WO2017033240A1 - Data acquisition system, abnormality detection system, refrigeration cycle device, data acquisition method, and abnormality detection method - Google Patents

Data acquisition system, abnormality detection system, refrigeration cycle device, data acquisition method, and abnormality detection method Download PDF

Info

Publication number
WO2017033240A1
WO2017033240A1 PCT/JP2015/073612 JP2015073612W WO2017033240A1 WO 2017033240 A1 WO2017033240 A1 WO 2017033240A1 JP 2015073612 W JP2015073612 W JP 2015073612W WO 2017033240 A1 WO2017033240 A1 WO 2017033240A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
refrigeration cycle
cycle apparatus
abnormality detection
heat exchanger
Prior art date
Application number
PCT/JP2015/073612
Other languages
French (fr)
Japanese (ja)
Inventor
康敬 落合
正樹 豊島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/073612 priority Critical patent/WO2017033240A1/en
Priority to JP2017536081A priority patent/JP6641376B2/en
Publication of WO2017033240A1 publication Critical patent/WO2017033240A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a data acquisition system and abnormality detection system used in a refrigeration cycle apparatus, a refrigeration cycle apparatus including a data acquisition system or an abnormality detection system, a data acquisition method from the refrigeration cycle apparatus, and an abnormality detection method of the refrigeration cycle apparatus. It is.
  • Patent Document 1 describes a refrigeration cycle apparatus such as an air conditioner.
  • the refrigerant amount of each component is obtained from the operating state quantity of each component constituting the refrigerant circuit, and the calculated refrigerant amount is calculated as the sum of them. Further, by comparing the calculated refrigerant amount with the appropriate refrigerant amount acquired in advance, it is determined whether the refrigerant amount is excessive or insufficient.
  • the present invention has been made in order to solve the above-described problems.
  • a data acquisition system and an abnormality detection system that can reduce the amount of data acquired from a refrigeration cycle apparatus, a refrigeration cycle apparatus including the above-described system, And it aims at providing the data acquisition method and abnormality detection method which can reduce the data amount acquired from a refrigerating-cycle apparatus.
  • a data acquisition system is connected to a refrigeration cycle apparatus including a compressor and a decompression device, and acquires first data that is a part of parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus. And when the 1st data exists in a target range, it has a control device which acquires the 2nd data which is other part of the parameter measured in the refrigeration cycle device from the refrigeration cycle device.
  • the abnormality detection system is connected to a refrigeration cycle apparatus including a compressor and a decompression device, and acquires first data that is a part of parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus.
  • first data is in the first target range
  • second data that is another part of the parameter measured in the refrigeration cycle apparatus is acquired from the refrigeration cycle apparatus
  • a controller that detects that the refrigeration cycle apparatus is abnormal when the second data is not within the second target range
  • the refrigeration cycle apparatus acquires from the refrigeration cycle circuit a refrigeration cycle circuit including a compressor and a decompression device, and first data that is a part of parameters measured in the refrigeration cycle circuit, And a control device that acquires, from the refrigeration cycle circuit, second data that is another part of the parameter measured in the refrigeration cycle circuit when the first data is in the first target range.
  • a data acquisition method is a data acquisition method of a data acquisition system for acquiring a parameter measured in a refrigeration cycle apparatus including a compressor and a decompression device, wherein the parameter measured in the refrigeration cycle apparatus
  • the first data which is a part is obtained from the refrigeration cycle apparatus, and the first data which is another part of the parameter measured in the refrigeration cycle apparatus when the first data is in a target range. 2 data is acquired from the refrigeration cycle apparatus.
  • An abnormality detection method is an abnormality detection method of an abnormality detection system for detecting an abnormality of a refrigeration cycle apparatus including a compressor and a decompression device, and is a part of parameters measured in the refrigeration cycle apparatus.
  • the amount of data acquired from the refrigeration cycle apparatus can be reduced.
  • Embodiment 1 A refrigeration cycle apparatus connected to the management system 106 according to Embodiment 1 of the present invention will be described. Refer to FIG. 2 described later for the management system 106. Although details of the management system 106 will be described later, in the first embodiment, the management system 106 is configured as, for example, a data acquisition system or an abnormality detection system.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a schematic configuration of an air-conditioning apparatus 101 according to Embodiment 1.
  • the air conditioning apparatus 101 is illustrated as a refrigeration cycle apparatus.
  • the air conditioner 101 according to the first embodiment is a building multi-air conditioner installed in a building, apartment, commercial facility, or the like.
  • the air conditioner 101 can perform a cooling operation or a heating operation by performing a vapor compression refrigeration cycle operation in which a refrigerant for air conditioning is circulated.
  • the cooling operation and the heating operation can be switched by selection on the use unit side.
  • the air conditioner 101 has a refrigeration cycle circuit that circulates refrigerant therein.
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the at least one expansion valve 14a, 14b, the at least one indoor heat exchanger 15a, 15b, and the accumulator 19 are ring-shaped via a refrigerant pipe. It has the structure connected to.
  • the compressor 1, the outdoor heat exchanger 3, the expansion valve 14a and the indoor heat exchanger 15a, or the compressor 1, the outdoor heat exchanger 3, the expansion valve 14b and the indoor heat exchanger 15b are annularly arranged in this order. Connected.
  • the refrigerant flow path is switched by the four-way valve 2, and the compressor 1, the indoor heat exchanger 15a, the expansion valve 14a and the outdoor heat exchanger 3, or the compressor 1, the indoor heat exchanger 15b, and the expansion valve 14b.
  • the outdoor heat exchanger 3 is connected cyclically
  • the air conditioner 101 also has a bypass circuit 21 that returns a part of the refrigerant flowing between the outdoor heat exchanger 3 and the expansion valves 14a and 14b to the accumulator 19.
  • the bypass circuit 21 is provided with a bypass depressurization mechanism 20 that depressurizes the refrigerant diverted to the bypass circuit 21.
  • the air conditioner 101 has a supercooling heat exchanger 11 that cools the refrigerant flowing between the outdoor heat exchanger 3 and the expansion valves 14a and 14b by heat exchange with the refrigerant depressurized by the bypass depressurization mechanism 20. is doing.
  • the air conditioner 101 includes, for example, one heat source unit 304 installed outdoors, and a plurality of use units 303a and 303b installed indoors and connected in parallel to the heat source unit 304, for example. ing.
  • the heat source unit 304 and the utilization units 303 a and 303 b are connected via a liquid pipe 27 and a gas pipe 28.
  • the liquid pipe 27 and the gas pipe 28 are extension pipes that connect the heat source unit 304 and the utilization units 303a and 303b, and are part of the refrigerant pipes that constitute the refrigeration cycle.
  • FIG. 1 shows one heat source unit 304 and two utilization units 303a and 303b
  • the air conditioner 101 may include two or more heat source units 304, or one unit. May have only three or more other usage units.
  • the heat source unit 304 is an example of an indoor unit.
  • the use units 303a and 303b are examples of indoor units and are also referred to as load units.
  • the heat source unit 304 houses the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the accumulator 19, the supercooling heat exchanger 11, the bypass pressure reducing mechanism 20, and the like. In addition, the heat source unit 304 houses an outdoor fan 4 that blows outside air to the outdoor heat exchanger 3.
  • the use unit 303a accommodates an expansion valve 14a and an indoor heat exchanger 15a. Moreover, although not shown in figure, the utilization unit 303a contains the indoor air blower which ventilates the indoor heat exchanger 15a. Similarly, although not shown, the utilization unit 303b accommodates an expansion valve 14b, an indoor heat exchanger 15b, and an indoor fan that blows air to the indoor heat exchanger 15b.
  • Compressor 1 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the rotational speed is controlled by an inverter.
  • the four-way valve 2 is an example of the refrigerant flow switching device, and is a valve that switches the flow direction of the refrigerant between the cooling operation and the heating operation.
  • the four-way valve 2 has first to fourth four ports.
  • the first port is connected to the discharge side of the compressor 1.
  • the second port is connected to the outdoor heat exchanger 3.
  • the third port is connected to an accumulator 19 connected to the suction side of the compressor 1.
  • the fourth port is connected to the gas pipe 28.
  • the four-way valve 2 is set to a state in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other, as shown by the solid line in FIG.
  • the four-way valve 2 is set to a state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other, as indicated by the broken line in FIG.
  • the outdoor heat exchanger 3 is also referred to as a heat source side heat exchanger, and functions as a condenser during the cooling operation and functions as an evaporator during the heating operation.
  • the outdoor heat exchanger 3 is configured as, for example, an air-cooled heat source side heat exchanger in which heat is exchanged between the refrigerant circulating inside and the air blown by the outdoor blower 4, that is, outside air. it can.
  • the air-cooling heat source side heat exchanger can be configured as, for example, a cross-fin type fin-and-tube heat exchanger including heat transfer tubes and a plurality of fins.
  • a condenser is also called a heat radiator and an evaporator is also called a cooler.
  • the outdoor blower 4 is also referred to as a heat source side blower fan, and the flow rate of air supplied to the outdoor heat exchanger 3 can be variably adjusted.
  • the outdoor blower 4 is, for example, a propeller fan that is driven by a DC fan motor.
  • the accumulator 19 has a function of preventing a large amount of liquid refrigerant from flowing into the compressor 1 by retaining a refrigerant storage function for storing excess refrigerant and a liquid refrigerant that is temporarily generated when the operating state changes. And a liquid separation function.
  • the expansion valves 14a and 14b are electronic expansion valves whose opening degree can be adjusted in multiple stages or continuously, for example.
  • a linear electronic expansion valve is used as the electronic expansion valve.
  • the expansion valves 14a and 14b are examples of a pressure reducing device, and other pressure reducing devices such as capillaries can be used instead of the expansion valves 14a and 14b.
  • the indoor heat exchangers 15a and 15b are also referred to as load-side heat exchangers, and function as evaporators during the cooling operation and function as condensers during the heating operation.
  • heat exchange is performed between the refrigerant circulating in the interior and the air blown by the indoor blower.
  • the indoor heat exchangers 15a and 15b can be configured as, for example, cross-fin type fin-and-tube heat exchangers configured by heat transfer tubes and a plurality of fins.
  • the air conditioner 101 includes a pressure sensor 201 that detects a discharge pressure that is a pressure of refrigerant discharged from the compressor 1 and a pressure sensor that detects a suction pressure that is a pressure of refrigerant sucked into the compressor 1. 211.
  • the pressure sensors 201 and 211 output detection signals to the control unit 107 described later.
  • the air conditioner 101 is provided with a plurality of temperature sensors that detect the temperature of the refrigerant in the refrigeration cycle directly or indirectly through a refrigerant pipe or the like.
  • the heat source unit 304 includes a temperature sensor 202 that detects the temperature of the refrigerant discharged from the compressor 1, and a liquid side refrigerant of the outdoor heat exchanger 3, that is, the outdoor heat exchanger 3 during cooling operation.
  • a temperature sensor 203 for detecting the temperature of the liquid refrigerant flowing out of the refrigerant, the temperature of the liquid refrigerant or two-phase refrigerant flowing into the outdoor heat exchanger 3 during heating operation, and the high pressure side flow path of the supercooling heat exchanger 11 and the liquid piping 27.
  • a temperature sensor 207 that detects the temperature of the refrigerant in between, a temperature sensor 212 that detects the temperature of the refrigerant between the bypass pressure reducing mechanism 20 and the low-pressure side flow path of the supercooling heat exchanger 11, and the supercooling heat exchanger 11 And a temperature sensor 213 for detecting the temperature of the refrigerant on the outlet side of the low-pressure channel.
  • the utilization unit 303a is provided with temperature sensors 208a and 209a for detecting the temperature of the refrigerant on the inlet side and the outlet side of the indoor heat exchanger 15a.
  • the utilization unit 303b is provided with temperature sensors 208b and 209b for detecting the temperature of the refrigerant on the inlet side and the outlet side of the indoor heat exchanger 15b.
  • the heat source unit 304 is provided with a temperature sensor 214 that detects the temperature of the bottom of the compressor 1 and a temperature sensor 204 that detects an ambient temperature such as the outside air temperature of the heat source unit 304.
  • the usage unit 303a is provided with a temperature sensor 210a that detects an ambient temperature such as the room temperature of the usage unit 303a.
  • the usage unit 303b is provided with a temperature sensor 210b that detects an ambient temperature such as the room temperature of the usage unit 303b.
  • the air conditioning apparatus 101 has a control unit 107.
  • the control unit 107 includes a microcomputer having a CPU, a ROM, a RAM, an I / O port, and the like.
  • the control unit 107 may include a heat source unit control device provided in the heat source unit 304 and a use unit control device provided in each of the use units 303a and 303b and capable of data communication with the heat source unit control device.
  • the control unit 107 includes at least a refrigeration cycle based on detection signals from the pressure sensors 201 and 211 and the temperature sensors 202, 203, 204, 207, 208a, 208b, 209a, 209b, 210a, 210b, 212, 213, and 214.
  • the operation state of the air conditioning apparatus 101 including the operation and stop of the above is controlled.
  • the control unit 107 performs pressure and temperature data acquired based on detection signals from various sensors, at least during the operation period of the refrigeration cycle, or at all times including the operation period and the stop period of the refrigeration cycle, and the operation of the refrigeration cycle.
  • Data indicating the stop state, and operation data for each unit period of the air-conditioning apparatus 101, for example, every day can be configured to be transmitted to the data transmission apparatus 102.
  • the data transmitted from the control unit 107 to the data transmitting device 102 includes refrigerant pressure and temperature data in the refrigeration cycle, bottom temperature data of the compressor 1 in the refrigeration cycle, and ambient temperature data of the heat source unit 304.
  • Data on the ambient temperature of the use units 303a and 303b, and the like are included.
  • the control unit 107 can control each device mounted on the heat source unit 304 and the usage units 303a and 303b based on requests from the usage units 303a and 303b, and can execute the cooling operation mode and the heating operation mode. .
  • the cooling operation mode In the cooling operation mode, the four-way valve 2 is controlled so that the discharge side of the compressor 1 and the outdoor heat exchanger 3 are connected, and the suction side of the compressor 1 and the gas pipe 28 are connected.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 via the four-way valve 2.
  • the outdoor heat exchanger 3 functions as a condenser. That is, in the outdoor heat exchanger 3, heat exchange is performed between the refrigerant flowing through the inside and the outside air blown by the outdoor blower 4, and the heat of condensation of the refrigerant is radiated to the blown air. Thereby, the refrigerant
  • the high-pressure liquid refrigerant is cooled by heat exchange with the low-pressure refrigerant in the supercooling heat exchanger 11. Thereafter, a part of the liquid refrigerant flows into the bypass circuit 21, and the other liquid refrigerant flows into the liquid pipe 27.
  • the high-pressure liquid refrigerant that has passed through the liquid pipe 27 is decompressed by the expansion valves 14a and 14b to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant that has passed through the expansion valves 14a and 14b flows into the indoor heat exchangers 15a and 15b.
  • the indoor heat exchangers 15a and 15b function as evaporators. That is, in the indoor heat exchangers 15a and 15b, heat exchange is performed between the refrigerant circulating in the interior and the indoor air blown by the indoor blower, and the evaporation heat of the refrigerant is absorbed from the blown air.
  • the refrigerant flowing into the indoor heat exchangers 15a and 15b evaporates to become a low-pressure gas refrigerant or a two-phase refrigerant.
  • the air blown by the indoor blower is cooled by the endothermic action of the refrigerant and becomes cold air.
  • the low-pressure gas refrigerant or two-phase refrigerant that has passed through the indoor heat exchangers 15 a and 15 b passes through the gas pipe 28 and the four-way valve 2 and flows into the accumulator 19.
  • the low-pressure gas refrigerant in the accumulator 19 is sucked into the compressor 1 and compressed to become a high-temperature and high-pressure gas refrigerant. In the cooling operation, these cycles are repeated.
  • the compressor 1 is controlled so that the evaporation temperature becomes a predetermined value.
  • the evaporation temperature is a saturation temperature at the suction pressure detected by the pressure sensor 211.
  • the outdoor blower 4 is controlled so that the condensation temperature becomes a predetermined value.
  • the condensation temperature is a saturation temperature at the discharge pressure detected by the pressure sensor 201. That is, the compressor 1 and the outdoor blower 4 have a function of controlling the refrigerant pressure.
  • the bypass pressure reducing mechanism 20 is controlled so that the degree of bypass superheat becomes a predetermined value.
  • the bypass superheat degree is a value obtained by subtracting the temperature detected by the temperature sensor 212 from the temperature detected by the temperature sensor 213.
  • the expansion valve 14a is controlled so that the indoor superheat degree becomes a predetermined value.
  • the indoor superheat degree is a value obtained by subtracting the temperature detected by the temperature sensor 208a from the temperature detected by the temperature sensor 209a.
  • the expansion valve 14b is controlled such that the indoor superheat degree, which is a value obtained by subtracting the temperature detected by the temperature sensor 208b from the temperature detected by the temperature sensor 209b, becomes a predetermined value.
  • the entire system of the air conditioner 101 is controlled so that the degree of supercooling is in the constant temperature range when the condensation temperature is in the constant temperature range.
  • the degree of supercooling is a value obtained by subtracting the temperature detected by the temperature sensor 207 from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
  • the heating operation mode In the heating operation mode, the four-way valve 2 is controlled so that the discharge side of the compressor 1 and the gas pipe 28 are connected, and the suction side of the compressor 1 and the outdoor heat exchanger 3 are connected.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor heat exchangers 15 a and 15 b via the four-way valve 2 and the gas pipe 28.
  • the indoor heat exchangers 15a and 15b function as condensers. That is, in the indoor heat exchangers 15a and 15b, heat exchange is performed between the refrigerant circulating in the interior and the indoor air blown by the indoor blower, and the heat of condensation of the refrigerant is radiated to the blown air.
  • coolant which flowed into indoor heat exchanger 15a, 15b condenses and turns into a high voltage
  • the air blown by the indoor blower is heated by the heat dissipation action of the refrigerant and becomes hot air.
  • the high-pressure liquid refrigerant condensed in the indoor heat exchangers 15a and 15b is depressurized by the expansion valves 14a and 14b to become a low-pressure two-phase refrigerant.
  • the outdoor heat exchanger 3 functions as an evaporator. That is, in the outdoor heat exchanger 3, heat exchange is performed between the refrigerant circulating inside and the outside air blown by the outdoor blower 4, and the evaporation heat of the refrigerant is absorbed from the blown air. Thereby, the refrigerant flowing into the outdoor heat exchanger 3 evaporates and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flows into the accumulator 19 through the four-way valve 2.
  • the low-pressure gas refrigerant in the accumulator 19 is sucked into the compressor 1 and compressed to become a high-temperature and high-pressure gas refrigerant. In the heating operation, these cycles are repeated.
  • the compressor 1 is controlled so that the condensation temperature becomes a predetermined value.
  • the outdoor blower 4 is controlled so that the evaporation temperature becomes a predetermined value.
  • the expansion valves 14a and 14b are controlled so that the indoor supercooling degree becomes a predetermined value.
  • the indoor supercooling degree is a value obtained by subtracting the temperature detected by the temperature sensor 208 a or the temperature sensor 208 b from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
  • the entire system of the air conditioner 101 is controlled so that the degree of supercooling is in the constant temperature range when the condensation temperature is in the constant temperature range.
  • the degree of supercooling is a value obtained by subtracting the temperature detected by the temperature sensor 208 a or the temperature sensor 208 b from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
  • the management system 106 As described above, in the first embodiment, the refrigeration cycle apparatus management system 106 is configured as a data acquisition system or an abnormality detection system. Moreover, below, it demonstrates using the air conditioning apparatus 101 as an example of the refrigerating-cycle apparatus connected to the management system 106. FIG.
  • FIG. 2 is a schematic diagram illustrating an example of connection of the management system 106 according to the first embodiment to the air conditioning apparatus 101.
  • the management system 106 can be connected to a data transmission apparatus 102 connected to at least one air conditioning apparatus 101 via a communication network 103.
  • the data transmission device 102 is configured as a local controller, for example, and is installed in the property 108 together with the air conditioning device 101.
  • the data transmission device 102 is connected to one or a plurality of air conditioners 101 directly or via a dedicated adapter.
  • the data transmission device 102 transmits and receives data to and from the control unit 107 of one or a plurality of air conditioners 101, and centrally manages the air conditioner 101.
  • the data transmitting apparatus 102 has a microcomputer including a CPU, ROM, RAM, I / O port, and the like.
  • the data transmission device 102 is configured to transmit and receive data to and from the management system 106. For example, the data transmission device 102 periodically receives data such as pressure and temperature from the control unit 107 and transmits the received data to the management system 106.
  • the management system 106 includes a monitoring device 104 that processes data received from the data transmission device 102 and a data storage device 105 that stores data received from the data transmission device 102.
  • the management system 106 can be installed, for example, in a remote management center as a remote server away from the property 108, for example.
  • FIG. 3 is a block diagram showing a configuration of the monitoring device 104 in the management system 106 according to the first embodiment.
  • the monitoring device 104 is an example of a control device in the management system 106, and includes a calculation unit 120, a control unit 121, a communication unit 122, and a display unit 123.
  • the computing unit 120 is configured to perform computations such as calculating an average value of data.
  • the control unit 121 is configured to control a data transmission command or the like to the data transmission apparatus 102.
  • the control unit 121 can be configured to perform control such as setting of an abnormality detection mode and abnormality determination.
  • the communication unit 122 is configured to transmit / receive data to / from the data transmission apparatus 102 via the communication network 103 such as the Internet line and to transmit / receive data to / from the data storage apparatus 105.
  • the display unit 123 is configured to display the determination result of the abnormality determination of the air conditioner 101 performed by the monitoring device 104, that is, whether there is an abnormality. Is done.
  • FIG. 4 is a block diagram showing a configuration of the data storage device 105 in the management system 106 according to the first embodiment.
  • the data storage device 105 has a storage device 140.
  • the storage device 140 includes a communication unit 141 that transmits and receives data to and from the monitoring device 104 and a storage unit 142 that stores received data.
  • the data storage device 105 receives a set of data from the monitoring device 104, for example, the pressure or temperature data of the refrigeration cycle of the air conditioner 101, the ambient temperature data of the heat source unit 304, and the ambient temperature of the usage units 303a and 303b.
  • a set of data is associated with each other, and then sequentially stored in the storage unit 142 as new data in time series.
  • the data storage device 105 is connected to the communication network 103 via the monitoring device 104, but the data storage device 105 may be directly connected to the communication network 103.
  • the data transmission device 102, the monitoring device 104, and the data storage device 105 are configured differently from the air conditioning device 101.
  • the functions of the data transmission device 102, the monitoring device 104, and the data storage device 105 are different. It is good also as a structure with which the control part 107 of the air conditioning apparatus 101 is equipped.
  • the management system 106 is configured to be connected to the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103.
  • the management system 106 is directly connected to the air conditioning apparatus 101. It may be configured.
  • control processing executed by the monitoring apparatus 104 when the management system 106 according to the first embodiment is configured as a data acquisition system will be described with reference to FIG.
  • FIG. 5 is a flowchart illustrating an example of a control process executed by the monitoring device 104 when the management system 106 according to the first embodiment is configured as a data acquisition system.
  • the process shown in FIG. 5 is repeatedly performed at predetermined time intervals at least at all times including during operation of the air conditioner 101 or only during operation of the air conditioner 101.
  • parameters indicating the state of the pressure or temperature of the air conditioner 101 for example, the pressure or temperature data in the refrigeration cycle of the air conditioner 101 are used. , Referred to as environmental parameters.
  • the parameter indicating the operation state is referred to as an operation state parameter.
  • step S ⁇ b> 1 the control unit 121 of the monitoring device 104 transmits first data, which is a part of parameters measured in the air conditioning apparatus 101, from the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103. Perform the acquisition process.
  • the first data includes environmental parameters in the air conditioner 101 or operating condition parameters of the air conditioner 101.
  • step S2 the control unit 121 of the monitoring device 104 performs a process of classifying the acquired first data into a plurality of data groups.
  • the numerical ranges of the plurality of data groups are determined as arbitrary numerical ranges according to the attributes of the first data such as the condensation temperature and the evaporation temperature.
  • FIG. 6 is a block diagram schematically showing an example of a process of classifying the first data according to the first embodiment into a plurality of data groups.
  • the first data classified in the monitoring device 104 is transmitted to the data storage device 105.
  • the transmitted first data is stored for each data group in the storage unit 142 of the storage device 140 in the data storage device 105.
  • the calculation for classifying the first data into a plurality of data groups is performed by the calculation unit 120 of the monitoring device 104.
  • step S3 the control unit 121 of the monitoring device 104 performs a process of selecting an index data group that is a target range from a plurality of stored data groups.
  • the index data group serving as the target range is calculated, for example, by the calculation unit 120 of the monitoring apparatus 104 using the frequency that is the occurrence rate of a plurality of data groups, and the control unit 121 of the monitoring apparatus 104 uses the high frequency based on the calculation result. This is determined by selecting the index data group.
  • the high-frequency index data group that is the target range is illustrated as “condition A”.
  • step S4 the control unit 121 of the monitoring device 104 determines whether or not the first data is within the target range. If it is determined that the first data is not within the target range, the control process ends. For example, in FIG. 6, in step S4, it is determined whether or not the first data satisfies the condition A. When it is determined that the first data does not satisfy the condition A, for example, when the first data satisfies the infrequent conditions B and C in FIG. 6, the control process ends.
  • step S5 the control unit 121 of the monitoring device 104 sets the second data, which is another part of the parameter measured by the air conditioner 101, Processing to acquire from the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103 is performed.
  • the second data includes environmental parameters in the air conditioner 101 or operating condition parameters of the air conditioner 101, and is different from the first data.
  • step S ⁇ b> 5 the control unit 121 of the monitoring device 104 transmits a second data transmission command to the data transmission device 102.
  • the data transmitting apparatus 102 that has received the data transmission command acquires the second data from the air conditioning apparatus 101 and transmits the second data to the management system 106 via the communication network 103.
  • the control unit 121 of the monitoring device 104 in the management system 106 transmits the acquired second data to the data storage device 105.
  • the second data transmitted to the data storage device 105 is stored in the storage unit 142 of the storage device 140 in the data storage device 105.
  • the configuration in which the target range of the first data is determined by the monitoring device 104 is illustrated, but the target range of the first data is the attribute of the first data, the air conditioning The predetermined value may be set in advance in consideration of the specification of the apparatus 101 and the like.
  • the target range of the first data that is, the target temperature range of the condensation temperature can be set to a range of 33 ° C. to 37 ° C.
  • control processing executed by the monitoring device 104 when the management system 106 according to the first embodiment is configured as an abnormality detection system will be described with reference to FIG.
  • FIG. 7 is a flowchart illustrating an example of a control process executed by the monitoring apparatus 104 when the management system 106 according to the first embodiment is configured as an abnormality detection system.
  • the process shown in FIG. 7 is repeatedly executed at a predetermined time interval at least during the operation of the air conditioner 101 at least at all times including during the operation of the air conditioner 101, similarly to the process of FIG.
  • step S11 the control unit 121 of the monitoring device 104 converts the first data, which is a part of the parameters measured in the air conditioner 101, into the air conditioner as in the process of step S1 in the data acquisition system.
  • the processing acquired from 101 is performed.
  • step S12 the control unit 121 of the monitoring device 104 performs a process of classifying the acquired first data into a plurality of data groups, similarly to the process of step S2 in the data acquisition system.
  • step S13 the control unit 121 of the monitoring device 104 selects the index data group that is the first target range from the plurality of stored data groups, as in the process of step S3 in the data acquisition system. Perform the process.
  • the index data group is a data group that serves as an index for abnormality detection in the abnormality detection system.
  • step S14 whether or not the first data transmitted from the data transmission device 102 is within the first target range by the control unit 121 of the monitoring device 104 is the same as the processing in step S4 in the data acquisition system. Is determined.
  • step S15 the control unit 121 of the monitoring device 104 performs measurement in the air conditioner 101 in the same manner as the processing of step S5 in the data acquisition system.
  • the second data that is another part of the parameter to be obtained is acquired from the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103.
  • step S16 the control unit 121 of the monitoring device 104 performs a process of comparing the second data with the second target range.
  • the comparison calculation is performed by the calculation unit 120 of the monitoring device 104.
  • the control unit 121 of the monitoring device 104 stores the second data acquired in the past as the third data in the storage unit 142 of the storage device 140 in the data storage device 105 and stores it in the storage device 140.
  • the second target range can be determined from the obtained third data.
  • step S17 the control unit 121 of the monitoring device 104 determines whether or not the second data is in the second target range. When it is determined that the second data is in the second target range, the second data is regarded as a normal value, and the control process ends.
  • step S18 the control unit 121 of the monitoring device 104 detects that the second data is abnormal.
  • FIG. 8 is a graph schematically showing an example of abnormality detection in the control unit 121 of the monitoring apparatus 104 when the management system 106 according to the first embodiment is configured as an abnormality detection system.
  • the vertical axis in FIG. 8 is the size of the second data.
  • the unit of the vertical axis is Hz.
  • the horizontal axis in FIG. 8 shows the passage of time.
  • Two dotted lines parallel to the horizontal axis drawn in the graph of FIG. 8 represent the second target range determined to be a normal value from the past second data.
  • the magnitude of the second data at any time is shown in the plot.
  • the monitoring device 104 determines that the current second data is determined from the numerical range of the past second data, that is, the third data stored in the storage device 140. It can be configured to determine that there is an abnormality when it is out of the target range of 2.
  • the control unit 121 of the monitoring device 104 can be configured to display the abnormality on the display unit 123 in real time. Moreover, the control part 121 of the monitoring apparatus 104 can be comprised so that the 2nd data memorize
  • the management system 106 is configured as an abnormality detection system
  • data transmission / reception between the data transmission apparatus 102 and the management system 106 and abnormality detection in the management system 106 are specifically described using the first to third embodiments. Explained.
  • the first data, the second data, the condition A which is an index data group serving as an abnormality detection index, and the condition B which is another data group described in the control process of FIG. And C, and the numerical range of the second data in the past are specifically specified.
  • the condition A corresponds to the first target range
  • the condition B and the condition C are a data group outside the first target range.
  • the numerical range of the past second data corresponds to the second target range determined from the third data stored in the storage device 140.
