WO2017032164A1 - 一种硫化铜矿生物堆浸水喷淋启动的方法 - Google Patents
一种硫化铜矿生物堆浸水喷淋启动的方法 Download PDFInfo
- Publication number
- WO2017032164A1 WO2017032164A1 PCT/CN2016/087086 CN2016087086W WO2017032164A1 WO 2017032164 A1 WO2017032164 A1 WO 2017032164A1 CN 2016087086 W CN2016087086 W CN 2016087086W WO 2017032164 A1 WO2017032164 A1 WO 2017032164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spray
- ore
- water
- copper sulfide
- acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/18—Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to the field of biometallurgy, in particular to a method for starting a water immersion spray of a copper sulfide ore biopile.
- H 2 SO 4 and Fe 2 (SO 4 ) 3 are manually purchased to configure the required acid iron solution, high cost and labor input are required.
- Sulfide ore (MeS) itself can be oxidized to produce H 2 SO 4 .
- sulfide ore contains a certain amount of pyrite (FeS 2 ), which can be used as an important source for producing the desired oxidant Fe 3+ .
- FeS 2 pyrite
- the use of sulphide ore in the ore to provide acid and iron can effectively reduce production costs.
- the object of the present invention is to provide a method for initiating flooding of a copper sulfide ore biopile by oxidizing sulfide ore under the action of oxygen and microorganisms by directly spraying with water to form H 2 SO 4 and Fe 2 (SO 4 ) 3 , to achieve the initial stage of bio- heap leaching without the need to invest in acid iron, saving production costs.
- a method for priming a copper sulfide ore biopile immersion spray comprising the steps of:
- the water in the process of immersing the copper sulfide ore biopile, the water is sprayed and wetted, the spray ratio is 20-100 L/ton of ore, and the moisture content of the ore is kept at 5%-10% during the pile-up stage.
- the pile height is 1-10 meters.
- the water is sprayed, and the time and intensity of the spray (3-50 L/m 2 ⁇ h) are selected according to the ore properties, particle size and stack height, and the leachate Spray to pH ⁇ 3.0.
- the eluate of the solution pool is inoculated with an eosinophilic iron-oxidizing microorganism, mainly including one of Leptospira, Thiobacillus acidophilus, and Iron genus.
- the mixed bacteria of the inoculum or the plurality of bacteria may be added in the form of acidic wastewater containing an acidophilic iron-sulfur oxide microorganism or an enriched cultured acidophilic iron-sulfur oxide group.
- the concentration of (NH 4 ) 2 SO 4 in the system solution reach 0.5-3 g/L, K 2 HPO 4 concentration. It reaches 0.1-0.5g/L, the concentration of KCl reaches 0.01-0.1g/L, the concentration of MgSO 4 reaches 0.1-0.5g/L, and the concentration of Ca(NO 3 ) 2 reaches 0.002-0.01g/L, which is an acidophilic iron oxidizing bacteria.
- the growth provides nutrition.
- the invention also provides a copper sulphide bio-heap leaching method, which comprises, after starting the water spray, as in the above step 2), after adding nutrients and microorganisms, continuing to spray to the leaching solution to achieve the target copper content Value, then the leachate enters the extraction electrowinning workshop to obtain the target metal.
- 1mol Cu will return 1mol H 2 SO 4 during the extraction process, which improves the acidity of the raffinate, and the raffinate returns to the heap as a spray solution for spraying.
- the water or mine acid waste water is used to supplement the evaporated solution (spray liquid), which is used as the mine spray liquid, and the cycle is reciprocated until the oxidation of the pile is completed. Leaching.
- the acidophilic iron-sulfur oxide microorganisms inoculated in the solution tank of the present invention are generally Leptospira, Thiobacillus acidophilus, and Iron fungi.
- the inoculated microorganisms include: an acidophilic iron-sulfur oxidizing bacteria group which is enriched and cultured from the mine acid waste water or the leachate of the produced heap; the leachate of the ore heap containing the acidophilic iron-sulfur oxidizing bacteria mine or in the production.
