WO2017031651A1 - 一种电压调节装置 - Google Patents

一种电压调节装置 Download PDF

Info

Publication number
WO2017031651A1
WO2017031651A1 PCT/CN2015/087869 CN2015087869W WO2017031651A1 WO 2017031651 A1 WO2017031651 A1 WO 2017031651A1 CN 2015087869 W CN2015087869 W CN 2015087869W WO 2017031651 A1 WO2017031651 A1 WO 2017031651A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
value
signal
regulating device
Prior art date
Application number
PCT/CN2015/087869
Other languages
English (en)
French (fr)
Inventor
唐样洋
王新入
张臣雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/087869 priority Critical patent/WO2017031651A1/zh
Publication of WO2017031651A1 publication Critical patent/WO2017031651A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof

Definitions

  • the present invention relates to the field of voltage regulation technologies, and in particular, to a voltage regulation device.
  • DVFS dynamic voltage and frequency scaling
  • AVS adaptive voltage scaling
  • IR-drop a voltage drop in the high frequency band
  • the other is the voltage drop in the low frequency band.
  • a voltage drop of 0.5V in the high frequency band may take only 1 ns
  • a voltage drop of 0.5 V in the low frequency band may take 1 ⁇ s.
  • the load voltage of its load drops 0.5V within 1 ⁇ s, which has little effect on the load, and will not affect the actual function of the load, but for the voltage drop of the high frequency band, due to Its drop time is only 1 ns, its voltage drop speed is fast, the load end can't respond in time, resulting in over-regulation of the load supply voltage (such as when the load supply voltage needs to be switched by 1V at 1.5V, it may be Adjust to 2V, or, when the load supply voltage needs to be switched from 1.2V to 1.0V, it may be adjusted to 0.8V), affecting the performance of the electronic chip.
  • AVS mainly adjusts the specific circuit of the electronic chip at a relatively microscopic point, such as monitoring the current signal or voltage signal or clock frequency signal of the electronic chip to find the interference in the electronic chip circuit, and then correspondingly Adjust the power supply voltage of the electronic chip to reduce the power consumption of the electronic chip.
  • the factors causing these interferences in the electronic chip may be the jump of the power network in the chip, the power-on of the load, the power-off of the load, the switching of the mode, or the PVT of the electronic chip itself (Process-Voltage). -Temperature, ie process-voltage-temperature).
  • the AVS voltage regulation method cannot make a large rapid response in a very short time. There is also a phenomenon of over-regulation.
  • the embodiment of the invention provides a voltage regulating device to solve the problem of excessive regulation in the voltage regulation method in the prior art and to ensure the performance of the electronic chip.
  • the embodiment of the present invention provides the following technical solutions:
  • the present invention provides a voltage regulating device comprising:
  • a power management module configured to receive a first current, and generate a second current according to the first current, where the second current flows into the load, where the second current includes a plurality of second sub-currents;
  • a signal control module configured to control off and on of the plurality of second sub currents when the first current changes from a first value to a second value, thereby adjusting the second current from the first The time at which the value changes to the second value.
  • the first current is equal to the second current when the first current remains stable.
  • the voltage regulating device further includes: a voltage regulator, configured to receive a power supply signal, and generate the first current according to the power supply signal.
  • the power management module includes:
  • each of the plurality of control switch groups includes at least one control switch.
  • the signal control module includes:
  • a signal unit configured to generate a plurality of periodic pulse signals, wherein the plurality of periodic pulse signals have a phase difference, and the phase difference is greater than zero;
  • control unit configured to receive the plurality of periodic pulse signals, and generate a plurality of control signals according to the plurality of periodic pulse signals, wherein the plurality of periodic pulse signals are in one-to-one correspondence with the plurality of control signals;
  • a gate for selectively controlling, by the plurality of control signals, the plurality of control switch groups according to the current value of the first current to control on and off of the plurality of control switch groups.
  • the voltage regulating device further includes: a driver between the gate and the plurality of control switch groups, The driver is for amplifying a signal output by the gater.
  • the signal unit includes:
  • an oscillator for generating the plurality of periodic pulse signals, wherein the plurality of periodic pulse signals have a phase difference, and the phase difference is greater than zero.
  • the signal unit further includes:
  • a plurality of comparators for comparing a voltage value of the plurality of periodic pulse signals with a first preset voltage value, and generating a plurality of periodic pulse modulation signals according to the comparison result, the plurality of periodic pulse modulation signals and The plurality of periodic pulse signals are in one-to-one correspondence.
  • the trigger signal of the control unit is provided by the outside world.
  • the voltage adjusting device further includes: a voltage sensor, And monitoring the second preset voltage, and generating a trigger signal when the second preset voltage meets the preset condition, triggering the control unit to start working.
  • the second preset voltage includes a voltage at an input end of the power management module and/or a voltage at the load input end.
  • the control unit controls, corresponding to each output signal thereof The time at which the input signal is inverted is the preset value.
  • control unit controls the time at which the input signals corresponding to the respective output signals are inverted.
  • the voltage regulating device includes: a power management module and a signal control module, when the first current received by the power management module changes from the first value to the second value, the power management module can input the input end thereof After the input first current is divided into a plurality of second sub-currents, before being output to the load, the signal control module controls the conduction and the cut-off of the second sub-currents in the power management module, so that the output times of the second sub-currents are different.
  • FIG. 1 is a schematic structural diagram of a voltage regulating device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a voltage regulating device according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a voltage adjusting device according to still another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a voltage adjusting device according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a voltage adjusting device according to still another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a voltage adjusting device according to still another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a control switch group in a voltage adjustment device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a voltage adjusting device according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a variation curve of a second preset voltage detected by the voltage sensor 700 according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram showing the output curve of the voltage sensor of Figure 5;
  • FIG 11 is a voltage curve across the load before and after the voltage regulating device provided by the present invention is added, wherein before the voltage regulating device provided by the present invention is added, the voltage curve across the load is a curve A, which increases the voltage regulation provided by the present invention. After the device, the voltage curve across the load is curve B.
  • Embodiments of the present invention provide a voltage adjustment apparatus, including:
  • a power management module configured to receive a first current, and generate a second current according to the first current, the second current flows into the load, where the second current includes a plurality of second sub-currents;
  • a signal control module configured to control a cutoff and a turn-on of the plurality of second sub-currents when the first current changes from the first value to the second value, thereby adjusting a time when the second current changes from the first value to the second value .
  • the voltage regulating device provided by the embodiment of the present invention may divide the first current input by the power management module into a plurality of first currents when the first current received by the power management module changes from the first value to the second value. After the two sub-currents are output to the load, the signal control module controls the conduction and deactivation of the second sub-currents in the power management module, so that the output times of the second sub-currents are different, thereby adjusting the second current from the first value.
  • the voltage across the load is gradually changed from the corresponding voltage when the second current is the first value to the corresponding voltage when the second current is the second value, ensuring that the second current changes from the first value to In the process of the second value, the voltage across the load does not deviate too much from the operating voltage of the load, which solves the problem of excessive regulation in the voltage regulation method in the prior art, and ensures the performance of the electronic chip.
  • the embodiment of the invention provides a voltage regulating device. As shown in FIG. 1 , the voltage regulating device includes:
  • the power management module 200 is configured to receive a first current, generate a second current according to the first current, and the second current flows into the load 400, where the second current includes a plurality of second sub-currents;
  • the signal control module 300 is configured to control the on and off of each second sub current in the power management module 200 when the first current changes from the first value to the second value, and adjust the second current to change from the first value to the first Binary time.
  • the first current when the first current remains stable, the first current is equal to the second current, that is, when the current value of the first current does not change.
  • the first current is equal to the second current, but the invention is not limited thereto.
  • the first current and the second current may also have The difference is different depending on the situation.
  • the power management module 200 is configured to receive the first current, and split the first current into a plurality of second sub-currents, and output the same to the load 400 to provide a driving current for the load 400.
  • the signal control module 300 is configured to control the turn-on and turn-off of each second sub-current in the power management module 200 when the first current received at the input end of the power management module 200 changes from the first value to the second value, so that the power management module The output time of each of the second sub-currents in 200 is different, so that the second sub-current output by the power management module 200 at each time is adjusted during the process of changing the second current formed by each of the second sub-currents from the first value to the second value.
  • the voltage across the load 400 is as close as possible to the working voltage of the load 400, and the deviation is not too large until the power management
  • the sum of the output currents of the module 200 is the second value, which solves the problem of excessive regulation in the voltage regulation method in the prior art, and ensures the performance of the electronic chip.
  • the power management module 200 includes: a plurality of control switch groups 201, a plurality of control switch groups 201 connected in parallel, and a plurality of The parallel switch group 201 is configured to divide the first current into a plurality of second sub-currents, and the plurality of control switch groups 201 are in one-to-one correspondence with the plurality of second sub-currents for controlling the conduction of the corresponding second sub-current The cutoff, wherein each of the plurality of control switch groups 201 includes at least one control switch.
  • control switch group 201 may include a control switch, and may also include a plurality of control switches connected in series, and any one of the control switches may operate in a saturation zone or in a shutdown zone.
  • the present invention is not limited to the above, and the control switch 200 can be turned on at the same time, or can be partially turned off at the same time.
  • Different equivalent resistance values enable the voltage regulating device to adjust the on-time and output size of the second sub-current corresponding to each control switch group 201 by controlling the operating states of the control switches in the power management module 200.
