WO2017032164A1 - 一种硫化铜矿生物堆浸水喷淋启动的方法 - Google Patents

一种硫化铜矿生物堆浸水喷淋启动的方法 Download PDF

Info

Publication number
WO2017032164A1
WO2017032164A1 PCT/CN2016/087086 CN2016087086W WO2017032164A1 WO 2017032164 A1 WO2017032164 A1 WO 2017032164A1 CN 2016087086 W CN2016087086 W CN 2016087086W WO 2017032164 A1 WO2017032164 A1 WO 2017032164A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
ore
water
copper sulfide
acid
Prior art date
Application number
PCT/CN2016/087086
Other languages
English (en)
French (fr)
Inventor
贾炎
阮仁满
孙和云
耿一
张冬松
虞捷
Original Assignee
中国科学院过程工程研究所
万宝矿产有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所, 万宝矿产有限公司 filed Critical 中国科学院过程工程研究所
Priority to AU2016311804A priority Critical patent/AU2016311804B2/en
Publication of WO2017032164A1 publication Critical patent/WO2017032164A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of biometallurgy, in particular to a method for starting a water immersion spray of a copper sulfide ore biopile.
  • H 2 SO 4 and Fe 2 (SO 4 ) 3 are manually purchased to configure the required acid iron solution, high cost and labor input are required.
  • Sulfide ore (MeS) itself can be oxidized to produce H 2 SO 4 .
  • sulfide ore contains a certain amount of pyrite (FeS 2 ), which can be used as an important source for producing the desired oxidant Fe 3+ .
  • FeS 2 pyrite
  • the use of sulphide ore in the ore to provide acid and iron can effectively reduce production costs.
  • the object of the present invention is to provide a method for initiating flooding of a copper sulfide ore biopile by oxidizing sulfide ore under the action of oxygen and microorganisms by directly spraying with water to form H 2 SO 4 and Fe 2 (SO 4 ) 3 , to achieve the initial stage of bio- heap leaching without the need to invest in acid iron, saving production costs.
  • a method for priming a copper sulfide ore biopile immersion spray comprising the steps of:
  • the water in the process of immersing the copper sulfide ore biopile, the water is sprayed and wetted, the spray ratio is 20-100 L/ton of ore, and the moisture content of the ore is kept at 5%-10% during the pile-up stage.
  • the pile height is 1-10 meters.
  • the water is sprayed, and the time and intensity of the spray (3-50 L/m 2 ⁇ h) are selected according to the ore properties, particle size and stack height, and the leachate Spray to pH ⁇ 3.0.
  • the eluate of the solution pool is inoculated with an eosinophilic iron-oxidizing microorganism, mainly including one of Leptospira, Thiobacillus acidophilus, and Iron genus.
  • the mixed bacteria of the inoculum or the plurality of bacteria may be added in the form of acidic wastewater containing an acidophilic iron-sulfur oxide microorganism or an enriched cultured acidophilic iron-sulfur oxide group.
  • the concentration of (NH 4 ) 2 SO 4 in the system solution reach 0.5-3 g/L, K 2 HPO 4 concentration. It reaches 0.1-0.5g/L, the concentration of KCl reaches 0.01-0.1g/L, the concentration of MgSO 4 reaches 0.1-0.5g/L, and the concentration of Ca(NO 3 ) 2 reaches 0.002-0.01g/L, which is an acidophilic iron oxidizing bacteria.
  • the growth provides nutrition.
  • the invention also provides a copper sulphide bio-heap leaching method, which comprises, after starting the water spray, as in the above step 2), after adding nutrients and microorganisms, continuing to spray to the leaching solution to achieve the target copper content Value, then the leachate enters the extraction electrowinning workshop to obtain the target metal.
  • 1mol Cu will return 1mol H 2 SO 4 during the extraction process, which improves the acidity of the raffinate, and the raffinate returns to the heap as a spray solution for spraying.
  • the water or mine acid waste water is used to supplement the evaporated solution (spray liquid), which is used as the mine spray liquid, and the cycle is reciprocated until the oxidation of the pile is completed. Leaching.
  • the acidophilic iron-sulfur oxide microorganisms inoculated in the solution tank of the present invention are generally Leptospira, Thiobacillus acidophilus, and Iron fungi.
  • the inoculated microorganisms include: an acidophilic iron-sulfur oxidizing bacteria group which is enriched and cultured from the mine acid waste water or the leachate of the produced heap; the leachate of the ore heap containing the acidophilic iron-sulfur oxidizing bacteria mine or in the production.
  • the heap leaching leaching solution or the acid waste water for enriching microorganisms is selected to have an iron concentration of 1 to 10 g/L, a pH value of 1.5 to 2.5, and an eosinophilic iron-sulfur oxidizing microorganism.
  • the enrichment medium of the strain is 9K medium ((NH 4 ) 2 SO 4 3g/L, K 2 HPO 4 0.5g/L, KCl 0.1g/L, MgSO 4 0.5g/L, Ca(NO 3 ) 2 0.01 g / L), adding 10 g / L FeSO 4 , pH 1.0-2.5.
  • the concentration of the microorganisms in the system solution can finally reach 10 7 - 10 8 /mL.
  • pyrite In the sulphide ore (MeS) heap leaching process, especially the high content of pyrite (FeS 2 ), it is an important source of H 2 SO 4 and Fe 3+ , and it has a considerable content in ore. Under alkaline and weakly acidic conditions, pyrite can react as follows under the action of oxygen:
  • Fe 3+ is a natural oxidant of pyrite, which plays a vital role in the oxidation of pyrite in an acidic environment. Under the action of acidophilic iron-sulfur oxidizing microorganisms, the reduced Fe 3+ can be quickly replenished, and the microorganisms adhere to the surface of the pyrite, which can greatly promote the oxidation of pyrite.
