WO2018179366A1 - Refrigeration cycle system and communication traffic adjustment method - Google Patents

Refrigeration cycle system and communication traffic adjustment method Download PDF

Info

Publication number
WO2018179366A1
WO2018179366A1 PCT/JP2017/013688 JP2017013688W WO2018179366A1 WO 2018179366 A1 WO2018179366 A1 WO 2018179366A1 JP 2017013688 W JP2017013688 W JP 2017013688W WO 2018179366 A1 WO2018179366 A1 WO 2018179366A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration cycle
data
data collection
priority
unit
Prior art date
Application number
PCT/JP2017/013688
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 村松
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019508135A priority Critical patent/JP6719651B2/en
Priority to DE112017007372.3T priority patent/DE112017007372B4/en
Priority to PCT/JP2017/013688 priority patent/WO2018179366A1/en
Publication of WO2018179366A1 publication Critical patent/WO2018179366A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving

Definitions

  • the present invention relates to a refrigeration cycle system and a communication traffic adjustment method in the refrigeration cycle system, and the refrigeration cycle system includes a controller that monitors a plurality of refrigeration cycle apparatuses.
  • an air conditioning system includes an air conditioner composed of an outdoor unit and an indoor unit, and a controller that collects operation information of the air conditioner through communication.
  • a controller can communicate with a plurality of air conditioners and collects operation information of the plurality of air conditioners periodically. And the controller can monitor the driving
  • the communication interval at which the controller transmits the data request is adjusted in consideration of the maximum number of air conditioners that can be connected. There are things that prevent an increase in communication traffic.
  • Patent Document 1 discloses a traffic reduction method for monitoring communication traffic and adjusting the entire data request interval according to the communication status.
  • the data request interval for transmitting a data request from the controller to each air conditioner is adjusted according to the maximum number of air conditioners that can be connected to the air conditioning system as in the past. It becomes the length. Further, even if the data request interval is adjusted according to the communication traffic of the air conditioning system as in the traffic reduction method of Patent Document 1, the data request intervals for a plurality of air conditioners are uniform, and the communication traffic is As it becomes larger, the data request interval becomes longer uniformly.
  • the air conditioner data collected by the controller has a uniform interval regardless of the change in the operation data of each air conditioner, and it becomes a data value with an interval in time, In any air conditioner, the accuracy of monitoring of the operating state may be reduced.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle system and a communication traffic adjustment method capable of maintaining the accuracy of operation state monitoring suitable for the operation state of each refrigeration cycle apparatus.
  • the purpose is to do.
  • a refrigeration cycle system is a refrigeration cycle system including a plurality of refrigeration cycle apparatuses each having a refrigeration cycle in which a refrigerant circulates by a compressor, and a controller connected to be able to communicate with the plurality of refrigeration cycle apparatuses.
  • the controller collects operation data from each of the plurality of refrigeration cycle devices, and prioritizes data collection of the plurality of refrigeration cycle devices based on the operation data collected by the data collection unit.
  • a data determination unit that performs a priority determination process for individually determining the degree, and among the plurality of the refrigeration cycle apparatuses, the data collection interval is set to a short period for the refrigeration cycle apparatus having a high priority determined by the data determination unit
  • Data collection interval for refrigeration cycle devices with low priority A data collection interval setting unit that sets a long cycle, and the data collection unit operates data from each refrigeration cycle device based on the data collection interval set for each refrigeration cycle device by the data collection interval setting unit. Is to collect.
  • the communication traffic adjustment method includes a plurality of refrigeration cycle apparatuses each having a refrigeration cycle in which refrigerant is circulated by a compressor, and a controller connected to the plurality of refrigeration cycle apparatuses in a communicable manner.
  • a communication traffic adjustment method in a cycle system wherein the controller collects operation data from each of a plurality of the refrigeration cycle apparatuses, and the controller adds the operation data collected by the data collection step to the operation data.
  • a data determination step for performing priority determination processing for individually determining the priority of data collection of the plurality of refrigeration cycle apparatuses, and the controller determined by the data determination step among the plurality of refrigeration cycle apparatuses.
  • the high priority frozen rhino A data collection interval setting step for setting the data collection interval to a short cycle for the data collection device, and a data collection interval setting step for setting the data collection interval to a long cycle for the refrigeration cycle device having a low priority. Operation data is collected from each refrigeration cycle device based on the data collection interval set for each refrigeration cycle device in the data collection interval setting step.
  • the data collection interval is individually set according to the operation data of each refrigeration cycle apparatus. Therefore, the controller acquires operation data in a short cycle from a refrigeration cycle apparatus with a large change in operation data among a plurality of refrigeration cycle apparatuses constituting the refrigeration cycle system, and from a refrigeration cycle apparatus with a small change in operation data. Operation data can be acquired in a long cycle. Therefore, the refrigeration cycle system and the communication traffic adjustment method can ensure the accuracy of operation state monitoring according to the operation state of each refrigeration cycle apparatus, and can suppress an increase in communication traffic of the entire system.
  • the refrigeration cycle system is configured by communicably connecting a plurality of refrigeration cycle apparatuses each having a refrigeration cycle and a controller that collects and manages operation data of the refrigeration cycle apparatus.
  • the refrigeration cycle system is, for example, an air conditioning system including an air conditioner as a refrigeration cycle apparatus, or a low temperature system including a refrigeration apparatus as a refrigeration cycle apparatus.
  • FIG. 1 is a schematic diagram showing a functional configuration of an air conditioning system according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a refrigerant circuit of the air conditioner according to Embodiment 1 of the present invention.
  • the air conditioning system 1 includes a plurality of air conditioners 10 ⁇ / b> A, 10 ⁇ / b> B, 10 ⁇ / b> C, 10 ⁇ / b> D, and 10 ⁇ / b> E (hereinafter referred to as an air conditioner 10 when there is no need to distinguish between them) and a controller 50.
  • the air conditioner 10 heats or cools the air conditioning target space, for example.
  • the air conditioner 10A will be described, and the description of the air conditioner 10B, the air conditioner 10C, the air conditioner 10D, and the air conditioner 10E is omitted because it has the same configuration as the air conditioner 10A.
  • the air conditioner 10A includes an outdoor unit 20 and a plurality of indoor units 30a, 30b, and 30c (hereinafter, referred to as an indoor unit 30 when there is no need to distinguish between them). And the outdoor unit 20 and the some indoor unit 30 are connected by the refrigerant
  • the solid line arrows represent the refrigerant flow during heating, and the broken line arrows represent the refrigerant flow during cooling.
  • the outdoor unit 20 is installed outdoors, for example, and has a function of supplying cold or warm heat to the indoor unit 30.
  • the outdoor unit 20 includes a compressor 25, a flow path switching device 26, an outdoor unit heat exchanger 27, and an accumulator 29 that are connected by refrigerant piping.
  • the outdoor unit 20 includes an outdoor unit blower 28.
  • the compressor 25 compresses the refrigerant flowing in through the accumulator 29 and discharges it as a high-temperature and high-pressure gas refrigerant.
  • the compressor 25 can be composed of, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor.
  • the compressor 25 is composed of an inverter compressor capable of capacity control.
  • the accumulator 29 is provided on the suction side of the compressor 25 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, excess refrigerant due to a transient change in operation, or excess refrigerant generated due to load conditions. is there.
  • the transitional change in operation refers to, for example, a case where the number of operating indoor units 30 changes.
  • the accumulator 29 separates the liquid refrigerant and the gas refrigerant and supplies the gas refrigerant to the compressor 25.
  • the flow path switching device 26 is provided on the discharge side of the compressor 25, and switches the refrigerant flow between the cooling operation and the heating operation.
  • the flow path switching device 26 can be constituted by, for example, a two-way valve or a combination of three-way valves, or a four-way valve.
  • the flow path switching device 26 connects the discharge side of the compressor 25 and the outdoor unit heat exchanger 27, and the refrigerant discharged from the compressor 25 is sent to the outdoor unit heat exchanger 27.
  • the flow path switching device 26 connects the discharge side of the compressor 25 and the refrigerant pipe 14, and the refrigerant discharged from the compressor 25 is sent to the indoor unit 30.
  • the air conditioner 10A is a cooling dedicated machine or a heating dedicated machine, it is not necessary to provide the flow path switching device 26.
  • the outdoor unit heat exchanger 27 performs heat exchange between a heat exchange fluid such as air supplied from the outdoor unit blower 28 and the refrigerant, and acts as an evaporator during heating operation, and a condenser during cooling operation.
  • a heat exchange fluid such as air supplied from the outdoor unit blower 28 and the refrigerant
  • Acts as The outdoor unit heat exchanger 27 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or It can be composed of a plate heat exchanger or the like.
  • the outdoor unit blower 28 supplies air to the outdoor unit heat exchanger 27, and includes, for example, a propeller fan having a plurality of blades.
  • the outdoor unit blower 28 is driven by a fan motor, and the fan rotation speed is controlled by an inverter connected to the fan motor.
  • the outdoor unit 20 includes an outdoor control device 21 that controls the operation of the air conditioner 10A.
  • the outdoor control device 21 may be configured by hardware such as a circuit device, or may be configured by an arithmetic device such as a microcomputer or a CPU (Central Processing Unit) and software executed by the arithmetic device. Good.
  • the outdoor control device 21 controls the operation of each actuator based on inputs from a plurality of sensors installed in the air conditioner 10A and a remote controller operated by the user.
  • the plurality of sensors are, for example, a discharge temperature sensor 62, indoor temperature sensors 61a, 61b, and 61c (hereinafter referred to as indoor temperature sensor 61 when there is no particular need to distinguish), an indoor humidity sensor (not shown), and the like.
  • the discharge temperature sensor 62 is provided on the discharge side of the compressor 25 and detects the discharge temperature of the refrigerant.
  • the indoor temperature sensor 61 and the indoor humidity sensor are installed in the indoor unit 30 or the air conditioning target space, and detect the temperature or humidity of the air conditioning target space, respectively.
  • the actuator is, for example, the compressor 25 of the outdoor unit 20, the flow path switching device 26 and the outdoor unit blower 28, and the throttle device and indoor unit blower of the indoor unit 30 described later.
  • the outdoor unit 20 is connected to the controller 50 via the communication line 2 so that the outdoor control device 21 and the controller 50 can communicate with each other.
  • the outdoor control device 21 includes an outdoor unit communication unit 22 and an outdoor unit data holding unit 23.
  • the outdoor unit communication unit 22 communicates with the controller 50, the indoor unit 30, and the like, and the outdoor unit data holding unit 23 holds operation data of the controlled air conditioner 10.
  • the operation data of the outdoor unit 20 includes detection information of various sensors installed in the outdoor unit 20 and control information of the actuator. For example, the compressor frequency of the compressor 25, the discharge temperature, the cooling capacity, the outdoor unit blower 28 Fan frequency, operation time, power consumption, special control status, etc.
  • the outdoor unit 20 and the controller 50 may be connected so as to communicate wirelessly.
  • the indoor unit 30 is installed indoors or the like, for example, and has a function of cooling or heating the air-conditioning target space by cold heat or heat supplied from the outdoor unit 20.
  • the indoor units 30a, 30b, and 30c include indoor unit heat exchangers 35a, 35b, and 35c, expansion devices 37a, 37b, and 37c, and indoor unit blowers 36a, 36b, and 36c.
  • the indoor unit 30a will be described, and the indoor unit 30b and the indoor unit 30c will not be described because they have the same configuration as the indoor unit 30a.
  • the indoor unit heat exchanger 35a functions as a condenser during heating operation, and functions as an evaporator during cooling operation.
  • the indoor unit heat exchanger 35a performs heat exchange between a heat exchange fluid such as air supplied from the indoor unit blower 36a and the refrigerant, and generates heating air or cooling air to be supplied to the air-conditioning target space.
  • the indoor unit heat exchanger 35a is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or It can be composed of a plate heat exchanger or the like.
  • the indoor unit blower 36a supplies air to the indoor unit heat exchanger 35a.
  • the indoor unit blower 36a can be constituted by, for example, a propeller fan having a plurality of blades.
  • the expansion device 37a expands and decompresses the refrigerant that has passed through the indoor unit heat exchanger 35a or the outdoor unit heat exchanger 27.
  • the expansion device 37a is provided between the outdoor unit heat exchanger 27 and the indoor unit heat exchanger 35a.
  • the expansion device 37a may be configured by an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • the expansion device 37a may be configured by a mechanical expansion valve employing a diaphragm as a pressure receiving unit, a capillary tube, or the like.
  • the indoor unit 30 includes indoor control devices 31a, 31b, and 31c (hereinafter, referred to as the indoor control device 31 when there is no need to distinguish between them) that are communicably connected to the outdoor control device 21.
  • the indoor control device 31 controls the operation of the indoor unit 30 based on a signal from the outdoor control device 21 and transmits operation information and the like to the outdoor control device 21.
  • the indoor units 30a, 30b, and 30c include indoor unit communication units 32a, 32b, and 32c and indoor unit data holding units 33a, 33b, and 33c.
  • the indoor unit communication unit 32 communicates with the controller 50, the outdoor unit 20, and the like, and the indoor unit data holding unit 33 holds operation data of the indoor unit 30.
  • the operation data of the indoor unit 30 is, for example, detection information of various sensors provided in the indoor unit 30 and control information of the actuator to be controlled, and includes, for example, indoor temperature, indoor humidity, set temperature, air volume, blowout temperature, and the like. .
  • the controller 50 monitors the state of the plurality of air conditioners 10 and collects operation data from the plurality of air conditioners 10 connected via the communication line 2 by communication.
  • the operation data collected by the controller 50 is used, for example, by an administrator to confirm the operation state of the air conditioner 10, or sent to a maintenance company via a network and used for maintenance of the air conditioner 10.
  • the controller 50 includes a communication unit 51, a data collection unit 52, a data determination unit 53, a data collection interval setting unit 54, and the like.
  • the controller 50 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit).
  • the communication unit 51 of the controller 50 communicates with each of the plurality of air conditioners 10, and the data collection unit 52 collects and stores operation data from each of the plurality of air conditioners 10. Specifically, when collecting the operation data, the data collection unit 52 sends a data request that requests the air conditioner 10 to be monitored to transmit the retained operation data. The data collection unit 52 stores the collected operation data in association with each air conditioner 10.
  • the data determination unit 53 performs priority determination processing based on the operation data collected by the data collection unit 52.
  • the priority determination process refers to determining data collection priorities individually for a plurality of air conditioners 10.
  • the data collection interval setting unit 54 sets a cycle for transmitting a data request to the air conditioner 10 for each air conditioner 10 based on the priority determined for each air conditioner 10 by the data determination unit 53.
  • the data collection interval setting unit 54 stores in advance a correspondence table as shown in Table 1 in which the priority order is associated with the data collection interval.
  • the data collection interval setting unit 54 refers to the correspondence table when setting the data collection interval of each air conditioner 10 and extracts the data collection interval corresponding to the priority determined by the data determination unit 53.
  • the controller 50 includes an input / output unit 55 configured by a touch panel display or the like.
  • the administrator can operate the input / output unit 55 to cause the controller 50 to execute specific processing. For example, specific information can be specified and displayed on the screen.
  • the controller 50 can communicate with a plurality of air conditioners 10 at the same time.
  • the air conditioner 10 sends the operation data held therein. respond. That is, the data request transmitted from the controller 50 to the plurality of air conditioners 10, the operation data transmitted from each air conditioner 10 in response to the data request, and the like pass through the communication line 2. Therefore, the communication traffic of the entire air conditioning system 1 is determined by the data collection interval.
  • the operation of the air conditioner 10 is controlled based on inputs from a plurality of sensors and a remote controller.
  • the air conditioner 10 holds operation data
  • the operation data of the outdoor unit 20 is held in the outdoor unit data holding unit 23
  • the operation data of the indoor unit 30 is held in the indoor unit data holding unit 33.
  • the air conditioner 10 starts operation in a room where the temperature has risen during cooling, for example, the room temperature needs to be greatly lowered, so the compressor frequency becomes high.
  • the operation load of the air conditioner 10 becomes a high state, and the change of the operation data including the indoor temperature becomes large.
  • the compressor 25 stops operation because there is no need to lower the temperature. Alternatively, the operation is continued at a low frequency. Thus, in the state where the air conditioning load is low, the operation data including the room temperature also changes little.
  • the controller 50 causes the air conditioner 10 having a large operation load among the plurality of air conditioners 10 connected to the controller 50 in a short cycle because of the relationship between the magnitude of the change in the operation data and the operation load. It is configured to acquire data and to ensure the accuracy of operation status monitoring. In addition, the controller 50 acquires data from the air conditioner 10 having a small operation load in a long cycle, and suppresses an increase in communication traffic of the entire air conditioning system 1.
  • FIG. 3 is a sequence diagram showing air-conditioning monitoring control performed by the controller according to Embodiment 1 of the present invention.
  • FIG. 4 is an explanatory diagram showing changes in settings before and after adjustment of communication traffic according to Embodiment 1 of the present invention. 3 and 4 show an example in which the controller 50 determines the operating load of the air conditioner 10 based on the compressor frequency.
  • the air conditioners 10A to 10E are assigned device numbers 1 to 5 in order.
  • the compressor frequency for operating the compressor 25 among the plurality of air conditioners 10 connected to the air conditioning system 1 is the highest at 100 A for the air conditioner 10A.
  • the air conditioner 10B has a compressor frequency of 50 Hz
  • the air conditioner 10C, the air conditioner 10D, and the air conditioner 10E have a compressor frequency of 20 Hz.
  • the controller 50 performs air-conditioning monitoring control shown in FIG. 3 in order to monitor the operation state of the plurality of air-conditioners 10 connected thereto.
  • the data collection unit 52 sends a data request to each air conditioner 10 with the data collection interval set to an initial value of 5 minutes (step ST101). And the data collection part 52 will preserve
  • the data determination unit 53 prioritizes the next data collection for each air conditioner 10 based on the collected operation data, that is, performs a priority determination process (step ST103).
  • the priority order is determined by two conditions, condition Y and condition Z.
  • Condition Y takes precedence over condition Z.
  • Condition Y increases the priority in order of increasing compressor frequency.
  • Condition Z increases the priority in ascending order of the device number.
  • the priorities of the data collection intervals are the air conditioner 10A, the air conditioner 10B, the air conditioner 10C, the air conditioner 10D, and the air conditioner 10E in descending order of priority. That is, as shown in FIG. 4, the air conditioner 10A having the highest compressor frequency among the plurality of air conditioners 10 has a priority of 1, and has the highest equipment number among the air conditioners 10C, 10D, and 10E having the lowest compressor frequency.
  • the priority of the air conditioner 10E having a small value is 5.
  • the data collection interval setting unit 54 individually sets a cycle for sending a data request to each air conditioner 10 according to the priority order of each air conditioner 10 determined by the data determination unit 53 (step ST104). .
  • the data collection interval setting unit 54 may set the data collection interval with reference to a correspondence table as shown in Table 1.
  • the relationship between the priority order and the data collection interval may be stored in any format, and may be stored as an expression instead of the table format, for example.
