WO2017030162A1 - 端末装置、通信方法及び集積回路 - Google Patents

端末装置、通信方法及び集積回路 Download PDF

Info

Publication number
WO2017030162A1
WO2017030162A1 PCT/JP2016/074098 JP2016074098W WO2017030162A1 WO 2017030162 A1 WO2017030162 A1 WO 2017030162A1 JP 2016074098 W JP2016074098 W JP 2016074098W WO 2017030162 A1 WO2017030162 A1 WO 2017030162A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
transmission
terminal device
burst length
base station
Prior art date
Application number
PCT/JP2016/074098
Other languages
English (en)
French (fr)
Inventor
友樹 吉村
宏道 留場
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/752,381 priority Critical patent/US20190007971A1/en
Publication of WO2017030162A1 publication Critical patent/WO2017030162A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a terminal device, a communication method, and an integrated circuit.
  • IEEE 802.11ac which realizes higher speed of IEEE 802.11, which is a wireless local area network (LAN) standard, was established by the IEEE (The Institute of Electrical and Electronics Electronics Inc.).
  • LAN wireless local area network
  • standardization activities for IEEE802.11ax have been started as a successor to IEEE802.11ac.
  • studies are being made on improving throughput per user in an environment where wireless LAN devices are densely arranged.
  • the wireless LAN system is a system that determines whether or not transmission is possible based on carrier sense (CS). If the reception interference level is lower than the threshold value by carrier sense, it is determined that transmission is possible, and if interference power higher than the threshold value is received, transmission is avoided.
  • CS carrier sense
  • Non-Patent Document 1 discloses a method for performing interference control by dynamically changing carrier sense thresholds (carrier sense threshold, carrier sense level, CCA level: “Clear” Channel “Assessment level”).
  • carrier sense threshold carrier sense level
  • CCA level “Clear” Channel “Assessment level”.
  • the terminal devices having a small distance between the terminal devices have a mechanism that can improve the transmission opportunity by raising the CCA level.
  • the CCA level is raised, it is assumed that the amount of interference given to other terminal devices also increases.
  • An object of the present invention is to disclose a method for solving a problem of communication performance degradation due to interference that increases when a terminal apparatus raises a CCA level and improving frequency use efficiency.
  • a terminal device, a communication method, and an integrated circuit according to an aspect of the present invention for solving the above-described problems are as follows.
  • a terminal apparatus is a terminal apparatus that communicates with a base station apparatus, and the terminal apparatus changes a transmission burst length setting unit that changes a transmission burst length of a first frame.
  • a carrier sense unit capable of setting the carrier sense threshold value to at least two values, and the carrier sense threshold value is set to one of the two values.
  • the range of possible transmission burst lengths and the range of transmission burst lengths that can be set when the carrier sense threshold is set to another one of the two values are different It is characterized by being.
  • the terminal device is the terminal device according to (1), wherein the transmission burst length is related to the aggregate number of the first frames.
  • the terminal device is the terminal device according to (1), wherein the transmission burst length is related to a required transmission time of the first frame.
  • the terminal device which is 1 aspect of this invention is provided with the receiving part which receives the 2nd flame
  • the said The terminal device according to any one of (1) to (3) above.
  • a communication method is a communication method for a terminal device that communicates with a base station device, the step of changing the transmission burst length of the first frame, and carrier sense. Setting the threshold to at least two values, the transmit burst length range being configurable when the carrier sense threshold is set to one of the two values; The communication method is characterized in that the range of the transmission burst length that can be set when the carrier sense threshold is set to another one of the two values is different.
  • An integrated circuit is an integrated circuit that is mounted on a terminal device that communicates with a base station device and causes the terminal device to perform a plurality of functions.
  • a function for changing the transmission burst length and a function for setting at least two carrier sense threshold values are provided, and the carrier sense threshold value is set to one of the two values.
  • a circuit can be provided.
  • the communication system includes a wireless transmission device (access point, base station device: Access point, base station device) and a plurality of wireless reception devices (station, terminal device: station, terminal device).
  • a network composed of base station devices and terminal devices is called a basic service set (BSS: “Basic service set”). Further, the base station device and the terminal device are collectively referred to as a wireless device.
  • the base station apparatus and the terminal apparatus in the BSS communicate with each other based on CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance).
  • the base station apparatus targets an infrastructure mode in which communication is performed with a plurality of terminal apparatuses, but the method of the present embodiment can also be implemented in an ad hoc mode in which terminal apparatuses directly communicate with each other.
  • the terminal device forms a BSS instead of the base station device.
  • the BSS in the ad hoc mode is also called IBSS (Independent Basic Service Set).
  • IBSS Independent Basic Service Set
  • each device can transmit transmission frames of a plurality of frame types having a common frame format.
  • the transmission frame is defined in a physical (Physical: PHY) layer, a medium access control (Medium access control: MAC) layer, and a logical link control (LLC: Logical Link Control) layer.
  • PHY Physical
  • MAC medium access control
  • LLC Logical Link Control
  • the transmission frame of the PHY layer is called a physical protocol data unit (PPDU: “PHY” protocol “data” unit, physical layer frame).
  • the PPDU includes a physical layer header (PHY header) including header information for performing signal processing in the physical layer, and a physical service data unit (PSDU: PHY service data unit, which is a data unit processed in the physical layer, MAC layer frame).
  • the PSDU can be composed of an aggregated MPDU (A-MPDU: Aggregated ⁇ MPDU) in which a plurality of MAC protocol data units (MPDU: MAC protocol data unit) serving as a retransmission unit in a radio section are aggregated.
  • A-MPDU Aggregated ⁇ MPDU
  • MPDU MAC protocol data unit
  • the PHY header includes a short training field (STF: Short training field) used for signal detection and synchronization, a long training field (LTF: Long training field) used to acquire channel information for data demodulation, etc. And a control signal such as a signal (Signal: SIG) including control information for data demodulation.
  • the STF is a legacy STF (L-STF: Legacy-STF), a high-throughput STF (HT-STF: HighSTthroughput-STF), or a very high-throughput STF (VHT-STF: Very) according to the corresponding standard.
  • LTF and SIG are similarly classified into L-LTF, HT-LTF, VHT-LTF, L-SIG, HT-SIG, and VHT-SIG.
  • VHT-SIG is further classified into VHT-SIG-A and VHT-SIG-B.
  • the PHY header can include information (hereinafter also referred to as BSS identification information) for identifying the transmission source BSS of the transmission frame.
  • the information for identifying the BSS can be, for example, the SSID (Service Set Identifier) of the BSS or the MAC address of the base station device of the BSS.
  • the information for identifying the BSS can be a value unique to the BSS (for example, BSS color) other than the SSID and the MAC address.
  • the PPDU is modulated according to the corresponding standard.
  • the signal is modulated into an orthogonal frequency division multiplexing (OFDM) signal.
  • OFDM orthogonal frequency division multiplexing
  • the MPDU includes a MAC layer header (MAC header) including header information for performing signal processing in the MAC layer, and a MAC service data unit (MSDU: MAC service data unit) that is a data unit processed in the MAC layer or It consists of a frame body and a frame check unit (Frame check sequence: FCS) that checks whether there is an error in the frame.
  • MAC header MAC layer header
  • MSDU MAC service data unit
  • FCS frame check unit
  • a plurality of MSDUs may be aggregated as an aggregated MSDU (A-MSDU: Aggregated MSDU).
  • the frame type of the transmission frame of the MAC layer is roughly classified into three types: a management frame for managing the connection state between devices, a control frame for managing a communication state between devices, and a data frame including actual transmission data. Each is further classified into a plurality of types of subframes.
  • the control frame includes a reception completion notification (Ack: Acknowledge) frame, a transmission request (RTS: Request to send) frame, a reception preparation completion (CTS: Clear to send) frame, and the like.
  • Management frames include beacon frames, probe request frames, probe response frames, authentication frames, authentication frames, connection request frames, connection response frames, etc. included.
  • the data frame includes a data frame, a polling (CF-poll) frame, and the like. Each device can grasp the frame type and subframe type of the received frame by reading the contents of the frame control field included in the MAC header.
  • Block Ack may be included in Ack.
  • Block Ack can perform reception completion notification for a plurality of MPDUs.
  • the beacon frame includes a beacon transmission cycle (Beacon interval) and a field (Field) describing the SSID.
  • the base station apparatus can periodically notify the beacon frame in the BSS, and the terminal apparatus can grasp the base station apparatus around the terminal apparatus by receiving the beacon frame.
  • the terminal device grasping the base station device based on the beacon frame notified from the base station device is called passive scanning.
  • passive scanning when a terminal device broadcasts a probe request frame in the BSS and searches for a base station device is called active scanning.
  • the base station apparatus can transmit a probe response frame as a response to the probe request frame, and the description content of the probe response frame is equivalent to the beacon frame.
  • the terminal device After the terminal device recognizes the base station device, the terminal device performs connection processing on the base station device.
  • the connection process is classified into an authentication procedure and an association procedure.
  • the terminal device transmits an authentication frame (authentication request) to the base station device that desires connection.
  • the base station device When receiving the authentication frame, the base station device transmits an authentication frame (authentication response) including a status code indicating whether or not the terminal device can be authenticated to the terminal device.
  • the terminal device can determine whether or not the own device has been authorized by the base station device by reading the status code written in the authentication frame. Note that the base station device and the terminal device can exchange authentication frames multiple times.
  • the terminal device transmits a connection request frame to perform a connection procedure to the base station device.
  • the base station apparatus determines whether or not to permit the connection of the terminal apparatus, and transmits a connection response frame to notify that effect.
  • an association identification number (AID: “Association” identifier) for identifying the terminal device is described.
  • the base station device can manage a plurality of terminal devices by setting different AIDs for the terminal devices that have given permission for connection.
  • the base station device and the terminal device After the connection process is performed, the base station device and the terminal device perform actual data transmission.
  • a distributed control mechanism DCF: Distributed Coordination Function
