電信号線をN水平走査期間後(NはM+2以上の整数)に走査される行の走査信号線に接続する信号間接続線を備える
     ことを特徴とする液晶表示装置。
  2.  前記第1及び第2副画素は、前記放電信号線と交差する方向に配置されており、
     前記放電信号線は、前記方向に隣り合う画素における隣り合う第1及び第2副画素の間に配置されていることを特徴とする請求項1に記載の液晶表示装置。
  3.  前記第1及び第2副画素に印加されるデータ信号の極性は、1フレーム期間毎に反転することを特徴とする請求項1又2に記載の液晶表示装置。
  4.  前記走査信号の信号幅は、1水平走査期間の長さのM+1倍から所定時間を減じた長さより長く、
     前記信号間接続線は、L水平走査期間後(LはM+3以上の整数)に走査される行の走査信号線に接続してある
     ことを特徴とする請求項1から3の何れか1項に記載の液晶表示装置。
  5.  前記第1及び第2副画素の夫々は、前記副画素電極に接続された補助容量電極及び前記所定電位に接続された補助容量対向電極の電極対を含んで画定されていることを特徴とする請求項1から3の何れか1項に記載の液晶表示装置。
  6.  前記画素は、前記第1副画素の副画素電極及び前記放電容量電極夫々に接続された電極を有する電極対を含んで画定されていることを特徴とする請求項1から5の何れか1項に記載の液晶表示装置。
  7.  前記走査信号線及び信号間接続線が縁部に配線された液晶パネルを更に備え、
     前記信号間接続線は、N-1本の走査信号線と交差することを特徴とする請求項1から6の何れか1項に記載の液晶表示装置。
  8.  マトリックスの行毎に交互に異なるデータ信号を前記第1及び第2スイッチング素子の一端に印加するための2つのデータ信号線をマトリックスの列毎に更に備え、
     隣り合う2つの行を同時に走査する
     ことを特徴とする請求項1から6の何れか1項に記載の液晶表示装置。
  9.  前記走査信号線及び信号間接続線が縁部に配線された液晶パネルを更に備え、
     前記信号間接続線は、2N-1本の走査信号線と交差する
     ことを特徴とする請求項8に記載の液晶表示装置。
  10.  前記2つの行について走査信号線同士を接続する走査信号接続線及び放電信号線同士を接続する放電信号接続線と、
     前記走査信号接続線に前記2つの行に共通の走査信号を印加するための共通走査信号線と、
     前記信号間接続線及び共通走査信号線が縁部に配線された液晶パネルと
     を更に備え、
     前記信号間接続線は、前記2つの行に共通に配線してあり、N-1本の共通走査信号線と交差する
     ことを特徴とする請求項8に記載の液晶表示装置。
PCT/JP2015/074294 2015-08-27 2015-08-27 液晶表示装置 WO2017033341A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017536160A JPWO2017033341A1 (ja) 2015-08-27 2015-08-27 液晶表示装置
US15/753,951 US10656477B2 (en) 2015-08-27 2015-08-27 Liquid crystal display device
PCT/JP2015/074294 WO2017033341A1 (ja) 2015-08-27 2015-08-27 液晶表示装置
CN201580082732.2A CN107924662A (zh) 2015-08-27 2015-08-27 液晶显示装置
US16/795,084 US20200192167A1 (en) 2015-08-27 2020-02-19 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074294 WO2017033341A1 (ja) 2015-08-27 2015-08-27 液晶表示装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/753,951 A-371-Of-International US10656477B2 (en) 2015-08-27 2015-08-27 Liquid crystal display device
US16/795,084 Continuation US20200192167A1 (en) 2015-08-27 2020-02-19 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2017033341A1 true WO2017033341A1 (ja) 2017-03-02

Family

ID=58099736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074294 WO2017033341A1 (ja) 2015-08-27 2015-08-27 液晶表示装置

Country Status (4)