  • step ST105 determines whether or not to continue the collection of operation data. For example, when the air-conditioning monitoring operation is continued according to the input command or setting, the controller 50 determines that data collection will continue (step ST105: YES), and the data collection unit 52 proceeds to step ST104. Data collection of operation data is continued at the set data collection interval (step ST101). On the other hand, when the air conditioning monitoring operation ends for any reason, the controller 50 ends the air conditioning monitoring control (step ST105: NO).
  • the controller 50 collects the operation data of the air conditioner 10 based on the data collection interval set individually for each air conditioner 10.
  • the commands transmitted for 10 minutes before and after the data collection interval is changed.
  • the total number is 10T in all cases, and communication traffic is maintained.
  • the total number of commands may be set to be constant in advance based on, for example, the communication capability of the communication environment used between the controller 50 and the air conditioner 10. According to such a configuration, it is possible to change the monitoring accuracy of each air conditioner 10 within the range of the communication traffic while maintaining the entire communication traffic.
  • the controller 50 can acquire the operation data of the air conditioner 10A having a large operation load and a large change in operation data in a short cycle, and ensures the accuracy of monitoring the operation state of the air conditioner 10A. be able to. Also, the entire communication traffic is maintained. In addition, the air conditioners 10C, 10D, and 10E with a small operation load have little change in operation data even before the change, and thus the accuracy of operation state monitoring is not impaired.
  • the operation load of the air conditioner 10 is determined based on the compressor frequency.
  • priority determination processing may be performed based on operation data different from the compressor frequency.
  • the data determination unit 53 may determine the priority based on operation data such as power consumption or the fan frequency of the outdoor unit blower 28. In this case, since the fan frequency or power consumption tends to increase when the operation load is large, similarly to the compressor frequency, the data determination unit 53 has a large fan frequency or power consumption among the plurality of air conditioners 10.
  • the air conditioner 10 may be configured to set a higher priority.
  • a parameter calculated from the collected operation data may be used.
  • the operating frequency of the compressor 25 is controlled according to the temperature difference between the room temperature and the set temperature, and therefore, the temperature difference may be used instead of the compressor frequency as the determination condition.
  • the data determination unit 53 may calculate the temperature difference based on the room temperature and the set temperature in the collected operation data, and increase the priority in descending order of the calculated temperature difference.
  • FIG. 5 is a circuit diagram showing another example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the controller 50 is communicably connected to the plurality of refrigeration apparatuses 110 via the communication line 2.
  • the refrigerator 120 and the utilization unit 130 are connected by a refrigerant pipe 114 and a refrigerant pipe 115 to constitute a refrigeration cycle.
  • the usage unit 130 is configured by, for example, a showcase or a unit cooler.
  • the refrigerator 120 includes a compressor 125, an outdoor unit heat exchanger 127, an outdoor unit blower 128, a discharge temperature sensor 162, an outdoor control device, and the like, and corresponds to the outdoor unit 20 described above.
  • the use units 130a, 130b, and 130c include indoor unit heat exchangers 135a, 135b, and 135c, indoor unit blowers 136a, 136b, and 136c, indoor temperature sensors 161a, 161b, and 161c, an indoor control device, and the like. It corresponds to 30a, 30b, 30c.
  • the indoor unit heat exchangers 135a, 135b, and 135c function as an evaporator.
  • the controller 50 can collect driving
  • the refrigeration cycle system (for example, the air conditioning system 1) includes a plurality of refrigeration cycle apparatuses (for example, the air conditioners 10A, 10B, 10A, and 10B) each having a refrigeration cycle in which refrigerant is circulated by the compressor 25. 10C, 10D, 10E) and a refrigeration cycle system including a controller 50 that is communicably connected to a plurality of refrigeration cycle apparatuses, the controller 50 collects data for collecting operation data from each of the plurality of refrigeration cycle apparatuses.
  • a plurality of refrigeration cycle apparatuses for example, the air conditioners 10A, 10B, 10A, and 10B
  • the controller 50 collects data for collecting operation data from each of the plurality of refrigeration cycle apparatuses.
  • the refrigeration cycle apparatus having a high priority determined by the data determination unit 53
  • the data collection interval is set to a short cycle
  • the refrigeration cycle devices having low priority for example, the air conditioners 10C, 10D, 10E
  • the data collection interval is set to the long cycle.
  • the data collection unit 52 collects operation data from each refrigeration cycle apparatus based on the data collection interval set for each refrigeration cycle apparatus by the data collection interval setting unit 54.
  • the refrigeration cycle system (for example, the air conditioning system 1) sets the data collection interval individually according to the operation state of each refrigeration cycle apparatus (for example, the air conditioners 10A, 10B, 10C, 10D, and 10E).
  • the accuracy of condition monitoring can be adjusted.
  • the data collection interval is set according to the priority determined based on the operation data, for example, from the refrigeration cycle apparatus (for example, the air conditioner 10A) that needs to frequently acquire the operation data.
  • the operation data is collected frequently, and the accuracy of the operation state monitoring is improved.
  • the administrator can quickly find an abnormality from the information displayed on the input / output unit 55 and deal with it.
  • the frequency of data collection is reduced, and the refrigeration cycle system can suppress an increase in communication traffic as a whole.
  • the operation data includes the compressor frequency of the compressor 25, and the data determination unit 53 performs priority determination processing based on the compressor frequency, and the refrigeration cycle apparatus (for example, the air conditioner 10A) having a higher compressor frequency. Increase priority.
  • the controller 50 can collect data so that the monitoring accuracy suitable for the operation state of each air conditioner 10 is obtained. it can.
  • the operation data includes power consumption
  • the data determination unit 53 performs priority determination processing based on the power consumption, and increases the priority of the refrigeration cycle apparatus (for example, the air conditioner 10A) with higher power consumption.
  • the controller 50 can collect data so that it becomes the monitoring accuracy suitable for the operation state of each air conditioner 10 using the tendency that power consumption becomes high when the change of operation data is large. .
  • the plurality of refrigeration cycle apparatuses (air conditioners 10) further includes an outdoor unit heat exchanger 27 that exchanges heat with the refrigerant, and an outdoor unit blower 28 that supplies air to the outdoor unit heat exchanger 27.
  • the operation data includes the fan frequency of the outdoor unit blower 28, and the data determination unit 53 performs priority determination processing based on the fan frequency, and the refrigeration cycle apparatus (for example, the air conditioner 10A) having a higher fan frequency has a higher priority. To increase.
  • the controller 50 can collect data so that the monitoring accuracy is suitable for the operation state of each air conditioner 10. .
  • the data collection interval setting unit 54 determines the priority so that the total number of commands (for example, 10T) transmitted when the data collection unit 52 collects the operation data is constant before and after the data collection interval is set. Has a table in which data collection intervals are associated.
  • the controller 50 can further suppress changes in the overall communication traffic. Therefore, the controller 50 can monitor the operation state with monitoring accuracy suitable for the operation state of each air conditioner 10 in the communication traffic while maintaining the communication traffic.
  • the refrigeration cycle apparatus is an air conditioner 10.
  • the air conditioning system 1 including the plurality of air conditioners 10 it is possible to ensure the accuracy of operation state monitoring according to the operation state of each air conditioner 10 and to suppress an increase in communication traffic of the entire system. .
  • a stop period due to a malfunction of the air conditioner 10 can be reduced.
  • the refrigeration cycle apparatus is the refrigeration apparatus 110.
  • the accuracy of operation state monitoring can be ensured according to the operation state of each refrigeration apparatus 110, and an increase in communication traffic of the entire system can be suppressed.
  • the monitoring accuracy of the refrigeration apparatus 110 it is possible to prevent, for example, the quality of a product or the like stored in the use unit 130 from being impaired.
  • the communication traffic adjustment method includes a plurality of refrigeration cycle apparatuses (for example, air conditioners 10) each having a refrigeration cycle in which refrigerant is circulated by the compressor 25, and a controller 50 that is communicably connected to the plurality of refrigeration cycle apparatuses.
  • Data collection step step ST101 in which the controller 50 collects operation data from each of the plurality of refrigeration cycle apparatuses (air conditioners 10).
  • a data determination step in which the controller 50 performs priority determination processing for individually determining the priority of data collection of the plurality of refrigeration cycle apparatuses (air conditioners 10) based on the operation data collected in the data collection step ( Step ST103) and the controller 50 Among the refrigeration cycle apparatuses (air conditioners 10), the refrigeration cycle apparatus (for example, the air conditioner 10A) having a high priority determined in the data judgment step is set to a short cycle and the refrigeration having a low priority is set.
  • the cycle device includes a data collection interval setting step (step ST104) for setting the data collection interval to a long period, and the data collection step (step ST101) is performed by each refrigeration cycle device by the data collection interval setting step (step ST104).
  • the operation data is collected from each refrigeration cycle apparatus based on the data collection interval set for.
  • the communication traffic adjustment method can ensure the accuracy of the operation state monitoring according to the operation state of each refrigeration cycle apparatus (for example, the air conditioners 10A, 10B, 10C, 10D, and 10E) and the entire communication. Increase in traffic can be suppressed.
  • each refrigeration cycle apparatus for example, the air conditioners 10A, 10B, 10C, 10D, and 10E
  • Embodiment 2 the special control state is included in the determination condition for prioritizing the data collection interval.
  • the same reference numerals are given to the configurations and the description thereof will be omitted, and different configurations will be described below.
  • FIG. 6 is a schematic diagram showing a functional configuration of the air conditioning system according to Embodiment 2 of the present invention.
  • the air conditioning system 201 includes a plurality of air conditioners 10A, 10B, 10C, 10D, and 10E, and a controller 250, as in the first embodiment.
  • the controller 250 has a function of performing special control such as energy saving control on each air conditioner 10.
  • control such as changing the set temperature or controlling the compressor frequency is performed so as to reduce power consumption.
  • frequent operation state monitoring is required for the controller 250 to check the execution status of the control. Therefore, it is necessary to collect data of the air conditioners 10C and 10D during execution of special control (in this case, energy saving control) as short as possible.
  • each air conditioner 10 is different from that in the first embodiment.
  • the air conditioner 10A, the air conditioner 10C, and the air conditioner 10E Before the communication traffic is adjusted, among the plurality of air conditioners 10 connected to the air conditioning system 201, the air conditioner 10A, the air conditioner 10C, and the air conditioner 10E have a compressor frequency of 60 Hz for operating the compressor 25.
  • the compressor frequency of the air conditioner 10D is 30 Hz
  • the compressor frequency of the air conditioner 10B is 20 Hz.
  • the air conditioner 10C and the air conditioner 10D are performing energy saving control
  • the other air conditioners 10A, 10B, and 10E are not performing energy saving control.
  • FIG. 7 is a sequence diagram showing air-conditioning monitoring control performed by the controller according to Embodiment 2 of the present invention.
  • FIG. 8 is an explanatory diagram showing changes in settings before and after adjustment of communication traffic according to Embodiment 2 of the present invention. 7 and 8 show a case where the controller 250 sets the priority of data collection according to the compressor frequency of the air conditioner 10, the execution state of the special control, and the like.
  • the controller 250 performs the air-conditioning monitoring control shown in FIG. 7 and monitors the operating states of the plurality of connected air conditioners 10.
  • the data collection unit 252 sends a data request to each air conditioner 10 with the data collection interval set to 5 minutes as an initial value (step ST201). And the data collection part 252 will preserve
  • the data determination unit 253 performs prioritization of the next data collection, that is, priority determination processing (step ST203).
  • the priority order is determined by three conditions of condition X, condition Y, and condition Z.
  • Condition X has priority over condition Y
  • condition Y has priority over condition Z.
  • Condition X increases the priority of the air conditioner that is executing the energy saving control.
  • Condition Y increases the priority in order of increasing compressor frequency.
  • Condition Z increases the priority in ascending order of the device number.
  • the priorities of the data collection intervals are, in descending order of priority, the air conditioner 10C, the air conditioner 10D, the air conditioner 10A, the air conditioner 10E, and the air conditioner 10B. That is, as shown in FIG. 8, the priority order of the air conditioners 10C and 10D performing the energy saving control is the highest, and the priority order of the air conditioner 10C having the higher compressor frequency is 1.
  • the air conditioners 10A, 10B, and 10E that are not performing energy saving control, the air conditioner 10A and the air conditioner 10E having the same compressor frequency have a higher priority in the air conditioner 10A having a smaller device number. Become. Further, the air conditioner 10B that does not perform the energy saving control and has the lowest compressor frequency has a priority of 5.
  • the data collection interval setting unit 254 individually sets a cycle for sending a data request to each air conditioner 10 according to the priority order of each air conditioner 10 determined by the data determination unit 253 (step ST204). .
  • the data collection interval setting unit 254 may set the data collection interval with reference to the correspondence table as shown in Table 1.
  • the relationship between the priority order and the data collection interval may be stored in any format, and may be stored as an expression instead of the table format.
  • step ST205 determines whether or not to continue the collection of operation data. For example, when the air-conditioning monitoring operation is continued, controller 250 determines that data collection will continue (step ST205: YES), and data collection unit 252 operates data at the data collection interval set in step ST204. Data collection is continued (step ST201). On the other hand, if the air conditioning monitoring operation is terminated for any reason, the controller 250 ends the air conditioning monitoring control (step ST205: NO).
  • the controller 250 collects the operation data of the air conditioner 10 based on the data collection interval set individually for each air conditioner 10.
  • the controller 250 can perform special control such as energy saving control for suppressing the power consumption of the air conditioner 10.
  • special control the load on the air conditioner is intentionally adjusted, so frequent monitoring of the operating condition is required. Due to the above-described operation of the air conditioning system 201, energy saving control is being performed, frequent operation state monitoring is required, and the operation data of the air conditioner 10C having a large compressor frequency and a large change in operation data can be acquired in a short cycle. become.
  • the energy saving control is being performed and frequent operation state monitoring is necessary, for the air conditioner 10D having a low compressor frequency and a small change in operation data, data is collected without any change in the data collection interval.
  • air conditioners that do not perform special control have a lower priority for data collection than air conditioners that perform special control (air conditioners 10C and 10D).
  • the collection interval becomes longer.
  • the communication traffic adjustment method described above can be applied not only to the air conditioning system 201 that collects operation data from a plurality of air conditioners 10, but also to, for example, a low-temperature system that collects operation data from a plurality of refrigeration apparatuses 110. it can.
  • the refrigeration cycle system for example, the air conditioning system 201
  • the communication traffic adjustment method have the same effects as those in the first embodiment.
  • the operation data includes special control information indicating whether or not the special control different from the control of the normal operation is performed, and the data determination unit 253 determines the priority based on the special control information. Perform decision processing.
  • the controller 250 is the air conditioner (for example, the air conditioners 10C and 10D) performing the special control that needs to acquire the operation data at a high frequency.
  • the air conditioner for example, the air conditioners 10C and 10D
  • data acquisition can be performed in a short cycle. Accordingly, even during special control, the refrigeration cycle system (air conditioning system 201) can optimally ensure the accuracy of monitoring the operating state of each refrigeration cycle apparatus (air conditioner 10) and maintain communication traffic. Can do.
  • the operation data further includes special control information indicating whether or not special control different from normal operation control is being performed, and the data determination unit 253 performs the special control when performing the priority determination process.
  • the priority of the refrigeration cycle apparatus for example, air conditioners 10C and 10D
  • the priority of the other refrigeration cycle apparatuses for example, air conditioners 10A, 10B, and 10E.
  • the data determination unit 253 can perform priority determination processing by combining a plurality of superior and inferior determination conditions (for example, the conditions X, Y, and Z), and particularly improve the accuracy of monitoring for a desired driving state. Can do. Further, for example, when a condition Y prioritized after the condition X is applied to a refrigeration cycle apparatus (for example, the air conditioners 10C and 10D) whose priority is set to be equal to the condition X, these refrigeration cycles are applied. A difference can be provided in the priority of the devices (air conditioners 10C and 10D). As a result, the refrigeration cycle system (air conditioning system 201) can ensure the accuracy of operation state monitoring more suitable for the operation state of each refrigeration cycle apparatus (air conditioner 10) and can maintain communication traffic.
  • a condition Y prioritized after the condition X is applied to a refrigeration cycle apparatus (for example, the air conditioners 10C and 10D) whose priority is set to be equal to the condition X
  • the refrigeration cycle system air conditioning system 201 can ensure the accuracy of operation state monitoring more suitable for the
  • the operation data further includes information on device numbers that specify each of the plurality of refrigeration cycle apparatuses (air conditioners 10), and the data determination unit 253 includes a plurality of refrigeration cycle apparatuses (for example, air conditioning units) having the same priority.
  • a priority is set higher for a refrigeration cycle apparatus (for example, air conditioner 10A) having a smaller equipment number in a plurality of refrigeration cycle apparatuses having the same priority.
  • the data judgment part 253 can give the priority of data collection to each refrigeration cycle apparatus (air conditioner 10) without duplication. Therefore, for example, when a correspondence table as shown in Table 1 is stored, the data collection interval setting unit 254 may extract the data collection interval corresponding to the determined priority order, and the processing can be simplified. .
  • FIG. 2 shows an example in which three indoor units 30 (indoor unit 30a, indoor unit 30b, and indoor unit 30c) are connected in parallel to one outdoor unit 20.
  • the number of the outdoor units 20 and the indoor units 30 and the connection method are not particularly limited thereto.
  • the data collection interval shown in Table 1 is an example, and may be set as appropriate according to the communication environment, the number of refrigeration cycle apparatuses included in the refrigeration cycle system, and the like.
  • FIG. 1 shows a case where five air conditioners 10 are connected to the controller 50.
  • the communication traffic adjustment method can be similarly applied.
  • condition X related to the special control state has been described as having priority over the condition Y related to the compressor frequency and the condition Z related to the equipment number.
  • the priority of each condition is the operation for which monitoring is to be prioritized. What is necessary is just to set suitably according to a state.
  • the data determination unit 253 may be configured to determine the priority by combining the conditions related to the operation data such as the power consumption or the fan frequency with the conditions X and Z instead of the condition Y related to the compressor frequency. Good.
  • 1,201 air conditioning system 2 communication lines, 10 (10A, 10B, 10C, 10D, 10E) air conditioner, 14, 15 refrigerant piping, 20 outdoor unit, 21 outdoor control device, 22 outdoor unit communication unit, 23 outdoor unit data Holding unit, 25, 125 compressor, 26 flow switching device, 27, 127 outdoor unit heat exchanger, 28, 128 outdoor unit blower, 29 accumulator, 30 (30a, 30b, 30c) indoor unit, 31 (31a, 31b , 31c) Indoor control device, 32 (32a, 32b, 32c) Indoor unit communication unit, 33 (33a, 33b, 33c) Indoor unit data holding unit, 35a, 35b, 35c, 135a, 135b, 135c Indoor unit heat exchanger 36a, 36b, 36c, 136a, 136b, 136c Indoor unit blower, 37a, 37b, 37c Device, 50, 250 controller, 51 communication unit, 52,252 data collection unit, 53,253 data judgment unit, 54,254 data collection interval setting unit, 55 input / output

