WO2016195012A1 - 無線通信装置、通信方法および通信システム - Google Patents

無線通信装置、通信方法および通信システム Download PDF

Info

Publication number
WO2016195012A1
WO2016195012A1 PCT/JP2016/066389 JP2016066389W WO2016195012A1 WO 2016195012 A1 WO2016195012 A1 WO 2016195012A1 JP 2016066389 W JP2016066389 W JP 2016066389W WO 2016195012 A1 WO2016195012 A1 WO 2016195012A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
frame
bss
transmission
Prior art date
Application number
PCT/JP2016/066389
Other languages
English (en)
French (fr)
Inventor
宏道 留場
友樹 吉村
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/579,572 priority Critical patent/US10708957B2/en
Publication of WO2016195012A1 publication Critical patent/WO2016195012A1/ja
Priority to US16/891,836 priority patent/US11096224B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • IEEE 802.11ac which realizes higher speed of IEEE 802.11, which is a wireless local area network (LAN) standard, was established by the IEEE (The Institute of Electrical and Electronics Electronics Inc.).
  • LAN wireless local area network
  • standardization activities for IEEE802.11ax have been started as a successor to IEEE802.11ac.
  • studies are being made on improving throughput per user in an environment where wireless LAN devices are densely arranged.
  • the wireless LAN device monitors a preamble defined in IEEE 802.11, and demodulates a subsequent PLCP (Physical Layer Convergence Protocol) header or data signal when a preamble is detected.
  • preambles defined in IEEE 802.11 include L-STF (Legacy-Short Training Sequence), L-LTF (Legacy-Long Training Sequence), and the like. Operations necessary for data signal demodulation can be performed.
  • the wireless LAN device receives the PLCP header after detecting the preamble.
  • the PLCP header includes information (MCS (Modulation AND Coding Scheme) etc.) necessary for the demodulation of the subsequent data signal.
  • MCS Modulation AND Coding Scheme
  • the PLCP header varies depending on the type of IEEE 802.11 standard, such as HT-SIG (High Throughput-Signal) defined in IEEE802.11n and VHT-SIG (Very High Throughput-Signal) defined in IEEE802.11ac. Is defined.
  • HT-SIG High Throughput-Signal
  • VHT-SIG Very High Throughput-Signal
  • L-SIG Legacy-Signal
  • L-LTF L-LTF as a mechanism for protecting terminal devices (legacy terminal devices) compatible with conventional standards (IEEE802.11a / b / g, etc.). It is common.
  • the L-SIG may include information regarding a signal transmission period of a transmission frame including the L-SIG.
  • the wireless LAN device that has received the L-SIG including information related to the signal transmission period can acquire information for setting a NAV (Network Allocation Vector) without receiving a subsequent data signal.
  • NAV Network Allocation Vector
  • Patent Document 1 and Non-Patent Document 1 it is pointed out that throughput is reduced due to an exposed terminal problem in an overcrowded arrangement environment of wireless LAN devices.
  • the exposed terminal problem refers to a problem in which access to a wireless medium is restricted due to interference in the vicinity of a transmission source wireless LAN device. In this case, even if there is no other wireless LAN device in the vicinity of the transmission destination wireless LAN device, the wireless LAN device is suppressed from transmitting frames and the user throughput is reduced.
  • CSMA / CA it is extremely difficult to avoid a decrease in throughput due to the exposed terminal problem.
  • the present invention has been made in view of the above problems, and an object of the present invention is to alleviate restrictions on access to a wireless medium of a wireless communication apparatus caused by an exposed terminal in order to improve the efficiency of wireless resource utilization of the communication system.
  • a wireless communication device, a communication method, and a communication system that improve user throughput are disclosed.
  • a wireless communication apparatus, a communication method, and a communication system according to the present invention for solving the above-described problems are as follows.
  • the wireless communication device of the present invention is a wireless communication device capable of transmitting and receiving a physical layer frame, receives a frame indicating the start of the medium protection operation, and from the frame indicating the start of the medium protection operation, A receiving unit that acquires BSS identification information for identifying a BSS to which a transmission source wireless communication device of a frame indicating the start of the medium protection operation belongs, and a transmission operation of a frame addressed to an arbitrary wireless communication device based on the BSS identification information And a transmission unit for determining whether to start.
  • the wireless communication device is described in (1) above, and the transmission unit is configured such that the BSS identification information indicates that the frame indicating the start of the medium protection operation is other than the BSS to which the device is connected. In the case of indicating that the transmission is performed by the wireless communication apparatus connected to the BSS, the transmission operation of the frame addressed to the arbitrary wireless communication apparatus is started.
  • the wireless communication device of the present invention is described in (2) above, and the transmission unit secures the medium protection operation by the transmission source wireless communication device of the frame indicating the start of the medium protection operation. In the period in which the frame reception is expected, the start of the transmission operation of the frame addressed to the arbitrary wireless communication apparatus is prohibited.
  • the wireless communication device of the present invention is described in (2) above, and when the frame addressed to the arbitrary wireless communication device is a frame requesting a frame response, If the transmission source wireless communication apparatus of the frame indicating the start of the medium protection operation coincides with a part or the whole of the period during which the medium protection operation is ensured, the arbitrary wireless communication apparatus The start of the transmission operation of the addressed frame is prohibited.
  • the wireless communication device of the present invention is described in (1) above, wherein the BSS identification information is information indicating a destination wireless communication device of a frame indicating the start of the medium protection operation, and the receiving unit Holds a TA address set which is a set of information indicating the transmission source wireless communication device of the frame received in the past, and the transmission unit has information indicating the destination wireless communication device of the frame indicating the start of the medium protection operation. If the TA address set does not exist, the transmission operation of the frame addressed to the arbitrary wireless communication apparatus is started.
  • the wireless communication device of the present invention is described in any one of (1) to (3) above, and the frame indicating the start of the medium protection operation is a CTS-to-self frame.
  • the frame indicating the start of the medium protection operation is an RTS frame described in (4) or (5) above.
  • the communication method of the present invention is a communication method of a wireless communication apparatus capable of transmitting and receiving a physical layer frame, the step of receiving a frame indicating the start of the medium protection operation, and the start of the medium protection operation.
  • a BSS identification information for identifying a BSS to which a transmission source wireless communication device of the frame indicating the start of the medium protection operation belongs, and a frame addressed to an arbitrary wireless communication device based on the BSS identification information. Determining whether or not to start the transmission operation.
  • the communication system of the present invention is a communication system including a first wireless communication device and a second wireless communication device capable of transmitting and receiving a physical layer frame, and the first wireless communication device A transmission section for transmitting a frame indicating the start of the medium protection operation, including BSS identification information for identifying the BSS to which the apparatus belongs, wherein the second wireless communication apparatus receives the frame indicating the start of the medium protection operation; , Receiving a BSS identification information for identifying a BSS to which the first wireless communication device belongs from a frame indicating the start of the medium protection operation, and addressing to an arbitrary wireless communication device based on the BSS identification information And a transmission unit that determines whether or not to start a frame transmission operation.
  • the present invention it is possible to relax restrictions on access to a wireless medium of a wireless communication device caused by other nearby wireless communication devices, which can contribute to improving the throughput of the wireless communication device. .
  • the communication system in the present embodiment includes a wireless transmission device (access point, base station device: “Access” point, base station device) and a plurality of wireless reception devices (station, terminal device: “station”, terminal device).
  • a network composed of base station devices and terminal devices is called a basic service set (BSS: “Basic service set”).
  • BSS Basic service set
  • the base station device and the terminal device are collectively referred to as a wireless communication device or a wireless device.
  • the base station device and the terminal device in the BSS communicate with each other based on CSMA / CA (Carrier sense multiple access with collisions avoidance).
  • the base station apparatus targets an infrastructure mode in which communication is performed with a plurality of terminal apparatuses, but the method of the present embodiment can also be implemented in an ad hoc mode in which terminal apparatuses directly communicate with each other.
  • the terminal device forms a BSS instead of the base station device.
  • the BSS in the ad hoc mode is also called IBSS (Independent Basic Service Set).
  • IBSS Independent Basic Service Set
  • each device can transmit transmission frames of a plurality of frame types having a common frame format.
  • the transmission frame is defined in a physical (Physical: PHY) layer, a medium access control (Medium access control: MAC) layer, and a logical link control (LLC: Logical Link Control) layer.
  • PHY Physical
  • MAC medium access control
  • LLC Logical Link Control
  • the transmission frame of the PHY layer is called a physical protocol data unit (PPDU: “PHY” protocol “data” unit, physical layer frame).
  • the PPDU includes a physical layer header (PHY header) including header information for performing signal processing in the physical layer, and a physical service data unit (PSDU: PHY service data unit, which is a data unit processed in the physical layer, MAC layer frame).
  • the PSDU can be composed of an aggregated MPDU (A-MPDU: Aggregated ⁇ MPDU) in which a plurality of MAC protocol data units (MPDU: MAC protocol data unit) serving as a retransmission unit in a radio section are aggregated.
  • A-MPDU Aggregated ⁇ MPDU
  • MPDU MAC protocol data unit
  • the PHY header includes a short training field (STF: Short training field) used for signal detection and synchronization, a long training field (LTF: Long training field) used for acquiring channel information for data demodulation, etc. And a control signal such as a signal (Signal: SIG) including control information for data demodulation.
  • STF Short training field
  • LTF Long training field
  • SIG Signal-to-Interference Signal
  • the STF is a legacy STF (L-STF: Legacy-STF), a high-throughput STF (HT-STF: High-throughput-STF), or a very high-throughput STF (VHT-STF: Very high-throughput-STF) and high-efficiency STF (HE-STF), and LTF and SIG are similarly L-LTF, HT-LTF, VHT-LTF, HE-LTF, L-SIG , HT-SIG, VHT-SIG, HE-SIG.
  • VHT-SIG is further classified into VHT-SIG-A and VHT-SIG-B.
  • the PHY header can include information for identifying the BSS that is the transmission source of the transmission frame (hereinafter also referred to as BSS identification information).
  • the information for identifying the BSS can be, for example, the SSID (Service Set Identifier) of the BSS or the MAC address of the base station device of the BSS.
  • the information for identifying the BSS can be a value unique to the BSS (for example, BSS color) other than the SSID and the MAC address.
  • the PPDU is modulated according to the corresponding standard.
  • the signal is modulated into an orthogonal frequency division multiplexing (OFDM) signal.
  • OFDM orthogonal frequency division multiplexing
  • the MPDU includes a MAC layer header (MAC header) including header information for performing signal processing in the MAC layer, and a MAC service data unit (MSDU: MAC service data unit) that is a data unit processed in the MAC layer or It consists of a frame body and a frame check unit (Frame check sequence: FCS) that checks whether there is an error in the frame.
  • MAC header MAC layer header
  • MSDU MAC service data unit
  • FCS frame check unit
  • a plurality of MSDUs may be aggregated as an aggregated MSDU (A-MSDU: Aggregated MSDU).
  • the frame type of the transmission frame in the MAC layer is roughly classified into three types: a management frame that manages the connection state between devices, a control frame that manages the communication state between devices, and a data frame that includes actual transmission data. Each is further classified into a plurality of types of subframes.
  • the control frame includes a reception completion notification (Ack: Acknowledge) frame, a transmission request (RTS: Request to send) frame, a reception preparation completion (CTS: Clear to send) frame, and the like.
  • Management frames include beacon frames, probe request frames, probe response frames, authentication frames, authentication frames, connection request frames, connection response frames, etc. included.
  • the data frame includes a data frame, a polling (CF-poll) frame, and the like. Each device can grasp the frame type and subframe type of the received frame by reading the contents of the frame control field included in the MAC header.
  • Block Ack may be included in Ack.
  • Block Ack can perform reception completion notification for a plurality of MPDUs.
  • the beacon frame includes a beacon transmission cycle (Beacon interval) and a field (Field) describing the SSID.
  • the base station apparatus can periodically notify the beacon frame in the BSS, and the terminal apparatus can grasp the base station apparatus around the terminal apparatus by receiving the beacon frame.
  • the terminal device grasping the base station device based on the beacon frame notified from the base station device is called passive scanning.
  • passive scanning when a terminal device broadcasts a probe request frame in the BSS and searches for a base station device is called active scanning.
  • the base station apparatus can transmit a probe response frame as a response to the probe request frame, and the description content of the probe response frame is equivalent to the beacon frame.
  • the terminal device After the terminal device recognizes the base station device, the terminal device performs connection processing on the base station device.
  • the connection process is classified into an authentication procedure and an association procedure.
  • the terminal device transmits an authentication frame (authentication request) to the base station device that desires connection.
  • the base station device When receiving the authentication frame, the base station device transmits an authentication frame (authentication response) including a status code indicating whether or not the terminal device can be authenticated to the terminal device.
  • the terminal device can determine whether or not the own device has been authorized by the base station device by reading the status code written in the authentication frame. Note that the base station device and the terminal device can exchange authentication frames multiple times.
  • the terminal device transmits a connection request frame to perform a connection procedure to the base station device.
  • the base station apparatus determines whether or not to permit the connection of the terminal apparatus, and transmits a connection response frame to notify that effect.
  • an association identification number (AID: “Association” identifier) for identifying the terminal device is described.
  • the base station device can manage a plurality of terminal devices by setting different AIDs for the terminal devices that have given permission for connection.
  • the base station device and the terminal device After the connection process is performed, the base station device and the terminal device perform actual data transmission.
  • a distributed control mechanism DCF: Distributed Coordination Function
  • PCF Point Coordination Function
  • EDCA Enhanced Distributed Channel Access
  • HCF Hybrid coordination function
  • the base station apparatus and the terminal apparatus perform carrier sense (CS: Carrier sense) for confirming the usage status of the radio channel around the device before communication.
  • CS Carrier sense
  • a base station apparatus which is a transmitting station receives a signal higher than a predetermined clear channel evaluation level (CCA level: “Clear” channel “assessment” level) on the radio channel, it transmits a transmission frame on the radio channel put off.
  • CCA level clear channel evaluation level
  • a state in which a signal above the CCA level is detected in the radio channel is referred to as a busy state
  • a state in which a signal above the CCA level is not detected is referred to as an idle state.
  • CS performed based on the power (reception power level) of the signal actually received by each device is called physical carrier sense (physical CS).
  • the CCA level is also called a carrier sense level (CS (level) or a CCA threshold (CCA threshold: CCAT). Note that the base station apparatus and the terminal apparatus enter an operation of demodulating at least a signal of the PHY layer when detecting a signal of the CCA level or higher.
  • the base station apparatus performs carrier sense only for the frame interval (IFS: “Inter frame space”) according to the type of transmission frame to be transmitted, and determines whether the radio channel is busy or idle.
  • the period during which the base station apparatus performs carrier sense differs depending on the frame type and subframe type of the transmission frame transmitted from the base station apparatus.
  • IFS Inter frame space
  • a plurality of IFSs having different periods are defined, and a short frame interval (SIFS: Short IFS) used for a transmission frame having the highest priority is assigned to a transmission frame having a relatively high priority.
  • PCF IFS PIFS
  • DCF IFS dispersion control frame interval
  • the base station apparatus uses DIFS.
  • the base station apparatus After the base station apparatus waits for DIFS, the base station apparatus further waits for a random back-off time to prevent frame collision.
  • a random back-off time In the IEEE 802.11 system, a random back-off time called a contention window (CW: “Contention” window) is used.
  • CW contention window
