WO2017033261A1 - Solar panel and surface structure thereof - Google Patents

Solar panel and surface structure thereof Download PDF

Info

Publication number
WO2017033261A1
WO2017033261A1 PCT/JP2015/073715 JP2015073715W WO2017033261A1 WO 2017033261 A1 WO2017033261 A1 WO 2017033261A1 JP 2015073715 W JP2015073715 W JP 2015073715W WO 2017033261 A1 WO2017033261 A1 WO 2017033261A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar panel
surface structure
convex portion
glass
adjacent
Prior art date
Application number
PCT/JP2015/073715
Other languages
French (fr)
Japanese (ja)
Inventor
龍治 山本
Original Assignee
株式会社高揚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高揚 filed Critical 株式会社高揚
Publication of WO2017033261A1 publication Critical patent/WO2017033261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar panel that generates electricity by converting sunlight into electric power and a surface structure thereof.
  • a solar panel is a panel formed by collecting a plurality of solar cells (solar cells).
  • a solar cell is a power device that converts light energy into electric power using the photovoltaic effect.
  • Solar cells include silicon and compound types. Solar cells generate electricity during the day when the sun is out, and cannot generate electricity during the night or in bad weather. Therefore, it is necessary to take in sunlight efficiently when the sun is out as much as possible.
  • Patent Document 1 an invention is also disclosed in which incident light is deflected by an uneven sheet to increase the amount of absorption in a power generation layer.
  • Patent Document 1 attempts to efficiently capture sunlight by refracting or reflecting sunlight with the unevenness of the surface, but the repetition of the uneven shape is monotonous and the sun is low Depending on the angle, the light may not be captured even if it is refracted.
  • an object of the present invention is to provide a solar panel having a surface structure capable of efficiently irradiating a cell with sunlight.
  • the surface structure of the solar panel according to the first invention includes a cell that converts light into electric power and covers the surface of the cell so that the light is transmitted and reaches the cell.
  • Glass and a frame having a terminal for holding the cell and outputting the electric power, and a plurality of large convex portions are arranged vertically and horizontally on the surface of the glass.
  • a small convex portion is disposed between the large convex portion adjacent vertically, the large convex portion adjacent laterally, and the large convex portion adjacent diagonally.
  • the large convex portion is any one of a pyramid, a semi-ellipsoid, or a cone
  • the small convex portion is any one of a pyramid, a semi-ellipsoid, or a cone. It's also good.
  • a plurality of large concave portions are arranged vertically and horizontally on the surface of the glass instead of the convex portions, and further, one large concave portion, a large concave portion adjacent vertically, and a horizontal adjacent portion. It is good also as a small recessed part having been arrange
  • the large concave portion is any one of a pyramid, a semi-ellipsoid, or a cone
  • the small concave portion is any one of a pyramid, a semi-ellipsoid, or a cone. Also good.
  • the surface of the glass may be composed of an upper layer in which a plurality of large convex portions are arranged vertically and horizontally and a lower layer in which a plurality of large concave portions are arranged vertically and horizontally.
  • the surface of the glass is adjacent to the upper layer in which a plurality of large convex portions are arranged vertically and horizontally, the one large convex portion in the upper layer, the large convex portion adjacent vertically, and the horizontal surface. It is good also as consisting of the lower layer by which the small recessed part is arrange
  • the solar panel according to the second invention is characterized by having the surface structure of the solar panel according to the first invention.
  • the present invention it is possible to provide a solar panel having a surface structure that can efficiently irradiate a cell with sunlight. That is, in the present invention, when the sun is at a high position, it is possible to generate power by taking in sunlight from the start of the sun rising to just before the sun sets.
  • FIG. 1 is an exploded perspective view showing the overall structure of a solar panel according to the present invention.
  • the solar panel 100 is a device that generates power with a solar cell. As shown in FIG. 1, the solar panel 100 includes a cell 300 that is a set of solar cells, a glass 200 that covers the surface of the cell 300, and a frame 400 that holds the cell 300. In addition, the surface of the cell 300 is the side from which the solar cell captures light, and the back surface is the opposite side.
  • the cell 300 is a solar cell that converts light into electric power, but a plurality of solar cells may be combined. As shown in FIG. 1, a solar cell exists in each sheet-like cell. Although the electromotive force of each solar cell is small, the voltage may be increased by connecting a large number of solar cells in series.
  • the glass 200 is placed on the surface of the cell 300 in order to protect the cell 300. Note that in order to allow light such as sunlight to reach the cell 300, the glass 200 needs to be transparent and transmit light. The presence of the glass 200 protects the cell 300 from not only falling objects due to weather such as rain, snow, or hail, but also other flying objects such as stones even when the solar panel 100 is installed outdoors.
  • materials other than glass 200 for example, a synthetic resin, may be used, a hard material is preferable.
  • the surface of the glass 200 may be coated with a film for preventing contamination.
  • the coating is degraded due to aging and peeled off, dirt tends to adhere. Re-coating every few years takes time for maintenance, so it is preferable to make it difficult to be stained by other means such as providing unevenness to reduce the contact surface with the stain.
  • the frame 400 is a plate that is applied to the back surface of the cell 300 in order to hold the cell 300.
  • the frame 400 has a junction box 500 for outputting the power generated by the cell 300.
  • the junction box 500 is a box for connecting, branching, or relaying electric wires and protecting the part.
  • the junction box 500 includes terminals 510 and 511 for supplying power.
  • FIG. 2 is an enlarged perspective view showing an example of the surface structure of the solar panel according to the present invention.
  • FIG. 3 is an enlarged side view for explaining light refraction by the surface structure of the solar panel according to the present invention.
  • 4 to 7 are enlarged perspective views showing examples of the surface structure of the solar panel according to the present invention.
  • a plurality of large convex portions are arranged vertically and horizontally on the surface of the glass 200, and further, one large convex portion, a vertically adjacent large convex portion, a horizontally adjacent large convex portion, and a diagonally adjacent large convex portion.
  • a small convex portion is arranged between the convex portions.
  • the large protrusion is a large protrusion with the same predetermined shape, and the small protrusion is a small protrusion with the same predetermined shape.
  • the large convex portion and the small convex portion may have different shapes.
  • a pyramid large convex portion 210 and a pyramid small convex portion 211 are arranged. Specifically, the large convex portion (pyramid) 210 is repeated in the vertical direction and the horizontal direction, and the small convex portion (pyramid) 211 is interposed therebetween.
  • a small convex portion (pyramid) 211 is provided at the center position where each corner contacts.
  • the large convex portion (pyramid) 210c is on the side adjacent to both the large convex portion (pyramid) 210a and the large convex portion (pyramid) 210b.
