JP2023114921A - 通信装置および通信方法 - Google Patents

通信装置および通信方法 Download PDF

Info

Publication number
JP2023114921A
JP2023114921A JP2022017514A JP2022017514A JP2023114921A JP 2023114921 A JP2023114921 A JP 2023114921A JP 2022017514 A JP2022017514 A JP 2022017514A JP 2022017514 A JP2022017514 A JP 2022017514A JP 2023114921 A JP2023114921 A JP 2023114921A
Authority
JP
Japan
Prior art keywords
qos
communication device
information
frame
ack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022017514A
Other languages
English (en)
Inventor
良太 山田
Ryota Yamada
理 中村
Osamu Nakamura
秀夫 難波
Hideo Nanba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2022017514A priority Critical patent/JP2023114921A/ja
Publication of JP2023114921A publication Critical patent/JP2023114921A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】アプリケーションを考慮して下位レイヤを制御する通信装置および通信方法を提供すること。【解決手段】送信部、及び受信部を備え、前記送信部は、設定情報、及びQoS(Quality of Service)パケットを送信し、前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、前記受信部は、前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを受信する。【選択図】図6

Description

本発明は、通信装置および通信方法に関する。
IEEE(The Institute of Electrical and Electronics Engineers Inc.)は、無線LAN(Local Area Network)通信の速度高速化、周波数利用効率化を実現するために無線LAN標準規格であるIEEE802.11の仕様更新に継続して取り組んでいる。近年、無線LANデバイスの急速な普及に伴って、遠隔医療やVR/ARといったリアルタイムアプリケーションとしての利用用途の拡大が見込まれており、IEEE802.11ax標準規格のさらなる低遅延化と通信容量の大容量化を実現するIEEE802.11beの標準化が進められている。また、IEEE802.11beの次世代規格の議論も始まっている。IEEE802.11be、IEEE802.11beの次世代規格については、非特許文献1、非特許文献2に記載されている。
IEEE802.11-18/1231-06、March 2019. IEEE802.11-22/0032-00、January 2022.
IEEE802.11be、又はIEEE802.11beの次世代規格では、高度な要求条件を持つ、様々なアプリケーションがユースケースとして想定されている。このような多様なアプリケーションを実現するためには、物理層やMAC層のような下位レイヤにおいてもアプリケーションを考慮することが重要となる。
本発明はこのような事情を鑑みてなされたものであり、その目的はアプリケーションを考慮して下位レイヤを制御する通信装置および通信方法を提供するものである。
上述した課題を解決するための本発明に係る通信装置および通信方法は、次の通りである。
本発明の一態様に係る通信装置は、送信部、及び受信部を備え、前記送信部は、設定情報、及びQoS(Quality of Service)パケットを送信し、前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、前記受信部は、前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを受信する。
また本発明の一態様に係る通信装置において、前記送信部は、1又は複数のMPDU(MAC Protocol Data Unit)から構成されるA-MPDU(Aggregation MPDU)を送信し、前記受信部は、前記A-MPDUで送信されるビットが正しく受信されたことを示すACKを受信し、前記QoSパケットは1又は複数の前記A-MPDUに含まれる。
また本発明の一態様に係る通信装置において、複数の前記QoSパケットが1つのA-MPDUに含まれる場合、前記複数のQoSパケットの各々に対するQoS ACKを示すQoSブロックACKを受信する。
また本発明の一態様に係る通信装置において、前記複数のQoSパケットが複数のA-MPDUに含まれる場合、前記QoSパケットを全て送信したタイミングから、最初に受信する前記MPDUに対するACKと同じタイミングで前記QoS ACKを受信する。
また本発明の一態様に係る通信装置は、受信部、及び送信部を備え、前記受信部は、設定情報、及びQoS(Quality of Service)パケットを受信し、前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、前記送信部は、前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを送信する。
また本発明の一態様に係る通信装置において、前記受信部は、1又は複数のMPDU(MAC Protocol Data Unit)から構成されるA-MPDU(Aggregation MPDU)を受信し、前記送信部は、前記A-MPDUで送信されるビットが正しく受信されたことを示すACKを送信し、前記QoSパケットは1又は複数の前記A-MPDUに含まれる。
また本発明の一態様に係る通信装置において、複数の前記QoSパケットが1つのA-MPDUに含まれる場合、前記複数のQoSパケットの各々に対するQoS ACKを示すQoSブロックACKを送信する。
また本発明の一態様に係る通信装置において、前記複数のQoSパケットが複数のA-MPDUに含まれる場合、前記QoSパケットを全て送信したタイミングから、最初に受信する前記MPDUに対するACKと同じタイミングで前記QoS ACKを送信する。
また本発明の一態様に係る通信方法は、通信方法であって、送信ステップ、及び受信ステップを備え、前記送信ステップは、設定情報、及びQoS(Quality of Service)パケットを送信し、前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、前記受信ステップは、前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを受信する。
また本発明の一態様に係る通信方法は、受信ステップ、及び送信ステップを備え、前記受信ステップは、設定情報、及びQoS(Quality of Service)パケットを受信し、前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、前記送信ステップは、前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを送信する。
本発明によれば、アプリケーションのことを考慮することで、アプリケーションの実現に効果的に下位レイヤを制御することが可能となる。
本発明の一態様に係る無線リソースの分割例を示す概要図である。 本発明の一態様に係るフレーム構成の一例を示す図である。 本発明の一態様に係るフレーム構成の一例を示す図である。 本発明の一態様に係る通信の一例を示す図である。 本発明の一態様に係る通信システムの一構成例を示す図である。 本発明の一態様に係る無線通信装置の一構成例を示すブロック図である。 本発明の一態様に係る無線通信装置の一構成例を示すブロック図である。
本実施形態における通信システムは、アクセスポイント装置(もしくは、基地局装置とも呼称)、および複数のステーション装置(もしくは、端末装置とも呼称)を備える。また、アクセスポイント装置とステーション装置とで構成される通信システム、ネットワークを基本サービスセット(BSS: Basic service set、管理範囲、セル)と呼ぶ。また、本実施形態に係るステーション装置は、アクセスポイント装置の機能を備えることができる。同様に、本実施形態に係るアクセスポイント装置は、ステーション装置の機能を備えることができる。そのため、以下では、単に通信装置と述べた場合、該通信装置は、ステーション装置とアクセスポイント装置の両方を示すことができる。
BSS内の基地局装置および端末装置は、それぞれCSMA/CA(Carrier sense multiple access with collision avoidance)に基づいて、通信を行なうものとする。本実施形態においては、基地局装置が複数の端末装置と通信を行なうインフラストラクチャモードを対象とするが、本実施形態の方法は、端末装置同士が通信を直接行なうアドホックモードでも実施可能である。アドホックモードでは、端末装置が、基地局装置の代わりとなりBSSを形成する。アドホックモードにおけるBSSを、IBSS(Independent Basic Service Set)とも呼称する。以下では、アドホックモードにおいてIBSSを形成する端末装置を、基地局装置とみなすこともできる。本実施形態の方法は、端末装置同士が通信を直接行なうWiFi Direct(登録商標)でも実施可能である。WiFi Directでは、端末装置が、基地局装置の代わりとなりGroupを形成する。以下では、WiFi DirectにおいてGroupを形成するGroup ownerの端末装置を、基地局装置とみなすこともできる。