Abstract

This refrigeration cycle system comprises a plurality of refrigeration cycle devices each having a refrigeration cycle in which refrigerant is circulated by a compressor, and a controller that is connected with the plurality of refrigeration cycle devices so as to be able to communicate. The controller comprises: a data collection unit that collects operation data from each of the plurality of refrigeration cycle devices; a data determination unit that performs priority determination processing to individually determine the priority for data collection from the plurality of refrigeration cycle devices on the basis of the operation data collected by the data collection unit; and a data collection interval setting unit that sets the data collection interval to a short cycle for the refrigeration cycle devices, from among the plurality of refrigeration cycle devices, with a high priority determined by the data determination unit and to a long cycle for the refrigeration cycle devices with a low priority. The data collection unit collects operation data for each refrigeration cycle device on the basis of the data collection interval set by the data collection interval setting unit for each refrigeration cycle device.

Description

冷凍サイクルシステムおよび通信トラフィック調整方法Refrigeration cycle system and communication traffic adjustment method
 本発明は、冷凍サイクルシステム、および、冷凍サイクルシステムにおける通信トラフィック調整方法に関し、冷凍サイクルシステムは、複数の冷凍サイクル装置を監視するコントローラを備えるものである。 The present invention relates to a refrigeration cycle system and a communication traffic adjustment method in the refrigeration cycle system, and the refrigeration cycle system includes a controller that monitors a plurality of refrigeration cycle apparatuses.
 従来、冷凍サイクル装置を備えた冷凍サイクルシステムとして、例えば空調システムまたは低温システム等がある。一般に、空調システムは、室外機および室内機で構成される空調機と、空調機の運転情報を通信により収集するコントローラ等とから構成されている。このようなコントローラは、複数台の空調機と通信することができ、複数台の空調機の運転情報を定期的に収集している。そして、コントローラは、定期的に取得しているデータを確認することで、空調機の運転状態を監視することができる。 Conventionally, as a refrigeration cycle system including a refrigeration cycle apparatus, for example, there is an air conditioning system or a low temperature system. In general, an air conditioning system includes an air conditioner composed of an outdoor unit and an indoor unit, and a controller that collects operation information of the air conditioner through communication. Such a controller can communicate with a plurality of air conditioners and collects operation information of the plurality of air conditioners periodically. And the controller can monitor the driving | running state of an air conditioner by confirming the data acquired regularly.
 ところで、空調機の接続台数が多い場合には、コントローラが通信により空調機から収集するデータが接続台数に応じて増えるため、通信トラフィック(通信経路における通信の混雑度)が増大する。通信のトラフィックが増大すると、空調機を監視するコントローラにおいて必要なデータの取得ができない、あるいはデータ取得が遅れる等といった状況が発生し、空調機の運転状態監視の精度を確保することが困難となる。 By the way, when the number of connected air conditioners is large, the data collected from the air conditioner by the controller through communication increases according to the number of connected air, so that the communication traffic (the degree of communication congestion in the communication path) increases. When the communication traffic increases, the controller that monitors the air conditioner cannot acquire the necessary data, or the data acquisition is delayed, and it becomes difficult to ensure the accuracy of monitoring the operating state of the air conditioner. .
 そこで、従来の空調システムにおいて、通信トラフィックの増大による通信への悪影響を生じさせないために、接続可能な最大数の空調機台数を考慮してコントローラがデータ要求を送信する通信間隔を調整することで、通信トラフィックの増大を防ぐものがある。 Therefore, in the conventional air conditioning system, in order not to adversely affect the communication due to an increase in communication traffic, the communication interval at which the controller transmits the data request is adjusted in consideration of the maximum number of air conditioners that can be connected. There are things that prevent an increase in communication traffic.
 また、特許文献1には、通信トラフィックを監視し、通信状況に応じて全体のデータ要求間隔を調整するトラフィック削減方法が開示されている。 Patent Document 1 discloses a traffic reduction method for monitoring communication traffic and adjusting the entire data request interval according to the communication status.
特開2010-19530号公報JP 2010-19530 A
 ところで、空調システムにおいて空調機の運転状態監視を行う場合、運転データの変化が大きな空調機については、監視精度を保つためには短周期でデータ取得を行う必要がある。一方で、運転データの変化が小さな空調機については、短周期でデータ取得を行っても取得したデータは同一値の連続となるため、長周期でデータ取得を行っても監視精度への影響を抑えることができる。 By the way, when monitoring the operating state of an air conditioner in an air conditioning system, it is necessary to acquire data in a short cycle in order to maintain monitoring accuracy for an air conditioner with a large change in operation data. On the other hand, for air conditioners with small changes in operating data, even if data acquisition is performed in a short cycle, the acquired data will be continuous with the same value. Can be suppressed.
 しかしながら、従来のように、コントローラから各空調機に対してデータ要求を送信するデータ要求間隔が、空調システムに接続可能な空調機の最大数に応じて調整される構成では、データ要求間隔は一定の長さとなる。また、特許文献1のトラフィック削減方法のように、データ要求間隔が空調システムの通信トラフィックに応じて調整される構成であっても、複数の空調機に対するデータ要求間隔は一律であり、通信トラフィックが大きくなるとデータ要求間隔は一律に長くなる。そのため、従来の空調システムにおいて、コントローラが収集する空調機のデータは、各空調機の運転データの変化の大小にかかわらず間隔が一律であり、時間的に間隔の空いたデータ値となるため、どの空調機についても運転状態監視の精度が低下する場合があった。 However, in the configuration in which the data request interval for transmitting a data request from the controller to each air conditioner is adjusted according to the maximum number of air conditioners that can be connected to the air conditioning system as in the past, the data request interval is constant. It becomes the length. Further, even if the data request interval is adjusted according to the communication traffic of the air conditioning system as in the traffic reduction method of Patent Document 1, the data request intervals for a plurality of air conditioners are uniform, and the communication traffic is As it becomes larger, the data request interval becomes longer uniformly. Therefore, in the conventional air conditioning system, the air conditioner data collected by the controller has a uniform interval regardless of the change in the operation data of each air conditioner, and it becomes a data value with an interval in time, In any air conditioner, the accuracy of monitoring of the operating state may be reduced.
 本発明は、上記のような課題を解決するためになされたもので、各冷凍サイクル装置の運転状態に適した運転状態監視の精度を保つことができる、冷凍サイクルシステムおよび通信トラフィック調整方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a refrigeration cycle system and a communication traffic adjustment method capable of maintaining the accuracy of operation state monitoring suitable for the operation state of each refrigeration cycle apparatus. The purpose is to do.
 本発明に係る冷凍サイクルシステムは、圧縮機により冷媒が循環する冷凍サイクルをそれぞれ有する複数の冷凍サイクル装置と、複数の前記冷凍サイクル装置と通信可能に接続されたコントローラとを備えた冷凍サイクルシステムにおいて、前記コントローラは、複数の前記冷凍サイクル装置のそれぞれから運転データを収集するデータ収集部と、前記データ収集部により収集された前記運転データに基づいて、複数の前記冷凍サイクル装置のデータ収集の優先度を個別に決定する優先度決定処理を行うデータ判断部と、複数の前記冷凍サイクル装置のうち、前記データ判断部により決定された前記優先度が高い冷凍サイクル装置についてはデータ収集間隔を短周期に設定し、前記優先度が低い冷凍サイクル装置についてはデータ収集間隔を長周期に設定するデータ収集間隔設定部と、を備え、前記データ収集部は、前記データ収集間隔設定部により各冷凍サイクル装置について設定された前記データ収集間隔に基づき、各冷凍サイクル装置から運転データを収集するものである。 A refrigeration cycle system according to the present invention is a refrigeration cycle system including a plurality of refrigeration cycle apparatuses each having a refrigeration cycle in which a refrigerant circulates by a compressor, and a controller connected to be able to communicate with the plurality of refrigeration cycle apparatuses. The controller collects operation data from each of the plurality of refrigeration cycle devices, and prioritizes data collection of the plurality of refrigeration cycle devices based on the operation data collected by the data collection unit. A data determination unit that performs a priority determination process for individually determining the degree, and among the plurality of the refrigeration cycle apparatuses, the data collection interval is set to a short period for the refrigeration cycle apparatus having a high priority determined by the data determination unit Data collection interval for refrigeration cycle devices with low priority A data collection interval setting unit that sets a long cycle, and the data collection unit operates data from each refrigeration cycle device based on the data collection interval set for each refrigeration cycle device by the data collection interval setting unit. Is to collect.
 また、本発明に係る通信トラフィック調整方法は、圧縮機により冷媒が循環する冷凍サイクルをそれぞれ有する複数の冷凍サイクル装置と、複数の前記冷凍サイクル装置と通信可能に接続されたコントローラとを備えた冷凍サイクルシステムにおける通信トラフィック調整方法であって、前記コントローラが、複数の前記冷凍サイクル装置のそれぞれから運転データを収集するデータ収集ステップと、前記コントローラが、前記データ収集ステップにより収集された前記運転データに基づいて、複数の前記冷凍サイクル装置のデータ収集の優先度を個別に決定する優先度決定処理を行うデータ判断ステップと、前記コントローラが、複数の前記冷凍サイクル装置のうち、前記データ判断ステップにより決定された前記優先度が高い冷凍サイクル装置についてはデータ収集間隔を短周期に設定し、前記優先度が低い冷凍サイクル装置についてはデータ収集間隔を長周期に設定するデータ収集間隔設定ステップと、を備え、前記データ収集ステップは、前記データ収集間隔設定ステップにより各冷凍サイクル装置について設定された前記データ収集間隔に基づき、各冷凍サイクル装置から運転データを収集するものである。 The communication traffic adjustment method according to the present invention includes a plurality of refrigeration cycle apparatuses each having a refrigeration cycle in which refrigerant is circulated by a compressor, and a controller connected to the plurality of refrigeration cycle apparatuses in a communicable manner. A communication traffic adjustment method in a cycle system, wherein the controller collects operation data from each of a plurality of the refrigeration cycle apparatuses, and the controller adds the operation data collected by the data collection step to the operation data. A data determination step for performing priority determination processing for individually determining the priority of data collection of the plurality of refrigeration cycle apparatuses, and the controller determined by the data determination step among the plurality of refrigeration cycle apparatuses. The high priority frozen rhino A data collection interval setting step for setting the data collection interval to a short cycle for the data collection device, and a data collection interval setting step for setting the data collection interval to a long cycle for the refrigeration cycle device having a low priority. Operation data is collected from each refrigeration cycle device based on the data collection interval set for each refrigeration cycle device in the data collection interval setting step.
 本発明の冷凍サイクルシステムまたは通信トラフィック調整方法によれば、各冷凍サイクル装置の運転データに応じて個別にデータ収集間隔が設定される。そのため、コントローラは、冷凍サイクルシステムを構成する複数の冷凍サイクル装置のうち、運転データの変化が大きい冷凍サイクル装置からは短周期で運転データを取得し、運転データの変化が小さい冷凍サイクル装置からは長周期で運転データを取得することができる。したがって、冷凍サイクルシステムおよび通信トラフィック調整方法は、各冷凍サイクル装置の運転状態に応じて運転状態監視の精度を確保することができるとともに、システム全体の通信トラフィックの増大を抑えることができる。 According to the refrigeration cycle system or communication traffic adjustment method of the present invention, the data collection interval is individually set according to the operation data of each refrigeration cycle apparatus. Therefore, the controller acquires operation data in a short cycle from a refrigeration cycle apparatus with a large change in operation data among a plurality of refrigeration cycle apparatuses constituting the refrigeration cycle system, and from a refrigeration cycle apparatus with a small change in operation data. Operation data can be acquired in a long cycle. Therefore, the refrigeration cycle system and the communication traffic adjustment method can ensure the accuracy of operation state monitoring according to the operation state of each refrigeration cycle apparatus, and can suppress an increase in communication traffic of the entire system.
本発明の実施の形態1に係る空調システムの機能構成を示す概略図である。It is the schematic which shows the function structure of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調機の冷媒回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るコントローラが行う空調監視制御を示すシーケンス図である。It is a sequence diagram which shows the air-conditioning monitoring control which the controller which concerns on Embodiment 1 of this invention performs. 本発明の実施の形態1に係る通信トラフィックの調整の前後における設定の変化を示す説明図である。It is explanatory drawing which shows the change of the setting before and behind the adjustment of the communication traffic which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の他の一例を示す回路図である。It is a circuit diagram which shows another example of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空調システムの機能構成を示す概略図である。It is the schematic which shows the function structure of the air conditioning system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るコントローラが行う空調監視制御を示すシーケンス図である。It is a sequence diagram which shows the air-conditioning monitoring control which the controller which concerns on Embodiment 2 of this invention performs. 本発明の実施の形態2に係る通信トラフィックの調整の前後における設定の変化を示す説明図である。It is explanatory drawing which shows the change of the setting before and behind the adjustment of the communication traffic which concerns on Embodiment 2 of this invention.
 冷凍サイクルシステムは、冷凍サイクルをそれぞれ有する複数の冷凍サイクル装置と、冷凍サイクル装置の運転データを収集して管理するコントローラとを、通信可能に接続して構成される。冷凍サイクルシステムは、例えば、冷凍サイクル装置として空調機を備える空調システム、あるいは、冷凍サイクル装置として冷凍装置を備える低温システム等である。 The refrigeration cycle system is configured by communicably connecting a plurality of refrigeration cycle apparatuses each having a refrigeration cycle and a controller that collects and manages operation data of the refrigeration cycle apparatus. The refrigeration cycle system is, for example, an air conditioning system including an air conditioner as a refrigeration cycle apparatus, or a low temperature system including a refrigeration apparatus as a refrigeration cycle apparatus.
実施の形態1.
 図1および図2に基づき、空調システム1の構成について説明する。図1は、本発明の実施の形態1に係る空調システムの機能構成を示す概略図である。図2は、本発明の実施の形態1に係る空調機の冷媒回路を示す回路図である。空調システム1は、複数の空調機10A,10B,10C,10D,10E(以下、特に区別する必要がない場合には空調機10という)と、コントローラ50とを備えている。
Embodiment 1 FIG.
Based on FIG. 1 and FIG. 2, the structure of the air conditioning system 1 is demonstrated. FIG. 1 is a schematic diagram showing a functional configuration of an air conditioning system according to Embodiment 1 of the present invention. FIG. 2 is a circuit diagram showing a refrigerant circuit of the air conditioner according to Embodiment 1 of the present invention. The air conditioning system 1 includes a plurality of air conditioners 10 </ b> A, 10 </ b> B, 10 </ b> C, 10 </ b> D, and 10 </ b> E (hereinafter referred to as an air conditioner 10 when there is no need to distinguish between them) and a controller 50.
(空調機10の構成)
 空調機10は、例えば、空調対象空間を暖房または冷房するものである。以下、空調機10Aについて説明し、空調機10B、空調機10C、空調機10Dおよび空調機10Eについては、空調機10Aと同様の構成を有するものとして説明を省略する。
(Configuration of air conditioner 10)
The air conditioner 10 heats or cools the air conditioning target space, for example. Hereinafter, the air conditioner 10A will be described, and the description of the air conditioner 10B, the air conditioner 10C, the air conditioner 10D, and the air conditioner 10E is omitted because it has the same configuration as the air conditioner 10A.
 図2に示すように、空調機10Aは、室外機20と複数の室内機30a,30b,30c(以下、特に区別する必要がない場合には室内機30という)とを備える。そして、室外機20と複数の室内機30とは、冷媒配管14および冷媒配管15により接続されて冷凍サイクルを構成している。図中、実線矢印は暖房時の冷媒流れを表し、破線矢印は冷房時の冷媒流れを表している。 As shown in FIG. 2, the air conditioner 10A includes an outdoor unit 20 and a plurality of indoor units 30a, 30b, and 30c (hereinafter, referred to as an indoor unit 30 when there is no need to distinguish between them). And the outdoor unit 20 and the some indoor unit 30 are connected by the refrigerant | coolant piping 14 and the refrigerant | coolant piping 15, and comprise the refrigerating cycle. In the figure, the solid line arrows represent the refrigerant flow during heating, and the broken line arrows represent the refrigerant flow during cooling.
(室外機20の構成)
 室外機20は、例えば屋外に設置され、室内機30に冷熱または温熱を供給する機能を有する。室外機20は、冷媒配管により接続された、圧縮機25と流路切替装置26と室外機熱交換器27とアキュムレータ29とを有している。また室外機20には、室外機送風機28が搭載されている。
(Configuration of outdoor unit 20)
The outdoor unit 20 is installed outdoors, for example, and has a function of supplying cold or warm heat to the indoor unit 30. The outdoor unit 20 includes a compressor 25, a flow path switching device 26, an outdoor unit heat exchanger 27, and an accumulator 29 that are connected by refrigerant piping. The outdoor unit 20 includes an outdoor unit blower 28.
 圧縮機25は、アキュムレータ29を介して流入してきた冷媒を、圧縮して高温高圧のガス冷媒として吐出するものである。圧縮機25は、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、または往復圧縮機等で構成することができる。また圧縮機25は、容量制御可能なインバータ圧縮機で構成される。 The compressor 25 compresses the refrigerant flowing in through the accumulator 29 and discharges it as a high-temperature and high-pressure gas refrigerant. The compressor 25 can be composed of, for example, a rotary compressor, a scroll compressor, a screw compressor, or a reciprocating compressor. The compressor 25 is composed of an inverter compressor capable of capacity control.
 アキュムレータ29は、圧縮機25の吸入側に設けられ、暖房運転時と冷房運転時の違いによる余剰冷媒、過渡的な運転の変化に対する余剰冷媒、あるいは負荷条件によって発生した余剰冷媒を貯留するものである。過渡的な運転の変化とは、例えば、室内機30の運転台数が変化した場合等をいう。アキュムレータ29は液冷媒とガス冷媒とを分離し、ガス冷媒を圧縮機25に供給する。 The accumulator 29 is provided on the suction side of the compressor 25 and stores excess refrigerant due to a difference between the heating operation and the cooling operation, excess refrigerant due to a transient change in operation, or excess refrigerant generated due to load conditions. is there. The transitional change in operation refers to, for example, a case where the number of operating indoor units 30 changes. The accumulator 29 separates the liquid refrigerant and the gas refrigerant and supplies the gas refrigerant to the compressor 25.
 流路切替装置26は、圧縮機25の吐出側に設けられ、冷房運転と暖房運転とにおいて冷媒の流れを切り替えるものである。流路切替装置26は、例えば、二方弁もしくは三方弁の組み合わせ、または四方弁等で構成することができる。冷房運転時には、流路切替装置26は圧縮機25の吐出側と室外機熱交換器27とを接続し、圧縮機25から吐出された冷媒が室外機熱交換器27へ送られる。一方、暖房運転時には、流路切替装置26は圧縮機25の吐出側と冷媒配管14とを接続し、圧縮機25から吐出された冷媒が室内機30へ送られる。なお、空調機10Aが冷房専用機または暖房専用機である場合には、流路切替装置26を設ける必要はない。 The flow path switching device 26 is provided on the discharge side of the compressor 25, and switches the refrigerant flow between the cooling operation and the heating operation. The flow path switching device 26 can be constituted by, for example, a two-way valve or a combination of three-way valves, or a four-way valve. During the cooling operation, the flow path switching device 26 connects the discharge side of the compressor 25 and the outdoor unit heat exchanger 27, and the refrigerant discharged from the compressor 25 is sent to the outdoor unit heat exchanger 27. On the other hand, at the time of heating operation, the flow path switching device 26 connects the discharge side of the compressor 25 and the refrigerant pipe 14, and the refrigerant discharged from the compressor 25 is sent to the indoor unit 30. When the air conditioner 10A is a cooling dedicated machine or a heating dedicated machine, it is not necessary to provide the flow path switching device 26.
 室外機熱交換器27は、室外機送風機28から供給される空気等の熱交換流体と冷媒との間で熱交換を行なうものであり、暖房運転時には蒸発器として作用し、冷房運転時には凝縮器として作用する。室外機熱交換器27は、例えば、フィン・アンド・チューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、またはプレート熱交換器等で構成することができる。 The outdoor unit heat exchanger 27 performs heat exchange between a heat exchange fluid such as air supplied from the outdoor unit blower 28 and the refrigerant, and acts as an evaporator during heating operation, and a condenser during cooling operation. Acts as The outdoor unit heat exchanger 27 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or It can be composed of a plate heat exchanger or the like.
 室外機送風機28は、室外機熱交換器27に空気を供給するものであり、例えば複数の翼を有するプロペラファン等で構成される。室外機送風機28は、ファンモータにより駆動され、ファンモータに接続されたインバータによってファン回転数が制御されている。 The outdoor unit blower 28 supplies air to the outdoor unit heat exchanger 27, and includes, for example, a propeller fan having a plurality of blades. The outdoor unit blower 28 is driven by a fan motor, and the fan rotation speed is controlled by an inverter connected to the fan motor.