  • the pyramid is not limited to a quadrangular pyramid, but may be a triangular pyramid or a hexagonal pyramid. Moreover, you may provide a small convex part between not only the center of four large convex parts but two large convex parts. That is, in this case, a small convex portion (pyramid) 211 is provided at a position where the large convex portion (pyramid) 210 and the large convex portion (pyramid) 210 a contact at a side, and the large convex portion (pyramid) 210 and the large convex portion are provided. A small convex portion (pyramid) 211 is also provided at a position where the portion (pyramid) 210 b contacts with the side.
  • the surface structure 200a is formed using a 3D printer or other means.
  • the number of times of light refraction is increased by interposing the small convex portion 211 between the large convex portion 210a and the adjacent large convex portion 210b.
  • the refractive index of the glass 200 varies depending on the wavelength of light, but is about 1.4 to 2.1 when the vacuum is 1. As shown in FIG. 3, the direction of light is gradually bent by passing a plurality of times through a tapered shape such as a pyramid.
  • the light 600 close to the horizontal (high position) 600 it is directed downward by being refracted when entering and exiting the large convex portion 210a and when entering and exiting the large convex portion 210b.
  • the light 601 that is nearly horizontal (low position) 601 the light is directed downward by being refracted at the time of entering and exiting the large convex portion 210 a and at the time of entering and exiting the small convex portion 211.
  • the light 600 and 601 are easily taken into the cell 300 below the glass 200.
  • a surface structure 200b shown in FIG. 4 is a combination of a large convex portion 210 of a pyramid and a small convex portion 212 of a semi-ellipsoid (elliptical hemisphere).
  • the pyramid is a quadrangular pyramid as an example, but it may be a triangular pyramid.
  • the truncated pyramid may be a truncated pyramid.
  • the semi-ellipsoid includes not only a sphere or ellipsoid cut in half, but also a part of a sphere or ellipsoid cut out.
  • the surface structure 200c shown in FIG. 5 is a combination of a large convex portion 210 of a pyramid and a small convex portion 213 of a cone.
  • the cone includes a truncated cone.
  • a surface structure 200d shown in FIG. 6 is a combination of a large convex portion 220 of a semi-ellipsoid (elliptical hemisphere) and a small convex portion 221 of a pyramid.
  • the surface structure 200e shown in FIG. 7 is a combination of a large conical convex portion 230 and a small convex portion 231 having a pyramid shape.
  • the solar panel which has the surface structure which can irradiate a cell efficiently with sunlight can be provided by making surface structure into the shape which combined the large convex part and the small convex part. In other words, when the sun is at a high position, it is possible to generate power by taking in sunlight until the sun just rises and before the sun sets.
  • FIG. 8 is an enlarged perspective view showing an example in which the surface structure of the solar panel according to the present invention is concave.
  • the surface structure of the glass 200 may be not only projected upward in a tapered shape but conversely depressed downward.
  • the surface structure 200f shown in FIG. 8 is a flat lower glass 250 that is depressed such that a plurality of pyramidal large concave portions 260 are arranged in the vertical and horizontal directions. As shown in FIG. 8, the arrangement of the large convex portions 260 described on the lower layer glass 250 is indented toward the lower layer glass 250 on the opposite side.
  • a plurality of large recesses are arranged vertically and horizontally, and further, one large recess, a vertically adjacent large recess, and a horizontally adjacent large recess.
  • a small concave portion may be arranged between the large concave portion adjacent obliquely.
  • a large recessed part and a small recessed part not only a pyramid but shapes, such as a semi-ellipsoid and a cone, may be sufficient.
  • a solar panel having a surface structure capable of efficiently irradiating a cell with sunlight even if the surface structure is replaced with a convex portion and the shape is a combination of a large concave portion and a small concave portion.
  • FIGS. 9 and 10 are enlarged views showing an example when the surface structure of the solar panel according to the present invention is made into two layers.
  • the surface structure of the glass 200 may be protruded upward in a tapered shape and may be depressed downward.
  • the surface structure 200g shown in FIG. 9 includes an arrangement of large convex portions (pyramids) 260, which is an upper glass, and an arrangement of semi-ellipsoid large concave portions 270 formed in the lower glass 250, as shown in FIG. It is something that has been overlaid. That is, the surface structure 200g includes an upper glass in which a plurality of large convex portions are arranged vertically and horizontally and a lower glass 250 in which a plurality of large concave portions are arranged vertically and horizontally.
  • a solar panel having a surface structure capable of efficiently irradiating cells with sunlight can be provided even if the surface structure is a shape in which large concave portions of the upper glass layer and large concave portions of the lower glass layer 250 are combined.
  • FIG. 11 and 12 are enlarged views showing an example in which the surface structure of the solar panel according to the present invention is made into two layers.
  • the surface structure 200h shown in FIG. 11 is obtained by superimposing an array of large convex portions (semi-ellipsoids) 220, which is an upper glass layer, and an array of semi-elliptical small concave portions 271 formed on the lower glass layer 250, vertically. is there.
  • one large convex part (semi-ellipsoid) 220 in the upper glass a large convex part (semi-ellipsoid) 220a vertically adjacent, a large convex part (semi-ellipsoid) 220b adjacent horizontally, and diagonally
  • a small concave portion 271 in the lower layer glass 250 is disposed at a position corresponding to between the adjacent large convex portion (semi-ellipsoid) 220c. That is, the small convex portion 211 in FIG. 2 does not protrude upward, but corresponds to a state where it is depressed downward as shown in FIG.
  • the upper glass layer may have a small convex portion
  • the lower glass layer 250 may have a large concave portion.
  • a solar panel having a surface structure that can efficiently irradiate cells with sunlight can be provided even if the surface structure is a shape in which large concave portions of the upper glass and small concave portions of the lower glass are combined.
  • the direction of the solar panel 100 is not limited to the south direction, and it is possible to efficiently generate light by taking in light in directions other than the north. Moreover, even in the time zone, it is possible to generate power not only after noon but also from the time when the sun angle is low in the early morning or evening.
  • Example of this invention was described, it is not limited to these.
  • materials and shapes having different refractive indexes may be combined.
  • those having the same refractive index but different sizes may be combined.
  • the light collection rate is changed, and light can be captured from a wider angle range.
  • Solar panel 200 Glass 200a to 200h: Surface structure 210, 210a to 210c: Large convex part (pyramid) 211, 221, 231: Small convex part (pyramid) 212: Small convex part (semi-ellipsoid) 213: Small convex part (cone) 220, 220a-220c: Large convex part (semi-ellipsoid) 230: Large convex part (cone) 250: Lower glass 260: Large recess (pyramid) 270: Large recess (semi-ellipsoid) 271: Small recess (semi-ellipsoid) 300: Cell 400: Frame 500: Junction box 510, 511: Terminal 600, 601: Light