  • the first data corresponds to the control amount in the air conditioner 101.
  • the first target range corresponds to a control value target value in the air-conditioning apparatus 101.
  • the second data corresponds to the operation amount for adjusting the first data to the target value of the control amount in the air conditioning apparatus 101.
  • the second target range is a normal operation amount that is used to adjust the first data to the target value of the control amount in the air conditioner 101.
  • Example 1 in the first embodiment will be described with reference to FIG. 9 schematically shows an example of data transmission / reception between the data transmission apparatus 102 and the management system 106 in the control processing of the first embodiment.
  • An arrow extending vertically downward indicates the passage of time, and a horizontal arrow indicates data transmission / reception.
  • the operating frequency f of the compressor 1 is controlled such that the condensation temperature T falls within a predetermined numerical range. That is, in the control system of the air conditioner 101 of the first embodiment, the condensation temperature T is a control amount, and the operating frequency f of the compressor 1 is an operation amount.
  • the first data is the condensing temperature T that is the control amount
  • the second data is the operating frequency f of the compressor 1 that is the operation amount.
  • the condensation temperature T is calculated as a saturation temperature at the discharge pressure detected by the pressure sensor 201, for example.
  • the operating frequency f of the compressor 1 that is the operation amount is controlled within the predetermined numerical range so that the condensation temperature T that is the control amount falls within the predetermined numerical range. Therefore, when the compressor 1 is abnormal, for example, when the performance of the compressor 1 is degraded, the operating frequency f of the compressor 1 is set to a predetermined value so that the condensation temperature T falls within a predetermined numerical range. It is controlled to be larger than the numerical range.
  • condition A which is an index data group serving as an anomaly detection index in Example 1, that is, the first target range, is such that the condensation temperature T is 34 ° C. ⁇ T ⁇ 36 ° C.
  • conditions B and C which are other data groups, assume that the condensation temperatures T are 36 ° C. ⁇ T ⁇ 38 ° C. and 32 ° C. ⁇ T ⁇ 34 ° C., respectively.
  • the past second data in the first embodiment that is, the second target range which is the numerical range of the past operating frequency f of the compressor 1 is 58 Hz ⁇ f ⁇ 62 Hz.
  • the management system 106 classifies these first data into data groups of conditions B and C.
  • the management system 106 since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in the phase P1 ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 sends a transmission request for the operation frequency f of the compressor 1 as the second data to the data transmission device 102. Do.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in phase P2 ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 sends a transmission request for the operation frequency f of the compressor 1 as the second data to the data transmission device 102. Do.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • the acquired second data is compared with a second target range that is a numerical range of the past second data, and it is determined that the acquired second data is not within the second target range. The As a result, it is detected that the second data is abnormal, and the abnormality detection process in phase P3 ends.
  • Example 2 In the air conditioner 101 during the heating operation, the rotational speed n of the outdoor blower 4, for example, the rotational speed n in minutes, is controlled so that the evaporation temperature T ⁇ b> 1 falls within a predetermined numerical range. That is, in the control system of the air conditioner 101 of the second embodiment, the evaporation temperature T1 is a control amount, and the rotational speed n of the outdoor fan 4 is an operation amount.
  • the first data is the evaporation temperature T1 that is the control amount
  • the second data is the rotation speed n in minutes of the outdoor blower 4 that is the operation amount.
  • the evaporation temperature T1 is calculated as a saturation temperature at the discharge pressure detected by the pressure sensor 201, for example.
  • the rotational speed n of the outdoor blower 4 as the operation amount is controlled within a predetermined numerical range so that the evaporation temperature T1 as the control amount falls within the predetermined numerical range. Therefore, when there is an abnormality in the outdoor blower 4, for example, when the performance of the outdoor blower 4 is degraded, the rotational speed n of the outdoor blower 4 is a predetermined value so that the evaporation temperature T1 falls within a predetermined numerical range. It is controlled to be larger than the numerical range.
  • condition 2 which is an index data group serving as an abnormality detection index in Example 2, that is, the first target range
  • the evaporation temperature T1 is set to be ⁇ 36 ° C. ⁇ T1 ⁇ ⁇ 34 ° C.
  • conditions B and C which are other data groups, assume that the evaporation temperature T1 is ⁇ 38 ° C. ⁇ T1 ⁇ ⁇ 36 ° C. and ⁇ 34 ° C. ⁇ T1 ⁇ ⁇ 32 ° C., respectively.
  • the second past range in the second example that is, the second target range that is the numerical range of the number of revolutions n of the past outdoor fan 4 in a minute unit is 58 ⁇ n ⁇ 62.
  • the management system 106 classifies these first data into data groups of conditions B and C.
  • the management system 106 since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102.
  • a transmission request for the rotational speed n of the outdoor fan 4 is made.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • n 60.0.
  • the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102.
  • a transmission request for the rotational speed n of the outdoor fan 4 is made.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • the acquired second data is compared with the second target range, and it is determined that the acquired second data is not within the second target range. As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
  • the opening degree D of the expansion valve 14a is controlled so that the indoor supercooling degree T2 falls within a predetermined numerical range.
  • the indoor supercooling degree T2 is a control amount
  • the opening degree D of the expansion valve 14a is an operation amount.
  • the first data is the indoor supercooling degree T2 that is the control amount
  • the second data is the opening degree D of the expansion valve 14a that is the operation amount.
  • the opening degree D of the expansion valve 14a is defined as a fully opened opening degree 1 and a fully closed opening degree 0, and a possible range of the opening degree D is 0 ⁇ D ⁇ 1.
  • the indoor supercooling degree T2 is calculated, for example, as a value obtained by subtracting the detected temperature of the temperature sensor 208a from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
  • the opening degree D of the expansion valve 14a which is the manipulated variable, is controlled within a predetermined numerical range so that the indoor supercooling degree T2, which is the controlled variable, falls within a predetermined numerical range. . Therefore, when there is an abnormality in the expansion valve 14a, for example, when the expansion valve 14a is clogged, the opening degree D of the expansion valve 14a is set so that the indoor supercooling degree T2 falls within a predetermined numerical range. Control is performed to be larger than a predetermined numerical range.
  • the indoor supercooling degree T2 is set to 5 ° C. ⁇ T2 ⁇ 6 ° C.
  • the conditions B and C, which are other data groups, are such that the indoor supercooling degree T2 is 6 ° C. ⁇ T2 ⁇ 7 ° C. and 5 ° C. ⁇ T ⁇ 6 ° C., respectively.
  • the past second data in the third embodiment that is, the second target range that is the numerical range of the past opening degree D of the expansion valve 14a is 0.40 ⁇ D ⁇ 0.60. .
  • the management system 106 classifies these first data into data groups of conditions B and C.
  • the management system 106 since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102.
  • a transmission request for the opening degree D of the expansion valve 14a is made.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • D 0.42.
  • the acquired second data is compared with the second target range, and it is determined that the acquired second data is in the second target range. As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102.
  • a transmission request for the opening degree D of the expansion valve 14a is made.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • D 0.65.
  • the acquired second data is compared with a second target range that is a numerical range of the past second data, and it is determined that the acquired second data is not within the second target range. The As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
  • the data acquisition system is connected to the air conditioner 101 including the compressor 1 and the expansion valves 14a and 14b, and a part of parameters measured in the air conditioner 101. Is acquired from the air conditioner 101, and when the first data is in the target range, the second data that is another part of the parameter measured in the air conditioner 101 is The monitoring apparatus 104 acquired from the air conditioning apparatus 101 is provided.
  • the data acquisition method according to the first embodiment is a data acquisition method of a data acquisition system that acquires parameters measured in the air conditioner 101 including the compressor 1 and the expansion valves 14a and 14b.
  • the data acquisition system according to the first embodiment can be connected to the air conditioning apparatus 101 via the communication network 103. Since the data acquisition system according to Embodiment 1 can be configured to acquire some of the parameters measured in the air conditioning apparatus 101, an increase in communication capacity of the communication network 103 can be eliminated. In addition, since the data acquisition system can be configured as a remote monitoring server by connecting the data acquisition system via the communication network 103, a data acquisition system capable of simultaneously managing data of a large number of air conditioners 101 can be constructed.
  • the first data and the second data can be configured to include an environmental parameter in the air conditioner 101 or an operating condition parameter of the air conditioner 101.
  • the environmental parameters can be configured to include pressure parameters or temperature parameters.
  • the temperature parameter can be configured to include one or more of a condensation temperature, an evaporation temperature, or a degree of supercooling.
  • the parameter of an operation state can be comprised so that the operating frequency of the compressor 1 or the opening degree of the expansion valves 14a and 14b may be included.
  • the data acquisition system according to the first embodiment can be used in an air conditioner 101 including an air-cooled heat source side heat exchanger and an outdoor fan 4 that supplies air to the air-cooled heat source side heat exchanger.
  • the operation state parameter can be configured to include the rotational speed of the outdoor fan 4.
  • environmental parameters or operating condition parameters can be acquired as data for abnormality detection in the air conditioner 101.
  • the acquired environmental parameters or operating condition parameters can be stored in the data storage device 105, and the data stored in the data storage device 105 can be stored, for example, at the time of maintenance inspection or periodic inspection of the air conditioning apparatus 101.
  • a maintenance inspector or periodic inspector of the air conditioner 101 can detect an abnormality from the data transition of the output graph.
  • the performance degradation of the compressor 1 can be detected from the data transition of the operating frequency of the compressor 1.
  • the clogging of the expansion valves 14a and 14b can be detected from the data transition of the opening degree of the expansion valves 14a and 14b.
  • the performance fall of the outdoor air blower 4 can be detected from the data transition of the rotation speed of the outdoor air blower 4.
  • the data acquisition system is an example of the management system 106
  • the expansion valves 14a and 14b are examples of the decompression device
  • the air conditioning apparatus 101 Is an example of a refrigeration cycle device
  • the monitoring device 104 is an example of a control device.
  • the air-cooled heat source side heat exchanger is an example of the outdoor heat exchanger 3, and the outdoor blower 4 is also referred to as a heat source side blower fan.
  • the abnormality detection system is connected to an air conditioner 101 including the compressor 1 and expansion valves 14a and 14b, and is first data that is part of parameters measured in the air conditioner 101. Is obtained from the air conditioner 101, and when the first data is in the first target range, the second data, which is another part of the parameter measured in the air conditioner 101, is obtained. And a monitoring device 104 that detects that the air-conditioning apparatus 101 is abnormal when the second data is not within the second target range.
  • the abnormality detection method is an abnormality detection method for an abnormality detection system that detects an abnormality of the air conditioner 101 including the compressor 1 and the expansion valves 14a and 14b.
  • the first data that is part of the parameters measured in 101 is acquired from the air conditioner 101, and is measured in the air conditioner 101 when the first data is in the first target range.
  • the second data which is another part of the parameter, is acquired from the air conditioner 101, and when the second data is not within the second target range, it is detected that the air conditioner 101 is abnormal. Process.
  • an abnormality of the air conditioner 101 can be detected with a small amount of data that can be acquired from the air conditioner 101. Therefore, according to the first embodiment, the amount of data used for abnormality detection can be greatly reduced, so that the capacity shortage of the data storage device 105 can be solved. Moreover, according to these structures, the energy consumption consumed by the abnormality detection system for abnormality detection can be reduced.
  • the abnormality detection system according to the first embodiment can be connected to the air conditioning apparatus 101 via the communication network 103. Since the abnormality detection system according to Embodiment 1 can be configured to acquire some of the parameters measured in the air conditioning apparatus 101, an increase in communication capacity of the communication network 103 can be eliminated. Further, since the abnormality detection system can be configured as a remote monitoring server by connecting the abnormality detection system via the communication network 103, an abnormality detection system capable of simultaneously managing data of a large number of air conditioners 101 can be constructed.
  • the abnormality detection system further includes a data storage device 105 that stores second data acquired from the air conditioning apparatus 101 as third data, and the monitoring device 104 includes the data storage device 105.
  • the first data includes a control amount in the air conditioner 101
  • the first target range is a control amount target value
  • the second data is a target amount.
  • the value includes the operation amount for adjusting the first data
  • the second target range can be configured to be a normal operation amount used for adjusting the first data to the target value.
  • the control amount includes the condensation temperature
  • the operation amount includes the operating frequency of the compressor 1
  • the abnormality of the air conditioner 101 is the compressor. 1 performance degradation can be included.
  • the control amount includes the degree of supercooling
  • the operation amount includes the opening degree of the expansion valves 14a and 14b
  • the abnormality of the air conditioner 101 is the expansion valve. 14a and 14b can be included.
  • the abnormality detection system according to the first embodiment can be used in an air conditioner 101 including an air-cooling heat source side heat exchanger and an outdoor fan 4 that supplies air to the air-cooling heat source side heat exchanger.
  • the control amount includes the evaporation temperature
  • the operation amount includes the rotation speed of the outdoor blower 4
  • the abnormality of the air conditioner 101 can be configured to include the performance deterioration of the outdoor blower 4.
  • the abnormality detection system monitors the operating frequency of the compressor 1 when the condensation temperature is controlled within a predetermined temperature range, and when the operating frequency of the compressor 1 is not within the predetermined operating frequency range, the compressor 1 can be configured to detect performance degradation.
  • the abnormality detection system monitors the opening degree of the expansion valves 14a and 14b when the degree of supercooling is controlled within a predetermined temperature range, and the opening degree of the expansion valves 14a and 14b is not within the predetermined opening degree range. In this case, it can be configured to detect clogging of the expansion valves 14a and 14b.
  • the abnormality detection system monitors the rotational speed of the outdoor blower 4 when the evaporation temperature is controlled within a predetermined temperature range, and when the rotational speed of the outdoor blower 4 is not within the predetermined rotational speed range, the outdoor blower 4 can be configured to detect performance degradation.
  • abnormality detection is an example of the management system 106
  • the expansion valves 14a and 14b are examples of a decompression device
  • the air conditioner 101 is
  • the refrigeration cycle device is an example
  • the monitoring device 104 is an example of a control device.
  • the air-cooled heat source side heat exchanger is an example of the outdoor heat exchanger 3, and the outdoor blower 4 is also referred to as a heat source side blower fan.
  • the air-conditioning apparatus 101 includes a refrigeration cycle circuit including the compressor 1 and expansion valves 14a and 14b, and first data that is part of parameters measured in the refrigeration cycle circuit.
  • a control unit 107 that acquires from the refrigeration cycle circuit second data that is another part of the parameters measured in the refrigeration cycle circuit when the first data is in the first target range acquired from the circuit; Is provided.
  • the air conditioning apparatus 101 provided with the control part 107 which can perform the control processing equivalent to the abnormality detection system which concerns on this Embodiment 1 can be provided.
  • the control unit 107 can be configured to detect that the refrigeration cycle circuit is abnormal when the second data is not in the second target range.
  • the air conditioning apparatus 101 provided with the control part 107 which can perform the control processing equivalent to the abnormality detection system which concerns on this Embodiment 1 can be provided.
  • the air conditioning apparatus 101 is an example of a refrigeration cycle apparatus
  • the expansion valves 14a and 14b are examples of a decompression apparatus
  • the control unit 107 is an example of a control apparatus.
  • Embodiment 2 a case will be described in which a water-cooled air conditioner 101 in which the outdoor heat exchanger 3 is a water-cooled heat source side heat exchanger is configured.
  • the heat source unit 304 of the water-cooled air conditioner 101 includes a water-cooled chiller unit.
  • FIG. 10 is a refrigerant circuit diagram illustrating an example of a schematic configuration of the air-conditioning apparatus 101 according to the second embodiment.
  • the air conditioner 101 according to the second embodiment instead of the air-cooling heat source side heat exchanger and the outdoor fan 4 that are examples of the outdoor heat exchanger 3, a water-cooling type that is another example of the outdoor heat exchanger 3 is used.
  • a heat source side heat exchanger and a water cooling pump 305 connected to the water cooling type heat source side heat exchanger are provided.
  • the water-cooling heat source side heat exchanger and the water-cooling pump 305 are connected by piping to form a water-cooling circuit for circulating water or brine.
  • the water-cooling circuit is connected to a cooling tower installed outdoors, which cools water or brine by directly or indirectly contacting the air with the atmosphere.
  • the water-cooled heat source side heat exchanger can be configured such that heat exchange is performed between the refrigerant circulating in the refrigeration cycle circuit and water or brine circulated to the water cooling circuit by the water cooling pump 305.
  • the water-cooled heat source side heat exchanger can be configured as, for example, a shell-and-tube heat exchanger or a double tube coil heat exchanger.
  • a temperature sensor that detects the temperature of the cooling water of water or brine flowing through the inlet side of the water cooling type heat source side heat exchanger on the water cooling circuit side of the water cooling type heat source side heat exchanger via a pipe 220 is provided. Further, in the water cooling circuit, the temperature of the cooling water of water or brine flowing on the outlet side of the water cooling type heat source side heat exchanger on the side of the water cooling circuit side is detected via a pipe at the outlet side of the water cooling type heat source side heat exchanger.
  • a temperature sensor 221 is provided. The temperature sensors 220 and 221 are configured using, for example, a thermistor.
  • the water cooling pump 305 is a fluid machine that sucks water or brine from the cooling tower and press-fits the sucked water or brine into the water-cooled heat source side heat exchanger.
  • the water cooling pump 305 is configured so that the flow rate of water or brine can be adjusted by electric current.
  • the water-cooled pump 305 is configured by, for example, a DC pump whose capacity can be controlled by the amount of current flowing through the motor.
  • the amount of current flowing through the motor that drives the water cooling pump 305 is detected by the current sensor 240.
  • the current sensor 240 can be configured using, for example, a Hall element.
  • the current sensor 240 is configured to output a detection signal to the control unit 107.
  • a specific condition B and C and a numerical range of the past second data are specifically specified. Note that, as described in the control process of FIG. 7, the condition A corresponds to the first target range, and the condition B and the condition C are a data group outside the first target range.
  • the numerical range of the past second data corresponds to the second target range determined from the third data stored in the storage device 140.
  • the first data corresponds to the control amount in the air conditioner 101.
  • the first target range corresponds to a control value target value in the air-conditioning apparatus 101.
  • the second data corresponds to the operation amount for adjusting the first data to the target value of the control amount in the air conditioning apparatus 101.
  • the second target range is a normal operation amount that is used to adjust the first data to the target value of the control amount in the air conditioner 101.
  • the current value I of the motor that drives the water cooling pump 305 is the inlet / outlet temperature of the water cooling heat source side heat exchanger, that is, the inlet of the water cooling circuit side of the water cooling heat source side heat exchanger.
  • the temperature difference ⁇ T3 between the outlet and the outlet is controlled to be within a predetermined numerical range. That is, in the example of the control system of the air conditioner 101 of the second embodiment, the temperature difference ⁇ T3 between the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger becomes the control amount, and the motor Current value I becomes the manipulated variable.
  • the first data is the temperature difference ⁇ T3 between the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger, which is the controlled variable
  • the second data is the manipulated variable.
  • the current value I of a certain motor is assumed.
  • the temperature difference ⁇ T3 between the inlet and outlet on the water cooling circuit side of the water cooling heat source side heat exchanger is calculated as, for example, the difference between the temperature detected by the temperature sensor 220 and the temperature detected by the temperature sensor 221. Is done.
  • the motor current value I is detected by a current sensor 240.
  • the “temperature difference ⁇ T3 between the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger” is referred to as “temperature difference ⁇ T3”.
  • the current value I of the motor which is the operation amount
  • the current value I of the motor is controlled within the predetermined numerical range so that the temperature difference ⁇ T3 that is the control amount falls within the predetermined numerical range. Therefore, when there is an abnormality in the water cooling pump 305, for example, when the water cooling circuit is clogged, the current value I of the motor is less than the predetermined numerical range so that the temperature difference ⁇ T3 is in the predetermined numerical range. Is also controlled to be larger.
  • condition A that is an index data group serving as an abnormality detection index in the second embodiment, that is, the first target range
  • conditions B and C which are other data groups, are such that the temperature difference ⁇ T3 is 7.0 ° C. ⁇ T3 ⁇ 9.0 ° C. and 3.0 ° C. ⁇ T3 ⁇ 5.0 ° C., respectively.
  • the past second data in the second embodiment that is, the second target range that is the numerical range of the past motor current value I is 0.5A ⁇ I ⁇ 1.0A. .
  • the management system 106 classifies these first data into data groups of conditions B and C.
  • the management system 106 since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 The transmission request for the current value I of the motor which is the second data is made.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102.
  • a transmission request for the current value I of the motor is made.
  • the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106.
  • the acquired second data is compared with the second target range, and it is determined that the acquired second data is not within the second target range. As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
  • the motor current value I or the temperature difference ⁇ T3 can be acquired as data for abnormality detection in the water-cooled pump 305 by the same method.
  • the data acquisition system includes the water-cooled heat source side heat exchanger and the water cooling pump 305 connected to the water-cooled heat source side heat exchanger, and the water-cooled heat source side heat exchange.
  • the water cooling pump 305 can be used in the air conditioner 101 constituting the water cooling circuit for circulating water or brine, and the temperature parameters are the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger.
  • the operating condition parameter can be configured to include a measurement of the current that drives the water cooled pump 305.
  • the data acquisition system can acquire the motor current value I or the temperature difference ⁇ T3 as data for detecting an abnormality in the water cooling pump 305, for example.
  • the acquired motor current value I or temperature difference ⁇ T3 can be stored in the data storage device 105, and the data stored in the data storage device 105 can be used, for example, at the time of maintenance inspection or periodic inspection of the air conditioning apparatus 101.
  • a maintenance inspector or periodic inspector of the air conditioner 101 can detect an abnormality from the data transition of the output graph. That is, the clogging of the water cooling circuit can be detected from the data transition of the motor current value I.
  • the abnormality detection system includes a water-cooled heat source side heat exchanger and a water cooling pump 305 connected to the water-cooled heat source side heat exchanger, and includes the water-cooled heat source side heat exchanger and the water-cooling system.
  • the pump 305 can be used in the air conditioner 101 that constitutes a water cooling circuit that circulates water or brine, and the control amount is between the inlet and outlet of the water cooling circuit side of the water-cooled heat source side heat exchanger.
  • the operation amount includes the temperature difference, the measured value of the current that drives the water cooling pump 305, and the abnormality of the air conditioner 101 can be configured to include clogging of the water cooling circuit.
  • the data acquisition system and the abnormality detection system are examples of the management system 106
  • the air conditioner 101 is an example of the refrigeration cycle apparatus
  • the water-cooled heat source side heat exchanger is an example of the outdoor heat exchanger 3.
  • Embodiment 3 FIG.
  • the management system 106 that acquires, as the second data, a parameter indicating the operation state of the equipment that constitutes the air conditioner 101, that is, the actuator, has been described with a specific example.
  • a management system 106 that acquires a parameter indicating a temperature state as second data will be described together with a specific example.
  • a specific condition B and C and a numerical range of the past second data are specifically specified.
  • the condition A corresponds to the first target range
  • the condition B and the condition C are a data group outside the first target range.
  • the numerical range of the past second data corresponds to the second target range determined from the third data stored in the storage device 140.
  • the entire system of the air conditioner 101 is controlled such that when the condensation temperature T4 falls within a certain temperature range, the degree of supercooling T5 falls within a certain temperature range.
  • the first data is the condensation temperature T4
  • the second data is the supercooling degree T5.
  • the condensation temperature T4 is calculated as a saturation temperature at the discharge pressure detected by the pressure sensor 201, for example.
  • the degree of supercooling T5 is calculated, for example, as a value obtained by subtracting the temperature detected by the temperature sensor 207 from the saturation temperature at the discharge pressure detected by the pressure sensor 201 during the cooling operation.
  • the degree of supercooling T5 is calculated, for example, as a value obtained by subtracting the temperature detected by the temperature sensor 208a or the temperature sensor 208b from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
  • the degree of supercooling T5 is within a certain range.
  • the degree of supercooling T5 increases beyond a certain range due to a lack of refrigerant.
  • the condensation temperature T4 is 34 ° C. ⁇ T ⁇ 36 ° C.
  • conditions B and C which are other data groups are such that the condensation temperature T4 is 36 ° C. ⁇ T ⁇ 38 ° C. and 32 ° C. ⁇ T ⁇ 34 ° C., respectively.
  • the second past data in the third embodiment that is, the second target range which is the numerical range of the past supercooling degree T5 is set to 5 ° C. ⁇ T4 ⁇ 6 ° C.
  • the management system 106 classifies these first data into data groups of conditions B and C.
  • the management system 106 since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 A transmission request for the degree of supercooling T5, which is the second data, is made.
  • the data transmitting apparatus 102 transmits the second data to the management system 106.
  • the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
  • the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102.
  • a transmission request for the degree of supercooling T5 is made.
  • the data transmitting apparatus 102 transmits the second data to the management system 106.
  • the acquired second data is compared with the second target range, and it is determined that the acquired second data is not within the second target range. As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
  • the first data includes the condensation temperature
  • the first target range is the allowable range of the condensation temperature in the air conditioner 101.
  • the data of 2 includes the degree of supercooling
  • the second target range can be configured to be an allowable range of the degree of supercooling at the condensing temperature, and the refrigerant leaks from the air conditioner 101 as an abnormality of the air conditioner 101. Can be configured to be detected.
  • the refrigerant leakage from the air conditioner 101 can be detected from the degree of supercooling when the condensation temperature is in a certain range, so that the amount of data acquired from the air conditioner 101 is reduced.
  • the refrigerant leakage from the air conditioner 101 can be detected.
  • the condensation temperature T4 or the degree of supercooling T5 can be acquired as data for detecting refrigerant leakage from the air conditioner 101 in the same manner.
  • the data acquisition system and the abnormality detection system are examples of the management system 106, and the air conditioner 101 is an example of a refrigeration cycle apparatus.
  • FIG. 11 is a flowchart illustrating an example of a numerical range determination process for classifying the first data into a plurality of data groups in the management system 106 according to the fourth embodiment.
  • the process shown in FIG. 11 may be performed only once when the process of step S2 of FIG. 5 is performed. In order to determine an optimal numerical range, the process is periodically performed, for example, once a year. You may make it carry out.
  • Step S21 in FIG. 11 is a step of acquiring the first data from the air conditioning apparatus 101, and is the same processing as Step S1 in FIG. 5 and Step S11 in FIG. 7 according to the first embodiment described above.
  • Step S22 is a step of classifying the first data transmitted to the management system 106 into a plurality of data groups, and the same processing as step S2 in FIG. 5 and step S12 in FIG. 7 according to the first embodiment described above. It is.
  • Step S23 is a step of selecting an index data group that is a target range from a plurality of stored data groups, and is the same as step S3 in FIG. 5 and step S13 in FIG. 7 according to the first embodiment described above. It is processing of.
  • step S24 the control unit 121 of the monitoring device 104 in the management system 106 calculates the variation, that is, the variance of the index data group when classified in the current numerical range.
  • the variation of the index data group can be, for example, the standard deviation or standard error of the index data group.
  • the control unit 121 of the monitoring device 104 may cause the calculation unit 120 to calculate the variation of the index data.
  • step S25 the control unit 121 of the monitoring device 104 determines whether or not the variation of the index data calculated in step S24 is smaller than the reference value of the variation.
  • the reference value of variation is arbitrarily determined according to the attribute of the first data. For example, when the first data is the condensation temperature T of Example 1 of the first embodiment described above and the variation of the index data is the standard deviation of the index data group, the variation reference value is set to 35 ⁇ 0.5. It is good also as ° C.
  • step S26 the control unit 121 of the monitoring device 104 sets the numerical ranges of the plurality of data groups so that the numerical ranges are reduced.
  • the change of the numerical value range can be performed with a predetermined width.
  • the first data is the condensation temperature T of Example 1 of Embodiment 1 described above
  • the upper limit value and lower limit value of the numerical range may be changed by 0.05 ° C. to reduce the numerical range. it can.
  • step S22 the process of classifying the first data transmitted to the management system 106 into a plurality of data groups for each changed numerical range is performed again.
  • step S25 the index data calculated in step S24 is performed. Steps S22 to S26 are repeatedly performed until it is determined that the variation is smaller than the variation reference value.
  • step S25 If it is determined in step S25 that the variation in the index data calculated in step S24 is smaller than the variation reference value, a numerical range for classifying the first data into a plurality of data groups is determined in step S27. The numerical range is determined.
  • the fourth embodiment by performing such a determination process, it is possible to dynamically determine the optimum numerical range according to the attribute of the first data, and therefore all data that can be acquired from the refrigeration cycle apparatus. It is possible to detect an abnormality in the refrigeration cycle apparatus with a small amount of data selected from the above.
  • an Internet line is used as an example of the communication network 103, but a LAN or WAN may be used as the communication network 103.
  • the numerical value range is changed according to the variation of the index data, for example, the standard deviation, and the optimal numerical value range is determined. That is, the optimum numerical range may be determined by changing the frequency according to the occurrence frequency.
  • the air conditioner 101 is exemplified as the refrigeration cycle apparatus.
  • the present invention can be applied to other refrigeration cycle apparatuses such as a hot water supply apparatus, a refrigerator, a refrigerator, and a vending machine.