  • PCF Point Coordination Function
  • EDCA Enhanced Distributed Channel Access
  • HCF Hybrid coordination function
  • the base station device and the terminal device perform carrier sense (CS: Carrier sense) for confirming the usage status of radio channels around the device before communication. For example, when a base station apparatus as a transmitting station receives a signal higher than a predetermined clear channel evaluation level (CCA level: “Clear” channel “assessment” level) on the radio channel, the base station apparatus transmits a transmission frame on the radio channel. put off.
  • CCA level clear channel evaluation level
  • a state in which a signal above the CCA level is detected in the radio channel is referred to as a busy state
  • a state in which a signal above the CCA level is not detected is referred to as an idle state.
  • CS performed based on the power (reception power level) of the signal actually received by each device is called physical carrier sense (physical CS).
  • the CCA level is also called a carrier sense level (CS (level) or a CCA threshold (CCA threshold: CCAT).
  • CS carrier sense level
  • CCA threshold CCAT
  • the base station apparatus performs carrier sense only for the frame interval (IFS: “Inter frame space”) according to the type of transmission frame to be transmitted, and determines whether the radio channel is busy or idle.
  • the period during which the base station apparatus performs carrier sense differs depending on the frame type and subframe type of the transmission frame transmitted from the base station apparatus.
  • IFS Inter frame space
  • a plurality of IFSs having different periods are defined, and a short frame interval (SIFS: Short IFS) used for a transmission frame having the highest priority is assigned to a transmission frame having a relatively high priority.
  • PCF IFS PIFS
  • DCF IFS dispersion control frame interval
  • the base station apparatus uses DIFS.
  • the base station apparatus After the base station apparatus waits for DIFS, the base station apparatus further waits for a random back-off time to prevent frame collision.
  • a random back-off time In the IEEE 802.11 system, a random back-off time called a contention window (CW: “Contention” window) is used.
  • CW contention window
  • CSMA / CA it is assumed that a transmission frame transmitted by a certain transmitting station is received by a receiving station without interference from other transmitting stations. For this reason, if transmitting stations transmit transmission frames at the same timing, the frames collide with each other, and the receiving station cannot receive them correctly. Thus, frame collisions are avoided by waiting for a randomly set time before each transmitting station starts transmission.
  • the base station apparatus determines that the radio channel is in an idle state by carrier sense, it starts counting down CW, acquires transmission right only when CW becomes 0, and can transmit a transmission frame to the terminal apparatus.
  • the base station apparatus determines that the radio channel is busy by carrier sense during CW countdown, CW countdown is stopped.
  • the base station apparatus restarts the countdown of the remaining CW following the previous IFS.
  • the terminal device that is the receiving station receives the transmission frame, reads the PHY header of the transmission frame, and demodulates the received transmission frame. Then, the terminal device can recognize whether or not the transmission frame is addressed to the own device by reading the MAC header of the demodulated signal. The terminal device can also determine the destination of the transmission frame based on information described in the PHY header (for example, a group identification number (GID: Group identifier) described in VHT-SIG-A). is there.
  • GID Group identifier
  • the terminal apparatus determines that the received transmission frame is addressed to itself and demodulates the transmission frame without error, the terminal apparatus transmits an ACK frame indicating that the frame has been received correctly to the base station apparatus that is the transmission station.
  • the ACK frame is one of the transmission frames with the highest priority that is transmitted only during the SIFS period (no random backoff time is taken).
  • the base station device ends a series of communications.
  • the terminal device does not transmit ACK. Therefore, if the base station apparatus does not receive an ACK frame from the receiving station for a certain period (SIFS + ACK frame length) after frame transmission, it assumes that communication has failed and terminates communication.
  • the end of one communication (also called a burst) of the IEEE 802.11 system is performed in a special case such as when a broadcast signal such as a beacon frame is transmitted or fragmentation for dividing transmission data is used. Except for this, the determination is always made based on whether or not an ACK frame is received.
  • the terminal device uses a network allocation vector (NAV: Network allocation) based on the length (Length) of the transmission frame described in the PHY header or the like. vector).
  • NAV Network allocation
  • the terminal device does not attempt communication during the period set in the NAV. That is, since the terminal device performs the same operation as when the radio channel is determined to be busy by the physical CS for a period set in the NAV, the communication control by the NAV is also called virtual carrier sense (virtual CS).
  • the transmission request RTS: Request to send
  • CTS Clear
  • a control station In contrast to DCF in which each device performs carrier sense and autonomously acquires a transmission right, a control station called a point coordinator (PC) controls the transmission right of each device in the BSS.
  • PC point coordinator
  • the base station apparatus becomes a PC and acquires the transmission right of the terminal apparatus in the BSS.
  • the communication period by PCF includes a non-contention period (CFP: “Contention” free period) and a contention period (CP: “Contention period”).
  • CFRP non-contention period
  • CP contention period
  • the base station apparatus which is a PC broadcasts a beacon frame in which a CFP period (CFP Max duration) and the like are described in the BSS prior to PCF communication.
  • PIFS is used to transmit a beacon frame that is notified when PCF transmission starts, and is transmitted without waiting for CW.
  • the terminal device that has received the beacon frame sets the CFP period described in the beacon frame to NAV.
  • the terminal apparatus signals transmission right acquisition transmitted from the PC.
  • the transmission right can be acquired only when a signal to be transmitted (for example, a data frame including CF-poll) is received. Note that, within the CFP period, packet collision does not occur within the same BSS, so each terminal device does not take the random backoff time used in DCF.
  • the AP and STA can describe information on the maximum number of aggregated A-MPDUs (maximum number of aggregations and maximum A-MPDU length) that can be received in the Maximum A-MPDU Length Components subfield.
  • the information described in the Maximum A-MPDU Length Exponents subfield is an integer value.
  • the AP and the STA can receive a frame including an A-MPDU having a length of 2 ⁇ (13 + X) -1 octes.
  • the AP and the STA that are the source terminal devices transmit the frame including the A-MPDU having a length exceeding the maximum A-MPDU length that can be received by the AP and the STA that are the destination terminal devices to the AP and the STA that are the destination terminal devices. Do not send to.
  • AP and STA can describe the maximum number of A-MSDUs that can be received (maximum A-MSDU length) in the Max Number Of MSDUs In A-MSDU subfield and the Maximum A-MSDU Length field.
  • Max Number Of MSDUs In A-MSDU is information indicating the number of MSDUs that can be aggregated.
  • Maximum A-MSDU Length is information indicating the receivable A-MSDU length itself.
  • the AP and the STA that are the source terminal devices transmit the frame including the A-MSDU having a length exceeding the maximum A-MSDU length that can be received by the AP and the STA that are the destination terminal devices to the AP and the STA that are the destination terminal devices. Do not send to.
  • the terminal device can have the same function as the base station device.
  • the base station apparatus can have the same function as the terminal apparatus. That is, unless otherwise specified, the base station device and the terminal device can have the same function.
  • FIG. 1 is a diagram illustrating an example of a management range 3 of the wireless communication system according to the present embodiment.
  • the management range 3 includes the base station device 1, the terminal device 21, and the terminal device 22.
  • the terminal device 21 and the terminal device 22 are collectively referred to as a terminal device 20.
  • the management range 3 includes two terminal devices 20, but the method of the present embodiment can be implemented as long as the management range 3 includes one or more terminal devices 20.
  • the base station device 1 and the terminal device 20 determine whether or not to transmit by carrier sense before transmitting the transmission frame to the radio space.
  • the base station apparatus 1 and the terminal apparatus 20 are provided with information regarding the CCA level that is a threshold value for carrier sense. Information on the CCA level can be used to set the CCA levels of the base station apparatus 1 and the terminal apparatus 20.
  • the terminal device 20 can set different CCA levels.
  • the terminal device 21 can set CL21 and the terminal device 22 can set CL22 as the CCA level.
  • the terminal device 20 can also dynamically set the CCA levels CL21 and CL22.
  • the terminal device 20 can change the CCA levels CL21 and CL22 according to time, frequency, transmission frame destination, and transmission frame type (characteristics, properties, length, information type, etc.).
  • the base station apparatus 1 can set the CCA level CL1.
  • the base station apparatus 1 can also dynamically set the CCA level CL1.
  • the base station apparatus 1 can change the CCA level CL1 according to time, frequency, transmission frame destination, and transmission frame type.
  • FIG. 2 is a diagram illustrating an example of a device configuration of the base station device 1.
  • Base station apparatus 1 includes a higher layer section 11001, a carrier sense section 11002, a transmission section 11003, a reception section 11004, and an antenna section 11005.
  • the upper layer unit 11001 is connected to another network and has a function of notifying the carrier sense unit 11002 of information related to the transmission frame.
  • the transmission frame is defined as being defined in the MAC layer.
  • the transmission frame according to the present embodiment may be defined in other layers.
  • the transmission frame can be defined in the LLC layer and the physical layer.
  • Upper layer section 11001 includes transmission burst length setting section 11006 for setting the transmission burst length. The transmission burst length will be described later.
  • the carrier sense unit 11002 has a function of determining whether transmission is possible based on carrier sense.
  • the carrier sense unit 11002 can notify the upper layer unit 11001 of information related to the CCA level used for carrier sense.
  • the information on the CCA level may be, for example, a CCA level value used by the carrier sense unit 11002 for carrier sense.
  • the transmission unit 11003 includes a physical layer frame generation unit 11003a and a wireless transmission unit 11003b.
  • the physical layer frame generation unit 11003a has a function of generating a physical layer frame from a transmission frame notified from the carrier sense unit 11002.
  • the physical layer frame generation unit 11003a performs error correction coding, modulation, precoding filter multiplication, and the like on the transmission frame.
  • the physical layer frame generation unit 11003a notifies the wireless transmission unit 11003b of the generated physical layer frame.
  • the radio transmission unit 11003b converts the physical layer frame generated by the physical layer frame generation unit 11003a into a signal of a radio frequency (RF: “Radio” Frequency) band, and generates a radio frequency signal (carrier wave signal or the like).