Abstract

Provided is a solar panel with a surface structure which enables efficient irradiation of cells with sunlight. The solar panel surface structure comprises cells for converting light into electric power, glass covering the surface of the cells so as to allow the light to be transmitted and reach the cells, and a frame which holds the cells and which is provided with terminals for outputting the electric power. The solar panel surface structure is characterized in that a plurality of large protrusion portions is arranged vertically and horizontally on the surface of the glass, and in that each of a plurality of small protrusion portions is disposed between one large protrusion portion and: a large protrusion portion which is vertically adjacent to said one large protrusion portion; a large protrusion portion which is horizontally adjacent to said one large protrusion portion; and a large protrusion portion which is diagonally adjacent to said one large protrusion portion.

Description

ソーラーパネル及びその表面構造Solar panel and its surface structure
 本発明は、太陽光を電力に変換することにより発電するソーラーパネル及びその表面構造に関する。 The present invention relates to a solar panel that generates electricity by converting sunlight into electric power and a surface structure thereof.
 ソーラーパネルは、太陽電池(ソーラーセル)を複数集めてパネル状にしたものである。また、太陽電池は、光起電力効果を利用して、光エネルギーを電力に変換する電力機器である。太陽電池には、シリコン系や化合物系などの種類がある。太陽電池は、太陽が出ている日中に発電を行い、夜間や天気の悪い日には発電ができない。そのため、できるだけ太陽の出ているときに、効率良く太陽光を取り入れる必要がある。特許文献1に示すように、凹凸シートで入射光を偏向させ、発電層での吸収量を増大させる発明も公開されている。 A solar panel is a panel formed by collecting a plurality of solar cells (solar cells). A solar cell is a power device that converts light energy into electric power using the photovoltaic effect. Solar cells include silicon and compound types. Solar cells generate electricity during the day when the sun is out, and cannot generate electricity during the night or in bad weather. Therefore, it is necessary to take in sunlight efficiently when the sun is out as much as possible. As shown in Patent Document 1, an invention is also disclosed in which incident light is deflected by an uneven sheet to increase the amount of absorption in a power generation layer.
特許第5640952号公報Japanese Patent No. 5640952
 しかしながら、特許文献1に記載の発明は、表面の凹凸で太陽光を屈折又は反射させて、太陽光を効率良く取り込もうとするものであるが、凹凸形状の繰り返しが単調であり、太陽が低い位置にある場合など角度によっては、屈折させても光が取り込めないことがある。 However, the invention described in Patent Document 1 attempts to efficiently capture sunlight by refracting or reflecting sunlight with the unevenness of the surface, but the repetition of the uneven shape is monotonous and the sun is low Depending on the angle, the light may not be captured even if it is refracted.
 そこで、本発明は、太陽光を効率良くセルに照射することができる表面構造を有するソーラーパネルを提供することを目的とする。 Therefore, an object of the present invention is to provide a solar panel having a surface structure capable of efficiently irradiating a cell with sunlight.
 上記の課題を解決するために、第1の発明であるソーラーパネルの表面構造は、光を電力に変換するセルと、前記光が透過して前記セルに到達するように前記セルの表面を覆うガラスと、前記セルを保持すると共に前記電力を出力する端子を備えたフレームと、を有し、前記ガラスの表面には、複数の大凸部が縦横に配列され、さらに、一の大凸部と、縦に隣接する大凸部と、横に隣接する大凸部と、斜めに隣接する大凸部との間に、小凸部が配置された、ことを特徴とする。 In order to solve the above problems, the surface structure of the solar panel according to the first invention includes a cell that converts light into electric power and covers the surface of the cell so that the light is transmitted and reaches the cell. Glass, and a frame having a terminal for holding the cell and outputting the electric power, and a plurality of large convex portions are arranged vertically and horizontally on the surface of the glass. A small convex portion is disposed between the large convex portion adjacent vertically, the large convex portion adjacent laterally, and the large convex portion adjacent diagonally.
 また、第1の発明は、前記大凸部が、角錐、半楕円体、又は円錐の何れか一であり、前記小凸部が、角錐、半楕円体、又は円錐の何れか一である、こととしても良い。 Further, in the first invention, the large convex portion is any one of a pyramid, a semi-ellipsoid, or a cone, and the small convex portion is any one of a pyramid, a semi-ellipsoid, or a cone. It's also good.
 また、第1の発明は、前記ガラスの表面には、凸部に代えて、複数の大凹部が縦横に配列され、さらに、一の大凹部と、縦に隣接する大凹部と、横に隣接する大凹部と、斜めに隣接する大凹部との間に、小凹部が配置された、こととしても良い。 Further, in the first invention, a plurality of large concave portions are arranged vertically and horizontally on the surface of the glass instead of the convex portions, and further, one large concave portion, a large concave portion adjacent vertically, and a horizontal adjacent portion. It is good also as a small recessed part having been arrange | positioned between the large recessed part which carries out and the diagonally adjacent large recessed part.
 また、第1の発明は、前記大凹部が、角錐、半楕円体、又は円錐の何れか一であり、前記小凹部が、角錐、半楕円体、又は円錐の何れか一である、こととしても良い。 In the first invention, the large concave portion is any one of a pyramid, a semi-ellipsoid, or a cone, and the small concave portion is any one of a pyramid, a semi-ellipsoid, or a cone. Also good.
 また、第1の発明は、前記ガラスの表面は、複数の大凸部が縦横に配列された上層と、複数の大凹部が縦横に配列された下層とからなる、こととしても良い。 In the first invention, the surface of the glass may be composed of an upper layer in which a plurality of large convex portions are arranged vertically and horizontally and a lower layer in which a plurality of large concave portions are arranged vertically and horizontally.
 また、第1の発明は、前記ガラスの表面は、複数の大凸部が縦横に配列された上層と、前記上層における一の大凸部と、縦に隣接する大凸部と、横に隣接する大凸部と、斜めに隣接する大凸部との間に相当する位置に、小凹部が配置された下層とからなる、こととしても良い。 In the first invention, the surface of the glass is adjacent to the upper layer in which a plurality of large convex portions are arranged vertically and horizontally, the one large convex portion in the upper layer, the large convex portion adjacent vertically, and the horizontal surface. It is good also as consisting of the lower layer by which the small recessed part is arrange | positioned in the position corresponded between the large convex part to perform and the large convex part which adjoins diagonally.
