WO2017031942A1 - 一种复合材料及其制备方法 - Google Patents

一种复合材料及其制备方法 Download PDF

Info

Publication number
WO2017031942A1
WO2017031942A1 PCT/CN2016/071948 CN2016071948W WO2017031942A1 WO 2017031942 A1 WO2017031942 A1 WO 2017031942A1 CN 2016071948 W CN2016071948 W CN 2016071948W WO 2017031942 A1 WO2017031942 A1 WO 2017031942A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
deformation
anodized
embryo
aluminum alloy
Prior art date
Application number
PCT/CN2016/071948
Other languages
English (en)
French (fr)
Inventor
蔡明�
柯有和
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017031942A1 publication Critical patent/WO2017031942A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate

Definitions

  • the invention relates to the technical field of materials, in particular to a composite material and a preparation method thereof.
  • the 5 series aluminum alloy and 6 series aluminum alloy not only have moderate strength, but more importantly, can make the uniform texture color that consumers like, such as black, gray, natural color, rose gold and the like.
  • the current back cover of the mobile phone made of 5 series aluminum alloy or 6 series aluminum alloy still has the following problems. Due to the small elastic modulus of the 5-series aluminum alloy or the 6-series aluminum alloy, the yield strength is insufficient, resulting in consumers in the process of use. It is found that the mobile phone will be bent. In order to avoid the bending result, it is necessary to use a material with higher yield strength and higher elastic modulus, such as high yield strength, higher modulus of elasticity aluminum alloy material or aluminum matrix composite. Materials (such as aluminum-based graphene composites, aluminum-based carbon nanotube composites, aluminum-based granular composites, etc.). Although these materials have good yield strength and elastic modulus, they are alloyed due to high-strength aluminum alloys. Too high and the presence of heterogeneous materials such as graphene in aluminum-based composite materials make these materials not well-anodized surface treatment, and it is difficult to form an effective uniform color, thereby limiting their application in consumer electronics such as mobile phones.
  • the embodiment of the invention provides a composite material and a preparation method thereof.
  • the composite material can be anodized and colored to form an effective uniform color, rich color, high yield strength, high elastic modulus, and is not easy to occur. bending.
  • a first aspect of the embodiments of the present invention provides a composite material applied to an electronic device casing, including a layer of an anti-deformation material and an anodized material layer, and the layer of the anti-deformation material and the anodized material layer are metallurgically bonded or Solid phase bonding, the bonding zone has a thickness of less than 0.5 mm;
  • the material in the layer of the deformation resistant material comprises at least an aluminum alloy material, a titanium alloy material, an aluminum matrix composite material, a stainless steel material, an alloy steel material, an amorphous alloy material, a magnesium alloy, or a magnesium matrix composite material.
  • the material of the anti-deformation material layer has a yield strength of 300 to 1500 MPa, an elastic modulus of 65 to 300 GPa, and a thickness of the anti-deformation material layer of 0.2 to 30 mm;
  • the material in the anodized material layer is a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, the aluminum oxide content in the anodized material layer is greater than 90%, and the anodized material layer has a thickness of 0.005 mm to 30 mm.
  • the material in the layer of the deformation resistant material includes an aluminum alloy material
  • the material in the layer of the deformation resistant material further includes at least one of graphene, multi-walled carbon nanotubes, and nickel-plated silicon carbide.
  • the composite material further includes an injection molding material layer, the injection molding material layer and the anti-deformation material layer are combined by metallurgical bonding or solid phase, and the injection molding material layer and the anodized material layer are respectively located at the anti-deformation material Both sides of the layer of deformed material;
  • the material of the injection molding material layer is a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and the aluminum alloy content in the injection molding material layer is greater than 90%;
  • the thickness of the injection molding material layer is 0.005 to 30 mm.
  • the deformation resistant material has a yield strength of 350 to 600 MPa and an elastic modulus of 65 to 210 GPa.
  • the deformation resistant material has a yield strength of 1000 to 1500 MPa and an elastic modulus of 180 to 300 GPa.
  • a second aspect of the embodiments of the present invention provides an outer casing of an electronic device, the outer casing of the electronic device being processed by the composite material according to the first aspect or the possible embodiment of any of the first aspects, wherein
  • the outer casing of the electronic device has a thickness of 0.21 to 90 mm
  • the deformed material layer has a thickness of 0.005 mm to 30 mm
  • the anodized material layer has a thickness of 0.2 to 30 mm.
  • a third aspect of the embodiments of the present invention provides an electronic device, including the foregoing The outer casing of the child device.
  • a fourth aspect of the embodiments of the present invention provides a composite material preparation method, including:
  • the anodizing material and the anti-deformation material are selected, wherein the anti-deformation material has a yield strength of 300-1500 MPa and an elastic modulus of 65-300 GPa; and the anti-deformation material comprises an aluminum alloy material, a titanium alloy material, an aluminum-based composite material, and a stainless steel. At least one of a material, an alloy steel material, an amorphous alloy material, a magnesium alloy, or a magnesium-based composite material; the anodized material is a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and the anodized material layer The aluminum content is greater than 90%;
  • the double layer embryo is heat-treated under the heat treatment system of the deformation resistant material to obtain a two-layer composite material.
  • the heat treatment system is a T6 heat treatment system, a T8 heat treatment system, a T4 heat treatment system, a T5 heat treatment system, or a T2 heat treatment system.
  • the deformation resistant material includes an aluminum alloy material
  • the deformation resistant material further includes at least one of graphene, multi-walled carbon nanotubes, and nickel-plated silicon carbide.
  • the double-layered embryo body is placed in a sintering furnace, and is heated to a temperature of from 0.80 Tm to 0.90 Tm at a rate of from 2 ° C/min to 5 ° C/min for 15 min to 35 min; and further from 9 ° C/min to 18 ° C/min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80 Tm to 0.90 Tm at a rate of 9 ° C / min to 18 ° C / min, and the temperature is maintained for 70 min to 105 min, and after cooling, a double layer embryo is obtained.
  • the double-layered embryo body is placed in a sintering furnace, and is heated to a temperature of from 0.80 Tm to 0.90 Tm at a rate of from 2 ° C/min to 5 ° C/min for 15 min to 35 min; and further from 9 ° C/min to 18 ° C/min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80 Tm to 0.90 Tm at a rate of 9 ° C / min to 18 ° C / min, and the temperature is maintained for 70 min to 105 min, and after cooling, a double layer embryo is obtained.
  • the anodized material in the form of a sheet and the anti-deformation material in the form of a sheet are subjected to extrusion molding or roll forming to obtain a two-layered preform.
  • one of the anodized material and the anti-deformation material is in the form of a powder and the other is in the form of a sheet;
  • the anodized material, the sheet-like material of the anti-deformation material, and the preform are formed by extrusion molding or rolling to obtain a double-layered preform.
  • a fifth aspect of the embodiments of the present invention provides a composite material preparation method, including:
  • the anodizing material, the deformation resistant material and the injection molding material are selected, wherein the deformation resistant material has a yield strength of 300 to 1500 MPa and an elastic modulus of 65 to 300 GPa; and the deformation resistant material comprises an aluminum alloy material, a titanium alloy material, and an aluminum matrix composite.
  • the anodized material is a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and the anodizing The content of the aluminum element in the material layer is greater than 90%;
  • the injection molding material is a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and the aluminum element content in the injection molding material is greater than 90%;
  • the three-layered preform is heat-treated under the heat treatment system of the deformation-resistant material to obtain a three-layer composite material.
  • the heat treatment system is a T6 heat treatment system, a T8 heat treatment system, a T4 heat treatment system, a T5 heat treatment system, or a T2 heat treatment system.
  • the deformation resistant material includes an aluminum alloy material
  • the deformation resistant material further includes at least one of graphene, multi-walled carbon nanotubes, and nickel-plated silicon carbide.
  • anodized material and the anti-deformation material are in a powder form, and the injection molded material is in the form of a sheet;
  • the anodizing material, the anti-deformation material and the injection molding material are subjected to a pressing treatment to obtain a three-layered embryo, and the intermediate layer of the three-layered embryo is the anti-deformation material layer, comprising:
  • the double-layered embryo body is placed in a sintering furnace, and is heated to a temperature of from 0.80 Tm to 0.90 Tm at a rate of from 2 ° C/min to 5 ° C/min for 15 min to 35 min; and further from 9 ° C/min to 18 ° C/min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80 Tm to 0.90 Tm at a rate of 9 ° C / min to 18 ° C / min, and the temperature is maintained for 70 min to 105 min, and a double layer of embryos is obtained after cooling;
  • An injection molding material having a sheet shape and a thickness of 0.005 to 30 mm is placed under the double layer preform, and is formed by extrusion or rolling to obtain three layers of embryos, and the intermediate layer of the three layers of embryos is The layer of anti-deformation material.
  • anodized material and the anti-deformation material are in a powder form, and the injection molded material is in the form of a sheet;
  • the anodizing material, the anti-deformation material and the injection molding material are subjected to a pressing treatment to obtain a three-layered embryo, and the intermediate layer of the three-layered embryo is the anti-deformation material layer, comprising:
  • the double-layered embryo body is placed in a sintering furnace, and is heated to a temperature of from 0.80 Tm to 0.90 Tm at a rate of from 2 ° C/min to 5 ° C/min for 15 min to 35 min; and further from 9 ° C/min to 18 ° C/min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80 Tm to 0.90 Tm at a rate of 9 ° C / min to 18 ° C / min, and the temperature is maintained for 70 min to 105 min, and a double layer of embryos is obtained after cooling;
  • An injection molding material having a sheet shape and a thickness of 0.005 to 30 mm is placed under the double layer preform, and is formed by extrusion or rolling to obtain three layers of embryos, and the intermediate layer of the three layers of embryos is The layer of anti-deformation material.
  • the anodized material, the anti-deformation material, and the injection molding material are all in a powder form
  • the anodized material, the anti-deformation material and the injection molding material are subjected to a pressing treatment to obtain a three-layered preform, and the anti-deformation material layer formed by pressing the anti-deformation material is located in the three-layer material
  • the middle layer of the embryo including:
  • the thickness of the anodized material layer in the three-layered embryo body is 0.005 to 30 mm
  • the thickness of the layer of the deformation resistant material is 0.2 to 30 mm
  • the thickness of the layer of the injection molding material is 0.005 to 30 mm
  • the intermediate layer of the three layers of the embryo body is the layer of the deformation resistant material
  • the three-layer embryo body is placed in a sintering furnace, and is heated to a temperature of from 0.80 Tm to 0.90 Tm at a rate of from 2 ° C/min to 5 ° C/min for 15 min to 35 min; and further from 9 ° C/min to 18 ° C/min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80 Tm to 0.90 Tm at a rate of 9 ° C / min to 18 ° C / min, and the temperature is maintained for 70 min to 105 min, and three layers of embryos are obtained after cooling.
  • the anodized material, the anti-deformation material, and the injection molding material are all in a powder form
  • the anodized material, the anti-deformation material and the injection molding material are subjected to a pressing treatment to obtain a three-layered preform, and the anti-deformation material layer formed by pressing the anti-deformation material is located in the three-layer material
  • the middle layer of the embryo including:
  • the thickness of the anodized material layer in the three-layered embryo body is 0.005 to 30 mm
  • the thickness of the layer of the deformation resistant material is 0.2 to 30 mm
  • the thickness of the layer of the injection molding material is 0.005 to 30 mm
  • the intermediate layer of the three layers of the embryo body is the layer of the deformation resistant material
  • the three-layer embryo body is placed in a sintering furnace, and is heated to a temperature of from 0.80 Tm to 0.90 Tm at a rate of from 2 ° C/min to 5 ° C/min for 15 min to 35 min; and further from 9 ° C/min to 18 ° C/min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80 Tm to 0.90 Tm at a rate of 9 ° C / min to 18 ° C / min, and the temperature is maintained for 70 min to 105 min, and three layers of embryos are obtained after cooling.
  • the anodized material, the anti-deformation material, and the injection molding material are both in the form of a sheet;
  • One of the anodized material, the anti-deformation material, and the injection molding material is In the case of powder, the other two materials are in the form of a sheet;
  • the embryo body is placed in a sintering furnace and heated at a rate of 2 ° C / min to 5 ° C / min to 0.80 Tm - 0.90 Tm, held for 15 min - 35 min; and further heated at a rate of 9 ° C / min ⁇ 18 ° C / min
  • the temperature is raised to the temperature of Tm, and then the temperature is lowered to 0.80Tm to 0.90Tm at a rate of 9 ° C / min to 18 ° C / min, and the temperature is kept for 70 min - 105 min, and the embryo is obtained after cooling;
  • the other two sheet-like materials and the preform are formed by extrusion or rolling to obtain a three-layered preform, wherein the three-layered intermediate layer is a layer of an anti-deformation material.
  • the composite material can be anodized and colored by the surface layer of the anodized material layer to form an effective uniform color and rich color, and the composite material has a high yield strength and high elasticity due to the anti-deformation material layer.
  • the modulus ensures that the composite is not susceptible to bending.
  • FIG. 1 is a schematic view of an embodiment of a composite material in an embodiment of the present invention.
  • FIG. 2 is a schematic view showing another embodiment of a composite material in an embodiment of the present invention.
  • FIG. 3 is a schematic view showing an embodiment of a method for preparing a composite material according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing an embodiment of a method for preparing a composite material according to an embodiment of the present invention.
  • the embodiment of the invention provides a composite material and a preparation method thereof.
  • the composite material can be anodized and colored to form an effective uniform color, rich color, high yield strength, higher elastic modulus, and difficult to be formed. Bending occurred.
  • 5 series aluminum alloy a deformed aluminum alloy with Mg as the main alloying element, namely Al-Mg, belonging to the more commonly used alloy aluminum series, containing magnesium in the range of 3-5%, which may also be called aluminum-magnesium alloy, mainly Including the 5052, 5005, 5083 and 5A05 series, the main features of the 5-series aluminum alloy are low density, high tensile strength and high elongation.
  • the weight of aluminum-magnesium alloy is lower than other series under the same area. Therefore, it is commonly used in aviation and ships, such as aircraft fuel tanks. It is also widely used in conventional industries.
  • the processing technology is continuous casting and rolling, which belongs to the series of hot-rolled aluminum sheets.
  • the 5 series aluminum alloy is a non-heat treatable reinforced aluminum alloy.
  • 6 series aluminum alloy a deformed aluminum alloy with Mg and Si main alloying elements, namely Al-Mg-Si, 6 series aluminum alloy is heat treatable reinforced aluminum alloy, currently mainly 6063, 6061, others 6082, 6125, 6262 6060, 6005, 6463, of which 6063, 6060, 6463 are relatively low strength in 6 series aluminum alloy; 6262, 6005, 6082, 6061 are relatively strong in 6 series aluminum alloy, 6 series aluminum alloy characteristics: medium strength, resistant Good corrosion performance, good welding performance, good process performance (easy extrusion), good oxidation and coloring performance, 6 series aluminum alloy should be mainly in the car luggage rack, door, window, body, heat-dissipating door, outer casing and so on.
  • the alloying elements are mainly zinc, but sometimes a small amount of magnesium and copper are added.
  • the super-hard aluminum alloy contains zinc, lead, magnesium and copper alloys close to the hardness of the steel, and the extrusion speed is higher than that of the 6-series aluminum.
  • 7 series aluminum alloy is mainly used in aviation (aircraft bearing components, landing gear), rockets, propellers, aviation spacecraft, etc., mainly including 7075, 7005, 7003, 7055, 7050, 7072, etc., 7005 and 7075 are the highest grades in the 7 series, 7075 aluminum plate is stress-relieved, will not deform and warp after processing, 7075 aluminum plate has high thermal conductivity and can be shortened Molding time, improve work efficiency, the main feature is high hardness, 7075 is high hardness, high strength aluminum alloy.
  • Yield strength is the yield limit when a metal material yields, that is, the stress that resists microplastic deformation.
  • the stress value specified to produce 0.2% residual deformation is the yield limit, called the conditional yield limit or yield strength.
  • External forces greater than this limit will permanently disable the part and will not recover.
  • the yield limit of low carbon steel is 207 MPa. When the external force is greater than this limit, the parts will be permanently deformed. If it is smaller than this, the parts will return to their original appearance.
  • Modulus of Elasticity The general definition of elastic modulus is the stress divided by the strain. During the elastic deformation phase, the stress should be proportional to the law (ie, in accordance with Hooke's law), and the proportional coefficient is called the elastic modulus.
  • the unit of elastic modulus is dynes per square centimeter or GPa.
  • the elastic modulus is a physical quantity describing the elasticity of a substance, and is a general term, including Young's modulus, shear modulus, bulk modulus, and the like.
  • the elastic modulus can be regarded as an index to measure the difficulty of elastic deformation of a material. The larger the value, the greater the stress that causes the material to undergo a certain elastic deformation, that is, the greater the stiffness of the material, that is, the elasticity occurs under a certain stress. The smaller the deformation.