IEEE802.11システムでは、各装置は、共通のフレームフォーマットを持った複数のフレームタイプの送信フレームを送信することが可能である。送信フレームは、物理(Physical:PHY)層、媒体アクセス制御(Medium access control:MAC)層、論理リンク制御(LLC: Logical Link Control)層、でそれぞれ定義されている。それぞれ前記物理層はPHYレイヤ、前記MAC層はMACレイヤとも呼称される。
PHYレイヤの送信フレームは、物理プロトコルデータユニット(PPDU: PHY protocol data unit、物理層フレーム)と呼ばれる。PPDUは、物理層での信号処理を行なうためのヘッダ情報等が含まれる物理層ヘッダ(PHYヘッダ)と、物理層で処理されるデータユニットである物理サービスデータユニット(PSDU: PHY service data unit、MACレイヤフレーム)等から構成される。PSDUは無線区間における再送単位となるMACプロトコルデータユニット(MPDU: MAC protocol data unit)が複数集約された集約MPDU(A-MPDU: Aggregated MPDU)で構成されることが可能である。
PHYヘッダには、信号の検出・同期等に用いられるショートトレーニングフィールド(STF: Short training field)、データ復調のためのチャネル情報を取得するために用いられるロングトレーニングフィールド(LTF: Long training field)などの参照信号と、データ復調のための制御情報が含まれているシグナル(Signal:SIG)などの制御信号が含まれる。また、STFは、対応する規格に応じて、レガシーSTF(L-STF: Legacy-STF)や、高スループットSTF(HT-STF: High throughput-STF)や、超高スループットSTF(VHT-STF: Very high throughput-STF)や、高効率STF(HE-STF: High efficiency-STF)や、超高スループットSTF(EHT-STF:Extremely High Throughput-STF)等に分類され、LTFやSIGも同様にL-LTF,HT-LTF,VHT-LTF,HE-LTF,L-SIG,HT-SIG,VHT-SIG,HE-SIG,EHT-SIGに分類される。VHT-SIGは更にVHT-SIG-A1とVHT-SIG-A2とVHT-SIG-Bに分類される。同様に、HE-SIGは、HE-SIG-A1~4と、HE-SIG-Bに分類される。また、同一規格における技術更新を想定し、追加の制御情報が含まれているUniversal SIGNAL(U-SIG)フィールドが含まれることができる。
さらに、PHYヘッダは当該送信フレームの送信元のBSSを識別する情報(以下、BSS識別情報とも呼称する)を含むことができる。BSSを識別する情報は、例えば、当該BSSのSSID(Service Set Identifier)や当該BSSの基地局装置のMACアドレスであることができる。また、BSSを識別する情報は、SSIDやMACアドレス以外の、BSSに固有な値(例えばBSS Color等)であることができる。
PPDUは対応する規格に応じて変調される。例えば、IEEE802.11n規格であれば、直交周波数分割多重(OFDM: Orthogonal frequency division multiplexing)信号に変調される。
MPDUはMACレイヤでの信号処理を行なうためのヘッダ情報等が含まれるMACレイヤヘッダ(MAC header)と、MACレイヤで処理されるデータユニットであるMACサービスデータユニット(MSDU: MAC service data unit)もしくはフレームボディ、ならびにフレームに誤りがないかをどうかをチェックするフレーム検査部(Frame check sequence:FCS)で構成されている。また、複数のMSDUは集約MSDU(A-MSDU: Aggregated MSDU)として集約されることも可能である。
MACレイヤの送信フレームのフレームタイプは、装置間の接続状態などを管理するマネジメントフレーム、装置間の通信状態を管理するコントロールフレーム、および実際の送信データを含むデータフレームの3つに大きく分類され、それぞれは更に複数種類のサブフレームタイプに分類される。コントロールフレームには、受信完了通知(ACK: Acknowledge)フレーム、送信要求(RTS: Request to send)フレーム、受信準備完了(CTS: Clear to send)フレーム等が含まれる。マネジメントフレームには、ビーコン(Beacon)フレーム、プローブ要求(Probe request)フレーム、プローブ応答(Probe response)フレーム、認証(Authentication)フレーム、接続要求(Association request)フレーム、接続応答(Association response)フレーム等が含まれる。データフレームには、データ(Data)フレーム、ポーリング(CF-poll)フレーム等が含まれる。各装置は、MACヘッダに含まれるフレームコントロールフィールドの内容を読み取ることで、受信したフレームのフレームタイプおよびサブフレームタイプを把握することができる。
なお、ACKには、Block ACKが含まれても良い。Block ACKは、複数のMPDUに対する受信完了通知を実施可能である。また、ACKには、複数の通信装置に対する受信完了通知を含むMulti STA Block ACKが含まれても良い。
ビーコンフレームには、ビーコンが送信される周期(Beacon interval)やSSIDを記載するフィールド(Field)が含まれる。基地局装置は、ビーコンフレームを周期的にBSS内に報知することが可能であり、端末装置はビーコンフレームを受信することで、端末装置周辺の基地局装置を把握することが可能である。端末装置が基地局装置より報知されるビーコンフレームに基づいて基地局装置を把握することを受動的スキャニング(Passive scanning)と呼ぶ。一方、端末装置がプローブ要求フレームをBSS内に報知することで、基地局装置を探査することを能動的スキャニング(Active scanning)と呼ぶ。基地局装置は該プローブ要求フレームへの応答としてプローブ応答フレームを送信することが可能であり、該プローブ応答フレームの記載内容は、ビーコンフレームと同等である。
端末装置は基地局装置を認識したあとに、該基地局装置に対して接続処理を行なう。接続処理は認証(Authentication)手続きと接続(Association)手続きに分類される。端末装置は接続を希望する基地局装置に対して、認証フレーム(認証要求)を送信する。基地局装置は、認証フレームを受信すると、該端末装置に対する認証の可否などを示すステータスコードを含んだ認証フレーム(認証応答)を該端末装置に送信する。端末装置は、該認証フレームに記載されたステータスコードを読み取ることで、自装置が該基地局装置に認証を許可されたか否かを判断することができる。なお、基地局装置と端末装置は認証フレームを複数回やり取りすることが可能である。
端末装置は認証手続きに続いて、基地局装置に対して接続手続きを行なうために、接続要求フレームを送信する。基地局装置は接続要求フレームを受信すると、該端末装置の接続を許可するか否かを判断し、その旨を通知するために、接続応答フレームを送信する。接続応答フレームには、接続処理の可否を示すステータスコードに加えて、端末装置を識別するためのアソシエーション識別番号(AID: Association identifier)が記載されている。基地局装置は接続許可を出した端末装置にそれぞれ異なるAIDを設定することで、複数の端末装置を管理することが可能となる。
接続処理が行われたのち、基地局装置と端末装置は実際のデータ伝送を行なう。IEEE802.11システムでは、分散制御機構(DCF: Distributed Coordination Function)と集中制御機構(PCF: Point Coordination Function)、およびこれらが拡張された機構(拡張分散チャネルアクセス(EDCA: Enhanced distributed channel access)や、ハイブリッド制御機構(HCF: Hybrid coordination function)等)が定義されている。以下では、基地局装置が端末装置にDCFで信号を送信する場合を例にとって説明するが、端末装置から基地局装置にDCFで信号を送信する場合も同様である。
DCFでは、基地局装置および端末装置は、通信に先立ち、自装置周辺の無線チャネルの使用状況を確認するキャリアセンス(CS: Carrier sense)を行なう。例えば、送信局である基地局装置は予め定められたクリアチャネル評価レベル(CCAレベル: Clear channel assessment level)よりも高い信号を該無線チャネルで受信した場合、該無線チャネルでの送信フレームの送信を延期する。以下では、該無線チャネルにおいて、CCAレベル以上の信号が検出される状態をビジー(Busy)状態、CCAレベル以上の信号が検出されない状態をアイドル(Idle)状態と呼ぶ。このように、各装置が実際に受信した信号の電力(受信電力レベル)に基づいて行なうCSを物理キャリアセンス(物理CS)と呼ぶ。なおCCAレベルをキャリアセンスレベル(CS level)、もしくはCCA閾値(CCA threshold:CCAT)とも呼ぶ。なお、基地局装置および端末装置は、CCAレベル以上の信号を検出した場合は、少なくともPHYレイヤの信号を復調する動作に入る。