 さらに、第2の発明であるソーラーパネルは、第1の発明であるソーラーパネルの表面構造を有する、ことを特徴とする。 Furthermore, the solar panel according to the second invention is characterized by having the surface structure of the solar panel according to the first invention.
 本発明によれば、太陽光を効率良くセルに照射することができる表面構造を有するソーラーパネルを提供することができる。すなわち、本発明では、太陽が高い位置にあるときは勿論、太陽が昇り始めてから太陽が沈む寸前まで、太陽光を取り込んで発電することが可能である。 According to the present invention, it is possible to provide a solar panel having a surface structure that can efficiently irradiate a cell with sunlight. That is, in the present invention, when the sun is at a high position, it is possible to generate power by taking in sunlight from the start of the sun rising to just before the sun sets.
本発明であるソーラーパネルの全体構造を示す分解斜視図である。It is a disassembled perspective view which shows the whole structure of the solar panel which is this invention. 本発明であるソーラーパネルの表面構造の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example of the surface structure of the solar panel which is this invention. 本発明であるソーラーパネルの表面構造による光の屈折を説明する拡大側面図である。It is an enlarged side view explaining the refraction of light by the surface structure of the solar panel which is this invention. 本発明であるソーラーパネルの表面構造の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example of the surface structure of the solar panel which is this invention. 本発明であるソーラーパネルの表面構造の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example of the surface structure of the solar panel which is this invention. 本発明であるソーラーパネルの表面構造の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example of the surface structure of the solar panel which is this invention. 本発明であるソーラーパネルの表面構造の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example of the surface structure of the solar panel which is this invention. 本発明であるソーラーパネルの表面構造を凹状にした場合の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example at the time of making the surface structure of the solar panel which is this invention concave. 本発明であるソーラーパネルの表面構造を二層にした場合の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example at the time of making the surface structure of the solar panel which is this invention into two layers. 本発明であるソーラーパネルの表面構造を二層にした場合の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example at the time of making the surface structure of the solar panel which is this invention into two layers. 本発明であるソーラーパネルの表面構造を二層にした場合の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example at the time of making the surface structure of the solar panel which is this invention into two layers. 本発明であるソーラーパネルの表面構造を二層にした場合の一例を示す拡大側面図である。It is an enlarged side view which shows an example at the time of making the surface structure of the solar panel which is this invention into two layers.
 以下に、本発明の実施形態について図面を参照して詳細に説明する。なお、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, what has the same function attaches | subjects the same code | symbol, and the repeated description may be abbreviate | omitted.
 まず、本発明であるソーラーパネルの構成について説明する。図1は、本発明であるソーラーパネルの全体構造を示す分解斜視図である。 First, the configuration of the solar panel according to the present invention will be described. FIG. 1 is an exploded perspective view showing the overall structure of a solar panel according to the present invention.
 ソーラーパネル100は、太陽電池で発電を行う装置である。ソーラーパネル100は、図1に示すように、太陽電池の集合であるセル300と、セル300の表面を覆うガラス200と、セル300を保持するフレーム400とを有する。なお、セル300の表面は、太陽電池が光を取り込む側であり、裏面はその反対側である。 The solar panel 100 is a device that generates power with a solar cell. As shown in FIG. 1, the solar panel 100 includes a cell 300 that is a set of solar cells, a glass 200 that covers the surface of the cell 300, and a frame 400 that holds the cell 300. In addition, the surface of the cell 300 is the side from which the solar cell captures light, and the back surface is the opposite side.
 セル300は、光を電力に変換する太陽電池であるが、複数の太陽電池をまとめたものであっても良い。図1に示すように、シート状の各マス目に太陽電池が存在する。各太陽電池の起電力は小さいが、多数の太陽電池を直列に接続することにより、電圧を上げても良い。 The cell 300 is a solar cell that converts light into electric power, but a plurality of solar cells may be combined. As shown in FIG. 1, a solar cell exists in each sheet-like cell. Although the electromotive force of each solar cell is small, the voltage may be increased by connecting a large number of solar cells in series.
 ガラス200は、セル300を保護するために、セル300の表面に被せるものである。なお、太陽光などの光をセル300に到達させるために、ガラス200は透明にして光を透過させる必要がある。ガラス200があることにより、ソーラーパネル100を屋外に設置しても、雨、雪、又は雹など天候による落下物だけでなく、石などその他の飛来物から、セル300が保護される。なお、ガラス200以外の材質、例えば、合成樹脂などを使用しても良いが、硬質のものが好ましい。 The glass 200 is placed on the surface of the cell 300 in order to protect the cell 300. Note that in order to allow light such as sunlight to reach the cell 300, the glass 200 needs to be transparent and transmit light. The presence of the glass 200 protects the cell 300 from not only falling objects due to weather such as rain, snow, or hail, but also other flying objects such as stones even when the solar panel 100 is installed outdoors. In addition, although materials other than glass 200, for example, a synthetic resin, may be used, a hard material is preferable.