Country Link
US (2) US10656477B2 (ja)
JP (1) JPWO2017033341A1 (ja)
CN (1) CN107924662A (ja)
WO (1) WO2017033341A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012655A1 (ja) * 2018-07-13 2020-01-16 堺ディスプレイプロダクト株式会社 制御装置及び液晶表示装置
WO2021022548A1 (zh) * 2019-08-08 2021-02-11 京东方科技集团股份有限公司 栅极驱动单元、电路、显示基板、显示面板和显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033341A1 (ja) * 2015-08-27 2017-03-02 堺ディスプレイプロダクト株式会社 液晶表示装置
US11815753B2 (en) * 2021-09-15 2023-11-14 Sharp Kabushiki Kaisha Liquid crystal display apparatus and driving method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203849A (ja) * 2007-02-16 2008-09-04 Chi Mei Optoelectronics Corp 液晶ディスプレイパネルとその製造方法
US20090027325A1 (en) * 2007-07-25 2009-01-29 Dong-Gyu Kim Display device and driving method thereof
US20090207115A1 (en) * 2008-02-14 2009-08-20 Samsung Electronics Co., Ltd. Liquid crystal display
WO2011001707A1 (ja) * 2009-06-29 2011-01-06 シャープ株式会社 表示装置およびその駆動方法
WO2011065058A1 (ja) * 2009-11-30 2011-06-03 シャープ株式会社 液晶表示装置用基板、液晶表示装置、および、液晶表示装置の駆動方法
WO2011093374A1 (ja) * 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229713B2 (ja) * 2007-01-29 2013-07-03 株式会社ジャパンディスプレイイースト 表示装置
US8854561B2 (en) * 2009-11-13 2014-10-07 Au Optronics Corporation Liquid crystal display panel with charge sharing scheme
US20120176354A1 (en) * 2009-11-18 2012-07-12 Shohei Katsuta Substrate for liquid crystal display device, liquid crystal display device, and method for driving liquid crystal display device
TWI475546B (zh) * 2012-02-02 2015-03-01 Innocom Tech Shenzhen Co Ltd 顯示裝置及其驅動方法
WO2013153987A1 (ja) * 2012-04-09 2013-10-17 シャープ株式会社 表示装置およびそのための電源生成方法
TWI459367B (zh) 2012-06-06 2014-11-01 Innocom Tech Shenzhen Co Ltd 顯示器及其驅動方法
KR102069821B1 (ko) * 2013-07-03 2020-01-28 삼성디스플레이 주식회사 액정 표시 장치
CN104360555B (zh) * 2014-11-21 2017-06-06 深圳市华星光电技术有限公司 一种液晶显示面板及其驱动方法、液晶显示装置
WO2017033341A1 (ja) * 2015-08-27 2017-03-02 堺ディスプレイプロダクト株式会社 液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203849A (ja) * 2007-02-16 2008-09-04 Chi Mei Optoelectronics Corp 液晶ディスプレイパネルとその製造方法
US20090027325A1 (en) * 2007-07-25 2009-01-29 Dong-Gyu Kim Display device and driving method thereof
US20090207115A1 (en) * 2008-02-14 2009-08-20 Samsung Electronics Co., Ltd. Liquid crystal display
WO2011001707A1 (ja) * 2009-06-29 2011-01-06 シャープ株式会社 表示装置およびその駆動方法
WO2011065058A1 (ja) * 2009-11-30 2011-06-03 シャープ株式会社 液晶表示装置用基板、液晶表示装置、および、液晶表示装置の駆動方法
WO2011093374A1 (ja) * 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012655A1 (ja) * 2018-07-13 2020-01-16 堺ディスプレイプロダクト株式会社 制御装置及び液晶表示装置
WO2021022548A1 (zh) * 2019-08-08 2021-02-11 京东方科技集团股份有限公司 栅极驱动单元、电路、显示基板、显示面板和显示装置
US11482168B2 (en) 2019-08-08 2022-10-25 Hefei Boe Joint Technology Co., Ltd. Gate driving unit, gate driving circuit, display substrate, display panel and display device
US11763741B2 (en) 2019-08-08 2023-09-19 Hefei Boe Joint Technology Co., Ltd. Gate driving unit, gate driving circuit, display substrate, display panel and display device

Also Published As

Publication number Publication date
CN107924662A (zh) 2018-04-17
US10656477B2 (en) 2020-05-19
US20180252971A1 (en) 2018-09-06
JPWO2017033341A1 (ja) 2018-06-28
US20200192167A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US8248336B2 (en) Liquid crystal display device and operating method thereof
TWI393094B (zh) 液晶顯示裝置及其驅動方法
CN108121119B (zh) 液晶显示器
KR100741894B1 (ko) 횡전계 방식 액정 표시 장치의 구동방법
KR100788392B1 (ko) 횡전계 방식 액정 표시 장치의 구동방법
US8810491B2 (en) Liquid crystal display with color washout improvement and method of driving same
US9030452B2 (en) Liquid crystal display and driving method thereof
US20200192167A1 (en) Liquid crystal display device
JP5426167B2 (ja) 表示装置
WO2008056574A1 (fr) Dispositif d'affichage à cristaux liquides
US20160365046A1 (en) Liquid crystal display panel
US9360692B2 (en) Display device and driving method thereof
US9230497B2 (en) Display device having each pixel divided into sub pixels for improved view angle characteristic
KR101730552B1 (ko) 횡전계 방식 액정표시장치 및 그 구동방법
CN106687854B (zh) 液晶显示装置以及液晶显示装置的驱动方法
US20110096050A1 (en) Liquid crystal display and method of driving the same
JP6490811B2 (ja) 液晶表示装置及び液晶表示装置の駆動方法
WO2017033243A1 (ja) 液晶表示装置及び液晶表示装置の駆動方法
KR20070098370A (ko) 수평전계방식 액정표시소자
KR20070002221A (ko) 멀티 도메인 액정 표시 장치
JP2010128004A (ja) 液晶表示装置
JP2010102216A (ja) 電気光学装置及び電子機器
CN109313877B (zh) 液晶显示装置及液晶显示装置的驱动方法
KR20040052348A (ko) 액정표시장치 및 그 구동방법
KR20110074035A (ko) 액정표시장치 및 그 구동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536160

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753951

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902310

Country of ref document: EP

Kind code of ref document: A1