Abstract

Provided are: a data acquisition system whereby the quantity of data to be acquired from a refrigeration cycle device can be reduced; an abnormality detection system; a refrigeration cycle device that is provided with the systems; a data acquisition method whereby the quantity of data to be acquired from the refrigeration cycle device can be reduced; and an abnormality detection method. First data, i.e., some parameters measured by the refrigeration cycle device, is acquired from the refrigeration cycle device, and in the cases where the first data is within a target range, second data, i.e., some other parameters measured by the refrigeration cycle device, is acquired from the refrigeration cycle device.

Description

データ取得システム、異常検知システム、冷凍サイクル装置、データ取得方法、及び異常検知方法Data acquisition system, abnormality detection system, refrigeration cycle apparatus, data acquisition method, and abnormality detection method
 本発明は、冷凍サイクル装置で用いられるデータ取得システム及び異常検知システム、データ取得システム又は異常検知システムを備える冷凍サイクル装置、ならびに冷凍サイクル装置からのデータ取得方法及び冷凍サイクル装置の異常検知方法に関するものである。 The present invention relates to a data acquisition system and abnormality detection system used in a refrigeration cycle apparatus, a refrigeration cycle apparatus including a data acquisition system or an abnormality detection system, a data acquisition method from the refrigeration cycle apparatus, and an abnormality detection method of the refrigeration cycle apparatus. It is.
 特許文献1には、空気調和装置等の冷凍サイクル装置が記載されている。この冷凍サイクル装置では、冷媒回路を構成する各構成要素の運転状態量から各構成要素の冷媒量が求められ、それらの総和として演算冷媒量が演算される。また、演算冷媒量と予め取得されている適正冷媒量とを比較することにより、冷媒量の過不足が判定される。 Patent Document 1 describes a refrigeration cycle apparatus such as an air conditioner. In this refrigeration cycle apparatus, the refrigerant amount of each component is obtained from the operating state quantity of each component constituting the refrigerant circuit, and the calculated refrigerant amount is calculated as the sum of them. Further, by comparing the calculated refrigerant amount with the appropriate refrigerant amount acquired in advance, it is determined whether the refrigerant amount is excessive or insufficient.
特許第4975052号公報Japanese Patent No. 4975052
 しかしながら、特許文献1に記載された冷凍サイクル装置では、冷媒回路の各構成要素の運転状態量に基づいて演算冷媒量が演算されるため、冷媒量の異常を検知するために多量のデータを遠隔監視システムで記憶しなければならない。したがって、特許文献1では、冷媒量の異常を含む冷凍サイクル装置の異常を検知するために、多量のデータを蓄積可能な遠隔監視システムが必要になるという課題があった。また、特許文献1では、冷凍サイクル装置と遠隔監視システムとの間は、通信ネットワークを介して接続されるため、通信容量に制限がある。したがって、特許文献1では、冷凍サイクル装置の異常を検知するために、冷凍サイクル装置から遠隔監視システムに多量のデータを常時送信することができないという課題があった。 However, in the refrigeration cycle apparatus described in Patent Document 1, since the calculated refrigerant amount is calculated based on the operation state amount of each component of the refrigerant circuit, a large amount of data is remotely transmitted to detect an abnormality in the refrigerant amount. Must be stored in the surveillance system. Therefore, in patent document 1, in order to detect abnormality of the refrigerating-cycle apparatus containing abnormality of refrigerant | coolant amount, the subject that the remote monitoring system which can accumulate | store a large amount of data occurred. Moreover, in patent document 1, since a refrigerating-cycle apparatus and a remote monitoring system are connected via a communication network, there exists a restriction | limiting in communication capacity. Therefore, in patent document 1, in order to detect abnormality of a refrigerating-cycle apparatus, there existed a subject that a large amount of data could not be always transmitted from a refrigerating-cycle apparatus to a remote monitoring system.
 本発明は、上述のような課題を解決するためになされたものであり、冷凍サイクル装置から取得されるデータ量を低減可能なデータ取得システム及び異常検知システム、上述のシステムを備える冷凍サイクル装置、及び冷凍サイクル装置から取得されるデータ量を低減可能なデータ取得方法及び異常検知方法を提供することを目的とする。 The present invention has been made in order to solve the above-described problems. A data acquisition system and an abnormality detection system that can reduce the amount of data acquired from a refrigeration cycle apparatus, a refrigeration cycle apparatus including the above-described system, And it aims at providing the data acquisition method and abnormality detection method which can reduce the data amount acquired from a refrigerating-cycle apparatus.
 本発明に係るデータ取得システムは、圧縮機と減圧装置とを備える冷凍サイクル装置に接続され、前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得し、前記第1のデータが目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得する制御装置を備える。 A data acquisition system according to the present invention is connected to a refrigeration cycle apparatus including a compressor and a decompression device, and acquires first data that is a part of parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus. And when the 1st data exists in a target range, it has a control device which acquires the 2nd data which is other part of the parameter measured in the refrigeration cycle device from the refrigeration cycle device.
 本発明に係る異常検知システムは、圧縮機と減圧装置とを備える冷凍サイクル装置に接続され、前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得し、前記第1のデータが第1の目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得し、前記第2のデータが第2の目標範囲にない場合に、前記冷凍サイクル装置が異常であると検知する制御装置を備える。 The abnormality detection system according to the present invention is connected to a refrigeration cycle apparatus including a compressor and a decompression device, and acquires first data that is a part of parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus. When the first data is in the first target range, second data that is another part of the parameter measured in the refrigeration cycle apparatus is acquired from the refrigeration cycle apparatus, A controller that detects that the refrigeration cycle apparatus is abnormal when the second data is not within the second target range;
 本発明に係る冷凍サイクル装置は、圧縮機と減圧装置とを備える冷凍サイクル回路と、前記冷凍サイクル回路において測定されるパラメータの一部である第1のデータを前記冷凍サイクル回路から取得し、前記第1のデータが第1の目標範囲にある場合に、前記冷凍サイクル回路において測定されるパラメータの他の一部である第2のデータを前記冷凍サイクル回路から取得する制御装置とを備える。 The refrigeration cycle apparatus according to the present invention acquires from the refrigeration cycle circuit a refrigeration cycle circuit including a compressor and a decompression device, and first data that is a part of parameters measured in the refrigeration cycle circuit, And a control device that acquires, from the refrigeration cycle circuit, second data that is another part of the parameter measured in the refrigeration cycle circuit when the first data is in the first target range.
 本発明に係るデータ取得方法は、圧縮機と減圧装置とを備える冷凍サイクル装置において測定されるパラメータを取得する、データ取得システムのデータ取得方法であって、前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得する工程と、前記第1のデータが目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得する工程とを有する。 A data acquisition method according to the present invention is a data acquisition method of a data acquisition system for acquiring a parameter measured in a refrigeration cycle apparatus including a compressor and a decompression device, wherein the parameter measured in the refrigeration cycle apparatus The first data which is a part is obtained from the refrigeration cycle apparatus, and the first data which is another part of the parameter measured in the refrigeration cycle apparatus when the first data is in a target range. 2 data is acquired from the refrigeration cycle apparatus.
 本発明に係る異常検知方法は、圧縮機と減圧装置とを備える冷凍サイクル装置の異常を検知する、異常検知システムの異常検知方法であって、前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得する工程と、前記第1のデータが第1の目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得する工程と、前記第2のデータが第2の目標範囲にない場合に、前記冷凍サイクル装置が異常であると検知する工程とを有する。 An abnormality detection method according to the present invention is an abnormality detection method of an abnormality detection system for detecting an abnormality of a refrigeration cycle apparatus including a compressor and a decompression device, and is a part of parameters measured in the refrigeration cycle apparatus. A step of obtaining certain first data from the refrigeration cycle apparatus, and a first parameter that is another part of a parameter measured in the refrigeration cycle apparatus when the first data is in a first target range. And a step of detecting that the refrigeration cycle apparatus is abnormal when the second data is not within the second target range.
 本発明によれば、冷凍サイクル装置において測定されるパラメータの一部を取得する構成にできるため、冷凍サイクル装置からの取得データ量を低減することができる。 According to the present invention, since a part of the parameters measured in the refrigeration cycle apparatus can be obtained, the amount of data acquired from the refrigeration cycle apparatus can be reduced.
本発明の実施の形態1に係る空気調和装置101の概略構成の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of schematic structure of the air conditioning apparatus 101 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る管理システム106の空気調和装置101への接続例を示す概略図である。It is the schematic which shows the example of a connection to the air conditioning apparatus 101 of the management system 106 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る管理システム106における監視装置104の構成を示すブロック図である。It is a block diagram which shows the structure of the monitoring apparatus 104 in the management system 106 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る管理システム106におけるデータ蓄積装置105の構成を示すブロック図である。It is a block diagram which shows the structure of the data storage device 105 in the management system 106 concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る管理システム106をデータ取得システムとして構成した場合に、監視装置104で実行される制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing performed with the monitoring apparatus 104, when the management system 106 which concerns on Embodiment 1 of this invention is comprised as a data acquisition system. 本発明の実施の形態1に係る第1のデータを複数のデータ群に分類する工程の一例を概略的に示したブロック図である。It is the block diagram which showed roughly an example of the process of classifying the 1st data which concerns on Embodiment 1 of this invention into a some data group. 本発明の実施の形態1に係る管理システム106を異常検知システムとして構成した場合に、監視装置104で実行される制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing performed with the monitoring apparatus 104, when the management system 106 which concerns on Embodiment 1 of this invention is comprised as an abnormality detection system. 本発明の実施の形態1に係る管理システム106を異常検知システムとして構成した場合における、監視装置104の制御部121における異常検知の一例を概略的に示したグラフである。It is the graph which showed roughly an example of the abnormality detection in the control part 121 of the monitoring apparatus 104 when the management system 106 which concerns on Embodiment 1 of this invention is comprised as an abnormality detection system. 本発明の実施の形態1の異常検知処理における、データ送信装置102と管理システム106との間のデータの送受信の一例を概略的に示したものである。4 schematically shows an example of data transmission / reception between the data transmission apparatus 102 and the management system 106 in the abnormality detection processing according to the first embodiment of the present invention. 本発明の実施の形態2に係る空気調和装置101の概略構成の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of schematic structure of the air conditioning apparatus 101 which concerns on Embodiment 2 of this invention. 本発明の実施の形態4に係る管理システム106における、第1のデータを複数のデータ群に分類するための数値範囲の決定処理の例を示すフローチャートである。It is a flowchart which shows the example of the determination process of the numerical range for classifying the 1st data into a some data group in the management system 106 which concerns on Embodiment 4 of this invention.
実施の形態1.
 本発明の実施の形態1に係る管理システム106に接続される冷凍サイクル装置について説明する。管理システム106については後述する図2を参照されたい。管理システム106の詳細については後述するが、本実施の形態1においては、管理システム106は、例えば、データ取得システム又は異常検知システムとして構成される。
Embodiment 1 FIG.
A refrigeration cycle apparatus connected to the management system 106 according to Embodiment 1 of the present invention will be described. Refer to FIG. 2 described later for the management system 106. Although details of the management system 106 will be described later, in the first embodiment, the management system 106 is configured as, for example, a data acquisition system or an abnormality detection system.
 図1は、本実施の形態1に係る空気調和装置101の概略構成の一例を示す冷媒回路図である。本実施の形態1では、冷凍サイクル装置として、空気調和装置101を例示している。本実施の形態1の空気調和装置101は、ビル、マンション又は商業施設等に設置されるビル用マルチエアコンである。この空気調和装置101は、空調用の冷媒を循環させる蒸気圧縮式の冷凍サイクル運転を行うことによって、冷房運転又は暖房運転を実行することができるものである。冷房運転及び暖房運転は、利用ユニット側での選択により切り換えられるようになっている。 FIG. 1 is a refrigerant circuit diagram illustrating an example of a schematic configuration of an air-conditioning apparatus 101 according to Embodiment 1. In this Embodiment 1, the air conditioning apparatus 101 is illustrated as a refrigeration cycle apparatus. The air conditioner 101 according to the first embodiment is a building multi-air conditioner installed in a building, apartment, commercial facility, or the like. The air conditioner 101 can perform a cooling operation or a heating operation by performing a vapor compression refrigeration cycle operation in which a refrigerant for air conditioning is circulated. The cooling operation and the heating operation can be switched by selection on the use unit side.
 図1に示すように、空気調和装置101は、内部に冷媒を循環させる冷凍サイクル回路を有している。冷凍サイクル回路は、圧縮機1、四方弁2、室外熱交換器3、少なくとも1つの膨張弁14a、14b、少なくとも1つの室内熱交換器15a、15b、及びアキュムレータ19が、冷媒配管を介して環状に接続された構成を有している。冷房運転時には、圧縮機1、室外熱交換器3、膨張弁14a及び室内熱交換器15a、又は、圧縮機1、室外熱交換器3、膨張弁14b及び室内熱交換器15bがこの順に環状に接続される。暖房運転時には、四方弁2により冷媒流路が切り替えられ、圧縮機1、室内熱交換器15a、膨張弁14a及び室外熱交換器3、又は、圧縮機1、室内熱交換器15b、膨張弁14b及び室外熱交換器3がこの順に環状に接続される。 As shown in FIG. 1, the air conditioner 101 has a refrigeration cycle circuit that circulates refrigerant therein. In the refrigeration cycle circuit, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the at least one expansion valve 14a, 14b, the at least one indoor heat exchanger 15a, 15b, and the accumulator 19 are ring-shaped via a refrigerant pipe. It has the structure connected to. During the cooling operation, the compressor 1, the outdoor heat exchanger 3, the expansion valve 14a and the indoor heat exchanger 15a, or the compressor 1, the outdoor heat exchanger 3, the expansion valve 14b and the indoor heat exchanger 15b are annularly arranged in this order. Connected. During the heating operation, the refrigerant flow path is switched by the four-way valve 2, and the compressor 1, the indoor heat exchanger 15a, the expansion valve 14a and the outdoor heat exchanger 3, or the compressor 1, the indoor heat exchanger 15b, and the expansion valve 14b. And the outdoor heat exchanger 3 is connected cyclically | annularly in this order.
 また、空気調和装置101は、室外熱交換器3と膨張弁14a、14bとの間を流れる冷媒の一部をアキュムレータ19に戻すバイパス回路21を有している。バイパス回路21には、バイパス回路21に分流した冷媒を減圧するバイパス減圧機構20が設けられている。さらに、空気調和装置101は、室外熱交換器3と膨張弁14a、14bとの間を流れる冷媒をバイパス減圧機構20で減圧された冷媒との熱交換によって冷却する過冷却熱交換器11を有している。 The air conditioner 101 also has a bypass circuit 21 that returns a part of the refrigerant flowing between the outdoor heat exchanger 3 and the expansion valves 14a and 14b to the accumulator 19. The bypass circuit 21 is provided with a bypass depressurization mechanism 20 that depressurizes the refrigerant diverted to the bypass circuit 21. Furthermore, the air conditioner 101 has a supercooling heat exchanger 11 that cools the refrigerant flowing between the outdoor heat exchanger 3 and the expansion valves 14a and 14b by heat exchange with the refrigerant depressurized by the bypass depressurization mechanism 20. is doing.
 空気調和装置101は、例えば室外に設置される1台の熱源ユニット304と、例えば室内に設置され、熱源ユニット304に対して並列に接続された複数台の利用ユニット303a、303bと、を有している。熱源ユニット304と利用ユニット303a、303bとの間は、液配管27及びガス配管28を介して接続されている。液配管27及びガス配管28は、熱源ユニット304と利用ユニット303a、303bとの間を接続する延長配管であり、冷凍サイクルを構成する冷媒配管の一部である。図1では、1台の熱源ユニット304と2台の利用ユニット303a、303bとを示しているが、空気調和装置101は、2台以上の熱源ユニット304を有していてもよいし、1台のみ又は3台以上の他の利用ユニットを有していてもよい。なお、熱源ユニット304は室内機の一例である。また、利用ユニット303a、303bは室内機の一例であり、負荷ユニットとも称される。 The air conditioner 101 includes, for example, one heat source unit 304 installed outdoors, and a plurality of use units 303a and 303b installed indoors and connected in parallel to the heat source unit 304, for example. ing. The heat source unit 304 and the utilization units 303 a and 303 b are connected via a liquid pipe 27 and a gas pipe 28. The liquid pipe 27 and the gas pipe 28 are extension pipes that connect the heat source unit 304 and the utilization units 303a and 303b, and are part of the refrigerant pipes that constitute the refrigeration cycle. Although FIG. 1 shows one heat source unit 304 and two utilization units 303a and 303b, the air conditioner 101 may include two or more heat source units 304, or one unit. May have only three or more other usage units. The heat source unit 304 is an example of an indoor unit. The use units 303a and 303b are examples of indoor units and are also referred to as load units.
 熱源ユニット304には、圧縮機1、四方弁2、室外熱交換器3、アキュムレータ19、過冷却熱交換器11及びバイパス減圧機構20等が収容されている。また、熱源ユニット304には、室外熱交換器3に外気を送風する室外送風機4が収容されている。 The heat source unit 304 houses the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the accumulator 19, the supercooling heat exchanger 11, the bypass pressure reducing mechanism 20, and the like. In addition, the heat source unit 304 houses an outdoor fan 4 that blows outside air to the outdoor heat exchanger 3.
 利用ユニット303aには、膨張弁14a及び室内熱交換器15aが収容されている。また、図示しないが、利用ユニット303aには、室内熱交換器15aに空気を送風する室内送風機が収容されている。同様に、図示しないが、利用ユニット303bには、膨張弁14b、室内熱交換器15b、及び室内熱交換器15bに空気を送風する室内送風機が収容されている。 The use unit 303a accommodates an expansion valve 14a and an indoor heat exchanger 15a. Moreover, although not shown in figure, the utilization unit 303a contains the indoor air blower which ventilates the indoor heat exchanger 15a. Similarly, although not shown, the utilization unit 303b accommodates an expansion valve 14b, an indoor heat exchanger 15b, and an indoor fan that blows air to the indoor heat exchanger 15b.
 圧縮機1は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。本実施の形態1の圧縮機1は、インバータにより回転数が制御されるようになっている。 Compressor 1 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant. In the compressor 1 of the first embodiment, the rotational speed is controlled by an inverter.
 四方弁2は、冷媒流路切替装置の一例であり、冷房運転時と暖房運転時とで冷媒の流れ方向を切り替える弁である。四方弁2は、第1~第4の4つのポートを有している。第1ポートは、圧縮機1の吐出側に接続されている。第2ポートは、室外熱交換器3に接続されている。第3ポートは、圧縮機1の吸入側に接続されるアキュムレータ19に接続されている。第4ポートは、ガス配管28に接続されている。冷房運転時には、四方弁2は、図1の実線で示すように、第1ポートと第2ポートとが連通し、第3ポートと第4ポートとが連通する状態に設定される。暖房運転時には、四方弁2は、図1の破線で示すように、第1ポートと第4ポートとが連通し、第2ポートと第3ポートとが連通する状態に設定される。 The four-way valve 2 is an example of the refrigerant flow switching device, and is a valve that switches the flow direction of the refrigerant between the cooling operation and the heating operation. The four-way valve 2 has first to fourth four ports. The first port is connected to the discharge side of the compressor 1. The second port is connected to the outdoor heat exchanger 3. The third port is connected to an accumulator 19 connected to the suction side of the compressor 1. The fourth port is connected to the gas pipe 28. During the cooling operation, the four-way valve 2 is set to a state in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other, as shown by the solid line in FIG. During the heating operation, the four-way valve 2 is set to a state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other, as indicated by the broken line in FIG.
 室外熱交換器3は、熱源側熱交換器とも称され、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する熱交換器である。図1に示すように、室外熱交換器3は、例えば、内部を流通する冷媒と、室外送風機4により送風される空気、すなわち外気との熱交換が行われる空冷式熱源側熱交換器として構成できる。空冷式熱源側熱交換器は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。なお、凝縮器は放熱器とも称され、蒸発器は冷却器とも称される。 The outdoor heat exchanger 3 is also referred to as a heat source side heat exchanger, and functions as a condenser during the cooling operation and functions as an evaporator during the heating operation. As shown in FIG. 1, the outdoor heat exchanger 3 is configured as, for example, an air-cooled heat source side heat exchanger in which heat is exchanged between the refrigerant circulating inside and the air blown by the outdoor blower 4, that is, outside air. it can. The air-cooling heat source side heat exchanger can be configured as, for example, a cross-fin type fin-and-tube heat exchanger including heat transfer tubes and a plurality of fins. In addition, a condenser is also called a heat radiator and an evaporator is also called a cooler.
 室外送風機4は、熱源側送風ファンとも称され、室外熱交換器3に供給する空気の流量を可変に調整できるようになっている。室外送風機4は、例えば、DCファンモータによって駆動されるプロペラファンである。 The outdoor blower 4 is also referred to as a heat source side blower fan, and the flow rate of air supplied to the outdoor heat exchanger 3 can be variably adjusted. The outdoor blower 4 is, for example, a propeller fan that is driven by a DC fan motor.
 アキュムレータ19は、余剰の冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることにより、圧縮機1に大量の液冷媒が流入するのを防ぐ気液分離機能と、を有している。 The accumulator 19 has a function of preventing a large amount of liquid refrigerant from flowing into the compressor 1 by retaining a refrigerant storage function for storing excess refrigerant and a liquid refrigerant that is temporarily generated when the operating state changes. And a liquid separation function.
 膨張弁14a、14bは、例えば、多段階又は連続的に開度を調節可能な電子膨張弁である。電子膨張弁としては、例えばリニア電子膨張弁が用いられる。なお、膨張弁14a、14bは減圧装置の一例であり、膨張弁14a、14bに代えて、キャピラリ等の他の減圧装置を用いることもできる。 The expansion valves 14a and 14b are electronic expansion valves whose opening degree can be adjusted in multiple stages or continuously, for example. For example, a linear electronic expansion valve is used as the electronic expansion valve. The expansion valves 14a and 14b are examples of a pressure reducing device, and other pressure reducing devices such as capillaries can be used instead of the expansion valves 14a and 14b.
 室内熱交換器15a、15bは、負荷側熱交換器とも称され、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する熱交換器である。室内熱交換器15a、15bでは、内部を流通する冷媒と、室内送風機によりそれぞれ送風される空気との熱交換が行われる。室内熱交換器15a、15bは、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。 The indoor heat exchangers 15a and 15b are also referred to as load-side heat exchangers, and function as evaporators during the cooling operation and function as condensers during the heating operation. In the indoor heat exchangers 15a and 15b, heat exchange is performed between the refrigerant circulating in the interior and the air blown by the indoor blower. The indoor heat exchangers 15a and 15b can be configured as, for example, cross-fin type fin-and-tube heat exchangers configured by heat transfer tubes and a plurality of fins.
 また、空気調和装置101には、圧縮機1から吐出される冷媒の圧力である吐出圧力を検出する圧力センサ201と、圧縮機1に吸入される冷媒の圧力である吸入圧力を検出する圧力センサ211と、が設けられている。圧力センサ201、211は、後述する制御部107に検出信号を出力するようになっている。 The air conditioner 101 includes a pressure sensor 201 that detects a discharge pressure that is a pressure of refrigerant discharged from the compressor 1 and a pressure sensor that detects a suction pressure that is a pressure of refrigerant sucked into the compressor 1. 211. The pressure sensors 201 and 211 output detection signals to the control unit 107 described later.
 また、空気調和装置101には、冷凍サイクル内の冷媒の温度を直接又は冷媒配管等を介して間接的に検出する複数の温度センサが設けられている。具体的には、熱源ユニット304には、圧縮機1から吐出される冷媒の温度を検出する温度センサ202と、室外熱交換器3の液側の冷媒、すなわち、冷房運転時には室外熱交換器3から流出する液冷媒、暖房運転時には室外熱交換器3に流入する液冷媒又は二相冷媒の温度を検出する温度センサ203と、過冷却熱交換器11の高圧側流路と液配管27との間の冷媒の温度を検出する温度センサ207と、バイパス減圧機構20と過冷却熱交換器11の低圧側流路との間の冷媒の温度を検出する温度センサ212と、過冷却熱交換器11の低圧側流路の出口側の冷媒の温度を検出する温度センサ213とが設けられている。利用ユニット303aには、室内熱交換器15aの入口側及び出口側の冷媒の温度を検出する温度センサ208a、209aが設けられている。同様に、利用ユニット303bには、室内熱交換器15bの入口側及び出口側の冷媒の温度を検出する温度センサ208b、209bが設けられている。 The air conditioner 101 is provided with a plurality of temperature sensors that detect the temperature of the refrigerant in the refrigeration cycle directly or indirectly through a refrigerant pipe or the like. Specifically, the heat source unit 304 includes a temperature sensor 202 that detects the temperature of the refrigerant discharged from the compressor 1, and a liquid side refrigerant of the outdoor heat exchanger 3, that is, the outdoor heat exchanger 3 during cooling operation. A temperature sensor 203 for detecting the temperature of the liquid refrigerant flowing out of the refrigerant, the temperature of the liquid refrigerant or two-phase refrigerant flowing into the outdoor heat exchanger 3 during heating operation, and the high pressure side flow path of the supercooling heat exchanger 11 and the liquid piping 27. A temperature sensor 207 that detects the temperature of the refrigerant in between, a temperature sensor 212 that detects the temperature of the refrigerant between the bypass pressure reducing mechanism 20 and the low-pressure side flow path of the supercooling heat exchanger 11, and the supercooling heat exchanger 11 And a temperature sensor 213 for detecting the temperature of the refrigerant on the outlet side of the low-pressure channel. The utilization unit 303a is provided with temperature sensors 208a and 209a for detecting the temperature of the refrigerant on the inlet side and the outlet side of the indoor heat exchanger 15a. Similarly, the utilization unit 303b is provided with temperature sensors 208b and 209b for detecting the temperature of the refrigerant on the inlet side and the outlet side of the indoor heat exchanger 15b.
 また、熱源ユニット304には、圧縮機1の底部の温度を検出する温度センサ214と、熱源ユニット304の外気温度等の雰囲気温度を検出する温度センサ204とが設けられている。利用ユニット303aには、利用ユニット303aの室内温度等の雰囲気温度を検出する温度センサ210aが設けられている。利用ユニット303bには、利用ユニット303bの室内温度等の雰囲気温度を検出する温度センサ210bが設けられている。 Also, the heat source unit 304 is provided with a temperature sensor 214 that detects the temperature of the bottom of the compressor 1 and a temperature sensor 204 that detects an ambient temperature such as the outside air temperature of the heat source unit 304. The usage unit 303a is provided with a temperature sensor 210a that detects an ambient temperature such as the room temperature of the usage unit 303a. The usage unit 303b is provided with a temperature sensor 210b that detects an ambient temperature such as the room temperature of the usage unit 303b.
 また、空気調和装置101は、制御部107を有している。制御部107は、CPU、ROM、RAM、I/Oポート等を備えたマイコンを備えている。制御部107は、熱源ユニット304に設けられる熱源ユニット制御装置と、利用ユニット303a、303bのそれぞれに設けられ、熱源ユニット制御装置とデータ通信可能な利用ユニット制御装置とにより構成されていてもよい。 Moreover, the air conditioning apparatus 101 has a control unit 107. The control unit 107 includes a microcomputer having a CPU, a ROM, a RAM, an I / O port, and the like. The control unit 107 may include a heat source unit control device provided in the heat source unit 304 and a use unit control device provided in each of the use units 303a and 303b and capable of data communication with the heat source unit control device.
 制御部107は、圧力センサ201、211及び温度センサ202、203、204、207、208a、208b、209a、209b、210a、210b、212、213、214からの検出信号等に基づいて、少なくとも冷凍サイクルの運転及び停止を含む空気調和装置101の運転状態を制御するものである。また、制御部107は、少なくとも冷凍サイクルの運転期間中、又は冷凍サイクルの運転期間及び停止期間を含む常時に、各種センサからの検出信号に基づき取得される圧力及び温度のデータ、冷凍サイクルの運転/停止状態を示すデータ、並びに空気調和装置101の単位期間毎、例えば、1日毎の運転データ等を、データ送信装置102に送信するように構成できる。例えば、制御部107からデータ送信装置102に送信されるデータとしては、冷凍サイクル内の冷媒の圧力及び温度のデータ、冷凍サイクルの圧縮機1の底部温度のデータ、熱源ユニット304の雰囲気温度のデータ、利用ユニット303a、303bの雰囲気温度のデータ等が含まれる。 The control unit 107 includes at least a refrigeration cycle based on detection signals from the pressure sensors 201 and 211 and the temperature sensors 202, 203, 204, 207, 208a, 208b, 209a, 209b, 210a, 210b, 212, 213, and 214. The operation state of the air conditioning apparatus 101 including the operation and stop of the above is controlled. In addition, the control unit 107 performs pressure and temperature data acquired based on detection signals from various sensors, at least during the operation period of the refrigeration cycle, or at all times including the operation period and the stop period of the refrigeration cycle, and the operation of the refrigeration cycle. / Data indicating the stop state, and operation data for each unit period of the air-conditioning apparatus 101, for example, every day can be configured to be transmitted to the data transmission apparatus 102. For example, the data transmitted from the control unit 107 to the data transmitting device 102 includes refrigerant pressure and temperature data in the refrigeration cycle, bottom temperature data of the compressor 1 in the refrigeration cycle, and ambient temperature data of the heat source unit 304. , Data on the ambient temperature of the use units 303a and 303b, and the like are included.
 次に、空気調和装置101の動作について説明する。制御部107は、利用ユニット303a、303bからの要求に基づいて、熱源ユニット304及び利用ユニット303a、303bに搭載されている各機器を制御し、冷房運転モード及び暖房運転モードを実行することができる。 Next, the operation of the air conditioner 101 will be described. The control unit 107 can control each device mounted on the heat source unit 304 and the usage units 303a and 303b based on requests from the usage units 303a and 303b, and can execute the cooling operation mode and the heating operation mode. .
 まず、冷房運転モードについて説明する。冷房運転モードでは、圧縮機1の吐出側と室外熱交換器3とが接続され、圧縮機1の吸入側とガス配管28とが接続されるように四方弁2が制御される。 First, the cooling operation mode will be described. In the cooling operation mode, the four-way valve 2 is controlled so that the discharge side of the compressor 1 and the outdoor heat exchanger 3 are connected, and the suction side of the compressor 1 and the gas pipe 28 are connected.
 圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2を経由して室外熱交換器3に流入する。冷房運転では、室外熱交換器3は凝縮器として機能する。すなわち、室外熱交換器3では、内部を流通する冷媒と、室外送風機4により送風される外気との熱交換が行われ、冷媒の凝縮熱が送風空気に放熱される。これにより、室外熱交換器3に流入した冷媒は、凝縮して高圧の液冷媒となる。高圧の液冷媒は、過冷却熱交換器11で低圧冷媒との熱交換により冷却される。その後、液冷媒の一部はバイパス回路21に流入し、その他の液冷媒は液配管27に流入する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 via the four-way valve 2. In the cooling operation, the outdoor heat exchanger 3 functions as a condenser. That is, in the outdoor heat exchanger 3, heat exchange is performed between the refrigerant flowing through the inside and the outside air blown by the outdoor blower 4, and the heat of condensation of the refrigerant is radiated to the blown air. Thereby, the refrigerant | coolant which flowed into the outdoor heat exchanger 3 condenses and turns into a high voltage | pressure liquid refrigerant. The high-pressure liquid refrigerant is cooled by heat exchange with the low-pressure refrigerant in the supercooling heat exchanger 11. Thereafter, a part of the liquid refrigerant flows into the bypass circuit 21, and the other liquid refrigerant flows into the liquid pipe 27.
 液配管27を通過した高圧の液冷媒は、膨張弁14a、14bで減圧されて低圧の二相冷媒となる。膨張弁14a、14bを通過した低圧の二相冷媒は、室内熱交換器15a、15bに流入する。冷房運転では、室内熱交換器15a、15bは蒸発器として機能する。すなわち、室内熱交換器15a、15bでは、内部を流通する冷媒と、室内送風機により送風される室内空気との熱交換が行われ、冷媒の蒸発熱が送風空気から吸熱される。これにより、室内熱交換器15a、15bに流入した冷媒は、蒸発して低圧のガス冷媒又は二相冷媒となる。また、室内送風機により送風される空気は、冷媒の吸熱作用によって冷却され、冷風となる。室内熱交換器15a、15bを通過した低圧のガス冷媒又は二相冷媒は、ガス配管28及び四方弁2を通過し、アキュムレータ19に流入する。アキュムレータ19内の低圧のガス冷媒は、圧縮機1に吸入されて圧縮され、高温高圧のガス冷媒となる。冷房運転では、これらのサイクルが繰り返される。 The high-pressure liquid refrigerant that has passed through the liquid pipe 27 is decompressed by the expansion valves 14a and 14b to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant that has passed through the expansion valves 14a and 14b flows into the indoor heat exchangers 15a and 15b. In the cooling operation, the indoor heat exchangers 15a and 15b function as evaporators. That is, in the indoor heat exchangers 15a and 15b, heat exchange is performed between the refrigerant circulating in the interior and the indoor air blown by the indoor blower, and the evaporation heat of the refrigerant is absorbed from the blown air. As a result, the refrigerant flowing into the indoor heat exchangers 15a and 15b evaporates to become a low-pressure gas refrigerant or a two-phase refrigerant. Moreover, the air blown by the indoor blower is cooled by the endothermic action of the refrigerant and becomes cold air. The low-pressure gas refrigerant or two-phase refrigerant that has passed through the indoor heat exchangers 15 a and 15 b passes through the gas pipe 28 and the four-way valve 2 and flows into the accumulator 19. The low-pressure gas refrigerant in the accumulator 19 is sucked into the compressor 1 and compressed to become a high-temperature and high-pressure gas refrigerant. In the cooling operation, these cycles are repeated.
 冷房運転時には、圧縮機1は、蒸発温度が所定値となるように制御されている。蒸発温度は、圧力センサ211で検出される吸入圧力における飽和温度である。室外送風機4は、凝縮温度が所定値となるように制御されている。凝縮温度は、圧力センサ201で検出される吐出圧力における飽和温度である。すなわち、圧縮機1及び室外送風機4は、冷媒圧力を制御する機能を有している。バイパス減圧機構20は、バイパス過熱度が所定値となるように制御されている。バイパス過熱度は、温度センサ213で検出される温度から温度センサ212で検出される温度を差し引いた値である。膨張弁14aは、室内過熱度が所定値となるように制御されている。室内過熱度は、温度センサ209aで検出される温度から温度センサ208aで検出される温度を差し引いた値である。同様に、膨張弁14bは、温度センサ209bで検出される温度から温度センサ208bで検出される温度を差し引いた値である室内過熱度が所定値となるように制御されている。 During the cooling operation, the compressor 1 is controlled so that the evaporation temperature becomes a predetermined value. The evaporation temperature is a saturation temperature at the suction pressure detected by the pressure sensor 211. The outdoor blower 4 is controlled so that the condensation temperature becomes a predetermined value. The condensation temperature is a saturation temperature at the discharge pressure detected by the pressure sensor 201. That is, the compressor 1 and the outdoor blower 4 have a function of controlling the refrigerant pressure. The bypass pressure reducing mechanism 20 is controlled so that the degree of bypass superheat becomes a predetermined value. The bypass superheat degree is a value obtained by subtracting the temperature detected by the temperature sensor 212 from the temperature detected by the temperature sensor 213. The expansion valve 14a is controlled so that the indoor superheat degree becomes a predetermined value. The indoor superheat degree is a value obtained by subtracting the temperature detected by the temperature sensor 208a from the temperature detected by the temperature sensor 209a. Similarly, the expansion valve 14b is controlled such that the indoor superheat degree, which is a value obtained by subtracting the temperature detected by the temperature sensor 208b from the temperature detected by the temperature sensor 209b, becomes a predetermined value.