基地局装置は送信する送信フレームに種類に応じたフレーム間隔(IFS: Inter frame space)だけキャリアセンスを行ない、無線チャネルがビジー状態かアイドル状態かを判断する。基地局装置がキャリアセンスする期間は、これから基地局装置が送信する送信フレームのフレームタイプおよびサブフレームタイプによって異なる。IEEE802.11システムでは、期間の異なる複数のIFSが定義されており、最も高い優先度が与えられた送信フレームに用いられる短フレーム間隔(SIFS: Short IFS)、優先度が比較的高い送信フレームに用いられるポーリング用フレーム間隔(PCF IFS: PIFS)、最も優先度の低い送信フレームに用いられる分散制御用フレーム間隔(DCF IFS: DIFS)などがある。基地局装置がDCFでデータフレームを送信する場合、基地局装置はDIFSを用いる。
基地局装置はDIFSだけ待機したあとで、フレームの衝突を防ぐためのランダムバックオフ時間だけ更に待機する。IEEE802.11システムにおいては、コンテンションウィンドウ(CW: Contention window)と呼ばれるランダムバックオフ時間が用いられる。CSMA/CAでは、ある送信局が送信した送信フレームは、他送信局からの干渉が無い状態で受信局に受信されることを前提としている。そのため、送信局同士が同じタイミングで送信フレームを送信してしまうと、フレーム同士が衝突してしまい、受信局は正しく受信することができない。そこで、各送信局が送信開始前に、ランダムに設定される時間だけ待機することで、フレームの衝突が回避される。基地局装置はキャリアセンスによって無線チャネルがアイドル状態であると判断すると、CWのカウントダウンを開始し、CWが0となって初めて送信権を獲得し、端末装置に送信フレームを送信できる。なお、CWのカウントダウン中に基地局装置がキャリアセンスによって無線チャネルをビジー状態と判断した場合は、CWのカウントダウンを停止する。そして、無線チャネルがアイドル状態となった場合、先のIFSに続いて、基地局装置は残留するCWのカウントダウンを再開する。
次に、フレーム受信の詳細について説明する。受信局である端末装置は、送信フレームを受信し、該送信フレームのPHYヘッダを読み取り、受信した送信フレームを復調する。そして、端末装置は復調した信号のMACヘッダを読み取ることで、該送信フレームが自装置宛てのものか否かを認識することができる。なお、端末装置は、PHYヘッダに記載の情報(例えばVHT-SIG-Aの記載されるグループ識別番号(GID: Group identifier, Group ID))に基づいて、該送信フレームの宛先を判断することも可能である。
端末装置は、受信した送信フレームが自装置宛てのものと判断し、そして誤りなく送信フレームを復調できた場合、フレームを正しく受信できたことを示すACKフレームを送信局である基地局装置に送信しなければならない。ACKフレームは、SIFS期間の待機だけ(ランダムバックオフ時間は取られない)で送信される最も優先度の高い送信フレームの一つである。基地局装置は端末装置から送信されるACKフレームの受信をもって、一連の通信を終了する。なお、端末装置がフレームを正しく受信できなかった場合、端末装置はACKを送信しない。よって基地局装置は、フレーム送信後、一定期間(SIFS+ACKフレーム長)の間、受信局からのACKフレームを受信しなかった場合、通信は失敗したものとして、通信を終了する。このように、IEEE802.11システムの1回の通信(バーストとも呼ぶ)の終了は、ビーコンフレームなどの報知信号の送信の場合や、送信データを分割するフラグメンテーションが用いられる場合などの特別な場合を除き、必ずACKフレームの受信の有無で判断されることになる。
端末装置は、受信した送信フレームが自装置宛てのものではないと判断した場合、PHYヘッダ等に記載されている該送信フレームの長さ(Length)に基づいて、ネットワークアロケーションベクタ(NAV: Network allocation vector)を設定する。端末装置は、NAVに設定された期間は通信を試行しない。つまり、端末装置は物理CSによって無線チャネルがビジー状態と判断した場合と同じ動作をNAVに設定された期間行なうことになるから、NAVによる通信制御は仮想キャリアセンス(仮想CS)とも呼ばれる。NAVは、PHYヘッダに記載の情報に基づいて設定される場合に加えて、隠れ端末問題を解消するために導入される送信要求(RTS: Request to send)フレームや、受信準備完了(CTS: Clear to send)フレームによっても設定される。
各装置がキャリアセンスを行ない、自律的に送信権を獲得するDCFに対して、PCFは、ポイントコーディネータ(PC: Point coordinator)と呼ばれる制御局が、BSS内の各装置の送信権を制御する。一般に基地局装置がPCとなり、BSS内の端末装置の送信権を獲得することになる。
PCFによる通信期間には、非期間(CFP: Contention free period)と競合期間(CP: Contention period)が含まれる。CPの間は、前述してきたDCFに基づいて通信が行われ、PCが送信権を制御するのはCFPの間となる。PCである基地局装置は、CFPの期間(CFP Max duration)などが記載されたビーコンフレームをPCFの通信に先立ちBSS内に報知する。なお、PCFの送信開始時に報知されるビーコンフレームの送信にはPIFSが用いられ、CWを待たずに送信される。該ビーコンフレームを受信した端末装置は、該ビーコンフレームに記載されたCFPの期間をNAVに設定する。以降、NAVが経過する、もしくはCFPの終了をBSS内に報知する信号(例えばCF-endを含んだデータフレーム)が受信されるまでは、端末装置はPCより送信される送信権獲得をシグナリングする信号(例えばCF-pollを含んだデータフレーム)を受信した場合のみ、送信権を獲得可能である。なお、CFPの期間内では、同一BSS内でのパケットの衝突は発生しないから、各端末装置はDCFで用いられるランダムバックオフ時間を取らない。
無線媒体は複数のリソースユニット(Resource unit:RU)に分割されることができる。図1は無線媒体の分割状態の1例を示す概要図である。例えば、リソース分割例1では、無線通信装置は無線媒体である周波数リソース(サブキャリア)を9個のRUに分割することができる。同様に、リソース分割例2では、無線通信装置は無線媒体であるサブキャリアを5個のRUに分割することができる。当然ながら、図1に示すリソース分割例はあくまで1例であり、例えば、複数のRUはそれぞれ異なるサブキャリア数によって構成されることも可能である。また、RUとして分割される無線媒体には周波数リソースだけではなく空間リソースも含まれることができる。無線通信装置(例えばAP)は、各RUに異なる端末装置宛てのフレームを配置することで、複数の端末装置(例えば複数のSTA)に同時にフレームを送信することができる。APは、無線媒体の分割の状態を示す情報(Resource allocation information)を、共通制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。更に、APは、各STA宛てのフレームが配置されたRUを示す情報(resource unit assignment information)を、固有制御情報として、自装置が送信するフレームのPHYヘッダに記載することができる。
また、複数の端末装置(例えば複数のSTA)は、それぞれ割り当てられたRUにフレームを配置して送信することで、同時にフレームを送信することができる。複数のSTAは、APから送信されるトリガ情報を含んだフレーム(Trigger frame:TF)を受信した後、所定の期間待機したのち、フレーム送信を行なうことができる。各STAは、該TFに記載の情報に基づいて自装置に割り当てられたRUを把握することができる。また、各STAは、該TFを基準としたランダムアクセスによりRUを獲得することができる。
APは、1つのSTAに複数のRUを同時に割り当てることができる。該複数のRUは、連続するサブキャリアで構成されることも出来るし、不連続のサブキャリアで構成されることも出来る。APは、1つのSTAに割り当てた複数のRUを用いて、1つのフレームを送信することが出来るし、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームの少なくとも1つは、Resource allocation informationを送信する複数の端末装置に対する共通の制御情報を含むフレームであることができる。
1つのSTAは、APより複数のRUを割り当てられることができる。STAは、割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、STAは割り当てられた複数のRUを用いて、複数のフレームをそれぞれ異なるRUに割り当てて送信することができる。該複数のフレームは、それぞれ異なるフレームタイプのフレームであることができる。
APは、1つのSTAに複数のAIDを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれRUを割り当てることができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、それぞれ異なるフレームタイプのフレームであることができる。
1つのSTAは、APより複数のAIDを割り当てられることができる。1つのSTAは割り当てられた複数のAIDに対して、それぞれRUを割り当てられることができる。1つのSTAは、自装置に割り当てられた複数のAIDにそれぞれ割り当てられたRUは、全て自装置に割り当てられたRUと認識し、該割り当てられた複数のRUを用いて、1つのフレームを送信することができる。また、1つのSTAは、該割り当てられた複数のRUを用いて、複数のフレームを送信することができる。このとき、該複数のフレームには、それぞれ割り当てられたRUに関連付けられたAIDを示す情報を記載して送信することができる。APは、1つのSTAに割り当てた複数のAIDに対して、それぞれ割り当てたRUを用いて、それぞれ異なるフレームを送信することができる。該異なるフレームは、異なるフレームタイプのフレームであることができる。