  • the signal control module 300 includes:
  • the signal unit 301 is configured to generate a plurality of periodic pulse signals, wherein the plurality of periodic pulse signals have a phase difference, and the phase difference is greater than zero;
  • the control unit 302 is configured to receive a plurality of periodic pulse signals, and generate a plurality of control signals according to the plurality of periodic pulse signals, wherein the plurality of periodic pulse signals are in one-to-one correspondence with the plurality of control signals;
  • the gate 303 is configured to selectively output the plurality of control signals outputted by the control unit 302 according to the current value of the first current to the plurality of control switch groups 201 to control the on and off of the respective control switch groups.
  • the trigger control unit 302 sends a voltage warning signal as a trigger signal of the control unit 302, the trigger control unit 302 starts to work, inverts the signal input from the input end thereof, and the gate 303 outputs the output signal of the control unit 302; when the power supply voltage of the electronic chip For a stable voltage value, that is, when voltage switching is not required (ie, when the first current value received at the input of the power management module 200 is a stable value), only the gate 303 is provided with an enable signal, and is not sent to the control unit 302.
  • the voltage warning signal, the control unit 302 does not work, and outputs the signal input from the input terminal thereof in a positive phase, that is, when the multi-phase pulse signals output by the signal unit 301 pass through the control unit 302, the multi-phase periodicity of the signal unit 301 is not output.
  • the pulse signal is adjusted, and the output signal of the gate 303 is the same as the output signal of the comparator 3012.
  • the signal control module 300 is preferably a multi-phase signal control module 300.
  • the control signal output by the control unit 302 is a multi-phase control signal, strobing.
  • the 303 is a multi-phase strobe 303, and can simultaneously output a plurality of control signals.
  • the voltage regulating device includes N control switch groups 201 (where N is a positive integer greater than 1), and the gate 303 outputs the N
  • the control signals of the control switch group 201 are correlated in phase and are also phase-to-phase.
  • the voltage regulating device further includes: a driver 500 between the gate 303 and the control switch group 201.
  • a driver 500 between the gate 303 and the control switch group 201.
  • the driving signal output from the gate 303 to the control switch is small, the driving signal output from the gate 303 is amplified to ensure selection.
  • the drive signal outputted to the control switch group 201 by the switch 303 can control each control switch to be in its intended operating state.
  • the invention is not limited thereto, as the case may be.
  • the signal unit 301 includes: an oscillator 3011 for generating a plurality of periodic pulse signals, wherein a plurality of periodicities The pulse signal has a phase difference, and the phase difference is greater than zero; the plurality of comparators 3012 are configured to compare the voltage values of the plurality of periodic signal pulse signals with the first preset voltage value, and generate a plurality of periodic pulse modulation signals according to the comparison result.
  • the plurality of periodic pulse modulation signals are in one-to-one correspondence with the plurality of periodic pulse signals.
  • each of the plurality of comparators 3012 corresponds to a periodic pulse signal for comparing the voltage value of the periodic pulse signal with the first preset voltage value, and outputting the periodic pulse modulation signal according to the comparison result. Then, the plurality of comparators 3012 generate a plurality of periodic pulse modulation signals, and the different periodic pulse modulation signals have phase differences.
  • the control unit 302 includes a plurality of control sub-units 3021, and each of the control sub-units 3021 inputs a periodic pulse modulation signal, and the first current received at the input end of the power management module 200 is from the first
  • the control subunit 3021 receives a voltage warning signal, and the control subunit 3021 adjusts the periodic pulse modulation signal input to the input terminal thereof so that the signal input from the input terminal is inverted.
  • the time for the different control sub-units 3021 to control the inverted output of the corresponding input signals may be the same or different.
  • the present invention is not limited thereto, and needs to be set in advance according to the specific application requirements thereof.
  • the timings at which the different control sub-units 3021 control the inverted output of the corresponding periodic pulse modulation signals are preferably the same, that is, the control switches in each control switch group are simultaneously turned on and closed at the same time.
  • the positive electrode of the comparator 3012 inputs a first preset voltage value
  • the periodic pulse signal output by the negative input oscillator 3011 of the comparator 3012 is in this embodiment.
  • the comparator 3012 outputs a periodic pulse signal when the voltage value of the periodic pulse signal is less than the first preset voltage value.
  • the negative terminal of the comparator 3012 inputs the first preset voltage value.
  • the first preset voltage value is a difference between a voltage value across the load 400 and a working voltage of the load 400 when the voltage fluctuates.
  • the oscillator 3011 generates a plurality of periodic pulse signals to the comparator 3012, and the comparator 3012 compares the voltage value of the periodic pulse signal with the first preset voltage value, and according to the comparison result.
  • the periodic pulse modulation signal is output to the control subunit 3021.
  • the control subunit 3021 controls the pulse modulation signal input at the input end thereof when the first current received at the input end of the power management module 200 changes from the first value to the second value.
  • a control signal is obtained, which is output to the gate 303, and is selectively output to the control switch group 201 through the gate 303, and the conduction of each control switch in each control switch group 201 is controlled.
  • Turning off adjusting the on and off of the second sub current corresponding to each control switch group 201, thereby adjusting the time during which the second current changes from the first value to the second value, so that the voltage across the load 400 is from the second current to the first
  • the corresponding voltage is slowly changed to the corresponding voltage when the second current is the second value, and the second current is changed from the first value to the second value, and both ends of the load 400 are Voltage deviation is too large will not solve the problem of over-regulation in the prior art voltage regulation methods to ensure the performance of electronic chips.
  • the signal unit 301 includes: an oscillator 3011 for generating a plurality of periodic pulse signals, the plurality of periodic pulse signals having a phase difference, and the phase difference being greater than zero .
  • the oscillator 3011 generates a plurality of periodic pulse signals to the control unit 302.
  • the regulator The time at which the periodic pulse signal input from the input end is inverted, the control signal is obtained, and is output to the gate 303, and is selectively output to the control switch group 201 through the gate 303, and the control switch group is controlled.
  • each control switch in 201 adjusts the on and off of the second sub current corresponding to each control switch group 201, thereby adjusting the time during which the second current changes from the first value to the second value, so that the load 400
  • the voltage of the terminal gradually changes from the corresponding voltage when the second current is the first value to the corresponding voltage when the second current is the second value, and ensures the voltage across the load 400 during the process of changing the second current from the first value to the second value. Will not be too biased and solve the existing technology
  • the problem of excessive regulation in the voltage regulation method ensures the performance of the electronic chip.
  • the first predetermined voltage value of the comparator 3012 is input, and the periodic pulse signal output by the negative input oscillator 3011 is taken as an example.
  • the first predetermined voltage value of the comparator 3012 may be input, and the periodic pulse signal outputted by the positive input oscillator 3011 may not be limited by the present invention, as the case may be.
  • the periodic pulse signal generated by the oscillator 3011 may be a zigzag pulse signal, or may be a rectangular pulse signal or other periodic pulse signals, which is not limited by the present invention, and is determined by the specific situation. .
  • the frequency of the periodic pulse signal may be fixed or may be changed in real time.
  • the amplitude may also be fixed or changed in real time. The invention is not limited thereto, as the case may be.
  • the oscillator 3011 directly generates a plurality of periodic pulse signals, and the phase difference between the different periodic pulse signals.
  • the oscillator 3011 may also A periodic pulse signal is generated and then converted into a plurality of periodic pulse signals through a delay structure, so that a plurality of periodic pulse signals have a phase difference therebetween, which is not limited by the present invention.
  • the delay of the delay structure and the delay of the control subunit controlling the output timing of the corresponding periodic pulse modulation signal have different delays and different ways.
  • the delay structure delays different pulses of the single-phase periodic pulse signal, so that the phases of different pulse signals in the single-phase periodic signal pulse signal are different, and a multi-phase periodic pulse signal is obtained.
  • the control subunit 3021 converts the low level of the pulse signal input at the input end thereof into a high level when the voltage across the load 400 needs to be switched (ie, when the first current is switched from the first value to the second value).
  • the corresponding control switch group is controlled to be non-conducting, so that the second sub-current corresponding to the control switch group is not outputted for a preset period of time, so that the second current is switched from the first value to the second value, which constitutes the first
  • the number of outputs of the second sub-currents in the two currents is different, and the purpose of adjusting the second current to switch from the first value to the second value is achieved.
  • the delay structure delays different pulses of the single-phase periodic pulse signal, so that the phases of different pulse signals in the single-phase periodic signal pulse signal are different, and the multi-phase periodic pulse signal is obtained, and the control is performed.
  • the subunit 3021 converts the high level in the pulse signal input to the input terminal to a low level when the voltage across the load 400 needs to be switched (ie, when the first current is switched from the first value to the second value), thereby Controlling the corresponding control switch group to be non-conducting, so that the second sub-current corresponding to the control switch group is not outputted for a preset period of time, so that the second current is switched from the first value to the second value, forming a second The number of outputs of each of the second sub-currents in the current is different, and the purpose of adjusting the second current to switch from the first value to the second value is achieved.
  • the output signal of the control subunit 3021 is the same as its input signal, that is, when the input terminal of the control subunit 3021 inputs a high level, its output The terminal outputs a high level.
  • the input terminal of the control subunit inputs a low level, its output terminal outputs a low level.
  • the signal unit 301 when there is a periodic pulse signal in the electronic chip to which the voltage regulating device is applied, the signal unit 301 may not include the oscillator 3011, but share the period in the electronic chip.
  • the pulse signal is not limited by the present invention, and is determined by the circumstances.
  • the control unit 302 provides a trigger signal V 1 from the outside, i.e. when the voltage across the load required to be switched 400
  • the operating unit 600 provides the control unit 302 with a voltage warning signal as the trigger signal V 1 of the control unit 302.
  • the trigger control unit 302 starts working.
  • the enable signal D_en of the gate 303 can also be provided by the outside world.
  • the operating body 600 may be a user, or may be an external dynamic pressure regulating command, etc., which is not limited by the present invention, as the case may be.