 また、冷房運転時には、空気調和装置101は、凝縮温度が一定の温度範囲内となる場合において、過冷却度が一定の温度範囲となるように、空気調和装置101の系全体が制御されている。過冷却度は、圧力センサ201で検出される吐出圧力における飽和温度から温度センサ207の検出温度を差し引いた値である。 Further, during the cooling operation, in the air conditioner 101, the entire system of the air conditioner 101 is controlled so that the degree of supercooling is in the constant temperature range when the condensation temperature is in the constant temperature range. . The degree of supercooling is a value obtained by subtracting the temperature detected by the temperature sensor 207 from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
 次に、暖房運転モードについて説明する。暖房運転モードでは、圧縮機1の吐出側とガス配管28とが接続され、圧縮機1の吸入側と室外熱交換器3とが接続されるように四方弁2が制御される。 Next, the heating operation mode will be described. In the heating operation mode, the four-way valve 2 is controlled so that the discharge side of the compressor 1 and the gas pipe 28 are connected, and the suction side of the compressor 1 and the outdoor heat exchanger 3 are connected.
 圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2及びガス配管28を経由して、室内熱交換器15a、15bに流入する。暖房運転では、室内熱交換器15a、15bは凝縮器として機能する。すなわち、室内熱交換器15a、15bでは、内部を流通する冷媒と、室内送風機により送風される室内空気との熱交換が行われ、冷媒の凝縮熱が送風空気に放熱される。これにより、室内熱交換器15a、15bに流入した冷媒は、凝縮して高圧の液冷媒となる。また、室内送風機により送風される空気は、冷媒の放熱作用によって加熱され、温風となる。室内熱交換器15a、15bで凝縮した高圧の液冷媒は、膨張弁14a、14bで減圧されて低圧の二相冷媒となる。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor heat exchangers 15 a and 15 b via the four-way valve 2 and the gas pipe 28. In the heating operation, the indoor heat exchangers 15a and 15b function as condensers. That is, in the indoor heat exchangers 15a and 15b, heat exchange is performed between the refrigerant circulating in the interior and the indoor air blown by the indoor blower, and the heat of condensation of the refrigerant is radiated to the blown air. Thereby, the refrigerant | coolant which flowed into indoor heat exchanger 15a, 15b condenses and turns into a high voltage | pressure liquid refrigerant. In addition, the air blown by the indoor blower is heated by the heat dissipation action of the refrigerant and becomes hot air. The high-pressure liquid refrigerant condensed in the indoor heat exchangers 15a and 15b is depressurized by the expansion valves 14a and 14b to become a low-pressure two-phase refrigerant.
 膨張弁14a、14bを通過した低圧の二相冷媒は、液配管27及び過冷却熱交換器11を経由して、室外熱交換器3に流入する。暖房運転では、室外熱交換器3は蒸発器として機能する。すなわち、室外熱交換器3では、内部を流通する冷媒と、室外送風機4により送風される外気との熱交換が行われ、冷媒の蒸発熱が送風空気から吸熱される。これにより、室外熱交換器3に流入した冷媒は、蒸発して低圧のガス冷媒となる。低圧のガス冷媒は、四方弁2を通ってアキュムレータ19に流入する。アキュムレータ19内の低圧のガス冷媒は、圧縮機1に吸入されて圧縮され、高温高圧のガス冷媒となる。暖房運転では、これらのサイクルが繰り返される。 The low-pressure two-phase refrigerant that has passed through the expansion valves 14 a and 14 b flows into the outdoor heat exchanger 3 via the liquid pipe 27 and the supercooling heat exchanger 11. In the heating operation, the outdoor heat exchanger 3 functions as an evaporator. That is, in the outdoor heat exchanger 3, heat exchange is performed between the refrigerant circulating inside and the outside air blown by the outdoor blower 4, and the evaporation heat of the refrigerant is absorbed from the blown air. Thereby, the refrigerant flowing into the outdoor heat exchanger 3 evaporates and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant flows into the accumulator 19 through the four-way valve 2. The low-pressure gas refrigerant in the accumulator 19 is sucked into the compressor 1 and compressed to become a high-temperature and high-pressure gas refrigerant. In the heating operation, these cycles are repeated.
 暖房運転時には、圧縮機1は、凝縮温度が所定値となるように制御されている。室外送風機4は、蒸発温度が所定値となるように制御されている。膨張弁14a、14bは、室内過冷却度が所定値となるように制御されている。室内過冷却度は、圧力センサ201で検出される吐出圧力における飽和温度から温度センサ208a又は温度センサ208bで検出される温度を差し引いた値である。 During the heating operation, the compressor 1 is controlled so that the condensation temperature becomes a predetermined value. The outdoor blower 4 is controlled so that the evaporation temperature becomes a predetermined value. The expansion valves 14a and 14b are controlled so that the indoor supercooling degree becomes a predetermined value. The indoor supercooling degree is a value obtained by subtracting the temperature detected by the temperature sensor 208 a or the temperature sensor 208 b from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
 また、暖房運転時には、空気調和装置101は、凝縮温度が一定の温度範囲内となる場合において、過冷却度が一定の温度範囲となるように、空気調和装置101の系全体が制御されている。過冷却度は、圧力センサ201で検出される吐出圧力における飽和温度から温度センサ208a又は温度センサ208bの検出温度を差し引いた値である。 Further, during the heating operation, in the air conditioner 101, the entire system of the air conditioner 101 is controlled so that the degree of supercooling is in the constant temperature range when the condensation temperature is in the constant temperature range. . The degree of supercooling is a value obtained by subtracting the temperature detected by the temperature sensor 208 a or the temperature sensor 208 b from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
 次に、上述の冷凍サイクル装置に接続される本実施の形態1の管理システム106について説明する。上述したように、本実施の形態1では、冷凍サイクル装置の管理システム106は、データ取得システム又は異常検知システムとして構成される。また、以下では、管理システム106に接続する冷凍サイクル装置の一例として、空気調和装置101を用いて説明する。 Next, the management system 106 according to the first embodiment connected to the above-described refrigeration cycle apparatus will be described. As described above, in the first embodiment, the refrigeration cycle apparatus management system 106 is configured as a data acquisition system or an abnormality detection system. Moreover, below, it demonstrates using the air conditioning apparatus 101 as an example of the refrigerating-cycle apparatus connected to the management system 106. FIG.
 図2は、本実施の形態1に係る管理システム106の空気調和装置101への接続例を示す概略図である。図2に示すように、管理システム106は、少なくとも1台の空気調和装置101に接続されたデータ送信装置102に、通信ネットワーク103を介して接続できる。 FIG. 2 is a schematic diagram illustrating an example of connection of the management system 106 according to the first embodiment to the air conditioning apparatus 101. As shown in FIG. 2, the management system 106 can be connected to a data transmission apparatus 102 connected to at least one air conditioning apparatus 101 via a communication network 103.
 データ送信装置102は、例えば、ローカルコントローラとして構成され、空気調和装置101と共に物件108内に設置されている。データ送信装置102は、1台又は複数台の空気調和装置101に直接又は専用アダプタを介して接続されている。データ送信装置102は、1台又は複数台の空気調和装置101の制御部107との間でデータの送受信を行い、空気調和装置101を集中して管理するものである。データ送信装置102は、CPU、ROM、RAM、I/Oポート等を備えたマイコンを有している。また、データ送信装置102は、管理システム106との間でデータの送受信を行うように構成される。例えば、データ送信装置102は、圧力及び温度等のデータを制御部107から定期的に受信し、受信したデータを管理システム106に送信する。 The data transmission device 102 is configured as a local controller, for example, and is installed in the property 108 together with the air conditioning device 101. The data transmission device 102 is connected to one or a plurality of air conditioners 101 directly or via a dedicated adapter. The data transmission device 102 transmits and receives data to and from the control unit 107 of one or a plurality of air conditioners 101, and centrally manages the air conditioner 101. The data transmitting apparatus 102 has a microcomputer including a CPU, ROM, RAM, I / O port, and the like. The data transmission device 102 is configured to transmit and receive data to and from the management system 106. For example, the data transmission device 102 periodically receives data such as pressure and temperature from the control unit 107 and transmits the received data to the management system 106.
 管理システム106は、データ送信装置102から受信したデータを処理する監視装置104と、データ送信装置102から受信したデータを蓄積するデータ蓄積装置105とを有している。管理システム106は、例えば、物件108から離れた遠隔サーバとして、例えば、遠隔管理センター内に設置できる。 The management system 106 includes a monitoring device 104 that processes data received from the data transmission device 102 and a data storage device 105 that stores data received from the data transmission device 102. The management system 106 can be installed, for example, in a remote management center as a remote server away from the property 108, for example.
 図3は、本実施の形態1に係る管理システム106における監視装置104の構成を示すブロック図である。図3に示すように、監視装置104は、管理システム106における制御装置の一例であり、演算部120、制御部121、通信部122及び表示部123を有している。演算部120は、データの平均値算出などの演算を行うように構成される。制御部121は、データ送信装置102へのデータ送信命令等の制御を行うように構成される。例えば、管理システム106が異常検知システムとして構成される場合には、制御部121は、異常検知モードの設定、異常判定などの制御を行うように構成できる。通信部122は、インターネット回線等の通信ネットワーク103を介してデータ送信装置102との間でデータの送受信を行うとともに、データ蓄積装置105との間でデータの送受信を行うように構成される。表示部123は、例えば、管理システム106が異常検知システムとして構成される場合には、監視装置104で実施された空気調和装置101の異常判定の判定結果、すなわち異常の有無を表示するように構成される。 FIG. 3 is a block diagram showing a configuration of the monitoring device 104 in the management system 106 according to the first embodiment. As illustrated in FIG. 3, the monitoring device 104 is an example of a control device in the management system 106, and includes a calculation unit 120, a control unit 121, a communication unit 122, and a display unit 123. The computing unit 120 is configured to perform computations such as calculating an average value of data. The control unit 121 is configured to control a data transmission command or the like to the data transmission apparatus 102. For example, when the management system 106 is configured as an abnormality detection system, the control unit 121 can be configured to perform control such as setting of an abnormality detection mode and abnormality determination. The communication unit 122 is configured to transmit / receive data to / from the data transmission apparatus 102 via the communication network 103 such as the Internet line and to transmit / receive data to / from the data storage apparatus 105. For example, when the management system 106 is configured as an abnormality detection system, the display unit 123 is configured to display the determination result of the abnormality determination of the air conditioner 101 performed by the monitoring device 104, that is, whether there is an abnormality. Is done.
 図4は、本実施の形態1に係る管理システム106におけるデータ蓄積装置105の構成を示すブロック図である。図4に示すように、データ蓄積装置105は、記憶装置140を有している。記憶装置140には、監視装置104との間でデータの送受信を行う通信部141と、受信したデータを記憶する記憶部142とが設けられている。データ蓄積装置105は、監視装置104から1組のデータ、例えば、空気調和装置101の冷凍サイクルの圧力又は温度のデータ、及び熱源ユニット304の雰囲気温度のデータ、利用ユニット303a、303bの雰囲気温度のデータを受信すると、1組のデータを相互に関連付けた上で、新規データとして記憶部142に逐次、時系列に蓄積する。なお、本実施の形態1では、データ蓄積装置105は、監視装置104を介して通信ネットワーク103に接続されているが、データ蓄積装置105は通信ネットワーク103に直接接続される構成としてもよい。 FIG. 4 is a block diagram showing a configuration of the data storage device 105 in the management system 106 according to the first embodiment. As shown in FIG. 4, the data storage device 105 has a storage device 140. The storage device 140 includes a communication unit 141 that transmits and receives data to and from the monitoring device 104 and a storage unit 142 that stores received data. The data storage device 105 receives a set of data from the monitoring device 104, for example, the pressure or temperature data of the refrigeration cycle of the air conditioner 101, the ambient temperature data of the heat source unit 304, and the ambient temperature of the usage units 303a and 303b. When data is received, a set of data is associated with each other, and then sequentially stored in the storage unit 142 as new data in time series. In the first embodiment, the data storage device 105 is connected to the communication network 103 via the monitoring device 104, but the data storage device 105 may be directly connected to the communication network 103.
 本実施の形態1では、データ送信装置102、監視装置104及びデータ蓄積装置105を空気調和装置101とは別の構成としたが、データ送信装置102、監視装置104及びデータ蓄積装置105の機能を空気調和装置101の制御部107に備える構成としてもよい。また、本実施の形態1では、管理システム106は、データ送信装置102及び通信ネットワーク103を介して空気調和装置101に接続するように構成されているが、空気調和装置101に直接接続するように構成してもよい。 In the first embodiment, the data transmission device 102, the monitoring device 104, and the data storage device 105 are configured differently from the air conditioning device 101. However, the functions of the data transmission device 102, the monitoring device 104, and the data storage device 105 are different. It is good also as a structure with which the control part 107 of the air conditioning apparatus 101 is equipped. In the first embodiment, the management system 106 is configured to be connected to the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103. However, the management system 106 is directly connected to the air conditioning apparatus 101. It may be configured.
 次に、本実施の形態1に係る管理システム106をデータ取得システムとして構成した場合に、監視装置104で実行される制御処理について図5を用いて説明する。 Next, control processing executed by the monitoring apparatus 104 when the management system 106 according to the first embodiment is configured as a data acquisition system will be described with reference to FIG.
 図5は、本実施の形態1に係る管理システム106をデータ取得システムとして構成した場合に、監視装置104で実行される制御処理の一例を示すフローチャートである。図5に示す処理は、少なくとも空気調和装置101の運転中を含む常時、又は空気調和装置101の運転中のみに、所定の時間間隔に繰り返して実行される。 FIG. 5 is a flowchart illustrating an example of a control process executed by the monitoring device 104 when the management system 106 according to the first embodiment is configured as a data acquisition system. The process shown in FIG. 5 is repeatedly performed at predetermined time intervals at least at all times including during operation of the air conditioner 101 or only during operation of the air conditioner 101.
 また、以降の説明では、空気調和装置101において測定されるパラメータのうち、空気調和装置101の圧力又は温度、例えば、空気調和装置101の冷凍サイクルにおける圧力又は温度のデータ等の状態を示すパラメータを、環境のパラメータと称する。また、空気調和装置101において測定されるパラメータのうち、圧縮機1の周波数、膨張弁14a、14bの開度、又は室外送風機4の回転数等の空気調和装置101を構成する機器、すなわちアクチュエータの運転状態を示すパラメータを、運転状態のパラメータと称する。 In the following description, among parameters measured by the air conditioner 101, parameters indicating the state of the pressure or temperature of the air conditioner 101, for example, the pressure or temperature data in the refrigeration cycle of the air conditioner 101 are used. , Referred to as environmental parameters. Of the parameters measured in the air conditioner 101, the frequency of the compressor 1, the opening degree of the expansion valves 14a and 14b, the rotational speed of the outdoor blower 4, etc. The parameter indicating the operation state is referred to as an operation state parameter.
 ステップS1においては、監視装置104の制御部121は、空気調和装置101において測定されるパラメータの一部である第1のデータを、空気調和装置101からデータ送信装置102及び通信ネットワーク103を介して取得する処理を行う。例えば、第1のデータは、空気調和装置101における環境のパラメータ又は空気調和装置101の運転状態のパラメータを含むものである。 In step S <b> 1, the control unit 121 of the monitoring device 104 transmits first data, which is a part of parameters measured in the air conditioning apparatus 101, from the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103. Perform the acquisition process. For example, the first data includes environmental parameters in the air conditioner 101 or operating condition parameters of the air conditioner 101.
 ステップS2においては、監視装置104の制御部121は、取得した第1のデータを複数のデータ群に分類する処理を行う。複数のデータ群の数値範囲は、凝縮温度、蒸発温度等の第1のデータの属性に応じて、任意の数値範囲に決定される。図6は、本実施の形態1に係る第1のデータを複数のデータ群に分類する工程の一例を概略的に示したブロック図である。図6に示すように、監視装置104において分類された第1のデータはデータ蓄積装置105に送信される。送信された第1のデータは、データ蓄積装置105内にある記憶装置140の記憶部142にデータ群ごとに記憶される。第1のデータを複数のデータ群に分類するための演算は、監視装置104の演算部120で行われる。 In step S2, the control unit 121 of the monitoring device 104 performs a process of classifying the acquired first data into a plurality of data groups. The numerical ranges of the plurality of data groups are determined as arbitrary numerical ranges according to the attributes of the first data such as the condensation temperature and the evaporation temperature. FIG. 6 is a block diagram schematically showing an example of a process of classifying the first data according to the first embodiment into a plurality of data groups. As shown in FIG. 6, the first data classified in the monitoring device 104 is transmitted to the data storage device 105. The transmitted first data is stored for each data group in the storage unit 142 of the storage device 140 in the data storage device 105. The calculation for classifying the first data into a plurality of data groups is performed by the calculation unit 120 of the monitoring device 104.
 ステップS3においては、監視装置104の制御部121は、記憶された複数のデータ群の中から、目標範囲となる指標データ群を選択する処理を行う。目標範囲となる指標データ群は、例えば、複数のデータ群の発生率である頻度を監視装置104の演算部120で演算し、該演算の結果に基づいて監視装置104の制御部121で高頻度の指標データ群が選択されることにより決定される。図6では、目標範囲となる高頻度の指標データ群は、「条件A」として図示されているものである。 In step S3, the control unit 121 of the monitoring device 104 performs a process of selecting an index data group that is a target range from a plurality of stored data groups. The index data group serving as the target range is calculated, for example, by the calculation unit 120 of the monitoring apparatus 104 using the frequency that is the occurrence rate of a plurality of data groups, and the control unit 121 of the monitoring apparatus 104 uses the high frequency based on the calculation result. This is determined by selecting the index data group. In FIG. 6, the high-frequency index data group that is the target range is illustrated as “condition A”.
 ステップS4においては、監視装置104の制御部121で、第1のデータが目標範囲にあるか否かが判定される。第1のデータが目標範囲にないと判定された場合は制御処理は終了する。例えば、図6においては、ステップS4においては、第1のデータが条件Aを満たすか否かが判定される。第1のデータが、条件Aを満たさないと判定された場合、例えば、第1のデータが図6における低頻度の条件B、Cを満たす場合は、制御処理は終了する。 In step S4, the control unit 121 of the monitoring device 104 determines whether or not the first data is within the target range. If it is determined that the first data is not within the target range, the control process ends. For example, in FIG. 6, in step S4, it is determined whether or not the first data satisfies the condition A. When it is determined that the first data does not satisfy the condition A, for example, when the first data satisfies the infrequent conditions B and C in FIG. 6, the control process ends.
 第1のデータが目標範囲にあると判定された場合、ステップS5において、監視装置104の制御部121は、空気調和装置101において測定されるパラメータの他の一部である第2のデータを、空気調和装置101からデータ送信装置102及び通信ネットワーク103を介して取得する処理を行う。第2のデータは、空気調和装置101における環境のパラメータ又は空気調和装置101の運転状態のパラメータを含み、第1のデータと異なるものである。 When it is determined that the first data is within the target range, in step S5, the control unit 121 of the monitoring device 104 sets the second data, which is another part of the parameter measured by the air conditioner 101, Processing to acquire from the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103 is performed. The second data includes environmental parameters in the air conditioner 101 or operating condition parameters of the air conditioner 101, and is different from the first data.
 具体的には、ステップS5において、監視装置104の制御部121は、第2のデータの送信命令をデータ送信装置102に送信する。データの送信命令を受信したデータ送信装置102は、第2のデータを空気調和装置101から取得し、通信ネットワーク103を介して管理システム106に送信する。管理システム106内の監視装置104の制御部121は、取得した第2のデータをデータ蓄積装置105に送信する。データ蓄積装置105に送信された第2のデータは、データ蓄積装置105内にある記憶装置140の記憶部142に記憶される。 Specifically, in step S <b> 5, the control unit 121 of the monitoring device 104 transmits a second data transmission command to the data transmission device 102. The data transmitting apparatus 102 that has received the data transmission command acquires the second data from the air conditioning apparatus 101 and transmits the second data to the management system 106 via the communication network 103. The control unit 121 of the monitoring device 104 in the management system 106 transmits the acquired second data to the data storage device 105. The second data transmitted to the data storage device 105 is stored in the storage unit 142 of the storage device 140 in the data storage device 105.
 なお、ステップS2~S4においては、第1のデータの目標範囲が監視装置104において決定される構成を例示しているが、第1のデータの目標範囲は、第1のデータの属性、空気調和装置101の仕様等を考慮して、所定の値に予め設定してもよい。例えば、第1のデータが凝縮温度である場合には、第1のデータの目標範囲、すなわち凝縮温度の目標温度の範囲は、33℃~37℃の範囲に設定できる。 In steps S2 to S4, the configuration in which the target range of the first data is determined by the monitoring device 104 is illustrated, but the target range of the first data is the attribute of the first data, the air conditioning The predetermined value may be set in advance in consideration of the specification of the apparatus 101 and the like. For example, when the first data is the condensation temperature, the target range of the first data, that is, the target temperature range of the condensation temperature can be set to a range of 33 ° C. to 37 ° C.
 次に、本実施の形態1に係る管理システム106を異常検知システムとして構成した場合に、監視装置104で実行される制御処理について図7を用いて説明する。 Next, control processing executed by the monitoring device 104 when the management system 106 according to the first embodiment is configured as an abnormality detection system will be described with reference to FIG.
 図7は、本実施の形態1に係る管理システム106を異常検知システムとして構成した場合に、監視装置104で実行される制御処理の一例を示すフローチャートである。図7に示す処理は、図5の処理と同様に、少なくとも空気調和装置101の運転中を含む常時、又は空気調和装置101の運転中のみに、所定の時間間隔に繰り返して実行される。 FIG. 7 is a flowchart illustrating an example of a control process executed by the monitoring apparatus 104 when the management system 106 according to the first embodiment is configured as an abnormality detection system. The process shown in FIG. 7 is repeatedly executed at a predetermined time interval at least during the operation of the air conditioner 101 at least at all times including during the operation of the air conditioner 101, similarly to the process of FIG.
 ステップS11においては、監視装置104の制御部121は、データ取得システムでのステップS1の処理と同様に、空気調和装置101において測定されるパラメータの一部である第1のデータを、空気調和装置101から取得する処理を行う。ステップS12においては、監視装置104の制御部121は、データ取得システムでのステップS2の処理と同様に、取得した第1のデータを複数のデータ群に分類する処理を行う。
 ステップS13においては、監視装置104の制御部121は、データ取得システムでのステップS3の処理と同様に、記憶された複数のデータ群の中から、第1の目標範囲となる指標データ群を選択する処理を行う。該指標データ群は、異常検知システムにおいては、異常検知の指標となるデータ群である。ステップS14においては、データ取得システムでのステップS4の処理と同様に、監視装置104の制御部121で、データ送信装置102から送信された第1のデータが第1の目標範囲にあるか否かが判定される。第1のデータが第1の目標範囲にあると判定された場合、ステップS15において、監視装置104の制御部121は、データ取得システムでのステップS5の処理と同様に、空気調和装置101において測定されるパラメータの他の一部である第2のデータを、空気調和装置101からデータ送信装置102及び通信ネットワーク103を介して取得する処理を行う。
In step S11, the control unit 121 of the monitoring device 104 converts the first data, which is a part of the parameters measured in the air conditioner 101, into the air conditioner as in the process of step S1 in the data acquisition system. The processing acquired from 101 is performed. In step S12, the control unit 121 of the monitoring device 104 performs a process of classifying the acquired first data into a plurality of data groups, similarly to the process of step S2 in the data acquisition system.
In step S13, the control unit 121 of the monitoring device 104 selects the index data group that is the first target range from the plurality of stored data groups, as in the process of step S3 in the data acquisition system. Perform the process. The index data group is a data group that serves as an index for abnormality detection in the abnormality detection system. In step S14, whether or not the first data transmitted from the data transmission device 102 is within the first target range by the control unit 121 of the monitoring device 104 is the same as the processing in step S4 in the data acquisition system. Is determined. When it is determined that the first data is within the first target range, in step S15, the control unit 121 of the monitoring device 104 performs measurement in the air conditioner 101 in the same manner as the processing of step S5 in the data acquisition system. The second data that is another part of the parameter to be obtained is acquired from the air conditioning apparatus 101 via the data transmission apparatus 102 and the communication network 103.
 ステップS16においては、監視装置104の制御部121は、第2のデータと、第2の目標範囲と比較する処理を行う。該比較演算は、監視装置104の演算部120で行われる。監視装置104の制御部121は、例えば、過去に取得された第2のデータを第3のデータとして、データ蓄積装置105内にある記憶装置140の記憶部142に記憶させ、記憶装置140に記憶された第3のデータから第2の目標範囲を決定するように構成できる。 In step S16, the control unit 121 of the monitoring device 104 performs a process of comparing the second data with the second target range. The comparison calculation is performed by the calculation unit 120 of the monitoring device 104. For example, the control unit 121 of the monitoring device 104 stores the second data acquired in the past as the third data in the storage unit 142 of the storage device 140 in the data storage device 105 and stores it in the storage device 140. The second target range can be determined from the obtained third data.
 ステップS17においては、監視装置104の制御部121で、第2のデータが、第2の目標範囲にあるか否かが判定される。第2のデータが、第2の目標範囲にあると判定された場合は、第2のデータは正常値であると見なされ、制御処理は終了する。 In step S17, the control unit 121 of the monitoring device 104 determines whether or not the second data is in the second target range. When it is determined that the second data is in the second target range, the second data is regarded as a normal value, and the control process ends.
 第2のデータが、第2の目標範囲にないと判定された場合、ステップS18において、監視装置104の制御部121は、第2のデータは異常であると検知する。 When it is determined that the second data is not within the second target range, in step S18, the control unit 121 of the monitoring device 104 detects that the second data is abnormal.
 図8は、本実施の形態1に係る管理システム106を異常検知システムとして構成した場合における、監視装置104の制御部121における異常検知の一例を概略的に示したグラフである。図8の縦軸は第2のデータの大きさであり、例えば、第2のデータが圧縮機1の運転周波数である場合、縦軸の単位はHzとなる。図8の横軸は時間の経過を示している。図8のグラフに引かれた横軸に平行な2本の点線は、過去の第2のデータから正常値であると判定される第2の目標範囲を表している。任意の時点における第2のデータの大きさは、プロットで示されている。図8のグラフに示されるように、監視装置104は、現在の第2のデータが、過去の第2のデータの数値範囲、すなわち記憶装置140に記憶された第3のデータから決定される第2の目標範囲から外れた場合に異常と判定するように構成できる。 FIG. 8 is a graph schematically showing an example of abnormality detection in the control unit 121 of the monitoring apparatus 104 when the management system 106 according to the first embodiment is configured as an abnormality detection system. The vertical axis in FIG. 8 is the size of the second data. For example, when the second data is the operating frequency of the compressor 1, the unit of the vertical axis is Hz. The horizontal axis in FIG. 8 shows the passage of time. Two dotted lines parallel to the horizontal axis drawn in the graph of FIG. 8 represent the second target range determined to be a normal value from the past second data. The magnitude of the second data at any time is shown in the plot. As shown in the graph of FIG. 8, the monitoring device 104 determines that the current second data is determined from the numerical range of the past second data, that is, the third data stored in the storage device 140. It can be configured to determine that there is an abnormality when it is out of the target range of 2.
 第2のデータが異常であると検知された場合、監視装置104の制御部121は、表示部123に異常をリアルタイムで表示させるように構成できる。また、監視装置104の制御部121は、空気調和装置101の保守点検又は定期点検の時に、記憶装置140に記憶した第2のデータを図8のグラフのように出力するように構成できる。第2のデータをグラフとして出力することによって、空気調和装置101の保守点検者又は定期点検者は、グラフのデータ推移から異常を検知することができる。 When it is detected that the second data is abnormal, the control unit 121 of the monitoring device 104 can be configured to display the abnormality on the display unit 123 in real time. Moreover, the control part 121 of the monitoring apparatus 104 can be comprised so that the 2nd data memorize | stored in the memory | storage device 140 may be output like the graph of FIG. 8 at the time of the maintenance check of the air conditioning apparatus 101 or a periodic check. By outputting the second data as a graph, the maintenance inspector or periodic inspector of the air conditioner 101 can detect an abnormality from the data transition of the graph.
 次に、管理システム106を異常検知システムとして構成した場合における、データ送信装置102と管理システム106との間のデータの送受信、及び管理システム106における異常検知について実施例1~3を用いて具体的に説明する。 Next, when the management system 106 is configured as an abnormality detection system, data transmission / reception between the data transmission apparatus 102 and the management system 106 and abnormality detection in the management system 106 are specifically described using the first to third embodiments. Explained.
 以下の実施例1~3は、図7の制御処理で説明した、第1のデータ、第2のデータ、異常検知の指標となる指標データ群である条件A、その他のデータ群である条件B及びC、並びに過去の第2のデータの数値範囲を具体的に特定したものである。なお、図7の制御処理で説明したように、条件Aは、第1の目標範囲に該当するものであり、条件B及び条件Cは、第1の目標範囲外のデータ群である。また、過去の第2のデータの数値範囲は、記憶装置140に記憶された第3のデータから決定される第2の目標範囲に該当するものである。 In the following first to third embodiments, the first data, the second data, the condition A which is an index data group serving as an abnormality detection index, and the condition B which is another data group described in the control process of FIG. And C, and the numerical range of the second data in the past are specifically specified. Note that, as described in the control process of FIG. 7, the condition A corresponds to the first target range, and the condition B and the condition C are a data group outside the first target range. The numerical range of the past second data corresponds to the second target range determined from the third data stored in the storage device 140.
 また、以下の実施例1~3においては、第1のデータは、空気調和装置101における制御量に該当するものである。第1の目標範囲は、空気調和装置101における制御量の目標値に該当するものである。第2のデータは、空気調和装置101における制御量の目標値に、第1のデータを調整する操作量に該当するものである。第2の目標範囲は、空気調和装置101における制御量の目標値に、第1のデータを調整するのに用いられる通常の操作量である。 In the following first to third embodiments, the first data corresponds to the control amount in the air conditioner 101. The first target range corresponds to a control value target value in the air-conditioning apparatus 101. The second data corresponds to the operation amount for adjusting the first data to the target value of the control amount in the air conditioning apparatus 101. The second target range is a normal operation amount that is used to adjust the first data to the target value of the control amount in the air conditioner 101.
(実施例1)
 本実施の形態1における実施例1について図9を用いて説明する。図9は、本実施の形態1の制御処理における、データ送信装置102と管理システム106との間のデータの送受信の一例を概略的に示したものである。鉛直下方に延在する矢印は時間経過を示し、水平方向の矢印はデータの送受信を示している。
Example 1
Example 1 in the first embodiment will be described with reference to FIG. FIG. 9 schematically shows an example of data transmission / reception between the data transmission apparatus 102 and the management system 106 in the control processing of the first embodiment. An arrow extending vertically downward indicates the passage of time, and a horizontal arrow indicates data transmission / reception.
 空気調和装置101において、圧縮機1の運転周波数fは、凝縮温度Tが所定の数値範囲となるように制御されている。すなわち、実施例1の空気調和装置101の制御系においては、凝縮温度Tが制御量となり、圧縮機1の運転周波数fが操作量となる。実施例1では、第1のデータを制御量である凝縮温度Tとし、第2のデータを操作量である圧縮機1の運転周波数fとした。凝縮温度Tは、例えば、圧力センサ201で検出される吐出圧力における飽和温度として算出される。 In the air conditioner 101, the operating frequency f of the compressor 1 is controlled such that the condensation temperature T falls within a predetermined numerical range. That is, in the control system of the air conditioner 101 of the first embodiment, the condensation temperature T is a control amount, and the operating frequency f of the compressor 1 is an operation amount. In the first embodiment, the first data is the condensing temperature T that is the control amount, and the second data is the operating frequency f of the compressor 1 that is the operation amount. The condensation temperature T is calculated as a saturation temperature at the discharge pressure detected by the pressure sensor 201, for example.
 圧縮機1の性能が正常である場合、制御量である凝縮温度Tが所定の数値範囲となるように、操作量である圧縮機1の運転周波数fは所定の数値範囲に制御される。したがって、圧縮機1に異常がある場合、例えば、圧縮機1の性能が低下している場合には、凝縮温度Tが所定の数値範囲となるように、圧縮機1の運転周波数fは所定の数値範囲よりも大きくなるように制御される。 When the performance of the compressor 1 is normal, the operating frequency f of the compressor 1 that is the operation amount is controlled within the predetermined numerical range so that the condensation temperature T that is the control amount falls within the predetermined numerical range. Therefore, when the compressor 1 is abnormal, for example, when the performance of the compressor 1 is degraded, the operating frequency f of the compressor 1 is set to a predetermined value so that the condensation temperature T falls within a predetermined numerical range. It is controlled to be larger than the numerical range.
 実施例1における異常検知の指標となる指標データ群である条件A、すなわち第1の目標範囲は、凝縮温度Tが34℃<T≦36℃となるものとした。また、その他のデータ群である条件B、Cは、それぞれ、凝縮温度Tが36℃<T≦38℃、32℃<T≦34℃となるものとした。 The condition A which is an index data group serving as an anomaly detection index in Example 1, that is, the first target range, is such that the condensation temperature T is 34 ° C. <T ≦ 36 ° C. In addition, conditions B and C, which are other data groups, assume that the condensation temperatures T are 36 ° C. <T ≦ 38 ° C. and 32 ° C. <T ≦ 34 ° C., respectively.
 また、実施例1における過去の第2のデータ、すなわち、過去の圧縮機1の運転周波数fの数値範囲である第2の目標範囲は、58Hz<f≦62Hzになることとした。 Also, the past second data in the first embodiment, that is, the second target range which is the numerical range of the past operating frequency f of the compressor 1 is 58 Hz <f ≦ 62 Hz.
 図9のフェーズP1では、データ送信装置102から条件Aを満たさない制御量である第1のデータ、例えば、T=37.0℃、33.5℃が送信された場合を考える。この場合、管理システム106はこれらの第1のデータを条件B、Cのデータ群に分類する。一方、データ送信装置102に対しては、管理システム106は何のアクションも起こさないため、フェーズP1での異常検知処理は終了する。 In phase P1 of FIG. 9, a case is considered where the first data, for example, T = 37.0 ° C., 33.5 ° C., which is the control amount that does not satisfy the condition A, is transmitted from the data transmitting apparatus 102. In this case, the management system 106 classifies these first data into data groups of conditions B and C. On the other hand, since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in the phase P1 ends.