  • CSMA / CA it is assumed that a transmission frame transmitted by a certain transmitting station is received by a receiving station without interference from other transmitting stations. For this reason, if transmitting stations transmit transmission frames at the same timing, the frames collide with each other, and the receiving station cannot receive them correctly. Thus, frame collisions are avoided by waiting for a randomly set time before each transmitting station starts transmission.
  • the base station apparatus determines that the radio channel is in an idle state by carrier sense, it starts counting down CW, acquires transmission right only when CW becomes 0, and can transmit a transmission frame to the terminal apparatus.
  • the base station apparatus determines that the radio channel is busy by carrier sense during CW countdown, CW countdown is stopped.
  • the base station apparatus restarts the countdown of the remaining CW following the previous IFS.
  • the terminal device that is the receiving station receives the transmission frame, reads the PHY header of the transmission frame, and demodulates the received transmission frame. Then, the terminal device can recognize whether or not the transmission frame is addressed to the own device by reading the MAC header of the demodulated signal. The terminal device determines the destination of the transmission frame based on information described in the PHY header (for example, a group identification number (GID: Group identifier, Group ID) described in VHT-SIG-A). Is also possible.
  • GID Group identifier, Group ID
  • the terminal apparatus determines that the received transmission frame is addressed to itself and demodulates the transmission frame without error, the terminal apparatus transmits an ACK frame indicating that the frame has been received correctly to the base station apparatus that is the transmission station.
  • the ACK frame is one of the transmission frames with the highest priority that is transmitted only during the SIFS period (no random backoff time is taken).
  • the base station device ends a series of communications.
  • the terminal device does not transmit ACK. Therefore, if the base station apparatus does not receive an ACK frame from the receiving station for a certain period (SIFS + ACK frame length) after frame transmission, it assumes that communication has failed and terminates communication.
  • the end of one communication (also called a burst) of the IEEE 802.11 system is a special case such as the transmission of a notification signal such as a beacon frame or the case where fragmentation for dividing transmission data is used. Except for this, the determination is always made based on whether or not an ACK frame is received.
  • the terminal device uses a network allocation vector (NAV: Network allocation) based on the length (Length) of the transmission frame described in the PHY header or the like. vector).
  • NAV Network allocation
  • the terminal device does not attempt communication during the period set in the NAV. That is, since the terminal device performs the same operation as when the radio channel is determined to be busy by the physical CS for a period set in the NAV, the communication control by the NAV is also called virtual carrier sense (virtual CS).
  • the transmission request RTS: Request to send
  • CTS Clear
  • a control station In contrast to DCF in which each device performs carrier sense and autonomously acquires a transmission right, a control station called a point coordinator (PC) controls the transmission right of each device in the BSS.
  • PC point coordinator
  • the base station apparatus becomes a PC and acquires the transmission right of the terminal apparatus in the BSS.
  • the communication period by PCF includes a non-contention period (CFP: “Contention” free period) and a contention period (CP: “Contention period”).
  • CFRP non-contention period
  • CP contention period
  • the base station apparatus which is a PC broadcasts a beacon frame in which a CFP period (CFP Max duration) and the like are described in the BSS prior to PCF communication.
  • PIFS is used to transmit a beacon frame that is notified when PCF transmission starts, and is transmitted without waiting for CW.
  • the terminal device that has received the beacon frame sets the CFP period described in the beacon frame to NAV.
  • the terminal apparatus signals transmission right acquisition transmitted from the PC.
  • the transmission right can be acquired only when a signal to be transmitted (for example, a data frame including CF-poll) is received. Note that, within the CFP period, packet collision does not occur within the same BSS, so each terminal device does not take the random backoff time used in DCF.
  • the base station device and the terminal device are collectively referred to as a wireless communication device.
  • Information exchanged when a certain wireless communication device communicates with another wireless communication device is also referred to as data. That is, the wireless communication device includes a base station device and a terminal device.
  • FIG. 1 is a diagram illustrating an example of a PPDU configuration transmitted by a wireless communication apparatus.
  • the PPDU corresponding to the IEEE 802.11a / b / g standard includes L-STF, L-LTF, L-SIG, and MAC Frame (MAC frame, payload, data portion, data, information bits, etc.).
  • the PPDU corresponding to the IEEE 802.11n standard includes L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, HT-LTF, and MAC frame.
  • PPDUs that comply with the IEEE 802.11ac standard include L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, VHT-SIG-B, and part or all of MAC frames. It is a configuration.
  • L-STF, L-LTF, and L-SIG surrounded by a dotted line in FIG. 1 are configurations commonly used in the IEEE 802.11 standard (hereinafter, L-STF, L-LTF, and L-SIG are referred to as L-STF, L-LTF, and L-SIG).
  • L-header Collectively called L-header). That is, for example, a wireless communication apparatus that supports the IEEE 802.11a / b / g standard can appropriately receive an L-header in a PPDU that supports the IEEE 802.11n / ac standard.
  • a wireless communication apparatus compatible with the IEEE 802.11a / b / g standard can receive a PPDU corresponding to the IEEE 802.11n / ac standard as a PPDU corresponding to the IEEE 802.11a / b / g standard.
  • the wireless communication apparatus corresponding to the IEEE802.11a / b / g standard cannot demodulate the PPDU corresponding to the IEEE802.11n / ac standard following the L-header, the transmission address (TA: Transmitter Address)
  • TA Transmitter Address
  • RA Receiver Address
  • IEEE802.11 inserts Duration information into the L-SIG as a method for a radio communication apparatus compliant with the IEEE802.11a / b / g standard to appropriately set a NAV (or perform a reception operation for a predetermined period). It defines the method.
  • Information on the transmission rate in the L-SIG RATE field, L-RATE field, L-RATE, L_DATARATE, L_DATARATE field
  • information on the transmission period (LENGTH field, L-LENGTH field, L-LENGTH) are IEEE802.11a.
  • a wireless communication device corresponding to the / b / g standard is used to appropriately set the NAV.
  • FIG. 2 is a diagram showing an example of a method of Duration information inserted in the L-SIG.
  • FIG. 2 shows a PPDU configuration corresponding to the IEEE 802.11ac standard as an example, the PPDU configuration is not limited to this.
  • a PPDU configuration corresponding to the IEEE802.11n standard and a PPDU configuration corresponding to the IEEE802.11ax standard may be used.
  • TXTIME includes information related to the length of the PPDU
  • aPreambleLength includes information related to the length of the preamble (L-STF + L-LTF)
  • aPLCPHeaderLength includes information related to the length of the PLCP header (L-SIG).
  • the following equation (1) is a mathematical formula showing an example of a method for calculating L_LENGTH.
  • Signal Extension is a virtual period set for compatibility with the IEEE 802.11 standard
  • Nops indicates information related to L_RATE
  • the relationship between Nops and L_RATE is illustrated in FIG. 10.
  • aSymbolLength is information related to the period of one symbol (symbol, OFDM symbol, etc.)
  • aPLCPServiceLength indicates the number of bits included in the PLCP Service field
  • aPLPCPCvolutionalTailLength indicates the number of tail bits of the convolutional code.
  • the wireless communication apparatus can calculate L_LENGTH using Equation (1) and insert it into L-SIG. Note that the method of calculating L_LENGTH is not limited to equation (1).
  • L_LENGTH can be calculated by the following equation (2).
  • L_LENGTH is calculated by the following formula (3) or the following formula (4).
  • the L-SIG Duration is, for example, a PPDU including L_LENGTH calculated by the formula (3) or the formula (4), and an Ack and SIFS expected to be transmitted from the destination wireless communication apparatus as a response to the PPDU.
  • the information regarding the total period is shown.
  • the wireless communication apparatus calculates L-SIG Duration by the following equation (5) or the following equation (6).
  • Tinit_PPDU indicates information regarding the period of the PPDU including L_LENGTH calculated by Expression (5)
  • TRes_PPDU indicates information regarding the PPDU period of the response expected for the PPDU including L_LENGTH calculated by Expression (5).
  • TMACDur indicates information related to the value of Duration / ID field included in the MAC frame in the PPDU including L_LENGTH calculated by Expression (6).
  • FIG. 3 is a diagram showing an example of L-SIG Duration in L-SIG TXOP Protection.
  • DATA (frame, payload, data, etc.) is composed of a part of or both of a MAC frame and a PLCP header.
  • BA is Block Ack or Ack.
  • the PPDU includes L-STF, L-LTF, and L-SIG, and may further include any one or any of DATA, BA, RTS, and CTS.
  • the example shown in FIG. 3 shows L-SIG TXOP Protection using RTS / CTS, but CTS-to-Self may be used.
  • MAC Duration is a period indicated by the value of Duration / ID field.
  • the initiator can transmit a CF_End frame to notify the end of the L-SIG TXOP protection period.
  • the wireless communication device In order for the wireless communication device to identify the BSS from the received frame, information (BSS color, BSS identification information, a value unique to the BSS) for the wireless communication device that transmits the PPDU to identify the BSS in the PPDU. It is preferable to insert.
  • the BSS identification information may be the SSID of the BSS to which the wireless communication device belongs, the MAC address of the AP of the BSS to which the wireless communication device belongs, or the GID. Further, the BSS identification information may be information configured by a plurality of states (State, Color, color, etc.) autonomously selected by the BSS. The plurality of states can also be set by signaling from a certain wireless communication device or higher layers.
  • the wireless communication apparatus can configure a PPDU by including BSS identification information in L-LTF, HT-LTF, VHT-LTF, or HE-LTF (hereinafter also collectively referred to as LTF).
  • LTF L-LTF
  • the wireless communication apparatus can perform different cyclic shifts on the LTF based on the value of the BSS identification information, and can use different encoding methods on the LTF based on the value of the BSS identification information.
  • the cyclic shift amount is preferably an amount that does not exceed the size of GI (Guard Interval, CP, Cyclic Prefix).
  • the wireless communication device can include BSS identification information in the L-SIG.
  • the wireless communication apparatus can include BSS identification information in L_RATE in L-SIG.
  • L_RATE is composed of 4 information bits, and the transmission rate is mapped to each.
  • FIG. 10 is a diagram showing an example of the correspondence between the index of mapping using 4 information bits and the transmission rate.
  • L_RATE can determine TXTIME or L-SIG Duration by calculating L_LENGTH / L_RATE.
  • L_LENGTH can be calculated using any one of Equation (1) to Equation (4).
  • the values of L_RATE and L_LENGTH can be set in view of the relationship between L_RATE and Nops shown in FIG. . That is, the wireless communication apparatus can select L_RATE from any of the eight transmission rates in FIG. The wireless communication apparatus can set L_RATE based on the value of the BSS identification information.
  • the wireless communication apparatus can perform QPSK (Quadrature Phase Shift Keying) modulation of L-SIG.
  • QPSK Quadrature Phase Shift Keying
  • the IEEE 802.11 standard specifies that L-SIG is BPSK (Binary Phase Shift Keying) modulated, but the wireless communication device is L on the real axis (Real Axis, I-Axis, I axis, real axis).
  • -QPSK modulation can be realized by inserting information bits on the imaginary axis (Imaginary Axis, Q Axis, Q axis, imaginary axis) while mapping SIG.
  • the wireless communication apparatus can insert BSS identification information on the imaginary axis.
  • the L-LTF transmission power is halved with respect to the L-SIG in consideration of backward compatibility with the wireless communication apparatus corresponding to the conventional IEEE802.11 standard. It is preferable to set the L-SIG transmission power to twice that of the L-LTF.
  • the wireless communication device can associate the BSS identification information with the modulation method. For example, associating modulation schemes of symbols (HT-SIG, VHT-SIG-A, HE-SIG-A, HE-SIG-B, HE-STF, HE-LTF, etc.) following L-SIG with information bits Is possible. That is, the radio communication apparatus can modulate the symbol following L-SIG using either BPSK or QBPSK (Quadrature Binary Phase Shift Keying). The radio communication device on the receiving side can measure whether each symbol is biased (distributed) in the real axis or the imaginary axis, and can acquire the corresponding information bit.
  • modulation schemes of symbols H-SIG, VHT-SIG-A, HE-SIG-A, HE-SIG-B, HE-STF, HE-LTF, etc.
  • the information bits (0, 1) can be used.
  • BPSK modulation symbols can be associated with 1 and QBPSK modulation symbols can be associated with 0.
  • the wireless communication apparatus acquires information bits (0, 0) by detecting the modulation scheme of two symbols following L-SIG (auto detection, Auto Detection), the PPDU is IEEE802.11n. It can be interpreted as corresponding to the standard.
  • the wireless communication apparatus acquires the information bit (1, 0) by detecting the modulation scheme of two symbols following the L-SIG (automatic detection, AutoionDetection), the PPDU is IEEE802.11ac. It can be interpreted as corresponding to the standard.
  • the wireless communication apparatus acquires the information bit (1, 1) by detecting (auto detection, Auto Detection) the modulation system of two symbols following L-SIG
  • the PPDU is IEEE802.11a. It can be interpreted that it corresponds to the standard or the IEEE 802.11g standard.
  • the wireless communication device can include BSS identification information in HT-SIG, VHT-SIG, HE-SIG-A, and HE-SIG-B.
  • the wireless communication device can not use information bits (0, 0), (1, 0), (1, 1) for backward compatibility. Further, the wireless communication device can configure information bits using three or more symbols following the L-SIG. That is, the radio communication apparatus can configure information bits using symbols following L-SIG and map the BSS identification information.
  • the wireless communication device can transmit L-SIG multiple times (L-SIG Repetition). For example, the receiving-side radio communication apparatus receives L-SIG transmitted a plurality of times using MRC (Maximum Ratio Combining), thereby improving L-SIG demodulation accuracy. Further, when the L-SIG is correctly received by MRC, the wireless communication apparatus can interpret that the PPDU including the L-SIG is a PPDU corresponding to the IEEE 802.11ax standard.
  • MRC Maximum Ratio Combining
  • the wireless communication device can apply different cyclic shifts to a plurality of L-SIG repeated L-SIGs based on the value of the BSS identification information.
  • the radio communication device on the receiving side can acquire the BSS identification information by estimating the cyclic shift amount.
  • the wireless communication apparatus performs a reception operation of a part of the PPDU other than the PPDU (for example, a preamble, an L-STF, an L-LTF, and a PLCP header defined by IEEE802.11) even during the PPDU reception operation. (Also referred to as a double reception operation).
  • a part of a PPDU other than the PPDU is detected during a PPDU reception operation, the wireless communication apparatus updates a part or all of the information on the destination address, the source address, and the PPDU or DATA period. Can do.
  • Ack and BA can also be called responses (response frames). Further, a probe response, an authentication response, and a connection response can be called a response.
  • FIG. 4 is a diagram illustrating an example of a wireless communication system according to the present embodiment.
  • the wireless communication system 3-1 includes a wireless communication device 1-1 and a wireless communication device 2-1.
  • the wireless communication device 1-1 is also referred to as a base station device 1-1, and the wireless communication device 2-1 is also referred to as a terminal device 2-1.
  • the wireless communication device 1-1 and the wireless communication device 2-1 are wirelessly connected and are in a state where they can transmit and receive PPDUs to each other.
  • the wireless communication system according to the present embodiment includes a wireless communication system 3-2 in addition to the wireless communication system 3-1.
  • the wireless communication system 3-2 includes a wireless communication device 1-2 and a wireless communication device 2-2.
  • the wireless communication device 1-2 is also called a base station device 1-2, and the wireless communication device 2-2 is also called a terminal device 2-2.
  • the wireless communication system 3-1 and the wireless communication system 3-2 form different BSSs, but this does not necessarily mean that the ESS (Extended Service Set) is different.
  • the ESS indicates a service set that forms a LAN (Local Area Network). That is, wireless communication devices belonging to the same ESS can be regarded as belonging to the same network from an upper layer.
  • the wireless communication systems 3-1 and 3-2 may further include a plurality of wireless communication devices.
  • the signal transmitted by the wireless communication device 2-1 reaches the wireless transmission device 1-1 and the wireless communication device 2-2, while the signal transmitted to the wireless communication device 1-2. Shall not reach. That is, when a signal is transmitted using a certain channel, the wireless communication device 1-1 and the wireless communication device 2-2 determine that the channel is busy, while the wireless communication device 1 -2 determines that the channel is in an idle state.
  • the signal transmitted by the wireless communication device 2-2 reaches the wireless transmission device 1-2 and the wireless communication device 2-1, but does not reach the wireless communication device 1-1. That is, when a signal is transmitted using a certain channel, the wireless communication device 1-2 and the wireless communication device 2-1 determine that the channel is busy, while the wireless communication device 1 ⁇ 1 determines that the channel is in an idle state.
  • FIG. 5 is a diagram showing an example of the device configuration of the wireless communication devices 1-1, 2-1, 1-2, and 2-2 (hereinafter collectively referred to as the wireless device 10-1).