  • the trigger signal is preferably provided by an external dynamic voltage regulation command.
  • the voltage across the load 400 when the voltage across the load 400 needs to be adjusted (ie, the first current received at the input of the power management module 200 changes from the first value to the second value),
  • the trigger signal V 1 provided by the operating body is simultaneously sent to the comparator 3012 and the control unit 302, and the trigger comparator 3012 and the control unit 302 start to operate.
  • no matter how large the voltage adjustment amplitude is across the load 400 ie, the first current received from the input end of the power management module 200 is from the first
  • the magnitude of the change when the value changes to the second value is large.
  • the time at which each control sub-unit 3021 in the control unit 302 controls the inverted output of the periodic pulse-modulated signal input at its input terminal is the same.
  • the voltage across the load 400 needs to be adjusted (ie, the first current received at the input of the power management module 200 changes from the first value to the second value)
  • the trigger signal V 1 is supplied from the operating body to the control unit 302, and the voltage adjustment amplitude V 2 across the load 400 is sent to the comparator 3012, and the trigger comparator 3012 and the control unit 302 start to operate.
  • the voltage adjustment amplitudes at both ends of the load 400 are different, and each control subunit 3021 in the control unit 302 controls the periodic pulse input at the input end thereof.
  • the time of the inverted output of the modulated signal is also different.
  • the voltage adjusting device further includes: a voltage sensor 700 for monitoring the second preset voltage, and when the second preset voltage meets the preset condition
  • the voltage warning signal is generated as the trigger signal V 1 of the control unit 302, and the trigger control unit 302 starts to work.
  • the second preset voltage may be the voltage Vdd at the input end of the power management module 200 and/or the voltage Vo at the input end of the load 400.
  • the invention is not limited thereto, as the case may be.
  • the second preset voltage includes the voltage Vdd at the input end of the power management module 200 and the voltage Vo at the input end of the load 400
  • the second preset voltage value is the voltage Vdd at the input end of the power management module 200
  • the second preset voltage value is the voltage Vo at the input end of the load 400.
  • the voltage sensor 700 is configured to monitor the second preset voltage, and the second pre-monitoring will be monitored.
  • the difference between the voltage value and the working voltage of the load 400 is determined, and it is determined whether the difference is greater than a preset threshold.
  • the generated The trigger signal V 1 is sent to the comparator 3012 and the control unit 302, and the trigger comparator 3012 and the control unit 302 start to operate.
  • each control subunit 3021 in the control unit 302 controls the timing of the inverted output of the periodic pulse modulation signals input at the input terminals thereof to be the same.
  • the voltage sensor 700 is configured to monitor a second preset voltage, and compare the monitored second preset voltage value with the operating voltage of the load 400, and determine whether the difference is greater than a predetermined threshold value, when the monitored difference value and the second predetermined voltage the operating voltage of the load 400 is greater than a predetermined threshold value, a trigger signal V 1, the trigger signal V 1 to the control unit 302, and the difference V 2 between the monitored second preset voltage value and the operating voltage of the load 400 is sent to the comparator 3012, and the trigger comparator 3012 and the control unit 302 start to work.
  • the monitored second preset voltage value and the operating voltage of the load 400 when the difference between the monitored second preset voltage value and the operating voltage of the load 400 is greater than a preset threshold, the monitored second preset voltage value and the load 400 are The difference in operating voltage is different, and each of the control sub-units 3021 in the control unit 302 controls the inverted output of the periodic pulse-modulated signal input at the input thereof.
  • the voltage sensor 700 can monitor the second preset voltage in real time during the entire working process of the electronic chip, or monitor the second at a preset interval.
  • the preset voltage can be monitored in real time after the trigger signal is received, or the second preset voltage is monitored in a preset interval, which is not limited by the present invention, as the case may be.
  • control switch group 201 includes:
  • the first thin film transistor S1, the second thin film transistor S2 and the first inductor L wherein the input end of the first thin film transistor S1 inputs a second sub current, the output end is electrically connected to the first inductor L, and the control end and the signal control module 300
  • the output end is electrically connected
  • the input end of the second thin film transistor S2 is electrically connected to the output end of the first thin film transistor S1, the output end is grounded
  • the control end is electrically connected to the output end of the signal control module 300.
  • the first thin film transistor S1 is a PMOS transistor
  • the second thin film transistor S2 is an NMOS transistor.
  • the signal control module 300 outputs a low level signal
  • the first thin film The transistor S1 is turned on
  • the second thin film transistor S2 is turned off
  • the first inductor L starts to be charged
  • the signal control module 300 outputs a high level signal
  • the first thin film transistor S1 is turned off
  • the second thin film transistor S2 is turned on
  • the first inductor L is turned on.
  • the voltage adjusting device adjusts the ratio of the charging time and the discharging time of the first inductor L by controlling the output signal of the signal control module 300, thereby adjusting the voltage at the input end of the load 400.
  • the first thin film transistor S1 may be an NMOS transistor
  • the second thin film transistor S2 may be a PMOS transistor
  • the first thin film transistor S1 and the second thin film transistor S2 may both be PMOS transistors or both NMOS transistors.
  • the invention is not limited in this regard. It should be noted that when the first thin film transistor S1 and the second thin film transistor S2 are both PMOS transistors or both NMOS transistors, the first thin film transistor S1 is directly connected to the signal control module 300, and the second thin film transistor S2 is passed through a reverse The phaser is electrically coupled to the signal control module 300.
  • control switch group 201 may also be other structures, which are not limited by the present invention, as the case may be.
  • the voltage regulating device further includes:
  • a voltage regulator 100 configured to receive a power supply signal, and generate a first current output according to the power supply signal
  • the electronic chip is supplied with its required supply voltage Vdd.
  • the input end of the voltage regulator 100 is electrically connected to the external power source, and is configured to receive a power supply signal provided by the external power source, and generate a first current according to the power supply signal, and output the signal to the input end of the power management module 200.
  • the electronic chip is supplied with its required supply voltage Vdd.
  • the structure of the voltage regulator may be the same as that of the control switch, and may also be other voltage adjustment structures, which are not limited by the present invention, as the case may be.
  • FIG. 9 to FIG. 11 a variation curve of the second preset voltage detected by the voltage sensor 700 is shown in FIG. 9, FIG. 10 shows an output curve of the voltage sensor 700, and FIG. 11 shows an increase in the present invention.
  • the voltage curve A across the load 400 and the voltage curve B across the load 400 after the voltage regulating device provided by the present invention is increased.
  • the voltage sensor 700 detects a voltage drop
  • the voltage sensor 700 starts outputting a signal (ie, a voltage alarm signal), and the trigger control unit 302 starts operating.
  • the stability of the voltage across the load 400 is greatly improved after the voltage regulating device provided by the present invention is increased.
  • the control unit 302 controls the time at which the input signals corresponding to the respective output signals are inverted, as a preset value, in another embodiment of the present invention.
  • the time in which the control unit 302 controls the inversion output of the input signal corresponding to each of its output signals is acquired.
  • the control unit 302 controls the time at which the input signals corresponding to the output signals of the respective output signals are inverted.
  • the external dynamic pressure regulating command is provided.
  • the time when the control unit 302 controls the output signals corresponding to the output signals of the output signals is inverted by the voltage sensor 700, which is not limited by the present invention. Subject to availability.
  • the control unit 302 controls the inversion output of the input signals corresponding to the output signals of the control unit 302 to be the same time, or may not be completely the same, and needs to be blocked according to the clock frequency and the load 400 in the electronic chip.
  • the value, the capacitance value of the decoupling capacitor C, the input voltage of the electronic chip, the input voltage of the load 400, and the number of control switches and/or the switching characteristics, and the voltage switching amplitude across the load 400 are determined. Specifically, when the voltage switching amplitude of the load 400 is large, the control unit 302 controls the output signal corresponding to each output signal to have a relatively long output time.
  • the control unit 302 When the voltage switching amplitude between the load 400 is small, the control unit 302 The time for controlling the inversion output of the input signal corresponding to each of the output signals is relatively short; when the number of periodic pulse signals output by the signal unit 3011 is large, the control unit 302 controls the time at which the input signals corresponding to the respective output signals are inverted. When the number of phase signals of the periodic pulse signal outputted by the signal unit 3011 is relatively long, the control unit 302 controls the output of the corresponding input signal corresponding to each output signal to have a relatively short time; the voltage at the load 400 is the same. When the resistance value of the load 400 is large, the control unit 302 controls the output signal corresponding to each of the output signals to have a relatively short output time.
  • the control unit 302 controls each of the output signals.
  • the corresponding input signal is inverted for a relatively long time.
  • the present invention is not limited thereto, and the control unit 302 controls the time at which the input signals corresponding to the respective output signals are inverted to output, which is usually less than half of the cycle time of the periodic pulse signal.
  • the control unit 302 controls the inversion output of the input signal corresponding to each of the output signals.
  • the maximum value of time is less than 0.5 ⁇ 10 -6 s.
  • control unit 302 controls the time when the input signal corresponding to each output signal is inverted.
  • the corresponding voltage value and current value may be used to represent the duration of the delay, or the time may be directly used.
  • the dimension vector is not limited by the present invention, and is determined by the circumstances.
  • the voltage adjustment device can adjust the first current to multiple in the power management module 200 when the first current received by the power management module changes from the first value to the second value.
  • the output time of each second sub current in the power management module 200 is controlled such that the output times of the second sub currents are different, so that the second current changes from the first value to the first.
  • the time of the binary value is such that the voltage across the load 400 slowly changes from the corresponding voltage when the second current is the first value to the corresponding voltage when the second current is the second value, ensuring the second current from
  • the voltage across the load 400 does not deviate too much from the operating voltage of the load 400, which solves the problem of excessive regulation in the voltage regulation method in the prior art, and ensures the performance of the electronic chip. And reduce the power consumption of the electronic chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种电压调节装置,包括:电源管理模块,用于接收第一电流,并根据第一电流生成第二电流,第二电流流入负载,第二电流包括多个第二子电流;信号控制模块,用于当第一电流从第一值变化至第二值时,控制多个第二子电流的截止与导通,从而调节第二电流从第一值变化至第二值的时间。本发明实施时所提供的电压调节装置,可以通过调节第二电流从第一值变化至第二值的时间,使得负载两端的电压从第二电流为第一值时对应的电压缓慢变化至第二电流为第二值时对应的电压,保证第二电流从第一值变化至第二值过程中,负载两端的电压与负载的工作电压不会偏差过大,解决了现有技术里电压调节方法中的调节过度问题,保证了电子芯片的性能。