 図9のフェーズP2では、データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、T=35.0℃が送信された場合を考える。この場合、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである圧縮機1の運転周波数fの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された圧縮機1の運転周波数fは、f=60.0Hzであったとする。管理システム106では、取得した第2のデータが過去の第2のデータの数値範囲である第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にあると判定される。結果、第2のデータは正常値であると検知され、フェーズP2での異常検知処理は終了する。 In phase P2 of FIG. 9, a case is considered where the first data, for example, T = 35.0 ° C., which is the control amount that satisfies the condition A is transmitted from the data transmitting apparatus 102. In this case, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 sends a transmission request for the operation frequency f of the compressor 1 as the second data to the data transmission device 102. Do. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the operating frequency f of the compressor 1 transmitted to the management system 106 is f = 60.0 Hz. In the management system 106, the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in phase P2 ends.
 図9のフェーズP3では、データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、T=35.5℃が送信された場合を考える。この場合、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである圧縮機1の運転周波数fの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された圧縮機1の運転周波数fは、f=65.0Hzであったとする。管理システム106では、取得した第2のデータが過去の第2のデータの数値範囲である第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にないと判定される。結果、第2のデータは異常であると検知され、フェーズP3での異常検知処理は終了する。 In phase P3 of FIG. 9, a case is considered where the first data, for example, T = 35.5 ° C., which is the control amount that satisfies the condition A is transmitted from the data transmitting apparatus 102. In this case, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 sends a transmission request for the operation frequency f of the compressor 1 as the second data to the data transmission device 102. Do. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the operating frequency f of the compressor 1 transmitted to the management system 106 is f = 65.0 Hz. In the management system 106, the acquired second data is compared with a second target range that is a numerical range of the past second data, and it is determined that the acquired second data is not within the second target range. The As a result, it is detected that the second data is abnormal, and the abnormality detection process in phase P3 ends.
(実施例2)
 暖房運転時の空気調和装置101においては、室外送風機4の回転数n、例えば、分単位の回転数nは、蒸発温度T1が所定の数値範囲となるように制御されている。すなわち、実施例2の空気調和装置101の制御系においては、蒸発温度T1が制御量となり、室外送風機4の回転数nが操作量となる。実施例2では、第1のデータを制御量である蒸発温度T1とし、第2のデータを操作量である室外送風機4の分単位の回転数nとした。蒸発温度T1は、例えば、圧力センサ201で検出される吐出圧力における飽和温度として算出される。
(Example 2)
In the air conditioner 101 during the heating operation, the rotational speed n of the outdoor blower 4, for example, the rotational speed n in minutes, is controlled so that the evaporation temperature T <b> 1 falls within a predetermined numerical range. That is, in the control system of the air conditioner 101 of the second embodiment, the evaporation temperature T1 is a control amount, and the rotational speed n of the outdoor fan 4 is an operation amount. In Example 2, the first data is the evaporation temperature T1 that is the control amount, and the second data is the rotation speed n in minutes of the outdoor blower 4 that is the operation amount. The evaporation temperature T1 is calculated as a saturation temperature at the discharge pressure detected by the pressure sensor 201, for example.
 室外送風機4の性能が正常である場合、制御量である蒸発温度T1が所定の数値範囲となるように、操作量である室外送風機4の回転数nは所定の数値範囲に制御される。したがって、室外送風機4に異常がある場合、例えば、室外送風機4の性能が低下している場合には、蒸発温度T1が所定の数値範囲となるように、室外送風機4の回転数nは所定の数値範囲よりも大きくなるように制御される。 When the performance of the outdoor blower 4 is normal, the rotational speed n of the outdoor blower 4 as the operation amount is controlled within a predetermined numerical range so that the evaporation temperature T1 as the control amount falls within the predetermined numerical range. Therefore, when there is an abnormality in the outdoor blower 4, for example, when the performance of the outdoor blower 4 is degraded, the rotational speed n of the outdoor blower 4 is a predetermined value so that the evaporation temperature T1 falls within a predetermined numerical range. It is controlled to be larger than the numerical range.
 実施例2における異常検知の指標となる指標データ群である条件A、すなわち第1の目標範囲は、蒸発温度T1が-36℃<T1≦-34℃となるものとした。また、その他のデータ群である条件B、Cは、それぞれ、蒸発温度T1が-38℃<T1≦-36℃、-34℃<T1≦-32℃となるものとした。 In condition 2, which is an index data group serving as an abnormality detection index in Example 2, that is, the first target range, the evaporation temperature T1 is set to be −36 ° C. <T1 ≦ −34 ° C. Further, conditions B and C, which are other data groups, assume that the evaporation temperature T1 is −38 ° C. <T1 ≦ −36 ° C. and −34 ° C. <T1 ≦ −32 ° C., respectively.
 また、実施例2における過去の第2のデータ、すなわち、過去の室外送風機4の分単位の回転数nの数値範囲である第2の目標範囲は、58<n≦62になることとした。 Further, the second past range in the second example, that is, the second target range that is the numerical range of the number of revolutions n of the past outdoor fan 4 in a minute unit is 58 <n ≦ 62.
 データ送信装置102から条件Aを満たさない制御量である第1のデータ、例えば、T1=-37.0℃、-35.5℃が送信された場合を考える。この場合、図9のフェーズP1の場合と同様に、管理システム106はこれらの第1のデータを条件B、Cのデータ群に分類する。一方、データ送信装置102に対しては、管理システム106は何のアクションも起こさないため、このフェーズでの異常検知処理は終了する。 Consider a case in which first data, for example, T1 = −37.0 ° C., −35.5 ° C., which is a control amount that does not satisfy the condition A, is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P1 in FIG. 9, the management system 106 classifies these first data into data groups of conditions B and C. On the other hand, since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、T1=-35.0℃が送信された場合を考える。この場合、図9のフェーズP2の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである室外送風機4の回転数nの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された室外送風機4の回転数nは、n=60.0であったとする。管理システム106では、取得した第2のデータが過去の第2のデータの数値範囲である第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にあると判定される。結果、第2のデータは正常値であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case where first data, for example, T1 = −35.0 ° C., which is a controlled variable that satisfies the condition A, is transmitted from the data transmitting apparatus 102. In this case, as in the case of the phase P2 in FIG. 9, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102. A transmission request for the rotational speed n of the outdoor fan 4 is made. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the rotational speed n of the outdoor blower 4 transmitted to the management system 106 is n = 60.0. In the management system 106, the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、T1=-35.5℃が送信された場合を考える。この場合、図9のフェーズP3の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである室外送風機4の回転数nの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された室外送風機4の回転数nは、n=65.0であったとする。管理システム106では、取得した第2のデータは、第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にないと判定される。結果、第2のデータは異常であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case in which first data, for example, T1 = −35.5 ° C., which is a controlled variable that satisfies the condition A, is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P3 in FIG. 9, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102. A transmission request for the rotational speed n of the outdoor fan 4 is made. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the rotational speed n of the outdoor fan 4 transmitted to the management system 106 is n = 65.0. In the management system 106, the acquired second data is compared with the second target range, and it is determined that the acquired second data is not within the second target range. As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
(実施例3)
 暖房運転時の空気調和装置101においては、膨張弁14aの開度Dは、室内過冷却度T2が所定の数値範囲となるように制御されている。実施例3の空気調和装置101の制御系においては、室内過冷却度T2が制御量となり、膨張弁14aの開度Dが操作量となる。実施例3では、第1のデータを制御量である室内過冷却度T2とし、第2のデータを操作量である膨張弁14aの開度Dとした。ここでは、膨張弁14aの開度Dは全開開度を1、全閉開度を0と規定することとし、開度Dの取り得る範囲は0≦D≦1とした。室内過冷却度T2は、例えば、圧力センサ201で検出される吐出圧力における飽和温度から温度センサ208aの検出温度を減算した値として算出される。
(Example 3)
In the air conditioner 101 during the heating operation, the opening degree D of the expansion valve 14a is controlled so that the indoor supercooling degree T2 falls within a predetermined numerical range. In the control system of the air conditioner 101 according to the third embodiment, the indoor supercooling degree T2 is a control amount, and the opening degree D of the expansion valve 14a is an operation amount. In the third embodiment, the first data is the indoor supercooling degree T2 that is the control amount, and the second data is the opening degree D of the expansion valve 14a that is the operation amount. Here, the opening degree D of the expansion valve 14a is defined as a fully opened opening degree 1 and a fully closed opening degree 0, and a possible range of the opening degree D is 0 ≦ D ≦ 1. The indoor supercooling degree T2 is calculated, for example, as a value obtained by subtracting the detected temperature of the temperature sensor 208a from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
 膨張弁14aの性能が正常である場合、制御量である室内過冷却度T2が所定の数値範囲となるように、操作量である膨張弁14aの開度Dは所定の数値範囲に制御される。したがって、膨張弁14aに異常がある場合、例えば、膨張弁14aに詰まりが発生している場合には、室内過冷却度T2が所定の数値範囲となるように、膨張弁14aの開度Dは所定の数値範囲よりも大きくなるように制御される。 When the performance of the expansion valve 14a is normal, the opening degree D of the expansion valve 14a, which is the manipulated variable, is controlled within a predetermined numerical range so that the indoor supercooling degree T2, which is the controlled variable, falls within a predetermined numerical range. . Therefore, when there is an abnormality in the expansion valve 14a, for example, when the expansion valve 14a is clogged, the opening degree D of the expansion valve 14a is set so that the indoor supercooling degree T2 falls within a predetermined numerical range. Control is performed to be larger than a predetermined numerical range.
 実施例2における異常検知の指標となる指標データ群である条件A、すなわち第1の目標範囲は、室内過冷却度T2が5℃<T2≦6℃となるものとした。また、その他のデータ群である条件B、Cは、それぞれ、室内過冷却度T2が6℃<T2≦7℃、5℃<T≦6℃となるものとした。 In the condition A that is an index data group serving as an index of abnormality detection in Example 2, that is, the first target range, the indoor supercooling degree T2 is set to 5 ° C. <T2 ≦ 6 ° C. The conditions B and C, which are other data groups, are such that the indoor supercooling degree T2 is 6 ° C. <T2 ≦ 7 ° C. and 5 ° C. <T ≦ 6 ° C., respectively.
 また、実施例3における過去の第2のデータ、すなわち、過去の膨張弁14aの開度Dの数値範囲である第2の目標範囲は、0.40<D≦0.60になることとした。 In addition, the past second data in the third embodiment, that is, the second target range that is the numerical range of the past opening degree D of the expansion valve 14a is 0.40 <D ≦ 0.60. .
 データ送信装置102から条件Aを満たさない制御量である第1のデータ、例えば、T2=6.5℃、5.1℃が送信された場合を考える。この場合、図9のフェーズP1の場合と同様に、管理システム106は、これらの第1のデータを条件B、Cのデータ群に分類する。一方、データ送信装置102に対しては、管理システム106は何のアクションも起こさないため、このフェーズでの異常検知処理は終了する。 Consider a case in which first data, for example, T2 = 6.5 ° C., 5.1 ° C., which is a control amount that does not satisfy the condition A, is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P1 in FIG. 9, the management system 106 classifies these first data into data groups of conditions B and C. On the other hand, since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、T2=5.1℃が送信された場合を考える。この場合、図9のフェーズP2の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである膨張弁14aの開度Dの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された膨張弁14aの開度Dは、D=0.42であったとする。管理システム106では、取得した第2のデータは、第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にあると判定される。結果、第2のデータは正常値であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case where first data, for example, T2 = 5.1 ° C., which is a controlled variable that satisfies the condition A, is transmitted from the data transmitting apparatus 102. In this case, as in the case of the phase P2 in FIG. 9, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102. A transmission request for the opening degree D of the expansion valve 14a is made. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the opening degree D of the expansion valve 14a transmitted to the management system 106 is D = 0.42. In the management system 106, the acquired second data is compared with the second target range, and it is determined that the acquired second data is in the second target range. As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、T2=5.5℃が送信された場合を考える。この場合、図9のフェーズP3の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである膨張弁14aの開度Dの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された膨張弁14aの開度Dは、D=0.65であったとする。管理システム106では、取得した第2のデータが過去の第2のデータの数値範囲である第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にないと判定される。結果、第2のデータは異常であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case where first data, for example, T2 = 5.5 ° C., which is a controlled variable that satisfies the condition A, is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P3 in FIG. 9, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102. A transmission request for the opening degree D of the expansion valve 14a is made. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the opening degree D of the expansion valve 14a transmitted to the management system 106 is D = 0.65. In the management system 106, the acquired second data is compared with a second target range that is a numerical range of the past second data, and it is determined that the acquired second data is not within the second target range. The As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
 以上説明したように、本実施の形態1に係るデータ取得システムは、圧縮機1と膨張弁14a、14bとを備える空気調和装置101に接続され、空気調和装置101において測定されるパラメータの一部である第1のデータを、空気調和装置101から取得し、第1のデータが目標範囲にある場合に、空気調和装置101において測定されるパラメータの他の一部である第2のデータを、空気調和装置101から取得する監視装置104を備える。 As described above, the data acquisition system according to the first embodiment is connected to the air conditioner 101 including the compressor 1 and the expansion valves 14a and 14b, and a part of parameters measured in the air conditioner 101. Is acquired from the air conditioner 101, and when the first data is in the target range, the second data that is another part of the parameter measured in the air conditioner 101 is The monitoring apparatus 104 acquired from the air conditioning apparatus 101 is provided.
 また、本実施の形態1に係るデータ取得方法は、圧縮機1と膨張弁14a、14bとを備える空気調和装置101において測定されるパラメータを取得する、データ取得システムのデータ取得方法であって、空気調和装置101において測定されるパラメータの一部である第1のデータを、空気調和装置101から取得する工程と、第1のデータが目標範囲にある場合に、空気調和装置101において測定されるパラメータの他の一部である第2のデータを、空気調和装置101から取得する工程とを有する。 Moreover, the data acquisition method according to the first embodiment is a data acquisition method of a data acquisition system that acquires parameters measured in the air conditioner 101 including the compressor 1 and the expansion valves 14a and 14b. The step of acquiring from the air conditioner 101 the first data that is part of the parameters measured in the air conditioner 101, and the first data is measured in the air conditioner 101 when it is within the target range. Obtaining second data that is another part of the parameter from the air conditioner 101.
 上述の構成によれば、冷凍サイクル装置において測定されるパラメータの一部を取得する構成にできるため、データ蓄積装置105の容量不足を解消できる。 According to the above-described configuration, a part of parameters measured in the refrigeration cycle apparatus can be acquired, so that the capacity shortage of the data storage device 105 can be solved.
 また、本実施の形態1に係るデータ取得システムは、空気調和装置101に通信ネットワーク103を介して接続できる。本実施の形態1に係るデータ取得システムは、空気調和装置101において測定されるパラメータの一部を取得する構成にできるため、通信ネットワーク103の通信容量の増加を解消できる。また、データ取得システムを通信ネットワーク103を介して接続することにより、データ取得システムを遠隔監視サーバとして構成できるため、多数の空気調和装置101のデータを同時に管理可能なデータ取得システムを構築できる。 In addition, the data acquisition system according to the first embodiment can be connected to the air conditioning apparatus 101 via the communication network 103. Since the data acquisition system according to Embodiment 1 can be configured to acquire some of the parameters measured in the air conditioning apparatus 101, an increase in communication capacity of the communication network 103 can be eliminated. In addition, since the data acquisition system can be configured as a remote monitoring server by connecting the data acquisition system via the communication network 103, a data acquisition system capable of simultaneously managing data of a large number of air conditioners 101 can be constructed.
 また、本実施の形態1に係るデータ取得システムにおいては、第1のデータ及び第2のデータは、空気調和装置101における環境のパラメータ又は空気調和装置101の運転状態のパラメータを含むように構成できる。具体的には、前記環境のパラメータは、圧力のパラメータ又は温度のパラメータを含むように構成できる。また、温度のパラメータは、凝縮温度、蒸発温度、又は過冷却度のうちの1つ以上を含むように構成できる。また、運転状態のパラメータは、圧縮機1の運転周波数又は膨張弁14a、14bの開度を含むように構成できる。また、本実施の形態1に係るデータ取得システムは、空冷式熱源側熱交換器と、空冷式熱源側熱交換器に空気を供給する室外送風機4とを備える空気調和装置101で用いることができ、運転状態のパラメータが、室外送風機4の回転数を含むように構成できる。 In the data acquisition system according to the first embodiment, the first data and the second data can be configured to include an environmental parameter in the air conditioner 101 or an operating condition parameter of the air conditioner 101. . Specifically, the environmental parameters can be configured to include pressure parameters or temperature parameters. Also, the temperature parameter can be configured to include one or more of a condensation temperature, an evaporation temperature, or a degree of supercooling. Moreover, the parameter of an operation state can be comprised so that the operating frequency of the compressor 1 or the opening degree of the expansion valves 14a and 14b may be included. In addition, the data acquisition system according to the first embodiment can be used in an air conditioner 101 including an air-cooled heat source side heat exchanger and an outdoor fan 4 that supplies air to the air-cooled heat source side heat exchanger. The operation state parameter can be configured to include the rotational speed of the outdoor fan 4.
 本実施の形態1では、例えば、空気調和装置101における異常検知のためのデータとして、環境のパラメータ又は運転状態のパラメータを取得することができる。取得した環境のパラメータ又は運転状態のパラメータは、データ蓄積装置105に記憶させることができ、データ蓄積装置105に記憶されたデータは、空気調和装置101の保守点検又は定期点検の時に、例えば、図8のグラフのように紙面に出力できる。空気調和装置101の保守点検者又は定期点検者は、出力されたグラフのデータ推移から異常を検知することができる。具体的には、圧縮機1の運転周波数のデータ推移から圧縮機1の性能低下を検知することができる。また、膨張弁14a、14bの開度のデータ推移から膨張弁14a、14bの詰まりを検知することができる。また、室外送風機4の回転数のデータ推移から室外送風機4の性能低下を検知することができる。 In the first embodiment, for example, environmental parameters or operating condition parameters can be acquired as data for abnormality detection in the air conditioner 101. The acquired environmental parameters or operating condition parameters can be stored in the data storage device 105, and the data stored in the data storage device 105 can be stored, for example, at the time of maintenance inspection or periodic inspection of the air conditioning apparatus 101. As shown in the graph of FIG. A maintenance inspector or periodic inspector of the air conditioner 101 can detect an abnormality from the data transition of the output graph. Specifically, the performance degradation of the compressor 1 can be detected from the data transition of the operating frequency of the compressor 1. Further, the clogging of the expansion valves 14a and 14b can be detected from the data transition of the opening degree of the expansion valves 14a and 14b. Moreover, the performance fall of the outdoor air blower 4 can be detected from the data transition of the rotation speed of the outdoor air blower 4.
 なお、本実施の形態1に係るデータ取得システム及びデータ取得方法においては、データ取得システムは、管理システム106の一例であり、膨張弁14a、14bは、減圧装置の一例であり、空気調和装置101は、冷凍サイクル装置の一例であり、監視装置104は、制御装置の一例である。また、空冷式熱源側熱交換器は、室外熱交換器3の一例であり、室外送風機4は、熱源側送風ファンとも称される。 In the data acquisition system and data acquisition method according to the first embodiment, the data acquisition system is an example of the management system 106, the expansion valves 14a and 14b are examples of the decompression device, and the air conditioning apparatus 101. Is an example of a refrigeration cycle device, and the monitoring device 104 is an example of a control device. The air-cooled heat source side heat exchanger is an example of the outdoor heat exchanger 3, and the outdoor blower 4 is also referred to as a heat source side blower fan.
 本実施の形態1に係る異常検知システムは、圧縮機1と膨張弁14a、14bとを備える空気調和装置101に接続され、空気調和装置101において測定されるパラメータの一部である第1のデータを、空気調和装置101から取得し、第1のデータが第1の目標範囲にある場合に、空気調和装置101において測定されるパラメータの他の一部である第2のデータを、空気調和装置101から取得し、第2のデータが第2の目標範囲にない場合に、空気調和装置101が異常であると検知する監視装置104を備える。 The abnormality detection system according to the first embodiment is connected to an air conditioner 101 including the compressor 1 and expansion valves 14a and 14b, and is first data that is part of parameters measured in the air conditioner 101. Is obtained from the air conditioner 101, and when the first data is in the first target range, the second data, which is another part of the parameter measured in the air conditioner 101, is obtained. And a monitoring device 104 that detects that the air-conditioning apparatus 101 is abnormal when the second data is not within the second target range.
 また、本実施の形態1に係る異常検知方法は、圧縮機1と膨張弁14a、14bとを備える空気調和装置101の異常を検知する、異常検知システムの異常検知方法であって、空気調和装置101において測定されるパラメータの一部である第1のデータを、空気調和装置101から取得する工程と、第1のデータが第1の目標範囲にある場合に、空気調和装置101において測定されるパラメータの他の一部である第2のデータを、空気調和装置101から取得する工程と、第2のデータが第2の目標範囲にない場合に、空気調和装置101が異常であると検知する工程とを有する。 The abnormality detection method according to the first embodiment is an abnormality detection method for an abnormality detection system that detects an abnormality of the air conditioner 101 including the compressor 1 and the expansion valves 14a and 14b. The first data that is part of the parameters measured in 101 is acquired from the air conditioner 101, and is measured in the air conditioner 101 when the first data is in the first target range. When the second data, which is another part of the parameter, is acquired from the air conditioner 101, and when the second data is not within the second target range, it is detected that the air conditioner 101 is abnormal. Process.
 上述の構成によれば、空気調和装置101から取得可能な少量のデータで、空気調和装置101の異常を検知することができる。したがって、本実施の形態1によれば、異常検知のために用いるデータ量を大幅に削減できるため、データ蓄積装置105の容量不足が解消可能である。また、これらの構成によれば、異常検知のために異常検知システムで消費されるエネルギー消費量を削減できる。 According to the above-described configuration, an abnormality of the air conditioner 101 can be detected with a small amount of data that can be acquired from the air conditioner 101. Therefore, according to the first embodiment, the amount of data used for abnormality detection can be greatly reduced, so that the capacity shortage of the data storage device 105 can be solved. Moreover, according to these structures, the energy consumption consumed by the abnormality detection system for abnormality detection can be reduced.
 また、本実施の形態1に係る異常検知システムは、空気調和装置101に通信ネットワーク103を介して接続できる。本実施の形態1に係る異常検知システムは、空気調和装置101において測定されるパラメータの一部を取得する構成にできるため、通信ネットワーク103の通信容量の増加を解消できる。また、異常検知システムを通信ネットワーク103を介して接続することにより、異常検知システムを遠隔監視サーバとして構成できるため、多数の空気調和装置101のデータを同時に管理可能な異常検知システムを構築できる。 Moreover, the abnormality detection system according to the first embodiment can be connected to the air conditioning apparatus 101 via the communication network 103. Since the abnormality detection system according to Embodiment 1 can be configured to acquire some of the parameters measured in the air conditioning apparatus 101, an increase in communication capacity of the communication network 103 can be eliminated. Further, since the abnormality detection system can be configured as a remote monitoring server by connecting the abnormality detection system via the communication network 103, an abnormality detection system capable of simultaneously managing data of a large number of air conditioners 101 can be constructed.
 本実施の形態1に係る異常検知システムは、空気調和装置101から取得された第2のデータを、第3のデータとして記憶するデータ蓄積装置105を更に備え、監視装置104は、データ蓄積装置105に記憶された第3のデータから、第2の目標範囲を決定するように構成できる。この構成によれば、少量のデータを時系列で比較することによって、冷媒漏れを含む異常を検知することができるため、製品の安全性及び環境保全性を高めることができるとともに、環境負荷を低減することができる。 The abnormality detection system according to the first embodiment further includes a data storage device 105 that stores second data acquired from the air conditioning apparatus 101 as third data, and the monitoring device 104 includes the data storage device 105. Can be configured to determine the second target range from the third data stored in. According to this configuration, it is possible to detect abnormality including refrigerant leakage by comparing a small amount of data in time series, so that it is possible to improve the safety and environmental conservation of the product and reduce the environmental load. can do.
 本実施の形態1に係る異常検知システムにおいては、第1のデータは、空気調和装置101における制御量を含み、第1の目標範囲は、制御量の目標値とし、第2のデータは、目標値に第1のデータを調整する操作量を含み、第2の目標範囲は、目標値に第1のデータを調整するのに用いられる通常の操作量となるように構成できる。具体的には、本実施の形態1に係る異常検知システムにおいては、制御量は、凝縮温度を含み、操作量は、圧縮機1の運転周波数を含み、空気調和装置101の異常は、圧縮機1の性能低下を含むように構成できる。また、本実施の形態1に係る異常検知システムにおいては、制御量は、過冷却度を含み、操作量は、膨張弁14a、14bの開度を含み、空気調和装置101の異常は、膨張弁14a、14bの詰まりを含むように構成できる。また、本実施の形態1に係る異常検知システムは、空冷式熱源側熱交換器と、空冷式熱源側熱交換器に空気を供給する室外送風機4とを備える空気調和装置101で用いることができ、制御量は、蒸発温度を含み、操作量は、室外送風機4の回転数を含み、空気調和装置101の異常は、室外送風機4の性能低下を含むように構成できる。 In the abnormality detection system according to the first embodiment, the first data includes a control amount in the air conditioner 101, the first target range is a control amount target value, and the second data is a target amount. The value includes the operation amount for adjusting the first data, and the second target range can be configured to be a normal operation amount used for adjusting the first data to the target value. Specifically, in the abnormality detection system according to the first embodiment, the control amount includes the condensation temperature, the operation amount includes the operating frequency of the compressor 1, and the abnormality of the air conditioner 101 is the compressor. 1 performance degradation can be included. Further, in the abnormality detection system according to the first embodiment, the control amount includes the degree of supercooling, the operation amount includes the opening degree of the expansion valves 14a and 14b, and the abnormality of the air conditioner 101 is the expansion valve. 14a and 14b can be included. Moreover, the abnormality detection system according to the first embodiment can be used in an air conditioner 101 including an air-cooling heat source side heat exchanger and an outdoor fan 4 that supplies air to the air-cooling heat source side heat exchanger. The control amount includes the evaporation temperature, the operation amount includes the rotation speed of the outdoor blower 4, and the abnormality of the air conditioner 101 can be configured to include the performance deterioration of the outdoor blower 4.
 本実施の形態1では、空気調和装置101の制御系の一部に着目することにより、空気調和装置101のアクチュエータの異常を検知することができる。例えば、異常検知システムは、凝縮温度が所定の温度範囲に制御されているときの圧縮機1の運転周波数を監視し、圧縮機1の運転周波数が所定の運転周波数範囲にない場合に、圧縮機1の性能低下を検知するように構成できる。また、異常検知システムは、過冷却度が所定の温度範囲に制御されているときの膨張弁14a、14bの開度を監視し、膨張弁14a、14bの開度が所定の開度範囲にない場合に、膨張弁14a、14bの詰まりを検知するように構成できる。また、異常検知システムは、蒸発温度が所定の温度範囲に制御されているときの室外送風機4の回転数を監視し、室外送風機4の回転数が所定の回転数範囲にない場合に、室外送風機4の性能低下を検知するように構成できる。 In the first embodiment, it is possible to detect an abnormality of the actuator of the air conditioner 101 by paying attention to a part of the control system of the air conditioner 101. For example, the abnormality detection system monitors the operating frequency of the compressor 1 when the condensation temperature is controlled within a predetermined temperature range, and when the operating frequency of the compressor 1 is not within the predetermined operating frequency range, the compressor 1 can be configured to detect performance degradation. The abnormality detection system monitors the opening degree of the expansion valves 14a and 14b when the degree of supercooling is controlled within a predetermined temperature range, and the opening degree of the expansion valves 14a and 14b is not within the predetermined opening degree range. In this case, it can be configured to detect clogging of the expansion valves 14a and 14b. The abnormality detection system monitors the rotational speed of the outdoor blower 4 when the evaporation temperature is controlled within a predetermined temperature range, and when the rotational speed of the outdoor blower 4 is not within the predetermined rotational speed range, the outdoor blower 4 can be configured to detect performance degradation.
 なお、本実施の形態1に係る異常検知システム及び異常検知方法においては、異常検知は、管理システム106の一例であり、膨張弁14a、14bは、減圧装置の一例であり、空気調和装置101は、冷凍サイクル装置の一例であり、監視装置104は、制御装置の一例である。また、空冷式熱源側熱交換器は、室外熱交換器3の一例であり、室外送風機4は、熱源側送風ファンとも称される。 In the abnormality detection system and abnormality detection method according to the first embodiment, abnormality detection is an example of the management system 106, the expansion valves 14a and 14b are examples of a decompression device, and the air conditioner 101 is The refrigeration cycle device is an example, and the monitoring device 104 is an example of a control device. The air-cooled heat source side heat exchanger is an example of the outdoor heat exchanger 3, and the outdoor blower 4 is also referred to as a heat source side blower fan.
 本実施の形態1に係る空気調和装置101は、圧縮機1と膨張弁14a、14bとを備える冷凍サイクル回路と、冷凍サイクル回路において測定されるパラメータの一部である第1のデータを冷凍サイクル回路から取得し、第1のデータが第1の目標範囲にある場合に、冷凍サイクル回路において測定されるパラメータの他の一部である第2のデータを冷凍サイクル回路から取得する制御部107とを備える。この構成によれば、本実施の形態1に係る異常検知システムと同等の制御処理が可能な制御部107を備える空気調和装置101を提供できる。 The air-conditioning apparatus 101 according to Embodiment 1 includes a refrigeration cycle circuit including the compressor 1 and expansion valves 14a and 14b, and first data that is part of parameters measured in the refrigeration cycle circuit. A control unit 107 that acquires from the refrigeration cycle circuit second data that is another part of the parameters measured in the refrigeration cycle circuit when the first data is in the first target range acquired from the circuit; Is provided. According to this structure, the air conditioning apparatus 101 provided with the control part 107 which can perform the control processing equivalent to the abnormality detection system which concerns on this Embodiment 1 can be provided.
 また、本実施の形態1に係る空気調和装置101においては、制御部107は、第2のデータが第2の目標範囲にない場合に、冷凍サイクル回路が異常であると検知するように構成できる。この構成によれば、本実施の形態1に係る異常検知システムと同等の制御処理が可能な制御部107を備える空気調和装置101を提供できる。 Moreover, in the air conditioning apparatus 101 according to the first embodiment, the control unit 107 can be configured to detect that the refrigeration cycle circuit is abnormal when the second data is not in the second target range. . According to this structure, the air conditioning apparatus 101 provided with the control part 107 which can perform the control processing equivalent to the abnormality detection system which concerns on this Embodiment 1 can be provided.
 なお、本実施の形態1に係る空気調和装置101は、冷凍サイクル装置の一例であり、膨張弁14a、14bは、減圧装置の一例であり、制御部107は、制御装置の一例である。 The air conditioning apparatus 101 according to the first embodiment is an example of a refrigeration cycle apparatus, the expansion valves 14a and 14b are examples of a decompression apparatus, and the control unit 107 is an example of a control apparatus.
実施の形態2.
 上述の実施の形態1では、室外熱交換器3を空冷式熱源側熱交換器とした空冷式の空気調和装置101を構成した場合について説明した。本発明の実施の形態2では、室外熱交換器3を水冷式熱源側熱交換器とした水冷式の空気調和装置101を構成した場合について説明する。例えば、水冷式の空気調和装置101の熱源ユニット304としては、水冷式のチラーユニット等がある。
Embodiment 2. FIG.
In the first embodiment described above, the case where the air-cooled air conditioner 101 in which the outdoor heat exchanger 3 is an air-cooled heat source side heat exchanger is configured has been described. In Embodiment 2 of the present invention, a case will be described in which a water-cooled air conditioner 101 in which the outdoor heat exchanger 3 is a water-cooled heat source side heat exchanger is configured. For example, the heat source unit 304 of the water-cooled air conditioner 101 includes a water-cooled chiller unit.
 図10は、本実施の形態2に係る空気調和装置101の概略構成の一例を示す冷媒回路図である。本実施の形態2に係る空気調和装置101では、室外熱交換器3の一例である空冷式熱源側熱交換器及び室外送風機4の代わりに、室外熱交換器3の別の一例である水冷式熱源側熱交換器と、水冷式熱源側熱交換器に接続された水冷ポンプ305とを備える。水冷式熱源側熱交換器及び水冷ポンプ305は配管接続され、水又はブラインを循環させる水冷回路を構成する。また、図示しないが、水冷回路には、水又はブラインを大気と直接的又は間接的に接触させて冷却する、屋外に設置された冷却塔が配管接続されている。 FIG. 10 is a refrigerant circuit diagram illustrating an example of a schematic configuration of the air-conditioning apparatus 101 according to the second embodiment. In the air conditioner 101 according to the second embodiment, instead of the air-cooling heat source side heat exchanger and the outdoor fan 4 that are examples of the outdoor heat exchanger 3, a water-cooling type that is another example of the outdoor heat exchanger 3 is used. A heat source side heat exchanger and a water cooling pump 305 connected to the water cooling type heat source side heat exchanger are provided. The water-cooling heat source side heat exchanger and the water-cooling pump 305 are connected by piping to form a water-cooling circuit for circulating water or brine. Moreover, although not shown in figure, the water-cooling circuit is connected to a cooling tower installed outdoors, which cools water or brine by directly or indirectly contacting the air with the atmosphere.
 水冷式熱源側熱交換器は、冷凍サイクル回路の内部を流通する冷媒と、水冷ポンプ305により水冷回路に循環される水又はブラインとの熱交換が行われるように構成できる。水冷式熱源側熱交換器は、例えばシェルアンドチューブ式又は二重管コイル式の熱交換器として構成できる。 The water-cooled heat source side heat exchanger can be configured such that heat exchange is performed between the refrigerant circulating in the refrigeration cycle circuit and water or brine circulated to the water cooling circuit by the water cooling pump 305. The water-cooled heat source side heat exchanger can be configured as, for example, a shell-and-tube heat exchanger or a double tube coil heat exchanger.