以下では、基地局装置、端末装置を総称して、無線通信装置もしくは通信装置とも呼称する。また、ある無線通信装置が別の無線通信装置と通信を行う際にやりとりされる情報をデータ(data)とも呼称する。つまり、無線通信装置は、基地局装置及び端末装置を含む。
無線通信装置は、PPDUを送信する機能と受信する機能のいずれか、または両方を備える。図2は、無線通信装置が送信するPPDUの構成の一例を示した図である。IEEE802.11a/b/g規格に対応するPPDUはL-STF、L-LTF、L-SIG及びDataフレーム(MAC Frame、MACフレーム、ペイロード、データ部、データ、情報ビット等)を含んだ構成である。IEEE802.11n規格に対応するPPDUはL-STF,L-LTF,L-SIG,HT-SIG,HT-STF,HT-LTF及びDataフレームを含んだ構成である。IEEE802.11ac規格に対応するPPDUはL-STF,L-LTF,L-SIG,VHT-SIG-A,VHT-STF,VHT-LTF,VHT-SIG-B及びMACフレームの一部あるいは全てを含んだ構成である。IEEE802.11ax標準におけるPPDUは、L-STF,L-LTF,L-SIG,L-SIGが時間的に繰り返されたRL-SIG,HE-SIG-A,HE-STF,HE-LTF,HE-SIG-B及びDataフレームの一部あるいは全てを含んだ構成である。IEEE802.11be標準で検討されているPPDUは、L-STF,L-LTF,L-SIG,RL-SIG,U-SIG,EHT-SIG,EHT-STF,EHT-LTF及びDataフレームの一部あるいは全てを含んだ構成である。
図2中の点線で囲まれているL-STF,L-LTF及びL-SIGはIEEE802.11規格において共通に用いられる構成である(以下では、L-STF,L-LTF及びL-SIGをまとめてL-ヘッダとも呼称する)。例えばIEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDU内のL-ヘッダを適切に受信することが可能である。IEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDUを、IEEE802.11a/b/g規格に対応するPPDUとみなして受信することができる。
ただし、IEEE802.11a/b/g規格に対応する無線通信装置はL-ヘッダの後に続く、IEEE802.11n/ac規格に対応するPPDUを復調することができないため、送信アドレス(TA:Transmitter Address)や受信アドレス(RA:Receiver Address)やNAVの設定に用いられるDuration/IDフィールドに関する情報を復調することができない。
IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定する(あるいは所定の期間受信動作を行う)ための方法として、IEEE802.11は、L-SIGにDuration情報を挿入する方法を規定している。L-SIG内の伝送速度に関する情報(RATE field,L-RATE field,L-RATE,L_DATARATE,L_DATARATE field)、伝送期間に関する情報(LENGTH field,L-LENGTH field,L-LENGTH)は、IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定するために使用される。
図3は、L-SIGに挿入されるDuration情報の方法の一例を示す図である。図3においては、一例としてIEEE802.11ac規格に対応するPPDU構成を示しているが、PPDU構成はこれに限定されない。IEEE802.11n規格に対応のPPDU構成及びIEEE802.11ax規格に対応するPPDU構成でも良い。TXTIMEは、PPDUの長さに関する情報を備え、aPreambleLengthは、プリアンブル(L-STF+L-LTF)の長さに関する情報を備え、aPLCPHeaderLengthは、PLCPヘッダ(L-SIG)の長さに関する情報を備える。L_LENGTHは、IEEE802.11規格の互換性をとるために設定される仮想的な期間であるSignal Extension,L_RATEに関連するNops,1シンボル(symbol,OFDM symbol等)の期間に関する情報であるaSymbolLength,PLCP Service fieldが含むビット数を示すaPLCPServiceLength,畳みこみ符号のテールビット数を示すaPLCPConvolutionalTailLengthに基づいて算出される。無線通信装置は、L_LENGTHを算出し、L-SIGに挿入することができる。また、無線通信装置は、L-SIG Durationを算出することができる。L-SIG Durationは、L_LENGTHを含むPPDUと、その応答として宛先の無線通信装置より送信されることが期待されるACKとSIFSの期間を合計した期間に関する情報を示す。
図4は、L-SIG TXOP Protectionにおける、L-SIG Durationの一例を示した図である。DATA(フレーム、ペイロード、データ等)は、MACフレームとPLCPヘッダの一部または両方から構成される。また、BAはBlock ACK、またはACKである。PPDUは、L-STF,L-LTF,L-SIGを含み、さらにDATA,BA,RTSあるいはCTSのいずれかまたはいずれか複数を含んで構成されることができる。図4に示す一例では、RTS/CTSを用いたL-SIG TXOP Protectionを示しているが、CTS-to-Selfを用いても良い。ここで、MAC Durationは、Duration/ID fieldの値によって示される期間である。また、InitiatorはL-SIG TXOP Protection期間の終了を通知するためにCF_Endフレームを送信することができる。
続いて、無線通信装置が受信するフレームからBSSを識別する方法について説明する。無線通信装置が、受信するフレームからBSSを識別するためには、PPDUを送信する無線通信装置が当該PPDUにBSSを識別するための情報(BSS color,BSS識別情報、BSSに固有な値)を挿入することが好適であり、BSS colorを示す情報をHE-SIG-Aに記載することが可能である。
無線通信装置は、L-SIGを複数回送信する(L-SIG Repetition)ことができる。例えば、受信側の無線通信装置は、複数回送信されるL-SIGをMRC(Maximum Ratio Combining)を用いて受信することで、L-SIGの復調精度が向上する。さらに無線通信装置は、MRCによりL-SIGを正しく受信完了した場合に、当該L-SIGを含むPPDUがIEEE802.11ax規格に対応するPPDUであると解釈することができる。
無線通信装置は、PPDUの受信動作中も、当該PPDU以外のPPDUの一部(例えば、IEEE802.11により規定されるプリアンブル、L-STF、L-LTF、PLCPヘッダ等)の受信動作を行うことができる(二重受信動作とも呼称する)。無線通信装置は、PPDUの受信動作中に、当該PPDU以外のPPDUの一部を検出した場合に、宛先アドレスや、送信元アドレスや、PPDUあるいはDATA期間に関する情報の一部または全部を更新することができる。
ACK及びBAは、応答(応答フレーム)とも呼称されることができる。また、プローブ応答や、認証応答、接続応答を応答と呼称することができる。
図5は、本実施形態に係る無線通信システムの一例を示した図である。無線通信システム3-1は、無線通信装置1-1及び無線通信装置2-1~2-3を備えている。なお、無線通信装置1-1を基地局装置1-1とも呼称し、無線通信装置2-1~2-3を端末装置2-1~3とも呼称する。また、無線通信装置2-1~2-3および端末装置2-1~2-3を、無線通信装置1-1に接続されている装置として、無線通信装置2Aおよび端末装置2Aとも呼称する。無線通信装置1-1及び無線通信装置2Aは、無線接続されており、お互いにPPDUの送受信を行うことができる状態にある。また、本実施形態に係る無線通信システムは、無線通信システム3-1の他に無線通信システム3-2を備えてもよい。無線通信システム3-2は、無線通信装置1-2及び無線通信装置2-4~6を備えている。なお、無線通信装置1-2を基地局装置1-2とも呼称し、無線通信装置2-4~6を端末装置2-4~6とも呼称する。また、また、無線通信装置2-4~6および端末装置2-4~6を、無線通信装置1-2に接続されている装置として、無線通信装置2Bおよび端末装置2Bとも呼称する。無線通信システム3-1、無線通信システム3-2は異なるBSSを形成するが、これはESS(Extended Service Set)が異なることを必ずしも意味していない。ESSは、LAN(Local Area Network)を形成するサービスセットを示している。つまり、同じESSに属する無線通信装置は、上位層から同一のネットワークに属しているとみなされることができる。また、BSSはDS(Distribution System)を介して結合されてESSを形成する。なお、無線通信システム3-1、3-2のそれぞれは、さらに複数の無線通信装置を備えることも可能である。
図5において、以下の説明においては、無線通信装置2Aが送信する信号は、無線通信装置1-1および無線通信装置2Bには到達する一方で、無線通信装置1-2には到達しないものとする。つまり、無線通信装置2Aがあるチャネルを使って信号を送信すると、無線通信装置1-1と、無線通信装置2Bは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-2は、当該チャネルをアイドル状態と判断する。また、無線通信装置2Bが送信する信号は、無線送信装置1-2および無線通信装置2Aには到達する一方で、無線通信装置1-1には到達しないものとする。つまり、無線通信装置2Bがあるチャネルを使って信号を送信すると、無線通信装置1-2と、無線通信装置2Aは、当該チャネルをビジー状態と判断する一方で、無線通信装置1-1は、当該チャネルをアイドル状態と判断する。