  • the invention fully utilizes the oxidation principle of sulfide ore under different conditions, and solves the problem that a large amount of acid iron solution is needed in the initial stage of copper sulfide ore heap leaching.
  • Directly sprayed with water fully utilizing the action of oxygen and microorganisms to oxidize copper sulfide ore, especially pyrite, to obtain a solution rich in H 2 SO 4 and Fe 2 (SO 4 ) 3 for cyclic spraying.
  • the amount of microorganisms and the concentration of acid iron are obtained as an acidic spray liquid rich in eosinophilic iron oxide oxidizing bacteria and Fe 3+ .
  • the invention adopts reasonable measures in the initial stage of heap leaching to fully utilize the air oxidation, the oxidation of ferric iron and the oxidation of microorganisms and the mutual synergistic oxidation between the three, oxidize the copper sulfide ore and pyrite to achieve the initial
  • the rapid production of acid and iron in the stage enables rapid start-up of production and reduces the cost of acid iron input.
  • FIG. 1 is a schematic view showing a process flow of a copper sulfide ore bioleaching process of the present invention
  • Example 2 is a view showing changes in concentration of H 2 SO 4 in the leachate of Example 1 of the present invention
  • Example 3 is a graph showing changes in Fe 3+ concentration in the leachate of Example 1 of the present invention.
  • Figure 4 is a graph showing the leaching rate of copper in the leachate of Example 1 of the present invention.
  • the acid production performance of the specific ore is confirmed before production; after confirming the feasibility, the ore is wetted with water in the stage of biopile leaching; the initial stage of spraying, spraying with water,
  • the air is used to oxidize the copper sulfide ore in the ore heap to produce a weakly acidic leachate, and to circulate and spray; when the pH of the leachate is ⁇ 3.0, inoculate the acidophilic iron-sulfur oxide microorganism in the enriched culture or acid waste water to add microbial growth.
  • the medium further utilizes microorganisms to promote the efficient oxidation and sulfidation of microorganisms in the yard to produce H 2 SO 4 and Fe 3+ , and forms an acidic solution rich in Fe 3+ and eosinophilic oxidizing microorganisms required for bioleaching.
  • 1 mol Cu will return 1 mol H 2 SO 4 during the extraction process, which improves the raffinate.
  • the acidity of the liquid, the raffinate is returned to the heap as a spray liquid for spraying.
  • the water or the acid waste water of the mine is used to supplement the evaporated solution (spray liquid). It is used as a mine spray liquid, and is recycled to the completion of oxidation of the heap to complete the leaching.
  • the ore composition is 0.37% Cu, 5.55% Fe, and 6.28% reduced S.
  • the main copper minerals in the ore are chalcopyrite, copper blue and sulfur-arsenic copper ore, of which more than 90% of the chalcopyrite and 10% of the pyrite are the main gangue minerals such as feldspar, quartz and sericite.
  • the ore is wetted according to the amount of water of 50L per ton of ore, and then intermittent spraying (1 day / 1 day, that is, spraying for 1 day), the spraying intensity is 3L/m 2 h.
  • the acidophilic iron-sulfur oxidizing bacteria group (media composition: 9K medium, 10 g/L FeSO 4 , pH 1.8) is enriched and cultured from the local mine acid wastewater, mainly including Leptospira, Thiobacillus acidophilus and genus of the genus Iron.
  • the flora was cultured in a constant temperature shaker.
  • the concentration of nutrient elements in the culture solution was: (NH 4 ) 2 SO 4 2 g/L, K 2 HPO 4 0.3 g/L, KCl 0.05 g/L, and MgSO 4 0.3 g/L. Ca(NO 3 ) 2 0.01 g/L.
  • 500 mL of the enriched culture solution was inoculated into the leaching column, and the circulation was continued.
  • concentration of Cu in the leachate reaches 3g/L
  • sulfuric acid is added to the leachate according to the extraction of 1.54kg H 2 SO 4 /kg Cu, and the circulating spray is continued.
  • the concentration of acid iron in the leaching process is continuously increased (Fig. 2, Fig. 3).
  • the pyrite in the column is continuously oxidized to form H 2 SO 4 and Fe 2 (SO 4 ) 3 .
  • the change in copper leaching rate with time is shown in Fig. 4.
  • the increase in acid and iron concentration promotes Cu leaching.
  • the number of bacteria in the bacteria also gradually increased, and the average amount in the leachate reached 2 ⁇ 10 8 /mL.
  • the main copper mineral of a copper sulfide ore is a chalcopyrite with an ore composition of 0.47% Cu, 3.59% Fe, a reduced sulfur content of S 4.28%, and a pyrite content of 7.8%.
  • the ore moisture content is 5-10%.
  • the spray intensity is 6L / m 2 ⁇ h.
  • the concentration of Cu in the leachate reached 3g/L.
  • the leachate entered the extraction electrowinning workshop to obtain the cathode copper.
  • the raffinate returned as the spray liquid and continued to spray.
  • the concentration of the leachate H 2 SO 4 was 5g/L.
  • the concentration of Fe 3+ reaches 4g/L, and the concentration of acid iron which is suitable for leaching of chalcopyrite is formed.
  • the Cu leaching rate reached 81% and the heap leaching was completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Geology (AREA)
  • Biotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种硫化铜矿生物堆浸水喷淋启动的方法,包括以下步骤:1)硫化铜矿水喷淋启动的可行性判定:若矿石的产酸潜势大于耗酸潜势,则进行水喷淋启动;2)水喷淋启动:在硫化铜矿筑堆的过程中用水润湿,筑堆完成后,用水进行喷淋,当浸出液pH>3.0时循环喷淋,当浸出液pH<3.0,在浸出液中接种嗜酸铁硫氧化微生物,作为喷淋液,继续循环喷淋,逐渐提高系统溶液中的酸、铁、铜浓度,实现硫化铜矿生物堆浸的启动。