  • the processing performed by the wireless transmission unit 11003b includes digital / analog conversion, filtering, frequency conversion from the baseband to the RF band, and the like.
  • the reception unit 11004 includes a wireless reception unit 11004a and a signal demodulation unit 11004b.
  • the radio reception unit 11004a has a function of converting a signal in the RF band received by the antenna unit 11005 into a baseband signal and generating a physical layer signal (for example, a physical layer frame).
  • the processing performed by the wireless reception unit 11004a includes frequency conversion processing from the RF band to the baseband, filtering, and analog / digital conversion.
  • the signal demodulator 11004b has a function of demodulating the physical layer signal generated by the radio receiver 11004a.
  • the processing performed by the signal demodulator 11004b includes channel equalization, demapping, error correction decoding, and the like.
  • the signal demodulator 11004b can extract, for example, information included in the physical layer header, information included in the MAC header, and information included in the transmission frame from the physical layer signal.
  • the signal demodulator 11004b can notify the upper layer unit 11001 of the extracted information. Note that the signal demodulator 11004b may extract one or more of information included in the physical layer header, information included in the MAC header, and information included in the transmission frame.
  • the antenna unit 11005 has a function of transmitting the radio frequency signal generated by the radio transmission unit 11003b to the radio space.
  • the antenna unit 11005 has a function of receiving a radio frequency signal. Further, the antenna unit 11005 has a function of receiving a signal of the channel existing in the radio space when the base station apparatus 1 performs carrier sense.
  • the device configuration of the terminal device 20 includes the same configuration as the device configuration of the base station device 1, description thereof is omitted.
  • the description will focus on the characteristics of the terminal device 20 unless otherwise specified, but the base station apparatus 1 also has the same characteristics.
  • the terminal device 20 has a function of defining a relationship between a transmission frame length (also referred to as a transmission burst length) and a CCA level. For example, the terminal device 20 can change the CCA level based on the transmission burst length, and has a function of changing the transmission burst length based on the CCA level.
  • the transmission burst length can be expressed as a period of one or two or more transmission frames transmitted to the radio space by the antenna unit 11005.
  • the transmission burst information amount (number of information bits, A-MPDU, and A-MSDU aggregation number).
  • the terminal device 20 can perform suitable interference control by associating the transmission burst length with the CCA level. For example, consider that the transmission burst length of the transmission frame that the terminal device 21 is preparing for transmission is 100 ⁇ s. In addition, when the terminal device 22 does not detect the transmission frame of the terminal device 21 (for example, when the terminal device 22 receives a transmission frame transmitted by the terminal device 21, the reception strength that does not satisfy the CCA level of the terminal device 22). It is assumed that, after waiting for 105 ⁇ s on average, transmission is started. In this case, the terminal device 21 can complete the transmission of the transmission frame without being affected by the interference signal from the terminal device 22. On the other hand, considering that the transmission burst length of the transmission frame of the terminal device 21 is 4000 ⁇ s, the terminal device 22 starts transmission and the transmission frame collides during transmission of the transmission frame.
  • FIG. 3 is a diagram illustrating an example of the operation of the terminal device 20.
  • the terminal device 21 When the terminal device 21 is transmitting a transmission frame that greatly exceeds the average standby time (or the standby time, and the average standby time and the standby time are determined including IFS and backoff), To start signal transmission after the terminal device 22 waits for an IFS (DIFS in the example of FIG. 3) period and a back-off period (each parallelogram in FIG. 3 indicates a slot time constituting the back-off period). Both transmission frames interfere with each other.
  • IFS DIFS in the example of FIG. 3
  • the upper limit value of the CCA level setting is increased when the maximum number of A-MPDU aggregations in the management range 3 is small, and the upper limit value of the CCA level setting is decreased when the maximum number of A-MPDU aggregations in the management range 3 is large. Can do.
  • IEEE 802.11 defines HT Capabilities Field including A-MPDU Length Limit information.
  • the HT Capabilities Field is one of information areas that the base station device 1 and the terminal device 20 can include in a beacon, a management frame, or a transmission frame.
  • the A-MPDU Length Limit information can notify information about the maximum number of A-MPDUs that can be received.
  • the base station device 1 can receive the A-MPDU Length Limit information as the A-MPDU Length Limit information.
  • the transmission frame configuration of the terminal device 20 that receives the transmission frame can be limited to an A-MPDU aggregation number of 2 or less. . That is, the base station apparatus 1 can set information on the maximum number of A-MPDU aggregations in the management range 3 using the A-MPDU Length Limit information.
  • Information regarding the maximum number of A-MPDU aggregations set in the management range 3 is not limited to the above.
  • the base station apparatus 1 or the terminal apparatus 20 can set information (burst length restriction information) for limiting the number of MPDU aggregation included in one transmission frame in the management range 3.
  • the burst length restriction information is not limited to the above.
  • the burst length restriction information may be information that restricts the number of MSDUs, information that restricts the amount of information included in one transmission frame, or the like.
  • the burst length restriction information may be information that restricts the transmission burst length.
  • the burst length restriction information may be information related to NAV.
  • Coffset ⁇ ⁇ Cbase.
  • Coffset is a CCA level difference value (also referred to as CCA offset or the like) from a reference CCA level value (for example, CCA level value used in the current IEEE802.11 standard) Cbase, and ⁇ is related to the maximum number of A-MPDU aggregates. Information calculated based on the information. For example, ⁇ may be the same value as the A-MPDU maximum aggregation number, or may be a value obtained by multiplying the A-MPDU maximum aggregation number by a proportional constant.
  • FIG. 4 is a diagram showing an example of a table showing the relationship between the A-MPDU maximum aggregation number and the CCA level.
  • a CCA offset is assigned according to the value of the maximum number of A-MPDU aggregations, but it may be at the CCA level.
  • the CCA offset and CCA level may be decibel values or true values.
  • the terminal device 20 can change the CCA level based on the A-MPDU maximum aggregation number, and based on the CCA level, the A-MPDU maximum aggregation number or the A-MPDU number included in the transmission frame can be changed. Can be changed.
  • FIG. 5 is a sequence chart showing an example of the operations of the base station device 1 and the terminal device 20.
  • the base station apparatus 1 transmits a notification signal (step S101).
  • the broadcast signal can be a management frame, a beacon, a PHY header or MAC header in a transmission frame, an Ack, a control frame, or the like.
  • the terminal device 20 receives the broadcast signal transmitted by the base station device 1 and acquires transmission burst length restriction information (step S102).
  • the terminal device 20 changes the CCA level (step S103). Note that the order of the operation steps S102 and S103 of the terminal device 20 may be reversed.
  • the terminal device 20 can acquire information regarding the CCA level included in the broadcast signal, and can set the transmission burst length of the transmission frame based on the information regarding the CCA level. Subsequently, after performing carrier sense at the set CCA level, the terminal device 20 starts transmission of a transmission frame (step S104).
  • the terminal device 20 can change the CCA level based on the transmission burst length. That is, the CCA level can be changed based on the information on the transmission burst length related to the transmission frame generated by the terminal device 20. For example, the terminal device 20 sets the CCA level to ⁇ 72 dBm when generating a transmission frame in which three MPDUs are aggregated, and then sets the CCA level to ⁇ 82 dBm in the case of generating a transmission frame in which eight MPDUs are aggregated. Thus, the CCA level can be changed based on the transmission burst length of the generated transmission frame.
  • the terminal device 20 can change the transmission burst length based on the setting of the CCA level.
  • the terminal device 20 can change the NAV setting based on the CCA level setting. That is, in one aspect of the present invention, the transmission burst length can include information related to NAV.
  • the terminal device 20 can change the CCA level based on the function information of transmission frame aggregation. For example, it is prohibited to change the CCA level of the terminal device 20 having the transmission frame aggregation function, and the CCA level change of the terminal device 20 not having the transmission frame aggregation function can be permitted.
  • the base station device 1 or the terminal device 20 has a function of transmitting information for notifying permission or prohibition of CCA level change.
  • the base station device 1 or the terminal device 20 has a function of transmitting information for notifying permission or prohibition of transmission frame aggregation.
  • one aspect of the present invention can also be implemented in standardization standards other than IEEE 802.11, for example, LTE (Long Term Evolution) standard.
  • LTE Long Term Evolution
  • the transmission burst length may be the number of subframes, the number of system frames, the number of OFDM symbols, the number of partial subframes (Partial Subframe Number), Floating Subframe Number, Extended Subframe Number, or the like.
  • a program that operates on the base station device 1 and the terminal device 20 according to one aspect of the present invention is a program that controls a CPU or the like (a computer is caused to function) so as to realize the function of the above-described embodiment according to one aspect of the present invention.
  • Program Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc.
  • the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in one embodiment of the present invention.
  • Each functional block of the base station device 1 and the terminal device 20 may be individually chipped, or a part or all of them may be integrated into a chip. When each functional block is integrated, an integrated circuit controller for controlling them is added.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the base station device 1 and the terminal device 20 of the present invention are not limited to application to mobile station devices, but are stationary or non-movable electronic devices installed indoors and outdoors, such as AV devices, kitchens, etc. Needless to say, the present invention can be applied to equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a terminal device, a communication method, and an integrated circuit.
  • Base station apparatus 3 Management range 20, 21, 22 Terminal apparatus 11001 Upper layer section 11002 Carrier sense section 11003 Transmission section 11003a Physical layer frame generation section 11003b Radio transmission section 11004 Reception section 11004a Radio reception section 11004b Signal demodulation section 11005 Antenna section 11006 Transmission burst length setting section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置がCCAレベル引き上げを実施した場合に増加する干渉による通信性能劣化を低減する。基地局装置と通信を行なう端末装置であって、前記端末装置は、フレームを送信する送信部と、前記フレームの送信バースト長を変更する送信バースト長設定部と、前記フレームの送信に先だってキャリアセンスを行なうキャリアセンス部と、を備え、前記キャリアセンスのしきい値が第1の値に設定される場合と、前記しきい値が第2の値に設定される場合とで、前記送信バースト長が異なる、端末装置。