図6は、無線通信装置1-1、1-2、2A及び2B(以下では、まとめて無線通信装置10-1もしくはステーション装置10-1もしくは単にステーション装置とも呼称)の装置構成の一例を示した図である。無線通信装置10-1は、上位層部(上位層処理ステップ)10001-1と、自律分散制御部(自律分散制御ステップ)10002-1と、送信部(送信ステップ)10003-1と、受信部(受信ステップ)10004-1と、アンテナ部10005-1と、を含んだ構成である。
上位層部10001-1は、他のネットワークと接続され、自律分散制御部10002-1にトラフィックに関する情報を通知することができる。トラフィックに関する情報とは、例えば、ビーコンなどのマネジメントフレームに含まれる制御情報であってもよいし、自無線通信装置宛てに他の無線通信装置が報告する測定情報であってもよい。さらには、宛先を限定せず(自装置宛であってもよいし、他装置宛であってもよいし、ブロードキャスト、マルチキャストでもよい)、マネジメントフレームやコントロールフレームに含まれる制御情報であってもよい。
図7は、自律分散制御部10002-1の装置構成の一例を示した図である。制御部10002-1は、CCA部(CCAステップ)10002a-1と、バックオフ部(バックオフステップ)10002b-1と、送信判断部(送信判断ステップ)10002c-1とを含んだ構成である。
CCA部10002a-1は、受信部10004-1から通知される、無線リソースを介して受信する受信信号電力に関する情報と、受信信号に関する情報(復号後の情報を含む)のいずれか一方、または両方を用いて、当該無線リソースの状態判断(busyまたはidleの判断を含む)を行うことができる。CCA部10002a-1は、当該無線リソースの状態判断情報を、バックオフ部10002b-1及び送信判断部10002c-1に通知することができる。
バックオフ部10002b-1は、無線リソースの状態判断情報を用いて、バックオフを行うことができる。バックオフ部10002b-1は、CWを生成し、カウントダウン機能を有する。例えば、無線リソースの状態判断情報がidleを示す場合に、CWのカウントダウンを実行し、無線リソースの状態判断情報がbusyを示す場合に、CWのカウントダウンを停止することができる。バックオフ部10002b-1は、CWの値を送信判断部10002c-1に通知することができる。
送信判断部10002c-1は、無線リソースの状態判断情報、またはCWの値のいずれか一方、あるいは両方を用いて送信判断を行う。例えば、無線リソースの状態判断情報がidleを示し、CWの値が0の時に送信判断情報を送信部10003-1に通知することができる。また、無線リソースの状態判断情報がidleを示す場合に送信判断情報を送信部10003-1に通知することができる。
送信部10003-1は、物理層フレーム生成部(物理層フレーム生成ステップ)10003a-1と、無線送信部(無線送信ステップ)10003b-1とを含んだ構成である。物理層フレーム生成部10003a-1は、送信判断部10002c-1から通知される送信判断情報に基づき、物理層フレーム(以下、PPDUとも呼称する)を生成する機能を有する。物理層フレーム生成部10003a-1は、上位層から送られる送信フレームに対して誤り訂正符号化、変調、プレコーディングフィルタ乗算等を施す。物理層フレーム生成部10003a-1は、生成した物理層フレームを無線送信部10003b-1に通知する。
物理層フレーム生成部10003a-1が生成するフレームには、制御情報が含まれる。該制御情報には、各無線通信装置宛てのデータが、どのRU(ここでRUには周波数リソースと空間リソースの両方を含む)に配置されているかを示す情報が含まれる。また、物理層フレーム生成部10003a-1が生成するフレームには、宛先端末である無線通信装置にフレーム送信を指示するトリガーフレームが含まれる。該トリガーフレームには、フレーム送信を指示された無線通信装置がフレームを送信する際に用いるRUを示す情報が含まれている。
無線送信部10003b-1は、物理層フレーム生成部10003a-1が生成する物理層フレームを、無線周波数(RF: Radio Frequency)帯の信号に変換し、無線周波数信号を生成する。無線送信部10003b-1が行う処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。
受信部10004-1は、無線受信部(無線受信ステップ)10004a-1と、信号復調部(信号復調ステップ)10004b-1を含んだ構成である。受信部10004-1は、アンテナ部10005-1が受信するRF帯の信号から受信信号電力に関する情報を生成する。受信部10004-1は、受信信号電力に関する情報と、受信信号に関する情報をCCA部10002a-1に通知することができる。
無線受信部10004a-1は、アンテナ部10005-1が受信するRF帯の信号をベースバンド信号に変換し、物理層信号(例えば、物理層フレーム)を生成する機能を有する。無線受信部10004a-1が行う処理には、RF帯からベースバンド帯への周波数変換処理、フィルタリング、アナログ・デジタル変換が含まれる。
信号復調部10004b-1は、無線受信部10004a-1が生成する物理層信号を復調する機能を有する。信号復調部10004b-1が行う処理には、チャネル等化、デマッピング、誤り訂正復号化等が含まれる。信号復調部10004b-1は、物理層信号から、例えば、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報とを取り出すことができる。信号復調部10004b-1は、取り出した情報を上位層部10001-1に通知することができる。なお、信号復調部10004b-1は、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報のいずれか、あるいは全てを取り出すことができる。
アンテナ部10005-1は、無線送信部10003b-1が生成する無線周波数信号を、無線空間に送信する機能を有する。また、アンテナ部10005-1は、無線周波数信号を受信し、無線受信部10004a-1に渡す機能を有する。
無線通信装置10-1は、送信するフレームのPHYヘッダやMACヘッダに、自無線通信装置が無線媒体を利用する期間を示す情報を記載することにより、自無線通信装置周辺の無線通信装置に当該期間だけNAVを設定させることができる。例えば、無線通信装置10-1は送信するフレームのDuration/IDフィールドまたはLengthフィールドに当該期間を示す情報を記載することができる。自無線通信装置周辺の無線通信装置に設定されたNAV期間を、無線通信装置10-1が獲得したTXOP期間(もしくは単にTXOP)と呼ぶこととする。そして、該TXOPを獲得した無線通信装置10-1を、TXOP獲得者(TXOP holder、TXOPホルダー)と呼ぶ。無線通信装置10-1がTXOPを獲得するために送信するフレームのフレームタイプは何かに限定されるものではなく、コントロールフレーム(例えばRTSフレームやCTS-to-selfフレーム)でも良いし、データフレームでも良い。
TXOPホルダーである無線通信装置10-1は、該TXOPの間で、自無線通信装置以外の無線通信装置に対して、フレームを送信することができる。無線通信装置1-1がTXOPホルダーであった場合、該TXOPの期間内で、無線通信装置1-1は無線通信装置2Aに対してフレームを送信することができる。また、無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示することができる。無線通信装置1-1は、該TXOP期間内で、無線通信装置2Aに対して、無線通信装置1-1宛てのフレーム送信を指示する情報を含むトリガーフレームを送信することができる。
無線通信装置1-1は、フレーム送信を行なう可能性のある全通信帯域(例えばOperation bandwidth)に対してTXOPを確保してもよいし、実際にフレームを送信する通信帯域(例えばTransmission bandwidth)等の特定の通信帯域(Band)に対して確保してもよい。
無線通信装置1-1が獲得したTXOPの期間内でフレーム送信の指示を行なう無線通信装置は、必ずしも自無線通信装置に接続されている無線通信装置には限定されない。例えば、無線通信装置は、自無線通信装置の周辺にいる無線通信装置にReassociationフレームなどのマネジメントフレームや、RTS/CTSフレーム等のコントロールフレームを送信させるために、自無線通信装置に接続されていない無線通信装置に、フレームの送信を指示することができる。
さらに、DCFとは異なるデータ伝送方法であるEDCAにおけるTXOPについても説明する。IEEE802.11e規格はEDCAに関わるもので、映像伝送やVoIPなどの各種サービスのためのQoS(Quality of Service)保証の観点からTXOPについて規定されている。サービスは大きくは、VO(VOice),VI(VIdeo),BE(Best Effort),BK(BacK ground)の4つのアクセスカテゴリに分類されている。一般的には、優先度の高い方からVO,VI,BE,BKの順番である。それぞれのアクセスカテゴリでは、CWの最小値CWmin,最大値CWmax,IFSの一種であるAIFS(Arbitration IFS),送信機会の上限値であるTXOP limitのパラメータがあり、優先度の高低差をつけるように値が設定される。例えば、音声伝送を目的とした優先度の一番高いVOのCWmin,CWmax,AIFSは、他のアクセスカテゴリに比較して相対的に小さい値を設定することで、他のアクセスカテゴリに優先したデータ伝送が可能となる。例えば、映像伝送のため送信データ量が比較的大きくなるVIでは、TXOP limitを大きく設定することで、他のアクセスカテゴリよりも送信機会を長くとることが可能となる。このように、各種サービスに応じたQoS保証を目的として、各アクセスカテゴリの4つのパラメータの値が調整される。