 また室外機20は、空調機10Aの運転を制御する室外制御装置21を備えている。室外制御装置21は、回路デバイスのようなハードウェアで構成してもよく、あるいは、マイコンまたはCPU(Central Processing Unit)のような演算装置と、演算装置で実行されるソフトウェアとにより構成してもよい。室外制御装置21は、空調機10Aに設置された複数のセンサおよび利用者が操作するリモコン等からの入力に基づき、各アクチュエータの動作を制御している。複数のセンサは、例えば、吐出温度センサ62、室内温度センサ61a,61b,61c(以下、特に区別する必要がない場合には室内温度センサ61という)、および、図示しない室内湿度センサ等である。吐出温度センサ62は、圧縮機25の吐出側に設けられ、冷媒の吐出温度を検出する。室内温度センサ61および室内湿度センサは、室内機30または空調対象空間に設置され、それぞれ、空調対象空間の温度または湿度を検出する。また、アクチュエータとは、例えば、室外機20の圧縮機25、流路切替装置26および室外機送風機28、並びに、後述する室内機30の絞り装置および室内機送風機等である。 The outdoor unit 20 includes an outdoor control device 21 that controls the operation of the air conditioner 10A. The outdoor control device 21 may be configured by hardware such as a circuit device, or may be configured by an arithmetic device such as a microcomputer or a CPU (Central Processing Unit) and software executed by the arithmetic device. Good. The outdoor control device 21 controls the operation of each actuator based on inputs from a plurality of sensors installed in the air conditioner 10A and a remote controller operated by the user. The plurality of sensors are, for example, a discharge temperature sensor 62, indoor temperature sensors 61a, 61b, and 61c (hereinafter referred to as indoor temperature sensor 61 when there is no particular need to distinguish), an indoor humidity sensor (not shown), and the like. The discharge temperature sensor 62 is provided on the discharge side of the compressor 25 and detects the discharge temperature of the refrigerant. The indoor temperature sensor 61 and the indoor humidity sensor are installed in the indoor unit 30 or the air conditioning target space, and detect the temperature or humidity of the air conditioning target space, respectively. The actuator is, for example, the compressor 25 of the outdoor unit 20, the flow path switching device 26 and the outdoor unit blower 28, and the throttle device and indoor unit blower of the indoor unit 30 described later.
 室外機20は、コントローラ50に通信線2を介して接続され、室外制御装置21とコントローラ50とは、相互に通信できる構成となっている。室外制御装置21は、室外機通信部22と室外機データ保持部23とを有している。室外機通信部22は、コントローラ50および室内機30等と通信を行い、室外機データ保持部23は、制御している空調機10の運転データを保持する。室外機20の運転データは、室外機20に設置された各種センサの検出情報およびアクチュエータの制御情報等であり、例えば、圧縮機25の圧縮機周波数、吐出温度、冷房能力、室外機送風機28のファン周波数、運転時間、消費電力および特殊制御状態等である。なお、室外機20とコントローラ50とは無線で通信するように接続されていてもよい。 The outdoor unit 20 is connected to the controller 50 via the communication line 2 so that the outdoor control device 21 and the controller 50 can communicate with each other. The outdoor control device 21 includes an outdoor unit communication unit 22 and an outdoor unit data holding unit 23. The outdoor unit communication unit 22 communicates with the controller 50, the indoor unit 30, and the like, and the outdoor unit data holding unit 23 holds operation data of the controlled air conditioner 10. The operation data of the outdoor unit 20 includes detection information of various sensors installed in the outdoor unit 20 and control information of the actuator. For example, the compressor frequency of the compressor 25, the discharge temperature, the cooling capacity, the outdoor unit blower 28 Fan frequency, operation time, power consumption, special control status, etc. The outdoor unit 20 and the controller 50 may be connected so as to communicate wirelessly.
(室内機30の構成)
 室内機30は、例えば屋内等に設置され、室外機20から供給される冷熱または温熱により、空調対象空間を冷房または暖房する機能を有する。室内機30a,30b,30cは、室内機熱交換器35a,35b,35c、絞り装置37a,37b,37c、および室内機送風機36a,36b,36cを備えている。以下、室内機30aについて説明し、室内機30bおよび室内機30cは室内機30aと同様の構成を有するものとして説明を省略する。
(Configuration of indoor unit 30)
The indoor unit 30 is installed indoors or the like, for example, and has a function of cooling or heating the air-conditioning target space by cold heat or heat supplied from the outdoor unit 20. The indoor units 30a, 30b, and 30c include indoor unit heat exchangers 35a, 35b, and 35c, expansion devices 37a, 37b, and 37c, and indoor unit blowers 36a, 36b, and 36c. Hereinafter, the indoor unit 30a will be described, and the indoor unit 30b and the indoor unit 30c will not be described because they have the same configuration as the indoor unit 30a.
 室内機熱交換器35aは、暖房運転時には凝縮器として作用し、冷房運転時には蒸発器として作用するものである。室内機熱交換器35aは、室内機送風機36aから供給される空気等の熱交換流体と冷媒との間で熱交換を行ない、空調対象空間に供給する暖房用空気あるいは冷房用空気を生成する。室内機熱交換器35aは、例えば、フィン・アンド・チューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、またはプレート熱交換器等で構成することができる。 The indoor unit heat exchanger 35a functions as a condenser during heating operation, and functions as an evaporator during cooling operation. The indoor unit heat exchanger 35a performs heat exchange between a heat exchange fluid such as air supplied from the indoor unit blower 36a and the refrigerant, and generates heating air or cooling air to be supplied to the air-conditioning target space. The indoor unit heat exchanger 35a is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, or It can be composed of a plate heat exchanger or the like.
 室内機送風機36aは、室内機熱交換器35aに空気を供給するものである。室内機送風機36aは、例えば、複数の翼を有するプロペラファンで構成することができる。 The indoor unit blower 36a supplies air to the indoor unit heat exchanger 35a. The indoor unit blower 36a can be constituted by, for example, a propeller fan having a plurality of blades.
 絞り装置37aは、室内機熱交換器35aまたは室外機熱交換器27を経由した冷媒を膨張させて減圧するものである。絞り装置37aは、室外機熱交換器27と室内機熱交換器35aとの間に設けられている。絞り装置37aは、冷媒の流量を調整可能な電動膨張弁で構成するとよいが、例えば、受圧部にダイアフラムを採用した機械式膨張弁、またはキャピラリーチューブ等で構成してもよい。 The expansion device 37a expands and decompresses the refrigerant that has passed through the indoor unit heat exchanger 35a or the outdoor unit heat exchanger 27. The expansion device 37a is provided between the outdoor unit heat exchanger 27 and the indoor unit heat exchanger 35a. The expansion device 37a may be configured by an electric expansion valve capable of adjusting the flow rate of the refrigerant. For example, the expansion device 37a may be configured by a mechanical expansion valve employing a diaphragm as a pressure receiving unit, a capillary tube, or the like.
 また室内機30は、室外制御装置21に通信可能に接続された室内制御装置31a,31b,31c(以下、特に区別する必要がない場合には室内制御装置31という)を備える。室内制御装置31は、室外制御装置21からの信号に基づいて、室内機30の運転を制御し、運転情報等を室外制御装置21に送信する。室内機30a,30b,30cは、室内機通信部32a,32b,32cと室内機データ保持部33a,33b,33cとを有している。室内機通信部32は、コントローラ50および室外機20等と通信を行い、室内機データ保持部33は、室内機30の運転データを保持する。室内機30の運転データとは、例えば室内機30に設けられた各種センサの検出情報および制御するアクチュエータの制御情報であり、例えば、室内温度、室内湿度、設定温度、風量および吹出し温度等を含む。 Further, the indoor unit 30 includes indoor control devices 31a, 31b, and 31c (hereinafter, referred to as the indoor control device 31 when there is no need to distinguish between them) that are communicably connected to the outdoor control device 21. The indoor control device 31 controls the operation of the indoor unit 30 based on a signal from the outdoor control device 21 and transmits operation information and the like to the outdoor control device 21. The indoor units 30a, 30b, and 30c include indoor unit communication units 32a, 32b, and 32c and indoor unit data holding units 33a, 33b, and 33c. The indoor unit communication unit 32 communicates with the controller 50, the outdoor unit 20, and the like, and the indoor unit data holding unit 33 holds operation data of the indoor unit 30. The operation data of the indoor unit 30 is, for example, detection information of various sensors provided in the indoor unit 30 and control information of the actuator to be controlled, and includes, for example, indoor temperature, indoor humidity, set temperature, air volume, blowout temperature, and the like. .
(コントローラ50)
 コントローラ50は、複数の空調機10の状態を監視するものであり、通信線2を介して接続された複数の空調機10から通信により運転データを収集している。コントローラ50が収集した運転データは、例えば、管理者が空調機10の運転状態を確認するために使用される、または、ネットワークを介してメンテナンス会社に送られて空調機10の保守等に利用される。
(Controller 50)
The controller 50 monitors the state of the plurality of air conditioners 10 and collects operation data from the plurality of air conditioners 10 connected via the communication line 2 by communication. The operation data collected by the controller 50 is used, for example, by an administrator to confirm the operation state of the air conditioner 10, or sent to a maintenance company via a network and used for maintenance of the air conditioner 10. The
 コントローラ50は、通信部51とデータ収集部52とデータ判断部53とデータ収集間隔設定部54等とを有している。コントローラ50は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)およびCPU(Central Processing Unit)等で構成される。 The controller 50 includes a communication unit 51, a data collection unit 52, a data determination unit 53, a data collection interval setting unit 54, and the like. The controller 50 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central Processing Unit).
 コントローラ50の通信部51は、複数の空調機10とそれぞれ通信を行い、データ収集部52は、複数の空調機10のそれぞれから運転データを収集し、保存する。具体的には、データ収集部52は、運転データを収集するときに、監視対象となる空調機10に対し、保持している運転データを送信するように要求するデータ要求を送出する。またデータ収集部52は、収集した運転データを、各空調機10に関連づけて記憶する。 The communication unit 51 of the controller 50 communicates with each of the plurality of air conditioners 10, and the data collection unit 52 collects and stores operation data from each of the plurality of air conditioners 10. Specifically, when collecting the operation data, the data collection unit 52 sends a data request that requests the air conditioner 10 to be monitored to transmit the retained operation data. The data collection unit 52 stores the collected operation data in association with each air conditioner 10.
 データ判断部53は、データ収集部52によって収集された運転データに基づいて、優先度決定処理を行う。ここで、優先度決定処理とは、複数の空調機10についてデータ収集の優先度を個別に決定することをいう。 The data determination unit 53 performs priority determination processing based on the operation data collected by the data collection unit 52. Here, the priority determination process refers to determining data collection priorities individually for a plurality of air conditioners 10.
 データ収集間隔設定部54は、データ判断部53により各空調機10に決定された優先度に基づき、空調機10へデータ要求を送信する周期を、各空調機10について設定する。例えば、データ収集間隔設定部54は、表1に示すような、優先順位とデータ収集間隔とが関連づけられた対応テーブルを予め記憶している。 The data collection interval setting unit 54 sets a cycle for transmitting a data request to the air conditioner 10 for each air conditioner 10 based on the priority determined for each air conditioner 10 by the data determination unit 53. For example, the data collection interval setting unit 54 stores in advance a correspondence table as shown in Table 1 in which the priority order is associated with the data collection interval.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そして、データ収集間隔設定部54は、各空調機10のデータ収集間隔を設定する際に、対応テーブルを参照し、データ判断部53により決定された優先度に対応するデータ収集間隔を抽出する。 The data collection interval setting unit 54 refers to the correspondence table when setting the data collection interval of each air conditioner 10 and extracts the data collection interval corresponding to the priority determined by the data determination unit 53.
 また、コントローラ50は、タッチパネルディスプレイ等で構成される入出力部55を備えている。管理者は、入出力部55を操作してコントローラ50に特定の処理を実行させることができ、例えば、特定の情報を指定して画面に表示させることができる。 In addition, the controller 50 includes an input / output unit 55 configured by a touch panel display or the like. The administrator can operate the input / output unit 55 to cause the controller 50 to execute specific processing. For example, specific information can be specified and displayed on the screen.
 コントローラ50は、同時に複数台の空調機10と通信することができ、上記のデータ収集部52が各空調機10にデータ要求を送信すると、空調機10は保持している運転データを送出して応答する。つまり、通信線2には、コントローラ50から複数の空調機10へ送信されるデータ要求、および、データ要求に応答して各空調機10から送信される運転データ等が通る。そのため、データ収集間隔により、空調システム1全体の通信トラフィックが決まる。 The controller 50 can communicate with a plurality of air conditioners 10 at the same time. When the data collection unit 52 transmits a data request to each air conditioner 10, the air conditioner 10 sends the operation data held therein. respond. That is, the data request transmitted from the controller 50 to the plurality of air conditioners 10, the operation data transmitted from each air conditioner 10 in response to the data request, and the like pass through the communication line 2. Therefore, the communication traffic of the entire air conditioning system 1 is determined by the data collection interval.
(空調機10の動作)
 空調機10は、上記のように、複数のセンサおよびリモコン等からの入力に基づき運転が制御されている。運転中、空調機10は運転データを保持しており、室外機20の運転データは室外機データ保持部23に保持され、室内機30の運転データは室内機データ保持部33に保持される。
(Operation of the air conditioner 10)
As described above, the operation of the air conditioner 10 is controlled based on inputs from a plurality of sensors and a remote controller. During operation, the air conditioner 10 holds operation data, the operation data of the outdoor unit 20 is held in the outdoor unit data holding unit 23, and the operation data of the indoor unit 30 is held in the indoor unit data holding unit 33.
 また、例えば冷房時に、温度の上昇した室内で空調機10が運転を開始したときには、室内温度を大きく下げる必要があるため、圧縮機周波数は高くなる。このように、空調対象空間の室内温度を大きく変化させようとした場合には、空調機10の運転負荷は高い状態となり、室内温度等をはじめとした運転データの変化は大きくなる。 Also, for example, when the air conditioner 10 starts operation in a room where the temperature has risen during cooling, for example, the room temperature needs to be greatly lowered, so the compressor frequency becomes high. Thus, when it is going to change the indoor temperature of the air-conditioning object space greatly, the operation load of the air conditioner 10 becomes a high state, and the change of the operation data including the indoor temperature becomes large.
 一方、空調機10が動作を開始してからある程度時間が経過し、空調対象空間の温度が目標値に達した状態では、温度を下げる必要がないため、圧縮機25は、運転を停止する、あるいは低周波数で動作を継続する。このように空調負荷が低い状態では、室内温度をはじめとした運転データも変化が小さい。 On the other hand, since a certain amount of time has passed since the air conditioner 10 started operation and the temperature of the air-conditioning target space has reached the target value, the compressor 25 stops operation because there is no need to lower the temperature. Alternatively, the operation is continued at a low frequency. Thus, in the state where the air conditioning load is low, the operation data including the room temperature also changes little.
 運転データの変化の大小と運転負荷との上記のような関係から、実施の形態1では、コントローラ50は、接続される複数の空調機10のうち運転負荷が大きい空調機10からは短周期でデータ取得を行い、運転状態監視の精度を確保する構成となっている。またコントローラ50は、運転負荷が小さい空調機10からは長周期でデータ取得を行い、空調システム1全体の通信トラフィックの増大を抑えている。 In the first embodiment, the controller 50 causes the air conditioner 10 having a large operation load among the plurality of air conditioners 10 connected to the controller 50 in a short cycle because of the relationship between the magnitude of the change in the operation data and the operation load. It is configured to acquire data and to ensure the accuracy of operation status monitoring. In addition, the controller 50 acquires data from the air conditioner 10 having a small operation load in a long cycle, and suppresses an increase in communication traffic of the entire air conditioning system 1.
(空調監視制御)
 次に、図3および図4に基づき、空調監視制御について説明する。図3は、本発明の実施の形態1に係るコントローラが行う空調監視制御を示すシーケンス図である。図4は、本発明の実施の形態1に係る通信トラフィックの調整の前後における設定の変化を示す説明図である。図3および図4には、コントローラ50が、空調機10の運転負荷を圧縮機周波数によって判断する一例が示される。
(Air conditioning monitoring control)
Next, air conditioning monitoring control will be described based on FIGS. 3 and 4. FIG. 3 is a sequence diagram showing air-conditioning monitoring control performed by the controller according to Embodiment 1 of the present invention. FIG. 4 is an explanatory diagram showing changes in settings before and after adjustment of communication traffic according to Embodiment 1 of the present invention. 3 and 4 show an example in which the controller 50 determines the operating load of the air conditioner 10 based on the compressor frequency.
 ここで、空調機10A~10Eには、機器番号の1~5が順に割り振られているものとする。また、通信トラフィックの調整が行われる前では、空調システム1に接続されている複数の空調機10のうち、圧縮機25を運転する圧縮機周波数は、空調機10Aが100Hzと最も高い。そして、空調機10Bは圧縮機周波数が50Hzであり、空調機10C、空調機10Dおよび空調機10Eは圧縮機周波数が20Hzであるものとする。 Here, it is assumed that the air conditioners 10A to 10E are assigned device numbers 1 to 5 in order. Before the communication traffic is adjusted, the compressor frequency for operating the compressor 25 among the plurality of air conditioners 10 connected to the air conditioning system 1 is the highest at 100 A for the air conditioner 10A. The air conditioner 10B has a compressor frequency of 50 Hz, and the air conditioner 10C, the air conditioner 10D, and the air conditioner 10E have a compressor frequency of 20 Hz.
 コントローラ50は、接続されている複数の空調機10の運転状態を監視するために、図3に示される空調監視制御を実施する。空調機10に対して最初にデータ収集を行うとき、データ収集部52は、データ収集間隔を初期値の5分として、各空調機10へデータ要求を送出する(ステップST101)。そして、データ収集部52は、各空調機10から運転データを受信すると、受信した運転データを保存する(ステップST102)。 The controller 50 performs air-conditioning monitoring control shown in FIG. 3 in order to monitor the operation state of the plurality of air-conditioners 10 connected thereto. When collecting data for the air conditioner 10 for the first time, the data collection unit 52 sends a data request to each air conditioner 10 with the data collection interval set to an initial value of 5 minutes (step ST101). And the data collection part 52 will preserve | save the received operation data, if operation data is received from each air conditioner 10 (step ST102).
 次に、データ判断部53は、収集した運転データに基づき、各空調機10について次のデータ収集の優先順位づけ、すなわち優先度決定処理を行う(ステップST103)。優先順位は、条件Yおよび条件Zの2つの条件によって決定される。条件Yは条件Zに優先する。
 条件Yは、圧縮機周波数が高い順に優先度を高くする。
 条件Zは、機器番号が小さい順に優先度を高くする。
Next, the data determination unit 53 prioritizes the next data collection for each air conditioner 10 based on the collected operation data, that is, performs a priority determination process (step ST103). The priority order is determined by two conditions, condition Y and condition Z. Condition Y takes precedence over condition Z.
Condition Y increases the priority in order of increasing compressor frequency.
Condition Z increases the priority in ascending order of the device number.
 そして、優先度決定処理の結果、データ収集間隔の優先順位づけは、優先度が高いものから順に、空調機10A、空調機10B、空調機10C、空調機10D、空調機10Eとなる。つまり、図4に示すように、複数の空調機10のうち圧縮機周波数が最も大きい空調機10Aは優先順位が1となり、圧縮機周波数が最も低い空調機10C、10D、10Eのうち最も機器番号が小さい空調機10Eは優先順位が5となる。 As a result of the priority determination process, the priorities of the data collection intervals are the air conditioner 10A, the air conditioner 10B, the air conditioner 10C, the air conditioner 10D, and the air conditioner 10E in descending order of priority. That is, as shown in FIG. 4, the air conditioner 10A having the highest compressor frequency among the plurality of air conditioners 10 has a priority of 1, and has the highest equipment number among the air conditioners 10C, 10D, and 10E having the lowest compressor frequency. The priority of the air conditioner 10E having a small value is 5.
 次に、データ収集間隔設定部54は、データ判断部53により決定された各空調機10の優先順位に応じて、各空調機10へデータ要求を送出する周期を個別に設定する(ステップST104)。このとき、データ収集間隔設定部54は、表1に示すような対応テーブルを参照して、データ収集間隔を設定してもよい。なお、優先順位とデータ収集間隔との関係は、どのような形式で記憶されていてもよく、テーブル形式のかわりに例えば式として記憶されていてもよい。 Next, the data collection interval setting unit 54 individually sets a cycle for sending a data request to each air conditioner 10 according to the priority order of each air conditioner 10 determined by the data determination unit 53 (step ST104). . At this time, the data collection interval setting unit 54 may set the data collection interval with reference to a correspondence table as shown in Table 1. The relationship between the priority order and the data collection interval may be stored in any format, and may be stored as an expression instead of the table format, for example.
 次に、コントローラ50は、運転データのデータ収集を継続するか否かを判断する(ステップST105)。例えば、入力された指令または設定等により空調監視動作が継続されている場合に、コントローラ50は、引き続きデータ収集を行なうと判断し(ステップST105:YES)、データ収集部52は、ステップST104にて設定されたデータ収集間隔で運転データのデータ収集を継続する(ステップST101)。一方、何等かの理由で空調監視動作が終了する場合には、コントローラ50は空調監視制御を終了する(ステップST105:NO)。 Next, the controller 50 determines whether or not to continue the collection of operation data (step ST105). For example, when the air-conditioning monitoring operation is continued according to the input command or setting, the controller 50 determines that data collection will continue (step ST105: YES), and the data collection unit 52 proceeds to step ST104. Data collection of operation data is continued at the set data collection interval (step ST101). On the other hand, when the air conditioning monitoring operation ends for any reason, the controller 50 ends the air conditioning monitoring control (step ST105: NO).