  • the elastic modulus E refers to the stress required for the material to undergo unit elastic deformation under the action of an external force. It is an indicator of the ability of the material to resist elastic deformation, equivalent to the stiffness of a common spring.
  • Elongation ( ⁇ ) The percentage of the total elongation to the length of the original gauge length after the tensile fracture of the material.
  • plastic materials such as low-carbon steel, aluminum, copper, etc. at normal temperature and static load
  • brittle materials such as cast iron under normal temperature and static load. Glass, ceramics, etc.
  • Tensile strength the resistance that characterizes the maximum uniform plastic deformation of the material. Before the tensile specimen is subjected to the maximum tensile stress, the deformation is uniform, but after the metal is exposed, the neck begins to shrink, that is, the concentrated deformation occurs; Or very small) a uniformly plastically deformed brittle material that reflects the fracture resistance of the material.
  • the symbol is Rm (the GB/T 228-1987 old national standard specifies the tensile strength symbol is ⁇ b), and the unit is MPa.
  • Hardness a term of physics, the ability of a material to partially resist the pressing of a hard object into its surface is called hardness.
  • the local resistance of solids to external objects is an indicator of the hardness of various materials, including Rockwell hardness HR, Brinell hardness HB, Vickers hardness HV, microhardness HM, Leeb hardness HL, Shore hardness HS , Barcol hardness HBa, Webster hardness HW, and the like.
  • Extrusion Under the action of three-direction uneven compressive stress, the blank is extruded from the orifice or slit of the mold to increase the cross-sectional area and increase the length.
  • the processing method of the desired product is called extrusion, and the processing of the blank is performed. Called extrusion.
  • Roll forming also known as forming and rolling, is a forging method in which a metal billet is gradually deformed by a rotating roll to form a workpiece. It belongs to rotary forging, and the deformation during forming rolling is stepwise, continuous, and rotating, so production High efficiency, stable operation of the equipment, easy to achieve mechanization and automation, forming rolling is generally divided into vertical rolling, cross rolling and cross rolling.
  • Pure aluminum Generally referred to as pure aluminum refers to industrial pure aluminum, industrial pure aluminum is generally determined to be aluminum with a purity of 99.0% to 99.9%, and China has an aluminum purity of 98.8% to 99.7%.
  • 5052-H32 is widely used in 5 series aluminum alloys as electronic equipment (such as mobile phones), and 6063-T6 is widely used in 6 series aluminum alloys as electronic equipment (such as mobile phones).
  • the material due to the small elastic modulus of the 5 series aluminum alloy or the 6 series aluminum alloy, the yield strength is insufficient, and the consumer will find that the mobile phone will be bent during use.
  • Some materials with high yield strength and high modulus of elasticity are difficult to form an effective uniformity because they cannot be anodized well.
  • the color due to this fatal flaw, limits its use in consumer electronics such as mobile phones.
  • a composite material and a preparation method thereof are provided, so that the composite material can not only ensure the anodizing effect of the material, but also avoid bending phenomenon.
  • the composite material provided by the embodiment of the present invention is first introduced.
  • the composite material provided by the embodiment of the present invention is mainly applied to an electronic device casing, such as a mobile phone, a tablet, a smart wearable device, and the like.
  • a composite material including a layer 101 of anti-deformation material, and an anodized material layer 102 bonded to the surface of the layer of anti-deformation material;
  • the material in the layer of anti-deformation material has a yield strength of 300-1500 MPa and an elastic modulus of 65-300 GPa;
  • the material in the layer of the deformation resistant material may include at least one of an aluminum alloy material, a titanium alloy material, an aluminum matrix composite material, a stainless steel material, an alloy steel material, an amorphous alloy material, a magnesium alloy, or a magnesium matrix composite material;
  • the aluminum-based composite material may be an aluminum-based graphene composite material, an aluminum-based carbon nanotube composite material, an aluminum-based silicon carbide composite material, or a composite material in which aluminum-based graphene and carbon nanotubes are simultaneously doped.
  • the material in the anodized material layer may be a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and the aluminum oxide content in the anodized material layer is greater than 90%;
  • the composite material can be anodized and colored by the surface layer of the anodized material layer to form an effective uniform color and rich color, and the composite material has a high yield strength and high elasticity due to the anti-deformation material layer.
  • the modulus ensures that the composite is not susceptible to bending.
  • the material in the anti-deformation material layer includes an aluminum alloy material
  • the material in the anti-deformation material layer further includes graphene, multi-wall carbon nanotubes, and nickel-plated carbonization. At least one of silicon.
  • the yield strength of the deformation resistant material is 300-1500 MPa, and the elastic modulus is 65-300 GPa, which can well meet the high strength of the electronic device casing.
  • the fabricated electronic device casing is extremely difficult to bend under normal use conditions, and the aluminum element content in the anodized material layer is greater than 90% to ensure the best anodizing effect.
  • the aluminum element content of the anodized material layer 101 may be greater than 95% to achieve a better anodizing effect.
  • the yield strength of the material in the anti-deformation material layer is 350-600 MPa, and the elastic modulus is 65-210 GPa, which is preferable. It may have a yield strength of 450-550 MPa and an elastic modulus of 75-180 GPa.
  • the elastic modulus of the material in the anti-deformation material layer is 180-300 GPa or more, and the yield strength is 1000-1500 MPa, and preferably, the elastic modulus is 200. Above -250GPa, the yield strength is 1100-1400MPa.
  • the material of the anti-deformation material layer has a tensile strength of 510-2000 MPa, a hardness of 130-900 HV, and an elongation of > 5%.
  • the material of the anti-deformation material layer may be: tensile strength 600-700 MPa. The yield strength is 350-600 MPa, the elastic modulus is 80-210 GPa, the hardness is 150-400 HV, and the elongation is >5.5%.
  • the thickness of the outer casing of the electronic device may range from 0.21 to 60 mm, wherein the thickness of the anodized material layer 101 may be 0.005 mm to 30 mm, in order to meet the needs of different electronic device casings.
  • the anti-deformation material layer 102 may have a thickness of 0.2 to 30 mm.
  • the composite material may further include an injection molding material layer 103, and the injection molding material layer 103 and the anti-deformation material layer 102 are bonded by metallurgical bonding or solid phase, and the injection molding material layer and the The anodized material layer 101 is located on each side of the anti-deformation material layer 102.
  • the thickness of the electronic device housing may range from 0.21 to 90 mm, wherein the anodized material layer 101 may have a thickness of The thickness of the anti-deformation material layer 102 may be 0.2 to 30 mm, and the thickness of the injection molding material layer may be 0.005 to 30 mm.
  • one side of the electronic device housing needs to be colored (the layer of anodized material), and one side needs to be injection-molded (injection material layer) with the micro- or nano-hole principle of the plastic part.
  • the outer casing of the electronic device The two sides need to be colored, so the injection molding material can also be a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum.
  • the aluminum alloy content in the injection molding material layer is greater than 90%.
  • the injection molding The aluminum element content in the material layer can likewise be greater than 95%.
  • the anodized material layer has a thickness of 0.005 to 0.3 mm
  • the anti-deformation material layer has a thickness of 0.1 to 1 mm
  • the injection molding material layer has a thickness of 0.005 to 0.3. Mm, at this time, the thickness of the electronic device casing may range from 0.11 to 1.6 mm.
  • the thickness of the outer casing of the mobile phone is thin, preferably, the thickness of the anodized material layer is 0.005 to 0.1 mm, and the thickness of the anti-deformation material layer is 0.4 to 0.8.
  • the thickness of the injection molding material layer is 0.005 to 0.1 mm.
  • the thickness of the outer casing of the electronic device may range from 0.41-1 mm.
  • an outer casing of an electronic device is provided, and the outer casing of the electronic device is processed by any composite material in the above embodiment, and the thickness of the electronic device outer casing is 0.21-90 mm, and the deformed material layer
  • the thickness of the anodized material layer is from 0.005 mm to 30 mm, and the thickness of the anodized material layer is from 0.2 to 30 mm.
  • an electronic device comprising an outer casing of the electronic device as described above.
  • an embodiment of a method for preparing a composite material according to an embodiment of the present invention includes:
  • the deformation resistant material has a yield strength of 300-1500 MPa and an elastic modulus of 65-300 GPa;
  • the anti-deformation material comprises an aluminum alloy material (such as 7075 in a 7-series aluminum alloy, etc.), an aluminum-based composite material, a stainless steel material, and an alloy. At least one of a steel material, an amorphous alloy material, a magnesium alloy, or a magnesium-based composite material;
  • the anodized material is a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and an aluminum element content in the anodized material layer More than 90%;
  • the anodized material and the anti-deformation material may all be in the form of a powder or a sheet.
  • the anti-deformation material comprises an aluminum alloy material
  • the anti-deformation material may further include at least one of graphene, multi-wall carbon nanotubes, and nickel-plated silicon carbide.
  • the pressing treatment may be sintering, extrusion molding or roll forming.
  • the anodizing material and the anti-deformation material are both in a powder form
  • the anodizing material and the anti-deformation material are subjected to a pressing treatment to obtain a double-layered embryo, which may include:
  • the double-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.80Tm-0.90Tm at a rate of 2 ° C / min - 5 ° C / min, and the temperature is maintained for 15 min - 35 min; and then 9 ° C / min - 18 ° C / min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80Tm-0.90Tm at a rate of 9 ° C / min -18 ° C / min, and the temperature is kept for 70 min - 105 min, and after cooling, a double layer embryo is obtained.
  • the double-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.80Tm-0.90Tm at a rate of 2 ° C / min - 5 ° C / min, and the temperature is maintained for 15 min - 35 min; and then 9 ° C / min - 18 ° C / min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80Tm-0.90Tm at a rate of 9 ° C / min -18 ° C / min, and the temperature is kept for 70 min - 105 min, and after cooling, a double layer embryo is obtained.
  • the average particle diameter D1 of the anodized material powder satisfies: 0 ⁇ m ⁇ D1 ⁇ 60 ⁇ m, preferably 0 ⁇ m ⁇ D1 ⁇ 30 ⁇ m
  • the average particle diameter D2 of the anti-deformation material powder satisfies: 0 ⁇ m ⁇ D2 ⁇ 60 ⁇ m, preferably 0 ⁇ m ⁇ D1 ⁇ 30 ⁇ m.
  • the powder is pressed and flattened (using a flat tool at the bottom or pressed by machine equipment) to obtain an anodized material body; the anti-deformation material powder is laid on the anodized material body; and pressed together into a double-layer body .
  • the anodized material and the anti-deformation material are in the form of a sheet
  • the anodizing material and the anti-deformation material are subjected to a pressing treatment to obtain a double-layered embryo, which may specifically include:
  • the anodized material in the form of a sheet and the anti-deformation material in the form of a sheet are subjected to extrusion molding or roll forming to obtain a two-layered preform.
  • the anodized material and the anti-deformation material are subjected to a pressing treatment to obtain a double-layered embryo.
  • the method further includes: pressing the anodized material and the powdery material in the anti-deformation material into an embryo body, and cooling to a preform by sintering; and forming the anodized material and the anti-deformation material A sheet-like material and the preform are formed by extrusion molding or rolling to obtain a double-layered embryo.
  • the heat treatment system may be a T6 heat treatment system, a T8 heat treatment system, a T4 heat treatment system, a T5 heat treatment system, or a T2 heat treatment system.
  • the anti-deformation material is one type, that is, heat treatment is strengthened under the heat treatment system of the anti-deformation material, a two-layer composite material is obtained, for example, the anti-deformation material is an aluminum alloy material, a titanium alloy material, an aluminum-based composite material.
  • the deformation resistant material is a plurality of materials
  • the deformation resistant material includes at least one of graphene, multi-wall carbon nanotubes, nickel-plated silicon carbide, and aluminum alloy material. The heat treatment is strengthened under the heat treatment system of the aluminum alloy material.
  • the double-layer composite material is subjected to warm forging forming to form a general shape of the outer casing of the electronic device, and then the computer numerically controlled machine tool (English full name: Computerized Numerical Control Machine, English abbreviation) :CNC) is processed into an electronic device casing to anodize the surface of the electronic device casing (anodized material layer) after CNC processing
  • the coloring treatment, the above-mentioned warm forging forming and CNC processing are related to the shape of the design of the electronic device housing itself, and are not described herein.
  • FIG. 3 of the present invention is described below in conjunction with a specific application scenario:
  • the anodized material is pure aluminum powder, and the anti-deformation material is 7075 aluminum alloy powder;
  • Step 1 Select pure aluminum powder, the purity is 99.7%, the average particle size is about 15 ⁇ m; the 7075 aluminum alloy powder is selected, the average particle size is about 15 ⁇ m;
  • Step 2 Firstly, the 7075 powder is laid under the pre-prepared square powder mold, pressed (light compaction) to obtain the embryo body; then the pure aluminum powder is laid on the 7075 aluminum alloy powder, and then the pure aluminum powder. Press together (heavy compaction) into a double layer embryo;
  • Step 3 Place the double-layer embryo in a sintering furnace and heat it to a temperature of 3 ° C / min to 0.85 Tm of the 7075 aluminum alloy (Tm is the melting point of the 7075 aluminum alloy, the same below), keep warm for 20 min; then 15 ° C / The heating rate of min is raised to the temperature of Tm, then the temperature is lowered to 0.85 Tm at a rate of 15 ° C / min, and the temperature is kept for 70 min. After cooling, a double layer of embryos can be obtained;
  • Step 4 The double-layered embryo is heat-treated under the T6 heat treatment system of the 7075 aluminum alloy to obtain a double-layer composite material.
  • the upper layer of the two-layer composite obtained at this time is pure aluminum, and the lower layer is 7075 aluminum alloy.
  • the light compaction is to obtain an embryo body having a density of more than 60%; and the compaction is to obtain an embryo body having a density of 80% or more (the same applies hereinafter).
  • FIG. 3 of the present invention is described below in conjunction with another specific application scenario:
  • the anodized material is 6061 aluminum alloy powder, and the anti-deformation material is 7075 aluminum alloy powder and aluminum-based graphene sheet;
  • Step 1 Select 6061 aluminum alloy powder, the average particle size is about 20 ⁇ m; select 7075 aluminum alloy powder, the average particle size is about 18 ⁇ m, select aluminum-based graphene sheets with a thickness of 4nm;
  • Step 2 uniformly mixing the 7075 aluminum alloy powder and the aluminum-based graphene sheet, and then laying it under the pre-prepared square powder mold, and compacting it to obtain the embryo body; then, 6061 aluminum alloy powder is laid flat on the embryo body. Above, and then pressed together with the 6061 aluminum alloy powder (heavy compaction) into a double-layered body;
  • Step 3 The double-layer embryo is placed in a sintering furnace and heated to a temperature of 5 ° C / min to 0.9 Tm of aluminum-based graphene (Tm is the melting point of 7075 aluminum alloy, the same below), heat preservation for 25 min; The heating rate of °C/min is raised to the temperature of Tm, then the temperature is lowered to 0.9Tm at a rate of 13 °C/min, and the temperature is kept for 80 minutes. After cooling, a double layer of embryos can be obtained;
  • Step 4 The double-layered embryo is heat-treated under the aluminum-based T8 heat treatment system to obtain a two-layer composite material.
  • the upper layer of the obtained double-layer composite material is 6061 aluminum alloy, and the lower layer is an aluminum-based graphene composite material.
  • an embodiment of the method for preparing the composite material in the embodiment of the present invention includes:
  • the deformation resistant material has a yield strength of 300-1500 MPa and an elastic modulus of 65-300 GPa; and the deformation resistant material comprises an aluminum alloy material, an aluminum matrix composite material, a stainless steel material, an alloy steel material, an amorphous alloy material, and a magnesium alloy. Or at least one of the magnesium-based composite materials; the anodized material is a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and the aluminum oxide content in the anodized material layer is greater than 90%;
  • the injection molding material may be a 5-series aluminum alloy, a 6-series aluminum alloy or pure aluminum, and the aluminum oxide content in the anodized material layer is greater than 90%.
  • the anodized material, the anti-deformation material and the injection molding material may all be in the form of powder or sheet;
  • the anti-deformation material includes an aluminum alloy material
  • the anti-deformation material may further include at least one of graphene, multi-wall carbon nanotubes, and nickel-plated silicon carbide.
  • the intermediate layer of the three-layered preform is an anti-deformation material layer
  • the anti-deformation material is pressed to form the anti-deformation material layer
  • the pressing treatment may include sintering, extrusion molding or roll forming. At least one.
  • the anodized material and the anti-deformation material are in a powder form, and the injection-molded material is in the form of a sheet
  • the anodized material, the anti-deformation material, and the injection molding are described.
  • the material is subjected to a pressing treatment to obtain a three-layered preform, and the anti-deformation material is formed by pressing
  • the layer of the deformed material is located in the middle layer of the three-layered embryo, and specifically includes:
  • the double-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.80Tm-0.90Tm at a rate of 2 ° C / min - 5 ° C / min, and the temperature is maintained for 15 min - 35 min; and then 9 ° C / min - 18 ° C / min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80Tm-0.90Tm at a rate of 9 ° C / min -18 ° C / min, and the temperature is kept for 70 min - 105 min, and after cooling, a double layer embryo is obtained.