  • Radio communication apparatus 10-1 includes upper layer section 100001-1, autonomous distributed control section 10002-1, transmission section 10003-1, reception section 10004-1, and antenna section 10005-1. It is.
  • the upper layer unit 10001-1 is connected to another network and can notify the autonomous distributed control unit 10002-1 of information related to traffic.
  • the information related to traffic may be, for example, information addressed to another wireless communication device, or control information included in a management frame or a control frame.
  • FIG. 6 is a diagram illustrating an example of a device configuration of the autonomous distributed control unit 10002-1.
  • Autonomous distributed control section 10002-1 includes CCA section 10002a-1, backoff section 10002b-1, and transmission judgment section 10002c-1.
  • the CCA unit 10002a-1 uses either one or both of the information related to the received signal power received via the radio resource and the information related to the received signal (including information after decoding) notified from the receiving unit.
  • the wireless resource state can be determined (including busy or idle determination).
  • the CCA unit 10002a-1 can notify the radio resource state determination information to the backoff unit 10002b-1 and the transmission determination unit 10002c-1.
  • the back-off unit 10002b-1 can perform back-off using the state determination information of the radio resource.
  • the back-off unit 10002b-1 generates CW and has a countdown function. For example, CW countdown can be executed when the wireless resource state determination information indicates idle, and CW countdown can be stopped when the wireless resource state determination information indicates busy.
  • the back-off unit 10002b-1 can notify the transmission determination unit 10002c-1 of the CW value.
  • the transmission determination unit 10002c-1 performs transmission determination using either or both of the wireless resource state determination information and / or the CW value. For example, when the wireless resource state determination information indicates idle and the CW value is 0, the transmission determination information can be notified to the transmission unit 10003-1. Further, when the wireless resource state determination information indicates idle, the transmission determination information can be notified to the transmission unit 10003-1.
  • the transmission unit 10003-1 includes a physical layer frame generation unit 10003a-1 and a wireless transmission unit 10003b-1.
  • the physical layer frame generation unit 10003a-1 has a function of generating a physical layer frame (PPDU) based on the transmission determination information notified from the transmission determination unit 10002c-1.
  • the physical layer frame generation unit 10003a-1 performs error correction coding, modulation, precoding filter multiplication, and the like on the transmission frame sent from the upper layer.
  • the physical layer frame generation unit 10003a-1 notifies the generated physical layer frame to the wireless transmission unit 10003b-1.
  • the radio transmission unit 10003b-1 converts the physical layer frame generated by the physical layer frame generation unit 10003a-1 into a signal of a radio frequency (RF: Radio Frequency) band, and generates a radio frequency signal.
  • the processing performed by the wireless transmission unit 10003b-1 includes digital / analog conversion, filtering, frequency conversion from the baseband to the RF band, and the like.
  • the receiving unit 10004-1 includes a radio receiving unit 10004 a-1 and a signal demodulating unit 10004 b-1.
  • Receiving section 10004-1 generates information related to received signal power from the RF band signal received by antenna section 10005-1.
  • Receiving section 10004-1 can notify CCA section 10002a-1 of information on received signal power and information on received signals.
  • the wireless receiving unit 10004a-1 has a function of converting a signal in the RF band received by the antenna unit 10005-1 into a baseband signal and generating a physical layer signal (for example, a physical layer frame).
  • the processing performed by the wireless reception unit 10004a-1 includes frequency conversion processing from the RF band to the baseband, filtering, and analog / digital conversion.
  • the signal demodulator 10004b-1 has a function of demodulating the physical layer signal generated by the radio receiver 10004a-1.
  • the processing performed by the signal demodulator 10004b-1 includes channel equalization, demapping, error correction decoding, and the like.
  • the signal demodulator 10004b-1 can extract, for example, information included in the physical layer header, information included in the MAC header, and information included in the transmission frame from the physical layer signal.
  • the signal demodulation unit 10004b-1 can notify the upper layer unit 100001-1 of the extracted information.
  • the signal demodulator 10004b-1 can extract any or all of information included in the physical layer header, information included in the MAC header, and information included in the transmission frame.
  • the antenna unit 10005-1 has a function of transmitting the radio frequency signal generated by the radio transmission unit 10003 b-1 to the radio device 0-1 in the radio space.
  • the antenna unit 10005-1 has a function of receiving a radio frequency signal transmitted from the radio apparatus 0-1.
  • the wireless communication device 10-1 can insert the BSS identification information into the PPDU and transmit it to the wireless space.
  • the BSS identification information included in the PPDU transmitted by the wireless communication device 1-1 and the wireless communication device 2-1 is different from the BSS identification information transmitted by the wireless communication device 1-2 and the wireless communication device 2-2.
  • the wireless communication device 10-1 configures the same ESS
  • the BSS is obtained by signaling from any of the wireless communication devices 10-1, a wireless communication device other than the wireless communication device 10-1, or an upper layer device. Identification information can also be set.
  • the wireless communication apparatus 10-1 can also autonomously set the BSS identification information.
  • the setting method of BSS identification information is not limited.
  • the wireless communication device 1-1 and the wireless communication device 2-1 belong to the same BSS, it is preferable to use the same BSS identification information.
  • a beacon transmitted by the wireless communication device 1-1 is associated with BSS identification information or BSS identification information.
  • the BSS identification information can be acquired from the beacon transmitted by including the information and received by the wireless communication apparatus 2-1.
  • FIG. 7 is a sequence chart showing an example of communication according to the present embodiment.
  • the operation of the wireless communication apparatus according to the present embodiment will be described with reference to FIGS. 4 and 7.
  • the wireless communication device 2-1 Prior to transmitting the PPDU addressed to the wireless communication device 1-1 (destination wireless communication device), the wireless communication device 2-1 (first wireless communication device or source wireless communication device) transmits a wireless medium ( A medium protection operation (Protection procedure) or a medium reservation operation (Reservation procedure) for securing WM: WMWireless medium is performed (step S701).
  • the medium protection operation or the medium reservation operation is not limited to anything, but the wireless communication apparatus 2-1 has a CTS frame (CTS-to-self, CTS-to-self, Self-CTS) can be transmitted.
  • the wireless communication apparatus 2-1 can write BSS identification information in the CTS frame by the method described above.
  • the wireless communication device 2-1 assumes that the CTS-to-self frame transmitted by itself is received by the wireless communication devices (including the wireless communication device 1-1) in the BSS (step S702a). After transmitting the CTS-to-self frame, the PPDU addressed to the wireless communication apparatus 1-1 is transmitted (step S703).
  • the operation started from step S703 is the same as the normal frame exchange, and thus the description is omitted.
  • the receiving unit 10004-1 of the wireless communication apparatus 2-2 receives the CTS-to-self frame transmitted by the wireless communication apparatus 2-1 that is the transmission source wireless communication apparatus. (Step S702b). Then, the wireless communication device 2-2 acquires BSS identification information based on the CTS-to-self (step S704).
  • the communication apparatus 2-2 sets the NAV based on the Duration information described in the CTS-to-self frame, stops the reception operation, or prohibits the start of the transmission operation.
  • the receiving unit 10004-1 and the transmitting unit 10003-1 of the wireless communication apparatus 2-2 determine the actual operation based on the BSS identification information described in the CTS-to-self (step S705). For example, the receiving unit 10004-1 can determine whether to stop the receiving operation based on the BSS identification information. For example, the transmission unit 10003-1 can determine whether to prohibit the start of the transmission operation based on the BSS identification information. Note that the operation in step S705 can be performed by the upper layer unit 100001-1.
  • the medium protection operation and the medium securing operation include RTS / CTS frame exchange, Dual CTS, L-SIG TXOP protection, and RIFS protection in addition to the transmission of the CTS-to-self frame described above.
  • the frame indicating the start of the medium protection operation includes an RTS frame.
  • the frame indicating the start of the medium protection operation includes a CTS frame or a CTS-to-self frame.
  • the frame indicating the start of the medium protection operation includes a frame including a PLCP header in which Duration information is described by the method described above.
  • the medium protection operation and the medium securing operation include an initiation operation of CFP (Contention-free period) used in PCF and HCF (Hybrid coordination function).
  • the frame indicating the start of the medium protection operation includes a frame (for example, a beacon frame) including information regarding the CFP period.
  • the medium protection operation includes an EDCA TXOP polling operation.
  • the frame indicating the start of the medium protection operation includes a QoS CF-Poll frame or a frame in which the CF-Poll function is combined (for example, QoS Data + CF-Poll frame).
  • the medium protection operation and the medium securing operation include a reservation operation of MCAOP (MCF controlled channel access) opportunity used for MCF (mesh coordination function).
  • MCAOP MCF controlled channel access
  • the frame indicating the start of the medium protection operation includes a frame including the MCCAOP Setup Request element.
  • the CTS-to-self frame is a frame transmitted by a wireless communication device connected to a BSS (OBSS: Overlapping BSS) other than the BSS to which the own device is connected.
  • BSS Overlapping BSS
  • the wireless communication apparatus 2-2 can continue the reception operation. Since the wireless communication device 1-2 in which the wireless communication device 2-2 is connected is in a hidden terminal state as viewed from the wireless transmission device 2-1, the wireless communication device 1-2 is connected to the wireless communication device 2- This is because there is a possibility that the PPDU transmission to the wireless communication apparatus 2-2 may be started regardless of whether or not the medium protection operation 1 is performed.
  • the wireless communication device 2-2 continues the reception operation even after receiving the CTS-to-self frame transmitted by the wireless communication device 2-1, so that the wireless communication device 1-2 is connected to the wireless communication device 2-2.
  • the transmitted PPDU can be received.
  • the wireless communication device 2 -2 When the wireless communication device 2-2 receives the PPDU transmitted by the wireless communication device 1-2 and the PPDU includes a frame requesting a frame reply (for example, an ACK frame reply), the wireless communication device 2 -2 must transmit an ACK frame or a BA frame to the wireless communication apparatus 1-2. However, when the wireless communication device 2-2 transmits an ACK frame during the NAV period calculated based on the Duration value described in the CTS-to-self frame, the ACK frame is transmitted to the wireless communication device 2-1. Will also be received. At this time, the PPDU transmitted by the wireless communication device 1-1 (for example, the ACK frame transmitted from the wireless communication device 1-1, in the WM secured by the CTS-to-self frame by the wireless communication device 2-1).
  • the PPDU transmitted by the wireless communication device 1-1 for example, the ACK frame transmitted from the wireless communication device 1-1, in the WM secured by the CTS-to-self frame by the wireless communication device 2-1.
  • the wireless communication device 2-1 may fail to receive the PPDU transmitted by the wireless communication device 1-1 due to interference caused by the ACK frame transmitted by the wireless communication device 2-2. There is. Therefore, when a reply is required for the PPDU transmitted by the wireless communication device 1-2, the wireless communication device 2-2 performs the wireless communication after the NAV period calculated by the CTS-to-self is over. The device 2-2 can transmit a reply regarding the PPDU to the wireless communication device 1-2.
  • the wireless communication device 2-2 determines that the CTS-to-self frame is a frame transmitted by the wireless communication device connected to the OBSS, the wireless communication device 2-2 The frame transmission operation destined for an arbitrary wireless communication apparatus can be started regardless of the Duration value described in the CTS-to-self.
  • the wireless communication device 2- since the wireless communication device 1-2 in which the wireless communication device 2-2 is connected is in a hidden terminal state as viewed from the wireless transmission device 2-1, the wireless communication device 2- Even if the wireless communication device 2-2 transmits a PPDU to the wireless communication device 1-2 while 1 is transmitting a frame, the wireless communication device 2-1 transmits the PPDU.
  • the PPDU transmitted by the wireless communication apparatus 2-2 can be received without receiving interference caused by the frame.
  • the PPDU transmitted from the wireless communication device 2-2 to the wireless communication device 1-2 is naturally also received by the wireless communication device 2-1.
  • the PPDU (for example, the wireless communication device) transmitted by the wireless communication device 1-1 in the WM secured by the wireless communication device 2-1 using the CTS-to-self frame.
  • ACK frame transmitted from 1-1) the wireless communication device 2-1 was transmitted by the wireless communication device 1-1 due to interference caused by the PPDU transmitted by the wireless communication device 2-2.
  • PPDU reception may fail. Therefore, in the wireless communication device 2-2, the duration (or length) of the PPDU transmitted by the device itself is shorter than the period obtained by subtracting the ACK frame length and the SIFS length from the duration read from the CTS-to-self frame.
  • the radio communication apparatus 2-2 Only in some cases, it can be controlled to transmit a PPDU.
  • the radio communication apparatus 2-2 has a duration (or length) of the PPDU transmitted by itself that is longer than a period obtained by subtracting the ACK frame length and SIFS length from the duration read from the CTS-to-self frame. Prohibits the start of the transmission operation.
  • the wireless communication device 2-2 (or the reception unit 10004-1, transmission unit 10003-1, and upper layer unit 100001-1 included in the wireless communication device 2-2) performs the medium protection operation or the method described above. Based on the information (BSS identification information in the above example) described in the frame indicating the start of the medium securing operation (in the above example, the CTS-to-self frame), the wireless communication apparatus 2-1 that has started the medium protection operation However, it is determined whether it is an exposed terminal device for its own device. Further, the wireless communication device 2-2 starts the medium protection operation based on the information described in the frame indicating the start of the medium protection operation or the medium securing operation. Subsequently, it can be said that the destination wireless communication device (in the above example, the wireless communication device 1-1) indicated by the RA of the frame to be transmitted is determining whether or not it is a hidden terminal device for itself.
  • the destination wireless communication device in the above example, the wireless communication device 1-1) indicated by the RA of the frame to be transmitted is determining whether or not it is
  • the wireless communication device 2-2 performs medium protection of the wireless communication device 1-2 based on information other than the BSS identification information read by the medium protection operation or the medium securing operation of the wireless communication device 1-2.
  • the presence / absence of the reception operation of the device itself or the start of the transmission operation after the operation or the medium securing operation can be determined.
  • the wireless communication device 2-2 can hold the TA address described in the MAC header of the frame of the IEEE 802.11 standard that the device itself received in the past.
  • a set of TA addresses held by the wireless communication apparatus 2-2 is also referred to as a TA address set.
  • the wireless communication device 2-1 can wait for transmission by IFS.
  • the IFS period of the wireless communication device 2-1 can be set by TXTIME or L-SIG Duration included in the L-SIG, LENGTH field included in the PLCP header in the DATA, or other PPDU transmission periods. It can be set using related information, or an already defined IFS period can be set.
  • the wireless communication device 2-1 can be set by TXTIME included in L-SIG or L-SIG Duration by repeating IFS, LENGTH field included in the PLCP header in DATA, or other Transmission can be waited only during the PPDU transmission period, or transmission can be waited by AIFS.
  • the wireless communication apparatus 2-1 can determine that transmission is impossible. Further, when the value of the operation offset is equal to or less than (or smaller than) the threshold set in the wireless communication apparatus 2-1, the wireless communication apparatus 2-1 can determine that transmission is not possible.
  • the wireless communication device 2-1 can estimate the session end time. For example, the wireless communication device 2-1 can calculate the session end time using the Duration information indicated by the Duration / ID field in the PPDU transmitted by the wireless communication device 1-2. The wireless communication apparatus 2-1 can use Duration information as information related to the session end time.
  • the BA transmission period can be a transmission period of a PPDU including BA, a transmission period of a PPDU including Ack, a transmission period of a PPDU including CTS, and an RTS. It can be the transmission period of the included PPDU.
  • the wireless communication device 2-1 can estimate the Ack transmission start time.
  • the Ack transmission start time can be estimated from the DATA Duration and Duration information.