 図4に示すように、優先順位が1と決定された空調機10Aは、上記のような処理によりデータ収集間隔が5分周期から2分周期に変更される。また、優先順位が2と決定された空調機10Bは、データ収集間隔が5分周期から変更されず、また優先順位が3~5に決定された空調機10C,10D,10Eは、データ収集間隔が5分周期から10分周期に変更される。コントローラ50は、このように、各空調機10について個別に設定されたデータ収集間隔に基づき、空調機10の運転データの収集を行うことになる。 As shown in FIG. 4, in the air conditioner 10A whose priority is determined to be 1, the data collection interval is changed from the 5-minute period to the 2-minute period by the process as described above. In addition, the air conditioner 10B whose priority is determined to be 2 has the data collection interval unchanged from the 5-minute period, and the air conditioners 10C, 10D, and 10E whose priorities are determined to be 3 to 5 are the data collection intervals. Is changed from a 5-minute period to a 10-minute period. As described above, the controller 50 collects the operation data of the air conditioner 10 based on the data collection interval set individually for each air conditioner 10.
 ところで、コントローラ50が各空調機10に対して1回のデータ収集で送信するコマンド数がT個とすると、図4では、データ収集間隔の変更前と変更後において、10分間に送信するコマンドの総数はいずれも10T個であり、通信トラフィックは維持されている。コマンドの総数は、例えば、コントローラ50と空調機10との間で使用する通信環境の通信能力等に基づき、予め一定となるように設定してもよい。このような構成によれば、全体の通信トラフィックを維持しつつ、その通信トラフィックの範囲において各空調機10の監視精度を互いに変化させることができる。 By the way, assuming that the number of commands that the controller 50 transmits to each air conditioner 10 in one data collection is T, in FIG. 4, the commands transmitted for 10 minutes before and after the data collection interval is changed. The total number is 10T in all cases, and communication traffic is maintained. The total number of commands may be set to be constant in advance based on, for example, the communication capability of the communication environment used between the controller 50 and the air conditioner 10. According to such a configuration, it is possible to change the monitoring accuracy of each air conditioner 10 within the range of the communication traffic while maintaining the entire communication traffic.
 以上のように、コントローラ50は、運転負荷が大きく運転データの変化が大きい空調機10Aの運転データは短周期で取得することができるようになり、空調機10Aの運転状態監視の精度を確保することができる。また、全体の通信トラフィックは維持される。なお、運転負荷が小さい空調機10C,10D,10Eは、変更前においても運転データの変化が小さいため、運転状態監視の精度は損なわれていない。 As described above, the controller 50 can acquire the operation data of the air conditioner 10A having a large operation load and a large change in operation data in a short cycle, and ensures the accuracy of monitoring the operation state of the air conditioner 10A. be able to. Also, the entire communication traffic is maintained. In addition, the air conditioners 10C, 10D, and 10E with a small operation load have little change in operation data even before the change, and thus the accuracy of operation state monitoring is not impaired.
 なお、実施の形態1では、空調機10の運転負荷が圧縮機周波数で判断される場合について説明したが、圧縮機周波数とは別の運転データに基づいて優先度決定処理がされてもよい。例えば、データ判断部53は、消費電力、または、室外機送風機28のファン周波数等といった運転データで優先度を判断してもよい。この場合、ファン周波数または消費電力は、圧縮機周波数と同様に、運転負荷が大きいときに大きくなる傾向にあるため、データ判断部53は、複数の空調機10のうちファン周波数または消費電力が大きな空調機10については優先度を高く設定するように構成されるとよい。 In the first embodiment, the case where the operation load of the air conditioner 10 is determined based on the compressor frequency has been described. However, priority determination processing may be performed based on operation data different from the compressor frequency. For example, the data determination unit 53 may determine the priority based on operation data such as power consumption or the fan frequency of the outdoor unit blower 28. In this case, since the fan frequency or power consumption tends to increase when the operation load is large, similarly to the compressor frequency, the data determination unit 53 has a large fan frequency or power consumption among the plurality of air conditioners 10. The air conditioner 10 may be configured to set a higher priority.
 また、優先度決定処理の判定条件として、取得した運転データを直接用いる以外に、例えば、収集した運転データから算出されたパラメータを使用してもよい。一般に、空調機10では室内温度と設定温度との温度差等に応じて圧縮機25の運転周波数が制御されるため、判定条件として圧縮機周波数の代わりに温度差を用いてもよい。この場合、データ判断部53は、収集した運転データのうち室内温度と設定温度とにより温度差を算出し、算出した温度差が大きい順に優先度を高くすればよい。 In addition to directly using the acquired operation data as a determination condition for the priority determination process, for example, a parameter calculated from the collected operation data may be used. Generally, in the air conditioner 10, the operating frequency of the compressor 25 is controlled according to the temperature difference between the room temperature and the set temperature, and therefore, the temperature difference may be used instead of the compressor frequency as the determination condition. In this case, the data determination unit 53 may calculate the temperature difference based on the room temperature and the set temperature in the collected operation data, and increase the priority in descending order of the calculated temperature difference.
 また、これまで、複数の空調機10からのデータ収集について説明したが、上述した通信トラフィック調整方法は、上記の空調システム1以外にも適用することができる。 In addition, the data collection from the plurality of air conditioners 10 has been described so far, but the communication traffic adjustment method described above can be applied to other than the air conditioning system 1 described above.
 図5は、本発明の実施の形態1に係る冷凍サイクル装置の他の一例を示す回路図である。ここで、コントローラ50は、通信線2を介して複数の冷凍装置110とそれぞれ通信可能に接続されている。図5に示すように、各冷凍装置110において、冷凍機120と利用ユニット130とが、冷媒配管114および冷媒配管115により接続されて冷凍サイクルを構成している。利用ユニット130は、例えば、ショーケースまたはユニットクーラー等で構成される。冷凍機120は、圧縮機125、室外機熱交換器127、室外機送風機128、吐出温度センサ162および室外制御装置等を備え、上記の室外機20に相当する。なお、冷凍機120では、流路切替装置26およびアキュムレータ29は設置されず、室外機熱交換器127は凝縮器として機能する。利用ユニット130a,130b,130cは、室内機熱交換器135a,135b,135c、室内機送風機136a,136b,136c、室内温度センサ161a,161b,161c、および室内制御装置等を備え、上記の室内機30a,30b,30cに相当する。なお、冷凍機120において、室内機熱交換器135a,135b,135cは、蒸発器として機能する。そして、コントローラ50は、上述した制御により、複数の冷凍装置110から運転データを収集することができる。 FIG. 5 is a circuit diagram showing another example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. Here, the controller 50 is communicably connected to the plurality of refrigeration apparatuses 110 via the communication line 2. As shown in FIG. 5, in each refrigeration apparatus 110, the refrigerator 120 and the utilization unit 130 are connected by a refrigerant pipe 114 and a refrigerant pipe 115 to constitute a refrigeration cycle. The usage unit 130 is configured by, for example, a showcase or a unit cooler. The refrigerator 120 includes a compressor 125, an outdoor unit heat exchanger 127, an outdoor unit blower 128, a discharge temperature sensor 162, an outdoor control device, and the like, and corresponds to the outdoor unit 20 described above. In the refrigerator 120, the flow path switching device 26 and the accumulator 29 are not installed, and the outdoor unit heat exchanger 127 functions as a condenser. The use units 130a, 130b, and 130c include indoor unit heat exchangers 135a, 135b, and 135c, indoor unit blowers 136a, 136b, and 136c, indoor temperature sensors 161a, 161b, and 161c, an indoor control device, and the like. It corresponds to 30a, 30b, 30c. In the refrigerator 120, the indoor unit heat exchangers 135a, 135b, and 135c function as an evaporator. And the controller 50 can collect driving | operation data from the some freezing apparatus 110 by the control mentioned above.
 以上のように、実施の形態1において、冷凍サイクルシステム(例えば、空調システム1)は、圧縮機25により冷媒が循環する冷凍サイクルをそれぞれ有する複数の冷凍サイクル装置(例えば、空調機10A,10B,10C,10D,10E)と、複数の冷凍サイクル装置と通信可能に接続されたコントローラ50とを備えた冷凍サイクルシステムにおいて、コントローラ50は、複数の冷凍サイクル装置のそれぞれから運転データを収集するデータ収集部52と、データ収集部52により収集された運転データに基づいて、複数の冷凍サイクル装置のデータ収集の優先度を個別に決定する優先度決定処理を行うデータ判断部53と、複数の冷凍サイクル装置のうち、データ判断部53により決定された優先度が高い冷凍サイクル装置(例えば、空調機10A)についてはデータ収集間隔を短周期に設定し、優先度が低い冷凍サイクル装置(例えば、空調機10C,10D,10E)についてはデータ収集間隔を長周期に設定するデータ収集間隔設定部54と、を備え、データ収集部52は、データ収集間隔設定部54により各冷凍サイクル装置について設定されたデータ収集間隔に基づき、各冷凍サイクル装置から運転データを収集するものである。 As described above, in the first embodiment, the refrigeration cycle system (for example, the air conditioning system 1) includes a plurality of refrigeration cycle apparatuses (for example, the air conditioners 10A, 10B, 10A, and 10B) each having a refrigeration cycle in which refrigerant is circulated by the compressor 25. 10C, 10D, 10E) and a refrigeration cycle system including a controller 50 that is communicably connected to a plurality of refrigeration cycle apparatuses, the controller 50 collects data for collecting operation data from each of the plurality of refrigeration cycle apparatuses. Unit 52, data determination unit 53 for performing priority determination processing for individually determining the priority of data collection of a plurality of refrigeration cycle devices based on the operation data collected by data collection unit 52, and a plurality of refrigeration cycles Among the apparatuses, the refrigeration cycle apparatus having a high priority determined by the data determination unit 53 For example, for the air conditioner 10A), the data collection interval is set to a short cycle, and for the refrigeration cycle devices having low priority (for example, the air conditioners 10C, 10D, 10E), the data collection interval is set to the long cycle. The data collection unit 52 collects operation data from each refrigeration cycle apparatus based on the data collection interval set for each refrigeration cycle apparatus by the data collection interval setting unit 54.
 これより、冷凍サイクルシステム(例えば、空調システム1)は、各冷凍サイクル装置(例えば、空調機10A,10B,10C,10D,10E)の運転状態に応じてデータ収集間隔を個別に設定し、運転状態監視の精度を調整することができる。また、データ収集間隔は、運転データに基づいて決定された優先度に応じて周期が設定されるので、例えば、運転データをこまめに取得する必要がある冷凍サイクル装置(例えば、空調機10A)からは高頻度に運転データが収集され、運転状態監視の精度が向上する。その結果、管理者は、例えば空調機10に異常がある場合等に、入出力部55に表示された情報等からいち早く異常を発見し、対処することができる。一方、例えば運転データの変化が小さい冷凍サイクル装置(例えば、10C,10D,10E)については、データ収集の頻度が低減され、冷凍サイクルシステムは、全体としての通信トラフィックの増大を抑えることができる。 Thus, the refrigeration cycle system (for example, the air conditioning system 1) sets the data collection interval individually according to the operation state of each refrigeration cycle apparatus (for example, the air conditioners 10A, 10B, 10C, 10D, and 10E). The accuracy of condition monitoring can be adjusted. Further, since the data collection interval is set according to the priority determined based on the operation data, for example, from the refrigeration cycle apparatus (for example, the air conditioner 10A) that needs to frequently acquire the operation data. The operation data is collected frequently, and the accuracy of the operation state monitoring is improved. As a result, for example, when there is an abnormality in the air conditioner 10, the administrator can quickly find an abnormality from the information displayed on the input / output unit 55 and deal with it. On the other hand, for example, for a refrigeration cycle apparatus (for example, 10C, 10D, 10E) with a small change in operation data, the frequency of data collection is reduced, and the refrigeration cycle system can suppress an increase in communication traffic as a whole.
 また、運転データは、圧縮機25の圧縮機周波数を含み、データ判断部53は、圧縮機周波数に基づいて優先度決定処理を行い、圧縮機周波数が高い冷凍サイクル装置(例えば空調機10A)ほど優先度を高くする。 The operation data includes the compressor frequency of the compressor 25, and the data determination unit 53 performs priority determination processing based on the compressor frequency, and the refrigeration cycle apparatus (for example, the air conditioner 10A) having a higher compressor frequency. Increase priority.
 これより、運転データの変化が大きいときに圧縮機周波数が高くなるという傾向を利用して、コントローラ50は、各空調機10の運転状態に適した監視精度となるようにデータ収集を行うことができる。 Thus, using the tendency that the compressor frequency increases when the change in the operation data is large, the controller 50 can collect data so that the monitoring accuracy suitable for the operation state of each air conditioner 10 is obtained. it can.
 また、運転データは、消費電力を含み、データ判断部53は、消費電力に基づいて優先度決定処理を行い、消費電力が高い冷凍サイクル装置(例えば空調機10A)ほど優先度を高くする。 Further, the operation data includes power consumption, and the data determination unit 53 performs priority determination processing based on the power consumption, and increases the priority of the refrigeration cycle apparatus (for example, the air conditioner 10A) with higher power consumption.
 これより、運転データの変化が大きいときに消費電力が高くなるという傾向を利用して、コントローラ50は、各空調機10の運転状態に適した監視精度となるようにデータ収集を行うことができる。 From this, the controller 50 can collect data so that it becomes the monitoring accuracy suitable for the operation state of each air conditioner 10 using the tendency that power consumption becomes high when the change of operation data is large. .
 また、複数の冷凍サイクル装置(空調機10)は、冷媒との間で熱交換をする室外機熱交換器27と、室外機熱交換器27に空気を供給する室外機送風機28と、をさらに備え、運転データは、室外機送風機28のファン周波数を含み、データ判断部53は、ファン周波数に基づいて優先度決定処理を行い、ファン周波数が高い冷凍サイクル装置(例えば空調機10A)ほど優先度を高くする。 The plurality of refrigeration cycle apparatuses (air conditioners 10) further includes an outdoor unit heat exchanger 27 that exchanges heat with the refrigerant, and an outdoor unit blower 28 that supplies air to the outdoor unit heat exchanger 27. The operation data includes the fan frequency of the outdoor unit blower 28, and the data determination unit 53 performs priority determination processing based on the fan frequency, and the refrigeration cycle apparatus (for example, the air conditioner 10A) having a higher fan frequency has a higher priority. To increase.
 これより、運転データの変化が大きいときにファン周波数が高くなるという傾向を利用して、コントローラ50は、各空調機10の運転状態に適した監視精度となるようにデータ収集を行うことができる。 Thus, using the tendency that the fan frequency increases when the change in the operation data is large, the controller 50 can collect data so that the monitoring accuracy is suitable for the operation state of each air conditioner 10. .
 また、データ収集間隔設定部54は、データ収集部52が運転データを収集する際に送信するコマンドの総数(例えば、10T)が、データ収集間隔の設定の前後において一定となるように、優先度にデータ収集間隔が対応づけられたテーブルを有する。 Further, the data collection interval setting unit 54 determines the priority so that the total number of commands (for example, 10T) transmitted when the data collection unit 52 collects the operation data is constant before and after the data collection interval is set. Has a table in which data collection intervals are associated.
 これより、コントローラ50は、さらに、全体の通信トラフィックの変化を抑えることができる。そのため、コントローラ50は、通信トラフィックを維持しつつ、その通信トラフィックにおいて各空調機10の運転状態に適した監視精度で、運転状態の監視を行うことができる。 From this, the controller 50 can further suppress changes in the overall communication traffic. Therefore, the controller 50 can monitor the operation state with monitoring accuracy suitable for the operation state of each air conditioner 10 in the communication traffic while maintaining the communication traffic.
 また、冷凍サイクル装置は、空調機10である。これより、複数の空調機10を備える空調システム1において、各空調機10の運転状態に応じて運転状態監視の精度を確保することができるとともに、システム全体の通信トラフィックの増大を抑えることができる。また、このように空調機10の監視精度が確保されることにより、例えば、空調機10の不具合による停止期間を少なくすることができる。 The refrigeration cycle apparatus is an air conditioner 10. As a result, in the air conditioning system 1 including the plurality of air conditioners 10, it is possible to ensure the accuracy of operation state monitoring according to the operation state of each air conditioner 10 and to suppress an increase in communication traffic of the entire system. . In addition, by ensuring the monitoring accuracy of the air conditioner 10 in this way, for example, a stop period due to a malfunction of the air conditioner 10 can be reduced.
 また、冷凍サイクル装置は、冷凍装置110である。これより、複数の冷凍装置110を備える低温システムにおいても、各冷凍装置110の運転状態に応じて運転状態監視の精度を確保することができるとともに、システム全体の通信トラフィックの増大を抑えることができる。また、このように冷凍装置110の監視精度が確保されることにより、例えば、利用ユニット130に収容されている製品等の品質が損なわれるのを防止できる。 Also, the refrigeration cycle apparatus is the refrigeration apparatus 110. As a result, even in a low-temperature system including a plurality of refrigeration apparatuses 110, the accuracy of operation state monitoring can be ensured according to the operation state of each refrigeration apparatus 110, and an increase in communication traffic of the entire system can be suppressed. . In addition, by ensuring the monitoring accuracy of the refrigeration apparatus 110 in this manner, it is possible to prevent, for example, the quality of a product or the like stored in the use unit 130 from being impaired.
 また、通信トラフィック調整方法は、圧縮機25により冷媒が循環する冷凍サイクルをそれぞれ有する複数の冷凍サイクル装置(例えば、空調機10)と、複数の冷凍サイクル装置と通信可能に接続されたコントローラ50とを備えた冷凍サイクルシステム(例えば空調システム1)における通信トラフィック調整方法であって、コントローラ50が、複数の冷凍サイクル装置(空調機10)のそれぞれから運転データを収集するデータ収集ステップ(ステップST101)と、コントローラ50が、データ収集ステップにより収集された運転データに基づいて、複数の冷凍サイクル装置(空調機10)のデータ収集の優先度を個別に決定する優先度決定処理を行うデータ判断ステップ(ステップST103)と、コントローラ50が、複数の冷凍サイクル装置(空調機10)のうち、データ判断ステップにより決定された優先度が高い冷凍サイクル装置(例えば、空調機10A)についてはデータ収集間隔を短周期に設定し、優先度が低い冷凍サイクル装置についてはデータ収集間隔を長周期に設定するデータ収集間隔設定ステップ(ステップST104)と、を備え、データ収集ステップ(ステップST101)は、データ収集間隔設定ステップ(ステップST104)により各冷凍サイクル装置について設定されたデータ収集間隔に基づき、各冷凍サイクル装置から運転データを収集するものである。 The communication traffic adjustment method includes a plurality of refrigeration cycle apparatuses (for example, air conditioners 10) each having a refrigeration cycle in which refrigerant is circulated by the compressor 25, and a controller 50 that is communicably connected to the plurality of refrigeration cycle apparatuses. Data collection step (step ST101) in which the controller 50 collects operation data from each of the plurality of refrigeration cycle apparatuses (air conditioners 10). And a data determination step in which the controller 50 performs priority determination processing for individually determining the priority of data collection of the plurality of refrigeration cycle apparatuses (air conditioners 10) based on the operation data collected in the data collection step ( Step ST103) and the controller 50 Among the refrigeration cycle apparatuses (air conditioners 10), the refrigeration cycle apparatus (for example, the air conditioner 10A) having a high priority determined in the data judgment step is set to a short cycle and the refrigeration having a low priority is set. The cycle device includes a data collection interval setting step (step ST104) for setting the data collection interval to a long period, and the data collection step (step ST101) is performed by each refrigeration cycle device by the data collection interval setting step (step ST104). The operation data is collected from each refrigeration cycle apparatus based on the data collection interval set for.
 これより、通信トラフィック調整方法は、各冷凍サイクル装置(例えば、空調機10A,10B,10C,10D,10E)の運転状態に応じて運転状態監視の精度を確保することができるとともに、全体の通信トラフィックの増大を抑えることができる。 Thus, the communication traffic adjustment method can ensure the accuracy of the operation state monitoring according to the operation state of each refrigeration cycle apparatus (for example, the air conditioners 10A, 10B, 10C, 10D, and 10E) and the entire communication. Increase in traffic can be suppressed.
実施の形態2.
 実施の形態2は、データ収集間隔の優先順位づけの判定条件に特殊制御状態を含めたものである。実施の形態2において、実施の形態1の場合と同様に構成については同一符号を付して説明を省略し、異なる構成について以下に説明する。
Embodiment 2. FIG.
In the second embodiment, the special control state is included in the determination condition for prioritizing the data collection interval. In the second embodiment, as in the case of the first embodiment, the same reference numerals are given to the configurations and the description thereof will be omitted, and different configurations will be described below.
 図6は、本発明の実施の形態2に係る空調システムの機能構成を示す概略図である。実施の形態2においても、空調システム201は、実施の形態1の場合と同様に、複数の空調機10A,10B,10C,10D,10Eと、コントローラ250とを備えている。 FIG. 6 is a schematic diagram showing a functional configuration of the air conditioning system according to Embodiment 2 of the present invention. Also in the second embodiment, the air conditioning system 201 includes a plurality of air conditioners 10A, 10B, 10C, 10D, and 10E, and a controller 250, as in the first embodiment.