以下の実施形態では、無線通信装置1-1(基地局装置1-1)が送信し、無線通信装置2-1(端末装置2-1)が受信する場合を説明するが、本発明はこれに限らず、無線通信装置2-1(端末装置2-1)が送信し、無線通信装置1-1(基地局装置1-1)が受信する場合も含まれる。なお、無線通信装置1-1及び無線通信装置2-1の装置構成は、特に断らない限り、図6、図7を用いて説明した装置構成例と同様である。
本実施形態に係る無線通信装置1-1の上位層部10001-1は、MACレイヤに転送された情報ビット系列から1つのMPDUもしくは2つ以上のMPDUを集約したMACレイヤのペイロードであるA-MPDUを、送信部10003-1へと転送する。また、1つのMPDUはACKを判断する単位とする。
本実施形態に係る無線通信装置1-1の物理層フレーム生成部10003a-1は、まず上位層部10001-1が転送したA-MPDUからPHYレイヤのペイロードであるPSDUを生成する。PSDUはPHYヘッダを付与され、送信フレームのPPDUを生成する。当該PHYヘッダは、同期検出のためのPLCPプリアンブル、受信信号強度に応じて変調符号化方式(Modulation and Coding Scheme)を定めるためのPLCPヘッダ、上位層部10001-1のMACレイヤが通知する制御情報、そして当該制御情報にMPDU長の情報フィールドが付加されている場合に、当該各々の情報フィールドに対応した誤り訂正符号化を施す所定の情報ビット長(符号化ブロック長)の情報フィールドを含む。なお、当該上位層部10001-1のMACレイヤがMPDUのアグリゲーションを設定しない場合、当該PHYヘッダは、当該所定の情報ビット長を情報フィールドに格納してもよい。
アプリケーションの実現のためには、正しく受信されたビットから算出されるビットスループットの向上に加え、アプリケーションの要求条件を満足して受信されたパケット(フレーム、スロット、ブロック、ビット群)から算出されるスループットの向上が重要となる。アプリケーションから要求される条件は様々なものがあるが、送信側と受信側でデータを往復させるために最低限必要なラウンドトリップ時間、平均ビットレート(例えば10秒当たりのビットレート)、瞬時(例えば500ミリ秒当たり)のビットレート、瞬断時間(データが途絶える最大時間)などで規定されてもよい。
アプリケーションとして、一例として、ストリーミング等のリアルタイムで伝送が必要な映像伝送を考慮する。映像データは、一般に複数のパケットに分割されて送信される。映像データを分割した後の1つのパケットをQoSパケット(映像パケット、アプリケーションパケット)とも呼ぶ。QoSパケットは、アプリケーションと関連付けられたパケットである。映像を途切れずに視聴するためには、要求条件を満足してQoSパケットを受信し続けることが要求される。なお、要求条件を満足し受信されたQoSパケットから算出するスループットをQoSスループット(映像スループット、アプリケーションスループット)とも呼ぶ。
映像伝送が要求条件を満足して実施されているか否かを判断可能にするため、送信装置がQoSスループットを把握することが望ましい。以降の説明では、APを送信装置、STAを受信装置として説明するが、本発明はこれに限らず、STAが送信装置でAPが受信装置の場合も本発明に含まれる。APがQoSスループットを算出する場合、STAからQoSスループットに関するACKを用いて算出することができる。なお、STAが要求条件を満足して正しくQoSパケットを受信したことを示すために、APに報告する信号(フレーム、情報)を、QoS ACK(映像ACK、アプリケーションACK)とも呼ぶ。なお、QoS ACKと区別するため、正しくMPDUを受信できたことを示すACKをビットACKとも呼ぶ。
QoSパケットで運ばれるビット数(QoSパケットサイズ)は、瞬時の映像内容、映像データレート、映像パケットの許容遅延時間等によって変化する。そのため、QoSパケットサイズはアプリケーションの種類や映像品質によって大きく変わる可能性がある。
例えば、QoSパケットサイズがA-MPDUサイズと同じか小さい場合、ビットACKを判断するタイミングで、QoS ACKが判断される。この場合、端末装置は、1つのMPDUに対して、ビットACK、及びQoS ACKを送信する。なお、QoS ACKは、複数のQoSパケットに対するQoS ACKであるQoS BA (Block ACK)も含まれる。
QoSパケットサイズがA-MPDUサイズよりも大きい場合、ビットACKを判断するタイミングでQoS ACKは判断できないため、端末装置は、ビットACKとは異なるタイミングでQoS ACKを送信する。例えば、QoSパケットの最後のビットがあるA-MPDUに含まれる場合、端末装置は、QoSパケットを全て受信したタイミングから、直近のビットACK送信タイミングでQoS ACKを送信することができる。
なお、QoS ACKの送信タイミングは、ビットACKの送信タイミングと異なっていても良い。例えば、基地局装置がQoS ACKの送信周期を指示した場合、端末装置は、QoSパケットの受信タイミング関わらず、基地局装置から指示された周期でQoS ACKを送信する。なお、基地局装置から指示されたQoS ACKの送信周期内で複数のQoSパケットが送信される場合、端末装置は、QoS BA又はQoSパケットの誤り率であるQoS BLER(BLock Error Rate)を送信しても良い。
QoS ACKを判断するためには、端末装置はQoSパケットサイズ、及びQoSパケットに含まれるビットの情報が必要になる。QoSパケットサイズは基地局装置から端末装置に制御情報で指示される。QoSパケットに含まれるビットは、基地局装置がA-MPDU内でQoSパケットに該当するビットを端末装置に指示することも可能であるが、情報量削減のため予め決めることも可能である。例えば、QoSパケットはA-MPDUの先頭ビットから始まり、QoSパケットサイズとなるまで連続してA-MPDUで送信される。つまり、端末装置は、QoSパケットの先頭ビットが含まれるA-MPDUとQoSパケットサイズを制御情報として受信し、QoS ACKを判断することができる。なお、基地局装置は、QoSパケットの先頭ビットの位置を指示することも可能である。この場合、QoSパケットの先頭ビットがA-MPDUの何ビット目かを示す情報が基地局装置から端末装置に指示される。
QoS ACKを送信する場合、基地局装置から端末装置に設定情報が送信される。設定情報には、QoS ACK送信周期、及び/又は、QoS情報が含まれる。QoS情報は、QoSが示すビットレート、遅延時間、ジッタの一部又は全部であり、端末装置はQoS情報に含まれる値を満足してQoSパケットを受信した場合、QoS ACKを判断できる。端末装置で上記のQoS情報に含まれる値の達成度を示す複数レベルからなる指標をQoS ACKとして送信してもよい。例えば許容遅延時間に対してどの程度の遅延時間で正しく受信できたか、どの程度のジッタで受信できているか等を示す指標をQoS ACKとして送信してもよい。
QoSスループットを受信側である端末装置が算出する場合、端末装置は、QoSスループット又はQoS BLERを基地局装置に報告する。報告するタイミングは、周期的に報告してもよいし、APからのトリガに基づいて報告しても良い。QoSでラウンドトリップ時間や、瞬時スループットなどの時間単位が設定される場合、このQoSの設定に基づいた報告周期を設定しても良い。例えば、瞬時スループットで10ミリ秒当たりのスループットが規定される場合、報告周期を10ミリ秒としてもよい。
本発明に係る通信装置は、国や地域からの使用許可を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンド(周波数スペクトラム)において通信を行うことができるが、使用可能な周波数バンドはこれに限定されない。本発明に係る通信装置は、例えば、国や地域から特定サービスへの使用許可が与えられているにも関わらず、周波数間の混信を防ぐ等の目的により、実際には使われていないホワイトバンドと呼ばれる周波数バンド(例えば、テレビ放送用として割り当てられたものの、地域によっては使われていない周波数バンド)や、複数の事業者で共用することが見込まれる共用スペクトラム(共用周波数バンド)においても、その効果を発揮することが可能である。
本発明に係る無線通信装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD,MO,MD,CD,BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における通信装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。通信装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
なお、本願発明は上述の実施形態に限定されるものではない。本願発明の無線通信装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
本発明は、通信装置、および通信方法に用いて好適である。
1-1、1-2、2-1~6、2A、2B 無線通信装置
3-1、3-2 管理範囲
10-1 無線通信装置
10001-1 上位層部
10002-1 制御部
10002a-1 CCA部
10002b-1 バックオフ部
10002c-1 送信判断部
10003-1 送信部
10003a-1 物理層フレーム生成部
10003b-1 無線送信部
10004-1 受信部
10004a-1 無線受信部
10004b-1 信号復調部
10005-1 アンテナ部