  • An injection molding material having a sheet shape and a thickness of 0.005-30 mm is placed under the double layer preform, and is formed by extrusion or rolling to obtain three layers of embryos, and the intermediate layer of the three layers of embryos is The layer of anti-deformation material.
  • Tm is a melting point value of a melting point of any one of the materials or a melting point of the material.
  • the anodized material powder and the anti-deformation material powder are pressed into a double-layered embryo body, and may further include: a powder mold which is closed at the bottom of the bottom and a flat anti-deformation material powder, and the anti-deformation material powder is leveled to obtain Anti-deformation material powder embryo body; an anodized material powder is laid on the anti-deformation material powder embryo body; the anodized material powder and the anti-deformation material powder body body are pressed together to form a double-layered embryo body.
  • the anodized material and the anti-deformation material are in a powder form, and the injection-molded material is in the form of a sheet;
  • the anodizing material, the anti-deformation material and the injection molding material are subjected to a pressing treatment to obtain a three-layered embryo, and the intermediate layer of the three-layered embryo is the anti-deformation material layer, comprising:
  • the double-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.80Tm-0.90Tm at a rate of 2 ° C / min - 5 ° C / min, and the temperature is maintained for 15 min - 35 min; and then 9 ° C / min - 18 ° C / min.
  • the heating rate is raised to the temperature of Tm, then the temperature is lowered to 0.80Tm-0.90Tm at a rate of 9 ° C / min -18 ° C / min, and the temperature is kept for 70 min - 105 min, and the double layer embryo is obtained after cooling;
  • An injection molding material having a sheet shape and a thickness of 0.005-30 mm is placed under the double layer preform, and is formed by extrusion or rolling to obtain three layers of embryos, and the intermediate layer of the three layers of embryos is The layer of anti-deformation material.
  • the anodized material, the anti-deformation material, and the injection-molded material are both in a powder form
  • the anodized material, the anti-deformation material, and the injection-molded material are subjected to a pressing treatment to obtain three a layer of embryos, wherein the layer of anti-deformation material formed by the pressing treatment is located in an intermediate layer of the three-layer embryo, comprising:
  • the thickness of the anodized material layer in the three-layered embryo body is 0.005-30 mm
  • the thickness of the layer of the deformation resistant material is 0.2-30 mm
  • the thickness of the layer of the injection molding material is 0.005-30 mm
  • the intermediate layer of the three layer body is the layer of the deformation resistant material
  • the three-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.80Tm-0.90Tm at a rate of 2 ° C / min - 5 ° C / min, and the temperature is maintained for 15 min - 35 min; and then 9 ° C / min - 18 ° C / min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80Tm-0.90Tm at a rate of 9 ° C / min -18 ° C / min, and the temperature is maintained for 70 min - 105 min, and three layers of embryos are obtained after cooling.
  • the anodized material, the anti-deformation material, and the injection molding material are both in a powder form
  • the anodized material, the anti-deformation material and the injection molding material are subjected to a pressing treatment to obtain a three-layered preform, and the anti-deformation material layer formed by pressing the anti-deformation material is located in the three-layer material
  • the middle layer of the embryo including:
  • the thickness of the anodized material layer in the three-layered embryo body is 0.005-30 mm
  • the thickness of the layer of the deformation resistant material is 0.2-30 mm
  • the thickness of the layer of the injection molding material is 0.005-30 mm
  • the intermediate layer of the three layer body is the layer of the deformation resistant material
  • the three-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.80Tm-0.90Tm at a rate of 2 ° C / min - 5 ° C / min, and the temperature is maintained for 15 min - 35 min; and then 9 ° C / min - 18 ° C / min.
  • the heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.80Tm-0.90Tm at a rate of 9 ° C / min -18 ° C / min, and the temperature is maintained for 70 min - 105 min, and three layers of embryos are obtained after cooling.
  • the three-layer embryo can specifically include:
  • the anodized material, the anti-deformation material, and the injection molding material is in a powder form, and the other two materials are in the form of a sheet
  • the anodized material, the anti-resistance The deformed material and the injection molding material are subjected to a pressing treatment to obtain a three-layer embryo, specifically comprising:
  • the embryo body is placed in a sintering furnace and heated at a rate of 2 ° C / min - 5 ° C / min to 0.80 Tm - 0.90 Tm, held for 15 min - 35 min; and then heated at a rate of 9 ° C / min - 18 ° C / min
  • the temperature is raised to the temperature of Tm, and then the temperature is lowered to 0.80Tm-0.90Tm at a rate of 9 ° C / min -18 ° C / min, and the temperature is kept for 70 min - 105 min, and the embryo is obtained after cooling;
  • the other two sheet-like materials and the preform are formed by extrusion or rolling to obtain a three-layered preform, wherein the three-layered intermediate layer is a layer of an anti-deformation material.
  • the effect of the heat treatment is to increase the strength of the composite material on the basis of the embryo.
  • the heat treatment system may be a T6 heat treatment system, a T8 heat treatment system, a T4 heat treatment system, and a T5 heat treatment. Management system or T2 heat treatment system.
  • the anti-deformation material is one type, that is, heat treatment is strengthened under the heat treatment system of the anti-deformation material, a two-layer composite material is obtained, for example, the anti-deformation material is an aluminum alloy material, a titanium alloy material, an aluminum-based composite material.
  • the deformation resistant material is a plurality of materials
  • the deformation resistant material includes at least one of graphene, multi-wall carbon nanotubes, nickel-plated silicon carbide, and aluminum alloy material. The heat treatment is strengthened under the heat treatment system of the aluminum alloy material.
  • the three-layer composite material is subjected to warm forging forming to form a general shape of the outer casing of the electronic device, and then the computer numerically controlled machine tool (English full name: Computerized Numerical Control Machine, English abbreviation) :CNC) is processed into an electronic device casing, anodizing and coloring the surface of the electronic device casing (anodized material layer) after the CNC treatment, and performing nano-injection molding processing on the innermost layer (injection material layer) of the electronic device casing.
  • the computer numerically controlled machine tool English full name: Computerized Numerical Control Machine, English abbreviation
  • CNC computer numerically controlled machine tool
  • the combination of plastic parts, the above-mentioned warm forging forming and CNC machining are related to the shape of the electronic device itself, and will not be repeated here.
  • FIG. 4 of the present invention is described below in conjunction with a specific application scenario:
  • the anodized material is pure aluminum powder
  • the anti-deformation material is 7075 aluminum alloy powder
  • the injection molding material is 6063 aluminum alloy sheet
  • Step 1 Select pure aluminum powder, the purity is 99.7%, the average particle size is about 16 ⁇ m; the 7075 aluminum alloy powder is selected, the average particle size is about 15 ⁇ m; the 6063 aluminum alloy sheet is selected, the thickness is 0.5mm;
  • Step 2 Firstly, 7075 powder is laid under the pre-prepared square powder mold, and compacted to obtain the embryo body; then the pure aluminum powder is tiled on the 7075 aluminum alloy powder and pressed together (heavy compaction). Double layer embryo
  • Step 3 Place the double-layer embryo in a sintering furnace and heat it to a temperature of 3 °C/min to 0.8Tm of 7075 (Tm is 70755 aluminum alloy melting point, the same below), heat preservation for 20 min; then at 15 °C/min The heating rate is raised to a temperature of Tm, then the temperature is lowered to 0.90 Tm at a rate of 15 ° C / min, and the temperature is maintained for 70 min, and after cooling, a double layer of embryos can be obtained;
  • Step 4 Place 6063 sheet 0.3mm under the double layer embryo (depending on the thickness requirements) To place at least one piece, and then simultaneously extrude, to obtain a sandwich structure of three layers of embryos, wherein the upper layer is pure aluminum, the middle layer is 7075 aluminum alloy, and the lower layer is 6063 aluminum alloy;
  • Step 5 The three-layer blank is heat-treated under the T6 heat treatment system of the 7075 aluminum alloy to obtain a three-layer composite material.
  • the composite material obtained at this time has an upper layer of pure aluminum, an intermediate layer of 7075 aluminum alloy, and a lower layer of 6063 aluminum alloy.
  • the three-layer composite material can be warm forged to form a general shape of the outer casing of the mobile phone, and then CNC processed into a mobile phone casing to perform anode on the surface of the outer casing of the mobile phone (anodized material layer) after the CNC treatment.
  • Oxidation and coloring treatment (coloring is a variety of colors), at the same time in the outer layer of the phone casing (injection material layer), nano-injection molding process and plastic parts.
  • FIG. 4 of the present invention is described below in conjunction with another specific application scenario:
  • the anodized material is 6061 aluminum alloy powder
  • the anti-deformation material is 7075 aluminum alloy powder and multi-wall carbon nanotubes
  • the injection molding material is 6063 aluminum alloy sheet
  • Step 1 Select 6061 aluminum alloy powder, the average particle size is about 18 ⁇ m; select 7075 aluminum alloy powder, the average particle size is about 18 ⁇ m, select 6063 aluminum alloy sheet, thickness is 0.7mm, and multi-wall carbon nanotubes;
  • Step 2 uniformly mixing the 7075 aluminum alloy powder and the multi-wall carbon nanotubes, laying them under the pre-prepared square powder mold, and compacting and compacting to obtain the embryo body; then, 6061 aluminum alloy powder is laid flat on the embryo body. Pressing together (heavy compaction) into a double-layered body;
  • Step 3 The double-layered embryo body is placed in a sintering furnace, and heated at a rate of 4 ° C / min to 0.9 Tm of 7075 (Tm is the melting point of 7075 aluminum alloy, the same below), heat preservation for 25 min; and then 13 ° C / min The heating rate is raised to a temperature of Tm, then the temperature is lowered to 0.85 Tm at a rate of 13 ° C / min, and the temperature is maintained for 85 min, and after cooling, a double layer embryo can be obtained;
  • Step 4 The 6061 sheet is placed under the double-layer embryo and then extruded to obtain a three-layered embryo of the sandwich structure, wherein the upper layer is a 6061 aluminum alloy layer, and the middle layer is a 7075 aluminum alloy and a multi-wall carbon nanotube.
  • the lower layer is 6061 aluminum alloy;
  • Step 5 The three-layer embryo is heat-treated under the T8 heat treatment system of the 7075 aluminum alloy. To obtain a three-layer composite.
  • FIG. 4 of the present invention is described below in conjunction with another specific application scenario:
  • the anodized material is pure aluminum powder
  • the anti-deformation material is 7075 aluminum alloy powder, carbon nanotubes and graphene aluminum alloy powder
  • the injection molding material is 6063 aluminum alloy sheet
  • Step 1 Select pure aluminum powder, the purity is 99.85%, the average particle size is about 25 ⁇ m; the 7075 aluminum alloy powder is selected, the average particle size is about 28 ⁇ m; the 6063 aluminum alloy sheet is selected, the thickness is 0.7mm; and the multi-wall carbon nanometer a tube, and a block graphene having an average thickness of about 5 nm;
  • Step 2 Firstly, the 7075 powder, the multi-walled carbon nanotubes and the massive graphene are uniformly mixed and laid flat under the pre-prepared square powder mold, and compacted to obtain the embryo body, wherein the carbon nanotubes account for the volume of the mixed powder. The percentage is about 2%; then 6061 aluminum alloy powder is laid on the embryo body, and pressed together (heavy compaction) into a double-layered embryo body;
  • Step 3 The double-layer embryo body is placed in a sintering furnace, and is heated at a rate of 2 ° C / min to 0.85 Tm of 7075 (Tm is the melting point, the same as the following), and the temperature is maintained for 35 min; and then the temperature is raised at a heating rate of 11 ° C / min. To the temperature of Tm, then reduce the temperature to 0.85Tm at a rate of 11 ° C / min, continue to hold for 90 min, after cooling it can obtain a double layer embryo;
  • Step 4 Place the 6063 sheet under the double-layered embryo (at least one piece according to the thickness), and then simultaneously extrude to obtain a sandwich structure of three layers of embryos, wherein the upper layer is 6061 aluminum alloy layer, and the middle layer is 7075.
  • the upper layer is 6061 aluminum alloy layer
  • the middle layer is 7075.
  • Aluminum alloy, wall carbon nanotubes and massive graphene, the lower layer is 6063 aluminum alloy;
  • Step 5 The three-layer blank is heat-treated under the T6 heat treatment system of the 7075 aluminum alloy to obtain a three-layer composite material.
  • FIG. 4 of the present invention is described below in conjunction with another specific application scenario:
  • the anodized material is 6063 aluminum alloy powder
  • the anti-deformation material is 7075 aluminum alloy powder
  • the injection molding material is 6063 aluminum alloy sheet
  • Step 1 Select 6063 aluminum alloy powder, the average particle size is about 35 ⁇ m; select 7075 aluminum alloy powder, the average particle size is about 22 ⁇ m; select 6063 aluminum alloy sheet, the thickness is 0.7mm; And Ni-plated silicon carbide powder, an average particle diameter of about 10 ⁇ m, and an average of about 6 nm thick block graphene;
  • Step 2 uniformly mixing 7075 powder, Ni-plated silicon carbide powder and massive graphene, and laying it under the pre-prepared square powder mold, and compacting and compacting to obtain the embryo body, wherein the Ni-plated silicon carbide powder accounts for the mixed powder.
  • the volume percentage is about 3%, and the graphene volume percentage is about 2%; then the 6063 aluminum alloy powder is spread on the embryo body and pressed together to form a double embryo, which is compacted and compacted;
  • Step 3 Place the double-layered embryo body in a sintering furnace and heat it to a temperature of 4 ° C / min to 0.82 Tm of 7075 (Tm is the melting point of 7075 aluminum alloy, the same below), heat preservation for 25 min; then at 16 ° C / min The heating rate is raised to a temperature of Tm, and then the temperature is lowered to 0.82 Tm at a rate of 14 ° C / min, and the temperature is kept for 100 min, and after cooling, a double layer embryo can be obtained;
  • Step 4 2 mm of pure aluminum sheet is placed under the double-layer embryo, and then rolled and formed to obtain a sandwich-structured three-layer embryo, wherein the upper layer is 6063 aluminum alloy layer, and the middle layer is 7075-based silicon carbide graphene aluminum. Alloy, the lower layer is pure aluminum;
  • Step 5 The three-layer blank is heat-treated under the T6 heat treatment system of the 7075 aluminum alloy to obtain a three-layer composite material.
  • FIG. 4 of the present invention is described below in conjunction with another specific application scenario:
  • the anodized material is pure aluminum powder
  • the anti-deformation material is 7075 aluminum alloy powder, graphene sheet, and the injection molding material is pure aluminum powder
  • Step 1 Select pure aluminum powder, the purity is 99.7%, the average particle size is about 15 ⁇ m; select 7075 aluminum alloy powder, the average particle size is about 15 ⁇ m, the average thickness is 4nm graphene sheet;
  • Step 2 Firstly, the pure aluminum powder is laid flat under the pre-prepared square powder mold, and the embryo body is obtained by light compaction, and then the 7075 powder and the graphene are uniformly mixed and then laid on the embryo body to be lightly compacted. The double-layered embryo is obtained; and the pure aluminum powder is evenly spread on the double-layer embryo and pressed together (heavy compaction) into three layers of embryo bodies;
  • Step 3 The three-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.8 Tm at a rate of 2 ° C/min (Tm is the melting point of the 7075 aluminum alloy, the following is the same), and the temperature is maintained for 15 min; and then the temperature is raised at 17 ° C / min. The temperature is raised to the temperature of Tm, then the temperature is lowered to 0.8 Tm at a rate of 10 ° C / min, and the temperature is kept for 75 min. After cooling, three layers of embryos can be obtained;
  • Step 4 extruding the three-layer preform to obtain a sandwich composite three-layer composite material, wherein the upper layer is pure aluminum, the middle layer is 7075 aluminum graphene alloy, and the lower layer is pure aluminum alloy;
  • Step 5 The three-layer blank is heat-treated under the T5 heat treatment system of the 7075 aluminum alloy to obtain a three-layer composite material.
  • FIG. 4 of the present invention is described below in conjunction with another specific application scenario:
  • the anodized material is pure aluminum powder
  • the anti-deformation material is 7075 aluminum alloy powder
  • the injection molding material is pure aluminum sheet
  • Step 1 Select pure aluminum powder, the purity is 99.7%, the average particle size is about 15 ⁇ m; the 7075 aluminum alloy powder is selected, the average particle size is about 15 ⁇ m; the pure aluminum sheet is selected, the thickness is 1mm;
  • Step 2 uniformly mixing 7075 powder, Ni-plated silicon carbide powder and massive graphene, and then laying it under the pre-prepared square powder mold, and compacting it to obtain the embryo body; then, the pure aluminum powder is laid flat on the The embryo body is pressed together with the embryo body (heavy compaction) into a double-layered embryo body;
  • Step 3 The double-layer embryo body is placed in a sintering furnace, and the temperature is raised to 0.88 Tm at a rate of 3 ° C/min (Tm is the melting point of the 7075 aluminum alloy, the following is the same), and the temperature is maintained for 30 min; and then the temperature is raised at 10 ° C / min. The temperature is raised to the temperature of Tm, then the temperature is lowered to 0.88 Tm at a rate of 10 ° C / min, and the temperature is kept for 85 min, and after cooling, a double layer embryo can be obtained;
  • Step 4 Place the pure aluminum sheet under the double-layered embryo (one or more pieces according to the thickness), and then roll-form at the same time to obtain a three-layer composite material with a sandwich structure, wherein the upper layer is pure aluminum and the middle layer is 7075 aluminum alloy, the lower layer of pure aluminum;
  • Step 5 The three-layered embryo is heat-treated under the T4 heat treatment system of the 7075 aluminum alloy to obtain a three-layer composite material.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种复合材料及其制备方法,应用于电子设备外壳,包括抗变形材料层(101)和阳极氧化材料层(102),抗变形材料层(101)和阳极氧化材料层(102)之间通过冶金结合或固相结合,结合区厚度在0.5mm以内;抗变形材料层(101)中的材料的屈服强度300~1500MPa,弹性模量65~300GPa;抗变形材料层(101)中的材料包括铝合金材料,铝基复合材料,不锈钢材料,合金钢铁材料,非晶合金材料,镁合金,或镁基复合材料中至少一种。复合材料由于表层的阳极氧化材料层使得复合材料能阳极氧化着色获得形成有效均一,色彩丰富的颜色,而又由于复合材料的抗变形材料层使其具有高屈服强度,高弹性模量,保证了该复合材料不易发生弯曲。