Description

一种硫化铜矿生物堆浸水喷淋启动的方法 技术领域
本发明涉及生物冶金领域,具体地,本发明涉及一种硫化铜矿生物堆浸水喷淋启动的方法。
背景技术
硫化铜矿生物堆浸过程中,需要酸性、富含Fe3+以及嗜酸铁硫氧化微生物的溶液作为喷淋液进行喷淋,通过Fe3+和微生物的作用,将硫化铜矿氧化,浸出铜离子。由于生物堆浸一般用于低品位矿及尾矿的处理,处理矿石量大,矿石吸水及蒸发量大,在生产起始阶段需要大量的生产溶液,同时脉石在浸出起始阶段大量耗酸,所以如果人工采购H2SO4和Fe2(SO4)3来配置生产所需酸铁溶液,需要较高的成本及人力投入。硫化矿(MeS)本身就可以氧化产生H2SO4,一般硫化矿中不可避免的含有一定含量的黄铁矿(FeS2),可以作为生产所需氧化剂Fe3+的重要来源。利用矿石中硫化矿自身氧化来提供酸和铁,可以有效地降低生产成本。
发明内容
本发明的目的是提供一种硫化铜矿生物堆浸水喷淋启动的方法,该方法通过直接用水喷淋,在氧气和微生物的作用下将硫化矿氧化,生成H2SO4和Fe2(SO4)3,实现生物堆浸起始阶段无需酸铁投入,节省生产成本。
为实现上述目的,本发明采用了如下的技术方案:
一种硫化铜矿生物堆浸水喷淋启动的方法,所述方法包括以下步骤:
1)硫化铜矿水喷淋启动的可行性判定:若矿石的产酸潜势大于耗酸潜势,则进行水喷淋启动;
2)水喷淋启动:在硫化铜矿的筑堆过程中用水润湿,筑堆完成后,用水进行喷淋,当浸出液pH>3.0时循环喷淋,当浸出液pH<3.0,在浸出液中接种嗜酸铁硫氧化微生物,作为喷淋液,继续循环喷淋,逐渐提高系统溶液中的酸铁浓度,实现硫化铜矿生物堆浸的启动。
确定目标矿石水喷淋启动的可行性进行判定,通过测定矿石还原态硫(包括黄铁矿、硫化铜矿等)产酸潜势以及脉石耗酸潜势,如果产酸潜势大于耗酸潜势则可以进行水喷淋启动。主要的硫化物的产酸性能计算,例如:4FeS2+15O2+2H2O→2Fe2(SO4)3+2H2SO4, Cu2S+2.5O2+H2SO4=2CuSO4+H2O等。耗酸潜势通过用100g/L硫酸滴定矿石粉末,计算硫酸的消耗量,作为耗酸潜势。
本发明中,在硫化铜矿生物堆浸筑堆的过程中,用水进行喷淋润湿,喷淋比例为20-100L/吨矿石,在筑堆阶段保持矿石的水分含量为5%-10%,堆高1-10米。
本发明中,在硫化铜矿生物堆浸完成筑堆后,采用水进行喷淋,根据矿石性质、粒度及堆高等因素选择喷淋的时间和强度(3-50L/m2·h),浸出液循环喷淋至pH<3.0。
本发明中,当浸出液循环喷淋至pH<3.0时,向溶液池的浸出液中接种嗜酸铁硫氧化微生物,主要包括钩端螺旋菌属、嗜酸硫杆菌属以及铁质菌属中的一种菌或多种菌的混合菌,添加的方式可以是含有嗜酸铁硫氧化微生物的酸性废水或者是富集培养的嗜酸铁硫氧化菌群。
本发明中,可以选择在浸出液溶液池中或者堆场上添加适合嗜酸铁氧化微生物的营养物质,使系统溶液中(NH4)2SO4浓度达到0.5-3g/L,K2HPO4浓度达到0.1-0.5g/L,KCl浓度达到0.01-0.1g/L,MgSO4浓度达到0.1-0.5g/L,Ca(NO3)2浓度达到0.002-0.01g/L,为嗜酸铁氧化细菌的生长提供营养。
本发明还提供了一种硫化铜矿生物堆浸的方法,该方法包括在水喷淋启动后,如上述步骤2),在添加营养物质及微生物后,继续喷淋至浸出液中铜含量达到目标值,然后浸出液进入萃取电积车间,得到目标金属,萃取过程中1mol Cu将会返回1mol H2SO4,提高了萃余液的酸度,萃余液返回矿堆作为喷淋液进行喷淋,在喷淋过程中,根据实际情况,当喷淋液不足时,采用水或者矿山酸性废水补充蒸发的溶液(喷淋液),用作矿堆喷淋液,循环往复至矿堆氧化完成,完成浸出。