- the heap leaching leaching solution or the acid waste water for enriching microorganisms is selected to have an iron concentration of 1 to 10 g/L, a pH value of 1.5 to 2.5, and an eosinophilic iron-sulfur oxidizing microorganism.
- the enrichment medium of the strain is 9K medium ((NH 4 ) 2 SO 4 3g/L, K 2 HPO 4 0.5g/L, KCl 0.1g/L, MgSO 4 0.5g/L, Ca(NO 3 ) 2 0.01 g / L), adding 10 g / L FeSO 4 , pH 1.0-2.5.
- the concentration of the microorganisms in the system solution can finally reach 10 7 - 10 8 /mL.
- pyrite In the sulphide ore (MeS) heap leaching process, especially the high content of pyrite (FeS 2 ), it is an important source of H 2 SO 4 and Fe 3+ , and it has a considerable content in ore. Under alkaline and weakly acidic conditions, pyrite can react as follows under the action of oxygen:
- Fe 3+ is a natural oxidant of pyrite, which plays a vital role in the oxidation of pyrite in an acidic environment. Under the action of acidophilic iron-sulfur oxidizing microorganisms, the reduced Fe 3+ can be quickly replenished, and the microorganisms adhere to the surface of the pyrite, which can greatly promote the oxidation of pyrite.
- the invention fully utilizes the oxidation principle of sulfide ore under different conditions, and solves the problem that a large amount of acid iron solution is needed in the initial stage of copper sulfide ore heap leaching.
- Directly sprayed with water fully utilizing the action of oxygen and microorganisms to oxidize copper sulfide ore, especially pyrite, to obtain a solution rich in H 2 SO 4 and Fe 2 (SO 4 ) 3 for cyclic spraying.
- the amount of microorganisms and the concentration of acid iron are obtained as an acidic spray liquid rich in eosinophilic iron oxide oxidizing bacteria and Fe 3+ .
- the invention adopts reasonable measures in the initial stage of heap leaching to fully utilize the air oxidation, the oxidation of ferric iron and the oxidation of microorganisms and the mutual synergistic oxidation between the three, oxidize the copper sulfide ore and pyrite to achieve the initial
- the rapid production of acid and iron in the stage enables rapid start-up of production and reduces the cost of acid iron input.
- FIG. 1 is a schematic view showing a process flow of a copper sulfide ore bioleaching process of the present invention
- Example 2 is a view showing changes in concentration of H 2 SO 4 in the leachate of Example 1 of the present invention
- Example 3 is a graph showing changes in Fe 3+ concentration in the leachate of Example 1 of the present invention.
- Figure 4 is a graph showing the leaching rate of copper in the leachate of Example 1 of the present invention.
- the acid production performance of the specific ore is confirmed before production; after confirming the feasibility, the ore is wetted with water in the stage of biopile leaching; the initial stage of spraying, spraying with water,
- the air is used to oxidize the copper sulfide ore in the ore heap to produce a weakly acidic leachate, and to circulate and spray; when the pH of the leachate is ⁇ 3.0, inoculate the acidophilic iron-sulfur oxide microorganism in the enriched culture or acid waste water to add microbial growth.
- the medium further utilizes microorganisms to promote the efficient oxidation and sulfidation of microorganisms in the yard to produce H 2 SO 4 and Fe 3+ , and forms an acidic solution rich in Fe 3+ and eosinophilic oxidizing microorganisms required for bioleaching.
- 1 mol Cu will return 1 mol H 2 SO 4 during the extraction process, which improves the raffinate.
- the acidity of the liquid, the raffinate is returned to the heap as a spray liquid for spraying.
- the water or the acid waste water of the mine is used to supplement the evaporated solution (spray liquid). It is used as a mine spray liquid, and is recycled to the completion of oxidation of the heap to complete the leaching.
- the ore composition is 0.37% Cu, 5.55% Fe, and 6.28% reduced S.
- the main copper minerals in the ore are chalcopyrite, copper blue and sulfur-arsenic copper ore, of which more than 90% of the chalcopyrite and 10% of the pyrite are the main gangue minerals such as feldspar, quartz and sericite.