Description

端末装置、通信方法及び集積回路
 本発明は、端末装置、通信方法及び集積回路に関する。
 無線LAN(Local Area Network)規格であるIEEE802.11のさらなる高速化を実現する、IEEE802.11acがIEEE(The Institute of Electrical and Electronics Engineers Inc.)により策定された。現在、IEEE802.11acの後継規格として、IEEE802.11axの標準化活動が開始されている。無線LANデバイスの急速な普及に伴い、IEEE802.11ax標準化においても、無線LANデバイスの過密配置環境においてユーザあたりのスループット向上の検討が行なわれている。
 無線LANシステムは、キャリアセンス(CS: Carrier Sense)に基づき送信可否判断を行なうシステムである。キャリアセンスにより受信干渉レベルがしきい値よりも低ければ、送信可能と判断し、しきい値よりも高い干渉電力を受信すれば、送信を回避する。
 IEEE802.11ax標準化において、キャリアセンスしきい値の変更、あるいは動的制御が議論されている。無線LANデバイス過密配置環境下において、キャリアセンスしきい値を引き上げることによって、各デバイスの送信機会が向上することが期待される。しかし、キャリアセンスしきい値の引き上げには受信側の干渉レベルが増加する懸念もある。
 非特許文献1において、キャリアセンスのためのしきい値(キャリアセンスのしきい値、キャリアセンスレベル、CCAレベル: Clear Channel Assessmentレベル)を動的に変化させることにより、干渉制御を行なう方法が開示されている。例えば、端末装置間距離が小さい端末装置同士は、CCAレベルを引き上げることによって、送信機会を向上することができる仕組みである。CCAレベルを引き上げた場合、他端末装置に与える干渉量も増加することが想定される。
IEEE 802.11-14/0779r2 DSC Practical Usage
 本発明は、端末装置がCCAレベル引き上げを実施した場合に増加する干渉による通信性能劣化の課題を解決し、周波数利用効率を改善する方法を開示することを目的とする。
 上述した課題を解決するための本発明の一態様に係る端末装置、通信方法及び集積回路は、次の通りである。
 (1)すなわち、本発明の一態様である端末装置は、基地局装置と通信を行なう端末装置であって、前記端末装置は、第1のフレームの送信バースト長を変更する送信バースト長設定部と、キャリアセンスのしきい値を少なくとも2つの値に設定することができるキャリアセンス部を備え、前記キャリアセンスのしきい値が前記2つの値のうちの1つの値に設定される場合に設定可能な前記送信バースト長の範囲と、前記キャリアセンスのしきい値が前記2つの値のうちの別の1つの値に設定される場合に設定可能な前記送信バースト長の範囲が異なる端末装置であることを特徴とする。
 (2)また、本発明の一態様である端末装置は、前記送信バースト長は、前記第1のフレームの集約数に関連している、上記(1)に記載の端末装置であることを特徴とする。
 (3)また、本発明の一態様である端末装置は、前記送信バースト長は、前記第1のフレームの所要送信時間に関連している、上記(1)に記載の端末装置であることを特徴とする。
 (4)また、本発明の一態様である端末装置は、前記端末装置は、前記送信バースト長の範囲を設定するために用いられる情報を含む第2のフレームを受信する受信部を備える、上記(1)から上記(3)のいずれかに記載の端末装置であることを特徴とする。
 (5)また、本発明の一態様である通信方法は、基地局装置と通信を行なう端末装置の通信方法であって、第1のフレームの送信バースト長を変更するステップと、キャリアセンスのしきい値をすくなくとも2つの値に設定するステップを備え、前記キャリアセンスのしきい値が前記2つの値のうちの1つの値に設定される場合に設定可能な前記送信バースト長の範囲と、前記キャリアセンスのしきい値が前記2つの値のうちの別の1つの値に設定される場合に設定可能な前記送信バースト長の範囲が異なる、通信方法であることを特徴とする。
 (6)また、本発明の一態様である集積回路は、基地局装置と通信を行なう端末装置に実装され、前記端末装置に複数の機能を発揮させる集積回路であって、第1のフレームの送信バースト長を変更する機能と、キャリアセンスのしきい値をすくなくとも2つの値に設定する機能を備え、前記キャリアセンスのしきい値が前記2つの値のうちの1つの値に設定される場合に設定可能な前記送信バースト長の範囲と、前記キャリアセンスのしきい値が前記2つの値のうちの別の1つの値に設定される場合に設定可能な前記送信バースト長の範囲が異なる、集積回路であることを特徴とする。
 本発明によれば、端末装置がCCAレベル引き上げを実施した場合に増加する干渉による通信性能劣化の課題を解決し、周波数利用効率を改善することができるから、優れた端末装置、通信方法及び集積回路を提供することができる。
本実施形態に係る無線通信システムの管理範囲の一例を示した図である。 本発明の一態様に係る基地局装置の装置構成の一例を示す図である。 本発明の一態様に係る端末装置の動作の一例を示す図である。 本発明の一態様に係るA-MPDU最大集約数とCCAレベルの関係を示すテーブルの一例を示す図である。 本発明の一態様に係る基地局装置と端末装置の動作の一例を示すシーケンスチャートである。
 本実施形態における通信システムは、無線送信装置(アクセスポイント、基地局装置: Access point、基地局装置)、及び複数の無線受信装置(ステーション、端末装置: station、端末装置)を備える。また、基地局装置と端末装置とで構成されるネットワークを基本サービスセット(BSS: Basic service set、管理範囲)と呼ぶ。また、基地局装置と、端末装置をまとめて、無線装置とも呼称する。
 BSS内の基地局装置及び端末装置は、それぞれCSMA/CA(Carrier sense multiple access with collision avoidance)に基づいて、通信を行なうものとする。本実施形態においては、基地局装置が複数の端末装置と通信を行なうインフラストラクチャモードを対象とするが、本実施形態の方法は、端末装置同士が通信を直接行なうアドホックモードでも実施可能である。アドホックモードでは、端末装置が、基地局装置の代わりとなりBSSを形成する。アドホックモードにおけるBSSを、IBSS(Independent Basic Service Set)とも呼称する。以下では、アドホックモードにおいてIBSSを形成する端末装置を、基地局装置とみなすものとする。
 IEEE802.11システムでは、各装置は、共通のフレームフォーマットを持った複数のフレームタイプの送信フレームを送信することが可能である。送信フレームは、物理(Physical: PHY)層、媒体アクセス制御(Medium access control: MAC)層、論理リンク制御(LLC: Logical Link Control)層、でそれぞれ定義されている。
 PHY層の送信フレームは、物理プロトコルデータユニット(PPDU: PHY protocol data unit、物理層フレーム)と呼ばれる。PPDUは、物理層での信号処理を行なうためのヘッダ情報等が含まれる物理層ヘッダ(PHYヘッダ)と、物理層で処理されるデータユニットである物理サービスデータユニット(PSDU: PHY service data unit、MAC層フレーム)等から構成される。PSDUは無線区間における再送単位となるMACプロトコルデータユニット(MPDU: MAC protocol data unit)が複数集約された集約MPDU(A-MPDU: Aggregated MPDU)で構成されることが可能である。
 PHYヘッダには、信号の検出・同期等に用いられるショートトレーニングフィールド(STF: Short training field)、データ復調のためのチャネル情報を取得するために用いられるロングトレーニングフィールド(LTF: Long training field)等の参照信号と、データ復調のための制御情報が含まれているシグナル(Signal: SIG)等の制御信号が含まれる。また、STFは、対応する規格に応じて、レガシーSTF(L-STF: Legacy-STF)や、高スループットSTF(HT-STF: High throughput-STF)や、超高スループットSTF(VHT-STF: Very high throughput-STF)等に分類され、LTFやSIGも同様にL-LTF、HT-LTF、VHT-LTF、L-SIG、HT-SIG、VHT-SIGに分類される。VHT-SIGは更にVHT-SIG-AとVHT-SIG-Bに分類される。
 更に、PHYヘッダは当該送信フレームの送信元のBSSを識別する情報(以下、BSS識別情報とも呼称する)を含むことができる。BSSを識別する情報は、例えば、当該BSSのSSID(Service Set Identifier)や当該BSSの基地局装置のMACアドレスであることができる。また、BSSを識別する情報は、SSIDやMACアドレス以外の、BSSに固有な値(例えば、BSS Color等)であることができる。
 PPDUは対応する規格に応じて変調される。例えば、IEEE802.11n規格であれば、直交周波数分割多重(OFDM: Orthogonal frequency division multiplexing)信号に変調される。