本发明接种于溶液池的嗜酸铁硫氧化微生物一般为钩端螺旋菌属、嗜酸硫杆菌属以及铁质菌属等。接种的微生物包括:从矿山酸性废水或者生产中的矿堆的浸出液中富集培养的嗜酸铁硫氧化菌群;含嗜酸铁硫氧化菌矿山酸性废水中或者生产中的矿堆的浸出液。一般选取用于富集微生物的堆浸浸出液或酸性废水中铁浓度为1~10g/L,pH值1.5~2.5,含有嗜酸铁硫氧化微生物。菌种的富集培养基为9K培养基((NH4)2SO4 3g/L,K2HPO4 0.5g/L,KCl 0.1g/L,MgSO4 0.5g/L,Ca(NO3)2 0.01g/L),添加10g/L FeSO4,pH 1.0-2.5。
本发明中,添加微生物生长所需的营养后,系统溶液中微生物浓度最终可以达到107-108个/mL。
在硫化矿(MeS)堆浸过程中,特别是黄铁矿(FeS2)含量较高,本身就是H2SO4和Fe3+的重要来源,而且在矿石一般都具有相当的含量。碱性和弱酸性条件下,黄铁矿在氧气的作用下,可以发生如下反应:
4FeS2+15O2+2H2O→2Fe2(SO4)3+2H2SO4
空气将一部分黄铁矿氧化后,可以产生少量的Fe3+和硫酸。Fe3+是黄铁矿的天然氧化剂,在酸性环境中对黄铁矿氧化起到了至关重要的作用。在嗜酸铁硫氧化微生物的作用下,被还原的Fe3+可以很快的得到补充,同时微生物附着于黄铁矿表面,可以极大的促进黄铁矿的氧化。
FeS2+14Fe3++8H2O→15Fe2++16H++2SO4 2-(化学作用)
4Fe2++O2+4H+→4Fe3++2H2O(微生物作用)
本发明充分利用不同条件下硫化矿的氧化原理,解决硫化铜矿堆浸起始阶段需要大量酸铁溶液的问题。直接采用水进行喷淋,充分利用氧气及微生物的作用将硫化铜矿,特别是黄铁矿氧化,得到富含H2SO4和Fe2(SO4)3的溶液,用于循环喷淋。在刚开始pH>3.0,未达到嗜酸铁硫氧化微生物合理的生长环境条件时,通过曝气和充分湿润矿石,充分利用氧气的作用来氧化硫化铜矿;在浸出液pH<3.0,通过在喷淋的起始阶段向溶液池中添加营养物质,矿堆进行曝气,接种微生物群落,实现最大化利用氧气、Fe3+及微生物的作用,快速氧化硫化铜矿产酸产铁,逐渐提高溶液中微生物数量及酸铁浓度,获得富含嗜酸铁硫氧化菌以及Fe3+的酸性喷淋液。本发明在堆浸的起始阶段采取合理的措施充分利用空气氧化、三价铁氧化及微生物的氧化作用以及三者之间的相互协同氧化作用,氧化硫化铜矿及黄铁矿,实现起始阶段快速的产酸产铁,实现生产的快速启动,并降低酸铁投入成本。
附图说明
图1为本发明的硫化铜矿生物堆浸工艺流程示意图;
图2为本发明实施例1浸出液中H2SO4浓度变化情况;
图3为本发明实施例1浸出液中Fe3+浓度变化情况;
图4为本发明实施例1浸出液中铜的浸出率曲线。
具体实施方式