Claims (10)

  1. 送信部、及び受信部を備え、
    前記送信部は、
    設定情報、及びQoS(Quality of Service)パケットを送信し、
    前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、
    前記受信部は、
    前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを受信する、
    通信装置。
  2. 前記送信部は、1又は複数のMPDU(MAC Protocol Data Unit)から構成されるA-MPDU(Aggregation MPDU)を送信し、
    前記受信部は、前記A-MPDUで送信されるビットが正しく受信されたことを示すACKを受信し、
    前記QoSパケットは1又は複数の前記A-MPDUに含まれる、
    請求項1の通信装置。
  3. 複数の前記QoSパケットが1つのA-MPDUに含まれる場合、
    前記複数のQoSパケットの各々に対するQoS ACKを示すQoSブロックACKを受信する、
    請求項2に記載の通信装置。
  4. 前記複数のQoSパケットが複数のA-MPDUに含まれる場合、
    前記QoSパケットを全て送信したタイミングから、最初に受信する前記MPDUに対するACKと同じタイミングで前記QoS ACKを受信する、
    請求項2に記載の通信装置。
  5. 受信部、及び送信部を備え、
    前記受信部は、
    設定情報、及びQoS(Quality of Service)パケットを受信し、
    前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、
    前記送信部は、
    前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを送信する、
    通信装置。
  6. 前記受信部は、1又は複数のMPDU(MAC Protocol Data Unit)から構成されるA-MPDU(Aggregation MPDU)を受信し、
    前記送信部は、前記A-MPDUで送信されるビットが正しく受信されたことを示すACKを送信し、
    前記QoSパケットは1又は複数の前記A-MPDUに含まれる、
    請求項5の通信装置。
  7. 複数の前記QoSパケットが1つのA-MPDUに含まれる場合、
    前記複数のQoSパケットの各々に対するQoS ACKを示すQoSブロックACKを送信する、
    請求項6に記載の通信装置。
  8. 前記複数のQoSパケットが複数のA-MPDUに含まれる場合、
    前記QoSパケットを全て送信したタイミングから、最初に受信する前記MPDUに対するACKと同じタイミングで前記QoS ACKを送信する、
    請求項6に記載の通信装置。
  9. 通信方法であって、
    送信ステップ、及び受信ステップを備え、
    前記送信ステップは、
    設定情報、及びQoS(Quality of Service)パケットを送信し、
    前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、
    前記受信ステップは、
    前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを受信する、
    通信方法。
  10. 受信ステップ、及び送信ステップを備え、
    前記受信ステップは、
    設定情報、及びQoS(Quality of Service)パケットを受信し、
    前記設定情報は、QoSパケットサイズ、及びQoSパケットが満足すべき要求条件であるQoS情報を含み、
    前記送信ステップは、
    前記QoS情報で示される要求条件を満足して前記QoSパケットを受信したことを示すQoS ACKを送信する、
    通信方法。
JP2022017514A 2022-02-07 2022-02-07 通信装置および通信方法 Pending JP2023114921A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022017514A JP2023114921A (ja) 2022-02-07 2022-02-07 通信装置および通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022017514A JP2023114921A (ja) 2022-02-07 2022-02-07 通信装置および通信方法