 MPDUはMAC層での信号処理を行なうためのヘッダ情報等が含まれるMAC層ヘッダ(MAC header)と、MAC層で処理されるデータユニットであるMACサービスデータユニット(MSDU: MAC service data unit)もしくはフレームボディ、ならびにフレームに誤りがないかをどうかをチェックするフレーム検査部(Frame check sequence: FCS)で構成されている。また、複数のMSDUは集約MSDU(A-MSDU: Aggregated MSDU)として集約されることも可能である。
 MAC層の送信フレームのフレームタイプは、装置間の接続状態等を管理するマネージメントフレーム、装置間の通信状態を管理するコントロールフレーム、及び実際の送信データを含むデータフレームの3つに大きく分類され、それぞれは更に複数種類のサブフレームタイプに分類される。コントロールフレームには、受信完了通知(Ack: Acknowledge)フレーム、送信要求(RTS: Request to send)フレーム、受信準備完了(CTS: Clear to send)フレーム等が含まれる。マネージメントフレームには、ビーコン(Beacon)フレーム、プローブ要求(Probe request)フレーム、プローブ応答(Probe response)フレーム、認証(Authentication)フレーム、接続要求(Association request)フレーム、接続応答(Association response)フレーム等が含まれる。データフレームには、データ(Data)フレーム、ポーリング(CF-poll)フレーム等が含まれる。各装置は、MACヘッダに含まれるフレームコントロールフィールドの内容を読み取ることで、受信したフレームのフレームタイプ及びサブフレームタイプを把握することができる。
 なお、Ackには、Block Ackが含まれても良い。Block Ackは、複数のMPDUに対する受信完了通知を実施可能である。
 ビーコンフレームには、ビーコンが送信される周期(Beacon interval)やSSIDを記載するフィールド(Field)が含まれる。基地局装置は、ビーコンフレームを周期的にBSS内に報知することが可能であり、端末装置はビーコンフレームを受信することで、端末装置周辺の基地局装置を把握することが可能である。端末装置が基地局装置より報知されるビーコンフレームに基づいて基地局装置を把握することを受動的スキャニング(Passive scanning)と呼ぶ。一方、端末装置がプローブ要求フレームをBSS内に報知することで、基地局装置を探査することを能動的スキャニング(Active scanning)と呼ぶ。基地局装置は該プローブ要求フレームへの応答としてプローブ応答フレームを送信することが可能であり、該プローブ応答フレームの記載内容は、ビーコンフレームと同等である。
 端末装置は基地局装置を認識した後に、該基地局装置に対して接続処理を行なう。接続処理は認証(Authentication)手続きと接続(Association)手続きに分類される。端末装置は接続を希望する基地局装置に対して、認証フレーム(認証要求)を送信する。基地局装置は、認証フレームを受信すると、該端末装置に対する認証の可否等を示すステータスコードを含んだ認証フレーム(認証応答)を該端末装置に送信する。端末装置は、該認証フレームに記載されたステータスコードを読み取ることで、自装置が該基地局装置に認証を許可されたか否かを判断することができる。なお、基地局装置と端末装置は認証フレームを複数回やり取りすることが可能である。
 端末装置は認証手続きに続いて、基地局装置に対して接続手続きを行なうために、接続要求フレームを送信する。基地局装置は接続要求フレームを受信すると、該端末装置の接続を許可するか否かを判断し、その旨を通知するために、接続応答フレームを送信する。接続応答フレームには、接続処理の可否を示すステータスコードに加えて、端末装置を識別するためのアソシエーション識別番号(AID: Association identifier)が記載されている。基地局装置は接続許可を出した端末装置にそれぞれ異なるAIDを設定することで、複数の端末装置を管理することが可能となる。
 接続処理が行なわれたのち、基地局装置と端末装置は実際のデータ伝送を行なう。IEEE802.11システムでは、分散制御機構(DCF: Distributed Coordination Function)と集中制御機構(PCF: Point Coordination Function)、及びこれらが拡張された機構(拡張分散チャネルアクセス(EDCA: Enhanced distributed channel access)や、ハイブリッド制御機構(HCF: Hybrid coordination function)等)が定義されている。以下では、基地局装置が端末装置にDCFで信号を送信する場合を例にとって説明する。
 DCFでは、基地局装置及び端末装置は、通信に先立ち、自装置周辺の無線チャネルの使用状況を確認するキャリアセンス(CS: Carrier sense)を行なう。例えば、送信局である基地局装置は予め定められたクリアチャネル評価レベル(CCAレベル: Clear channel assessment level)よりも高い信号を該無線チャネルで受信した場合、該無線チャネルでの送信フレームの送信を延期する。以下では、該無線チャネルにおいて、CCAレベル以上の信号が検出される状態をビジー(Busy)状態、CCAレベル以上の信号が検出されない状態をアイドル(Idle)状態と呼ぶ。このように、各装置が実際に受信した信号の電力(受信電力レベル)に基づいて行なうCSを物理キャリアセンス(物理CS)と呼ぶ。なおCCAレベルをキャリアセンスレベル(CS level)、もしくはCCA閾値(CCA threshold: CCAT)とも呼ぶ。なお、基地局装置及び端末装置は、CCAレベル以上の信号を検出した場合は、少なくともPHY層の信号を復調する動作に入る。
 基地局装置は送信する送信フレームに種類に応じたフレーム間隔(IFS: Inter frame space)だけキャリアセンスを行ない、無線チャネルがビジー状態かアイドル状態かを判断する。基地局装置がキャリアセンスする期間は、これから基地局装置が送信する送信フレームのフレームタイプ及びサブフレームタイプによって異なる。IEEE802.11システムでは、期間の異なる複数のIFSが定義されており、最も高い優先度が与えられた送信フレームに用いられる短フレーム間隔(SIFS: Short IFS)、優先度が比較的高い送信フレームに用いられるポーリング用フレーム間隔(PCF IFS: PIFS)、最も優先度の低い送信フレームに用いられる分散制御用フレーム間隔(DCF IFS: DIFS)等がある。基地局装置がDCFでデータフレームを送信する場合、基地局装置はDIFSを用いる。
 基地局装置はDIFSだけ待機した後で、フレームの衝突を防ぐためのランダムバックオフ時間だけ更に待機する。IEEE802.11システムにおいては、コンテンションウィンドウ(CW: Contention window)と呼ばれるランダムバックオフ時間が用いられる。CSMA/CAでは、ある送信局が送信した送信フレームは、他送信局からの干渉が無い状態で受信局に受信されることを前提としている。そのため、送信局同士が同じタイミングで送信フレームを送信してしまうと、フレーム同士が衝突してしまい、受信局は正しく受信することができない。そこで、各送信局が送信開始前に、ランダムに設定される時間だけ待機することで、フレームの衝突が回避される。基地局装置はキャリアセンスによって無線チャネルがアイドル状態であると判断すると、CWのカウントダウンを開始し、CWが0となって初めて送信権を獲得し、端末装置に送信フレームを送信できる。なお、CWのカウントダウン中に基地局装置がキャリアセンスによって無線チャネルをビジー状態と判断した場合は、CWのカウントダウンを停止する。そして、無線チャネルがアイドル状態となった場合、先のIFSに続いて、基地局装置は残留するCWのカウントダウンを再開する。
 受信局である端末装置は、送信フレームを受信し、該送信フレームのPHYヘッダを読み取り、受信した送信フレームを復調する。そして、端末装置は復調した信号のMACヘッダを読み取ることで、該送信フレームが自装置宛てのものか否かを認識することができる。なお、端末装置は、PHYヘッダに記載の情報(例えば、VHT-SIG-Aの記載されるグループ識別番号(GID: Group identifier))に基づいて、該送信フレームの宛先を判断することも可能である。
 端末装置は、受信した送信フレームが自装置宛てのものと判断し、そして誤りなく送信フレームを復調できた場合、フレームを正しく受信できたことを示すACKフレームを送信局である基地局装置に送信しなければならない。ACKフレームは、SIFS期間の待機だけ(ランダムバックオフ時間は取られない)で送信される最も優先度の高い送信フレームの一つである。基地局装置は端末装置から送信されるACKフレームの受信をもって、一連の通信を終了する。なお、端末装置がフレームを正しく受信できなかった場合、端末装置はACKを送信しない。よって基地局装置は、フレーム送信後、一定期間(SIFS+ACKフレーム長)の間、受信局からのACKフレームを受信しなかった場合、通信は失敗したものとして、通信を終了する。このように、IEEE802.11システムの1回の通信(バーストとも呼ぶ)の終了は、ビーコンフレーム等の報知信号の送信の場合や、送信データを分割するフラグメンテーションが用いられる場合等の特別な場合を除き、必ずACKフレームの受信の有無で判断されることになる。