Description

一种电压调节装置 技术领域
本发明涉及电压调节技术领域,尤其涉及一种电压调节装置。
背景技术
随着半导体工艺技术的不断跳跃式发展,如今电子芯片的供电电压急剧下降,以降低所述电子芯片的功耗。但是,随着半导体工艺的进一步微缩化,降低电子芯片的供电电压会使得电子芯片的不确定性急剧提高。因此,如何降低所述电子芯片的供电电压,且不影响所述电子芯片的工作性能成为亟待解决的难题之一。
基于此,当今高端处理器芯片或高端应用芯片中,普遍采用动态调压调频(Dynamic voltage and frequency scaling,简称DVFS)方法或自适应调压(Adaptive voltage scaling,简称AVS)方法等实时调整电子芯片供电电压或频率技术,来降低电子芯片的功耗。其中,DVFS作为现今电子设计中最重要的降低功耗手段之一,其主要是通过在不同时间段对不同区域(或同一区域)的电压进行调节,即在系统时钟频率低的时候,降低电子芯片的供电电压,在系统时钟频率高的时候,提高电子芯片的供电电压,来实现不影响电子芯片性能的前提下,降低电子芯片的功耗。但是这种调压调频方法,在电压切换时,负载端的供电电压会相应的产生电压跌落,俗称IR-drop。而IR-drop分两种,一种是在高频段的电压跌落,一种是在低频段的电压跌落。如高频段0.5V的电压跌落可能只需1ns,而低频段0.5V的电压跌落可能需要1μs。对于低频 段的电压跌落,很多电路应用也许能够及时响应过来,即其负载的供电电压在1μs内跌落0.5V对负载的影响不大,不会影响负载的实际功能,而对于高频段的电压跌落,由于其跌落时间仅为1ns,其电压跌落速度较快,负载端无法及时响应,导致负载的供电电压存在调节过度的现象(如将当负载的供电电压需由1V切换时1.5V时,可能将其调节至2V,或,将当负载的供电电压需由1.2V切换时1.0V时,可能将其调节至0.8V),影响电子芯片性能。
与DVFS不同,AVS主要是在相对微观的点上,对电子芯片的具体电路进行调节,如通过监测电子芯片的电流信号或电压信号或时钟频率信号,来发现电子芯片电路中的干扰,然后相应的调节电子芯片的供电电压,来降低电子芯片的功耗。需要说明的是,电子芯片中造成这些干扰的因素可能是芯片内电源网络的跳变,负载的上电、负载的掉电、模式的切换,或者电子芯片自身在运行中的PVT(Process-Voltage-Temperature,即过程-电压-温度)等。但是,对于高频段的电压跌落,AVS的调压方法也无法在极短的时间内作出大幅的快速响应。同样存在调节过度的现象。
由此可见,现有技术中的电压调节方法在具体使用过程中存在调节过度的现象,影响电子芯片性能。
发明内容
为解决上述技术问题,本发明实施例提供了一种电压调节装置,以解决现有技术里电压调节方法中的调节过度问题,保证电子芯片的性能。
为解决上述问题,本发明实施例提供了如下技术方案:
第一方面,本发明提供了一种电压调节装置,包括:
电源管理模块,用于接收第一电流,并根据所述第一电流生成第二电流,所述第二电流流入负载,其中,所述第二电流包括多个第二子电流;
信号控制模块,用于当所述第一电流从第一值变化至第二值时,控制所述多个第二子电流的截止与导通,从而调节所述第二电流从所述第一值变化至所述第二值的时间。
在第一方面的第一种可能的实现方式中,当所述第一电流保持稳定时,所述第一电流与所述第二电流相等。
在第一方面的第二种可能的实现方式中,所述电压调节装置还包括:电压调整器,用于接收供电信号,并根据所述供电信号生成所述第一电流。
在第一方面的第三种可能的实现方式中,所述电源管理模块包括:
多个控制开关组,所述多个控制开关组并联,所述多个控制开关组与所述多个第二子电流一一对应,用于控制与其对应的第二子电流的截止与导通,其中,所述多个控制开关组中每个控制开关组至少包括一个控制开关。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述信号控制模块包括:
信号单元,用于产生多个周期性脉冲信号,所述多个周期性脉冲信号有相位差,所述相位差大于零;
控制单元,用于接收所述多个周期性脉冲信号,并根据所述多个周期性脉冲信号生成多个控制信号,所述多个周期性脉冲信号与所述多个控制信号一一对应;
选通器,用于根据所述第一电流的电流值选择性通过所述多个控制信号,输出给所述多个控制开关组,控制所述多个控制开关组的导通与截止。
结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述电压调节装置还包括:位于所述选通器与所述多个控制开关组之间的驱动器,所述驱动器用于放大所述选通器输出的信号。
结合第一方面的第四种可能的实现方式或第五种可能的实现方式,在第六种可能的实现方式中,所述信号单元包括:
振荡器,用于产生所述多个周期性脉冲信号,所述多个周期性脉冲信号有相位差,所述相位差大于零。
结合第一方面的第六种可能的实现方式,在第七种可能的实现方式中,所述信号单元还包括:
多个比较器,用于比较所述多个周期性脉冲信号的电压值与第一预设电压值,并根据比较结果生成多个周期性脉冲调制信号,所述多个周期性脉冲调制信号与所述多个周期性脉冲信号一一对应。
结合第一方面第四种可能的实现方式至第七种可能的实现方式中任一种可能的实现方式,在第八种可能的实现方式中,所述控制单元的触发信号由外界提供。
结合第一方面第四种可能的实现方式至第七种可能的实现方式中任一种可能的实现方式,在第九种可能的实现方式中,所述电压调节装置还包括:电压传感器,用于监测第二预设电压,并当所述第二预设电压满足预设条件时生成触发信号,触发所述控制单元开始工作。
结合第一方面的第九种可能的实现方式,在第十种可能的实现方式中,所述第二预设电压包括电源管理模块输入端的电压和/或所述负载输入端的电压。
结合第一方面第四种可能的实现方式至第十种可能的实现方式中任一种可能的实现方式,在第十一种可能的实现方式中,所述控制单元控制其各输出信号对应的输入信号反相输出的时间为预设值。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述控制单元控制其各输出信号对应的输入信号反相输出的时间相同。
与现有技术相比,上述技术方案具有以下优点:
本发明实施例所提供的电压调节装置,包括:电源管理模块和信号控制模块,当电源管理模块接收的第一电流从第一值变化至第二值时,可以在电源管理模块将其输入端输入的第一电流划分成多个第二子电流之后,输出给负载之前,通过信号控制模块控制电源管理模块中各第二子电流的导通与截止,使得各第二子电流的输出时间不同,从而调节第二电流从第一值变化至第二值的时间,使得负载两端的电压从第二电流为第一值时对应的电压缓慢变化至第二电流为第二值时对应的电压,保证第二电流从第一值变化至第二值过程中,负载两端的电压与负载的工作电压不会偏差过大,解决了现有技术里电压调节方法中的调节过度问题,保证了电子芯片的性能。
附图说明
图1为本发明一个实施例所提供的电压调节装置的结构示意图;
图2为本发明另一个实施例所提供的电压调节装置的结构示意图;
图3为本发明又一个实施例所提供的电压调节装置的结构示意图;
图4为本发明再一个实施例所提供的电压调节装置的结构示意图;
图5为本发明又一个实施例所提供的电压调节装置的结构示意图;
图6为本发明再一个实施例所提供的电压调节装置的结构示意图;
图7为本发明一个实施例所提供的电压调节装置中,控制开关组的结构示意图;
图8为本发明另一个实施例所提供的电压调节装置的结构示意图;
图9为本发明一个实施例中,电压传感器700检测到的第二预设电压的变化曲线示意图;
图10为图5中电压传感器的输出曲线示意图;
图11为增加本发明所提供的电压调节装置前后,负载两端的电压曲线,其中,增加本发明所提供的电压调节装置前,负载两端的电压曲线为曲线A,增加本发明所提供的电压调节装置后,负载两端的电压曲线为曲线B。
具体实施方式
本发明实施例提供了一种电压调节装置,包括:
电源管理模块,用于接收第一电流,并根据第一电流生成第二电流,第二电流流入负载,其中,第二电流包括多个第二子电流;
信号控制模块,用于当第一电流从第一值变化至第二值时,控制多个第二子电流的截止与导通,从而调节第二电流从第一值变化至第二值的时间。
本发明实施例所提供的电压调节装置,当电源管理模块接收的第一电流从第一值变化至第二值时,可以在电源管理模块将其输入端输入的第一电流划分成多个第二子电流之后,输出给负载之前,通过信号控制模块控制电源管理模块中各第二子电流的导通与截止,使得各第二子电流的输出时间不同,从而调节第二电流从第一值变化至第二值的时间,使得负载两端的电压从第二电流为第一值时对应的电压缓慢变化至第二电流为第二值时对应的电压,保证第二电流从第一值变化至第二值的过程中,负载两端的电压与负载的工作电压不会偏差过大,解决了现有技术里电压调节方法中的调节过度问题,保证了电子芯片的性能。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以 多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施的限制。