下面以附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,在生产前对具体矿石产酸性能进行确认;经确认可行性后,在生物堆浸筑堆阶段,用水将矿石润湿;喷淋的起始阶段,用水进行喷淋,利用空气对矿堆中硫化铜矿进行氧化,产生弱酸性浸出液,并循环喷淋;当浸出液的pH<3.0后,接种富集培养或酸性废水中嗜酸铁硫氧化微生物,添加适合微生物生长的培养基,进一步利用微生物来促进堆场中微生物高效的氧化硫化产生H2SO4和Fe3+,形成生物堆浸所需要的富 含Fe3+及嗜酸铁硫氧化微生物的酸性溶液,用于堆浸的循环喷淋。在添加营养物质及微生物后,继续喷淋至浸出液中铜含量达到目标值,然后浸出液进入萃取电积车间,得到目标金属,萃取过程中1mol Cu将会返回1mol H2SO4,提高了萃余液的酸度,萃余液返回矿堆作为喷淋液进行喷淋,在喷淋过程中,根据实际情况,当喷淋液不足时,采用水或者矿山酸性废水补充蒸发的溶液(喷淋液),用作矿堆喷淋液,循环往复至矿堆氧化完成,完成浸出。
实施例1
某低品位铜矿生物堆浸试验中,矿石成分为Cu 0.37%、Fe 5.59%、还原态S 6.28%。矿石中主要铜矿物为辉铜矿、铜蓝和硫砷铜矿,其中辉铜矿占90%以上,黄铁矿含量为10%,主要脉石矿物为长石、石英、绢云母。经计算和测定产酸潜势大于耗酸潜势,具备水喷淋启动的可行性。将矿石破碎至粒度小于50mm,装入1米控温浸出柱中。装柱过程中,按照每吨矿石50L的水量将矿石润湿,然后采用间歇喷淋(1天/1天,即喷淋1天歇1天),喷淋强度3L/m2h。当浸出液pH<3.0时,从本地矿山酸性废水中富集培养嗜酸铁硫氧化菌群(培养基成分:9K培养基,10g/L FeSO4,pH 1.8),主要包括钩端螺旋菌属、嗜酸硫杆菌属以及铁质菌属等。菌群在恒温摇床中培养,培养液营养元素的浓度为:(NH4)2SO4 2g/L,K2HPO4 0.3g/L,KCl 0.05g/L,MgSO4 0.3g/L,Ca(NO3)2 0.01g/L。接种富集培养液500mL于浸出柱中,继续循环喷淋。当浸出液Cu浓度达到3g/L时,按照萃取返酸1.54kg H2SO4/kg Cu向浸出液中添加硫酸,继续循环喷淋,浸出过程中酸铁浓度不断提高(图2,图3),从图2和图3可以看出,柱子中的黄铁矿不断的氧化生成H2SO4和Fe2(SO4)3。铜浸出率随时间的变化如图4所示,从图4中可以看出,酸和铁浓度的提高促进了Cu的浸出。细菌的微生物数量也逐渐升高,浸出液中数量平均达到2×108个/mL。
实施例2
某硫化铜矿主要铜矿物为辉铜矿,矿石成分为Cu 0.47%、Fe 3.59%、还原硫含量S 4.28%,黄铁矿含量为7.8%。经计算和测定产酸潜势大于耗酸潜势,具备水喷淋启动的可行性。该铜矿生物堆浸启动过程中,矿石破碎到P80=250mm,然后筑堆,堆高为6米,筑堆过程中按照60L/吨矿石,用水对矿石进行润湿,在筑堆阶段保持矿石水分含量5-10%。筑堆完成后,采用水进行喷淋,按照间歇喷淋(1天/1天,即喷淋一天歇一天)的方式进行喷淋,喷淋强度为6L/m2·h。喷淋12天后,浸出液的pH<3.0,采集当地矿山酸性废水(pH=2.5,内含嗜酸铁硫氧化微生物)10m3加入浸出液池中,在溶液 池中添加微生物生长所需营养元素(溶液池中各营养元素的浓度达到:(NH4)2SO4 1g/L,K2HPO4 0.2g/L,KCl 0.03g/L,MgSO4 0.3g/L,Ca(NO3)2 0.01g/L),继续循环喷淋。继续喷淋10天后浸出液Cu浓度达到3g/L,浸出液进入萃取电积车间,得到阴极铜,萃余液返回作为喷淋液,继续循环喷淋,60天后,浸出液H2SO4浓度5g/L,Fe3+浓度达到4g/L,形成比较适宜辉铜矿浸出的酸铁浓度。300天后,Cu浸出率达到81%,堆浸完成。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