 なお、ガラス200の表面には汚れなどが付着することもあり、セル300の発電効率を妨げる。そのため、ガラス200の表面に汚れ防止用の被膜をコーティングしても良い。ただし、被膜は経年劣化して剥がれると汚れが付着しやすくなる。数年ごとにコーティングし直すとメンテナンスに手間が掛かるため、凹凸を付けて汚れとの接触面を減らすなどその他の手段により汚れを付きにくくすることが好ましい。 It should be noted that dirt or the like may adhere to the surface of the glass 200, thereby hindering the power generation efficiency of the cell 300. For this reason, the surface of the glass 200 may be coated with a film for preventing contamination. However, when the coating is degraded due to aging and peeled off, dirt tends to adhere. Re-coating every few years takes time for maintenance, so it is preferable to make it difficult to be stained by other means such as providing unevenness to reduce the contact surface with the stain.
 フレーム400は、セル300を保持するために、セル300の裏面に当てられる板である。また、フレーム400は、セル300が発電した電力を出力するためのジャンクションボックス500を有する。 The frame 400 is a plate that is applied to the back surface of the cell 300 in order to hold the cell 300. The frame 400 has a junction box 500 for outputting the power generated by the cell 300.
 ジャンクションボックス500は、電線を結合、分岐、又は中継すると共に、その部分を保護するために箱である。ジャンクションボックス500は、電力を供給するために、端子510、511を備える。なお、端子510、511などの接続部分のある箱内に湿気が侵入しないように、ゴムパッキン等でシールしても良い。 The junction box 500 is a box for connecting, branching, or relaying electric wires and protecting the part. The junction box 500 includes terminals 510 and 511 for supplying power. In addition, you may seal with rubber packing etc. so that moisture may not penetrate | invade into a box with connection parts, such as the terminals 510 and 511. FIG.
 次に、本発明であるソーラーパネルの表面構造について説明する。図2は、本発明であるソーラーパネルの表面構造の一例を示す拡大斜視図である。図3は、本発明であるソーラーパネルの表面構造による光の屈折を説明する拡大側面図である。図4~7は、本発明であるソーラーパネルの表面構造の一例を示す拡大斜視図である。 Next, the surface structure of the solar panel according to the present invention will be described. FIG. 2 is an enlarged perspective view showing an example of the surface structure of the solar panel according to the present invention. FIG. 3 is an enlarged side view for explaining light refraction by the surface structure of the solar panel according to the present invention. 4 to 7 are enlarged perspective views showing examples of the surface structure of the solar panel according to the present invention.
 ガラス200の表面には、複数の大凸部が縦横に配列され、さらに、一の大凸部と、縦に隣接する大凸部と、横に隣接する大凸部と、斜めに隣接する大凸部との間に、小凸部が配置される。大凸部は、同一の所定の形状で大きく突出させたもので、小凸部は、同一の所定の形状で小さく突出させたものである。なお、大凸部と小凸部とは、形状は異なっていても良い。 A plurality of large convex portions are arranged vertically and horizontally on the surface of the glass 200, and further, one large convex portion, a vertically adjacent large convex portion, a horizontally adjacent large convex portion, and a diagonally adjacent large convex portion. A small convex portion is arranged between the convex portions. The large protrusion is a large protrusion with the same predetermined shape, and the small protrusion is a small protrusion with the same predetermined shape. The large convex portion and the small convex portion may have different shapes.
 図2に示す表面構造200aの例では、角錐の大凸部210と角錐の小凸部211とが配列される。具体的には、大凸部(角錐)210が縦方向及び横方向に繰り返され、その間に小凸部(角錐)211が介される。すなわち、一の大凸部(角錐)210に対して、縦方向に隣接する大凸部(角錐)210a、横方向に隣接する大凸部(角錐)210b、斜め方向に隣接する大凸部(角錐)210cとしたとき、それぞれの角が接触する中心の位置に小凸部(角錐)211が設けられる。なお、大凸部(角錐)210cは、大凸部(角錐)210aと大凸部(角錐)210bの両方に隣接する側のものとする。 In the example of the surface structure 200a shown in FIG. 2, a pyramid large convex portion 210 and a pyramid small convex portion 211 are arranged. Specifically, the large convex portion (pyramid) 210 is repeated in the vertical direction and the horizontal direction, and the small convex portion (pyramid) 211 is interposed therebetween. That is, for one large convex portion (pyramid) 210, a large convex portion (pyramid) 210a adjacent in the vertical direction, a large convex portion (pyramid) 210b adjacent in the horizontal direction, and a large convex portion adjacent in the diagonal direction ( (Pyramid) 210c, a small convex portion (pyramid) 211 is provided at the center position where each corner contacts. The large convex portion (pyramid) 210c is on the side adjacent to both the large convex portion (pyramid) 210a and the large convex portion (pyramid) 210b.
 角錐は、四角錐に限られず、三角錐や六角錐などでも良い。また、四つの大凸部の中心だけでなく、二つの大凸部の間に、小凸部を設けても良い。すなわち、その場合、大凸部(角錐)210と大凸部(角錐)210aとが、辺で接触する位置に小凸部(角錐)211が設けられ、大凸部(角錐)210と大凸部(角錐)210bとが、辺で接触する位置にも小凸部(角錐)211が設けられる。 The pyramid is not limited to a quadrangular pyramid, but may be a triangular pyramid or a hexagonal pyramid. Moreover, you may provide a small convex part between not only the center of four large convex parts but two large convex parts. That is, in this case, a small convex portion (pyramid) 211 is provided at a position where the large convex portion (pyramid) 210 and the large convex portion (pyramid) 210 a contact at a side, and the large convex portion (pyramid) 210 and the large convex portion are provided. A small convex portion (pyramid) 211 is also provided at a position where the portion (pyramid) 210 b contacts with the side.
 大凸部だけの繰り返しの場合、ガラス200の表面に縦方向に等間隔で切り込みを入れ、同様に、横方向に等間隔で切り込みを入れることにより、容易に突起状の形状に加工することが可能である。しかしながら、間に小凸部が存在するように加工することは、非常に困難である。そのため、精密に形状を計算した上で3Dプリンター又はその他の手段を用いて表面構造200aを成形する。 In the case of repeating only the large convex portions, it is possible to easily process the surface of the glass 200 into a protruding shape by making cuts at equal intervals in the vertical direction and similarly by making cuts at equal intervals in the horizontal direction. Is possible. However, it is very difficult to process so that a small convex part exists between them. Therefore, after calculating the shape precisely, the surface structure 200a is formed using a 3D printer or other means.