 端末装置は、受信した送信フレームが自装置宛てのものではないと判断した場合、PHYヘッダ等に記載されている該送信フレームの長さ(Length)に基づいて、ネットワークアロケーションベクタ(NAV: Network allocation vector)を設定する。端末装置は、NAVに設定された期間は通信を試行しない。つまり、端末装置は物理CSによって無線チャネルがビジー状態と判断した場合と同じ動作をNAVに設定された期間行なうことになるから、NAVによる通信制御は仮想キャリアセンス(仮想CS)とも呼ばれる。NAVは、PHYヘッダに記載の情報に基づいて設定される場合に加えて、隠れ端末問題を解消するために導入される送信要求(RTS: Request to send)フレームや、受信準備完了(CTS: Clear to send)フレームによっても設定される。
 各装置がキャリアセンスを行ない、自律的に送信権を獲得するDCFに対して、PCFは、ポイントコーディネータ(PC: Point coordinator)と呼ばれる制御局が、BSS内の各装置の送信権を制御する。一般に基地局装置がPCとなり、BSS内の端末装置の送信権を獲得することになる。
 PCFによる通信期間には、非競合期間(CFP: Contention free period)と競合期間(CP: Contention period)が含まれる。CPの間は、前述してきたDCFに基づいて通信が行なわれ、PCが送信権を制御するのはCFPの間となる。PCである基地局装置は、CFPの期間(CFP Max duration)等が記載されたビーコンフレームをPCFの通信に先立ちBSS内に報知する。なお、PCFの送信開始時に報知されるビーコンフレームの送信にはPIFSが用いられ、CWを待たずに送信される。該ビーコンフレームを受信した端末装置は、該ビーコンフレームに記載されたCFPの期間をNAVに設定する。以降、NAVが経過する、もしくはCFPの終了をBSS内に報知する信号(例えば、CF-endを含んだデータフレーム)が受信されるまでは、端末装置はPCより送信される送信権獲得をシグナリングする信号(例えば、CF-pollを含んだデータフレーム)を受信した場合のみ、送信権を獲得可能である。なお、CFPの期間内では、同一BSS内でのパケットの衝突は発生しないから、各端末装置はDCFで用いられるランダムバックオフ時間を取らない。
 AP及びSTAは受信可能なA-MPDUの最大集約数(最大アグリゲーション数、最大A-MPDU長)に関する情報をMaximum A-MPDU Length Exponentsサブフィールドに記載することが可能である。Maximum A-MPDU Length Exponentsサブフィールドに記載される情報は整数値である。該整数値がXの場合、該AP及び該STAは、2^(13+X)-1 octesの長さのA-MPDUを備えたフレームを受信可能である。送信元端末装置であるAP及びSTAは、宛先端末装置であるAP及びSTAが受信可能な最大A-MPDU長を超える長さのA-MPDUを備えたフレームを、宛先端末装置であるAP及びSTAに送信してはならない。
 AP及びSTAは受信可能なA-MSDUの最大集約数(最大A-MSDU長)をMax Number Of MSDUs In A-MSDUサブフィールドや、Maximum A-MSDU Lengthフィールドに記載することが可能である。Max Number Of MSDUs In A-MSDUは集約可能なMSDU数を示す情報である。Maximum A-MSDU Lengthは受信可能なA-MSDU長そのものを示す情報である。送信元端末装置であるAP及びSTAは、宛先端末装置であるAP及びSTAが受信可能な最大A-MSDU長を超える長さのA-MSDUを備えたフレームを、宛先端末装置であるAP及びSTAに送信してはならない。
 なお、以下では、端末装置は基地局装置と同様の機能を備えることができる。また、基地局装置は端末装置と同様の機能を備えることができる。つまり、特に指示の無い限り、基地局装置及び端末装置は同様の機能を備えることができる。
 [1.第1の実施形態]
 図1は、本実施形態に係る無線通信システムの管理範囲3の一例を示した図である。管理範囲3は、基地局装置1と端末装置21及び端末装置22を含んで構成される。以下では、端末装置21及び端末装置22をまとめて端末装置20とも呼称する。図1に示す一例では、管理範囲3は2つの端末装置20を含んでいるが、本実施形態の方法は、管理範囲3が1つ以上の端末装置20を含んでいれば実施可能である。
 基地局装置1及び端末装置20は、送信フレームを無線空間に送信する前に、キャリアセンスによる送信可否判断を実施する。基地局装置1及び端末装置20は、キャリアセンスのためのしきい値であるCCAレベルに関する情報を備える。CCAレベルに関する情報は基地局装置1及び端末装置20のCCAレベルを設定するために用いられることができる。
 端末装置20は、それぞれ異なるCCAレベルを設定することができる。例えば、端末装置21はCL21を、端末装置22はCL22をCCAレベルとして設定することができる。なお、端末装置20は、CCAレベルCL21及びCL22を動的に設定することもできる。例えば、端末装置20は、CCAレベルCL21及びCL22を時間、周波数、送信フレームの宛先及び送信フレームのタイプ(特性、性質、長さ、情報のタイプ等)に応じて変更することができる。
 基地局装置1は、CCAレベルCL1を設定することができる。基地局装置1は、CCAレベルCL1を動的に設定することもできる。例えば、基地局装置1は、CCAレベルCL1を時間、周波数、送信フレームの宛先及び送信フレームのタイプに応じて変更することができる。
 図2は、基地局装置1の装置構成の一例を示した図である。基地局装置1は、上位層部11001と、キャリアセンス部11002と、送信部11003と、受信部11004と、アンテナ部11005と、を含んだ構成である。
 上位層部11001は、他のネットワークと接続され、キャリアセンス部11002に、送信フレームに関連する情報を通知する機能を備える。以下では、送信フレームはMAC層で定義されたものとして説明を行なうが、本実施形態に係る送信フレームは、その他の層で定義されることもできる。例えば、送信フレームは、LLC層、物理層で定義されることもできる。上位層部11001は、送信バースト長を設定する送信バースト長設定部11006を含む。送信バースト長については後述する。
 キャリアセンス部11002は、キャリアセンスに基づき、送信可否判断を実施する機能を有する。キャリアセンス部11002は、上位層部11001に、キャリアセンスに用いるCCAレベルに関する情報を通知することができる。CCAレベルに関する情報は、例えば、キャリアセンス部11002がキャリアセンスに使用したCCAレベル値でも良い。
 送信部11003は、物理層フレーム生成部11003aと、無線送信部11003bとを含む。
 物理層フレーム生成部11003aは、キャリアセンス部11002から通知される送信フレームから、物理層フレームを生成する機能を有する。物理層フレーム生成部11003aは、送信フレームに対して誤り訂正符号化、変調、プレコーディングフィルタ乗算等を施す。物理層フレーム生成部11003aは、生成した物理層フレームを無線送信部11003bに通知する。
 無線送信部11003bは、物理層フレーム生成部11003aが生成する物理層フレームを、無線周波数(RF: Radio Frequency)帯の信号に変換し、無線周波数信号(搬送波信号等)を生成する。無線送信部11003bが行なう処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。
 受信部11004は、無線受信部11004aと、信号復調部11004bと、を含む。
 無線受信部11004aは、アンテナ部11005が受信するRF帯の信号をベースバンド信号に変換し、物理層信号(例えば、物理層フレーム)を生成する機能を有する。無線受信部11004aが行なう処理には、RF帯からベースバンド帯への周波数変換処理、フィルタリング、アナログ・デジタル変換が含まれる。
 信号復調部11004bは、無線受信部11004aが生成する物理層信号を復調する機能を有する。信号復調部11004bが行なう処理には、チャネル等化、デマッピング、誤り訂正復号化等が含まれる。信号復調部11004bは、物理層信号から、例えば、物理層ヘッダが有する情報と、MACヘッダが有する情報と、送信フレームが有する情報とを取り出すことができる。信号復調部11004bは、取り出した情報を上位層部11001に通知することができる。なお、信号復調部11004bは、物理層ヘッダが有する情報と、MACヘッダが有する情報と、送信フレームが有する情報とのいずれか、または複数を取り出しても構わない。
 アンテナ部11005は、無線送信部11003bが生成する無線周波数信号を、無線空間に送信する機能を有する。また、アンテナ部11005は、無線周波数信号を受信する機能を有する。また、アンテナ部11005は、基地局装置1がキャリアセンスを実施する場合に、無線空間に存在する当該チャネルの信号を受信する機能を有する。
 端末装置20の装置構成は、基地局装置1の装置構成と同様の構成を含むため、説明を省略する。
 以下では、特に指示の無い限り端末装置20の特徴を中心に説明を行なうが、基地局装置1も同様の特徴を備える。
 端末装置20は、送信フレームの長さ(送信バースト長とも呼称する)とCCAレベルの関係を規定する機能を備える。例えば、端末装置20は、送信バースト長に基づきCCAレベルを変更することができるし、CCAレベルに基づき送信バースト長を変更する機能を備える。なお、送信バースト長は、アンテナ部11005により無線空間に送信される1または2以上の送信フレームの期間として表現されることもできるし、送信フレームの情報量(情報ビット数、A-MPDU、及びA-MSDU集約数等)として表現されることもできる。