Description

一种复合材料及其制备方法
本申请要求于2015年8月21日提交中国专利局、申请号为201510520142.5、发明名称为“一种复合材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及材料技术领域,特别涉及一种复合材料及其制备方法。
背景技术
在消费电子产品迅速发展的今天,手机作为生活必需品几乎人手一部,而选择手机的过程当中,手机外壳的美观程度成为消费者购买手机需要考虑的因素之一,而可以做漂亮装饰性阳极氧化的5系铝合金和6系铝合金不仅有适中的强度,更重要的是可以做出消费者喜欢的均一质感的颜色,如黑色、灰色、本色、玫瑰金色等。
但当前采用5系铝合金或6系铝合金制作的手机后壳仍存在以下问题,由于5系铝合金或6系铝合金弹性模量较小,屈服强度不足,导致消费者在使用过程中会发现其手机会出现弯曲现象,为了避免弯曲结果的发生,就必须要选用更高屈服强度,更高弹性模量的材料,例如高屈服强度,更高弹性模量的铝合金材料或者铝基复合材料(如铝基石墨烯复合材料、铝基碳纳米管复合材料、铝基颗粒状的复合材料等),这些材料虽然有较好的屈服强度和弹性模量,但由于高强铝合金存在合金化程度过高以及铝基复合材料存在异质材料如石墨烯等,而使这些材料不能较好地进行阳极氧化表面处理,难以形成有效均一的颜色,从而限制其在手机等消费电子领域的应用。
发明内容
本发明实施例提供了一种复合材料及其制备方法,本发明实施例中复合材料既能阳极氧化着色获得形成有效均一,色彩丰富的颜色,又具有高屈服强度,高弹性模量,不易发生弯曲。
本发明实施例第一方面提供了一种复合材料,应用于电子设备外壳,包括抗变形材料层和阳极氧化材料层,所述抗变形材料层和所述阳极氧化材料层之间通过冶金结合或固相结合,所述结合区厚度在0.5mm以内;
所述抗变形材料层中的材料包括铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中至少 一种;其中,所述抗变形材料层中材料的屈服强度300~1500MPa,弹性模量65~300GPa;所述抗变形材料层厚度为0.2~30mm;
所述阳极氧化材料层中的材料为5系铝合金、6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;所述阳极氧化材料层厚度为0.005mm~30mm。
结合本发明实施例的第一方面,在本发明实施例的第一方面的第一种可能的实现方式中,
在所述抗变形材料层中的材料包括铝合金材料的情况下,所述抗变形材料层中的材料还包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
结合本发明实施例的第一方面或第一方面的第一种可能的实现方式,在本发明实施例的第一方面的第二种可能的实现方式中,
所述复合材料还包括注塑材料层,所述注塑材料层和所述抗变形材料层之间通过冶金结合或固相结合,且所述注塑材料层和所述阳极氧化材料层分别位于所述抗变形材料层的两侧;
所述注塑材料层的材料为5系铝合金、6系铝合金或纯铝,所述注塑材料层中铝元素含量大于90%;
所述注塑材料层厚度为0.005~30mm。
结合本发明实施例的第一方面,第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在本发明实施例的第一方面的第三种可能的实现方式中,
所述抗变形材料的屈服强度350~600MPa,弹性模量65~210GPa。
结合本发明实施例的第一方面,第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在本发明实施例的第一方面的第四种可能的实现方式中,
所述抗变形材料的屈服强度1000~1500MPa,弹性模量180~300GPa。
本发明实施例第二方面提供了一种电子设备的外壳,所述电子设备的外壳由如上述第一方面或第一方面中任一种可能的实施方式所述的复合材料加工得到,所述电子设备的外壳的厚度在0.21~90mm,所述变形材料层的厚度为0.005mm~30mm,所述阳极氧化材料层的厚度为0.2~30mm。
本发明实施例第三方面提供了一种电子设备,包括上述第二方面所述的电 子设备的外壳。
本发明实施例第四方面提供了一种复合材料制备方法,包括:
选取阳极氧化材料、抗变形材料,其中,所述抗变形材料的屈服强度300~1500MPa,弹性模量65~300GPa;所述抗变形材料包括铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中至少一种;所述阳极氧化材料为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;
将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚;
将所述双层料胚在所述抗变形材料的热处理制度下进行热处理强化,得到双层复合材料。
结合本发明实施例的第四方面,在本发明实施例的第四方面的第一种可能的实现方式中,
所述热处理制度为T6热处理制度、T8热处理制度、T4热处理制度、T5热处理制度或T2热处理制度。
结合本发明实施例的第四方面或第四方面的第一种可能的实现方式,在本发明实施例的第四方面的第二种可能的实现方式中,
在所述抗变形材料包括铝合金材料的情况下,所述抗变形材料还包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
结合本发明实施例的第四方面、第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式,在本发明实施例的第四方面的第三种可能的实现方式中,
在所述阳极氧化材料和所述抗变形材料均呈粉末状的情况下;
所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
将所述阳极氧化材料的粉末进行压制,得到0.005~30mm的阳极氧化材料胚体;
将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205~60mm的双层胚体,其中,所述阳极氧化材料的粉末经压制处理后得到的阳极氧化材料层的厚度为0.005~30mm,所述抗变形材料的粉末经压制处理后得到的所述抗变形材料层的厚度为0.2~30mm;
将所述双层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到双层料胚。
结合本发明实施例的第四方面、第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式,在本发明实施例的第四方面的第四种可能的实现方式中,
在所述阳极氧化材料和所述抗变形材料均呈粉末状的情况下;
所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
将所述抗变形材料的粉末进行压制,得到0.005~30mm的抗变形材料胚体;
将所述阳极氧化材料的粉末铺在所述抗变形材料胚体之上并进行压制,得到0.205~60mm的双层胚体,其中,所述阳极氧化材料的粉末经压制处理后得到的阳极氧化材料层的厚度为0.005~30mm,所述抗变形材料的粉末经压制处理后得到的所述抗变形材料层的厚度为0.2~30mm;
将所述双层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到双层料胚。
结合本发明实施例的第四方面、第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式,在本发明实施例的第四方面的第五种可能的实现方式中,
在所述阳极氧化材料和所述抗变形材料均呈片材状的情况下;
所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
将呈片材状的所述阳极氧化材料和呈片材状的所述抗变形材料通过挤压成形或轧制成形,得到双层料胚。
结合本发明实施例的第四方面、第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式,在本发明实施例的第四方面的第六种可能的实现方式中,
在所述阳极氧化材料和所述抗变形材料中一个呈粉末状、另一个呈片材状的情况下;
所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
将所述阳极氧化材料、所述抗变形材料中呈粉末状的材料压制为胚体,并经烧结冷却为料胚;
将所述阳极氧化材料、所述抗变形材料中呈片材状的材料与所述料胚,通过挤压成形或轧制成形,得到双层料胚。
本发明实施例第五方面提供了一种复合材料制备方法,包括:
选取阳极氧化材料、抗变形材料和注塑材料,其中,所述抗变形材料的屈服强度300~1500MPa,弹性模量65~300GPa;所述抗变形材料包括铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中至少一种;所述阳极氧化材料为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;所述注塑材料为5系铝合金、6系铝合金或纯铝,所述注塑材料中铝元素含量大于90%;
将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述三层料胚的中间层为抗变形材料层,所述抗变形材料经压制处理后形成所述抗变形材料层;
将所述三层料胚在所述抗变形材料的热处理制度下进行热处理强化,得到三层复合材料。
结合本发明实施例的第五方面,在本发明实施例的第五方面的第一种可能的实现方式中,
所述热处理制度为T6热处理制度、T8热处理制度、T4热处理制度、T5热处理制度或T2热处理制度。
结合本发明实施例的第五方面或第五方面的第一种可能的实现方式,在本发明实施例的第五方面的第二种可能的实现方式中,
在所述抗变形材料包括铝合金材料的情况下,所述抗变形材料还包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
结合本发明实施例的第五方面、第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在本发明实施例的第五方面的第三种可能的实 现方式中,
在所述阳极氧化材料和所述抗变形材料呈粉末状、所述注塑材料呈片材状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层,包括:
将所述阳极氧化材料的粉末进行压制,得到0.005~30mm的阳极氧化材料胚体;
将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205~60mm的双层胚体,其中,所述阳极氧化材料胚体经压制处理后形成的阳极氧化层的厚度为0.005~30mm,所述抗变形材料经压制处理后形成的所述抗变形材料层的厚度为0.2~30mm;
将所述双层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到双层料胚;
将呈片材状且厚度为0.005~30mm的注塑材料置于所述双层料胚之下,经挤压成形或轧制成形,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层。
结合本发明实施例的第五方面、第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在本发明实施例的第五方面的第四种可能的实现方式中,
在所述阳极氧化材料和所述抗变形材料呈粉末状、所述注塑材料呈片材状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层,包括:
将所述抗变形材料的粉末进行压制,得到0.005~30mm的抗变形材料胚体;
将所述阳极氧化材料的粉末铺在所述抗变形材料胚体之上并进行压制,得到0.205~60mm的双层胚体,其中,所述阳极氧化材料胚体经压制处理后形成的阳极氧化层的厚度为0.005~30mm,所述抗变形材料经压制处理后形成的所述抗变形材料层的厚度为0.2~30mm;
将所述双层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到双层料胚;
将呈片材状且厚度为0.005~30mm的注塑材料置于所述双层料胚之下,经挤压成形或轧制成形,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层。
结合本发明实施例的第五方面、第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在本发明实施例的第五方面的第五种可能的实现方式中,
在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈粉末状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述抗变形材料经压制处理后形成的抗变形材料层位于所述三层料胚的中间层,包括:
将所述阳极氧化材料的粉末进行压制,得到0.005~30mm的阳极氧化材料胚体;
将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205~60mm的双层胚体;
将所述注塑材料的粉末铺在所述双层胚体之上并进行压制,得到0.21~90mm的三层胚体,其中,所述三层胚体中阳极氧化材料层的厚度为0.005~30mm,所述抗变形材料层的厚度为0.2~30mm,所述注塑材料层厚度为0.005~30mm,所述三层胚体的中间层为所述抗变形材料层;
将所述三层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到三层料胚。
结合本发明实施例的第五方面、第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在本发明实施例的第五方面的第六种可能的实现方式中,
在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈粉末状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述抗变形材料经压制处理后形成的抗变形材料层位于所述三层料胚的中间层,包括:
将所述抗变形材料的粉末进行压制,得到0.005~30mm的抗变形材料胚体;
将所述阳极氧化材料的粉末铺在所述抗变形材料胚体之上并进行压制,得到0.205~60mm的双层胚体;
将所述注塑材料的粉末铺在所述双层胚体之上并进行压制,得到0.21~90mm的三层胚体,其中,所述三层胚体中阳极氧化材料层的厚度为0.005~30mm,所述抗变形材料层的厚度为0.2~30mm,所述注塑材料层厚度为0.005~30mm,所述三层胚体的中间层为所述抗变形材料层;
将所述三层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到三层料胚。
结合本发明实施例的第五方面、第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在本发明实施例的第五方面的第七种可能的实现方式中,
在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈片材状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,具体包括:
将呈片材状的所述阳极氧化材料、呈片材状的所述抗变形材料和呈片材状的所述注塑材料通过挤压成形或轧制成形得到三层料胚,其中,所述三层料胚的中间层为所述抗变形材料层。
结合本发明实施例的第五方面、第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在本发明实施例的第五方面的第八种可能的实现方式中,
在所述阳极氧化材料、所述抗变形材料和所述注塑材料中其中一种材料呈 粉末状、另外两种材料呈片材状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,具体包括:
将所述阳极氧化材料、所述抗变形材料和所述注塑材料中呈粉末状的材料压制为胚体;
将所述胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到料胚;
将所述另外两种呈片材状的材料和所述料胚通过挤压成形或轧制成形得到三层料胚,其中,所述三层料胚中间层为抗变形材料层。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例中复合材料由于表层的阳极氧化材料层使得复合材料能阳极氧化着色获得形成有效均一,色彩丰富的颜色,而又由于复合材料的抗变形材料层使其具有高屈服强度,高弹性模量,保证了该复合材料不易发生弯曲。
附图说明
图1是本发明实施例中复合材料的一个实施例示意图;
图2是本发明实施例中复合材料的另一个实施例示意图;
图3是本发明实施例中复合材料的制备方法的一个实施例示意图;
图4是本发明实施例中复合材料的制备方法的一个实施例示意图。
具体实施方式
本发明实施例提供了一种复合材料及其制备方法,本发明实施例中复合材料既能阳极氧化着色获得形成有效均一,色彩丰富的颜色,又具有高屈服强度,更高弹性模量,不易发生弯曲。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面先对本发明实施例可能涉及的一些概念进行简单介绍。
5系铝合金:是以Mg为主要合金元素的变形铝合金,即Al-Mg,属于较常用的合金铝系列,含镁量在3-5%之间,又可以称为铝镁合金,主要包括5052、5005、5083及5A05系列等,5系铝合金主要特点为密度低,抗拉强度高,延伸率高。在相同面积下铝镁合金的重量低于其他系列.故常用在航空、船舶方面,比如飞机油箱,在常规工业中应用也较为广泛,加工工艺为连铸连轧,属于热轧铝板系列故能做氧化深加工,5系铝合金是不可热处理强化铝合金。