 水冷回路においては、水冷式熱源側熱交換器の流入口側に、水冷式熱源側熱交換器の水冷回路側の入口側を流れる水又はブラインの冷却水温度を配管を介して検出する温度センサ220が設けられている。また、水冷回路においては、水冷式熱源側熱交換器の流出口側に、水冷式熱源側熱交換器の水冷回路側の出口側を流れる水又はブラインの冷却水温度を配管を介して検出する温度センサ221が設けられている。温度センサ220、221は、例えばサーミスタ等を用いて構成される。 In the water cooling circuit, a temperature sensor that detects the temperature of the cooling water of water or brine flowing through the inlet side of the water cooling type heat source side heat exchanger on the water cooling circuit side of the water cooling type heat source side heat exchanger via a pipe 220 is provided. Further, in the water cooling circuit, the temperature of the cooling water of water or brine flowing on the outlet side of the water cooling type heat source side heat exchanger on the side of the water cooling circuit side is detected via a pipe at the outlet side of the water cooling type heat source side heat exchanger. A temperature sensor 221 is provided. The temperature sensors 220 and 221 are configured using, for example, a thermistor.
 水冷ポンプ305は、冷却塔から水又はブラインを吸引し、吸引した水又はブラインを水冷式熱源側熱交換器に圧入する流体機械である。水冷ポンプ305は、電流によって水又はブラインの流量を調整できるように構成される。水冷ポンプ305は、例えば、モータを流れる電流量によって容量制御可能なDCポンプ等で構成される。 The water cooling pump 305 is a fluid machine that sucks water or brine from the cooling tower and press-fits the sucked water or brine into the water-cooled heat source side heat exchanger. The water cooling pump 305 is configured so that the flow rate of water or brine can be adjusted by electric current. The water-cooled pump 305 is configured by, for example, a DC pump whose capacity can be controlled by the amount of current flowing through the motor.
 水冷ポンプ305を駆動するモータを流れる電流量は電流センサ240によって検出される。電流センサ240は、例えばホール素子を用いて構成できる。電流センサ240は制御部107に検出信号を出力するように構成される。 The amount of current flowing through the motor that drives the water cooling pump 305 is detected by the current sensor 240. The current sensor 240 can be configured using, for example, a Hall element. The current sensor 240 is configured to output a detection signal to the control unit 107.
 本実施の形態2における空気調和装置101の他の構成は、上述の実施の形態1で説明した構成と同一である。 Other configurations of the air-conditioning apparatus 101 in the second embodiment are the same as those described in the first embodiment.
 次に、本実施の形態2において、管理システム106を異常検知システムとして構成した場合における、データ送信装置102と管理システム106との間のデータの送受信、及び管理システム106における異常検知の一例について説明する。 Next, in the second embodiment, an example of data transmission / reception between the data transmission apparatus 102 and the management system 106 and an abnormality detection in the management system 106 when the management system 106 is configured as an abnormality detection system will be described. To do.
 以下の例は、上述の実施の形態1の図7の制御処理で説明した、第1のデータ、第2のデータ、異常検知の指標となる指標データ群である条件A、その他のデータ群である条件B及びC、並びに過去の第2のデータの数値範囲を具体的に特定したものである。なお、図7の制御処理で説明したように、条件Aは、第1の目標範囲に該当するものであり、条件B及び条件Cは、第1の目標範囲外のデータ群である。また、過去の第2のデータの数値範囲は、記憶装置140に記憶された第3のデータから決定される第2の目標範囲に該当するものである。 In the following example, the first data, the second data, the condition A that is an index data group serving as an abnormality detection index, and other data groups described in the control process of FIG. 7 of the first embodiment described above. A specific condition B and C and a numerical range of the past second data are specifically specified. Note that, as described in the control process of FIG. 7, the condition A corresponds to the first target range, and the condition B and the condition C are a data group outside the first target range. The numerical range of the past second data corresponds to the second target range determined from the third data stored in the storage device 140.
 また、以下の例においては、第1のデータは、空気調和装置101における制御量に該当するものである。第1の目標範囲は、空気調和装置101における制御量の目標値に該当するものである。第2のデータは、空気調和装置101における制御量の目標値に、第1のデータを調整する操作量に該当するものである。第2の目標範囲は、空気調和装置101における制御量の目標値に、第1のデータを調整するのに用いられる通常の操作量である。 In the following example, the first data corresponds to the control amount in the air conditioner 101. The first target range corresponds to a control value target value in the air-conditioning apparatus 101. The second data corresponds to the operation amount for adjusting the first data to the target value of the control amount in the air conditioning apparatus 101. The second target range is a normal operation amount that is used to adjust the first data to the target value of the control amount in the air conditioner 101.
 冷房運転時の空気調和装置101においては、水冷ポンプ305を駆動するモータの電流値Iは、水冷式熱源側熱交換器の出入口温度、すなわち水冷式熱源側熱交換器の水冷回路側の流入口と流出口との間の温度差ΔT3が所定の数値範囲となるように制御されている。すなわち、本実施の形態2の空気調和装置101の制御系の一例においては、水冷式熱源側熱交換器の水冷回路側の流入口と流出口との間の温度差ΔT3が制御量となり、モータの電流値Iが操作量となる。本実施の形態2では、第1のデータを制御量である水冷式熱源側熱交換器の水冷回路側の流入口と流出口との間の温度差ΔT3とし、第2のデータを操作量であるモータの電流値Iとした。水冷式熱源側熱交換器の水冷回路側の流入口と流出口との間の温度差ΔT3は、例えば、温度センサ220で検出される温度と温度センサ221で検出される温度との差として算出される。また、モータの電流値Iは、電流センサ240によって検出される。なお、以下では、「水冷式熱源側熱交換器の水冷回路側の流入口と流出口との間の温度差ΔT3」を「温度差ΔT3」と称する。 In the air conditioner 101 during cooling operation, the current value I of the motor that drives the water cooling pump 305 is the inlet / outlet temperature of the water cooling heat source side heat exchanger, that is, the inlet of the water cooling circuit side of the water cooling heat source side heat exchanger. And the temperature difference ΔT3 between the outlet and the outlet is controlled to be within a predetermined numerical range. That is, in the example of the control system of the air conditioner 101 of the second embodiment, the temperature difference ΔT3 between the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger becomes the control amount, and the motor Current value I becomes the manipulated variable. In the second embodiment, the first data is the temperature difference ΔT3 between the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger, which is the controlled variable, and the second data is the manipulated variable. The current value I of a certain motor is assumed. The temperature difference ΔT3 between the inlet and outlet on the water cooling circuit side of the water cooling heat source side heat exchanger is calculated as, for example, the difference between the temperature detected by the temperature sensor 220 and the temperature detected by the temperature sensor 221. Is done. The motor current value I is detected by a current sensor 240. Hereinafter, the “temperature difference ΔT3 between the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger” is referred to as “temperature difference ΔT3”.
 水冷ポンプ305の性能が正常である場合、制御量である温度差ΔT3が所定の数値範囲となるように、操作量であるモータの電流値Iは所定の数値範囲に制御される。したがって、水冷ポンプ305に異常がある場合、例えば、水冷回路に詰まりが発生している場合には、温度差ΔT3が所定の数値範囲となるように、モータの電流値Iは所定の数値範囲よりも大きくなるように制御される。 When the performance of the water-cooled pump 305 is normal, the current value I of the motor, which is the operation amount, is controlled within the predetermined numerical range so that the temperature difference ΔT3 that is the control amount falls within the predetermined numerical range. Therefore, when there is an abnormality in the water cooling pump 305, for example, when the water cooling circuit is clogged, the current value I of the motor is less than the predetermined numerical range so that the temperature difference ΔT3 is in the predetermined numerical range. Is also controlled to be larger.
 本実施の形態2における異常検知の指標となる指標データ群である条件A、すなわち第1の目標範囲は、温度差ΔT3が5.0℃<ΔT3≦7.0℃となるものとした。また、その他のデータ群である条件B、Cは、それぞれ、温度差ΔT3が7.0℃<ΔT3≦9.0℃、3.0℃<ΔT3≦5.0℃となるものとした。 The condition A that is an index data group serving as an abnormality detection index in the second embodiment, that is, the first target range, is such that the temperature difference ΔT3 is 5.0 ° C. <ΔT3 ≦ 7.0 ° C. In addition, conditions B and C, which are other data groups, are such that the temperature difference ΔT3 is 7.0 ° C. <ΔT3 ≦ 9.0 ° C. and 3.0 ° C. <ΔT3 ≦ 5.0 ° C., respectively.
 また、本実施の形態2における過去の第2のデータ、すなわち、過去のモータの電流値Iの数値範囲である第2の目標範囲は、0.5A<I≦1.0Aになることとした。 In addition, the past second data in the second embodiment, that is, the second target range that is the numerical range of the past motor current value I is 0.5A <I ≦ 1.0A. .
 データ送信装置102から条件Aを満たさない制御量である第1のデータ、例えば、ΔT3=8.0℃、4.3℃が送信された場合を考える。この場合、上述の実施の形態1における図9のフェーズP1の場合と同様に、管理システム106はこれらの第1のデータを条件B、Cのデータ群に分類する。一方、データ送信装置102に対しては、管理システム106は何のアクションも起こさないため、このフェーズでの異常検知処理は終了する。 Consider a case in which first data, for example, ΔT3 = 8.0 ° C., 4.3 ° C., which is a control amount that does not satisfy the condition A, is transmitted from the data transmission apparatus 102. In this case, as in the case of phase P1 in FIG. 9 in the first embodiment, the management system 106 classifies these first data into data groups of conditions B and C. On the other hand, since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、ΔT3=6.0℃が送信された場合を考える。この場合、上述の実施の形態1における図9のフェーズP2の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータであるモータの電流値Iの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信されたモータの電流値Iは、I=0.8Aであったとする。管理システム106では、取得した第2のデータが過去の第2のデータの数値範囲である第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にあると判定される。結果、第2のデータは正常値であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case where first data, for example, ΔT3 = 6.0 ° C., which is a control amount satisfying the condition A is transmitted from the data transmission apparatus 102. In this case, as in the case of phase P2 in FIG. 9 in the first embodiment, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 The transmission request for the current value I of the motor which is the second data is made. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the current value I of the motor transmitted to the management system 106 is I = 0.8A. In the management system 106, the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす制御量である第1のデータ、例えば、ΔT3=6.5℃が送信された場合を考える。この場合、図9のフェーズP3の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータであるモータの電流値Iの送信要求を行う。データ送信装置102は、この送信要求を受けて、操作量である第2のデータを管理システム106に送信する。ここでは、管理システム106に送信されたモータの電流値Iは、I=1.5Aであったとする。管理システム106では、取得した第2のデータは、第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にないと判定される。結果、第2のデータは異常であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case where first data, for example, ΔT3 = 6.5 ° C., which is a control amount satisfying the condition A is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P3 in FIG. 9, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102. A transmission request for the current value I of the motor is made. In response to this transmission request, the data transmission apparatus 102 transmits second data that is an operation amount to the management system 106. Here, it is assumed that the motor current value I transmitted to the management system 106 is I = 1.5A. In the management system 106, the acquired second data is compared with the second target range, and it is determined that the acquired second data is not within the second target range. As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
 なお、管理システム106をデータ取得システムとして構成した場合、同様の方法で、水冷ポンプ305における異常検知のためのデータとして、モータの電流値I又は温度差ΔT3を取得することができる。 When the management system 106 is configured as a data acquisition system, the motor current value I or the temperature difference ΔT3 can be acquired as data for abnormality detection in the water-cooled pump 305 by the same method.
 以上に説明したとおり、本実施の形態2に係るデータ取得システムは、水冷式熱源側熱交換器と水冷式熱源側熱交換器に接続された水冷ポンプ305とを備え、水冷式熱源側熱交換器及び水冷ポンプ305が、水又はブラインを循環させる水冷回路を構成する空気調和装置101で用いることができ、温度のパラメータは、水冷式熱源側熱交換器の水冷回路側の流入口と流出口との間の温度差を含み、運転状態のパラメータは、水冷ポンプ305を駆動させる電流の測定値を含むように構成できる。 As described above, the data acquisition system according to the second embodiment includes the water-cooled heat source side heat exchanger and the water cooling pump 305 connected to the water-cooled heat source side heat exchanger, and the water-cooled heat source side heat exchange. And the water cooling pump 305 can be used in the air conditioner 101 constituting the water cooling circuit for circulating water or brine, and the temperature parameters are the inlet and outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger. And the operating condition parameter can be configured to include a measurement of the current that drives the water cooled pump 305.
 この構成によれば、本実施の形態2に係るデータ取得システムは、例えば、水冷ポンプ305における異常検知のためのデータとして、モータの電流値I又は温度差ΔT3を取得することができる。取得したモータの電流値I又は温度差ΔT3は、データ蓄積装置105に記憶させることができ、データ蓄積装置105に記憶されたデータは、空気調和装置101の保守点検又は定期点検の時に、例えば、図8のグラフのように紙面に出力できる。空気調和装置101の保守点検者又は定期点検者は、出力されたグラフのデータ推移から異常を検知することができる。すなわち、モータの電流値Iのデータ推移から水冷回路の詰まりを検知することができる。 According to this configuration, the data acquisition system according to the second embodiment can acquire the motor current value I or the temperature difference ΔT3 as data for detecting an abnormality in the water cooling pump 305, for example. The acquired motor current value I or temperature difference ΔT3 can be stored in the data storage device 105, and the data stored in the data storage device 105 can be used, for example, at the time of maintenance inspection or periodic inspection of the air conditioning apparatus 101. As shown in the graph of FIG. A maintenance inspector or periodic inspector of the air conditioner 101 can detect an abnormality from the data transition of the output graph. That is, the clogging of the water cooling circuit can be detected from the data transition of the motor current value I.
 また、本実施の形態2に係る異常検知システムは、水冷式熱源側熱交換器と、水冷式熱源側熱交換器に接続された水冷ポンプ305とを備え、水冷式熱源側熱交換器及び水冷ポンプ305が、水又はブラインを循環させる水冷回路を構成する空気調和装置101で用いることができ、制御量は、水冷式熱源側熱交換器の水冷回路側の流入口と流出口との間の温度差を含み、操作量は、水冷ポンプ305を駆動させる電流の測定値を含み、空気調和装置101の異常は、水冷回路の詰まりを含むように構成できる。 The abnormality detection system according to the second embodiment includes a water-cooled heat source side heat exchanger and a water cooling pump 305 connected to the water-cooled heat source side heat exchanger, and includes the water-cooled heat source side heat exchanger and the water-cooling system. The pump 305 can be used in the air conditioner 101 that constitutes a water cooling circuit that circulates water or brine, and the control amount is between the inlet and outlet of the water cooling circuit side of the water-cooled heat source side heat exchanger. The operation amount includes the temperature difference, the measured value of the current that drives the water cooling pump 305, and the abnormality of the air conditioner 101 can be configured to include clogging of the water cooling circuit.
 この構成によれば、空気調和装置101が水冷式であったとしても、異常検知システムを用いて、水冷式の空気調和装置101に特有の異常を検知することができる。 According to this configuration, even if the air conditioner 101 is water-cooled, an abnormality peculiar to the water-cooled air conditioner 101 can be detected using the abnormality detection system.
 なお、本実施の形態2に係るデータ取得システム及び異常検知システムにおいては、データ取得システム及び異常検知システムは、管理システム106の一例であり、空気調和装置101は、冷凍サイクル装置の一例であり、水冷式熱源側熱交換器は、室外熱交換器3の一例である。 In the data acquisition system and the abnormality detection system according to the second embodiment, the data acquisition system and the abnormality detection system are examples of the management system 106, the air conditioner 101 is an example of the refrigeration cycle apparatus, The water-cooled heat source side heat exchanger is an example of the outdoor heat exchanger 3.
実施の形態3.
 上述の実施の形態1及び上述の実施の形態2では、空気調和装置101を構成する機器、すなわちアクチュエータの運転状態を示すパラメータを第2のデータとして取得する管理システム106について具体例とともに説明した。本発明の実施の形態3では、温度状態を示すパラメータを第2のデータとして取得する管理システム106について具体例とともに説明する。
Embodiment 3 FIG.
In the first embodiment and the second embodiment described above, the management system 106 that acquires, as the second data, a parameter indicating the operation state of the equipment that constitutes the air conditioner 101, that is, the actuator, has been described with a specific example. In the third embodiment of the present invention, a management system 106 that acquires a parameter indicating a temperature state as second data will be described together with a specific example.
 以下では、本実施の形態3における管理システム106を異常検知システムとして構成した場合における、データ送信装置102と管理システム106との間のデータの送受信、及び管理システム106における異常検知の一例について説明する。 Hereinafter, an example of data transmission / reception between the data transmission apparatus 102 and the management system 106 and an abnormality detection in the management system 106 when the management system 106 according to the third embodiment is configured as an abnormality detection system will be described. .
 以下の例は、上述の実施の形態1の図7の制御処理で説明した、第1のデータ、第2のデータ、異常検知の指標となる指標データ群である条件A、その他のデータ群である条件B及びC、並びに過去の第2のデータの数値範囲を具体的に特定したものである。なお、上の制御処理で説明したように、条件Aは、第1の目標範囲に該当するものであり、条件B及び条件Cは、第1の目標範囲外のデータ群である。また、過去の第2のデータの数値範囲は、記憶装置140に記憶された第3のデータから決定される第2の目標範囲に該当するものである。 In the following example, the first data, the second data, the condition A that is an index data group serving as an abnormality detection index, and other data groups described in the control process of FIG. 7 of the first embodiment described above. A specific condition B and C and a numerical range of the past second data are specifically specified. As described in the above control process, the condition A corresponds to the first target range, and the condition B and the condition C are a data group outside the first target range. The numerical range of the past second data corresponds to the second target range determined from the third data stored in the storage device 140.
 空気調和装置101においては、凝縮温度T4が一定の温度範囲内となるとき、過冷却度T5が一定の温度範囲となるように、空気調和装置101の系全体が制御されている。本実施の形態3では、第1のデータを凝縮温度T4とし、第2のデータを過冷却度T5とした。凝縮温度T4は、例えば、圧力センサ201で検出される吐出圧力における飽和温度として算出される。過冷却度T5は、冷房運転時においては、例えば、圧力センサ201で検出される吐出圧力における飽和温度から温度センサ207の検出温度を減算した値として算出される。また、暖房運転時においては、過冷却度T5は、例えば、圧力センサ201で検出される吐出圧力における飽和温度から温度センサ208a又は温度センサ208bの検出温度を減算した値として算出される。 In the air conditioner 101, the entire system of the air conditioner 101 is controlled such that when the condensation temperature T4 falls within a certain temperature range, the degree of supercooling T5 falls within a certain temperature range. In the third embodiment, the first data is the condensation temperature T4, and the second data is the supercooling degree T5. The condensation temperature T4 is calculated as a saturation temperature at the discharge pressure detected by the pressure sensor 201, for example. The degree of supercooling T5 is calculated, for example, as a value obtained by subtracting the temperature detected by the temperature sensor 207 from the saturation temperature at the discharge pressure detected by the pressure sensor 201 during the cooling operation. In the heating operation, the degree of supercooling T5 is calculated, for example, as a value obtained by subtracting the temperature detected by the temperature sensor 208a or the temperature sensor 208b from the saturation temperature at the discharge pressure detected by the pressure sensor 201.
 空気調和装置101からの冷媒漏れがない場合、凝縮温度T4が一定の範囲内となるときは、過冷却度T5が一定の範囲となる。一方、空気調和装置101からの冷媒漏れがある場合には、冷媒不足のために過冷却度T5が一定の範囲を外れて大きくなる。 When there is no refrigerant leakage from the air conditioning apparatus 101, when the condensation temperature T4 is within a certain range, the degree of supercooling T5 is within a certain range. On the other hand, when there is a refrigerant leak from the air conditioner 101, the degree of supercooling T5 increases beyond a certain range due to a lack of refrigerant.
 本実施の形態3における異常検知の指標となる指標データ群である条件A、すなわち第1の目標範囲は、凝縮温度T4が34℃<T≦36℃となるものとした。また、その他のデータ群である条件B、Cは、それぞれ、凝縮温度T4が36℃<T≦38℃、32℃<T≦34℃となるものとした。 In the condition A that is an index data group serving as an abnormality detection index in the third embodiment, that is, the first target range, the condensation temperature T4 is 34 ° C. <T ≦ 36 ° C. In addition, conditions B and C which are other data groups are such that the condensation temperature T4 is 36 ° C. <T ≦ 38 ° C. and 32 ° C. <T ≦ 34 ° C., respectively.
 また、本実施の形態3における過去の第2のデータ、すなわち、過去の過冷却度T5の数値範囲である第2の目標範囲は、5℃<T4≦6℃になることとした。 Further, the second past data in the third embodiment, that is, the second target range which is the numerical range of the past supercooling degree T5 is set to 5 ° C. <T4 ≦ 6 ° C.
 データ送信装置102から条件Aを満たさない第1のデータ、例えば、T4=37.5℃、33.5℃が送信された場合を考える。この場合、上述の実施の形態1における図9のフェーズP1の場合と同様に、管理システム106はこれらの第1のデータを条件B、Cのデータ群に分類する。一方、データ送信装置102に対しては、管理システム106は何のアクションも起こさないため、このフェーズでの異常検知処理は終了する。 Consider a case where first data that does not satisfy the condition A, for example, T4 = 37.5 ° C., 33.5 ° C. is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P1 in FIG. 9 in the first embodiment, the management system 106 classifies these first data into data groups of conditions B and C. On the other hand, since the management system 106 does not perform any action on the data transmission apparatus 102, the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす第1のデータ、例えば、T4=35.0℃が送信された場合を考える。この場合、上述の実施の形態1における図9のフェーズP2の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである過冷却度T5の送信要求を行う。データ送信装置102は、この送信要求を受けて、第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された過冷却度T5は、T5=5.5℃であったとする。管理システム106では、取得した第2のデータが過去の第2のデータの数値範囲である第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にあると判定される。結果、第2のデータは正常値であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case where first data satisfying the condition A, for example, T4 = 35.0 ° C. is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P2 in FIG. 9 in the first embodiment, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 A transmission request for the degree of supercooling T5, which is the second data, is made. In response to this transmission request, the data transmitting apparatus 102 transmits the second data to the management system 106. Here, it is assumed that the degree of supercooling T5 transmitted to the management system 106 is T5 = 5.5 ° C. In the management system 106, the acquired second data is compared with a second target range that is a numerical range of the past second data, and the acquired second data is determined to be in the second target range. The As a result, it is detected that the second data is a normal value, and the abnormality detection process in this phase ends.
 データ送信装置102から条件Aを満たす第1のデータ、例えば、T4=35.0℃が送信された場合を考える。この場合、図9のフェーズP3の場合と同様に、管理システム106は、これらの第1のデータを条件Aのデータ群に分類し、管理システム106はデータ送信装置102に第2のデータである過冷却度T5の送信要求を行う。データ送信装置102は、この送信要求を受けて、第2のデータを管理システム106に送信する。ここでは、管理システム106に送信された過冷却度T5は、T5=7.0℃であったとする。管理システム106では、取得した第2のデータは、第2の目標範囲と比較され、取得した第2のデータは、第2の目標範囲にないと判定される。結果、第2のデータは異常であると検知され、このフェーズでの異常検知処理は終了する。 Consider a case where first data satisfying the condition A, for example, T4 = 35.0 ° C. is transmitted from the data transmitting apparatus 102. In this case, as in the case of phase P3 in FIG. 9, the management system 106 classifies the first data into the data group of the condition A, and the management system 106 stores the second data in the data transmission apparatus 102. A transmission request for the degree of supercooling T5 is made. In response to this transmission request, the data transmitting apparatus 102 transmits the second data to the management system 106. Here, it is assumed that the degree of supercooling T5 transmitted to the management system 106 is T5 = 7.0 ° C. In the management system 106, the acquired second data is compared with the second target range, and it is determined that the acquired second data is not within the second target range. As a result, it is detected that the second data is abnormal, and the abnormality detection process in this phase ends.
 以上に説明したとおり、本実施の形態3に係る異常検知システムにおいては、第1のデータは、凝縮温度を含み、第1の目標範囲は、空気調和装置101における凝縮温度の許容範囲となり、第2のデータは、過冷却度を含み、第2の目標範囲は、凝縮温度における過冷却度の許容範囲となるように構成でき、空気調和装置101の異常として、空気調和装置101からの冷媒漏れを検知できるように構成できる。 As described above, in the abnormality detection system according to the third embodiment, the first data includes the condensation temperature, and the first target range is the allowable range of the condensation temperature in the air conditioner 101. The data of 2 includes the degree of supercooling, and the second target range can be configured to be an allowable range of the degree of supercooling at the condensing temperature, and the refrigerant leaks from the air conditioner 101 as an abnormality of the air conditioner 101. Can be configured to be detected.
 この構成によれば、空気調和装置101からの冷媒漏れを、凝縮温度が一定の範囲にある場合の過冷却度から検知できるため、空気調和装置101からの取得データ量を低減した状態であっても、空気調和装置101からの冷媒漏れを検知できるように構成できる。 According to this configuration, the refrigerant leakage from the air conditioner 101 can be detected from the degree of supercooling when the condensation temperature is in a certain range, so that the amount of data acquired from the air conditioner 101 is reduced. In addition, the refrigerant leakage from the air conditioner 101 can be detected.
 また、管理システム106をデータ取得システムとして構成した場合、同様の方法で、空気調和装置101からの冷媒漏れ検知のためのデータとして、凝縮温度T4又は過冷却度T5を取得することができる。 Further, when the management system 106 is configured as a data acquisition system, the condensation temperature T4 or the degree of supercooling T5 can be acquired as data for detecting refrigerant leakage from the air conditioner 101 in the same manner.
 なお、本実施の形態3に係るデータ取得システム及び異常検知システムにおいては、データ取得システム及び異常検知システムは、管理システム106の一例であり、空気調和装置101は、冷凍サイクル装置の一例である。 In the data acquisition system and the abnormality detection system according to the third embodiment, the data acquisition system and the abnormality detection system are examples of the management system 106, and the air conditioner 101 is an example of a refrigeration cycle apparatus.
実施の形態4.
 本発明の実施の形態4では、上述の実施の形態1~3に係る管理システム106における、第1のデータを複数のデータ群に分類するための数値範囲、例えば分割幅の決定処理について説明する。図11は、本実施の形態4に係る管理システム106における、第1のデータを複数のデータ群に分類するための数値範囲の決定処理の例を示すフローチャートである。図11に示す処理は、図5のステップS2の処理を行う際に一度だけ行うようにしてもよいし、最適な数値範囲を決定するために、例えば、1年に1回といった頻度で定期的に行うようにしてもよい。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, determination processing of a numerical range, for example, a division width, for classifying the first data into a plurality of data groups in the management system 106 according to the first to third embodiments will be described. . FIG. 11 is a flowchart illustrating an example of a numerical range determination process for classifying the first data into a plurality of data groups in the management system 106 according to the fourth embodiment. The process shown in FIG. 11 may be performed only once when the process of step S2 of FIG. 5 is performed. In order to determine an optimal numerical range, the process is periodically performed, for example, once a year. You may make it carry out.
 図11におけるステップS21は、第1のデータを空気調和装置101から取得する工程であり、上述の実施の形態1に係る図5のステップS1及び図7のステップS11と同一の処理である。 Step S21 in FIG. 11 is a step of acquiring the first data from the air conditioning apparatus 101, and is the same processing as Step S1 in FIG. 5 and Step S11 in FIG. 7 according to the first embodiment described above.
 ステップS22は、管理システム106に送信された第1のデータを複数のデータ群に分類する工程であり、上述の実施の形態1に係る図5のステップS2及び図7のステップS12と同一の処理である。 Step S22 is a step of classifying the first data transmitted to the management system 106 into a plurality of data groups, and the same processing as step S2 in FIG. 5 and step S12 in FIG. 7 according to the first embodiment described above. It is.
 ステップS23は、記憶された複数のデータ群の中から、目標範囲となる指標データ群を選択する工程であり、上述の実施の形態1に係る図5のステップS3及び図7のステップS13と同一の処理である。 Step S23 is a step of selecting an index data group that is a target range from a plurality of stored data groups, and is the same as step S3 in FIG. 5 and step S13 in FIG. 7 according to the first embodiment described above. It is processing of.
 ステップS24においては、管理システム106内の監視装置104の制御部121は、現在の数値範囲で分類した場合の指標データ群のばらつき、すなわち分散を演算する。指標データ群のばらつきは、例えば指標データ群の標準偏差又は標準誤差とすることができる。監視装置104の制御部121は、演算部120で指標データのばらつきを演算させるようにしてもよい。 In step S24, the control unit 121 of the monitoring device 104 in the management system 106 calculates the variation, that is, the variance of the index data group when classified in the current numerical range. The variation of the index data group can be, for example, the standard deviation or standard error of the index data group. The control unit 121 of the monitoring device 104 may cause the calculation unit 120 to calculate the variation of the index data.
 ステップS25においては、監視装置104の制御部121では、ステップS24で演算した指標データのばらつきが、ばらつきの基準値よりも小さいか否かが判定される。ばらつきの基準値は、第1のデータの属性に応じて任意に決定される。例えば、第1のデータが、上述の実施の形態1の実施例1の凝縮温度Tであり、指標データのばらつきが指標データ群の標準偏差である場合、ばらつきの基準値を35±0.5℃としてもよい。 In step S25, the control unit 121 of the monitoring device 104 determines whether or not the variation of the index data calculated in step S24 is smaller than the reference value of the variation. The reference value of variation is arbitrarily determined according to the attribute of the first data. For example, when the first data is the condensation temperature T of Example 1 of the first embodiment described above and the variation of the index data is the standard deviation of the index data group, the variation reference value is set to 35 ± 0.5. It is good also as ° C.
 ステップS25において、指標データのばらつきが、ばらつきの基準値以上であると判定された場合、ステップS26において、監視装置104の制御部121は、数値範囲が小さくなるように複数のデータ群の数値範囲を変更する。数値範囲の変更は、所定の幅で行うことができる。例えば、第1のデータが、上述の実施の形態1の実施例1の凝縮温度Tである場合、数値範囲の上限値と下限値を0.05℃ずつ変更し、数値範囲を小さくすることができる。その後、ステップS22において、管理システム106に送信された第1のデータを、変更後の数値範囲ごとに複数のデータ群に分類する工程が再度行われ、ステップS25において、ステップS24で演算した指標データのばらつきが、ばらつきの基準値よりも小さいと判定されるまで、ステップS22~S26が繰り返し行われる。 When it is determined in step S25 that the variation in the index data is equal to or greater than the variation reference value, in step S26, the control unit 121 of the monitoring device 104 sets the numerical ranges of the plurality of data groups so that the numerical ranges are reduced. To change. The change of the numerical value range can be performed with a predetermined width. For example, when the first data is the condensation temperature T of Example 1 of Embodiment 1 described above, the upper limit value and lower limit value of the numerical range may be changed by 0.05 ° C. to reduce the numerical range. it can. Thereafter, in step S22, the process of classifying the first data transmitted to the management system 106 into a plurality of data groups for each changed numerical range is performed again. In step S25, the index data calculated in step S24 is performed. Steps S22 to S26 are repeatedly performed until it is determined that the variation is smaller than the variation reference value.
 ステップS25において、ステップS24で演算した指標データのばらつきが、ばらつきの基準値よりも小さいと判定された場合、ステップS27において、第1のデータを複数のデータ群に分類するための数値範囲が現在の数値範囲に決定される。 If it is determined in step S25 that the variation in the index data calculated in step S24 is smaller than the variation reference value, a numerical range for classifying the first data into a plurality of data groups is determined in step S27. The numerical range is determined.
 本実施の形態4によれば、このような決定処理を行うことによって、第1のデータの属性に応じた最適な数値範囲を動的に決定できるため、冷凍サイクル装置から取得可能な全てのデータから選択される少量のデータで、冷凍サイクル装置の異常を精度良く検知することができる。 According to the fourth embodiment, by performing such a determination process, it is possible to dynamically determine the optimum numerical range according to the attribute of the first data, and therefore all data that can be acquired from the refrigeration cycle apparatus. It is possible to detect an abnormality in the refrigeration cycle apparatus with a small amount of data selected from the above.
その他の実施の形態.
 本発明は、上記実施の形態に限らず種々の変形が可能である。例えば、上記実施の形態では、通信ネットワーク103としてインターネット回線を例に挙げたが、通信ネットワーク103としてLAN又はWANを用いることもできる。
Other embodiments.
The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, an Internet line is used as an example of the communication network 103, but a LAN or WAN may be used as the communication network 103.
 また、上述の実施の形態2では、数値範囲を指標データのばらつき、例えば、標準偏差に応じて変更し、最適な数値範囲を決定することとしたが、数値範囲を第1のデータの発生率、すなわち発生頻度に応じて変更し、最適な数値範囲を決定するようにしてもよい。 In the second embodiment described above, the numerical value range is changed according to the variation of the index data, for example, the standard deviation, and the optimal numerical value range is determined. That is, the optimum numerical range may be determined by changing the frequency according to the occurrence frequency.
 また、上記実施の形態では、冷凍サイクル装置として空気調和装置101を例に挙げたが、本発明は、給湯装置、冷凍機、冷蔵庫、自動販売機等の他の冷凍サイクル装置にも適用できる。 In the above embodiment, the air conditioner 101 is exemplified as the refrigeration cycle apparatus. However, the present invention can be applied to other refrigeration cycle apparatuses such as a hot water supply apparatus, a refrigerator, a refrigerator, and a vending machine.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 室外送風機、11 過冷却熱交換器、14a、14b 膨張弁、15a、15b 室内熱交換器、19 アキュムレータ、20 バイパス減圧機構、21 バイパス回路、27 液配管、28 ガス配管、101 空気調和装置、102 データ送信装置、103 通信ネットワーク、104 監視装置、105 データ蓄積装置、106 管理システム、107 制御部、108 物件、120 演算部、121 制御部、122 通信部、123 表示部、140 記憶装置、141 通信部、142 記憶部、201、211 圧力センサ、202、203、204、207、208a、208b、209a、209b、210a、210b、212、213、214、220、221 温度センサ、240 電流センサ、303a、303b 利用ユニット、304 熱源ユニット、305 水冷ポンプ。 1 compressor, 2-way valve, 3 outdoor heat exchanger, 4 outdoor blower, 11 supercooling heat exchanger, 14a, 14b expansion valve, 15a, 15b indoor heat exchanger, 19 accumulator, 20 bypass depressurization mechanism, 21 bypass circuit 27 liquid piping, 28 gas piping, 101 air conditioning device, 102 data transmission device, 103 communication network, 104 monitoring device, 105 data storage device, 106 management system, 107 control unit, 108 properties, 120 calculation unit, 121 control unit , 122 communication unit, 123 display unit, 140 storage device, 141 communication unit, 142 storage unit, 201, 211 pressure sensor, 202, 203, 204, 207, 208a, 208b, 209a, 209b, 210a, 210b, 212, 213 214, 220, 2 First temperature sensor, 240 current sensor, 303a, 303b utilization unit, 304 heat source unit, 305 water cooling pumps.