 本発明の一態様によれば、端末装置20は、送信バースト長とCCAレベルを関係づけることで、好適な干渉制御を行なうことができる。例えば、端末装置21が送信を準備している送信フレームの送信バースト長が100μsであることを考える。また、端末装置22が、端末装置21の送信フレームを検出しない場合に(例えば、端末装置21が送信する送信フレームを端末装置22が受信する場合において、端末装置22のCCAレベルに満たない受信強度である場合等)、平均で105μs待機した後、送信を開始することを仮定する。この場合、端末装置21は、端末装置22からの干渉信号の影響を受けることなく、当該送信フレームの送信を完了することができる。一方で、端末装置21の送信フレームの送信バースト長が4000μsであることを考えると、当該送信フレームの送信中に、端末装置22が送信を開始し、送信フレームが衝突する。
 以上の一例より、端末装置20のCCAレベルと、端末装置21の送信バースト長を関係づけることが好適である。
 図3は、端末装置20の動作の一例を示した図である。端末装置21が、平均待機時間(または待機時間であり、平均待機時間及び待機時間は、IFSやバックオフを含んで決定される時間である)を大きく超える送信フレームを送信している場合に、端末装置22がIFS(図3の一例ではDIFS)期間とバックオフ(図3中の平行四辺形それぞれがバックオフを構成するスロットタイムを示す)期間だけ待機した後、信号の送信を開始するため、双方の送信フレームがお互いに干渉となる。
 上記の課題を解決するためには、管理範囲3において設定される送信バースト長の上限に関する情報と、管理範囲3において設定されるCCAレベル(またはCCAレベル設定の上限値、平均値、下限値等)を関係づけることが好適である。
 例えば、管理範囲3のA-MPDU最大集約数が小さい場合にCCAレベル設定の上限値を大きくし、管理範囲3のA-MPDU最大集約数が大きい場合にCCAレベル設定の上限値を小さくすることができる。
 なお、IEEE802.11では、A-MPDU Length Limit情報を含むHT Capabilities Fieldが規定されている。HT Capabilities Fieldは、基地局装置1及び端末装置20がビーコンやマネージメントフレームまたは送信フレームに含むことができる情報領域の一つである。A-MPDU Length Limit情報は、受信できるA-MPDU最大集約数に関する情報を通知することができ、例えば、基地局装置1が、A-MPDU Length Limit情報として、基地局装置1が受信可能なA-MPDU最大集約数が2である情報を含んで送信フレームを送信する場合に、当該送信フレームを受信する端末装置20の送信フレーム構成は、A-MPDU集約数2以下に限定されることができる。つまり、基地局装置1は、管理範囲3のA-MPDU最大集約数に関する情報を、A-MPDU Length Limit情報を用いて設定することができる。
 管理範囲3において設定されるA-MPDU最大集約数に関する情報は、上記に限定されない。例えば、基地局装置1または端末装置20は、1の送信フレームに含まれるMPDU集約数を制限する情報(バースト長制限情報)を管理範囲3に設定することができる。
 また、バースト長制限情報は、上記に限定されない。例えば、バースト長制限情報は、MSDU数を制限する情報や、1の送信フレームに含まれる情報量を制限する情報等でも良い。バースト長制限情報は、送信バースト長を制限する情報であっても良い。また、バースト長制限情報は、NAVに関する情報であっても良い。
 続いて、送信バースト長がMPDU集約数で表現されるものとして、送信バースト長とCCAレベルの関係について説明を行なう。
 送信バースト長とCCAレベルの関係は、例えば、数式Coffset=α×Cbaseで表現されることができる。Coffsetは、基準CCAレベル値(例えば、現行IEEE802.11規格で用いられるCCAレベル値)CbaseからのCCAレベル差分値(CCAオフセット等とも呼称される)であり、αはA-MPDU最大集約数に関する情報に基づき算出される情報である。例えば、αはA-MPDU最大集約数と同一の値であっても良いし、A-MPDU最大集約数に比例定数を乗算した値でも良い。
 図4は、A-MPDU最大集約数とCCAレベルの関係を示すテーブルの一例を示す図である。図4に示す一例では、A-MPDU最大集約数の値に応じて、CCAオフセットが割り当てられているが、CCAレベルであっても良い。また、CCAオフセットやCCAレベルはデシベル値または真値であっても良い。
 このように、端末装置20は、A-MPDU最大集約数に基づき、CCAレベルを変更することができるし、CCAレベルに基づき、A-MPDU最大集約数、または送信フレームが含むA-MPDU数を変更することができる。
 図5は、基地局装置1と端末装置20の動作の一例を示すシーケンスチャートである。まず、基地局装置1は、報知信号を送信する(ステップS101)。なお、報知信号は、マネージメントフレーム、ビーコン、送信フレーム内のPHYヘッダまたはMACヘッダ、Ack、コントロールフレーム等であることができる。続いて、端末装置20は、基地局装置1が送信する報知信号を受信し、送信バースト長制限情報を取得する(ステップS102)。続いて、端末装置20は、CCAレベル変更を行なう(ステップS103)。なお、端末装置20の動作ステップS102及びステップS103の順序は逆であっても良い。つまり、端末装置20は報知信号に含まれるCCAレベルに関する情報を取得し、CCAレベルに関する情報に基づき、送信フレームの送信バースト長を設定することができる。続いて、端末装置20は設定されたCCAレベルにおいてキャリアセンスを実施した後、送信フレームの送信を開始する(ステップS104)。
 端末装置20は、送信バースト長に基づき、CCAレベルを変更することができる。つまり、端末装置20が生成する送信フレームに関する送信バースト長に関する情報に基づき、CCAレベルを変更することができる。例えば、端末装置20は、MPDUを3つ集約した送信フレームを生成した場合にCCAレベルを-72dBmと設定し、次いでMPDUを8つ集約した送信フレームを生成した場合にCCAレベルを-82dBmに設定する等のように、生成した送信フレームの送信バースト長に基づき、CCAレベルを変更することができる。
 また、端末装置20は、CCAレベルの設定に基づき送信バースト長を変更することができる。
 また、端末装置20は、CCAレベルの設定に基づきNAVの設定を変更することができる。つまり、本発明の一態様において、送信バースト長はNAVに関する情報を含むことができる。
 また、端末装置20は、送信フレーム集約の機能情報に基づき、CCAレベルを変更することができる。例えば、送信フレーム集約機能を備える端末装置20のCCAレベルを変更することを禁止し、送信フレーム集約機能を備えていない端末装置20のCCAレベル変更を許可することができる。また、基地局装置1、または端末装置20は、CCAレベル変更の許可または禁止を通知する情報を送信する機能を備える。また、基地局装置1、または端末装置20は、送信フレーム集約の許可または禁止を通知する情報を送信する機能を備える。
 なお、本発明の一態様は、IEEE802.11以外の標準化規格、例えば、LTE(Long Term Evolution)規格においても実施可能である。
 例えば、送信バースト長は、サブフレーム数、システムフレーム数、OFDMシンボル数、部分サブフレーム数(Partial Subframe Number)、Floating Subframe Number、Extended Subframe Number等であっても良い。
 [2.全実施形態共通]
 本発明の一態様に係る基地局装置1、端末装置20で動作するプログラムは、本発明の一態様に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであっても良い。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の一態様の機能が実現される場合もある。
 また、市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明の一態様に含まれる。また、上述した実施形態における基地局装置1、端末装置20の一部、または全部を典型的には集積回路であるLSIとして実現しても良い。基地局装置1、端末装置20の各機能ブロックは個別にチップ化しても良いし、一部、または全部を集積してチップ化しても良い。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の基地局装置1、端末装置20は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器等に適用出来ることは言うまでもない。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も請求の範囲に含まれる。
 本発明は、端末装置、通信方法及び集積回路に用いて好適である。
 なお、本国際出願は、2015年8月19日に出願した日本国特許出願第2015-161561号に基づく優先権を主張するものであり、日本国特許出願第2015-161561号の全内容を本国際出願に援用する。
1 基地局装置
3 管理範囲
20、21、22 端末装置
11001 上位層部
11002 キャリアセンス部
11003 送信部
11003a 物理層フレーム生成部
11003b 無線送信部
11004 受信部
11004a 無線受信部
11004b 信号復調部
11005 アンテナ部
11006 送信バースト長設定部