Abstract

さらし端末装置に起因する無線媒体へのアクセル率低下を改善すること。本発明の無線通信装置は、媒体保護動作の開始を示すフレームを受信し、前記媒体保護動作の開始を示すフレームより、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が属するBSSを識別するBSS識別情報を取得する受信部と、前記BSS識別情報に基づいて、自装置が属するBSSに属する他の無線通信装置宛てのフレームの送信動作を開始するか否かを判断する送信部を備える。

Description

無線通信装置、通信方法および通信システム
 本発明は、無線通信装置、通信方法および通信システムに関する。
 無線LAN(Local Area Network)規格であるIEEE802.11のさらなる高速化を実現する、IEEE802.11acがIEEE(The Institute of Electrical and Electronics Engineers Inc.)により策定された。現在、IEEE802.11acの後継規格として、IEEE802.11axの標準化活動が開始されている。無線LANデバイスの急速な普及に伴い、IEEE802.11ax標準化においても、無線LANデバイスの過密配置環境においてユーザあたりのスループット向上の検討が行なわれている。
 無線LANデバイスは、IEEE802.11で定義されているプリアンブル(Preamble)をモニタリングしており、プリアンブルを検出した際に、後に続くPLCP(Physical Layer Convergence Protocol)ヘッダやデータ信号を復調する仕組みである。例えば、IEEE802.11で定義されるプリアンブルには、L-STF(Legacy-Short Training Sequence)、L-LTF(Legacy-Long Training Sequence)等があり、これらのプリアンブルにより同期や伝搬路の推定等、データ信号復調のために必要な動作を実施することができる。
 無線LANデバイスは、プリアンブルの検出を行なった後、PLCPヘッダの受信を行なう。PLCPヘッダには、後に続くデータ信号の復調に必要な情報(MCS(Modulation AND Coding Scheme)等)を含む。PLCPヘッダには、IEEE802.11nにおいて定義されるHT-SIG(High Throughput-Signal)やIEEE802.11acにおいて定義されるVHT-SIG(Very High Throughput-Signal)等、IEEE802.11規格の種類によって異なるものが定義されている。一方で、従来規格(IEEE802.11a/b/g等)対応端末装置(レガシー端末装置)を保護するための仕組みとして、L-SIG(Legacy-Signal)がL-LTFの後に挿入されることが一般的である。
 例えば、L-SIGは、L-SIGを含む送信フレームの信号送信期間に関する情報を含む場合がある。信号送信期間に関する情報を含むL-SIGを受信した無線LANデバイスは、後に続くデータ信号を受信することなく、NAV(Network Allocation Vector)を設定するための情報を取得することが可能となる。
 このように、プリアンブルおよびPLCPヘッダは、データ信号の復調や信号送信期間に関する情報等、様々な情報を含んでいるため、無線LANデバイスはプリアンブルおよびPLCPヘッダを高精度に検出することが求められる。
特表2015-515237号公報
IEEE802.11-15/0588r0 May 2015。
 特許文献1および非特許文献1において、無線LANデバイスの過密配置環境において、さらし端末問題に起因するスループットの低下が指摘されている。さらし端末問題は、送信元の無線LANデバイスの近傍の干渉により、無線媒体へのアクセスが制限されてしまう問題を指す。この場合、たとえ送信先の無線LANデバイスの近傍に他の無線LANデバイスがいなかったとしても、無線LANデバイスはフレームの送信が抑制されてしまい、ユーザスループットが低下してしまう。しかし、CSMA/CAを前提とする無線LANシステムでは、さらし端末問題に起因するスループットの低下を回避することは極めて困難である。
 本発明は以上の課題を鑑みてなされたものであり、その目的は、通信システムの無線リソース利用効率の向上のために、さらし端末に起因する無線通信装置の無線媒体へのアクセス制限を緩和することで、ユーザスループットの改善を実現する、無線通信装置、通信方法および通信システムを開示するものである。
 上述した課題を解決するための本発明に係る無線通信装置、通信方法および通信システムは、次の通りである。
 (1)すなわち、本発明の無線通信装置は、物理層フレームを送受信可能な無線通信装置であって、媒体保護動作の開始を示すフレームを受信し、前記媒体保護動作の開始を示すフレームより、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が属するBSSを識別するBSS識別情報を取得する受信部と、前記BSS識別情報に基づいて、任意の無線通信装置宛てのフレームの送信動作を開始するか否かを判断する送信部と、を備える。
 (2)また、本発明の無線通信装置は、上記(1)に記載され、前記送信部は、前記BSS識別情報が、前記媒体保護動作の開始を示すフレームが、自装置が接続するBSS以外のBSSに接続する無線通信装置により送信されたことを示す場合、前記任意の無線通信装置宛てのフレームの送信動作を開始する。
 (3)また、本発明の無線通信装置は、上記(2)に記載され、前記送信部は、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が、前記媒体保護動作が確保する期間のうち、フレーム受信を期待する期間において、前記任意の無線通信装置宛てのフレームの送信動作の開始を禁止する。
 (4)また、本発明の無線通信装置は、上記(2)に記載され、前記任意の無線通信装置宛てのフレームが、フレーム返信を要求するフレームである場合、前記フレーム返信を期待する期間と、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が、前記媒体保護動作が確保する期間のうち、フレーム送信を行なう期間の一部もしくは全体と一致する場合、前記任意の無線通信装置宛てのフレームの送信動作の開始を禁止する。
 (5)また、本発明の無線通信装置は、上記(1)に記載され、前記BSS識別情報は、前記媒体保護動作の開始を示すフレームの宛先無線通信装置を示す情報であり、前記受信部は、過去に受信したフレームの送信元無線通信装置を示す情報の集合であるTAアドレスセットを保持し、前記送信部は、前記媒体保護動作の開始を示すフレームの宛先無線通信装置を示す情報が、前記TAアドレスセットに存在しない場合、前記任意の無線通信装置宛てのフレームの送信動作を開始する。
 (6)また、本発明の無線通信装置は、上記(1)から上記(3)の何れかに記載され、前記媒体保護動作の開始を示すフレームは、CTS-to-selfフレームである。
 (7)また、本発明の無線通信装置は、上記(4)または上記(5)に記載され、前記媒体保護動作の開始を示すフレームは、RTSフレームである。
 (8)また、本発明の通信方法は、物理層フレームを送受信可能な無線通信装置の通信方法であって、媒体保護動作の開始を示すフレームを受信するステップと、前記媒体保護動作の開始を示すフレームより、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が属するBSSを識別するBSS識別情報を取得するステップと、前記BSS識別情報に基づいて、任意の無線通信装置宛てのフレームの送信動作を開始するか否かを判断するステップと、を備える。
 (9)また、本発明の通信システムは、物理層フレームを送受信可能な第1の無線通信装置と第2の無線通信装置を備える通信システムであって、前記第1の無線通信装置は、自装置が属するBSSを識別するBSS識別情報を含む、媒体保護動作の開始を示すフレームを送信する送信部を備え、前記第2の無線通信装置は、前記媒体保護動作の開始を示すフレームを受信し、前記媒体保護動作の開始を示すフレームより、前記第1の無線通信装置が属するBSSを識別するBSS識別情報を取得する受信部と、前記BSS識別情報に基づいて、任意の無線通信装置宛てのフレームの送信動作を開始するか否かを判断する送信部と、を備える。
 本発明によれば、近傍の他の無線通信装置に起因する、無線通信装置の無線媒体へのアクセス制限を緩和することが可能となるから、無線通信装置のスループットの改善に寄与することができる。
本発明に係るフレーム構成の一例を示す図である。 本発明に係るフレーム構成の一例を示す図である。 本発明に係る通信の一例を示す図である。 本発明に係る通信システムの一構成例を示す図である。 本発明に係る無線通信装置の一構成例を示すブロック図である。 本発明に係る無線通信装置の一構成例を示すブロック図である。 本発明に係る通信の一例を示すシーケンスチャートである。 本発明に係る通信の一例を示す図である。 本発明に係る通信の一例を示す図である。 本発明に係る通信の一例を示すシーケンスチャートである。 本発明に係る通信パラメータの一例を示す図である。 本発明に係る通信の一例を示す図である。
 本実施形態における通信システムは、無線送信装置(アクセスポイント、基地局装置: Access point、基地局装置)、および複数の無線受信装置(ステーション、端末装置: station、端末装置)を備える。また、基地局装置と端末装置とで構成されるネットワークを基本サービスセット(BSS: Basic service set、管理範囲)と呼ぶ。また、基地局装置と、端末装置をまとめて、無線通信装置もしくは無線装置とも呼称する。
 BSS内の基地局装置および端末装置は、それぞれCSMA/CA(Carrier sense multiple access with collision avoidance)に基づいて、通信を行なうものとする。本実施形態においては、基地局装置が複数の端末装置と通信を行なうインフラストラクチャモードを対象とするが、本実施形態の方法は、端末装置同士が通信を直接行なうアドホックモードでも実施可能である。アドホックモードでは、端末装置が、基地局装置の代わりとなりBSSを形成する。アドホックモードにおけるBSSを、IBSS(Independent Basic Service Set)とも呼称する。以下では、アドホックモードにおいてIBSSを形成する端末装置を、基地局装置とみなすこともできる。
 IEEE802.11システムでは、各装置は、共通のフレームフォーマットを持った複数のフレームタイプの送信フレームを送信することが可能である。送信フレームは、物理(Physical: PHY)層、媒体アクセス制御(Medium access control: MAC)層、論理リンク制御(LLC: Logical Link Control)層、でそれぞれ定義されている。
 PHY層の送信フレームは、物理プロトコルデータユニット(PPDU: PHY protocol data unit、物理層フレーム)と呼ばれる。PPDUは、物理層での信号処理を行なうためのヘッダ情報等が含まれる物理層ヘッダ(PHYヘッダ)と、物理層で処理されるデータユニットである物理サービスデータユニット(PSDU: PHY service data unit、MAC層フレーム)等から構成される。PSDUは無線区間における再送単位となるMACプロトコルデータユニット(MPDU: MAC protocol data unit)が複数集約された集約MPDU(A-MPDU: Aggregated MPDU)で構成されることが可能である。
 PHYヘッダには、信号の検出・同期等に用いられるショートトレーニングフィールド(STF: Short training field)、データ復調のためのチャネル情報を取得するために用いられるロングトレーニングフィールド(LTF: Long training field)などの参照信号と、データ復調のための制御情報が含まれているシグナル(Signal: SIG)などの制御信号が含まれる。また、STFは、対応する規格に応じて、レガシーSTF(L-STF: Legacy-STF)や、高スループットSTF(HT-STF: High throughput-STF)や、超高スループットSTF(VHT-STF: Very high throughput-STF)や、高効率STF(HE-STF: High efficiency-STF)等に分類され、LTFやSIGも同様にL-LTF、HT-LTF、VHT-LTF、HE-LTF、L-SIG、HT-SIG、VHT-SIG、HE-SIGに分類される。VHT-SIGは更にVHT-SIG-AとVHT-SIG-Bに分類される。
 さらに、PHYヘッダは当該送信フレームの送信元のBSSを識別する情報(以下、BSS識別情報とも呼称する)を含むことができる。BSSを識別する情報は、例えば、当該BSSのSSID(Service Set Identifier)や当該BSSの基地局装置のMACアドレスであることができる。また、BSSを識別する情報は、SSIDやMACアドレス以外の、BSSに固有な値(例えば、BSS Color等)であることができる。
 PPDUは対応する規格に応じて変調される。例えば、IEEE802.11n規格であれば、直交周波数分割多重(OFDM: Orthogonal frequency division multiplexing)信号に変調される。
 MPDUはMAC層での信号処理を行なうためのヘッダ情報等が含まれるMAC層ヘッダ(MAC header)と、MAC層で処理されるデータユニットであるMACサービスデータユニット(MSDU: MAC service data unit)もしくはフレームボディ、ならびにフレームに誤りがないかをどうかをチェックするフレーム検査部(Frame check sequence: FCS)で構成されている。また、複数のMSDUは集約MSDU(A-MSDU: Aggregated MSDU)として集約されることも可能である。
 MAC層の送信フレームのフレームタイプは、装置間の接続状態などを管理するマネージメントフレーム、装置間の通信状態を管理するコントロールフレーム、および実際の送信データを含むデータフレームの3つに大きく分類され、それぞれは更に複数種類のサブフレームタイプに分類される。コントロールフレームには、受信完了通知(Ack: Acknowledge)フレーム、送信要求(RTS: Request to send)フレーム、受信準備完了(CTS: Clear to send)フレーム等が含まれる。マネージメントフレームには、ビーコン(Beacon)フレーム、プローブ要求(Probe request)フレーム、プローブ応答(Probe response)フレーム、認証(Authentication)フレーム、接続要求(Association request)フレーム、接続応答(Association response)フレーム等が含まれる。データフレームには、データ(Data)フレーム、ポーリング(CF-poll)フレーム等が含まれる。各装置は、MACヘッダに含まれるフレームコントロールフィールドの内容を読み取ることで、受信したフレームのフレームタイプおよびサブフレームタイプを把握することができる。
 なお、Ackには、Block Ackが含まれても良い。Block Ackは、複数のMPDUに対する受信完了通知を実施可能である。
 ビーコンフレームには、ビーコンが送信される周期(Beacon interval)やSSIDを記載するフィールド(Field)が含まれる。基地局装置は、ビーコンフレームを周期的にBSS内に報知することが可能であり、端末装置はビーコンフレームを受信することで、端末装置周辺の基地局装置を把握することが可能である。端末装置が基地局装置より報知されるビーコンフレームに基づいて基地局装置を把握することを受動的スキャニング(Passive scanning)と呼ぶ。一方、端末装置がプローブ要求フレームをBSS内に報知することで、基地局装置を探査することを能動的スキャニング(Active scanning)と呼ぶ。基地局装置は該プローブ要求フレームへの応答としてプローブ応答フレームを送信することが可能であり、該プローブ応答フレームの記載内容は、ビーコンフレームと同等である。
 端末装置は基地局装置を認識したあとに、該基地局装置に対して接続処理を行なう。接続処理は認証(Authentication)手続きと接続(Association)手続きに分類される。端末装置は接続を希望する基地局装置に対して、認証フレーム(認証要求)を送信する。基地局装置は、認証フレームを受信すると、該端末装置に対する認証の可否などを示すステータスコードを含んだ認証フレーム(認証応答)を該端末装置に送信する。端末装置は、該認証フレームに記載されたステータスコードを読み取ることで、自装置が該基地局装置に認証を許可されたか否かを判断することができる。なお、基地局装置と端末装置は認証フレームを複数回やり取りすることが可能である。
 端末装置は認証手続きに続いて、基地局装置に対して接続手続きを行なうために、接続要求フレームを送信する。基地局装置は接続要求フレームを受信すると、該端末装置の接続を許可するか否かを判断し、その旨を通知するために、接続応答フレームを送信する。接続応答フレームには、接続処理の可否を示すステータスコードに加えて、端末装置を識別するためのアソシエーション識別番号(AID: Association identifier)が記載されている。基地局装置は接続許可を出した端末装置にそれぞれ異なるAIDを設定することで、複数の端末装置を管理することが可能となる。
 接続処理が行なわれたのち、基地局装置と端末装置は実際のデータ伝送を行なう。IEEE802.11システムでは、分散制御機構(DCF: Distributed Coordination Function)と集中制御機構(PCF: Point Coordination Function)、およびこれらが拡張された機構(拡張分散チャネルアクセス(EDCA: Enhanced distributed channel access)や、ハイブリッド制御機構(HCF: Hybrid coordination function)等)が定義されている。以下では、基地局装置が端末装置にDCFで信号を送信する場合を例にとって説明する。
 DCFでは、基地局装置および端末装置は、通信に先立ち、自装置周辺の無線チャネルの使用状況を確認するキャリアセンス(CS: Carrier sense)を行なう。例えば、送信局である基地局装置は予め定められたクリアチャネル評価レベル(CCAレベル: Clear channel assessment level)よりも高い信号を該無線チャネルで受信した場合、該無線チャネルでの送信フレームの送信を延期する。以下では、該無線チャネルにおいて、CCAレベル以上の信号が検出される状態をビジー(Busy)状態、CCAレベル以上の信号が検出されない状態をアイドル(Idle)状態と呼ぶ。このように、各装置が実際に受信した信号の電力(受信電力レベル)に基づいて行なうCSを物理キャリアセンス(物理CS)と呼ぶ。なおCCAレベルをキャリアセンスレベル(CS level)、もしくはCCA閾値(CCA threshold: CCAT)とも呼ぶ。なお、基地局装置および端末装置は、CCAレベル以上の信号を検出した場合は、少なくともPHY層の信号を復調する動作に入る。
 基地局装置は送信する送信フレームに種類に応じたフレーム間隔(IFS: Inter frame space)だけキャリアセンスを行ない、無線チャネルがビジー状態かアイドル状態かを判断する。基地局装置がキャリアセンスする期間は、これから基地局装置が送信する送信フレームのフレームタイプおよびサブフレームタイプによって異なる。IEEE802.11システムでは、期間の異なる複数のIFSが定義されており、最も高い優先度が与えられた送信フレームに用いられる短フレーム間隔(SIFS: Short IFS)、優先度が比較的高い送信フレームに用いられるポーリング用フレーム間隔(PCF IFS: PIFS)、最も優先度の低い送信フレームに用いられる分散制御用フレーム間隔(DCF IFS: DIFS)などがある。基地局装置がDCFでデータフレームを送信する場合、基地局装置はDIFSを用いる。