本发明实施例提供了一种电压调节装置,如图1所示,该电压调节装置包括:
电源管理模块200,用于接收第一电流,并根据第一电流生成第二电流,第二电流流入负载400,其中,第二电流包括多个第二子电流;
信号控制模块300,用于当第一电流从第一值变化至第二值时,控制电源管理模块200中各第二子电流的导通与截止,调节第二电流从第一值变化至第二值的时间。
需要说明的是,在上述实施例的基础上,在本发明的一个实施例中,当第一电流保持稳定时,第一电流与第二电流相等,即当第一电流的电流值不发生变化时,第一电流与第二电流相等,但本发明对此并不做限定,在本发明的其他实施例中,当电源管理模块200内部结构不同时,第一电流与第二电流也有可能有所不同,具体视情况而定。
在本发明实施例中,电源管理模块200用于接收第一电流,并将第一电流拆分成多个第二子电流,输出给负载400,为负载400提供驱动电流。信号控制模块300用于当电源管理模块200输入端接收的第一电流从第一值变化至第二值时,控制电源管理模块200中各第二子电流的导通与截止,使得电源管理模块200中各第二子电流的输出时间不同,从而调节各第二子电流构成的第二电流由第一值变化至第二值的过程中,各时刻电源管理模块200输出的第二子电流个数和相位,以调节第二电流从第一值变化至第二值的时间,使得负载400两端的电压从第二电流为第一值时对应的电压缓慢变化至第二电流为第 二值时对应的电压,,进而保证第二电流从第一值变化至第二值过程中,负载400两端的电压尽可能的接近负载400的工作电压,而不会偏差太大,直至电源管理模块200输出电流总和为第二值,解决了现有技术里电压调节方法中的调节过度问题,保证了电子芯片的性能。
在上述实施例的基础上,在本发明的一个实施例中,如图2-图6所示,电源管理模块200包括:多个控制开关组201,多个控制开关组201并联,且多个并联开关组201用于将第一电流划分成多个第二子电流,多个控制开关组201与多个第二子电流一一对应,用于控制其对应的第二子电流的导通与截止,其中,多个控制开关组201中每个控制开关组201至少包括一个控制开关。
需要说明的是,在本实施例中,控制开关组201中可以包括一个控制开关,也可以包括多个串联的控制开关,其中任一个控制开关均可以工作在饱和区,也可以工作在关闭区,还可以工作在线性区,本发明对此并不做限定,具体视情况而定,即电源管理模块200中这些控制开关可以同时打开,也可以同时关闭,还可以部分打开部分关闭,以获得不同的等效电阻值,从而使得电压调节装置可以通过控制电源管理模块200中这些控制开关的工作状态,调节各控制开关组201对应的第二子电流的导通时间以及输出大小。
在上述实施例的基础上,在本发明的一个实施例中,信号控制模块300包括:
信号单元301,用于产生多个周期性脉冲信号,多个周期性脉冲信号有相位差,且相位差大于零;
控制单元302,用于接收多个周期性脉冲信号,并根据多个周期性脉冲信号生成多个控制信号,其中,多个周期性脉冲信号与多个控制信号一一对应;
选通器303,用于根据第一电流的电流值选择性通过控制单元302输出的多个控制信号,输出给多个控制开关组201,控制各控制开关组的导通与截止。
需要说明的是,在本发明实施例中,当电子芯片的供电电压在需要进行电 压切换时(即电源管理模块200输入端接收的第一电流从第一值变化至第二值时),给选通器303一个使能信号,触发选通器303开始工作,并给控制单元302发送一个电压预警信号作为控制单元302的触发信号,触发控制单元302开始工作,将其输入端输入的信号反相输出,选通器303输出控制单元302的输出信号;当电子芯片的供电电压为稳定的电压值,即不需要进行电压切换时(即电源管理模块200输入端接收的第一电流值为稳定值时),只给选通器303提供使能信号,不给控制单元302发送电压预警信号,控制单元302不工作,将其输入端输入的信号正相输出,即在信号单元301输出的各多相脉冲信号经过控制单元302时,不对信号单元301输出的各多相周期性脉冲信号进行调节,选通器303的输出信号与比较器3012的输出信号相同。
在上述实施例的基础上,在本发明一个实施例中,信号控制模块300优选为多相信号控制模块300,在本实施例中,控制单元302输出的控制信号为多相控制信号,选通器303为多相选通器303,可以同时输出多个控制信号。
在上述实施例的基础上,在本发明的一个具体实施例中,电压调节装置包括N个控制开关组201(其中,N为大于1的正整数),则选通器303输出给这N个控制开关组201的控制信号在相位上是相关的,也是间相的。如,当电压调节装置包括4个控制开关组201时,选通器303输出给这4个控制开关组201的控制信号的相位差是360°/4=90°;当电压调节装置包括8个控制开关组201时,选通器303输出给这8个控制开关组201的控制信号的相位差是360°/8=45°,以此类推。
在上述实施例的基础上,在本发明的一个实施例中,电压调节装置还包括:位于选通器303与控制开关组201之间的驱动器500。当选通器303输出给控制开关的驱动信号较小时,对选通器303输出的驱动信号进行放大,以保证选 通器303输出给控制开关组201的驱动信号可以控制各控制开关处于其预期的工作状态。但本发明对此并不做限定,具体视情况而定.
在上述任一实施例的基础上,在本发明的一个实施例中,如图2所示,信号单元301包括:振荡器3011,用于产生多个周期性脉冲信号,其中,多个周期性脉冲信号有相位差,且相位差大于零;多个比较器3012,用于比较多个周期信号脉冲信号的电压值与第一预设电压值,并根据比较结果生成多个周期性脉冲调制信号,多个周期性脉冲调制信号与多个周期性脉冲信号一一对应。具体的,多个比较器3012中每个比较器3012对应一个周期性脉冲信号,用于比较周期性脉冲信号的电压值与第一预设电压值,并根据比较结果,输出周期性脉冲调制信号,则多个比较器3012生成多个周期性脉冲调制信号,不同周期性脉冲调制信号具有相位差。在本发明实施例中,控制单元302包括多个控制子单元3021,每个控制子单元3021的输入端输入一个周期性脉冲调制信号,当电源管理模块200输入端接收的第一电流从第一值变化至第二值时,控制子单元3021接收到一个电压预警信号,控制子单元3021对其输入端输入的周期性脉冲调制信号进行调节,使其输入端输入的信号反相输出。需要说明的是,不同控制子单元3021控制其对应的输入信号反相输出的时间可以相同,也可以不同,本发明对此并不做限定,需根据其具体应用需求提前设置。在本发明实施例中,不同控制子单元3021控制其对应的周期性脉冲调制信号反相输出的时间优选为相同,即各控制开关组中的各控制开关同时打开,同时闭关。
在上述实施例的基础上,在本发明的一个实施例中,比较器3012的正极输入第一预设电压值,比较器3012的负极输入振荡器3011输出的周期性脉冲信号,在本实施例中,当周期性脉冲信号的电压值小于第一预设电压值时,比较器3012输出周期性脉冲信号;在本发明的另一个实施例中,比较器3012的负极输入第一预设电压值,正极输入振荡器3011输出的周期性脉冲信号,在本实施例中,当周期性脉冲信号的电压值大于第一预设电压值时,比较器 3012输出周期性脉冲信号。
优选的,第一预设电压值为电压波动时负载400两端的电压值与负载400工作电压之间的差值。具体的,在本发明实施例中,振荡器3011产生多个周期性脉冲信号给比较器3012,比较器3012将周期性脉冲信号的电压值与第一预设电压值进行比较,并根据比较结果输出周期性脉冲调制信号给控制子单元3021,控制子单元3021在电源管理模块200输入端接收的第一电流从第一值变化至第二值时,控制其输入端输入的脉冲调制信号后反相输出的时间,获得控制信号,输出给选通器303,通过选通器303选择性通过控制信号,输出给各控制开关组201,通过控制各控制开关组201内各控制开关的导通与截止,调节各控制开关组201对应的第二子电流的导通与截止,从而调节第二电流从第一值变化至第二值的时间,使得负载400两端的电压从第二电流为第一值时对应的电压缓慢变化至第二电流为第二值时对应的电压,保证第二电流从第一值变化至第二值过程中,负载400两端的电压不会偏差过大,解决了现有技术里电压调节方法中的调节过度问题,保证了电子芯片的性能。
在本发明的另一个实施例中,如图3所示,信号单元301包括:振荡器3011,用于产生多个周期性脉冲信号,多个周期性脉冲信号有相位差,且相位差大于零。在本实施例中,振荡器3011产生多个周期性脉冲信号给控制单元302,控制子单元3021在电源管理模块200输入端接收的第一电流从第一值变化至第二值时,调节器输入端输入的周期性脉冲信号反相输出的时间,获得控制信号,输出给选通器303,通过选通器303选择性通过控制信号,输出给各控制开关组201,通过控制各控制开关组201内各控制开关的导通与截止,调节各控制开关组201对应的第二子电流的导通与截止,从而调节第二电流从第一值变化至第二值的时间,使得负载400两端的电压从第二电流为第一值时对应的电压缓慢变化至第二电流为第二值时对应的电压,保证第二电流从第一值变化至第二值过程中,负载400两端的电压不会偏差过大,解决了现有技术里 电压调节方法中的调节过度问题,保证了电子芯片的性能。