- the ore is wetted according to the amount of water of 50L per ton of ore, and then intermittent spraying (1 day / 1 day, that is, spraying for 1 day), the spraying intensity is 3L/m 2 h.
- the acidophilic iron-sulfur oxidizing bacteria group (media composition: 9K medium, 10 g/L FeSO 4 , pH 1.8) is enriched and cultured from the local mine acid wastewater, mainly including Leptospira, Thiobacillus acidophilus and genus of the genus Iron.
- the flora was cultured in a constant temperature shaker.
- the concentration of nutrient elements in the culture solution was: (NH 4 ) 2 SO 4 2 g/L, K 2 HPO 4 0.3 g/L, KCl 0.05 g/L, and MgSO 4 0.3 g/L. Ca(NO 3 ) 2 0.01 g/L.
- 500 mL of the enriched culture solution was inoculated into the leaching column, and the circulation was continued.
- concentration of Cu in the leachate reaches 3g/L
- sulfuric acid is added to the leachate according to the extraction of 1.54kg H 2 SO 4 /kg Cu, and the circulating spray is continued.
- the concentration of acid iron in the leaching process is continuously increased (Fig. 2, Fig. 3).
- the pyrite in the column is continuously oxidized to form H 2 SO 4 and Fe 2 (SO 4 ) 3 .
- the change in copper leaching rate with time is shown in Fig. 4.
- the increase in acid and iron concentration promotes Cu leaching.
- the number of bacteria in the bacteria also gradually increased, and the average amount in the leachate reached 2 ⁇ 10 8 /mL.
- the main copper mineral of a copper sulfide ore is a chalcopyrite with an ore composition of 0.47% Cu, 3.59% Fe, a reduced sulfur content of S 4.28%, and a pyrite content of 7.8%.
- the ore moisture content is 5-10%.
- the spray intensity is 6L / m 2 ⁇ h.
- the concentration of Cu in the leachate reached 3g/L.
- the leachate entered the extraction electrowinning workshop to obtain the cathode copper.
- the raffinate returned as the spray liquid and continued to spray.
- the concentration of the leachate H 2 SO 4 was 5g/L.
- the concentration of Fe 3+ reaches 4g/L, and the concentration of acid iron which is suitable for leaching of chalcopyrite is formed.
- the Cu leaching rate reached 81% and the heap leaching was completed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Microbiology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Geology (AREA)
- Biotechnology (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims (6)
- 一种硫化铜矿生物堆浸水喷淋启动的方法,所述方法包括以下步骤:1)硫化铜矿水喷淋启动的可行性判定:若矿石的产酸潜势大于耗酸潜势,则进行水喷淋启动;2)水喷淋启动:在硫化铜矿的筑堆过程中用水润湿,筑堆完成后,用水进行喷淋,当浸出液pH>3.0时循环喷淋,当浸出液pH<3.0,在浸出液中接种嗜酸铁硫氧化微生物,作为喷淋液,继续循环喷淋,逐渐提高系统溶液中的酸铁浓度,实现硫化铜矿生物堆浸的快速启动。
- 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,产酸潜势通过测定硫化铜矿的还原态硫的含量,假定还原态硫全部氧化来计算;耗酸潜势通过用硫酸滴定矿石粉末,计算硫酸的消耗量。
- 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,在硫化铜矿生物堆浸筑堆过程中用水将矿石喷淋润湿,喷淋水量比例为20-100L/吨矿石,并在筑堆阶段保持矿石水分含量5%-10%。