 表面構造200aを有するガラス200に太陽光が入射した場合、垂直に近い方向からであれば、ガラス200内で屈折又は反射したとしても、多くの光はセル300に取り込まれる。しかし、水平に近い方向からの場合、大きく屈折しないと反対側に抜けてしまうこともあり、あまり光をセル300に取り込ませることができない。 When sunlight is incident on the glass 200 having the surface structure 200a, a large amount of light is taken into the cell 300 even if it is refracted or reflected in the glass 200 from a direction close to vertical. However, from the direction close to the horizontal, if the light is not greatly refracted, it may escape to the opposite side, and light cannot be taken into the cell 300 much.
 そこで、大凸部210aと隣接する大凸部210bの間に小凸部211を介すことにより、光の屈折回数を多くする。なお、ガラス200の屈折率は、光の波長によっても異なるが、真空を1としたとき、約1.4~2.1である。図3に示すように、角錐などテーパ状の形状に対して複数回通すことにより、光の方向を徐々に曲げていく。 Therefore, the number of times of light refraction is increased by interposing the small convex portion 211 between the large convex portion 210a and the adjacent large convex portion 210b. The refractive index of the glass 200 varies depending on the wavelength of light, but is about 1.4 to 2.1 when the vacuum is 1. As shown in FIG. 3, the direction of light is gradually bent by passing a plurality of times through a tapered shape such as a pyramid.
 例えば、水平に近い光(高い位置)600の場合、大凸部210aへの入射時と出射時、さらに大凸部210bへの入射時と出射時に、それぞれ屈折することで下方に向けられる。また、水平に近い光(低い位置)601の場合、大凸部210aへの入射時と出射時、さらに小凸部211への入射時と出射時に、それぞれ屈折することで下方に向けられる。これにより、ガラス200の下方にあるセル300に光600、601が取り込まれやすくなる。 For example, in the case of light 600 close to the horizontal (high position) 600, it is directed downward by being refracted when entering and exiting the large convex portion 210a and when entering and exiting the large convex portion 210b. In addition, in the case of light 601 that is nearly horizontal (low position) 601, the light is directed downward by being refracted at the time of entering and exiting the large convex portion 210 a and at the time of entering and exiting the small convex portion 211. Thereby, the light 600 and 601 are easily taken into the cell 300 below the glass 200.
 ガラス200の表面構造、すなわち大凸部と小凸部の形状の組合せには、様々なものが考えられる。図4に示す表面構造200bは、角錐の大凸部210と半楕円体(楕円半球)の小凸部212を組み合わせたものである。なお、角錐は、例として四角錐を示したが、三角錐などであっても良い。また、角錐の頂部を切り取った角錐台であっても良い。さらに、半楕円体は、球や楕円体を半分に切ったものだけでなく、球や楕円体の一部を切り取ったものも含む。 There are various possible surface structures of the glass 200, that is, combinations of the shapes of the large and small convex portions. A surface structure 200b shown in FIG. 4 is a combination of a large convex portion 210 of a pyramid and a small convex portion 212 of a semi-ellipsoid (elliptical hemisphere). The pyramid is a quadrangular pyramid as an example, but it may be a triangular pyramid. Moreover, the truncated pyramid may be a truncated pyramid. Further, the semi-ellipsoid includes not only a sphere or ellipsoid cut in half, but also a part of a sphere or ellipsoid cut out.
 図5に示す表面構造200cは、角錐の大凸部210と円錐の小凸部213を組み合わせたものである。なお、円錐については円錐台も含む。図6に示す表面構造200dは、半楕円体(楕円半球)の大凸部220と角錐の小凸部221を組み合わせたものである。図7に示す表面構造200eは、円錐の大凸部230と角錐の小凸部231を組み合わせたものである。 The surface structure 200c shown in FIG. 5 is a combination of a large convex portion 210 of a pyramid and a small convex portion 213 of a cone. The cone includes a truncated cone. A surface structure 200d shown in FIG. 6 is a combination of a large convex portion 220 of a semi-ellipsoid (elliptical hemisphere) and a small convex portion 221 of a pyramid. The surface structure 200e shown in FIG. 7 is a combination of a large conical convex portion 230 and a small convex portion 231 having a pyramid shape.
 表面構造を大凸部と小凸部を組み合わせた形状とすることで、太陽光を効率良くセルに照射することができる表面構造を有するソーラーパネルを提供することができる。すなわち、太陽が高い位置にあるときは勿論、太陽が昇り始めてから太陽が沈む寸前まで、太陽光を取り込んで発電することが可能である。 The solar panel which has the surface structure which can irradiate a cell efficiently with sunlight can be provided by making surface structure into the shape which combined the large convex part and the small convex part. In other words, when the sun is at a high position, it is possible to generate power by taking in sunlight until the sun just rises and before the sun sets.
 さらに、一の大凸部と隣接する大凸部との間に凹みがあると、そこに汚れ等の異物が溜まりやすくなるが、小凸部を介すことで凹みを減らすことができ、被膜等をコーティングすることなく、半永久的に汚れを抑制することができる。 Furthermore, if there is a dent between one large convex part and the adjacent large convex part, foreign substances such as dirt are likely to accumulate there, but the dent can be reduced through the small convex part, and the coating Dirt can be suppressed semi-permanently without coating with the like.
 次に、本発明であるソーラーパネルの別の表面構造について説明する。図8は、本発明であるソーラーパネルの表面構造を凹状にした場合の一例を示す拡大斜視図である。 Next, another surface structure of the solar panel according to the present invention will be described. FIG. 8 is an enlarged perspective view showing an example in which the surface structure of the solar panel according to the present invention is concave.
 ガラス200の表面構造は、テーパ状に上方に突出させるだけでなく、逆に下方に陥没させても良い。図8に示す表面構造200fは、平板状の下層ガラス250に、複数の角錐の大凹部260が縦方向及び横方向に配列されるように陥没させたものである。図8に示すように、下層ガラス250の上に記載した大凸部260の配列を、そのまま反対側である下層ガラス250に向かって凹ました形状となる。 The surface structure of the glass 200 may be not only projected upward in a tapered shape but conversely depressed downward. The surface structure 200f shown in FIG. 8 is a flat lower glass 250 that is depressed such that a plurality of pyramidal large concave portions 260 are arranged in the vertical and horizontal directions. As shown in FIG. 8, the arrangement of the large convex portions 260 described on the lower layer glass 250 is indented toward the lower layer glass 250 on the opposite side.