Claims (21)

  1.  圧縮機と減圧装置とを備える冷凍サイクル装置に接続され、
     前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得し、
     前記第1のデータが目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得する
    制御装置を備える、
    データ取得システム。
    Connected to a refrigeration cycle apparatus comprising a compressor and a decompressor,
    Obtaining first data that is part of parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus;
    A controller that acquires, from the refrigeration cycle apparatus, second data that is another part of the parameter measured in the refrigeration cycle apparatus when the first data is in a target range;
    Data acquisition system.
  2.  前記冷凍サイクル装置に通信ネットワークを介して接続される、
    請求項1に記載のデータ取得システム。
    Connected to the refrigeration cycle apparatus via a communication network,
    The data acquisition system according to claim 1.
  3.  前記第1のデータ及び前記第2のデータは、前記冷凍サイクル装置における環境のパラメータ又は前記冷凍サイクル装置の運転状態のパラメータを含む、
    請求項1又は2に記載のデータ取得システム。
    The first data and the second data include environmental parameters in the refrigeration cycle apparatus or operating state parameters of the refrigeration cycle apparatus,
    The data acquisition system according to claim 1 or 2.
  4.  前記環境のパラメータは、圧力のパラメータ又は温度のパラメータを含む、
    請求項3に記載のデータ取得システム。
    The environmental parameters include pressure parameters or temperature parameters.
    The data acquisition system according to claim 3.
  5.  前記温度のパラメータは、凝縮温度、蒸発温度、又は過冷却度のうちの1つ以上を含む、
    請求項4に記載のデータ取得システム。
    The temperature parameter includes one or more of a condensation temperature, an evaporation temperature, or a degree of supercooling.
    The data acquisition system according to claim 4.
  6.  前記運転状態のパラメータは、前記圧縮機の運転周波数又は前記減圧装置の開度を含む、
    請求項4に記載のデータ取得システム。
    The operating state parameter includes the operating frequency of the compressor or the opening of the decompression device,
    The data acquisition system according to claim 4.
  7.  前記冷凍サイクル装置は、空冷式熱源側熱交換器と、前記空冷式熱源側熱交換器に空気を供給する熱源側送風ファンとを更に備えており、
     前記運転状態のパラメータは、前記熱源側送風ファンの回転数を含む、
    請求項4に記載のデータ取得システム。
    The refrigeration cycle apparatus further includes an air-cooled heat source side heat exchanger, and a heat source side blower fan that supplies air to the air-cooled heat source side heat exchanger,
    The parameter of the operation state includes the number of rotations of the heat source side blower fan,
    The data acquisition system according to claim 4.
  8.  前記冷凍サイクル装置は、水冷式熱源側熱交換器と、前記水冷式熱源側熱交換器に接続された水冷ポンプとを更に備えており、
     前記水冷式熱源側熱交換器及び前記水冷ポンプは、水又はブラインを循環させる水冷回路を構成し、
     前記温度のパラメータは、前記水冷式熱源側熱交換器の前記水冷回路側の流入口と流出口との間の温度差を含み、
     前記運転状態のパラメータは、前記水冷ポンプを駆動させる電流の測定値を含む、
    請求項4に記載のデータ取得システム。
    The refrigeration cycle apparatus further includes a water-cooled heat source side heat exchanger and a water-cooled pump connected to the water-cooled heat source side heat exchanger,
    The water-cooled heat source side heat exchanger and the water cooling pump constitute a water cooling circuit for circulating water or brine,
    The temperature parameter includes a temperature difference between an inlet and an outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger,
    The operating state parameter includes a measured value of a current for driving the water-cooled pump.
    The data acquisition system according to claim 4.
  9.  圧縮機と減圧装置とを備える冷凍サイクル装置に接続され、
     前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得し、
     前記第1のデータが第1の目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得し、
     前記第2のデータが第2の目標範囲にない場合に、前記冷凍サイクル装置が異常であると検知する
    制御装置を備える、
    異常検知システム。
    Connected to a refrigeration cycle apparatus comprising a compressor and a decompressor,
    Obtaining first data that is part of parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus;
    When the first data is in the first target range, second data that is another part of the parameter measured in the refrigeration cycle apparatus is acquired from the refrigeration cycle apparatus,
    A control device that detects that the refrigeration cycle apparatus is abnormal when the second data is not in the second target range;
    Anomaly detection system.
  10.  前記冷凍サイクル装置に通信ネットワークを介して接続される、
    請求項9に記載の異常検知システム。
    Connected to the refrigeration cycle apparatus via a communication network,
    The abnormality detection system according to claim 9.
  11.  前記冷凍サイクル装置から取得された前記第2のデータを、第3のデータとして記憶するデータ蓄積装置を更に備え、
     制御装置は、前記データ蓄積装置に記憶された前記第3のデータから、前記第2の目標範囲を決定する、
    請求項9又は10に記載の異常検知システム。
    A data storage device for storing the second data acquired from the refrigeration cycle device as third data;
    The control device determines the second target range from the third data stored in the data storage device.
    The abnormality detection system according to claim 9 or 10.
  12.  前記第1のデータは、凝縮温度を含み、
     前記第1の目標範囲は、前記冷凍サイクル装置における前記凝縮温度の許容範囲であり、
     前記第2のデータは、過冷却度を含み、
     前記第2の目標範囲は、前記凝縮温度における過冷却度の許容範囲であり、
     前記冷凍サイクル装置の異常は、前記冷凍サイクル装置からの冷媒漏れを含む、
    請求項9又は10に記載の異常検知システム。
    The first data includes a condensation temperature;
    The first target range is an allowable range of the condensation temperature in the refrigeration cycle apparatus,
    The second data includes a degree of supercooling,
    The second target range is an allowable range of the degree of supercooling at the condensation temperature,
    The abnormality of the refrigeration cycle apparatus includes refrigerant leakage from the refrigeration cycle apparatus,
    The abnormality detection system according to claim 9 or 10.
  13.  前記第1のデータは、前記冷凍サイクル装置における制御量を含み、
     前記第1の目標範囲は、前記制御量の目標値であり、
     前記第2のデータは、前記目標値に前記第1のデータを調整する操作量を含み、
     前記第2の目標範囲は、前記目標値に前記第1のデータを調整するのに用いられる通常の操作量である、
    請求項9又は10に記載の異常検知システム。
    The first data includes a control amount in the refrigeration cycle apparatus,
    The first target range is a target value of the control amount,
    The second data includes an operation amount for adjusting the first data to the target value,
    The second target range is a normal operation amount used to adjust the first data to the target value.
    The abnormality detection system according to claim 9 or 10.
  14.  前記制御量は、凝縮温度を含み、
     前記操作量は、前記圧縮機の運転周波数を含み、
     前記冷凍サイクル装置の異常は、前記圧縮機の性能低下を含む、
    請求項13に記載の異常検知システム。
    The controlled variable includes a condensation temperature,
    The operation amount includes an operating frequency of the compressor,
    The abnormality of the refrigeration cycle apparatus includes a decrease in performance of the compressor.
    The abnormality detection system according to claim 13.
  15.  前記制御量は、過冷却度を含み、
     前記操作量は、前記減圧装置の開度を含み、
     前記冷凍サイクル装置の異常は、前記減圧装置の詰まりを含むものである、
    請求項13に記載の異常検知システム。
    The control amount includes the degree of supercooling,
    The manipulated variable includes the opening of the decompression device,
    The abnormality of the refrigeration cycle device includes clogging of the decompression device,
    The abnormality detection system according to claim 13.
  16.  前記冷凍サイクル装置は、空冷式熱源側熱交換器と、前記空冷式熱源側熱交換器に空気を供給する熱源側送風ファンとを更に備えており、
     前記制御量は、蒸発温度を含み、
     前記操作量は、前記熱源側送風ファンの回転数を含み、
     前記冷凍サイクル装置の異常は、前記熱源側送風ファンの性能低下を含む、
     請求項13に記載の異常検知システム。
    The refrigeration cycle apparatus further includes an air-cooled heat source side heat exchanger, and a heat source side blower fan that supplies air to the air-cooled heat source side heat exchanger,
    The control amount includes an evaporation temperature,
    The operation amount includes the number of rotations of the heat source side fan.
    The abnormality of the refrigeration cycle apparatus includes a decrease in performance of the heat source side fan.
    The abnormality detection system according to claim 13.
  17.  前記冷凍サイクル装置は、水冷式熱源側熱交換器と、前記水冷式熱源側熱交換器に接続された水冷ポンプとを更に備えており、
     前記水冷式熱源側熱交換器及び前記水冷ポンプは、水又はブラインを循環させる水冷回路を構成し、
     前記制御量は、前記水冷式熱源側熱交換器の前記水冷回路側の流入口と流出口との間の温度差を含み、
     前記操作量は、前記水冷ポンプを駆動させる電流の測定値を含み、
     前記冷凍サイクル装置の異常は、前記水冷回路の詰まりを含むものである、
    請求項13に記載の異常検知システム。
    The refrigeration cycle apparatus further includes a water-cooled heat source side heat exchanger and a water-cooled pump connected to the water-cooled heat source side heat exchanger,
    The water-cooled heat source side heat exchanger and the water cooling pump constitute a water cooling circuit for circulating water or brine,
    The control amount includes a temperature difference between an inlet and an outlet on the water cooling circuit side of the water-cooled heat source side heat exchanger,
    The manipulated variable includes a measured value of a current that drives the water-cooled pump,
    The abnormality of the refrigeration cycle apparatus includes clogging of the water cooling circuit,
    The abnormality detection system according to claim 13.
  18.  圧縮機と減圧装置とを備える冷凍サイクル回路と、
     前記冷凍サイクル回路において測定されるパラメータの一部である第1のデータを前記冷凍サイクル回路から取得し、前記第1のデータが第1の目標範囲にある場合に、前記冷凍サイクル回路において測定されるパラメータの他の一部である第2のデータを前記冷凍サイクル回路から取得する制御装置と
    を備える、
    冷凍サイクル装置。
    A refrigeration cycle circuit comprising a compressor and a decompression device;
    First data, which is a part of parameters measured in the refrigeration cycle circuit, is acquired from the refrigeration cycle circuit, and measured in the refrigeration cycle circuit when the first data is in a first target range. A controller that obtains second data, which is another part of the parameter, from the refrigeration cycle circuit,
    Refrigeration cycle equipment.
  19.  前記制御装置は、前記第2のデータが第2の目標範囲にない場合に、前記冷凍サイクル回路が異常であると検知する、
    請求項18に記載の冷凍サイクル装置。
    The control device detects that the refrigeration cycle circuit is abnormal when the second data is not in the second target range.
    The refrigeration cycle apparatus according to claim 18.
  20.  圧縮機と減圧装置とを備える冷凍サイクル装置において測定されるパラメータを取得する、データ取得システムのデータ取得方法であって、
     前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得する工程と、
     前記第1のデータが目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得する工程と
    を有する、
    データ取得方法。
    A data acquisition method of a data acquisition system for acquiring parameters measured in a refrigeration cycle apparatus including a compressor and a decompression device,
    Obtaining first data that is part of the parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus;
    Obtaining, from the refrigeration cycle apparatus, second data that is another part of the parameters measured in the refrigeration cycle apparatus when the first data is in a target range,
    Data acquisition method.
  21.  圧縮機と減圧装置とを備える冷凍サイクル装置の異常を検知する、異常検知システムの異常検知方法であって、
     前記冷凍サイクル装置において測定されるパラメータの一部である第1のデータを、前記冷凍サイクル装置から取得する工程と、
     前記第1のデータが第1の目標範囲にある場合に、前記冷凍サイクル装置において測定されるパラメータの他の一部である第2のデータを、前記冷凍サイクル装置から取得する工程と、
     前記第2のデータが第2の目標範囲にない場合に、前記冷凍サイクル装置が異常であると検知する工程と
    を有する、
    異常検知方法。
    An abnormality detection method of an abnormality detection system for detecting an abnormality in a refrigeration cycle apparatus including a compressor and a decompression device,
    Obtaining first data that is part of the parameters measured in the refrigeration cycle apparatus from the refrigeration cycle apparatus;
    Acquiring from the refrigeration cycle apparatus second data that is another part of the parameter measured in the refrigeration cycle apparatus when the first data is in a first target range;
    Detecting that the refrigeration cycle apparatus is abnormal when the second data is not in the second target range,
    Anomaly detection method.
PCT/JP2015/073612 2015-08-21 2015-08-21 Data acquisition system, abnormality detection system, refrigeration cycle device, data acquisition method, and abnormality detection method WO2017033240A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/073612 WO2017033240A1 (en) 2015-08-21 2015-08-21 Data acquisition system, abnormality detection system, refrigeration cycle device, data acquisition method, and abnormality detection method
JP2017536081A JP6641376B2 (en) 2015-08-21 2015-08-21 Abnormality detection system, refrigeration cycle device, and abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073612 WO2017033240A1 (en) 2015-08-21 2015-08-21 Data acquisition system, abnormality detection system, refrigeration cycle device, data acquisition method, and abnormality detection method