6系铝合金:是以Mg、Si主要合金元素的变形铝合金,即Al-Mg-Si,6系铝合金是可热处理强化铝合金,目前主要有6063、6061,其他有6082、6125、6262、6060、6005、6463,其中6063、6060、6463在6系铝合金中强度比较低;6262、6005、6082、6061在6系铝合金中强度比较高,6系铝合金特性:中等强度,耐腐蚀性能好,焊接性能好,工艺性能好(易挤压成型)氧化着色性能好,6系铝合金主要应在如汽车行李架、门、窗、车身、散热门、外壳等。
7系铝合金:合金元素以锌为主,但有时也要少量添加了镁、铜,其中超硬铝合金就是含有锌、铅、镁和铜合金接近钢材的硬度,挤压速度较6系铝合金慢,焊接性能好,有良好的耐磨性,可热处理强化,7系铝合金主要应用在航空方面(飞机的承力构件、起落架)、火箭、螺旋桨、航空飞船等,主要包括7075、7005、7003、7055、7050、7072等,其中7005和7075是7系中最高的档次,7075铝板是经消除应力的,加工后不会变形、翘曲,7075铝板的热导性高,可以缩短成型时间,提高工作效率,主要特点是硬度大,7075是高硬度、高强度的铝合金。
屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
弹性模量:弹性模量的一般定义是应力除以应变,材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米或GPa,弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把δ≤5%的材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。
抗拉强度:即表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为Rm(GB/T 228-1987旧国标规定抗拉强度符号为σb),单位为MPa。
硬度,物理学专业术语,材料局部抵抗硬物压入其表面的能力称为硬度。固体对外界物体入侵的局部抵抗能力,是比较各种材料软硬的指标,包括洛氏硬度HR、布氏硬度HB、维氏硬度HV、显微硬度HM、里氏硬度HL、肖氏硬度HS、巴氏硬度HBa、韦氏硬度HW等。
挤压成形:坯料在三向不均匀压应力作用下,从模具的孔口或缝隙挤出使之横截面积减小长度增加,成为所需制品的加工方法叫挤压,坯料的这种加工 叫挤压成形。
轧制成形:也称成形轧制,是利用旋转的轧辊使金属坯料逐步变形制成工件的锻造成形方法,属于旋转锻造,成形轧制时的变形是逐步的、连续的、旋转的,所以生产效率高,设备运转平稳,易于实现机械化和自动化,成形轧制一般分为纵轧、横轧和斜轧。
纯铝:一般所称纯铝指的是工业纯铝,工业纯铝一般定为纯度为99.0%~99.9%的铝,中国定为纯度为98.8%~99.7%的铝。
如下表1所示,一些材料的参数对比如下:
表1
Figure PCTCN2016071948-appb-000001
上表1中5052-H32为5系铝合金中广泛使用做电子设备(如手机)等外壳的材料,6063-T6为6系铝合金中广泛使用做电子设备(如手机)等外壳的 材料,由于5系铝合金或6系铝合金弹性模量较小,屈服强度不足,导致消费者在使用过程中会发现其手机会出现弯曲现象。
而一些高屈服强度和高弹性模量的材料(如上述表1中7系铝合金7003-T5、7055-T7、7075-T6等)由于不能较好地进行阳极氧化表面处理,难以形成有效均一的颜色,由于这一致命缺陷,从而限制其在手机等消费电子领域的应用。
基于此,本发明实施例中提供了一种复合材料及其制备方法,使得该复合材料既能保证材料阳极氧化的效果,又能避免出现弯曲现象。
下面继续探讨本发明实施例的技术方案。
先介绍本发明实施例提供的复合材料,本发明实施例提供的复合材料主要应用于电子设备外壳,例如手机、平板、智能穿戴设备等。
如图1所示,一种复合材料,包括抗变形材料层101,以及结合在所述抗变形材料层表面的阳极氧化材料层102;
其中,所述抗变形材料层中的材料的屈服强度300-1500MPa,弹性模量65-300GPa;
所述抗变形材料层中的材料可以包括铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中至少一种;其中,铝基复合材料可以是铝基石墨烯复合材料,铝基碳纳米管复合材料,铝基碳化硅复合材料,或铝基石墨烯和碳纳米管同时掺杂的复合材料等。
所述阳极氧化材料层中的材料可以为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;
本发明实施例中复合材料由于表层的阳极氧化材料层使得复合材料能阳极氧化着色获得形成有效均一,色彩丰富的颜色,而又由于复合材料的抗变形材料层使其具有高屈服强度,高弹性模量,保证了该复合材料不易发生弯曲。
作为本发明的另一个实施例,在所述抗变形材料层中的材料包括铝合金材料的情况下,所述抗变形材料层中的材料还包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
本实施例中,经过发明人的不断测试,所述抗变形材料的屈服强度300-1500MPa,弹性模量65-300GPa时,可以很好的满足电子设备外壳的高强度,此时由上述复合材料制成的电子设备外壳在正常使用情况下极难弯曲,而阳极氧化材料层中铝元素含量大于90%才能保证阳极氧化效果最佳。
作为优选,在本发明一些实施例中,阳极氧化材料层101中铝元素含量可以大于95%,以达到更好的阳极氧化效果。
当所述抗变形材料层中的材料为高强度铝合金时,例如7系铝合金中的7075,所述抗变形材料层中材料的屈服强度350-600MPa,弹性模量65-210GPa,作为优选,可以是屈服强度450-550MPa,弹性模量75-180GPa。
当所述抗变形材料层中的材料为不锈钢材质时,所述抗变形材料层中材料的弹性模量在180-300GPa以上,屈服强度在1000-1500MPa,作为优选,可以是弹性模量在200-250GPa以上,屈服强度在1100-1400MPa。
作为优选,所述抗变形材料层中材料的抗拉强度510-2000MPa,硬度130-900HV,延伸率>5%;进一步的,所述抗变形材料层中材料可以是:抗拉强度600-700MPa,屈服强度350-600MPa,弹性模量80-210GPa,硬度150-400HV,延伸率>5.5%。
本实施例中,作为优选,为了适应不同电子设备外壳的需要,电子设备外壳的厚度的取值范围可以是在0.21-60mm,其中,所述阳极氧化材料层101厚度可以为0.005mm~30mm,所述抗变形材料层102厚度可以为0.2~30mm。
如图2所示,所述复合材料还可以包括注塑材料层103,所述注塑材料层103和所述抗变形材料层102之间通过冶金结合或固相结合,且所述注塑材料层和所述阳极氧化材料层101分别位于所述抗变形材料层102的两侧,此时,电子设备外壳的厚度的取值范围可以是在0.21-90mm,其中,所述阳极氧化材料层101厚度可以为0.005mm~30mm,所述抗变形材料层102厚度可以为0.2~30mm,所述注塑材料层厚度可以为0.005~30mm。
一般情况下,电子设备外壳一面需要着色(阳极氧化材料层),一面需要与塑料件进行微米或纳米孔洞原理类的注塑结合(注塑材料层),在本发明一些实施例中,电子设备的外壳两面均需要着色,因此所述注塑材料也可以为5系铝合金、6系铝合金或纯铝,同样的,为了取得好的阳极氧化效果,所述注塑材料层中铝元素含量大于90%,作为优选,在本发明一些实施例中所述注塑 材料层中铝元素含量同样可以是大于95%。
当所述复合材料用于电子设备外壳时,作为优选,所述阳极氧化材料层厚度为0.005~0.3mm,所述抗变形材料层厚度为0.1~1mm,所述注塑材料层厚度为0.005~0.3mm,此时,电子设备外壳的厚度的取值范围可以是在0.11-1.6mm。
进一步的,当所述复合材料用于制作手机外壳时,由于手机外壳的厚度较薄,优选的,所述阳极氧化材料层厚度为0.005~0.1mm,所述抗变形材料层厚度为0.4~0.8mm,所述注塑材料层厚度为0.005~0.1mm,此时,电子设备外壳的厚度的取值范围可以是在0.41-1mm。
本发明实施例中同时提供一种电子设备的外壳,所述电子设备的外壳由上述实施例中任一种复合材料加工得到,所述电子设备外壳的厚度在0.21-90mm,所述变形材料层的厚度为0.005mm~30mm,所述阳极氧化材料层的厚度为0.2~30mm。
本发明实施例中同时还提供一种电子设备,所述电子设备包括如上所述电子设备的外壳。
下面介绍本发明实施例中复合材料的制备方法的实施例。
请参阅图3,本发明实施例中复合材料的制备方法的一个实施例包括:
301、选取阳极氧化材料、抗变形材料;
其中,所述抗变形材料的屈服强度300-1500MPa,弹性模量65-300GPa;所述抗变形材料包括铝合金材料(如7系铝合金中7075等),铝基复合材料,不锈钢材料,合金钢铁材料,非晶合金材料,镁合金,或镁基复合材料中至少一种;所述阳极氧化材料为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;
本实施例中,所述阳极氧化材料、所述抗变形材料均可以呈粉末状或片材状。
可选的,在所述抗变形材料包括铝合金材料的情况下,所述抗变形材料还可以包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
302、将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚;
本实施例中,所述压制处理可以是烧结、挤压成形或轧制成形。
在所述阳极氧化材料和所述抗变形材料均呈粉末状的情况下,所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,可以包括:
将所述阳极氧化材料的粉末进行压制,得到0.005-30mm的阳极氧化材料胚体;
将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205-60mm的双层胚体,其中,所述阳极氧化材料的粉末经压制处理后得到的阳极氧化材料层的厚度为0.005-30mm,所述抗变形材料的粉末经压制处理后得到的所述抗变形材料层的厚度为0.2-30mm;
将所述双层胚体置于烧结炉中,以2℃/min-5℃/min的速率升温至0.80Tm-0.90Tm,保温15min-35min;再以9℃/min-18℃/min的升温速率升温至Tm温度,然后以9℃/min-18℃/min的速率降温至0.80Tm-0.90Tm,继续保温70min-105min,冷却后得到双层料胚。
作为本发明的另一个实施例,在所述阳极氧化材料和所述抗变形材料均呈粉末状的情况下;
所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
将所述抗变形材料的粉末进行压制,得到0.005-30mm的抗变形材料胚体;
将所述阳极氧化材料的粉末铺在所述抗变形材料胚体之上并进行压制,得到0.205-60mm的双层胚体,其中,所述阳极氧化材料的粉末经压制处理后得到的阳极氧化材料层的厚度为0.005-30mm,所述抗变形材料的粉末经压制处理后得到的所述抗变形材料层的厚度为0.2-30mm;
将所述双层胚体置于烧结炉中,以2℃/min-5℃/min的速率升温至0.80Tm-0.90Tm,保温15min-35min;再以9℃/min-18℃/min的升温速率升温至Tm温度,然后以9℃/min-18℃/min的速率降温至0.80Tm-0.90Tm,继续保温70min-105min,冷却后得到双层料胚。其中,所述阳极氧化材料粉末的平均粒径D1满足:0μm<D1≤60μm,优选0μm<D1≤30μm,所述抗变形材料粉末的平均粒径D2满足:0μm<D2≤60μm,优选0μm<D1≤30μm。
将所述阳极氧化材料的粉末进行压制,得到0.005-30mm的阳极氧化材料胚体;将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制, 得到0.205-60mm的双层胚体,具体可以包括:在底部平整四周封闭的粉末模具(可预先制作好,例如四边形结构的粉末模具,尺寸不限)平铺阳极氧化材料粉末,将阳极氧化材料粉末压制平整(用底部平整的工具手工或及利用机器设备压制),得到阳极氧化材料胚体;将抗变形材料粉末平铺于所述阳极氧化材料胚体之上;一起压制成双层胚体。
在所述阳极氧化材料和所述抗变形材料均呈片材状的情况下,所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体可以包括:
将呈片材状的所述阳极氧化材料和呈片材状的所述抗变形材料通过挤压成形或轧制成形得到双层料胚。
在所述阳极氧化材料和所述抗变形材料中一个呈粉末状,一个呈片材状的情况下,所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体可以包括:将所述阳极氧化材料、所述抗变形材料中呈粉末状的材料压制为胚体,并经烧结冷却为料胚;将所述阳极氧化材料、所述抗变形材料中呈片材状的材料与所述料胚,通过挤压成形或轧制成形,得到双层料胚。
303、将所述双层料胚在所述抗变形材料的热处理制度下进行热处理强化,得到双层复合材料。
本实施例中,热处理的作用是在料胚的基础上增加复合材料的强度,所述热处理制度可以是T6热处理制度、T8热处理制度、T4热处理制度、T5热处理制度或T2热处理制度等。
当所述抗变形材料为一种时,即在该抗变形材料的热处理制度下进行热处理强化,得到双层复合材料,例如所述抗变形材料为铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中一种时,则在该抗变形材料的热处理制度下进行热处理强化,当所述抗变形材料为多种材料时,则在该抗变形材料的基材的热处理制度下进行热处理强化,例如所述抗变形材料包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种和铝合金材料,则在铝合金材料的热处理制度下进行热处理强化。
本发明实施例中,在制作得到双层复合材料后,对双层复合材料进行温锻成形,形成电子设备外壳大致形状,然后再经计算机数字控制机床(英文全称:Computerized Numerical Control Machine,英文简称:CNC)加工成电子设备外壳,对CNC处理后的电子设备外壳表层(阳极氧化材料层)进行阳极氧化 着色处理,上述温锻成形和CNC加工与电子设备外壳本身设计的形状相关,此处不一一赘述。
下面结合一个具体应用场景对本发明图3所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为纯铝粉末,所述抗变形材料为7075铝合金粉末;
步骤一:选取纯铝粉末,纯度为99.7%,平均粒径为15μm左右;选取7075铝合金粉末,平均粒径为15μm左右;
步骤二:先将7075粉末平铺于预先制备的四方形粉末模具下方,压制(轻压密实化)得到胚体;再将纯铝粉末平铺于7075铝合金粉末之上,然后和纯铝粉末一起压制(重压密实化)成双层料胚;
步骤三:将双层料胚置于烧结炉中,以3℃/min的速率升温至7075铝合金的0.85Tm(Tm为7075铝合金熔点,以下类同),保温20min;再以15℃/min的升温速率升温至Tm温度,然后以15℃/min的速率降温至0.85Tm,继续保温70min,待其冷却后可以得到双层料胚;
步骤四:将所述双层料胚在7075铝合金的T6热处理制度下进行热处理强化,得到双层复合材料。
此时得到的双层复合材料上层是纯铝,下层是7075铝合金。
本发明实施例中,轻压密实化是得到致密度在60%以上的胚体;重压密实化是得到致密度在80%以上的胚体(下同)。
下面结合另一个具体应用场景对本发明图3所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为6061铝合金粉末,所述抗变形材料为7075铝合金粉末和铝基石墨烯片;
步骤一:选取6061铝合金粉末,平均粒径为20μm左右;选取7075铝合金粉末,平均粒径为18μm左右,选取厚度为4nm的铝基石墨烯片;
步骤二:先将7075铝合金粉末和铝基石墨烯片均匀混合后平铺于预先制备的四方形粉末模具下方,轻压密实化得到胚体;再将6061铝合金粉末平铺于该胚体之上,然后和6061铝合金粉末一起压制(重压密实化)成双层胚体;
步骤三:将双层料胚置于烧结炉中,以5℃/min的速率升温至铝基石墨烯的0.9Tm(Tm为7075铝合金的熔点,以下类同),保温25min;再以13℃/min的升温速率升温至Tm温度,然后以13℃/min的速率降温至0.9Tm,继续保温80min,待其冷却后可以得到双层料胚;
步骤四:将所述双层料胚在铝基的T8热处理制度下进行热处理强化,得到双层复合材料。
此时,得到的双层复合材料上层是6061铝合金,下层是铝基石墨烯复合材料。
上面介绍双层复合材料的制备方法,下面介绍三层复合材料的制备方法,请参阅图4,本发明实施例中复合材料的制备方法的一个实施例包括:
401、选取阳极氧化材料、抗变形材料和注塑材料;
其中,所述抗变形材料的屈服强度300-1500MPa,弹性模量65-300GPa;所述抗变形材料包括铝合金材料,铝基复合材料,不锈钢材料,合金钢铁材料,非晶合金材料,镁合金,或镁基复合材料中至少一种;所述阳极氧化材料为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;
本实施例中,所述注塑材料可以为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%。