  1. 一种硫化铜矿生物堆浸水喷淋启动的方法,所述方法包括以下步骤:
    1)硫化铜矿水喷淋启动的可行性判定:若矿石的产酸潜势大于耗酸潜势,则进行水喷淋启动;
    2)水喷淋启动:在硫化铜矿的筑堆过程中用水润湿,筑堆完成后,用水进行喷淋,当浸出液pH>3.0时循环喷淋,当浸出液pH<3.0,在浸出液中接种嗜酸铁硫氧化微生物,作为喷淋液,继续循环喷淋,逐渐提高系统溶液中的酸铁浓度,实现硫化铜矿生物堆浸的快速启动。
  2. 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,产酸潜势通过测定硫化铜矿的还原态硫的含量,假定还原态硫全部氧化来计算;耗酸潜势通过用硫酸滴定矿石粉末,计算硫酸的消耗量。
  3. 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,在硫化铜矿生物堆浸筑堆过程中用水将矿石喷淋润湿,喷淋水量比例为20-100L/吨矿石,并在筑堆阶段保持矿石水分含量5%-10%。
  4. 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,所述的嗜酸铁硫氧化微生物主要包括钩端螺旋菌属、嗜酸硫杆菌属以及铁质菌属中的一种或多种。
  5. 根据权利要求1所述的硫化铜矿生物堆浸水喷淋启动的方法,其特征在于,在接种微生物时,在溶液池的浸出液中或堆场上添加适合嗜酸铁硫氧化微生物的营养物质,使溶液中(NH4)2SO4浓度达到0.5-3g/L,K2HPO4浓度达到0.1-0.5g/L,KCl浓度达到0.01-0.1g/L,MgSO4浓度达到0.1-0.5g/L,Ca(NO3)2浓度达到0.002-0.01g/L。
  6. 一种硫化铜矿生物堆浸的方法,其特征在于,基于权利要求1-5任一所述的硫化铜矿生物堆浸水喷淋启动的方法,在步骤2)之后,继续喷淋至浸出液中铜含量达到目标值,对浸出液萃取得到目标金属,萃余液返回矿堆作为喷淋液继续进行喷淋;
    当喷淋液不足时,采用水或者矿山酸性废水补充喷淋液,循环往复至矿堆完成浸出。
PCT/CN2016/087086 2015-08-27 2016-06-24 一种硫化铜矿生物堆浸水喷淋启动的方法 WO2017032164A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2016311804A AU2016311804B2 (en) 2015-08-27 2016-06-24 A process for initiation of copper sulfide heap bioleaching using water irrigation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510536726.1A CN105200232B (zh) 2015-08-27 2015-08-27 一种硫化铜矿生物堆浸水喷淋启动的方法
CN2015105367261 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017032164A1 true WO2017032164A1 (zh) 2017-03-02