需要说明是的,上述实施例中是以比较器3012的正极输入第一预设电压值,负极输入振荡器3011输出的周期性脉冲信号为例进行说明的,在本发明的其他实施例中,也可以比较器3012的负极输入第一预设电压值,正极输入振荡器3011输出的周期性脉冲信号,本发明对此并不做限定,具体视情况而定。
在本发明实施例中,振荡器3011产生的周期性脉冲信号可以为锯齿形脉冲信号,也可以为矩形脉冲信号或其他周期性脉冲信号,本发明对此并不做限定,具体视情况而定。需要说明的是,在本发明实施例中,电压调节装置工作过程中,周期性脉冲信号的频率可以固定的,也可以是实时变化的,同理,其幅值也可以是固定的或实时变化的,本发明对此并不做限定,具体视情况而定。
还需要说明的是,在本发明实施例中,振荡器3011直接生成多个周期性脉冲信号,不同周期性脉冲信号之间具有相位差,在本发明的其他实施例中,振荡器3011也可以生成一个周期性脉冲信号,然后经过一延时结构转换成多个周期性脉冲信号,使得多个周期性脉冲信号之间具有相位差,本发明对此并不做限定。其中,延时结构的延时和控制子单元控制其对应周期性脉冲调制信号输出时间的延时两者延时意义不同,方式也不同。
以控制开关为PMOS管为例,延时结构是将单相周期性脉冲信号的不同脉冲进行延时,使得单相周期信号脉冲信号中不同脉冲信号的相位不同,获得多相周期性脉冲信号,控制子单元3021是在负载400两端电压需要切换时(即第一电流从第一值切换至第二值时),将其输入端输入的脉冲信号中的低电平转换成高电平,从而控制其相应的控制开关组不导通,进而使得该控制开关组对应的第二子电流在预设时间段不输出,使得第二电流从第一值切换至第二值过程中,构成第二电流中各第二子电流的输出个数不同,达到调节第二电流从第一值切换至第二值时间的目的。
当控制开关为NMOS管时,延时结构是将单相周期性脉冲信号的不同脉冲进行延时,使得单相周期信号脉冲信号中不同脉冲信号的相位不同,获得多相周期性脉冲信号,控制子单元3021是在负载400两端电压需要切换时(即第一电流从第一值切换至第二值时),将其输入端输入的脉冲信号中的高电平转换成低电平,从而控制其相应的控制开关组不导通,进而使得该控制开关组对应的第二子电流在预设时间段不输出,使得第二电流从第一值切换至第二值过程中,构成第二电流中各第二子电流的输出个数不同,达到调节第二电流从第一值切换至第二值时间目的。
在负载400两端电压不需要切换时(即第一电流为稳定值时),控制子单元3021的输出信号和其输入信号相同,即当控制子单元3021的输入端输入高电平时,其输出端输出高电平,当控制子单元的输入端输入低电平时,其输出端输出低电平。
进一步需要说明的是,在本发明的其他实施例中,当电压调节装置应用的电子芯片中存在周期性脉冲信号时,信号单元301也可以不包括振荡器3011,而是共用电子芯片内的周期性脉冲信号,本发明对此并不做限定,具体视情况而定。
在上述任一实施例的基础上,在本发明的一个实施例中,如图2和图3所示,控制单元302的触发信号V1由外界提供,即当负载400两端的电压需要进行切换时(即电源管理模块200输入端接收的第一电流从第一值变化至第二值时),由操作体600给控制单元302提供一个电压预警信号,作为控制单元302的触发信号V1,触发控制单元302开始工作。同理,选通器303的使能信号D_en也可以由外界提供。需要说明的是,在本发明实施例中,操作体600可以为用户,也可以为外界的动态调压指令等,本发明对此并不做限定,具体视情况而定。如,当需要对负载400进行调压调频来满足不同的场景需求时,触发信号优选为通过外界的动态调压指令提供。
在本发明的一个实施例中,如图2所示,当负载400两端的电压需要进行调节时(即电源管理模块200输入端接收的第一电流从第一值变化至第二值时),由操作体提供触发信号V1同时发送给比较器3012和控制单元302,触发比较器3012和控制单元302开始工作。需要说明的是,在本发明实施例中,当负载400两端的电压需要进行调节时,不论负载400两端的电压调节幅度有多大(即不论电源管理模块200输入端接收的第一电流从第一值变化至第二值时的变化幅度多大),控制单元302中各控制子单元3021控制其输入端输入的周期性脉冲调制信号的反相输出的时间均相同。
在本发明的另一个实施例中,如图4所示,当负载400两端的电压需要进行调节时(即电源管理模块200输入端接收的第一电流从第一值变化至第二值时),由操作体提供触发信号V1发送给控制单元302,并将负载400两端的电压调节幅度V2发送给比较器3012,触发比较器3012和控制单元302开始工作。需要说明的是,在本发明实施例中,当负载400两端的电压需要进行调节时,负载400两端的电压调节幅度不同,控制单元302中各控制子单元3021控制其输入端输入的周期性脉冲调制信号的反相输出的时间也不同。
在本发明的另一个实施例中,如图5和图6所示,电压调节装置还包括:电压传感器700,用于监测第二预设电压,并当第二预设电压满足预设条件时,生成电压预警信号,作为控制单元302的触发信号V1,触发控制单元302开始工作。其中,第二预设电压可以为电源管理模块200输入端的电压Vdd和/或负载400输入端的电压Vo。本发明对此并不做限定,具体视情况而定。需要说明的是,当第二预设电压包括电源管理模块200输入端的电压Vdd和负载400输入端的电压Vo时,当电源管理模块200输入端的电压Vdd的电压浮动大于负载400输入端的电压Vo的电压浮动时,第二预设电压值为电源管理模块200输入端的电压Vdd,反之,第二预设电压值为负载400输入端的电压Vo。
以第二预设电压为负载400输入端的电压Vo为例,在本发明的一个实施 例中,如图6所示,电压传感器700用于监测第二预设电压,将监测到的第二预设电压值与负载400的工作电压做差值,并判断该差值是否大于预设阈值,当监测到的第二预设电压值与负载400的工作电压的差值大于预设阈值时,生成触发信号V1发送给比较器3012和控制单元302,触发比较器3012和控制单元302开始工作。需要说明的是,在本发明实施例中,当监测到的第二预设电压值与负载400的工作电压的差值大于预设阈值时,不论监测到的第二预设电压值与负载400的工作电压的差值多大,控制单元302中各控制子单元3021控制其输入端输入的周期性脉冲调制信号反相输出的时间均相同。
在本发明的另一个实施例中,如图6所示,电压传感器700用于监测第二预设电压,将监测到的第二预设电压值与负载400的工作电压做差值,并判断该差值是否大于预设阈值,当监测到的第二预设电压值与负载400的工作电压的差值大于预设阈值时,生成触发信号V1,将该触发信号V1发送给控制单元302,并将监测到的第二预设电压值与负载400的工作电压的差值V2发送给比较器3012,触发比较器3012和控制单元302开始工作。需要说明的是,在本发明实施例中,当监测到的第二预设电压值与负载400的工作电压的差值大于预设阈值时,监测到的第二预设电压值与负载400的工作电压的差值不同,控制单元302中各控制子单元3021控制其输入端输入的周期性脉冲调制信号反相输出的也不同。
需要说明的是,在本实施例中,当电压调节装置应用于电子芯片时,电压传感器700可以在电子芯片的整个工作过程中,实时监测第二预设电压,或以预设间隔监测第二预设电压;还可以在接到触发信号后,再实时监测第二预设电压,或以预设间隔监测第二预设电压,本发明对此并不做限定,具体视情况而定。
在上述任一实施例的基础上,在本发明的一个具体实施例中,如图7所示,控制开关组201包括:
第一薄膜晶体管S1、第二薄膜晶体管S2和第一电感L,其中,第一薄膜晶体管S1的输入端输入第二子电流,输出端与第一电感L电连接,控制端与信号控制模块300的输出端电连接,第二薄膜晶体管S2的输入端与第一薄膜晶体管S1的输出端电连接,输出端接地,控制端与信号控制模块300的输出端电连接。
在上述实施例的基础上,在本发明的一个实施例中,第一薄膜晶体管S1为PMOS管,第二薄膜晶体管S2为NMOS管,当信号控制模块300输出低电平信号时,第一薄膜晶体管S1导通,第二薄膜晶体管S2截止,第一电感L开始充电,当信号控制模块300输出高电平信号时,第一薄膜晶体管S1截止,第二薄膜晶体管S2导通,第一电感L开始放电。在本发明实施例中,电压调节装置通过控制信号控制模块300的输出信号,调节第一电感L充电时间和放电时间的比例,从而调节负载400输入端的电压。