- 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,所述的嗜酸铁硫氧化微生物主要包括钩端螺旋菌属、嗜酸硫杆菌属以及铁质菌属中的一种或多种。
- 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,在接种微生物时,在溶液池的浸出液中或堆场上添加适合嗜酸铁硫氧化微生物的营养物质,使溶液中(NH4)2SO4浓度达到0.5-3g/L,K2HPO4浓度达到0.1-0.5g/L,KCl浓度达到0.01-0.1g/L,MgSO4浓度达到0.1-0.5g/L,Ca(NO3)2浓度达到0.002-0.01g/L。
- 一种硫化铜矿生物堆浸的方法,其特征在于,基于权利要求1-5任一所述的硫化铜矿生物堆浸水喷淋启动的方法,在步骤2)之后,继续喷淋至浸出液中铜含量达到目标值,对浸出液萃取得到目标金属,萃余液返回矿堆作为喷淋液继续进行喷淋;当喷淋液不足时,采用水或者矿山酸性废水补充喷淋液,循环往复至矿堆完成浸出。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2016311804A AU2016311804B2 (en) | 2015-08-27 | 2016-06-24 | A process for initiation of copper sulfide heap bioleaching using water irrigation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510536726.1A CN105200232B (zh) | 2015-08-27 | 2015-08-27 | 一种硫化铜矿生物堆浸水喷淋启动的方法 |
CN2015105367261 | 2015-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017032164A1 true WO2017032164A1 (zh) | 2017-03-02 |
Family
ID=54948185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/087086 WO2017032164A1 (zh) | 2015-08-27 | 2016-06-24 | 一种硫化铜矿生物堆浸水喷淋启动的方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN105200232B (zh) |
AU (1) | AU2016311804B2 (zh) |
WO (1) | WO2017032164A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105200232B (zh) * | 2015-08-27 | 2017-12-12 | 中国科学院过程工程研究所 | 一种硫化铜矿生物堆浸水喷淋启动的方法 |
CN105648213B (zh) * | 2016-01-20 | 2017-12-12 | 中国科学院过程工程研究所 | 一种低黄铁矿含量硫化铜矿的生物堆浸方法 |
CN106282551B (zh) * | 2016-09-18 | 2018-03-13 | 深圳市如茵生态环境建设有限公司 | 一种泥质和低品位难处理粉矿的造粒堆浸方法 |
CN112410542B (zh) * | 2020-11-20 | 2022-12-27 | 攀枝花钢城集团有限公司 | 一种降低转炉钢渣中磷含量的方法 |
CN115595438B (zh) * | 2022-10-13 | 2024-08-16 | 中国科学院过程工程研究所 | 一种低硫矿石生物堆浸的方法 |
CN118086702A (zh) * | 2024-04-07 | 2024-05-28 | 中国矿业大学 | 一种利用酸性矿井水和高硫尾矿辅助生物浸出粉煤灰中稀土的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1475587A (zh) * | 2002-08-15 | 2004-02-18 | 北京有色金属研究总院 | 含碱性脉石的硫化矿矿石或精矿或尾矿的生物浸出工艺 |
CN101191153A (zh) * | 2006-11-28 | 2008-06-04 | 北京有色金属研究总院 | 次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺 |
JP2009228094A (ja) * | 2008-03-25 | 2009-10-08 | Nippon Mining & Metals Co Ltd | 混合菌を用いた硫化銅鉱の浸出方法 |
US20110229385A1 (en) * | 2010-03-17 | 2011-09-22 | Jx Nippon Mining & Metals Corporation | Method of leaching copper sulfide ore |
CN104109765A (zh) * | 2013-04-17 | 2014-10-22 | 中国科学院过程工程研究所 | 一种次生硫化铜矿两段生物堆浸方法 |
CN105200232A (zh) * | 2015-08-27 | 2015-12-30 | 中国科学院过程工程研究所 | 一种硫化铜矿生物堆浸水喷淋启动的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PE20020630A1 (es) * | 2000-10-06 | 2002-07-11 | Billiton Sa Ltd | Lixiviacion en pilas de minerales sulfurados |
CN104419827B (zh) * | 2013-08-30 | 2017-01-25 | 中国科学院过程工程研究所 | 一种难处理金矿生物堆浸预氧化方法 |
CN104630467B (zh) * | 2013-11-13 | 2017-05-17 | 中国科学院过程工程研究所 | 一种用于堆浸过程中Fe2+氧化的生物接触氧化池及方法 |
-
2015