Family

ID=54948185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087086 WO2017032164A1 (zh) 2015-08-27 2016-06-24 一种硫化铜矿生物堆浸水喷淋启动的方法

Country Status (3)

Country Link
CN (1) CN105200232B (zh)
AU (1) AU2016311804B2 (zh)
WO (1) WO2017032164A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200232B (zh) * 2015-08-27 2017-12-12 中国科学院过程工程研究所 一种硫化铜矿生物堆浸水喷淋启动的方法
CN105648213B (zh) * 2016-01-20 2017-12-12 中国科学院过程工程研究所 一种低黄铁矿含量硫化铜矿的生物堆浸方法
CN106282551B (zh) * 2016-09-18 2018-03-13 深圳市如茵生态环境建设有限公司 一种泥质和低品位难处理粉矿的造粒堆浸方法
CN112410542B (zh) * 2020-11-20 2022-12-27 攀枝花钢城集团有限公司 一种降低转炉钢渣中磷含量的方法
CN115595438B (zh) * 2022-10-13 2024-08-16 中国科学院过程工程研究所 一种低硫矿石生物堆浸的方法
CN118086702A (zh) * 2024-04-07 2024-05-28 中国矿业大学 一种利用酸性矿井水和高硫尾矿辅助生物浸出粉煤灰中稀土的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475587A (zh) * 2002-08-15 2004-02-18 北京有色金属研究总院 含碱性脉石的硫化矿矿石或精矿或尾矿的生物浸出工艺
CN101191153A (zh) * 2006-11-28 2008-06-04 北京有色金属研究总院 次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺
JP2009228094A (ja) * 2008-03-25 2009-10-08 Nippon Mining & Metals Co Ltd 混合菌を用いた硫化銅鉱の浸出方法
US20110229385A1 (en) * 2010-03-17 2011-09-22 Jx Nippon Mining & Metals Corporation Method of leaching copper sulfide ore
CN104109765A (zh) * 2013-04-17 2014-10-22 中国科学院过程工程研究所 一种次生硫化铜矿两段生物堆浸方法
CN105200232A (zh) * 2015-08-27 2015-12-30 中国科学院过程工程研究所 一种硫化铜矿生物堆浸水喷淋启动的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20020630A1 (es) * 2000-10-06 2002-07-11 Billiton Sa Ltd Lixiviacion en pilas de minerales sulfurados
CN104419827B (zh) * 2013-08-30 2017-01-25 中国科学院过程工程研究所 一种难处理金矿生物堆浸预氧化方法
CN104630467B (zh) * 2013-11-13 2017-05-17 中国科学院过程工程研究所 一种用于堆浸过程中Fe2+氧化的生物接触氧化池及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475587A (zh) * 2002-08-15 2004-02-18 北京有色金属研究总院 含碱性脉石的硫化矿矿石或精矿或尾矿的生物浸出工艺
CN101191153A (zh) * 2006-11-28 2008-06-04 北京有色金属研究总院 次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺
JP2009228094A (ja) * 2008-03-25 2009-10-08 Nippon Mining & Metals Co Ltd 混合菌を用いた硫化銅鉱の浸出方法
US20110229385A1 (en) * 2010-03-17 2011-09-22 Jx Nippon Mining & Metals Corporation Method of leaching copper sulfide ore
CN104109765A (zh) * 2013-04-17 2014-10-22 中国科学院过程工程研究所 一种次生硫化铜矿两段生物堆浸方法
CN105200232A (zh) * 2015-08-27 2015-12-30 中国科学院过程工程研究所 一种硫化铜矿生物堆浸水喷淋启动的方法