在本发明的其他实施例中,还可以第一薄膜晶体管S1为NMOS管,第二薄膜晶体管S2为PMOS管,或,第一薄膜晶体管S1和第二薄膜晶体管S2均为PMOS管或均为NMOS管,本发明对此并不做限定。需要说明的是,当第一薄膜晶体管S1和第二薄膜晶体管S2均为PMOS管或均为NMOS管时,第一薄膜晶体管S1直接与信号控制模块300电连接,第二薄膜晶体管S2通过一个反相器与信号控制模块300电连接。
需要说明的是,在本发明的其他实施例中,控制开关组201还可以为其他结构,本发明对此并不做限定,具体视情况而定。
由于在电压调节装置的具体使用过程中,难以保证外界电源直接提供的供电电压始终与电子芯片所需的供电电压相匹配,而控制开关组201本身的电压调节能力有限,故在上述任一实施例的基础上,在本发明的一个优选实施例中,如图8所示,电压调节装置还包括:
电压调整器100,用于接收供电信号,并根据供电信号生成第一电流输出 给电源管理模块200的输入端,为电子芯片提供其所需的供电电压Vdd。在本发明实施例中,电压调整器100的输入端与外界电源电连接,用于接收外界电源提供的供电信号,并根据该供电信号生成第一电流,输出给电源管理模块200的输入端,为电子芯片提供其所需的供电电压Vdd。
需要说明的是,在本发明实施例中,电压调整器的结构可以与控制开关的结构相同,也可以为其他电压调节结构,本发明对此并不做限定,具体视情况而定。
如图9-图11所示,图9中示出了电压传感器700检测到的第二预设电压的变化曲线,图10示出了电压传感器700的输出曲线,图11示出了增加本发明所提供的电压调节装置前,负载400两端的电压曲线A和增加本发明所提供的电压调节装置后,负载400两端的电压曲线B。从图9和图10中可以看出,当电压传感器700检测到电压跌落后,电压传感器700开始输出信号(即电压报警信号),触发控制单元302开始工作。从图11中可以看出,增加本发明所提供的电压调节装置后,负载400两端的电压的稳定性大大提高。
在上述任一实施例的基础上,在本发明的一个实施例中,控制单元302控制其各输出信号对应的输入信号反相输出的时间为预设值,在本发明的另一个实施例中,控制单元302中控制其各输出信号对应的输入信号反相输出的时间为获取的。当控制单元302控制其各输出信号对应的输入信号反相输出的时间为获取的时,在本发明的一个实施例中,控制单元302控制其各输出信号对应的输入信号反相输出的时间由外界动态调压指令提供,在本发明的另一个实施例中,控制单元302控制其各输出信号对应的输入信号反相输出的时间由电压传感器700提供,本发明对此并不做限定,具体视情况而定。
需要说明的是,在本发明实施例中,控制单元302控制其各输出信号对应的输入信号反相输出的时间可以相同,也可以不完全相同,需根据电子芯片内的时钟频率、负载400阻值大小、解耦电容C的电容值、电子芯片的输入电压、 负载400的输入电压以及控制开关的个数和/或开关特性、负载400两端电压切换幅度等参数而定。具体的,当负载400两端电压切换幅度较大时,控制单元302控制其各输出信号对应的输入信号反相输出的时间相对较长,当负载400两端电压切换幅度较小时,控制单元302控制其各输出信号对应的输入信号反相输出的时间相对较短;当信号单元3011输出的周期性脉冲信号相数较多时,控制单元302控制其各输出信号对应的输入信号反相输出的时间相对较长,当信号单元3011输出的周期性脉冲信号相数较少时,控制单元302控制其各输出信号对应的输入信号反相输出的时间相对较短;在负载400两端电压相同的情况下,当负载400的阻值较大时,控制单元302控制其各输出信号对应的输入信号反相输出的时间相对较短,当负载400的阻值较小时,控制单元302控制其各输出信号对应的输入信号反相输出的时间相对较长。本发明对此并不做限定,控制单元302控制其各输出信号对应的输入信号反相输出的时间通常小于周期性脉冲信号的周期时间的一半。举例而言,当周期性脉冲信号的频率为1MHz(即1×106Hz),其周期时间为1×10-6s,则控制单元302控制其各输出信号对应的输入信号反相输出的时间的最大值小于0.5×10-6s即可。
还需要说明的是,在上述实施例中,控制单元302控制其各输出信号对应的输入信号反相输出的时间可以用相应的电压值、电流值来代表延时的时长,也可以直接采用时间量纲矢量,本发明对此并不做限定,具体视情况而定。
综上所述,本发明实施例所提供的电压调节装置,当电源管理模块接收的第一电流从第一值变化至第二值时,可以在电源管理模块200将第一电流调节成多个第二子电流之后,输出给负载400之前,通过控制电源管理模块200中各第二子电流的输出时间,使得各第二子电流的输出时间不同,从而第二电流从第一值变化至第二值的时间,使得负载400两端的电压从第二电流为第一值时对应的电压缓慢变化至第二电流为第二值时对应的电压,保证第二电流从 第一值变化至第二值过程中,负载400两端的电压与负载400的工作电压不会偏差过大,解决了现有技术里电压调节方法中的调节过度问题,保证了电子芯片的性能,且降低了电子芯片的功耗。
本说明书中各个部分采用递进的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个部分之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种电压调节装置,其特征在于,包括:
    电源管理模块,用于接收第一电流,并根据所述第一电流生成第二电流,所述第二电流流入负载,其中,所述第二电流包括多个第二子电流;
    信号控制模块,用于当所述第一电流从第一值变化至第二值时,控制所述多个第二子电流的截止与导通,从而调节所述第二电流从所述第一值变化至所述第二值的时间。
  2. 根据权利要求1所述的电压调节装置,其特征在于,当所述第一电流保持稳定时,所述第一电流与所述第二电流相等。
  3. 根据权利要求1所述的电压调节装置,其特征在于,所述电压调节装置还包括:
    电压调整器,用于接收供电信号,并根据所述供电信号生成所述第一电流。
  4. 根据权利要求1所述的电压调节装置,其特征在于,所述电源管理模块包括:
    多个控制开关组,所述多个控制开关组并联,所述多个控制开关组与所述多个第二子电流一一对应,用于控制与其对应的第二子电流的截止与导通,其中,所述多个控制开关组中每个控制开关组至少包括一个控制开关。
  5. 根据权利要求4所述的电压调节装置,其特征在于,所述信号控制模块包括:
    信号单元,用于产生多个周期性脉冲信号,所述多个周期性脉冲信号有相位差,所述相位差大于零;
    控制单元,用于接收所述多个周期性脉冲信号,并根据所述多个周期性脉冲信号生成多个控制信号,所述多个周期性脉冲信号与所述多个控制信号一一对应;
    选通器,用于根据所述第一电流的电流值选择性通过所述多个控制信号, 输出给所述多个控制开关组,控制所述多个控制开关组的导通与截止。
  6. 根据权利要求5所述的电压调节装置,其特征在于,所述电压调节装置还包括:位于所述选通器与所述多个控制开关组之间的驱动器,所述驱动器用于放大所述选通器输出的信号。
  7. 根据权利要求5或6所述的电压调节装置,其特征在于,所述信号单元包括:
    振荡器,用于产生所述多个周期性脉冲信号,所述多个周期性脉冲信号有相位差,所述相位差大于零。
  8. 根据权利要求7所述的电压调节装置,其特征在于,所述信号单元还包括:
    多个比较器,用于比较所述多个周期性脉冲信号的电压值与第一预设电压值,并根据比较结果生成多个周期性脉冲调制信号,所述多个周期性脉冲调制信号与所述多个周期性脉冲信号一一对应。
  9. 根据权利要求5-8任一项所述的电压调节装置,其特征在于,所述控制单元的触发信号由外界提供。
  10. 根据权利要求5-8任一项所述的电压调节装置,其特征在于,还包括:电压传感器,用于监测第二预设电压,并当所述第二预设电压满足预设条件时生成触发信号,触发所述控制单元开始工作。
  11. 根据权利要求10所述的电压调节装置,其特征在于,所述第二预设电压包括电源管理模块输入端的电压和/或所述负载输入端的电压。
  12. 根据权利要求5-11任一项所述的电压调节装置,其特征在于,所述控制单元控制其各输出信号对应的输入信号反相输出的时间为预设值。
  13. 根据权利要求12所述的电压调节装置,其特征在于,所述控制单元控制其各输出信号对应的输入信号反相输出的时间相同。
PCT/CN2015/087869 2015-08-22 2015-08-22 一种电压调节装置 WO2017031651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087869 WO2017031651A1 (zh) 2015-08-22 2015-08-22 一种电压调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087869 WO2017031651A1 (zh) 2015-08-22 2015-08-22 一种电压调节装置