- 2015-08-27 CN CN201510536726.1A patent/CN105200232B/zh active Active
-
2016
- 2016-06-24 WO PCT/CN2016/087086 patent/WO2017032164A1/zh active Application Filing
- 2016-06-24 AU AU2016311804A patent/AU2016311804B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1475587A (zh) * | 2002-08-15 | 2004-02-18 | 北京有色金属研究总院 | 含碱性脉石的硫化矿矿石或精矿或尾矿的生物浸出工艺 |
CN101191153A (zh) * | 2006-11-28 | 2008-06-04 | 北京有色金属研究总院 | 次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺 |
JP2009228094A (ja) * | 2008-03-25 | 2009-10-08 | Nippon Mining & Metals Co Ltd | 混合菌を用いた硫化銅鉱の浸出方法 |
US20110229385A1 (en) * | 2010-03-17 | 2011-09-22 | Jx Nippon Mining & Metals Corporation | Method of leaching copper sulfide ore |
CN104109765A (zh) * | 2013-04-17 | 2014-10-22 | 中国科学院过程工程研究所 | 一种次生硫化铜矿两段生物堆浸方法 |
CN105200232A (zh) * | 2015-08-27 | 2015-12-30 | 中国科学院过程工程研究所 | 一种硫化铜矿生物堆浸水喷淋启动的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105200232A (zh) | 2015-12-30 |
AU2016311804A1 (en) | 2018-02-15 |
AU2016311804B2 (en) | 2019-01-17 |
CN105200232B (zh) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017032164A1 (zh) | 一种硫化铜矿生物堆浸水喷淋启动的方法 | |
CN101191153B (zh) | 次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺 | |
CN104109765B (zh) | 一种次生硫化铜矿两段生物堆浸方法 | |
CN102649997B (zh) | 氨浸出的方法 | |
CN105714115B (zh) | 一种碳硅泥岩型铀矿石细菌浸铀方法 | |
CN107267755B (zh) | 一种次生硫化铜矿生物堆浸的方法 | |
Behera et al. | Advances in microbial leaching processes for nickel extraction from lateritic minerals-A review | |
CN102634662B (zh) | 一种用空气和二氧化硫混合气低温除铁的方法 | |
CN104152691A (zh) | 一种露天剥离硫化铜矿的生物堆浸工艺 | |
CN105648213B (zh) | 一种低黄铁矿含量硫化铜矿的生物堆浸方法 | |
CN101457209B (zh) | 低温浸矿菌及其用于硫化铜矿的低温生物堆浸工艺 | |
CN101805829A (zh) | 高硫/铜比次生硫化铜矿选择性生物浸出工艺 | |
Dan et al. | Reductive leaching of manganese from manganese dioxide ores by bacterial-catalyzed two-ores method | |
US20080026450A1 (en) | Method of leaching copper sulfide ores containing chalcopyrite | |
CN100422358C (zh) | 含碱性脉石的硫化矿矿石或精矿或尾矿的生物浸出工艺 | |
CN108130424B (zh) | 一种硫铁矿烧渣生物脱硫提质协同回收有价金属的方法 | |
CN101984094B (zh) | 一种生物堆浸过程中控制氧化还原电位的方法 | |
CN112280980B (zh) | 生物堆浸系统调控电位的方法 | |
CN105821210B (zh) | 一种基于生物薄层筑堆处理高含细粒尾矿的方法 | |
CN109182751B (zh) | 一种基于铁硫代谢调控促进黄铜矿生物浸出的方法 | |
CN101597037A (zh) | 一种含磷铁矿石中磷的生物浸出方法 | |
CN110117715B (zh) | 一种堆浸尾渣生物氧化浸出回收工艺 | |
CN105274331B (zh) | 一种利用空气能加热浸出低品位铜尾矿回收铜的方法 | |
Li et al. | Effect of Ferric Ions on Bioleaching of Pentlandite Concentrate | |
RU2336341C1 (ru) | Способ кучного бактериального выщелачивания сульфидсодержащих продуктов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16838424 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016311804 Country of ref document: AU Date of ref document: 20160624 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16838424 Country of ref document: EP Kind code of ref document: A1 |