Publications (1)

Publication Number Publication Date
JP2023114921A true JP2023114921A (ja) 2023-08-18

Family

ID=87569688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022017514A Pending JP2023114921A (ja) 2022-02-07 2022-02-07 通信装置および通信方法

Country Status (1)

Country Link
JP (1) JP2023114921A (ja)

Similar Documents

Publication Publication Date Title
JP7216465B2 (ja) 無線送信装置、無線受信装置、通信方法および通信システム
JP7128861B2 (ja) 端末装置および通信方法
JP2023099242A (ja) 通信装置、通信方法
WO2017030162A1 (ja) 端末装置、通信方法及び集積回路
JP2023043892A (ja) ステーション装置、通信方法
WO2016140179A1 (ja) 基地局装置および端末装置
US20240040548A1 (en) Wireless communication apparatus and wireless communication system
US20180376350A1 (en) Radio communication system and base station device
JP2023101035A (ja) 通信装置、通信方法
JP2023114921A (ja) 通信装置および通信方法
WO2023152843A1 (ja) 無線通信装置および無線通信方法
WO2023054153A1 (ja) アクセスポイント装置、及び通信方法
US20230254735A1 (en) Radio communication apparatus and radio communication method
JP2023114923A (ja) 通信装置および通信方法
WO2022210090A1 (ja) アクセスポイント装置、ステーション装置および通信方法
US20230389067A1 (en) Radio communication apparatus and radio communication system
WO2022004667A1 (ja) アクセスポイント装置、ステーション装置、及び通信方法
WO2024070605A1 (ja) 端末装置、基地局装置および通信方法
US20230422097A1 (en) Radio communication apparatus and radio communication method
US20240040515A1 (en) Radio terminal apparatus and radio communication method
WO2023033184A1 (ja) 通信装置および通信方法
US20240040509A1 (en) Radio communication apparatus, radio terminal apparatus, and radio communication method
US20240040620A1 (en) Radio communication apparatus, radio terminal apparatus, and radio communication method
US20240129226A1 (en) Access point apparatus, station apparatus, and radio communication system
JP2022152385A (ja) 基地局装置、及び通信方法