Publications (1)

Publication Number Publication Date
WO2017031651A1 true WO2017031651A1 (zh) 2017-03-02

Family

ID=58101160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087869 WO2017031651A1 (zh) 2015-08-22 2015-08-22 一种电压调节装置

Country Status (1)

Country Link
WO (1) WO2017031651A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082801A (zh) * 2019-12-06 2020-04-28 杭州迪普科技股份有限公司 时序控制系统及电子设备
CN113783567A (zh) * 2021-08-23 2021-12-10 北京奕斯伟计算技术有限公司 压控振荡电路、压控振荡器及时钟数据恢复电路
CN114185836A (zh) * 2020-09-15 2022-03-15 阿里巴巴集团控股有限公司 片上系统和调节电压和频率的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212538A1 (en) * 2002-05-13 2003-11-13 Shen Lin Method for full-chip vectorless dynamic IR and timing impact analysis in IC designs
CN102692983A (zh) * 2011-03-22 2012-09-26 和硕联合科技股份有限公司 中央处理单元操作电压的调整方法及其电脑系统
CN103576823A (zh) * 2012-08-10 2014-02-12 明华电压自动调节科技有限公司 一种电压调节装置
CN104317379A (zh) * 2014-10-11 2015-01-28 中国科学院计算技术研究所 一种提供动态工作电压的处理器供电系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212538A1 (en) * 2002-05-13 2003-11-13 Shen Lin Method for full-chip vectorless dynamic IR and timing impact analysis in IC designs
CN102692983A (zh) * 2011-03-22 2012-09-26 和硕联合科技股份有限公司 中央处理单元操作电压的调整方法及其电脑系统
CN103576823A (zh) * 2012-08-10 2014-02-12 明华电压自动调节科技有限公司 一种电压调节装置
CN104317379A (zh) * 2014-10-11 2015-01-28 中国科学院计算技术研究所 一种提供动态工作电压的处理器供电系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082801A (zh) * 2019-12-06 2020-04-28 杭州迪普科技股份有限公司 时序控制系统及电子设备
CN111082801B (zh) * 2019-12-06 2023-09-26 杭州迪普科技股份有限公司 时序控制系统及电子设备
CN114185836A (zh) * 2020-09-15 2022-03-15 阿里巴巴集团控股有限公司 片上系统和调节电压和频率的方法
CN113783567A (zh) * 2021-08-23 2021-12-10 北京奕斯伟计算技术有限公司 压控振荡电路、压控振荡器及时钟数据恢复电路

Similar Documents

Publication Publication Date Title
US7960947B2 (en) Adaptive frequency compensation for DC-to-DC converter
US8436594B2 (en) Control circuit and method for a digital synchronous switching converter
US9362823B2 (en) Switch-mode power supply, charging current source and associated method
CN107534383B (zh) 驱动电路、开关控制电路以及开关装置
TWI662392B (zh) 降低低電流穩壓器輸出端的負脈衝訊號的電路及其方法
CN109716258B (zh) 用以稳定供应电压的装置和方法
US7906951B2 (en) Switching regulator having reverse current detector
US10050526B2 (en) Switching power converter
WO2016173478A1 (zh) 一种电源门控电路
US8373501B2 (en) Reference voltage circuit
CN109997301A (zh) 用于dc-dc电力转换器的控制方案
WO2017031651A1 (zh) 一种电压调节装置
JP2018088249A (ja) 電源制御回路および環境発電装置
JP2009010623A (ja) 発振回路およびパルス信号の生成方法
US10418896B2 (en) Switching regulator including an offset enabled comparison circuit
JP2007151322A (ja) 電源回路およびdc−dcコンバータ
JP2011067025A (ja) Dc−dcコンバータ
US10431539B2 (en) Semiconductor integrated circuit including discharge control circuit
KR20210068905A (ko) 완화 발진기 및 완화 발진기의 제어 방법
CN108292893B (zh) 低压差稳压器及电压调节方法
TW200524254A (en) Synchronous rectifying type switching regulator control circuit and semiconductor integrated circuit including the same
KR102015185B1 (ko) 넓은 출력 전류 범위를 가지는 히스테리틱 부스트 컨버터
US20240128873A1 (en) Optimizing dead-time between end of on-phase of a high-side switch and beginning of on-phase of a low-side switch in a switching converter
US11855538B2 (en) Out-of-audio (OOA) switching voltage regulator
US11843370B2 (en) Switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901922

Country of ref document: EP

Kind code of ref document: A1