本实施例中,所述阳极氧化材料、所述抗变形材料和所述注塑材料均可以为粉末状或片材状;
需要说明的是,在所述抗变形材料包括铝合金材料的情况下,所述抗变形材料还可以包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
402、将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚;
其中,所述三层料胚的中间层为抗变形材料层,所述抗变形材料经压制处理后形成所述抗变形材料层,所述压制处理可以包括烧结、挤压成形或轧制成形中至少一种。
需要说明的是,在所述阳极氧化材料和所述抗变形材料呈粉末状、所述注塑材料呈片材状情况下,所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述抗变形材料经压制处理后形成的抗 变形材料层位于所述三层料胚的中间层,具体可以包括:
将所述阳极氧化材料的粉末进行压制,得到0.005-30mm的阳极氧化材料胚体;
将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205-60mm的双层胚体,其中,所述阳极氧化材料胚体经压制处理后形成的阳极氧化层的厚度为0.005-30mm,所述抗变形材料经压制处理后形成的所述抗变形材料层的厚度为0.2-30mm;
将所述双层胚体置于烧结炉中,以2℃/min-5℃/min的速率升温至0.80Tm-0.90Tm,保温15min-35min;再以9℃/min-18℃/min的升温速率升温至Tm温度,然后以9℃/min-18℃/min的速率降温至0.80Tm-0.90Tm,继续保温70min-105min,冷却后得到双层料胚。
将呈片材状且厚度为0.005-30mm的注塑材料置于所述双层料胚之下,经挤压成形或轧制成形,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层。
其中,若所述抗变形材料是由多种材料组成,则Tm为其中任一种材料的熔点或材料熔点最高的熔点值。
其中,将所述阳极氧化材料粉末和所述抗变形材料粉末压制成双层胚体,还可以包括:在底部平整四周封闭的粉末模具平铺抗变形材料粉末,将抗变形材料粉末平整,得到抗变形材料粉末胚体;将阳极氧化材料粉末平铺于所述抗变形材料粉末胚体之上;将阳极氧化材料粉末和所述抗变形材料粉末胚体一起压制成双层胚体。
作为本发明的另一个实施例,在所述阳极氧化材料和所述抗变形材料呈粉末状、所述注塑材料呈片材状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层,包括:
将所述抗变形材料的粉末进行压制,得到0.005-30mm的抗变形材料胚体;
将所述阳极氧化材料的粉末铺在所述抗变形材料胚体之上并进行压制,得到0.205-60mm的双层胚体,其中,所述阳极氧化材料胚体经压制处理后形成的阳极氧化层的厚度为0.005-30mm,所述抗变形材料经压制处理后形成的所述抗变形材料层的厚度为0.2-30mm;
将所述双层胚体置于烧结炉中,以2℃/min-5℃/min的速率升温至0.80Tm-0.90Tm,保温15min-35min;再以9℃/min-18℃/min的升温速率升温至Tm温度,然后以9℃/min-18℃/min的速率降温至0.80Tm-0.90Tm,继续保温70min-105min,冷却后得到双层料胚;
将呈片材状且厚度为0.005-30mm的注塑材料置于所述双层料胚之下,经挤压成形或轧制成形,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层。
在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈粉末状的情况下,所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述抗变形材料经压制处理后形成的抗变形材料层位于所述三层料胚的中间层,包括:
将所述阳极氧化材料的粉末进行压制,得到0.005-30mm的阳极氧化材料胚体;
将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205-60mm的双层胚体;
将所述注塑材料的粉末铺在所述双层胚体之上并进行压制,得到0.21-90mm的三层胚体,其中,所述三层胚体中阳极氧化材料层的厚度为0.005-30mm,所述抗变形材料层的厚度为0.2-30mm,所述注塑材料层厚度为0.005-30mm,所述三层胚体的中间层为所述抗变形材料层;
将所述三层胚体置于烧结炉中,以2℃/min-5℃/min的速率升温至0.80Tm-0.90Tm,保温15min-35min;再以9℃/min-18℃/min的升温速率升温至Tm温度,然后以9℃/min-18℃/min的速率降温至0.80Tm-0.90Tm,继续保温70min-105min,冷却后得到三层料胚。
作为本发明的另一个实施例,在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈粉末状的情况下;
所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述抗变形材料经压制处理后形成的抗变形材料层位于所述三层料胚的中间层,包括:
将所述抗变形材料的粉末进行压制,得到0.005-30mm的抗变形材料胚体;
将所述阳极氧化材料的粉末铺在所述抗变形材料胚体之上并进行压制,得 到0.205-60mm的双层胚体;
将所述注塑材料的粉末铺在所述双层胚体之上并进行压制,得到0.21-90mm的三层胚体,其中,所述三层胚体中阳极氧化材料层的厚度为0.005-30mm,所述抗变形材料层的厚度为0.2-30mm,所述注塑材料层厚度为0.005-30mm,所述三层胚体的中间层为所述抗变形材料层;
将所述三层胚体置于烧结炉中,以2℃/min-5℃/min的速率升温至0.80Tm-0.90Tm,保温15min-35min;再以9℃/min-18℃/min的升温速率升温至Tm温度,然后以9℃/min-18℃/min的速率降温至0.80Tm-0.90Tm,继续保温70min-105min,冷却后得到三层料胚。
在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈片材状的情况下,所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,具体可以包括:
将呈片材状的所述阳极氧化材料、呈片材状的所述抗变形材料和呈片材状的所述注塑材料通过挤压成形或轧制成形得到三层料胚,其中,所述三层料胚的中间层为所述抗变形材料层。
在所述阳极氧化材料、所述抗变形材料和所述注塑材料中其中一种材料呈粉末状,另外两种材料呈片材状的情况下,所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,具体包括:
将所述阳极氧化材料、所述抗变形材料和所述注塑材料中粉末状的材料压制为胚体;
将所述胚体置于烧结炉中,以2℃/min-5℃/min的速率升温至0.80Tm-0.90Tm,保温15min-35min;再以9℃/min-18℃/min的升温速率升温至Tm温度,然后以9℃/min-18℃/min的速率降温至0.80Tm-0.90Tm,继续保温70min-105min,冷却后得到料胚;
将所述另外两种呈片材状的材料和所述料胚通过挤压成形或轧制成形得到三层料胚,其中,所述三层料胚中间层为抗变形材料层。
403、将所述三层料胚在所述抗变形材料的热处理制度下进行热处理强化,得到三层复合材料。
本实施例中,热处理的作用是在料胚的基础上增加复合材料的强度,所述热处理制度可以是T6热处理制度、T8热处理制度、T4热处理制度、T5热处 理制度或T2热处理制度等。
当所述抗变形材料为一种时,即在该抗变形材料的热处理制度下进行热处理强化,得到双层复合材料,例如所述抗变形材料为铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中一种时,则在该抗变形材料的热处理制度下进行热处理强化,当所述抗变形材料为多种材料时,则在该抗变形材料的基材的热处理制度下进行热处理强化,例如所述抗变形材料包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种和铝合金材料,则在铝合金材料的热处理制度下进行热处理强化。
本发明实施例中,在制作得到三层复合材料后,对三层复合材料进行温锻成形,形成电子设备外壳大致形状,然后再经计算机数字控制机床(英文全称:Computerized Numerical Control Machine,英文简称:CNC)加工成电子设备外壳,对CNC处理后的电子设备外壳表层(阳极氧化材料层)进行阳极氧化着色处理,同时在电子设备外壳最里层(注塑材料层),进行纳米注塑成形处理与塑胶件进行结合,上述温锻成形和CNC加工与电子设备本身设计的形状相关,此处不一一赘述。
下面结合一个具体应用场景对本发明图4所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为纯铝粉末,所述抗变形材料为7075铝合金粉末,所述注塑材料为6063铝合金片材;
步骤一:选取纯铝粉末,纯度为99.7%,平均粒径为16μm左右;选取7075铝合金粉末,平均粒径为15μm左右;选取6063铝合金片材,厚度为0.5mm;
步骤二:先将7075粉末平铺于预先制备的四方形粉末模具下方,轻压密实化得到胚体;再将纯铝粉末平铺于7075铝合金粉末之上一起压制(重压密实化)成双层料胚;
步骤三:将双层料胚置于烧结炉中,以3℃/min的速率升温至7075的0.8Tm(Tm为70575铝合金熔点,以下类同),保温20min;再以15℃/min的升温速率升温至Tm温度,然后以15℃/min的速率降温至0.90Tm,继续保温70min,待其冷却后可以得到双层料胚;
步骤四:将6063片材0.3mm置于双层料胚之下(根据不同的厚度要求可 以放置至少一片),然后同时挤压成形,得到三明治结构的三层料胚,其中上层为纯铝,中层为7075铝合金,下层为6063铝合金;
步骤五:将所述三层料胚在7075铝合金的T6热处理制度下进行热处理强化,得到三层复合材料。
此时得到的复合材料,上层是纯铝、中间层是7075铝合金,下层是6063铝合金。
在得到三层复合材料后,可以对该三层复合材料进行温锻成形,形成手机外壳大致形状,然后再CNC加工成手机外壳,对CNC处理后的手机外壳表层(阳极氧化材料层)进行阳极氧化着色处理(着色是各种颜色),同时在手机外壳里层(注塑材料层),进行纳米注塑成形处理与塑胶件进行结合。
下面结合另一个具体应用场景对本发明图4所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为6061铝合金粉末,所述抗变形材料为7075铝合金粉末和多壁碳纳米管,所述注塑材料为6063铝合金片材;
步骤一:选取6061铝合金粉末,平均粒径为18μm左右;选取7075铝合金粉末,平均粒径为18μm左右,选取6063铝合金片材,厚度为0.7mm,以及多壁碳纳米管;
步骤二:先将7075铝合金粉末和多壁碳纳米管均匀混合后平铺于预先制备的四方形粉末模具下方,轻压密实化得到胚体;再将6061铝合金粉末平铺于该胚体之上一起压制(重压密实化)成双层胚体;
步骤三:将双层胚体置于烧结炉中,以4℃/min的速率升温至7075的0.9Tm(Tm为7075铝合金的熔点,以下类同),保温25min;再以13℃/min的升温速率升温至Tm温度,然后以13℃/min的速率降温至0.85Tm,继续保温85min,待其冷却后可以得到双层料胚;
步骤四:将6061片材置于双层料胚之下,然后同时挤压成形,得到三明治结构的三层料胚,其中上层为6061铝合金层,中层为7075铝合金和多壁碳纳米管,下层为6061铝合金;
步骤五:将所述三层料胚在7075铝合金的T8热处理制度下进行热处理强 化,得到三层复合材料。
下面结合另一个具体应用场景对本发明图4所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为纯铝粉末,所述抗变形材料为7075铝合金粉末、碳纳米管和石墨烯铝合金粉末,所述注塑材料为6063铝合金片材;
步骤一:选取纯铝粉末,纯度为99.85%,平均粒径为25μm左右;选取7075铝合金粉末,平均粒径为28μm左右;选取6063铝合金片材,厚度为0.7mm;以及多壁碳纳米管,及平均约5nm厚的块状石墨烯;
步骤二:先将7075粉末、多壁碳纳米管及块状石墨烯均匀混合后平铺于预先制备的四方形粉末模具下方,轻压密实化得到胚体,其中碳纳米管占混合粉末的体积百分比为2%左右;再将6061铝合金粉末平铺于该胚体之上,一起压制(重压密实化)成双层胚体;
步骤三:将双层胚体置于烧结炉中,以2℃/min的速率升温至7075的0.85Tm(Tm为熔点,以下类同),保温35min;再以11℃/min的升温速率升温至Tm温度,然后以11℃/min的速率降温至0.85Tm,继续保温90min,待其冷却后可以得到双层料胚;
步骤四:将6063片材置于双层料胚之下(根据厚度需要放置至少一片),然后同时挤压成形,得到三明治结构的三层料胚,其中上层为6061铝合金层,中层为7075铝合金、壁碳纳米管及块状石墨烯,下层为6063铝合金;
步骤五:将所述三层料胚在7075铝合金的T6热处理制度下进行热处理强化,得到三层复合材料。
下面结合另一个具体应用场景对本发明图4所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为6063铝合金粉末,所述抗变形材料为7075铝合金粉末、镀Ni碳化硅粉末和块状石墨烯,所述注塑材料为6063铝合金片材;
步骤一:选取6063铝合金粉末,平均粒径为35μm左右;选取7075铝合金粉末,平均粒径为22μm左右;选取6063铝合金片材,厚度为0.7mm;以 及镀Ni碳化硅粉末,平均粒径10μm左右,及平均约6nm厚的块状石墨烯;
步骤二:先将7075粉末、镀Ni碳化硅粉末及块状石墨烯均匀混合后平铺于预先制备的四方形粉末模具下方,轻压密实化得到胚体,其中镀Ni碳化硅粉末占混合粉末的体积百分比为3%左右,石墨烯体积百分比占比为2%左右;再将6063铝合金粉末平铺于该胚体之上一起压制成双料胚,重压密实化;
步骤三:将双层胚体置于烧结炉中,以4℃/min的速率升温至7075的0.82Tm(Tm为7075铝合金的熔点,以下类同),保温25min;再以16℃/min的升温速率升温至Tm温度,然后以14℃/min的速率降温至0.82Tm,继续保温100min,待其冷却后可以得到双层料胚;
步骤四:将纯铝片材2mm置于双层料胚之下,然后同时轧制成形,得到三明治结构的三层料胚,其中上层为6063铝合金层,中层为7075基碳化硅石墨烯铝合金,下层为纯铝;
步骤五:将所述三层料胚在7075铝合金的T6热处理制度下进行热处理强化,得到三层复合材料。
下面结合另一个具体应用场景对本发明图4所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为纯铝粉末,所述抗变形材料为7075铝合金粉末、石墨烯片,所述注塑材料为纯铝粉末;
步骤一:选取纯铝粉末,纯度为99.7%,平均粒径为15μm左右;选取7075铝合金粉末,平均粒径为15μm左右平均厚度为4nm的石墨烯片;
步骤二:先将纯铝粉末平铺于预先制备的四方形粉末模具下方,轻压密实化得到胚体,再将7075粉末和石墨烯混合均匀后平铺于该胚体之上,轻压密实化得到双层料胚;再将纯铝粉末均匀平铺于该双层料胚之上一起压制(重压密实化)成三层胚体;
步骤三:将三层胚体置于烧结炉中,以2℃/min的速率升温至0.8Tm(Tm为7075铝合金的熔点,以下类同),保温15min;再以17℃/min的升温速率升温至Tm温度,然后以10℃/min的速率降温至0.8Tm,继续保温75min,待其冷却后可以得到三层料胚;
步骤四:对三层料胚挤压成形,得到三明治结构的三层复合材料,其中上层为纯铝,中层为7075铝石墨烯合金,下层为纯铝合金;
步骤五:将所述三层料胚在7075铝合金的T5热处理制度下进行热处理强化,得到三层复合材料。
下面结合另一个具体应用场景对本发明图4所述实施例进行描述:
本具体实施例中,所述阳极氧化材料为纯铝粉末,所述抗变形材料为7075铝合金粉末,所述注塑材料为纯铝片材;
步骤一:选取纯铝粉末,纯度为99.7%,平均粒径为15μm左右;选取7075铝合金粉末,平均粒径为15μm左右;选取纯铝片材,厚度为1mm;
步骤二:先将7075粉末、镀Ni碳化硅粉末及块状石墨烯均匀混合后平铺于预先制备的四方形粉末模具下方,轻压密实化得到胚体;再将纯铝粉末平铺于该胚体之上和该胚体一起压制(重压密实化)成双层胚体;
步骤三:将双层胚体置于烧结炉中,以3℃/min的速率升温至0.88Tm(Tm为7075铝合金的熔点,以下类同),保温30min;再以10℃/min的升温速率升温至Tm温度,然后以10℃/min的速率降温至0.88Tm,继续保温85min,待其冷却后可以得到双层料胚;
步骤四:将纯铝片材置于双层料胚之下(根据厚度需要放置一片或多片),然后同时轧制成形,得到三明治结构的三层复合材料,其中上层为纯铝,中层为7075铝合金,下层纯铝;
步骤五:将所述三层料胚在7075铝合金的T4热处理制度下进行热处理强化,得到三层复合材料。
在本申请所提供的几个实施例中,应该理解到,所揭露的结构和方法,可以通过其它的方式实现。例如,以上所描述的方法具体实施例中,其各项参数的数值取值仅仅是示例,可以理解的是,它们在各自数值取值范围内的取值均可,不因以此为限。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (20)