 さらに、図2等と同様に、表面構造200fの場合についても、複数の大凹部が縦横に配列され、さらに、一の大凹部と、縦に隣接する大凹部と、横に隣接する大凹部と、斜めに隣接する大凹部との間に、小凹部が配置されるようにしても良い。なお、大凹部及び小凹部の形状については、角錐だけでなく、半楕円体や円錐などの形状であっても良い。 Further, similarly to FIG. 2 and the like, also in the case of the surface structure 200f, a plurality of large recesses are arranged vertically and horizontally, and further, one large recess, a vertically adjacent large recess, and a horizontally adjacent large recess. A small concave portion may be arranged between the large concave portion adjacent obliquely. In addition, about the shape of a large recessed part and a small recessed part, not only a pyramid but shapes, such as a semi-ellipsoid and a cone, may be sufficient.
 表面構造を凸部に代えて大凹部と小凹部を組み合わせた形状としても、太陽光を効率良くセルに照射することができる表面構造を有するソーラーパネルを提供することができる。 It is possible to provide a solar panel having a surface structure capable of efficiently irradiating a cell with sunlight even if the surface structure is replaced with a convex portion and the shape is a combination of a large concave portion and a small concave portion.
 さらに、本発明であるソーラーパネルの別の表面構造について説明する。図9、10は、本発明であるソーラーパネルの表面構造を二層にした場合の一例を示す拡大図である。 Furthermore, another surface structure of the solar panel according to the present invention will be described. 9 and 10 are enlarged views showing an example when the surface structure of the solar panel according to the present invention is made into two layers.
 ガラス200の表面構造は、テーパ状に上方に突出させると共に、下方に陥没させても良い。図9に示す表面構造200gは、上層ガラスである大凸部(角錐)260の配列と、下層ガラス250に形成した半楕円体の大凹部270の配列とを、図10に示すように、上下に重ねたものである。すなわち、表面構造200gは、複数の大凸部が縦横に配列された上層ガラスと、複数の大凹部が縦横に配列された下層ガラス250とからなる。 The surface structure of the glass 200 may be protruded upward in a tapered shape and may be depressed downward. The surface structure 200g shown in FIG. 9 includes an arrangement of large convex portions (pyramids) 260, which is an upper glass, and an arrangement of semi-ellipsoid large concave portions 270 formed in the lower glass 250, as shown in FIG. It is something that has been overlaid. That is, the surface structure 200g includes an upper glass in which a plurality of large convex portions are arranged vertically and horizontally and a lower glass 250 in which a plurality of large concave portions are arranged vertically and horizontally.
 表面構造を上層ガラスの大凹部と下層ガラス250の大凹部を組み合わせた形状としても、太陽光を効率良くセルに照射することができる表面構造を有するソーラーパネルを提供することができる。 A solar panel having a surface structure capable of efficiently irradiating cells with sunlight can be provided even if the surface structure is a shape in which large concave portions of the upper glass layer and large concave portions of the lower glass layer 250 are combined.
 さらに、本発明であるソーラーパネルの別の表面構造について説明する。図11、12は、本発明であるソーラーパネルの表面構造を二層にした場合の一例を示す拡大図である。 Furthermore, another surface structure of the solar panel according to the present invention will be described. 11 and 12 are enlarged views showing an example in which the surface structure of the solar panel according to the present invention is made into two layers.
 図11に示す表面構造200hは、上層ガラスである大凸部(半楕円体)220の配列と、下層ガラス250に形成した半楕円体の小凹部271の配列とを、上下に重ねたものである。なお、上層ガラスにおける一の大凸部(半楕円体)220と、縦に隣接する大凸部(半楕円体)220aと、横に隣接する大凸部(半楕円体)220bと、斜めに隣接する大凸部(半楕円体)220cとの間に相当する位置に、下層ガラス250における小凹部271が配置される。すなわち、図2における小凸部211を上方に突出させるのではなく、図12に示すように、下方に陥没させた状態に相当する。なお、上層ガラスに小凸部とし、下層ガラス250に大凹部としても良い。 The surface structure 200h shown in FIG. 11 is obtained by superimposing an array of large convex portions (semi-ellipsoids) 220, which is an upper glass layer, and an array of semi-elliptical small concave portions 271 formed on the lower glass layer 250, vertically. is there. In addition, one large convex part (semi-ellipsoid) 220 in the upper glass, a large convex part (semi-ellipsoid) 220a vertically adjacent, a large convex part (semi-ellipsoid) 220b adjacent horizontally, and diagonally A small concave portion 271 in the lower layer glass 250 is disposed at a position corresponding to between the adjacent large convex portion (semi-ellipsoid) 220c. That is, the small convex portion 211 in FIG. 2 does not protrude upward, but corresponds to a state where it is depressed downward as shown in FIG. The upper glass layer may have a small convex portion, and the lower glass layer 250 may have a large concave portion.
 表面構造を上層ガラスの大凹部と下層ガラスの小凹部を組み合わせた形状としても、太陽光を効率良くセルに照射することができる表面構造を有するソーラーパネルを提供することができる。 A solar panel having a surface structure that can efficiently irradiate cells with sunlight can be provided even if the surface structure is a shape in which large concave portions of the upper glass and small concave portions of the lower glass are combined.
 これらの表面構造を採用することにより、ソーラーパネル100の方角が南向きに限定されず、北以外の方向であれば効率良く光を取り込んで発電することが可能となる。また、時間帯においても、正午前後だけでなく、早朝又は夕方の太陽の角度が低い時間から発電することが可能となる。 By adopting these surface structures, the direction of the solar panel 100 is not limited to the south direction, and it is possible to efficiently generate light by taking in light in directions other than the north. Moreover, even in the time zone, it is possible to generate power not only after noon but also from the time when the sun angle is low in the early morning or evening.
 以上、本発明の実施例を述べたが、これらに限定されるものではない。例えば、屈折率の異なる材質や形状を組み合わせても良い。また、同じ屈折率でも大きさの異なるものを組み合わせても良い。これにより集光率が変わり、より広い角度範囲から光を取り込むことが可能となる。 As mentioned above, although the Example of this invention was described, it is not limited to these. For example, materials and shapes having different refractive indexes may be combined. Also, those having the same refractive index but different sizes may be combined. As a result, the light collection rate is changed, and light can be captured from a wider angle range.
 100:ソーラーパネル
 200:ガラス
 200a~200h:表面構造
 210、210a~210c:大凸部(角錐)
 211、221、231:小凸部(角錐)
 212:小凸部(半楕円体)
 213:小凸部(円錐)
 220、220a~220c:大凸部(半楕円体)
 230:大凸部(円錐)
 250:下層ガラス
 260:大凹部(角錐)
 270:大凹部(半楕円体)
 271:小凹部(半楕円体)
 300:セル
 400:フレーム
 500:ジャンクションボックス
 510、511:端子
 600、601:光