 基地局装置はDIFSだけ待機したあとで、フレームの衝突を防ぐためのランダムバックオフ時間だけ更に待機する。IEEE802.11システムにおいては、コンテンションウィンドウ(CW: Contention window)と呼ばれるランダムバックオフ時間が用いられる。CSMA/CAでは、ある送信局が送信した送信フレームは、他送信局からの干渉が無い状態で受信局に受信されることを前提としている。そのため、送信局同士が同じタイミングで送信フレームを送信してしまうと、フレーム同士が衝突してしまい、受信局は正しく受信することができない。そこで、各送信局が送信開始前に、ランダムに設定される時間だけ待機することで、フレームの衝突が回避される。基地局装置はキャリアセンスによって無線チャネルがアイドル状態であると判断すると、CWのカウントダウンを開始し、CWが0となって初めて送信権を獲得し、端末装置に送信フレームを送信できる。なお、CWのカウントダウン中に基地局装置がキャリアセンスによって無線チャネルをビジー状態と判断した場合は、CWのカウントダウンを停止する。そして、無線チャネルがアイドル状態となった場合、先のIFSに続いて、基地局装置は残留するCWのカウントダウンを再開する。
 受信局である端末装置は、送信フレームを受信し、該送信フレームのPHYヘッダを読み取り、受信した送信フレームを復調する。そして、端末装置は復調した信号のMACヘッダを読み取ることで、該送信フレームが自装置宛てのものか否かを認識することができる。なお、端末装置は、PHYヘッダに記載の情報(例えば、VHT-SIG-Aの記載されるグループ識別番号(GID: Group identifier、Group ID))に基づいて、該送信フレームの宛先を判断することも可能である。
 端末装置は、受信した送信フレームが自装置宛てのものと判断し、そして誤りなく送信フレームを復調できた場合、フレームを正しく受信できたことを示すACKフレームを送信局である基地局装置に送信しなければならない。ACKフレームは、SIFS期間の待機だけ(ランダムバックオフ時間は取られない)で送信される最も優先度の高い送信フレームの一つである。基地局装置は端末装置から送信されるACKフレームの受信をもって、一連の通信を終了する。なお、端末装置がフレームを正しく受信できなかった場合、端末装置はACKを送信しない。よって基地局装置は、フレーム送信後、一定期間(SIFS+ACKフレーム長)の間、受信局からのACKフレームを受信しなかった場合、通信は失敗したものとして、通信を終了する。このように、IEEE802.11システムの1回の通信(バーストとも呼ぶ)の終了は、ビーコンフレームなどの報知信号の送信の場合や、送信データを分割するフラグメンテーションが用いられる場合などの特別な場合を除き、必ずACKフレームの受信の有無で判断されることになる。
 端末装置は、受信した送信フレームが自装置宛てのものではないと判断した場合、PHYヘッダ等に記載されている該送信フレームの長さ(Length)に基づいて、ネットワークアロケーションベクタ(NAV: Network allocation vector)を設定する。端末装置は、NAVに設定された期間は通信を試行しない。つまり、端末装置は物理CSによって無線チャネルがビジー状態と判断した場合と同じ動作をNAVに設定された期間行なうことになるから、NAVによる通信制御は仮想キャリアセンス(仮想CS)とも呼ばれる。NAVは、PHYヘッダに記載の情報に基づいて設定される場合に加えて、隠れ端末問題を解消するために導入される送信要求(RTS: Request to send)フレームや、受信準備完了(CTS: Clear to send)フレームによっても設定される。
 各装置がキャリアセンスを行ない、自律的に送信権を獲得するDCFに対して、PCFは、ポイントコーディネータ(PC: Point coordinator)と呼ばれる制御局が、BSS内の各装置の送信権を制御する。一般に基地局装置がPCとなり、BSS内の端末装置の送信権を獲得することになる。
 PCFによる通信期間には、非競合期間(CFP: Contention free period)と競合期間(CP: Contention period)が含まれる。CPの間は、前述してきたDCFに基づいて通信が行なわれ、PCが送信権を制御するのはCFPの間となる。PCである基地局装置は、CFPの期間(CFP Max duration)などが記載されたビーコンフレームをPCFの通信に先立ちBSS内に報知する。なお、PCFの送信開始時に報知されるビーコンフレームの送信にはPIFSが用いられ、CWを待たずに送信される。該ビーコンフレームを受信した端末装置は、該ビーコンフレームに記載されたCFPの期間をNAVに設定する。以降、NAVが経過する、もしくはCFPの終了をBSS内に報知する信号(例えば、CF-endを含んだデータフレーム)が受信されるまでは、端末装置はPCより送信される送信権獲得をシグナリングする信号(例えば、CF-pollを含んだデータフレーム)を受信した場合のみ、送信権を獲得可能である。なお、CFPの期間内では、同一BSS内でのパケットの衝突は発生しないから、各端末装置はDCFで用いられるランダムバックオフ時間を取らない。
 以下では、基地局装置、端末装置を総称して、無線通信装置とも呼称する。また、ある無線通信装置が別の無線通信装置と通信を行なう際にやりとりされる情報をデータ(data)とも呼称する。つまり、無線通信装置は、基地局装置および端末装置を含む。
 無線通信装置は、PPDUを送信する機能と受信する機能のいずれか、または両方を備える。図1は、無線通信装置が送信するPPDU構成の一例を示した図である。IEEE802.11a/b/g規格に対応するPPDUはL-STF、L-LTF、L-SIGおよびMAC Frame(MACフレーム、ペイロード、データ部、データ、情報ビット等)を含んだ構成である。IEEE802.11n規格に対応するPPDUはL-STF、L-LTF、L-SIG、HT-SIG、HT-STF、HT-LTFおよびMACフレームを含んだ構成である。IEEE802.11ac規格に対応するPPDUはL-STF、L-LTF、L-SIG、VHT-SIG-A、VHT-STF、VHT-LTF、VHT-SIG-BおよびMACフレームの一部あるいは全てを含んだ構成である。
 図1中の点線で囲まれているL-STF、L-LTFおよびL-SIGはIEEE802.11規格において共通に用いられる構成である(以下では、L-STF、L-LTFおよびL-SIGをまとめてL-ヘッダとも呼称する)。つまり、例えば、IEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDU内のL-ヘッダを適切に受信することが可能である。IEEE802.11a/b/g規格に対応する無線通信装置は、IEEE802.11n/ac規格に対応するPPDUを、IEEE802.11a/b/g規格に対応するPPDUとみなして受信することができる。
 ただし、IEEE802.11a/b/g規格に対応する無線通信装置はL-ヘッダの後に続く、IEEE802.11n/ac規格に対応するPPDUを復調することができないため、送信アドレス(TA: Transmitter Address)や受信アドレス(RA: Receiver Address)やNAVの設定に用いられるDuration/IDフィールドに関する情報を復調することができない。
 IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定する(あるいは所定の期間受信動作を行なう)ための方法として、IEEE802.11は、L-SIGにDuration情報を挿入する方法を規定している。L-SIG内の伝送速度に関する情報(RATE field、L-RATE field、L-RATE、L_DATARATE、L_DATARATE field)、伝送期間に関する情報(LENGTH field、L-LENGTH field、L-LENGTH)は、IEEE802.11a/b/g規格に対応する無線通信装置が適切にNAVを設定するために使用される。
 図2は、L-SIGに挿入されるDuration情報の方法の一例を示す図である。図2においては、一例としてIEEE802.11ac規格に対応するPPDU構成を示しているが、PPDU構成はこれに限定されない。IEEE802.11n規格に対応のPPDU構成およびIEEE802.11ax規格に対応するPPDU構成でも良い。TXTIMEは、PPDUの長さに関する情報を備え、aPreambleLengthは、プリアンブル(L-STF+L-LTF)の長さに関する情報を備え、aPLCPHeaderLengthは、PLCPヘッダ(L-SIG)の長さに関する情報を備える。次式(1)は、L_LENGTHの算出方法の一例を示した数式である。
Figure JPOXMLDOC01-appb-M000001
 ここで、Signal Extensionは、例えば、IEEE802.11規格の互換性をとるために設定される仮想的な期間であり、Nopsは、L_RATEに関連する情報を示しており、NopsとL_RATEの関係は図10で示される。aSymbolLengthは、1シンボル(symbol、OFDM symbol等)の期間に関する情報であり、aPLCPServiceLengthは、PLCP Service fieldが含むビット数を示し、aPLCPConvolutionalTailLengthは、畳みこみ符号のテールビット数を示す。無線通信装置は、例えば、式(1)を用いてL_LENGTHを算出し、L-SIGに挿入することができる。なお、L_LENGTHの算出方法は式(1)に限定されない。例えば、L_LENGTHは次式(2)によって算出されることもできる。
Figure JPOXMLDOC01-appb-M000002
 無線通信装置がL-SIG TXOP ProtectionによりPPDUを送信する場合、次式(3)または次式(4)によりL_LENGTHの算出を行なう。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、L-SIG Durationは、例えば、式(3)または式(4)により算出されたL_LENGTHを含むPPDUと、その応答として宛先の無線通信装置より送信されることが期待されるAckとSIFSの期間を合計した期間に関する情報を示す。無線通信装置は、次式(5)または次式(6)によりL-SIG Durationを算出する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここで、Tinit_PPDUは式(5)により算出されたL_LENGTHを含むPPDUの期間に関する情報を示し、TRes_PPDUは式(5)により算出されたL_LENGTHを含むPPDUに対して期待される応答のPPDU期間に関する情報を示す。また、TMACDurは、式(6)により算出されたL_LENGTHを含むPPDU内のMACフレームが含むDuration/ID fieldの値に関連する情報を示す。無線通信装置がInitiator(開始者、送信者、先導者、Transmitter)である場合、式(5)を用いてL_LENGTHを算出し、無線通信装置がResponder(対応者、受信者、Receiver)である場合、式(6)を用いてL_LENGTHを算出する。
 図3は、L-SIG TXOP Protectionにおける、L-SIG Durationの一例を示した図である。DATA(フレーム、ペイロード、データ等)は、MACフレームとPLCPヘッダの一部または両方から構成される。また、BAはBlock Ack、またはAckである。PPDUは、L-STF、L-LTF、L-SIGを含み、さらにDATA、BA、RTSあるいはCTSのいずれかまたはいずれか複数を含んで構成されることができる。図3に示す一例では、RTS/CTSを用いたL-SIG TXOP Protectionを示しているが、CTS-to-Selfを用いても良い。ここで、MAC Durationは、Duration/ID fieldの値によって示される期間である。また、InitiatorはL-SIG TXOP Protection期間の終了を通知するためにCF_Endフレームを送信することができる。
 続いて、無線通信装置が受信するフレームからBSSを識別する方法について説明する。無線通信装置が、受信するフレームからBSSを識別するためには、PPDUを送信する無線通信装置が当該PPDUにBSSを識別するための情報(BSS color、BSS識別情報、BSSに固有な値)を挿入することが好適である。
 BSS識別情報は、無線通信装置が所属するBSSのSSIDでも良いし、無線通信装置が所属するBSSのAPのMACアドレスでも良いし、GIDでも良い。また、BSS識別情報は、BSSによって自律的に選択される複数の状態(State、Color、色等)により構成される情報であっても良い。また、複数の状態は、ある無線通信装置または上位層からのシグナリングによって設定されることもできる。
 例えば、無線通信装置は、L-LTF、HT-LTF、VHT-LTFまたはHE-LTF(以下、まとめてLTFとも呼称する)にBSS識別情報を含めてPPDUを構成することができる。無線通信装置は、LTFに対してBSS識別情報の値に基づき異なる巡回シフトを施すことができるし、LTFに対してBSS識別情報の値に基づき異なる符号化方法を用いることができる。LTFに対して巡回シフトを実施する場合、従来のIEEE802.11規格に対応する無線通信装置との後方互換性を考慮し、LTFに続くL-SIGあるいはDATAのいずれか一方または両方に対して同様の巡回シフトを施すことが好適である。また、巡回シフト量は、GI(Guard Interval、CP、Cyclic Prefix)のサイズを超えない量であることが好適である。
 例えば、無線通信装置は、L-SIGにBSS識別情報を含むことができる。例えば、無線通信装置は、L-SIG内のL_RATE内にBSS識別情報を含むことができる。L_RATEは4ビットの情報ビットから構成されており、それぞれに対して伝送レートがマッピングされている。図10は、4ビットの情報ビットによるマッピングのIndexと伝送レートの対応の一例を示した図である。L_RATEは、L_LENGTH/L_RATEを計算することにより、TXTIMEあるいはL-SIG Durationを求めることができる。
 一方で、L_LENGTHは式(1)から式(4)のいずれかを用いて計算されることができる。特に、L_LENGTHが式(1)または式(3)のいずれかを用いて計算される場合、図10に示されるL_RATEとNopsの関係に鑑みて、L_RATEとL_LENGTHの値が設定されることができる。つまり、無線通信装置は、L_RATEを図10中の8つの伝送レートのいずれかから選択することが可能である。無線通信装置は、BSS識別情報の値に基づき、L_RATEを設定することができる。
 例えば、無線通信装置は、L-SIGをQPSK(Quadrature Phase Shift Keying)変調することができる。IEEE802.11規格では、L-SIGはBPSK(Binary Phase Shift Keying)変調されることが規定されているが、無線通信装置は実軸(Real Axis、I-Axis、I軸、実数軸)にL-SIGをマッピングしつつ、虚軸(Imaginary Axis、Q Axis、Q軸、虚数軸)に情報ビットを挿入することでQPSK変調を実現することができる。無線通信装置は、虚軸にBSS識別情報を挿入することができる。なお、無線通信装置がL-SIGにQPSK変調を施す場合、従来IEEE802.11規格に対応する無線通信装置との後方互換性を考慮し、L-LTFの送信電力をL-SIGに対して半分の電力とするまたはL-SIGの送信電力をL-LTFに対して2倍に設定することが好適である。
 無線通信装置は、変調方式にBSS識別情報を関連付けることができる。例えば、L-SIGの後に続くシンボル(HT-SIG、VHT-SIG-A、HE-SIG-A、HE-SIG-B、HE-STF、HE-LTF等)の変調方式を情報ビットに関連づけることが可能である。つまり、無線通信装置は、L-SIGの後に続くシンボルを、BPSKまたはQBPSK(Quadrature Binary Phase Shift Keying)のいずれかを用いて変調することができる。受信側の無線通信装置は、それぞれのシンボルが実軸と虚軸のどちらに電力が偏っているか(分布しているか)を測定し、対応する情報ビットを取得することができる。
 例えば、L-SIGの後に続く1番目のシンボルがQBPSK変調されており、さらにL-SIGの後に続く2番目のシンボルがBPSK変調されている場合を情報ビット(0,1)とすることができる。ここで、一例としてBPSK変調シンボルを1、QBPSK変調シンボルを0に対応させることができる。
 例えば、無線通信装置は、L-SIGの後に続く2つのシンボルの変調方式を検出(自動検出、Auto Detection)することにより情報ビット(0,0)を取得した場合に、当該PPDUがIEEE802.11n規格に対応していると解釈することができる。
 例えば、無線通信装置は、L-SIGの後に続く2つのシンボルの変調方式を検出(自動検出、Auto Detection)することにより情報ビット(1,0)を取得した場合に、当該PPDUがIEEE802.11ac規格に対応していると解釈することができる。
 例えば、無線通信装置は、L-SIGの後に続く2つのシンボルの変調方式を検出(自動検出、Auto Detection)することにより情報ビット(1,1)を取得した場合に、当該PPDUがIEEE802.11a規格またはIEEE802.11g規格に対応していると解釈することができる。
 例えば、無線通信装置は、HT-SIG、VHT-SIG、HE-SIG-A、HE-SIG-B内にBSS識別情報を含むことができる。
 無線通信装置は、後方互換性のために情報ビット(0,0)、(1,0)、(1,1)を使用しないことができる。さらに、無線通信装置は、L-SIGの後に続く3つ以上のシンボルを用いて情報ビットを構成することができる。つまり、無線通信装置は、L-SIGの後に続くシンボルを用いて情報ビットを構成し、BSS識別情報をマッピングすることができる。
 無線通信装置は、L-SIGを複数回送信する(L-SIG Repetition)ことができる。例えば、受信側の無線通信装置は、複数回送信されるL-SIGをMRC(Maximum Ratio Combining)を用いて受信することで、L-SIGの復調精度が向上する。さらに無線通信装置は、MRCによりL-SIGを正しく受信完了した場合に、当該L-SIGを含むPPDUがIEEE802.11ax規格に対応するPPDUであると解釈することができる。
 無線通信装置は、L-SIG Repetitionされた複数のL-SIGに対して、BSS識別情報の値に基づき異なる巡回シフトをかけることができる。受信側の無線通信装置は、巡回シフト量を推定することにより、BSS識別情報を取得することができる。
 無線通信装置は、PPDUの受信動作中も、当該PPDU以外のPPDUの一部(例えば、IEEE802.11により規定されるプリアンブル、L-STF、L-LTF、PLCPヘッダ等)の受信動作を行なうことができる(二重受信動作とも呼称する)。無線通信装置は、PPDUの受信動作中に、当該PPDU以外のPPDUの一部を検出した場合に、宛先アドレスや、送信元アドレスや、PPDUあるいはDATA期間に関する情報の一部または全部を更新することができる。
 AckおよびBAは、応答(応答フレーム)とも呼称されることができる。また、プローブ応答や、認証応答、接続応答を応答と呼称することができる。
 [1.第1の実施形態]