 また実施の形態2において、コントローラ250は、省エネ制御等の特殊制御を各空調機10に実施する機能を有している。省エネ制御中は、消費電力を抑えるように、設定温度を変化させるまたは圧縮機周波数を制御する等の制御が行われる。このような制御の実施中には、コントローラ250にて制御の実施状況を確認するために、こまめな運転状態監視が必要とされる。そのため、特殊制御(この場合は省エネ制御)実施中の空調機10C,10Dのデータ収集は、できる限り短周期で実施することが必要である。 In the second embodiment, the controller 250 has a function of performing special control such as energy saving control on each air conditioner 10. During energy saving control, control such as changing the set temperature or controlling the compressor frequency is performed so as to reduce power consumption. During the execution of such control, frequent operation state monitoring is required for the controller 250 to check the execution status of the control. Therefore, it is necessary to collect data of the air conditioners 10C and 10D during execution of special control (in this case, energy saving control) as short as possible.
 実施の形態2では、各空調機10の運転状態が、実施の形態1の場合と異なる。通信トラフィックの調整が行われる前では、空調システム201に接続されている複数の空調機10のうち、空調機10A、空調機10Cおよび空調機10Eは、圧縮機25を運転する圧縮機周波数が60Hzと最も高く、空調機10Dの圧縮機周波数は30Hz、空調機10Bの圧縮機周波数は20Hzで運転している。また、空調機10Cおよび空調機10Dは省エネ制御を実施中であり、その他の空調機10A、空調機10Bおよび空調機10Eは省エネ制御を実施していない状態となっている。 In the second embodiment, the operating state of each air conditioner 10 is different from that in the first embodiment. Before the communication traffic is adjusted, among the plurality of air conditioners 10 connected to the air conditioning system 201, the air conditioner 10A, the air conditioner 10C, and the air conditioner 10E have a compressor frequency of 60 Hz for operating the compressor 25. The compressor frequency of the air conditioner 10D is 30 Hz, and the compressor frequency of the air conditioner 10B is 20 Hz. Further, the air conditioner 10C and the air conditioner 10D are performing energy saving control, and the other air conditioners 10A, 10B, and 10E are not performing energy saving control.
 次に、図7および図8に基づき、実施の形態2の空調監視制御について説明する。図7は、本発明の実施の形態2に係るコントローラが行う空調監視制御を示すシーケンス図である。図8は、本発明の実施の形態2に係る通信トラフィックの調整の前後における設定の変化を示す説明図である。図7および図8には、コントローラ250が、空調機10の圧縮機周波数および特殊制御の実施状態等によりデータ収集の優先度を設定する場合が示されている。 Next, the air-conditioning monitoring control of the second embodiment will be described based on FIGS. FIG. 7 is a sequence diagram showing air-conditioning monitoring control performed by the controller according to Embodiment 2 of the present invention. FIG. 8 is an explanatory diagram showing changes in settings before and after adjustment of communication traffic according to Embodiment 2 of the present invention. 7 and 8 show a case where the controller 250 sets the priority of data collection according to the compressor frequency of the air conditioner 10, the execution state of the special control, and the like.
 コントローラ250は、図7に示される空調監視制御を実施し、接続されている複数の空調機10の運転状態を監視する。空調機10に対して最初にデータ収集を行うとき、データ収集部252は、データ収集間隔を初期値の5分として、各空調機10へデータ要求を送出する(ステップST201)。そして、データ収集部252は、各空調機10から運転データを受信すると、受信した運転データを保存する(ステップST202)。 The controller 250 performs the air-conditioning monitoring control shown in FIG. 7 and monitors the operating states of the plurality of connected air conditioners 10. When data is first collected for the air conditioner 10, the data collection unit 252 sends a data request to each air conditioner 10 with the data collection interval set to 5 minutes as an initial value (step ST201). And the data collection part 252 will preserve | save the received operation data, if operation data is received from each air conditioner 10 (step ST202).
 次に、データ判断部253は、次のデータ収集の優先順位づけ、すなわち優先度決定処理を行う(ステップST203)。優先順位は、条件X,条件Yおよび条件Zの3つの条件によって決定される。条件Xは条件Yに優先し、条件Yは条件Zに優先する。
 条件Xは、省エネ制御実施中の空調機の優先度を高くする。
 条件Yは、圧縮機周波数が高い順に優先度を高くする。
 条件Zは、機器番号が小さい順に優先度を高くする。
Next, the data determination unit 253 performs prioritization of the next data collection, that is, priority determination processing (step ST203). The priority order is determined by three conditions of condition X, condition Y, and condition Z. Condition X has priority over condition Y, and condition Y has priority over condition Z.
Condition X increases the priority of the air conditioner that is executing the energy saving control.
Condition Y increases the priority in order of increasing compressor frequency.
Condition Z increases the priority in ascending order of the device number.
 そして、優先度決定処理の結果、データ収集間隔の優先順位づけは、優先度が高いものから順に、空調機10C、空調機10D、空調機10A、空調機10E、空調機10Bとなる。つまり、図8に示すように、省エネ制御を実施している空調機10C,10Dの優先順位が最も高く、そのうち圧縮機周波数が高い空調機10Cの優先順位が1となる。また、省エネ制御を実施していない空調機10A、10B、10Eのうち、圧縮機周波数が同じである空調機10Aと空調機10Eとでは、機器番号の小さい空調機10Aの方が優先順位が高くなる。また、省エネ制御を実施しておらず、かつ圧縮機周波数が最も低い空調機10Bは、優先順位が5となる。 As a result of the priority determination process, the priorities of the data collection intervals are, in descending order of priority, the air conditioner 10C, the air conditioner 10D, the air conditioner 10A, the air conditioner 10E, and the air conditioner 10B. That is, as shown in FIG. 8, the priority order of the air conditioners 10C and 10D performing the energy saving control is the highest, and the priority order of the air conditioner 10C having the higher compressor frequency is 1. Of the air conditioners 10A, 10B, and 10E that are not performing energy saving control, the air conditioner 10A and the air conditioner 10E having the same compressor frequency have a higher priority in the air conditioner 10A having a smaller device number. Become. Further, the air conditioner 10B that does not perform the energy saving control and has the lowest compressor frequency has a priority of 5.
 次に、データ収集間隔設定部254は、データ判断部253により決定された各空調機10の優先順位に応じて、各空調機10へデータ要求を送出する周期を個別に設定する(ステップST204)。このとき、データ収集間隔設定部254は、表1に示すような対応テーブルを参照して、データ収集間隔を設定してもよい。なお、実施の形態1の場合と同様に、優先順位とデータ収集間隔との関係はどのような形式で記憶されていてもよく、テーブル形式のかわりに例えば式として記憶されていてもよい。 Next, the data collection interval setting unit 254 individually sets a cycle for sending a data request to each air conditioner 10 according to the priority order of each air conditioner 10 determined by the data determination unit 253 (step ST204). . At this time, the data collection interval setting unit 254 may set the data collection interval with reference to the correspondence table as shown in Table 1. As in the case of the first embodiment, the relationship between the priority order and the data collection interval may be stored in any format, and may be stored as an expression instead of the table format.
 次に、コントローラ250は、運転データのデータ収集を継続するか否かを判断する(ステップST205)。例えば空調監視動作が継続されている場合に、コントローラ250は、引き続きデータ収集を行なうと判断し(ステップST205:YES)、データ収集部252は、ステップST204にて設定されたデータ収集間隔で運転データのデータ収集を継続する(ステップST201)。一方、何等かの理由で空調監視動作が終了する場合には、コントローラ250は空調監視制御を終了する(ステップST205:NO)。 Next, the controller 250 determines whether or not to continue the collection of operation data (step ST205). For example, when the air-conditioning monitoring operation is continued, controller 250 determines that data collection will continue (step ST205: YES), and data collection unit 252 operates data at the data collection interval set in step ST204. Data collection is continued (step ST201). On the other hand, if the air conditioning monitoring operation is terminated for any reason, the controller 250 ends the air conditioning monitoring control (step ST205: NO).
 図8に示すように、優先順位が1と決定された空調機10Cは、上記のような処理によりデータ収集間隔が5分周期から2分周期に変更される。また、優先順位が2と決定された空調機10Dは、データ収集間隔が5分周期から変更されず、また優先順位が3~5に決定された空調機10A,10B,10Eは、データ収集間隔が5分周期から10分周期に変更される。コントローラ250は、このように、各空調機10について個別に設定されたデータ収集間隔に基づき、空調機10の運転データの収集を行うことになる。 As shown in FIG. 8, in the air conditioner 10C in which the priority order is determined to be 1, the data collection interval is changed from the 5-minute period to the 2-minute period by the processing as described above. In addition, the air conditioner 10D for which the priority order is determined to be 2 does not change the data collection interval from the 5-minute cycle, and the air conditioners 10A, 10B, and 10E for which the priority order is determined to be 3 to 5 Is changed from a 5-minute period to a 10-minute period. As described above, the controller 250 collects the operation data of the air conditioner 10 based on the data collection interval set individually for each air conditioner 10.
 また、コントローラ250が各空調機10に対して1回のデータ収集で送信するコマンド数がT個とすると、実施の形態1の場合と同様に、図8では、データ収集間隔の変更前と変更後において、10分間に送信するコマンドの総数はいずれも10T個である。したがって、実施の形態2の場合においても、通信トラフィックは維持される。 Also, assuming that the number of commands that the controller 250 transmits to each air conditioner 10 in one data collection is T, in the same manner as in the first embodiment, in FIG. Later, the total number of commands transmitted in 10 minutes is 10T. Therefore, the communication traffic is maintained even in the case of the second embodiment.
 上記のように、コントローラ250は、空調機10の消費電力を抑えるための省エネ制御等の特殊制御を行うことが可能である。特殊制御を実施中は意図的に空調機の負荷を調整している状態であるため、こまめな運転状態監視を必要とする。空調システム201の上記の動作により、省エネ制御を実施中でこまめな運転状態監視が必要であり、且つ圧縮機周波数が大きく運転データの変化が大きい空調機10Cの運転データは短周期で取得できるようになる。一方、省エネ制御を実施中でこまめな運転状態監視が必要であるが、圧縮機周波数が低く運転データの変化が小さい空調機10Dについては、データ収集間隔に変化なくデータ収集がなされる。また、特殊制御を実施していない空調機(空調機10A,10B,10E)は、特殊制御を実施している空調機(空調機10C,10D)よりもデータ収集の優先度が下げられ、データ収集間隔が長くなる。このように通信トラフィックが調整されることで、空調システム201は、各空調機10の運転状態に適した運転状態監視の精度が確保でき、全体の通信トラフィックをほぼ変化なく維持することができる。 As described above, the controller 250 can perform special control such as energy saving control for suppressing the power consumption of the air conditioner 10. During special control, the load on the air conditioner is intentionally adjusted, so frequent monitoring of the operating condition is required. Due to the above-described operation of the air conditioning system 201, energy saving control is being performed, frequent operation state monitoring is required, and the operation data of the air conditioner 10C having a large compressor frequency and a large change in operation data can be acquired in a short cycle. become. On the other hand, although the energy saving control is being performed and frequent operation state monitoring is necessary, for the air conditioner 10D having a low compressor frequency and a small change in operation data, data is collected without any change in the data collection interval. In addition, air conditioners that do not perform special control ( air conditioners 10A, 10B, and 10E) have a lower priority for data collection than air conditioners that perform special control ( air conditioners 10C and 10D). The collection interval becomes longer. By adjusting the communication traffic in this way, the air conditioning system 201 can ensure the accuracy of operation state monitoring suitable for the operation state of each air conditioner 10, and can maintain the entire communication traffic almost unchanged.
 なお、上述した通信トラフィック調整方法は、複数の空調機10から運転データを収集する空調システム201だけでなく、例えば、複数の冷凍装置110から運転データを収集する低温システム等にも適用することができる。 The communication traffic adjustment method described above can be applied not only to the air conditioning system 201 that collects operation data from a plurality of air conditioners 10, but also to, for example, a low-temperature system that collects operation data from a plurality of refrigeration apparatuses 110. it can.
 以上のように、実施の形態2においても、冷凍サイクルシステム(例えば、空調システム201)および通信トラフィック調整方法は、実施の形態1の場合と同様の効果を有している。 As described above, also in the second embodiment, the refrigeration cycle system (for example, the air conditioning system 201) and the communication traffic adjustment method have the same effects as those in the first embodiment.
 また、実施の形態2において、運転データは、通常運転の制御とは異なる特殊制御を実施しているか否かを表す特殊制御情報を含み、データ判断部253は、特殊制御情報に基づいて優先度決定処理を行う。 In the second embodiment, the operation data includes special control information indicating whether or not the special control different from the control of the normal operation is performed, and the data determination unit 253 determines the priority based on the special control information. Perform decision processing.
 これより、特殊制御情報を優先度決定処理の判定条件として用いることにより、コントローラ250は、運転データを高頻度に取得する必要がある特殊制御実施中の空調機(例えば、空調機10C,10D)に対して、短周期でデータ取得を行うことができる。したがって、特殊制御中の場合でも、冷凍サイクルシステム(空調システム201)は、各冷凍サイクル装置(空調機10)の運転状態監視の精度を最適に確保することができるとともに、通信トラフィックを維持することができる。 Thus, by using the special control information as the determination condition for the priority determination process, the controller 250 is the air conditioner (for example, the air conditioners 10C and 10D) performing the special control that needs to acquire the operation data at a high frequency. On the other hand, data acquisition can be performed in a short cycle. Accordingly, even during special control, the refrigeration cycle system (air conditioning system 201) can optimally ensure the accuracy of monitoring the operating state of each refrigeration cycle apparatus (air conditioner 10) and maintain communication traffic. Can do.
 また、運転データは、通常運転の制御とは異なる特殊制御を実施しているか否かを表す特殊制御情報をさらに含み、データ判断部253は、優先度決定処理を行う際に、特殊制御を実施している冷凍サイクル装置(例えば、空調機10C,10D)の優先度をそれ以外の冷凍サイクル装置(例えば、空調機10A,10B,10E)の優先度よりも高く設定する。 The operation data further includes special control information indicating whether or not special control different from normal operation control is being performed, and the data determination unit 253 performs the special control when performing the priority determination process. The priority of the refrigeration cycle apparatus (for example, air conditioners 10C and 10D) is set higher than the priority of the other refrigeration cycle apparatuses (for example, air conditioners 10A, 10B, and 10E).
 これより、データ判断部253は、優劣のある判定条件(例えば、条件X,Y,Z)を複数組合せて優先度決定処理を行うことができ、所望の運転状態について特に監視の精度を高めることができる。また、例えば、条件Xにより優先度が同等に高く設定された冷凍サイクル装置(例えば、空調機10C,10D)に、条件Xの次に優先される条件Yが適用されると、これらの冷凍サイクル装置(空調機10C,10D)の優先度に差を設けることができる。その結果、冷凍サイクルシステム(空調システム201)は、各冷凍サイクル装置(空調機10)の運転状態にさらに適した運転状態監視の精度を確保するとともに、通信トラフィックを維持することができる。 Thus, the data determination unit 253 can perform priority determination processing by combining a plurality of superior and inferior determination conditions (for example, the conditions X, Y, and Z), and particularly improve the accuracy of monitoring for a desired driving state. Can do. Further, for example, when a condition Y prioritized after the condition X is applied to a refrigeration cycle apparatus (for example, the air conditioners 10C and 10D) whose priority is set to be equal to the condition X, these refrigeration cycles are applied. A difference can be provided in the priority of the devices ( air conditioners 10C and 10D). As a result, the refrigeration cycle system (air conditioning system 201) can ensure the accuracy of operation state monitoring more suitable for the operation state of each refrigeration cycle apparatus (air conditioner 10) and can maintain communication traffic.
 また、運転データは、複数の冷凍サイクル装置(空調機10)のそれぞれを特定する機器番号の情報をさらに含み、データ判断部253は、同一の優先度を有する複数の冷凍サイクル装置(例えば、空調機10A,10E)がある場合に、同一の優先度を有する複数の冷凍サイクル装置において機器番号が小さい冷凍サイクル装置(例えば、空調機10A)ほど優先度を高くする。 In addition, the operation data further includes information on device numbers that specify each of the plurality of refrigeration cycle apparatuses (air conditioners 10), and the data determination unit 253 includes a plurality of refrigeration cycle apparatuses (for example, air conditioning units) having the same priority. When there is a machine 10A, 10E), a priority is set higher for a refrigeration cycle apparatus (for example, air conditioner 10A) having a smaller equipment number in a plurality of refrigeration cycle apparatuses having the same priority.
 これより、データ判断部253は、データ収集の優先順位を各冷凍サイクル装置(空調機10)に重複することなくつけることができる。そのため、例えば、表1のような対応テーブルが記憶されている場合には、データ収集間隔設定部254は、決定された優先順位に対応するデータ収集間隔を抽出すればよく、処理が簡略化できる。 From this, the data judgment part 253 can give the priority of data collection to each refrigeration cycle apparatus (air conditioner 10) without duplication. Therefore, for example, when a correspondence table as shown in Table 1 is stored, the data collection interval setting unit 254 may extract the data collection interval corresponding to the determined priority order, and the processing can be simplified. .
 なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、図2には、3台の室内機30(室内機30a、室内機30bおよび室内機30c)が、1台の室外機20に対して並列に接続されている場合を例に示しているが、室外機20および室内機30の台数および接続方法は、特にこれに限定されない。 The embodiment of the present invention is not limited to the above embodiment, and various changes can be made. For example, FIG. 2 shows an example in which three indoor units 30 (indoor unit 30a, indoor unit 30b, and indoor unit 30c) are connected in parallel to one outdoor unit 20. However, the number of the outdoor units 20 and the indoor units 30 and the connection method are not particularly limited thereto.
 また、表1に示したデータ収集間隔は一例であって、通信環境、および冷凍サイクルシステムに含まれる冷凍サイクル装置の台数等に応じて適宜設定されればよい。 Further, the data collection interval shown in Table 1 is an example, and may be set as appropriate according to the communication environment, the number of refrigeration cycle apparatuses included in the refrigeration cycle system, and the like.
 また、図1には、コントローラ50に空調機10が5台接続される場合について示されているが、5台未満または5台を超える数の空調機10が接続された空調システムにおいても、上記の通信トラフィック調整方法は同様に適用できる。 Further, FIG. 1 shows a case where five air conditioners 10 are connected to the controller 50. However, even in an air conditioning system in which less than five or more than five air conditioners 10 are connected, The communication traffic adjustment method can be similarly applied.
 また、実施の形態2において、特殊制御状態に関する条件Xは、圧縮機周波数に関する条件Yおよび機器番号に関する条件Zより優先するものとして説明したが、各条件の優先度は、監視を優先させたい運転状態に応じて適宜設定すればよい。 In the second embodiment, the condition X related to the special control state has been described as having priority over the condition Y related to the compressor frequency and the condition Z related to the equipment number. However, the priority of each condition is the operation for which monitoring is to be prioritized. What is necessary is just to set suitably according to a state.
 また、データ判断部253は、圧縮機周波数に関する条件Yの代わりに、消費電力またはファン周波数といった運転データに関する条件を、上記の条件Xおよび条件Zと組合せて優先度を決定する構成であってもよい。 Further, the data determination unit 253 may be configured to determine the priority by combining the conditions related to the operation data such as the power consumption or the fan frequency with the conditions X and Z instead of the condition Y related to the compressor frequency. Good.
 1,201 空調システム、2 通信線、10(10A,10B,10C,10D,10E) 空調機、14,15 冷媒配管、20 室外機、21 室外制御装置、22 室外機通信部、23 室外機データ保持部、25,125 圧縮機、26 流路切替装置、27,127 室外機熱交換器、28,128 室外機送風機、29 アキュムレータ、30(30a,30b,30c) 室内機、31(31a,31b,31c) 室内制御装置、32(32a,32b,32c) 室内機通信部、33(33a,33b,33c) 室内機データ保持部、35a,35b,35c,135a,135b,135c 室内機熱交換器、36a,36b,36c,136a,136b,136c 室内機送風機、37a,37b,37c 絞り装置、50,250 コントローラ、51 通信部、52,252 データ収集部、53,253 データ判断部、54,254 データ収集間隔設定部、55 入出力部、61(61a,61b,61c)、161a,161b,161c 室内温度センサ、62,162 吐出温度センサ、110 冷凍装置、120 冷凍機、130(130a,130b,130c) 利用ユニット。 1,201 air conditioning system, 2 communication lines, 10 (10A, 10B, 10C, 10D, 10E) air conditioner, 14, 15 refrigerant piping, 20 outdoor unit, 21 outdoor control device, 22 outdoor unit communication unit, 23 outdoor unit data Holding unit, 25, 125 compressor, 26 flow switching device, 27, 127 outdoor unit heat exchanger, 28, 128 outdoor unit blower, 29 accumulator, 30 (30a, 30b, 30c) indoor unit, 31 (31a, 31b , 31c) Indoor control device, 32 (32a, 32b, 32c) Indoor unit communication unit, 33 (33a, 33b, 33c) Indoor unit data holding unit, 35a, 35b, 35c, 135a, 135b, 135c Indoor unit heat exchanger 36a, 36b, 36c, 136a, 136b, 136c Indoor unit blower, 37a, 37b, 37c Device, 50, 250 controller, 51 communication unit, 52,252 data collection unit, 53,253 data judgment unit, 54,254 data collection interval setting unit, 55 input / output unit, 61 (61a, 61b, 61c), 161a 161b, 161c, indoor temperature sensor, 62, 162 discharge temperature sensor, 110 refrigeration unit, 120 refrigerator, 130 (130a, 130b, 130c) utilization unit.