Publications (1)

Publication Number Publication Date
WO2017033240A1 true WO2017033240A1 (en) 2017-03-02

Family

ID=58100218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073612 WO2017033240A1 (en) 2015-08-21 2015-08-21 Data acquisition system, abnormality detection system, refrigeration cycle device, data acquisition method, and abnormality detection method

Country Status (2)

Country Link
JP (1) JP6641376B2 (en)
WO (1) WO2017033240A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143817A (en) * 2018-02-15 2019-08-29 日本ピーマック株式会社 Management device and management program of built-in air-conditioning system
WO2020115935A1 (en) * 2018-12-06 2020-06-11 三菱電機株式会社 Air conditioning system
JP2021025726A (en) * 2019-08-07 2021-02-22 シャープ株式会社 Refrigerant leakage detection system
EP4166873A4 (en) * 2020-06-10 2023-07-19 Mitsubishi Electric Corporation Refrigeration cycle device
US11936489B2 (en) 2021-02-02 2024-03-19 True Manufacturing Co., Inc. Systems, methods, and appliances that enable regional control of refrigeration appliances

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159893A (en) * 2013-02-19 2014-09-04 Mitsubishi Electric Corp Air conditioner
JP2014231975A (en) * 2013-05-30 2014-12-11 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396286B2 (en) * 2004-01-21 2010-01-13 三菱電機株式会社 Device diagnostic device and device monitoring system
JP4864110B2 (en) * 2009-03-25 2012-02-01 三菱電機株式会社 Refrigeration air conditioner
JP6095155B2 (en) * 2012-12-27 2017-03-15 中野冷機株式会社 Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP6373475B2 (en) * 2015-02-27 2018-08-15 三菱電機株式会社 Refrigerant amount abnormality detection device and refrigeration device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159893A (en) * 2013-02-19 2014-09-04 Mitsubishi Electric Corp Air conditioner
JP2014231975A (en) * 2013-05-30 2014-12-11 三菱電機株式会社 Refrigeration cycle device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143817A (en) * 2018-02-15 2019-08-29 日本ピーマック株式会社 Management device and management program of built-in air-conditioning system
JP7072398B2 (en) 2018-02-15 2022-05-20 日本ピーマック株式会社 Integrated air conditioner management equipment and management program
WO2020115935A1 (en) * 2018-12-06 2020-06-11 三菱電機株式会社 Air conditioning system
JP2020091079A (en) * 2018-12-06 2020-06-11 三菱電機株式会社 Air conditioning system
JP7257782B2 (en) 2018-12-06 2023-04-14 三菱電機株式会社 air conditioning system
JP2021025726A (en) * 2019-08-07 2021-02-22 シャープ株式会社 Refrigerant leakage detection system
JP7417378B2 (en) 2019-08-07 2024-01-18 シャープ株式会社 Refrigerant leak detection system and refrigerant leak detection method
EP4166873A4 (en) * 2020-06-10 2023-07-19 Mitsubishi Electric Corporation Refrigeration cycle device
US11936489B2 (en) 2021-02-02 2024-03-19 True Manufacturing Co., Inc. Systems, methods, and appliances that enable regional control of refrigeration appliances

Also Published As

Publication number Publication date
JPWO2017033240A1 (en) 2018-04-12
JP6641376B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6257801B2 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detection system
US8484990B2 (en) Optimization of air cooled chiller system operation
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
US8660702B2 (en) Central cooling and circulation energy management control system
US10401068B2 (en) Air cooled chiller with heat recovery
JP6641376B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
US9696073B2 (en) Fault detection and diagnostic system for a refrigeration circuit
US20120103005A1 (en) Screw chiller economizer system
WO2016174734A1 (en) Monitoring device and method for air conditioner
WO2015140994A1 (en) Heat source side unit and air conditioner
JP2011163729A (en) Cooling device
JP2016114299A (en) Air conditioner
US20240053077A1 (en) Systems and methods for humidity control in an air conditioning system
JP6678785B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
JP6636193B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
JP6636192B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
WO2018179366A1 (en) Refrigeration cycle system and communication traffic adjustment method
WO2021006184A1 (en) Water quantity adjustment device
JP7233568B2 (en) Air conditioning system and its control method
EP3978828B1 (en) Refrigeration cycle device
KR20180097041A (en) Chiller
KR101266098B1 (en) Air conditioner and method for controlling the same
KR100911220B1 (en) Air conditioning system for communication equipment and controlling method thereof
KR101859038B1 (en) Air conditioner and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902211

Country of ref document: EP

Kind code of ref document: A1