 図4は、本実施形態に係る無線通信システムの一例を示した図である。無線通信システム3-1は、無線通信装置1-1および無線通信装置2-1を備えている。なお、無線通信装置1-1を基地局装置1-1とも呼称し、無線通信装置2-1を端末装置2-1とも呼称する。無線通信装置1-1および無線通信装置2-1は、無線接続されており、お互いにPPDUの送受信を行なうことができる状態にある。また、本実施形態に係る無線通信システムは、無線通信システム3-1の他に無線通信システム3-2を備える。無線通信システム3-2は、無線通信装置1-2および無線通信装置2-2を備えている。なお、無線通信装置1-2を基地局装置1-2とも呼称し、無線通信装置2-2を端末装置2-2とも呼称する。無線通信システム3-1と無線通信システム3-2は異なるBSSを形成するが、これはESS(Extended Service Set)が異なることを必ずしも意味していない。ESSは、LAN(Local Area Network)を形成するサービスセットを示している。つまり、同じESSに属する無線通信装置は、上位層から同一のネットワークに属しているとみなされることができる。なお、無線通信システム3-1および3-2は、さらに複数の無線通信装置を備えることも可能である。
 図4において、以下の説明においては、無線通信装置2-1が送信する信号は、無線送信装置1-1および無線通信装置2-2には到達する一方で、無線通信装置1-2には到達しないものとする。つまり、無線通信装置2-1があるチャネルを使って信号を送信すると、無線通信装置1-1と、無線通信装置2-2は、当該チャネルをビジー状態と判断する一方で、無線通信装置1-2は、当該チャネルをアイドル状態と判断する。また、無線通信装置2-2が送信する信号は、無線送信装置1-2および無線通信装置2-1には到達する一方で、無線通信装置1-1には到達しないものとする。つまり、無線通信装置2-2があるチャネルを使って信号を送信すると、無線通信装置1-2と、無線通信装置2-1は、当該チャネルをビジー状態と判断する一方で、無線通信装置1-1は、当該チャネルをアイドル状態と判断する。
 図5は、無線通信装置1-1、2-1、1-2および2-2(以下では、まとめて無線装置10-1とも呼称)の装置構成の一例を示した図である。無線通信装置10-1は、上位層部10001-1と、自律分散制御部10002-1と、送信部10003-1と、受信部10004-1と、アンテナ部10005-1と、を含んだ構成である。
 上位層部10001-1は、他のネットワークと接続され、自律分散制御部10002-1にトラフィックに関する情報を通知することができる。トラフィックに関する情報とは、例えば、他の無線通信装置宛ての情報であっても良いし、マネージメントフレームやコントロールフレームに含まれる制御情報でも良い。
 図6は、自律分散制御部10002-1の装置構成の一例を示した図である。自律分散制御部10002-1は、CCA部10002a-1と、バックオフ部10002b-1と、送信判断部10002c-1とを含んだ構成である。
 CCA部10002a-1は、受信部から通知される、無線リソースを介して受信する受信信号電力に関する情報と、受信信号に関する情報(復号後の情報を含む)のいずれか一方、または両方を用いて、当該無線リソースの状態判断(busyまたはidleの判断を含む)を行なうことができる。CCA部10002a-1は、当該無線リソースの状態判断情報を、バックオフ部10002b-1および送信判断部10002c-1に通知することができる。
 バックオフ部10002b-1は、無線リソースの状態判断情報を用いて、バックオフを行なうことができる。バックオフ部10002b-1は、CWを生成し、カウントダウン機能を有する。例えば、無線リソースの状態判断情報がidleを示す場合に、CWのカウントダウンを実行し、無線リソースの状態判断情報がbusyを示す場合に、CWのカウントダウンを停止することができる。バックオフ部10002b-1は、CWの値を送信判断部10002c-1に通知することができる。
 送信判断部10002c-1は、無線リソースの状態判断情報、またはCWの値のいずれか一方、あるいは両方を用いて送信判断を行なう。例えば、無線リソースの状態判断情報がidleを示し、CWの値が0の時に送信判断情報を送信部10003-1に通知することができる。また、無線リソースの状態判断情報がidleを示す場合に送信判断情報を送信部10003-1に通知することができる。
 送信部10003-1は、物理層フレーム生成部10003a-1と、無線送信部10003b-1とを含んだ構成である。物理層フレーム生成部10003a-1は、送信判断部10002c-1から通知される送信判断情報に基づき、物理層フレーム(PPDU)を生成する機能を有する。物理層フレーム生成部10003a-1は、上位層から送られる送信フレームに対して誤り訂正符号化、変調、プレコーディングフィルタ乗算等を施す。物理層フレーム生成部10003a-1は、生成した物理層フレームを無線送信部10003b-1に通知する。
 無線送信部10003b-1は、物理層フレーム生成部10003a-1が生成する物理層フレームを、無線周波数(RF: Radio Frequency)帯の信号に変換し、無線周波数信号を生成する。無線送信部10003b-1が行なう処理には、デジタル・アナログ変換、フィルタリング、ベースバンド帯からRF帯への周波数変換等が含まれる。
 受信部10004-1は、無線受信部10004a-1と、信号復調部10004b-1を含んだ構成である。受信部10004-1は、アンテナ部10005-1が受信するRF帯の信号から受信信号電力に関する情報を生成する。受信部10004-1は、受信信号電力に関する情報と、受信信号に関する情報をCCA部10002a-1に通知することができる。
 無線受信部10004a-1は、アンテナ部10005-1が受信するRF帯の信号をベースバンド信号に変換し、物理層信号(例えば、物理層フレーム)を生成する機能を有する。無線受信部10004a-1が行なう処理には、RF帯からベースバンド帯への周波数変換処理、フィルタリング、アナログ・デジタル変換が含まれる。
 信号復調部10004b-1は、無線受信部10004a-1が生成する物理層信号を復調する機能を有する。信号復調部10004b-1が行なう処理には、チャネル等化、デマッピング、誤り訂正復号化等が含まれる。信号復調部10004b-1は、物理層信号から、例えば、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報とを取り出すことができる。信号復調部10004b-1は、取り出した情報を上位層部10001-1に通知することができる。なお、信号復調部10004b-1は、物理層ヘッダが含む情報と、MACヘッダが含む情報と、送信フレームが含む情報のいずれか、あるいは全てを取り出すことができる。
 アンテナ部10005-1は、無線送信部10003b-1が生成する無線周波数信号を、無線装置0-1に向けて、無線空間に送信する機能を有する。また、アンテナ部10005-1は、無線装置0-1から送信される無線周波数信号を受信する機能を有する。
 無線通信装置10-1は、PPDUにBSS識別情報を挿入して無線空間に送信することができる。以下では、無線通信装置1-1および無線通信装置2-1が送信するPPDUが含むBSS識別情報と、無線通信装置1-2および無線通信装置2-2が送信するBSS識別情報が異なるものとして説明を行なう。なお、無線通信装置10-1が同一のESSを構成する場合、無線通信装置10-1のいずれか、または無線通信装置10-1以外の無線通信装置、または上位層装置からのシグナリングにより、BSS識別情報が設定されることもできる。無線通信システム3-1と無線通信システム3-2がそれぞれ異なるESSを構成する場合、無線通信装置10-1は自律的にBSS識別情報を設定することもできる。ただし、BSS識別情報の設定方法は限定しない。
 無線通信装置1-1および無線通信装置2-1は同一のBSSに属しているから、同一のBSS識別情報を用いることが好適である。同様に、無線通信装置1-2および無線通信装置2-2は同一のBSSに属しているから例えば、無線通信装置1-1が送信するビーコンがBSS識別情報、またはBSS識別情報に関連付けられた情報を含んで送信し、無線通信装置2-1が受信したビーコンからBSS識別情報を取得することができる。
 図7は、本実施形態に係る通信の一例を示すシーケンスチャートである。以下では、図4と図7を参照しながら、本実施形態に係る無線通信装置の動作を説明する。
 はじめに、無線通信装置2-1(第1の無線通信装置、もしくは送信元無線通信装置)は、無線通信装置1-1(宛先無線通信装置)宛てのPPDUを送信するに先立って、無線媒体(WM: Wireless medium)を確保するための、媒体保護動作(Protection procedure)、もしくは媒体予約動作(Reservation procedure)を行なう(ステップS701)。ここで、媒体保護動作もしくは媒体予約動作は何かに限定されるものではないが、無線通信装置2-1は、自装置のMACアドレスをRAフィールドに記載したCTSフレーム(CTS-to-self、Self-CTS)を送信することができる。無線通信装置2-1は、該CTSフレ-ムに対して、先に説明した方法により、BSS識別情報を記載することができる。
 次いで、無線通信装置2-1は、自装置が送信したCTS-to-selfフレームは、BSS内の無線通信装置(無線通信装置1-1を含む)に受信された(ステップS702a)と想定し、CTS-to-selfフレーム送信後、無線通信装置1-1宛てのPPDUを送信する(ステップS703)。ステップS703より開始される動作については、通常のフレーム交換と同じ動作となるから、説明は省略する。
 一方、無線通信装置2-2(第2の無線通信装置)の受信部10004-1は、送信元無線通信装置である無線通信装置2-1が送信するCTS-to-selfフレームを受信することができる(ステップS702b)。そして、無線通信装置2-2は、該CTS-to-selfに基づいて、BSS識別情報を取得する(ステップS704)従来の無線LANシステムにおいては、CTS-to-selfフレームを受信した場合、無線通信装置2-2は、該CTS-to-selfフレームに記載のDuration情報に基づいて、NAVを設定し、受信動作を停止、もしくは送信動作の開始を禁止する。一方、本実施形態に係る無線通信装置2-2の受信部10004-1および送信部10003-1は、該CTS-to-self記載のBSS識別情報に基づいて、実際の動作を判断する(ステップS705)。例えば、受信部10004-1は、該BSS識別情報に基づいて受信動作を停止するか否かを判断できる。例えば、送信部10003-1は、該BSS識別情報に基づいて、送信動作の開始を禁止するか否かを決定することができる。なお、ステップS705の動作は、上位層部10001-1が行なうことも可能である。
 なお、媒体保護動作および媒体確保動作には、先に説明したCTS-to-selfフレームの送信に加えて、RTS/CTSフレーム交換、Dual CTS、L-SIG TXOP protection、RIFSプロテクションを含む。媒体保護動作がRTS/CTSフレーム交換である場合、媒体保護動作の開始を示すフレームは、RTSフレームを含む。媒体保護動作がDual CTSである場合、媒体保護動作の開始を示すフレームは、CTSフレームもしくはCTS-to-selfフレームを含む。媒体保護動作がL-SIG TXOP protectionである場合、媒体保護動作の開始を示すフレームは、先に説明した方法によりDuration情報が記載されたPLCPヘッダを備えるフレームを含む。
 また、媒体保護動作および媒体確保動作には、PCFやHCF(Hybrid coordination function)で用いられるCFP(Contention-free period)のイニシエーション動作を含む。この場合、媒体保護動作の開始を示すフレームは、CFPの期間に関する情報を含むフレーム(例えば、ビーコンフレーム)を含む。また、媒体保護動作には、EDCAのTXOPのポーリング動作を含む。この場合、媒体保護動作の開始を示すフレームは、QoS CF-Pollフレーム、もしくはCF-Poll機能が抱き合わされたフレーム(例えば、QoS Data+CF-Pollフレーム)を含む。また、媒体保護動作および媒体確保動作には、MCF(Mesh coordination function)に用いられるMCCAOP(MCF controlled channel access opportunity)のリザベーション動作を含む。この場合、媒体保護動作の開始を示すフレームは、MCCAOP Setup Requestエレメントを含むフレームを含む。
 無線通信装置2-2は、各媒体保護動作および媒体確保動作の開始を示すフレームを受信した場合、該フレームより、BSS識別情報を取得することができるから、該媒体保護動作および媒体確保動作を開始した無線通信装置が、自装置が接続するBSSに接続しているのか、OBSSに接続しているのかを判断することができる。
 本実施形態に係る無線通信装置2-2は、該CTS-to-selfフレームが、自装置が接続するBSS以外のBSS(OBSS: Overlapping BSS)に接続する無線通信装置により送信されたフレームであると判断した場合、無線通信装置2-2は、該CTS-to-selfに記載のDurationの値に依らず、受信動作を継続することができる。無線通信装置2-2が接続状態にある無線通信装置1-2は、無線送信装置2-1から見て、隠れ端末の状態にあるため、無線通信装置1-2は、無線通信装置2-1の媒体保護動作の有無に依らず、無線通信装置2-2へのPPDU送信を開始する可能性があるためである。無線通信装置2-2は、無線通信装置2-1が送信したCTS-to-selfフレーム受信後も、受信動作を継続することで、無線通信装置1-2が、無線通信装置2-2に送信したPPDUを受信することが可能となる。
 無線通信装置2-2が無線通信装置1-2により送信されたPPDUを受信し、当該PPDUにフレーム返信(例えば、ACKフレームの返信)を要求するフレームが含まれている場合、無線通信装置2-2は、無線通信装置1-2にACKフレーム、またはBAフレームを送信しなければならない。しかし、該CTS-to-selfフレームに記載のDurationの値に基づいて算出されるNAVの期間に無線通信装置2-2がACKフレームを送信した場合、該ACKフレームは、無線通信装置2-1にも受信されてしまう。このとき、無線通信装置2-1が、該CTS-to-selfフレームによって確保したWMにおいて、無線通信装置1-1により送信されたPPDU(例えば、無線通信装置1-1より送信されたACKフレーム)を受信していた場合、無線通信装置2-2が送信したACKフレームに起因する干渉により、無線通信装置2-1が無線通信装置1-1により送信されたPPDUの受信に失敗する可能性がある。よって、無線通信装置2-2は、無線通信装置1-2により送信されたPPDUに返信が必要となる場合、該CTS-to-selfにより算出されるNAVの期間が終了したあとで、無線通信装置2-2は、該PPDUに関する返信を、無線通信装置1-2に送信することができる。
 また、本実施形態に係る無線通信装置2-2は、該CTS-to-selfフレームが、OBSSに接続する無線通信装置により送信されたフレームであると判断した場合、無線通信装置2-2は、該CTS-to-selfに記載のDurationの値に依らず、任意の無線通信装置を宛先としたフレームの送信動作を開始することができる。先にも説明したように、無線通信装置2-2が接続状態にある無線通信装置1-2は、無線送信装置2-1から見て、隠れ端末の状態にあるため、無線通信装置2-1がフレームを送信している状態で、無線通信装置2-2が、無線通信装置1-2にPPDUを送信しても、無線通信装置1-2は、無線通信装置2-1が送信するフレームに起因する干渉を受けることなく、無線通信装置2-2により送信されたPPDUを受信することが可能となる。
 無線通信装置2-2が、無線通信装置1-2に送信するPPDUは、当然、無線通信装置2-1にも受信される。ここで、先に説明した場合と同様に、無線通信装置2-1が、該CTS-to-selfフレームによって確保したWMにおいて、無線通信装置1-1により送信されたPPDU(例えば、無線通信装置1-1より送信されたACKフレーム)を受信していた場合、無線通信装置2-2が送信したPPDUに起因する干渉により、無線通信装置2-1が無線通信装置1-1により送信されたPPDUの受信に失敗する可能性がある。よって、無線通信装置2-2は、自装置が送信するPPDUのDuration(もしくはlength)が、該CTS-to-selfフレームより読み取れるDurationから、ACKフレーム長およびSIFS長を引いた期間よりも、短い場合に限り、PPDUを送信するように制御することができる。当然、無線通信装置2-2は、自装置が送信するPPDUのDuration(もしくはlength)が、該CTS-to-selfフレームより読み取れるDurationから、ACKフレーム長およびSIFS長を引いた期間よりも長い場合は、送信動作の開始を禁止する。
 以上説明してきた方法を言い換えると、無線通信装置2-2(もしくは無線通信装置2-2が備える受信部10004-1、送信部10003-1、上位層部10001-1)は、媒体保護動作もしくは媒体確保動作の開始を示すフレーム(上記例では、CTS-to-selfフレーム)に記載された情報(上記例では、BSS識別情報)に基づいて、媒体保護動作を開始した無線通信装置2-1が、自装置にとってさらし端末装置であるか否かを判断している。また、無線通信装置2-2は、媒体保護動作もしくは媒体確保動作の開始を示すフレームに記載された情報に基づいて、媒体保護動作を開始した無線通信装置2-1が、該媒体保護動作に続いて送信するフレームのRAが示す宛先無線通信装置(上記例では、無線通信装置1-1)が、自装置にとって隠れ端末装置であるか否かを判断していると言える。
 また、本実施形態に係る無線通信装置2-2は、無線通信装置1-2の媒体保護動作もしくは媒体確保動作より読み取れるBSS識別情報以外の情報に基づいて、無線通信装置1-2の媒体保護動作もしくは媒体確保動作以降の、自装置の受信動作の有無、もしくは送信動作の開始の有無を決定することができる。例えば、無線通信装置2-2は、自装置が過去に受信したIEEE802.11規格のフレームのMACヘッダに記載のTAアドレスを保持しておくことができる。以下では、無線通信装置2-2が保持しているTAアドレスの集合を、TAアドレスセットとも呼ぶ。無線通信装置2-2は、現在、自装置が接続しているBSSとの接続処理を開始した時点からの全ての該TAアドレスを保持することができるし、自装置が接続しているBSSのTBTTの間だけ、該TAアドレスを保持しておくことができる。無線通信装置1-2が、媒体確保動作のために、RTSフレームを送信し、無線通信装置2-2が該RTSフレームを受信した場合、無線通信装置2-2は、該RTSフレームのRAアドレスを読み取り、該RAアドレスが、自装置のTAアドレスセットに存在しない場合、無線通信装置2-2は、該RTSフレームより算出されるNAVの値に依らず、受信動作に入ることができるし、送信動作を開始することができる。これは、該RTSフレームのRAアドレスが、無線通信装置2-2のTAアドレスセットに存在しない場合、該RAアドレスが指定する無線通信装置には、無線通信装置2-2が送信するフレームは到達しないと考えることができるためである。ただし、無線通信装置2-2が送信するフレームは、媒体保護動作もしくは媒体確保動作を行なっている無線通信装置(上記例においては、無線通信装置2-1)に到達するため、無線通信装置2-2は、該無線通信装置の受信動作に影響を及ぼさないように動作することが好適である。例えば、無線通信装置2-2が認識した媒体保護動作が、RTS/CTSフレーム交換であった場合、該RTSフレームを送信した無線通信装置が、該CTSフレームの受信を期待する期間においては、無線通信装置2-2は、送信動作の開始を禁止することが可能である。この場合、無線通信装置2-2は、該RTSフレームのRAアドレスを、BSS識別情報として解釈することも可能である。これは、無線通信装置2-2が保持するTAアドレスセットに存在しない無線通信装置は、OBSSに接続していると解釈されるが可能であるためである。