  1. 一种复合材料,其特征在于,应用于电子设备外壳,包括抗变形材料层和阳极氧化材料层,所述抗变形材料层和所述阳极氧化材料层之间通过冶金结合或固相结合,所述结合区厚度在0.5mm以内;
    所述抗变形材料层中的材料包括铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中至少一种;其中,所述抗变形材料层中材料的屈服强度300~1500MPa,弹性模量65~300GPa;所述抗变形材料层厚度为0.2~30mm;
    所述阳极氧化材料层中的材料为5系铝合金、6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;所述阳极氧化材料层厚度为0.005mm~30mm。
  2. 根据权利要求1所述的复合材料,其特征在于,
    在所述抗变形材料层中的材料包括铝合金材料的情况下,所述抗变形材料层中的材料还包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
  3. 根据权利要求1或2所述的复合材料,其特征在于,
    所述复合材料还包括注塑材料层,所述注塑材料层和所述抗变形材料层之间通过冶金结合或固相结合,且所述注塑材料层和所述阳极氧化材料层分别位于所述抗变形材料层的两侧;
    所述注塑材料层的材料为5系铝合金、6系铝合金或纯铝,所述注塑材料层中铝元素含量大于90%;
    所述注塑材料层厚度为0.005~30mm。
  4. 根据权利要求1至3任一项所述的复合材料,其特征在于,
    所述抗变形材料的屈服强度350~600MPa,弹性模量65~210GPa。
  5. 根据权利要求1至3任一项所述的复合材料,其特征在于,
    所述抗变形材料的屈服强度1000~1500MPa,弹性模量180~300GPa。
  6. 一种电子设备的外壳,其特征在于,所述电子设备的外壳由如权利要求1至5中任一所述的复合材料加工得到,所述电子设备的外壳的厚度在0.21~90mm,所述变形材料层的厚度为0.005mm~30mm,所述阳极氧化材料层的厚度为0.2~30mm。
  7. 一种电子设备,其特征在于,包括如权利要求6所述的电子设备的外 壳。
  8. 一种复合材料制备方法,其特征在于,包括:
    选取阳极氧化材料、抗变形材料,其中,所述抗变形材料的屈服强度300~1500MPa,弹性模量65~300GPa;所述抗变形材料包括铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中至少一种;所述阳极氧化材料为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;
    将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚;
    将所述双层料胚在所述抗变形材料的热处理制度下进行热处理强化,得到双层复合材料。
  9. 根据权利要求8所述的方法,其特征在于,
    所述热处理制度为T6热处理制度、T8热处理制度、T4热处理制度、T5热处理制度或T2热处理制度。
  10. 根据权利要求8或9所述的方法,其特征在于,
    在所述抗变形材料包括铝合金材料的情况下,所述抗变形材料还包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,
    在所述阳极氧化材料和所述抗变形材料均呈粉末状的情况下;
    所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
    将所述阳极氧化材料的粉末进行压制,得到0.005~30mm的阳极氧化材料胚体;
    将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205~60mm的双层胚体,其中,所述阳极氧化材料的粉末经压制处理后得到的阳极氧化材料层的厚度为0.005~30mm,所述抗变形材料的粉末经压制处理后得到的所述抗变形材料层的厚度为0.2~30mm;
    将所述双层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到双层料胚。
  12. 根据权利要求8至10中任一项所述的方法,其特征在于,
    在所述阳极氧化材料和所述抗变形材料均呈片材状的情况下;
    所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
    将呈片材状的所述阳极氧化材料和呈片材状的所述抗变形材料通过挤压成形或轧制成形,得到双层料胚。
  13. 根据权利要求8至10中任一项所述的方法,其特征在于,
    在所述阳极氧化材料和所述抗变形材料中一个呈粉末状、另一个呈片材状的情况下;
    所述将所述阳极氧化材料、所述抗变形材料进行压制处理,得到双层料胚,具体包括:
    将所述阳极氧化材料、所述抗变形材料中呈粉末状的材料压制为胚体,并经烧结冷却为料胚;
    将所述阳极氧化材料、所述抗变形材料中呈片材状的材料与所述料胚,通过挤压成形或轧制成形,得到双层料胚。
  14. 一种复合材料制备方法,其特征在于,包括:
    选取阳极氧化材料、抗变形材料和注塑材料,其中,所述抗变形材料的屈服强度300~1500MPa,弹性模量65~300GPa;所述抗变形材料包括铝合金材料、钛合金材料、铝基复合材料、不锈钢材料、合金钢铁材料、非晶合金材料、镁合金、或镁基复合材料中至少一种;所述阳极氧化材料为5系铝合金,6系铝合金或纯铝,所述阳极氧化材料层中铝元素含量大于90%;所述注塑材料为5系铝合金、6系铝合金或纯铝,所述注塑材料中铝元素含量大于90%;
    将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述三层料胚的中间层为抗变形材料层,所述抗变形材料经压制处理后形成所述抗变形材料层;
    将所述三层料胚在所述抗变形材料的热处理制度下进行热处理强化,得到三层复合材料。
  15. 根据权利要求14所述的方法,其特征在于,
    所述热处理制度为T6热处理制度、T8热处理制度、T4热处理制度、T5热处理制度或T2热处理制度。
  16. 根据权利要求14或15所述的方法,其特征在于,
    在所述抗变形材料包括铝合金材料的情况下,所述抗变形材料还包括石墨烯、多壁碳纳米管、镀镍碳化硅中的至少一种。
  17. 根据权利要求14至16任一项所述的方法,其特征在于,
    在所述阳极氧化材料和所述抗变形材料呈粉末状、所述注塑材料呈片材状的情况下;
    所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层,包括:
    将所述阳极氧化材料的粉末进行压制,得到0.005~30mm的阳极氧化材料胚体;
    将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得到0.205~60mm的双层胚体,其中,所述阳极氧化材料胚体经压制处理后形成的阳极氧化层的厚度为0.005~30mm,所述抗变形材料经压制处理后形成的所述抗变形材料层的厚度为0.2~30mm;
    将所述双层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到双层料胚;
    将呈片材状且厚度为0.005~30mm的注塑材料置于所述双层料胚之下,经挤压成形或轧制成形,得到三层料胚,所述三层料胚的中间层为所述抗变形材料层。
  18. 根据权利要求14至16任一项所述的方法,其特征在于,
    在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈粉末状的情况下;
    所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,所述抗变形材料经压制处理后形成的抗变形材料层位于所述三层料胚的中间层,包括:
    将所述阳极氧化材料的粉末进行压制,得到0.005~30mm的阳极氧化材料胚体;
    将所述抗变形材料的粉末铺在所述阳极氧化材料胚体之上并进行压制,得 到0.205~60mm的双层胚体;
    将所述注塑材料的粉末铺在所述双层胚体之上并进行压制,得到0.21~90mm的三层胚体,其中,所述三层胚体中阳极氧化材料层的厚度为0.005~30mm,所述抗变形材料层的厚度为0.2~30mm,所述注塑材料层厚度为0.005~30mm,所述三层胚体的中间层为所述抗变形材料层;
    将所述三层胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到三层料胚。
  19. 根据权利要求14至16任一项所述的方法,其特征在于,
    在所述阳极氧化材料、所述抗变形材料和所述注塑材料均呈片材状的情况下;
    所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,具体包括:
    将呈片材状的所述阳极氧化材料、呈片材状的所述抗变形材料和呈片材状的所述注塑材料通过挤压成形或轧制成形得到三层料胚,其中,所述三层料胚的中间层为所述抗变形材料层。
  20. 根据权利要求14至16任一项所述的方法,其特征在于,
    在所述阳极氧化材料、所述抗变形材料和所述注塑材料中其中一种材料呈粉末状、另外两种材料呈片材状的情况下;
    所述将所述阳极氧化材料、所述抗变形材料和所述注塑材料进行压制处理,得到三层料胚,具体包括:
    将所述阳极氧化材料、所述抗变形材料和所述注塑材料中呈粉末状的材料压制为胚体;
    将所述胚体置于烧结炉中,以2℃/min~5℃/min的速率升温至0.80Tm~0.90Tm,保温15min~35min;再以9℃/min~18℃/min的升温速率升温至Tm温度,然后以9℃/min~18℃/min的速率降温至0.80Tm~0.90Tm,继续保温70min~105min,冷却后得到料胚;
    将所述另外两种呈片材状的材料和所述料胚通过挤压成形或轧制成形得到三层料胚,其中,所述三层料胚中间层为抗变形材料层。
PCT/CN2016/071948 2015-08-21 2016-01-25 一种复合材料及其制备方法 WO2017031942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510520142.5 2015-08-21
CN201510520142.5A CN106466947B (zh) 2015-08-21 2015-08-21 一种复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017031942A1 true WO2017031942A1 (zh) 2017-03-02