Also Published As

Publication number Publication date
CN105200232A (zh) 2015-12-30
AU2016311804A1 (en) 2018-02-15
AU2016311804B2 (en) 2019-01-17
CN105200232B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
WO2017032164A1 (zh) 一种硫化铜矿生物堆浸水喷淋启动的方法
CN101191153B (zh) 次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺
CN104109765B (zh) 一种次生硫化铜矿两段生物堆浸方法
CN102649997B (zh) 氨浸出的方法
CN105714115B (zh) 一种碳硅泥岩型铀矿石细菌浸铀方法
CN107267755B (zh) 一种次生硫化铜矿生物堆浸的方法
Behera et al. Advances in microbial leaching processes for nickel extraction from lateritic minerals-A review
CN102634662B (zh) 一种用空气和二氧化硫混合气低温除铁的方法
CN104152691A (zh) 一种露天剥离硫化铜矿的生物堆浸工艺
CN105648213B (zh) 一种低黄铁矿含量硫化铜矿的生物堆浸方法
CN101457209B (zh) 低温浸矿菌及其用于硫化铜矿的低温生物堆浸工艺
CN101805829A (zh) 高硫/铜比次生硫化铜矿选择性生物浸出工艺
Dan et al. Reductive leaching of manganese from manganese dioxide ores by bacterial-catalyzed two-ores method
US20080026450A1 (en) Method of leaching copper sulfide ores containing chalcopyrite
CN100422358C (zh) 含碱性脉石的硫化矿矿石或精矿或尾矿的生物浸出工艺
CN108130424B (zh) 一种硫铁矿烧渣生物脱硫提质协同回收有价金属的方法
CN101984094B (zh) 一种生物堆浸过程中控制氧化还原电位的方法
CN112280980B (zh) 生物堆浸系统调控电位的方法
CN105821210B (zh) 一种基于生物薄层筑堆处理高含细粒尾矿的方法
CN109182751B (zh) 一种基于铁硫代谢调控促进黄铜矿生物浸出的方法
CN101597037A (zh) 一种含磷铁矿石中磷的生物浸出方法
CN110117715B (zh) 一种堆浸尾渣生物氧化浸出回收工艺
CN105274331B (zh) 一种利用空气能加热浸出低品位铜尾矿回收铜的方法
Li et al. Effect of Ferric Ions on Bioleaching of Pentlandite Concentrate
RU2336341C1 (ru) Способ кучного бактериального выщелачивания сульфидсодержащих продуктов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016311804

Country of ref document: AU

Date of ref document: 20160624

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838424

Country of ref document: EP

Kind code of ref document: A1