 図8は、無線通信装置2-1の動作の一例を示した図である。PPDUはPLCPヘッダとMACフレームから構成される。PLCPヘッダは、L-STF、L-LTF、L-SIG、HT-SIG、HT-STF、HT-STF、VHT-SIG-A、VHT-STF、VHT-LTF、VHT-SIG-B、HE-SIG、HE-SIG-A、HE-SIG-B、HE-LTF、HE-LTFのいずれか複数より構成される。図7に示す一例では、まず、無線通信装置1-2がPPDUを送信する。無線通信装置1-2以外の無線通信装置10-1は、プリアンブルを検出し、L-SIGを復調する。ここで、無線通信装置1-2が送信するPPDUは、無線通信装置2-1および無線通信装置2-2によって検出されるものとする。無線通信装置2-1および無線通信装置2-2は、PLCPヘッダを受信し、BSS識別情報を取得することができる。無線通信装置2-2は、BSS識別情報を取得し、当該PPDUが当該無線通信装置2-2と同一のBSSに属していることを知ることができる。さらに、DATA内のMACフレームを受信することにより、当該MACフレームが無線通信装置2-2宛てであることを知ることができ、当該MACフレーム受信完了後、SIFS期間待機した後、BAを含むPPDUを無線通信装置1-2に向けて送信する。
 一方で、無線通信装置2-1は、無線装置は、無線通信装置1-2が送信するPLCPヘッダを受信し、BSS識別情報を取得する。しかし、図8に示す一例では、その後も無線通信装置1-2が送信するPPDUを受信し続けることとなる(または、PLCPヘッダ受信後、受信動作は終了するが、NAVを設定する)。そのため、無線通信装置1-1が、無線通信装置1-2に遅れて送信するPPDU(例えば、無線通信装置2-1宛てのPPDU)を送信するため、無線通信装置2-1は当該PPDU内のPLCPヘッダを受信できない。これにより、無線通信装置2-1のPLCPヘッダ検出率が低下する上、当然その後に続くDATA内のMACフレームを復調することができない。
 図9は、無線通信装置2-1の動作の別の一例を示した図である。無線通信装置2-1は、図8に示す一例と同様に、まず無線通信装置1-2が送信するPLCPヘッダを復調し、BSS識別情報を取得する。BSS識別情報取得により、当該PPDUが無線通信装置2-1が属するBSS宛てでないことがわかるため、無線通信装置2-1はPLCPヘッダ受信完了後に受信動作を終了する。これにより、無線通信装置2-1は、後に続く無線通信装置1-1から送信される無線通信装置2-1宛てのPLCPヘッダ、ないしはDATA内のMACフレームを受信し、復調することができる。その後、無線通信装置2-1はSIFS期間だけ待機した後、BAを含むPPDUを無線通信装置1-1に向けて送信することができる。
 以上、説明したように、無線通信装置は、BSS識別情報に基づき受信動作を変更することにより、無線通信システムの利用効率を改善することができる。
 図10は、無線通信装置10-1の動作の一例を示すシーケンスチャートである。無線通信装置1-2は、無線通信装置1-2が送信するPLCPヘッダを送信する(ステップS101)。無線通信装置2-1は無線通信装置1-2が送信するPLCPヘッダを受信し、受信動作判断を行なう(ステップS102)。なお、受信動作判断の方法は後述する。ステップS101に続いて、無線通信装置1-2はDATAを送信する(ステップS103)。続いて、無線通信装置1-1はPLCPヘッダを送信する(ステップS104)。無線通信装置2-1は、無線通信装置1-1が送信するPLCPヘッダを受信し、受信動作判断を行なう(ステップS105)。ステップS104に続き、無線通信装置1-1は、DATAを送信する(ステップS106)。無線通信装置2-1は、無線通信装置1-1が送信するDATAを受信する(ステップS107)。
 無線通信装置2-1は、受信動作判断を行なう。受信動作判断は、当該PPDU受信中に、後に続く受信動作の方法を決定する方法である。例えば、無線通信装置2-1は、PLCPヘッダに含まれるBSS識別情報を用いて受信動作の判断を行なう。無線通信装置2-1は、BSS識別情報により、当該PPDUが無線通信装置2-1が属するBSSに関連すると判断した場合(例えば、当該BSSに属する無線通信装置宛ての信号であると判断できる場合、当該BSSのBSS識別情報と同一の情報を含む場合等、また、以下ではmyBSSと判断するとも呼称する)、受信動作を続ける動作を行なう。あるいは、無線通信装置2-1がmyBSSと判断した場合、NAVを設定する。また、無線通信装置2-1は、BSS識別情報により、当該PPDUが無線通信装置2-1が属するBSSに関連しないと判断した場合(例えば、当該BSSに属する無線通信装置以外の無線通信装置宛ての信号であると判断できる場合、当該BSSのBSS識別情報と異なる情報を含む場合等、また、以下ではOBSS(Overwrapped BSS)と判断するとも呼称する)、受信動作を終了する。
 無線通信装置2-1は、L-SIGの後に続くDATAがIEEE802.11ax規格に対応している場合に、受信動作判断を行なうことができる。また、無線通信装置2-1は、L-SIGの後に続くDATAがIEEE802.11ax規格以外の規格に対応している場合に、受信動作判断を行なわないことができる。
 また、無線通信装置2-1は、受信動作判断によりOBSSと判断した場合、L-SIGが含むTXTIME、あるいはL-SIG Duration期間は信号を送信しない動作を行なうことができる。無線通信装置2-1は、TXTIME、あるいはL-SIG Duration期間は信号を送信しないが、プリアンブルの検出やPLCPヘッダの検出を行なうことができる。以下では、信号の送信を行なわないが、プリアンブルの検出やPLCPヘッダの検出を行なうことができることを、受信動作状態(Receiver State、受信状態等)とも呼称する。例えば、無線通信装置2-1は受信動作状態を設定されることができる。
 無線通信装置2-1は、受信動作判断によりOBSSと判断した場合に、受信動作状態を設定することができる。受信動作状態の期間は、L-SIGが含むTXTIMEや、L-SIG Durationにより設定されることもできるし、DATA内のPLCPヘッダが含むLENGTH fieldや、それ以外のPPDU送信期間に関連する情報を用いて設定されることもできる。
 また、無線通信装置2-1は、受信動作判断によりOBSSと判断した場合に、NAVを設定することもできる。この場合、NAVを設定した無線通信装置2-1は、通常のNAVとは異なり、受信動作を行なうことができる。
 また、無線通信装置2-1は、受信動作判断によりOBSSと判断した場合に、IFSによる送信待機を行なうことができる。無線通信装置2-1のIFS期間は、L-SIGが含むTXTIMEや、L-SIG Durationにより設定されることもできるし、DATA内のPLCPヘッダが含むLENGTH fieldや、それ以外のPPDU送信期間に関連する情報を用いて設定されることもできるし、すでに規定されているIFS期間が設定されることもできる。例えば、無線通信装置2-1は、IFSを繰り返すことでL-SIGが含むTXTIMEや、L-SIG Durationにより設定されることもできるし、DATA内のPLCPヘッダが含むLENGTH fieldや、それ以外のPPDU送信期間だけ送信を待機することもできるし、AIFSによって送信を待機することもできる。
 また、無線通信装置2-1は、受信動作判断によりOBSSと判断した場合に、バックオフを設定することができる。無線通信装置2-1のバックオフ期間は、L-SIGが含むTXTIMEや、L-SIG Durationにより設定されることもできるし、DATA内のPLCPヘッダが含むLENGTH fieldや、それ以外のPPDU送信期間に対応する期間により設定されることもできるし、ランダムバックオフを繰り返すこともできる。
 無線通信装置2-1は、受信動作判断に基づき、NAVを設定する、もしくは設定しない、を決定することができる。例えば、無線通信装置2-1が受信動作判断によりOBSSと判断した場合に、NAVを設定しないことができるし、NAVを設定することもできる。
 また、無線通信装置2-1は受信動作判断によりmyBSSと判断した場合に、NAVを設定しないことができるし、NAVを設定することもできる。
 また、無線通信装置2-1は、受信動作判断によりmyBSSと判断した場合に、二重受信動作を行なうことができるし、OBSSと判断した場合に、二重受信動作を行なわないことができる。
 また、無線通信装置2-1は、受信動作判断によりmyBSSと判断した場合に、二重受信動作を行なわないことができるし、OBSSと判断した場合に、二重受信動作を行なうことができる。
 図12は、無線通信装置10-1の動作の一例を示した図である。まず、無線通信装置1-2は、PLCPヘッダを送信する。無線通信装置2-1および無線通信装置2-2は、無線通信装置1-2から送信されるPLCPヘッダを受信し、BSS識別情報を取得する。図12に示す一例では、無線通信装置1-2が送信するPPDUの一部あるいは全部を検出しないものと仮定する。無線通信装置2-2は、BSS識別情報によりmyBSSと判断し、後に続くDATAの受信を開始する。ここで、無線通信装置1-2が送信するPPDUは無線通信装置2-2宛てであると仮定し、無線通信装置2-2は所望信号を正しく受信完了した場合に、無線通信装置1-2に対してBAを送信することができる。図11において、無線通信装置2-2が送信するBAの送信終了時刻をセッション終了時刻(Ack終了時刻、チャネル確保期間、CCA busy期間)と呼称する。
 一方、無線通信装置2-1はBSS識別情報を取得し、OBSSと判断するため、受信動作判断により、無線通信装置1-2が送信するPPDUの受信を終了することができる。
 無線通信装置2-1が、無線通信装置1-2より送信されるPPDU(第1のPPDU、第1の物理層フレームとも呼称)の受信を終了した時刻以降に、無線通信装置1-1が無線通信装置2-1宛てのPPDUを送信することを仮定する。無線通信装置2-1は、無線通信装置1-1より送信されるPPDU(第2のPPDU、第2の物理層フレームとも呼称)が含むPLCPヘッダを受信する。無線通信装置2-1は、BSS識別情報を取得し、受信動作判断を行なう。受信動作判断の結果、無線通信装置2-1はmyBSSと判断し、当該PPDUの後に続くDATAの受信動作を開始する。
 続いて、無線通信装置2-1は送信動作判断を行なうことができる。無線通信装置2-1は、セッション終了時刻および、Ack送信開始時刻に関する情報に基づき、送信動作判断を行なうことができる。例えば、無線通信装置2-1は、セッション開始時刻がAck送信開始時刻より早く到来する、あるいは同時に到来する場合に、無線通信装置2-1は送信可能と判断し、セッション開始時刻がAck送信開始時刻より遅く到来する場合に、無線通信装置2-1は送信不可と判断することができる。
 無線通信装置2-1は、送信動作判断により送信可能と判断した場合に、PPDU(第3のPPDU、第3の物理層フレームとも呼称)を送信することができる。第3のPPDUは、BAを含むPPDUであることができる。
 例えば、無線通信装置2-1は、送信動作判断により、セッション開始時刻がAck送信開始時刻より早く到来する、あるいは同時に到来する場合に、無線通信装置2-1は送信不可と判断し、セッション開始時刻がAck送信開始時刻より遅く到来する場合に、無線通信装置2-1は送信可能と判断することができる。
 例えば、無線通信装置2-1は、送信動作判断により、セッション開始時刻とAck送信時刻との差分(以下では、動作オフセット、オフセット、時刻差、Ack送信時刻等とも呼称する)をとることにより、送信可能または送信不可の判断を行なうことができる。例えば、動作オフセットの値が無線通信装置2-1に設定されるしきい値より大きい(あるいは、以上の)場合に、無線通信装置2-1は送信可能と判断することができる。また、動作オフセットの値が無線通信装置2-1に設定されるしきい値以下の(あるいは、より小さい)場合に、無線通信装置2-1は送信可能と判断することができる。また、動作オフセットの値が無線通信装置2-1に設定されるしきい値より大きい(あるいは、以上の)場合に、無線通信装置2-1は送信不可と判断することができる。また、動作オフセットの値が無線通信装置2-1に設定されるしきい値以下の(あるいは、より小さい)場合に、無線通信装置2-1は送信不可と判断することができる。
 なお、動作オフセットの値の計算方法は、動作オフセット=セッション開始時刻-Ack送信時刻、あるいは動作オフセット=Ack送信時刻-セッション開始時刻、動作オフセット=abs(セッション開始時刻-Ack送信時刻)、abs(動作オフセット=Ack送信時刻-セッション開始時刻)等を用いて算出されることができる。ここで、abs(・)は、・の絶対値を求める操作であることができる。
 なお、無線通信装置2-1は、PLCPを正しく受信した場合に送信動作判断により、送信可能と判断することができるし、DATAを正しく受信した場合に送信可能と判断することができる。また、無線通信装置2-1は、PLCPを正しく受信できない場合に送信動作判断により、送信不可と判断することができるし、DATAを正しく受信できない場合に送信不可と判断することができる。
 無線通信装置2-1は、送信動作判断により送信可能と判断した場合に、無線通信装置2-1が送信することができるPPDUのタイプ(型、優先度、長さ、type、priority、フレームタイプ(マネージメントフレーム、コントロールフレーム、データフレーム等)、フレームフォーマット等)を限定することができる。つまり、無線通信装置2-1は、受信動作を終了してからTXTIMEあるいはL-SIG Durationに対応する期間は、送信動作判断により送信可能と判断しても、送信することができないPPDUのタイプを指定することができる。
 例えば、無線通信装置2-1は、送信動作判断により送信可能と判断しても、CF-ENDフレームを送信できないことを設定することができる。
 無線通信装置2-1は、セッション終了時刻を推定することが可能である。例えば、無線通信装置2-1は、無線通信装置1-2が送信するPPDU内のDuration/ID fieldが示すDuration情報を用いて、セッション終了時刻を算出することが可能である。無線通信装置2-1は、Duration情報をセッション終了時刻に関する情報とすることが可能である。
 無線通信装置2-1は、TXTIME、L-SIG DurationまたはLENGTH fieldに関する情報(まとめて、DATA Durationとも呼称)を用いて、セッション終了時刻を推定することができる。例えば、無線通信装置2-1は、DATA DurationにSIFS期間およびBA送信期間に関する情報を加えた値を、セッション終了時刻とすることが可能である。また、無線通信装置2-1は、DATA Durationをセッション終了時刻とすることが可能である。また、無線通信装置2-1は、DATA Durationに、IFSまたはスロットタイム等に関する情報のいずれか、あるいは両方を加えた値をセッション終了時刻とすることが可能である。
 なお、無線通信装置2-1のBA送信期間に関する情報の算出方法は限定しない。BA送信期間とは、BAを含むPPDUの送信期間であることができるし、Ackを含むPPDUの送信期間であることができるし、CTSを含むPPDUの送信期間であることができるし、RTSを含むPPDUの送信期間であることができる。
 無線通信装置2-1はAck送信開始時刻を推定することができる。Ack送信開始時刻は、DATA Duration、Duration情報から推定することができる。
 例えば、無線通信装置2-1は、無線通信装置1-2より送信されるPPDUが含む情報からセッション終了時刻またはAck送信開始時刻を推定することができるし、無線通信装置1-1より送信されるPPDUが含む情報からセッション終了時刻またはAck送信開始時刻を推定することができる。
 図12は、無線通信装置10-1の動作の流れの一例を示すシーケンスチャートである。無線通信装置1-2は、PLCPヘッダを送信する(ステップS101s)。続いて、無線通信装置2-2は、PLCPヘッダを受信し、受信動作判断の結果DATAを受信する動作判断を行なう(ステップS102s)。続いて、無線通信装置1-2はDATAを送信する(ステップS103s)し、無線通信装置2-2はDATAの受信を行なう(ステップS104s)。無線通信装置2-2は、DATAの受信終了後、SIFS期間待機した後、BA送信を行なう(ステップS105s)し、無線通信装置1-2はBA受信を行なう(ステップS106s)。ステップS105sまたはステップS106sの終了時刻をセッション終了時刻とすることができる。
 一方、無線通信装置2-1はPLCPヘッダ受信動作を行ない、受信動作の結果、後に続くDATAの受信動作を行なわない判断を行なう(ステップS107s)。続いて、無線通信装置1-1は、PLCPヘッダの送信を行ない(ステップS108s)、続いて無線通信装置2-1はPLCPヘッダを受信し、受信動作判断の結果後に続くDATAの受信を行なう判断を行なう(ステップS109s)。続いて、無線通信装置1-1はDATAの送信を行ない(ステップS110s)、無線通信装置2-1はDATAの受信を行なう(ステップS111s)。無線通信装置2-1は、セッション終了時刻およびAck送信開始時刻に関する情報に基づき、送信動作判断を行なう。無線通信装置2-1は、送信可能と判断した場合に、DATA受信の後BA送信を行ない(ステップS112s)、無線通信装置1-1はBA受信を行なう(ステップS113s)。ステップS113sまたはステップS112sの開始時刻をAck送信開始時刻とすることができる。
 以上、説明してきた装置、システムおよび方法によれば、無線通信装置2-2は、媒体保護動作もしくは媒体確保動作を行なう無線通信装置が、myBBSに接続しているか、OBSSに接続しているかを判断し、その判断に基づいて、該媒体保護動作もしくは媒体確保動作の後で、自装置が受信動作に入るか否か、もしくは送信動作を開始する否かを決定することが可能となる。このことにより、無線通信装置2-2は、さらし端末である無線通信装置のフレーム送信に起因するWMへのアクセスの制限が緩和されるから、ユーザスループットを改善することができる。
 [2.全実施形態共通]
 本発明に係る無線通信装置1-1、無線通信装置2-1、無線通信装置1-2、無線通信装置2-2で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであっても良い。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
 また、市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における無線通信装置1-1、無線通信装置2-1、無線通信装置1-2、無線通信装置2-2の一部、または全部を典型的には集積回路であるLSIとして実現しても良い。無線通信装置1-1、無線通信装置2-1、無線通信装置1-2、無線通信装置2-2の各機能ブロックは個別にチップ化しても良いし、一部、または全部を集積してチップ化しても良い。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の無線通信装置1-1、無線通信装置2-1、無線通信装置1-2、無線通信装置2-2は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も請求の範囲に含まれる。
 本発明は、無線通信装置、通信方法および通信システムに用いて好適である。
 なお、本国際出願は、2015年6月5日に出願した日本国特許出願第2015-114372号に基づく優先権を主張するものであり、日本国特許出願第2015-114372号の全内容を本国際出願に援用する。
1-1、1-2、2-1、2-2 無線通信装置
3-1、3-2 管理範囲
10001-1 上位層部
10002-1 自律分散制御部
10002a-1 CCA部
10002b-1 バックオフ部
10002c-1 送信判断部
10003-1 送信部
10003a-1 物理層フレーム生成部
10003b-1 無線送信部
10004-1 受信部
10004a-1 無線受信部
10004b-1 信号復調部
10005-1 アンテナ部