Family

ID=58099344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071948 WO2017031942A1 (zh) 2015-08-21 2016-01-25 一种复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN106466947B (zh)
WO (1) WO2017031942A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108297237A (zh) * 2018-01-19 2018-07-20 中航复材(北京)科技有限公司 一种新型复合材料小提琴及制作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359998B1 (ko) * 2017-03-08 2022-02-09 삼성전자주식회사 알루미늄 클래드 판재와 그 제조방법
CN110450340A (zh) * 2018-05-07 2019-11-15 南京绿寰新材料科技有限公司 一种纳米石墨烯/铝合金基自润滑复合材料及其制备方法
CN110033947B (zh) * 2019-05-13 2020-12-29 南通海星电子股份有限公司 一种高强度电子光箔及其制造工艺
WO2021154275A1 (en) * 2020-01-31 2021-08-05 Hewlett-Packard Development Company, L.P. Enclosures for electronic devices
CN114980629A (zh) * 2021-02-19 2022-08-30 华为技术有限公司 壳体、终端设备及壳体的制备方法
CN114347589A (zh) * 2021-12-21 2022-04-15 歌尔股份有限公司 一种复合材料层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887725B1 (ko) * 2008-08-12 2009-03-12 한국진공주식회사 컬러층의 제조방법, 상기 제조방법으로 제조된 자동차 내외장재, 휴대폰 외장재, 전자제품 외장재
CN103029368A (zh) * 2011-09-29 2013-04-10 比亚迪股份有限公司 一种复合金属壳体及其制备方法
CN203844331U (zh) * 2014-05-23 2014-09-24 江苏银河电子股份有限公司 一种金属构件
CN204322625U (zh) * 2014-11-11 2015-05-13 南京同旺铝业有限公司 一种新型高强度铝合金板材
CN104694786A (zh) * 2015-01-29 2015-06-10 东莞劲胜精密组件股份有限公司 一种铝合金

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197142A (ja) * 2002-12-17 2004-07-15 Furukawa Sky Kk 成形性および強度に優れるアルミニウム合金材とその製造方法
JP2009046707A (ja) * 2007-08-15 2009-03-05 Kyocera Chemical Corp 電子機器用マグネシウム製筐体部品および電子機器用マグネシウム製筐体
JP2011132445A (ja) * 2009-12-25 2011-07-07 Fujifilm Corp 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
CN102181753B (zh) * 2011-03-16 2013-04-17 西安明科微电子材料有限公司 一种硅与碳化硅混杂增强的铝基复合材料及其制备方法
CN102430745B (zh) * 2011-08-18 2015-11-25 比亚迪股份有限公司 非晶合金与异质材料结合的方法及复合体
KR101889370B1 (ko) * 2011-10-14 2018-08-21 삼성전자주식회사 전자기기용 케이스 및 이의 표면처리 방법
CN102352468A (zh) * 2011-11-02 2012-02-15 永鑫精密材料(无锡)有限公司 一种制备手机外壳用不锈钢薄带的制备方法
CN103297565B (zh) * 2012-02-24 2015-07-22 比亚迪股份有限公司 一种手机壳体及其制备方法
CN204498163U (zh) * 2015-02-05 2015-07-22 薛兆喜 一种外置铝合金装饰件与内置钢片纳米注塑成型的手机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887725B1 (ko) * 2008-08-12 2009-03-12 한국진공주식회사 컬러층의 제조방법, 상기 제조방법으로 제조된 자동차 내외장재, 휴대폰 외장재, 전자제품 외장재
CN103029368A (zh) * 2011-09-29 2013-04-10 比亚迪股份有限公司 一种复合金属壳体及其制备方法
CN203844331U (zh) * 2014-05-23 2014-09-24 江苏银河电子股份有限公司 一种金属构件
CN204322625U (zh) * 2014-11-11 2015-05-13 南京同旺铝业有限公司 一种新型高强度铝合金板材
CN104694786A (zh) * 2015-01-29 2015-06-10 东莞劲胜精密组件股份有限公司 一种铝合金

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108297237A (zh) * 2018-01-19 2018-07-20 中航复材(北京)科技有限公司 一种新型复合材料小提琴及制作方法

Also Published As

Publication number Publication date
CN106466947A (zh) 2017-03-01
CN106466947B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2017031942A1 (zh) 一种复合材料及其制备方法
Singh et al. Manufacturing techniques for metal matrix composites (MMC): an overview
Asadi et al. Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes
Kumar et al. Metal matrix composite: a methodological review
Mahallawy et al. Evaluation of mechanical properties and microstructure of Al/Al–12% Si multilayer via warm accumulative roll bonding process
Liu et al. Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process
Rahmatabadi et al. Evaluation of microstructure and mechanical properties of multilayer Al5052–Cu composite produced by accmulative roll bonding
Boonyongmaneerat et al. Mechanical properties of reticulated aluminum foams with electrodeposited Ni–W coatings
CN111118353A (zh) 一种铝合金及制造方法
US20160265576A1 (en) Systems and Methods for Structurally Interrelating Components Using Inserts Made from Metallic Glass-Based Materials
Amirkhanlou et al. Manufacturing of high-performance Al356/SiCp composite by CAR process
CN107043903B (zh) 定向织构化Ti2AlC-Mg基复合材料及其热挤压制备方法
Atieh et al. Application of Ni and Cu nanoparticles in transient liquid phase (TLP) bonding of Ti-6Al-4V and Mg-AZ31 alloys
Sanders Jr Continuous casting for aluminum sheet: a product perspective
Jayaramanavar et al. Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al 2 O 3 nanoparticles
CN101391500A (zh) 镁基复合材料及其制备方法
WO2021129552A1 (zh) 一种金属基复合材料及其制备方法
CN101279521B (zh) 一种高强度层状复合铝合金材料及其制备方法
Farhadipour et al. Influence of temperature of accumulative roll bonding on the mechanical properties of AA5083–1% Al 2 O 3 composite
JP2866917B2 (ja) 溶湯攪拌法によるセラミックス粒子強化マグネシウム基複合材料に対する超塑性発現法
Rao et al. A review on recent advances in accumulative roll bonding of similar, dissimilar and metal matrix composites
Singla et al. Magnesium-based nanocomposites synthesized using friction stir processing: an experimental study
Liu et al. Microstructures and mechanical properties of Al/Zn composites prepared by accumulative roll bonding and heat treatment
Cohades et al. Designing laminated metal composites for tensile ductility
CN110125180B (zh) 增强有色金属板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838208

Country of ref document: EP

Kind code of ref document: A1