Claims (11)

  1.  圧縮機により冷媒が循環する冷凍サイクルをそれぞれ有する複数の冷凍サイクル装置と、複数の前記冷凍サイクル装置と通信可能に接続されたコントローラとを備えた冷凍サイクルシステムにおいて、
     前記コントローラは、
     複数の前記冷凍サイクル装置のそれぞれから運転データを収集するデータ収集部と、
     前記データ収集部により収集された前記運転データに基づいて、複数の前記冷凍サイクル装置のデータ収集の優先度を個別に決定する優先度決定処理を行うデータ判断部と、
     複数の前記冷凍サイクル装置のうち、前記データ判断部により決定された前記優先度が高い冷凍サイクル装置についてはデータ収集間隔を短周期に設定し、前記優先度が低い冷凍サイクル装置についてはデータ収集間隔を長周期に設定するデータ収集間隔設定部と、
    を備え、
     前記データ収集部は、前記データ収集間隔設定部により各冷凍サイクル装置について設定された前記データ収集間隔に基づき、各冷凍サイクル装置から運転データを収集する
     冷凍サイクルシステム。
    In a refrigeration cycle system comprising a plurality of refrigeration cycle apparatuses each having a refrigeration cycle in which refrigerant is circulated by a compressor, and a controller connected to be able to communicate with the plurality of refrigeration cycle apparatuses.
    The controller is
    A data collection unit for collecting operation data from each of the plurality of refrigeration cycle devices;
    A data determination unit that performs a priority determination process for individually determining the priority of data collection of the plurality of refrigeration cycle devices based on the operation data collected by the data collection unit;
    Among the plurality of refrigeration cycle apparatuses, the data collection interval is set to a short period for the refrigeration cycle apparatus with the high priority determined by the data determination unit, and the data collection interval for the refrigeration cycle apparatus with the low priority A data collection interval setting unit that sets a long cycle,
    With
    The data collection unit collects operation data from each refrigeration cycle apparatus based on the data collection interval set for each refrigeration cycle apparatus by the data collection interval setting unit.
  2.  前記運転データは、前記圧縮機の圧縮機周波数を含み、
     前記データ判断部は、前記圧縮機周波数に基づいて前記優先度決定処理を行い、前記圧縮機周波数が高い前記冷凍サイクル装置ほど優先度を高くする
     請求項1記載の冷凍サイクルシステム。
    The operating data includes a compressor frequency of the compressor,
    The refrigeration cycle system according to claim 1, wherein the data determination unit performs the priority determination process based on the compressor frequency, and increases the priority of the refrigeration cycle apparatus having a higher compressor frequency.
  3.  前記運転データは、消費電力を含み、
     前記データ判断部は、前記消費電力に基づいて前記優先度決定処理を行い、前記消費電力が高い前記冷凍サイクル装置ほど優先度を高くする
     請求項1記載の冷凍サイクルシステム。
    The operation data includes power consumption,
    The refrigeration cycle system according to claim 1, wherein the data determination unit performs the priority determination process based on the power consumption, and increases the priority of the refrigeration cycle apparatus having a higher power consumption.
  4.  複数の前記冷凍サイクル装置は、前記冷媒との間で熱交換をする室外機熱交換器と、前記室外機熱交換器に空気を供給する室外機送風機と、をさらに備え、
     前記運転データは、前記室外機送風機のファン周波数を含み、
     前記データ判断部は、前記ファン周波数に基づいて前記優先度決定処理を行い、前記ファン周波数が高い前記冷凍サイクル装置ほど優先度を高くする
     請求項1記載の冷凍サイクルシステム。
    The plurality of refrigeration cycle devices further include an outdoor unit heat exchanger that exchanges heat with the refrigerant, and an outdoor unit blower that supplies air to the outdoor unit heat exchanger,
    The operation data includes a fan frequency of the outdoor unit blower,
    The refrigeration cycle system according to claim 1, wherein the data determination unit performs the priority determination process based on the fan frequency, and increases the priority of the refrigeration cycle apparatus having a higher fan frequency.
  5.  前記運転データは、通常運転の制御とは異なる特殊制御を実施しているか否かを表す特殊制御情報を含み、
     前記データ判断部は、前記特殊制御情報に基づいて前記優先度決定処理を行う
     請求項1記載の冷凍サイクルシステム。
    The operation data includes special control information indicating whether or not special control different from normal operation control is being performed,
    The refrigeration cycle system according to claim 1, wherein the data determination unit performs the priority determination process based on the special control information.
  6.  前記運転データは、通常運転の制御とは異なる特殊制御を実施しているか否かを表す特殊制御情報をさらに含み、
     前記データ判断部は、前記優先度決定処理を行う際に、前記特殊制御を実施している前記冷凍サイクル装置の優先度をそれ以外の前記冷凍サイクル装置の優先度よりも高く設定する
     請求項2~4のいずれか一項記載の冷凍サイクルシステム。
    The operation data further includes special control information indicating whether or not special control different from normal operation control is being performed,
    The data determination unit sets the priority of the refrigeration cycle apparatus performing the special control higher than the priority of other refrigeration cycle apparatuses when performing the priority determination process. The refrigeration cycle system according to any one of claims 1 to 4.
  7.  前記運転データは、前記複数の冷凍サイクル装置のそれぞれを特定する機器番号の情報をさらに含み、
     前記データ判断部は、同一の優先度を有する複数の前記冷凍サイクル装置がある場合に、同一の優先度を有する複数の前記冷凍サイクル装置において前記機器番号が小さい前記冷凍サイクル装置ほど優先度を高くする
     請求項2~6のいずれか一項記載の冷凍サイクルシステム。
    The operation data further includes information on an equipment number that identifies each of the plurality of refrigeration cycle apparatuses,
    In the case where there are a plurality of the refrigeration cycle apparatuses having the same priority, the data determination unit has a higher priority as the refrigeration cycle apparatus having a smaller device number in the plurality of refrigeration cycle apparatuses having the same priority. The refrigeration cycle system according to any one of claims 2 to 6.
  8.  前記データ収集間隔設定部は、前記データ収集部が前記運転データを収集する際に送信するコマンドの総数が、データ収集間隔の設定の前後において一定となるように、前記優先度に前記データ収集間隔が対応づけられたテーブルを有する
     請求項1~7のいずれか一項記載の冷凍サイクルシステム。
    The data collection interval setting unit sets the priority to the data collection interval so that the total number of commands transmitted when the data collection unit collects the operation data is constant before and after setting the data collection interval. The refrigeration cycle system according to any one of claims 1 to 7, further comprising a table associated with each other.
  9.  前記冷凍サイクル装置は、空調機である
     請求項1~8のいずれか一項記載の冷凍サイクルシステム。
    The refrigeration cycle system according to any one of claims 1 to 8, wherein the refrigeration cycle apparatus is an air conditioner.
  10.  前記冷凍サイクル装置は、冷凍装置である
     請求項1~8のいずれか一項記載の冷凍サイクルシステム。
    The refrigeration cycle system according to any one of claims 1 to 8, wherein the refrigeration cycle apparatus is a refrigeration apparatus.
  11.  圧縮機により冷媒が循環する冷凍サイクルをそれぞれ有する複数の冷凍サイクル装置と、複数の前記冷凍サイクル装置と通信可能に接続されたコントローラとを備えた冷凍サイクルシステムにおける通信トラフィック調整方法であって、
     前記コントローラが、複数の前記冷凍サイクル装置のそれぞれから運転データを収集するデータ収集ステップと、
     前記コントローラが、前記データ収集ステップにより収集された前記運転データに基づいて、複数の前記冷凍サイクル装置のデータ収集の優先度を個別に決定する優先度決定処理を行うデータ判断ステップと、
     前記コントローラが、複数の前記冷凍サイクル装置のうち、前記データ判断ステップにより決定された前記優先度が高い冷凍サイクル装置についてはデータ収集間隔を短周期に設定し、前記優先度が低い冷凍サイクル装置についてはデータ収集間隔を長周期に設定するデータ収集間隔設定ステップと、を備え、
     前記データ収集ステップは、前記データ収集間隔設定ステップにより各冷凍サイクル装置について設定された前記データ収集間隔に基づき、各冷凍サイクル装置から運転データを収集する
     通信トラフィック調整方法。
    A communication traffic adjustment method in a refrigeration cycle system comprising a plurality of refrigeration cycle apparatuses each having a refrigeration cycle in which refrigerant is circulated by a compressor, and a controller connected to the plurality of refrigeration cycle apparatuses in a communicable manner,
    A data collection step in which the controller collects operation data from each of the plurality of refrigeration cycle devices;
    A data determination step for performing a priority determination process in which the controller individually determines the priority of data collection of the plurality of refrigeration cycle devices based on the operation data collected in the data collection step;
    The controller sets a data collection interval to a short period for the refrigeration cycle apparatus having a high priority determined in the data determination step among the plurality of refrigeration cycle apparatuses, and the refrigeration cycle apparatus having a low priority. Comprises a data collection interval setting step for setting the data collection interval to a long period,
    The communication traffic adjustment method, wherein the data collection step collects operation data from each refrigeration cycle apparatus based on the data collection interval set for each refrigeration cycle apparatus by the data collection interval setting step.
PCT/JP2017/013688 2017-03-31 2017-03-31 Refrigeration cycle system and communication traffic adjustment method WO2018179366A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019508135A JP6719651B2 (en) 2017-03-31 2017-03-31 Refrigeration cycle system and communication traffic adjustment method
DE112017007372.3T DE112017007372B4 (en) 2017-03-31 2017-03-31 REFRIGERATION CYCLE SYSTEM AND METHOD OF ADJUSTING DATA TRANSMISSION TRAFFIC
PCT/JP2017/013688 WO2018179366A1 (en) 2017-03-31 2017-03-31 Refrigeration cycle system and communication traffic adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013688 WO2018179366A1 (en) 2017-03-31 2017-03-31 Refrigeration cycle system and communication traffic adjustment method