Claims (9)

  1.  基地局装置と通信を行なう端末装置であって、
     前記端末装置は、フレームを送信する送信部と、
     前記フレームの送信バースト長を変更する送信バースト長設定部と、
     前記フレームの送信に先だってキャリアセンスを行なうキャリアセンス部と、を備え、 
     前記キャリアセンスのしきい値が第1の値に設定される場合と、前記しきい値が第2の値に設定される場合とで、前記送信バースト長が異なる、端末装置。
  2.  前記送信部は、複数の前記フレームを集約する機能を備え、
     前記送信バースト長は、前記フレームの集約数に関連している、請求項1に記載の端末装置。
  3.  前記端末装置は、複数の前記送信バースト長の機能情報を受信する受信部を備え、
     前記送信バースト長は、前記機能情報に基づき与えられる、請求項1に記載の端末装置。
  4.  前記機能情報は、前記フレーム集約の機能情報である、請求項3に記載の端末装置。
  5.  前記送信バースト長は、前記フレームの所要送信時間に関連している、請求項1に記載の端末装置。
  6.  前記送信バースト長は、前記フレームのOFDMシンボルの数に関連している、請求項1に記載の端末装置。
  7.  前記端末装置は、前記送信バースト長の機能情報を受信する受信部を備え、
     前記送信バースト長は、前記機能情報に基づき与えられる、請求項5または6に記載の端末装置。
     
  8.  端末装置に用いられる通信方法であって、
     フレームを送信するステップと、
     前記フレームの送信バースト長を変更するステップと、
     前記フレームの送信に先だってキャリアセンスを行なうステップと、を備え、
     前記キャリアセンスのしきい値が第1の値に設定される場合と、前記しきい値が第2の値に設定される場合とで、前記送信バースト長が異なる、通信方法。


  9.  端末装置に実装される集積回路であって、
     フレームを送信する送信回路と、
     前記フレームの送信バースト長を変更する送信バースト長設定回路と、
     前記フレームの送信に先だってキャリアセンスを行なうキャリアセンス回路と、を備え、
     前記キャリアセンスのしきい値が第1の値に設定される場合と、前記しきい値が第2の値に設定される場合とで、前記送信バースト長が異なる、集積回路。
PCT/JP2016/074098 2015-08-19 2016-08-18 端末装置、通信方法及び集積回路 WO2017030162A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,381 US20190007971A1 (en) 2015-08-19 2016-08-18 Terminal device, communication method, and integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-161561 2015-08-19
JP2015161561A JP2018157237A (ja) 2015-08-19 2015-08-19 端末装置、通信方法及び集積回路

Publications (1)

Publication Number Publication Date
WO2017030162A1 true WO2017030162A1 (ja) 2017-02-23

Family

ID=58052171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074098 WO2017030162A1 (ja) 2015-08-19 2016-08-18 端末装置、通信方法及び集積回路

Country Status (3)

Country Link
US (1) US20190007971A1 (ja)
JP (1) JP2018157237A (ja)
WO (1) WO2017030162A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11166309B2 (en) * 2017-09-26 2021-11-02 Kabushiki Kaisha Toshiba Simultaneous transmit and receive operation in WLANs
KR102457566B1 (ko) * 2018-02-22 2022-10-21 한국전자통신연구원 데이터 패킷의 버스트의 길이에 기초하여 변복조를 수행하는 변복조기 및 상기 복조기가 수행하는 방법
US10757001B2 (en) * 2018-05-22 2020-08-25 Huawei Technologies Co., Ltd. Methods for dynamic sensitivity control in wireless networks
CN111800207B (zh) * 2020-07-08 2021-04-02 温州职业技术学院 一种应用于密集wlan的抗干扰协调系统
US11984985B2 (en) * 2020-08-19 2024-05-14 Samsung Electronics Co., Ltd. Method of performing wireless communication, wireless transmission device and wireless reception device performing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Evaluation results on Coexistence between DL only LAA and DL+UL Wi-Fi", 3GPP TSG-RAN WG1#81 R1-153178, 25 May 2015 (2015-05-25), XP050973779, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1 81/Docs/R1-153178.zip> *
NTT DOCOMO: "Initial evaluation results for co-existence performance of LAA with LBT mechanism", 3GPP TSG-RAN WG1#79 R1-145217, 17 November 2014 (2014-11-17), XP050876231, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/ WG1_RL1/TSGR1_79/Docs/R1-145217.zip> *
NTT DOCOMO: "Views on PHY layer options for LAA DL", 3GPP TSG-RAN WG1#79 R1-145107, 17 November 2014 (2014-11-17), XP050876139, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1_79/Docs/R1-145107.zip> *

Also Published As

Publication number Publication date
JP2018157237A (ja) 2018-10-04
US20190007971A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
JP7216465B2 (ja) 無線送信装置、無線受信装置、通信方法および通信システム
JP7128861B2 (ja) 端末装置および通信方法
WO2016195011A1 (ja) 無線通信装置、通信方法及び集積回路
WO2017030162A1 (ja) 端末装置、通信方法及び集積回路
JP2019041136A (ja) 無線通信装置および端末装置
WO2016195012A1 (ja) 無線通信装置、通信方法および通信システム
JP7079060B2 (ja) 端末装置、基地局装置、通信方法及び通信システム
WO2017082094A1 (ja) 端末装置および通信方法
WO2016195010A1 (ja) 無線通信装置、通信方法及び集積回路
WO2017086009A1 (ja) 無線通信システムおよび基地局装置
WO2016140179A1 (ja) 基地局装置および端末装置
WO2024070605A1 (ja) 端末装置、基地局装置および通信方法
US20230254735A1 (en) Radio communication apparatus and radio communication method
US20230422097A1 (en) Radio communication apparatus and radio communication method
WO2023054153A1 (ja) アクセスポイント装置、及び通信方法
JP2023114921A (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16837151

Country of ref document: EP

Kind code of ref document: A1