 
100: Solar panel 200: Glass 200a to 200h: Surface structure 210, 210a to 210c: Large convex part (pyramid)
211, 221, 231: Small convex part (pyramid)
212: Small convex part (semi-ellipsoid)
213: Small convex part (cone)
220, 220a-220c: Large convex part (semi-ellipsoid)
230: Large convex part (cone)
250: Lower glass 260: Large recess (pyramid)
270: Large recess (semi-ellipsoid)
271: Small recess (semi-ellipsoid)
300: Cell 400: Frame 500: Junction box 510, 511: Terminal 600, 601: Light

Claims (7)

  1.  光を電力に変換するセルと、
     前記光が透過して前記セルに到達するように前記セルの表面を覆うガラスと、
     前記セルを保持すると共に前記電力を出力する端子を備えたフレームと、を有し、
     前記ガラスの表面には、複数の大凸部が縦横に配列され、さらに、一の大凸部と、縦に隣接する大凸部と、横に隣接する大凸部と、斜めに隣接する大凸部との間に、小凸部が配置された、
     ことを特徴とするソーラーパネルの表面構造。
    A cell that converts light into electrical power;
    Glass that covers the surface of the cell so that the light is transmitted and reaches the cell;
    A frame having a terminal for holding the cell and outputting the power,
    A plurality of large convex portions are arranged vertically and horizontally on the surface of the glass, and further, one large convex portion, a vertically adjacent large convex portion, a horizontally adjacent large convex portion, and a diagonally adjacent large A small convex part is arranged between the convex part,
    The surface structure of the solar panel.
  2.  前記大凸部が、角錐、半楕円体、又は円錐の何れか一であり、
     前記小凸部が、角錐、半楕円体、又は円錐の何れか一である、
     ことを特徴とする請求項1に記載のソーラーパネルの表面構造。
    The large convex portion is any one of a pyramid, a semi-ellipsoid, or a cone;
    The small convex portion is any one of a pyramid, a semi-ellipsoid, or a cone;
    The surface structure of the solar panel according to claim 1.
  3.  前記ガラスの表面には、凸部に代えて、複数の大凹部が縦横に配列され、さらに、一の大凹部と、縦に隣接する大凹部と、横に隣接する大凹部と、斜めに隣接する大凹部との間に、小凹部が配置された、
     ことを特徴とする請求項1に記載のソーラーパネルの表面構造。
    On the surface of the glass, a plurality of large concave portions are arranged vertically and horizontally in place of the convex portions, and further, one large concave portion, a vertically adjacent large concave portion, and a horizontally adjacent large concave portion are obliquely adjacent to each other. A small recess is placed between the large recess and the
    The surface structure of the solar panel according to claim 1.
  4.  前記大凹部が、角錐、半楕円体、又は円錐の何れか一であり、
     前記小凹部が、角錐、半楕円体、又は円錐の何れか一である、
     ことを特徴とする請求項3に記載のソーラーパネルの表面構造。
    The large recess is any one of a pyramid, a semi-ellipsoid, or a cone;
    The small recess is any one of a pyramid, a semi-ellipsoid, or a cone;
    The surface structure of the solar panel according to claim 3.
  5.  前記ガラスの表面は、複数の大凸部が縦横に配列された上層と、複数の大凹部が縦横に配列された下層とからなる、
     ことを特徴とする請求項1に記載のソーラーパネルの表面構造。
    The surface of the glass consists of an upper layer in which a plurality of large convex portions are arranged vertically and horizontally and a lower layer in which a plurality of large concave portions are arranged vertically and horizontally.
    The surface structure of the solar panel according to claim 1.
  6.  前記ガラスの表面は、複数の大凸部が縦横に配列された上層と、前記上層における一の大凸部と、縦に隣接する大凸部と、横に隣接する大凸部と、斜めに隣接する大凸部との間に相当する位置に、小凹部が配置された下層とからなる、
     ことを特徴とする請求項1に記載のソーラーパネルの表面構造。
    The surface of the glass has an upper layer in which a plurality of large convex portions are arranged vertically and horizontally, one large convex portion in the upper layer, a large convex portion adjacent vertically, a large convex portion adjacent horizontally, and a diagonal It consists of a lower layer in which small concave portions are arranged at positions corresponding to adjacent large convex portions,
    The surface structure of the solar panel according to claim 1.
  7.  請求項1乃至6の何れか一に記載のソーラーパネルの表面構造を有する、
     ことを特徴とするソーラーパネル。

     
    It has the surface structure of the solar panel as described in any one of Claims 1 thru | or 6.
    A solar panel characterized by that.

PCT/JP2015/073715 2015-08-24 2015-08-24 Solar panel and surface structure thereof WO2017033261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-164407 2015-08-24
JP2015164407A JP5900867B1 (en) 2015-08-24 2015-08-24 Solar panel and its surface structure

Publications (1)

Publication Number Publication Date
WO2017033261A1 true WO2017033261A1 (en) 2017-03-02

Family

ID=55648316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073715 WO2017033261A1 (en) 2015-08-24 2015-08-24 Solar panel and surface structure thereof

Country Status (2)

Country Link
JP (1) JP5900867B1 (en)
WO (1) WO2017033261A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260670A (en) * 1993-03-05 1994-09-16 Hitachi Ltd Light confining structure for solar cell
JP2000022185A (en) * 1998-07-03 2000-01-21 Sharp Corp Solar cell and its manufacture
JP2001223370A (en) * 2000-02-09 2001-08-17 Sharp Corp Solar battery cell and its manufacturing method
JP2003215314A (en) * 2002-01-18 2003-07-30 Dainippon Printing Co Ltd Antireflection article
JP2015023216A (en) * 2013-07-22 2015-02-02 三菱電機株式会社 Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260670A (en) * 1993-03-05 1994-09-16 Hitachi Ltd Light confining structure for solar cell
JP2000022185A (en) * 1998-07-03 2000-01-21 Sharp Corp Solar cell and its manufacture
JP2001223370A (en) * 2000-02-09 2001-08-17 Sharp Corp Solar battery cell and its manufacturing method
JP2003215314A (en) * 2002-01-18 2003-07-30 Dainippon Printing Co Ltd Antireflection article
JP2015023216A (en) * 2013-07-22 2015-02-02 三菱電機株式会社 Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor

Also Published As

Publication number Publication date
JP5900867B1 (en) 2016-04-06
JP2017045741A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US8916766B2 (en) Solar concentrator and photoelectric conversion structure
AU2013334912B2 (en) Bifacial solar cell module with backside reflector
JP5436691B2 (en) Solar cell module
US5466301A (en) Solar cell having an output-increasing, protective cover
KR101443043B1 (en) Micro concentrators elastically coupled with spherical photovoltaic cells
US4311869A (en) Solar cell modules
WO2012164814A1 (en) Solar cell module
KR101707716B1 (en) Solar module having double layers structure and method for manufacturing therof
EP1715260A3 (en) Concentrating solar collector with solid optical element
US20140311570A1 (en) Multi-layered waveguide for capturing solar energy
US20180366606A1 (en) Solar cell module
KR20150138923A (en) Apparatus for solar power generation
KR101358864B1 (en) Solar cell and method for manufacturing the same
KR101486699B1 (en) Solar heat condenser
JP5900867B1 (en) Solar panel and its surface structure
KR102274301B1 (en) Solar power system and solar power generating method using the same
TWI556463B (en) Solar cell panel and manufacturing method thereof
US20190348559A1 (en) Solar Panel with Optical Light Enhancement Device
KR20100036295A (en) Multidirectional solar concentrating appratus
US20150107649A1 (en) Light Deflecting Layer For Photovoltaic Solar Panels
KR20150096257A (en) Solar cell module
EP3688820A1 (en) Photovoltaic module having scattering patterns
US10199527B2 (en) Solar concentrator and illumination apparatus
JP6417068B1 (en) Solar cell module
JP2010199342A (en) Solar cell, module, and photovoltaic power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902231

Country of ref document: EP

Kind code of ref document: A1