Publications (1)

Publication Number Publication Date
WO2018179366A1 true WO2018179366A1 (en) 2018-10-04

Family

ID=63674555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013688 WO2018179366A1 (en) 2017-03-31 2017-03-31 Refrigeration cycle system and communication traffic adjustment method

Country Status (3)

Country Link
JP (1) JP6719651B2 (en)
DE (1) DE112017007372B4 (en)
WO (1) WO2018179366A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220075701A1 (en) * 2020-09-08 2022-03-10 Panasonic Intellectual Property Management Co., Ltd. Terminal monitoring method, program, and terminal monitoring system
WO2022075412A1 (en) 2020-10-08 2022-04-14 ダイキン工業株式会社 Control device and control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194334A (en) * 1997-09-19 1999-04-09 Matsushita Electric Ind Co Ltd Wireless dwelling equipment system
JP2001333071A (en) * 2000-05-19 2001-11-30 Oki Electric Ind Co Ltd Information collection method and information collection device
JP2002281570A (en) * 2001-03-16 2002-09-27 Sanyo Electric Co Ltd Remote monitoring system
JP2004265449A (en) * 2004-06-09 2004-09-24 Hitachi Ltd Monitoring system
JP2009161076A (en) * 2008-01-08 2009-07-23 Denso Corp In-vehicle system
JP2013204845A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Centralized monitoring device, and remote monitoring system for air conditioner
JP2014085803A (en) * 2012-10-23 2014-05-12 Omron Corp Communication device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019530A (en) 2008-07-14 2010-01-28 Daikin Ind Ltd Air conditioning system and communication traffic adjusting method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194334A (en) * 1997-09-19 1999-04-09 Matsushita Electric Ind Co Ltd Wireless dwelling equipment system
JP2001333071A (en) * 2000-05-19 2001-11-30 Oki Electric Ind Co Ltd Information collection method and information collection device
JP2002281570A (en) * 2001-03-16 2002-09-27 Sanyo Electric Co Ltd Remote monitoring system
JP2004265449A (en) * 2004-06-09 2004-09-24 Hitachi Ltd Monitoring system
JP2009161076A (en) * 2008-01-08 2009-07-23 Denso Corp In-vehicle system
JP2013204845A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Centralized monitoring device, and remote monitoring system for air conditioner
JP2014085803A (en) * 2012-10-23 2014-05-12 Omron Corp Communication device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220075701A1 (en) * 2020-09-08 2022-03-10 Panasonic Intellectual Property Management Co., Ltd. Terminal monitoring method, program, and terminal monitoring system
WO2022075412A1 (en) 2020-10-08 2022-04-14 ダイキン工業株式会社 Control device and control system
JP2022062472A (en) * 2020-10-08 2022-04-20 ダイキン工業株式会社 Control device and control system
JP7108207B2 (en) 2020-10-08 2022-07-28 ダイキン工業株式会社 control device, control system
EP4228279A4 (en) * 2020-10-08 2024-03-27 Daikin Ind Ltd Control device and control system

Also Published As

Publication number Publication date
DE112017007372B4 (en) 2023-08-24
JPWO2018179366A1 (en) 2019-11-07
DE112017007372T5 (en) 2019-12-24
JP6719651B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US9989288B2 (en) System for managing lubricant levels in tandem compressor assemblies of an HVAC system
JP3992195B2 (en) Air conditioner
CN111780362B (en) Air conditioner and control method thereof
JPWO2016071947A1 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detection system
KR20140108576A (en) Heat source system, device for controlling same, and method for controlling same
JP6641376B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
JP6710313B2 (en) Air conditioning system
EP3299738A1 (en) System for air-conditioning and hot-water supply
US10047965B2 (en) System for managing lubricant levels in tandem compressor assemblies of an HVAC system
WO2018179366A1 (en) Refrigeration cycle system and communication traffic adjustment method
EP3299734B1 (en) System for air-conditioning and hot-water supply
JP6636193B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
JP6678785B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
EP3147590B1 (en) System for managing lubricant levels in tandem compressor assemblies of an hvac system
CN218763899U (en) Control device of air conditioning unit and air conditioning unit
JP6636192B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
US20240085042A1 (en) Refrigeration cycle device and refrigerant leakage determination system
KR101290964B1 (en) Controlling method for driving a compressor of air conditioner
KR100791927B1 (en) Method fot controlling operation of a multi air conditioner system
KR101812015B1 (en) Air conditioner and method for controlling the same
KR101859038B1 (en) Air conditioner and method for controlling the same
CN115540277A (en) Control method and control device of air conditioning unit, storage medium and air conditioning unit
JPH11281126A (en) Method of control valve operation of air conditioner and air conditioner
JP2007232240A (en) Refrigerating device, and control method of refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508135

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17904148

Country of ref document: EP

Kind code of ref document: A1