Claims (10)

  1.  物理層フレームを送受信可能な無線通信装置であって、
     媒体保護動作の開始を示すフレームを受信し、前記媒体保護動作の開始を示すフレームより、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が属するBSSを識別するBSS識別情報を取得する受信部と、
     前記BSS識別情報に基づいて、自装置が属するBSSに属する他の無線通信装置宛てのフレームの送信動作を開始するか否かを判断する送信部と、を備える無線通信装置。
  2.  前記受信部は、前記BSS識別情報が、前記自装置が属するBSSを示す場合、NAVを設定する、請求項1に記載の無線通信装置。
  3.  前記送信部は、前記媒体保護動作の開始を示すフレームが含む前記BSS識別情報が、前記自装置が接続するBSS以外のBSSを示す場合、前記自装置が属するBSSに属する他の無線通信装置宛てのフレームの送信動作を開始する送信判断を行なう、請求項2に記載の無線通信装置。
  4.  前記送信部は、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が、前記自装置が接続するBSS以外のBSSに接続する無線通信装置であった場合、前記NAVと異なるNAVを設定する、請求項2に記載の無線通信装置。
  5.  前記他の無線通信装置宛てのフレームが、フレーム返信を要求するフレームである場合、前記フレーム返信を期待する期間と、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が、前記媒体保護動作が確保する期間のうち、フレーム送信を行なう期間の一部もしくは全体と一致する場合、前記他の無線通信装置宛てのフレームの送信動作の開始を禁止する、請求項2に記載の無線通信装置。
  6.  前記BSS識別情報は、前記媒体保護動作の開始を示すフレームの送信元無線通信装置を示すMACアドレスである、請求項1から請求項5の何れか1項に記載の無線通信装置。
  7.  前記BSS識別情報は、前記媒体保護動作の開始を示すフレームのPHYヘッダに記載されたBSS colorである、請求項1から請求項5の何れか1項に記載の無線通信装置。
  8.  前記BSS識別情報は、前記媒体保護動作の開始を示すフレームの宛先無線通信装置を示す情報であり、
     前記受信部は、過去に受信したフレームの送信元無線通信装置を示す情報の集合であるTAアドレスセットを保持し、
     前記送信部は、前記媒体保護動作の開始を示すフレームの宛先無線通信装置を示す情報が、前記TAアドレスセットに存在しない場合、前記他の無線通信装置宛てのフレームの送信動作を開始する、請求項2に記載の無線通信装置。
  9.  物理層フレームを送受信可能な無線通信装置の通信方法であって、
     媒体保護動作の開始を示すフレームを受信するステップと、
     前記媒体保護動作の開始を示すフレームより、前記媒体保護動作の開始を示すフレームの送信元無線通信装置が属するBSSを識別するBSS識別情報を取得するステップと、
     前記BSS識別情報に基づいて、自装置が属するBSSに属する他の無線通信装置宛てのフレームの送信動作を開始するか否かを判断するステップと、を備える通信方法。
  10.  物理層フレームを送受信可能な第1の無線通信装置と第2の無線通信装置を備える通信システムであって、
     前記第1の無線通信装置は、
     自装置が属するBSSを識別するBSS識別情報を含む、媒体保護動作の開始を示すフレームを送信する送信部を備え、
     前記第2の無線通信装置は、
     前記媒体保護動作の開始を示すフレームを受信し、前記媒体保護動作の開始を示すフレームより、前記第1の無線通信装置が属するBSSを識別するBSS識別情報を取得する受信部と、
     前記BSS識別情報に基づいて、自装置が属するBSSに属する他の無線通信装置宛てのフレームの送信動作を開始するか否かを判断する送信部と、を備える通信システム。
PCT/JP2016/066389 2015-06-05 2016-06-02 無線通信装置、通信方法および通信システム WO2016195012A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/579,572 US10708957B2 (en) 2015-06-05 2016-06-02 Wireless communication apparatus, communication method, and communication system
US16/891,836 US11096224B2 (en) 2015-06-05 2020-06-03 Wireless communication apparatus, communication method, and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015114372A JP2018121093A (ja) 2015-06-05 2015-06-05 無線通信装置、通信方法及び通信システム
JP2015-114372 2015-06-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/579,572 A-371-Of-International US10708957B2 (en) 2015-06-05 2016-06-02 Wireless communication apparatus, communication method, and communication system
US16/891,836 Division US11096224B2 (en) 2015-06-05 2020-06-03 Wireless communication apparatus, communication method, and communication system

Publications (1)

Publication Number Publication Date
WO2016195012A1 true WO2016195012A1 (ja) 2016-12-08

Family

ID=57440434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066389 WO2016195012A1 (ja) 2015-06-05 2016-06-02 無線通信装置、通信方法および通信システム

Country Status (3)

Country Link
US (2) US10708957B2 (ja)
JP (1) JP2018121093A (ja)
WO (1) WO2016195012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169193A (ja) * 2016-02-03 2017-09-21 株式会社東芝 動的感度制御対応のワイヤレスmacのためのマルチスレッショルドリスニング法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121095A (ja) * 2015-06-05 2018-08-02 シャープ株式会社 無線通信装置、通信方法及び通信システム
EP3429301B1 (en) * 2016-03-08 2021-12-22 Sony Group Corporation Wireless communication device and wireless communication method
US10367608B2 (en) * 2017-10-06 2019-07-30 Hewlett Packard Enterprise Development Lp Wireless communication channel scan
ES2932402T3 (es) * 2018-07-03 2023-01-18 Lg Electronics Inc Método y dispositivo para identificar paquetes en sistemas de LAN inalámbrica
US11683678B2 (en) * 2019-01-04 2023-06-20 Apple Inc. Discovery frames and group addressed frames transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085365A1 (ja) * 2005-02-09 2006-08-17 Mitsubishi Denki Kabushiki Kaisha 無線装置および送信電力制御による干渉回避方法
JP2006245908A (ja) * 2005-03-02 2006-09-14 Toyota Industries Corp 無線lanシステムおよび通信装置
EP1755279A2 (en) * 2005-08-19 2007-02-21 Samsung Electronics Co., Ltd. Transmitting frames in wireless local area network
JP2007194787A (ja) * 2006-01-18 2007-08-02 National Institute Of Information & Communication Technology 無線装置およびそれを備えた無線ネットワークシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933738B1 (ko) * 2011-06-24 2018-12-28 인터디지탈 패튼 홀딩스, 인크 광대역 및 다중 대역폭 전송 프로토콜을 지원하는 방법 및 장치
EP2842241B1 (en) 2012-04-24 2017-12-27 LG Electronics Inc. Method and apparatus for transmitting and receiving frame including partial association identifier in wireless lan system
JP6255397B2 (ja) * 2012-12-11 2017-12-27 パナソニック株式会社 無線通信システムにおける重複チャンネルによって引き起こされる干渉を減少させる方法
US10187851B2 (en) * 2014-06-02 2019-01-22 Lg Electronics Inc. Method and device for operation based on power save mode in WLAN

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085365A1 (ja) * 2005-02-09 2006-08-17 Mitsubishi Denki Kabushiki Kaisha 無線装置および送信電力制御による干渉回避方法
JP2006245908A (ja) * 2005-03-02 2006-09-14 Toyota Industries Corp 無線lanシステムおよび通信装置
EP1755279A2 (en) * 2005-08-19 2007-02-21 Samsung Electronics Co., Ltd. Transmitting frames in wireless local area network
JP2007194787A (ja) * 2006-01-18 2007-08-02 National Institute Of Information & Communication Technology 無線装置およびそれを備えた無線ネットワークシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169193A (ja) * 2016-02-03 2017-09-21 株式会社東芝 動的感度制御対応のワイヤレスmacのためのマルチスレッショルドリスニング法
US10405324B2 (en) 2016-02-03 2019-09-03 Kabushiki Kaisha Toshiba Multi-threshold listening method for dynamic sensitivity control enabled wireless MAC

Also Published As

Publication number Publication date
US11096224B2 (en) 2021-08-17
US20200296766A1 (en) 2020-09-17
JP2018121093A (ja) 2018-08-02
US20180176952A1 (en) 2018-06-21
US10708957B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP7216465B2 (ja) 無線送信装置、無線受信装置、通信方法および通信システム
US11096224B2 (en) Wireless communication apparatus, communication method, and communication system
WO2016195011A1 (ja) 無線通信装置、通信方法及び集積回路
CN108432328B (zh) 无线通信装置以及终端装置
US11470638B2 (en) Terminal apparatus and communication method
US11963264B2 (en) Wireless communication apparatus, communication method, and integrated circuit
WO2021166924A1 (ja) ステーション装置、通信方法
WO2017082094A1 (ja) 端末装置および通信方法
JP2020202570A (ja) 端末装置、基地局装置、通信方法及び通信システム
WO2017030162A1 (ja) 端末装置、通信方法及び集積回路
WO2016140179A1 (ja) 基地局装置および端末装置
WO2019044248A1 (ja) アクセスポイント装置、ステーション装置、通信方法
WO2021166922A1 (ja) ステーション装置、通信方法
WO2023054153A1 (ja) アクセスポイント装置、及び通信方法
WO2021166944A1 (ja) ステーション装置、通信方法
WO2021166936A1 (ja) ステーション装置、通信方法
WO2022004667A1 (ja) アクセスポイント装置、ステーション装置、及び通信方法
JP2023114921A (ja) 通信装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP