WO2017030151A1 - Method for manufacturing matrix - Google Patents

Method for manufacturing matrix Download PDF

Info

Publication number
WO2017030151A1
WO2017030151A1 PCT/JP2016/074037 JP2016074037W WO2017030151A1 WO 2017030151 A1 WO2017030151 A1 WO 2017030151A1 JP 2016074037 W JP2016074037 W JP 2016074037W WO 2017030151 A1 WO2017030151 A1 WO 2017030151A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concavo
mold
manufacturing
convex pattern
Prior art date
Application number
PCT/JP2016/074037
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 哲
裕貴 鈴木
邦和 鈴木
正岐 道畑
潔 高増
大直 田中
涼 西村
Original Assignee
国立大学法人 東京大学
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, Jxエネルギー株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2017535554A priority Critical patent/JP6808155B2/en
Publication of WO2017030151A1 publication Critical patent/WO2017030151A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a method for producing a matrix of a nanoimprint mold.
  • a nanoimprint method is known in addition to the lithography method.
  • the nanoimprint method is a technology that allows a nanometer order pattern to be transferred from the mold onto the substrate by sandwiching the resin between the mold and the substrate.
  • the thermal nanoimprint method, the optical nanoimprint method, etc. It is being considered.
  • the photo-nanoimprint method includes i) application of a curable resin layer, ii) pressing of a mold onto the curable resin layer, iii) photocuring of the curable resin layer, and iv) peeling of the mold from the curable resin layer.
  • Examples of a method for producing a master pattern for forming an uneven pattern of a mold used for nanoimprint include a photolithography method, a cutting method, an electron beam direct drawing method, a particle beam processing method, and an operation probe processing method.
  • a method using self-organization (microphase separation) by heating of a block copolymer and in Patent Document 2 in a solvent atmosphere of the block copolymer.
  • Patent Document 3 discloses a method using self-organization, and discloses a method for forming irregularities due to wrinkles on a polymer surface by heating and cooling a deposited film on the polymer film.
  • An object of the present invention is to provide a novel manufacturing method of a mother die for forming an uneven pattern of a mold used for nanoimprinting.
  • a photocurable material is supplied onto the high refractive index medium to form a photocurable material film;
  • a predetermined region at the interface between the high refractive index medium and the photocuring material film is irradiated with a plurality of light beams from the high refractive index medium side in different incident directions and incident angles greater than a critical angle.
  • the manufacturing method of the mother die having the concavo-convex pattern may further include removing an uncured portion of the photocuring material film.
  • the plurality of light beams may be three light beams.
  • the time average of the intensity distribution of the double beam interference evanescent wave may include a maximum value or a minimum value having different values in one spatial period.
  • the concavo-convex pattern may include convex portions or concave portions having different heights in one cycle.
  • the plurality of light fluxes may be generated using a filter having a plurality of light transmission portions arranged concentrically.
  • the light quantity of the plurality of light beams and / or the azimuth angle at which the plurality of light beams enter the predetermined region may be controlled by the filter.
  • a method for producing a mold is provided, which includes peeling a mother die having the concavo-convex pattern from the metal layer.
  • a method for producing a member having a concavo-convex pattern including transferring the concavo-convex pattern of the mold obtained by the mold production method of the second aspect.
  • the photocuring material film is cured by a double beam interference evanescent wave generated by interfering with the evanescent light of a plurality of light beams, and therefore the incident angle of the incident light beam (light wave)
  • a complicated uneven pattern can be formed by changing the direction or the like.
  • the mother die obtained by the method for producing a mother die having an uneven pattern according to the present invention has various functions such as members used in various devices such as organic EL elements and solar cells, water repellency, antireflection, and antifogging. It is extremely effective for manufacturing members.
  • FIG. 1 is a flowchart showing a method for manufacturing a mother die having a concavo-convex pattern.
  • FIG. 2 is a diagram conceptually illustrating the principle of generation of evanescent light.
  • FIG. 3 is a diagram conceptually illustrating an embodiment of a manufacturing apparatus for a mother die having a concavo-convex pattern.
  • FIG. 4 is a diagram conceptually showing another embodiment of a manufacturing apparatus for a mother die having a concavo-convex pattern.
  • FIG. 5 is a conceptual diagram illustrating an example of a pressing process and a peeling process in the method for manufacturing an optical substrate.
  • FIG. 6 is a diagram conceptually showing a cross-sectional structure of a light-emitting element including an optical substrate manufactured using a mother die.
  • FIG. 7 is a diagram conceptually showing the irradiation directions of three light beams in the simulations of the first to third embodiments.
  • 8A and 8B show the time average of the intensity distribution of the three-beam interference evanescent wave obtained in Example 1
  • FIGS. 8C and 8D show the three-beams obtained in Example 2.
  • FIG. The time average of the intensity distribution of the interference evanescent wave is shown.
  • FIGS. 8E and 8F show the time average of the intensity distribution of the three-beam interference evanescent wave obtained in Example 3.
  • the manufacturing method of the mother mold having the concavo-convex pattern mainly includes a step S1 of supplying a photocurable material on a high refractive index medium to form a photocurable material film, and a high refractive index medium. And a step S2 of irradiating a predetermined region on the interface of the photocurable material film with a plurality of light beams (light waves).
  • a photocurable material is supplied onto a high refractive index medium to form a photocurable material film (low refractive index medium) (step S1 in FIG. 1).
  • the photocuring material is a material that is cured by light, and for example, KC1162, KC104, etc. manufactured by JSR Corporation can be used.
  • the high refractive index medium has a refractive index greater than that of the photocuring material.
  • S-LAH79 manufactured by Ohara for example, S-LAH79 manufactured by Ohara, SF6 manufactured by Schott, N-SF66, a prism made of sapphire, a solid immersion lens, or the like can be used.
  • any method may be used.
  • any method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method may be used.
  • the coating method can be used.
  • a predetermined region at the interface between the high refractive index medium and the photocuring material film is irradiated with a plurality of light beams from the high refractive index medium side at different incident directions and incident angles greater than the critical angle (step of FIG. 1).
  • the different incident directions of a plurality of light beams means that at least one of the incident angles and azimuth angles of the plurality of light beams is different.
  • the azimuth angle is the angle around the normal of the interface in the traveling direction of the projected light beam when the traveling direction (ray vector) of the light beam is projected onto the interface between the high refractive index medium and the photocuring material film. (For example, angle ⁇ 1 in FIG. 7).
  • FIG. 2 is a conceptual diagram showing the principle of generation of evanescent light.
  • the light beam 70 is irradiated from the high refractive index medium 10 side to the interface 50 between the high refractive index medium 10 and the photocuring material film 30 at an incident angle ⁇ that is equal to or greater than the critical angle, the light beam 70 is The light is totally reflected at the interface 50 between the film 10 and the photocurable material film 30.
  • the leakage of electromagnetic energy occurs. This leaked energy is the evanescent light 90.
  • the evanescent light 90 decreases exponentially in a direction perpendicular to the interface 50 and is localized in a region of about the wavelength of the light beam 70.
  • the electric field E of the evanescent light 90 at the interface 50 is described by the following formula (1) using the Maxwell equation and Snell's law.
  • is the incident angle of the luminous flux 70
  • A is the amplitude of the electric field E
  • is the angular frequency
  • t is the time
  • is the wavelength
  • k is the wave number
  • n 1 is the refractive index of the high refractive index medium
  • n 2 is the light.
  • the refractive index of the curable material is represented, and the axis orthogonal to the interface 50 is the z axis, and the axis where the interface 50 and the light plane (incident surface) intersect is the x axis.
  • a plurality of light beams are irradiated to a predetermined region at the interface between the high refractive index medium and the photocuring material film.
  • An Ar ion laser, a He—Cd laser, or the like can be used as a light source for a plurality of light beams.
  • the plurality of light beams may have the same wavelength.
  • the wavelengths of the plurality of light beams are not particularly limited as long as the light curing material can be cured.
  • a plurality of light beams of evanescent light are generated in the predetermined region. Interference between these evanescent lights generates interference waves (double-beam (multi-beam) interference evanescent waves).
  • double-beam interference evanescent waves As shown in the examples described later, by controlling the conditions of the incident angle, azimuth angle, amplitude, relative phase, and polarization state of a plurality of light beams to be irradiated, the waveform of the double light beam interference evanescent wave is controlled to obtain a desired waveform.
  • the double beam interference evanescent wave can be generated.
  • the time-averaged intensity distribution includes local maximum values (or local minimum values) having different values in one period (spatial period).
  • a simple double beam interference evanescent wave can be generated.
  • a part of the photocuring material film is exposed by the double beam interference evanescent wave generated as described above.
  • the exposed photocurable material film is cured into a shape corresponding to the intensity distribution of the double beam interference evanescent wave. Therefore, the photocurable material film can be cured into a desired shape by controlling the intensity distribution of the double beam interference evanescent wave according to the irradiation conditions of a plurality of light beams. As described above, since the evanescent light is localized in the region of the wavelength of the light beam at the interface between the high refractive index medium and the photocuring material film, only the portion existing in this region of the photocuring material film is cured.
  • an uncured portion of the photocuring material film is dissolved and removed using a solvent that dissolves the photocuring material.
  • a matrix having a concavo-convex pattern in which a cured photocurable material film is formed on a high refractive index medium is obtained.
  • the obtained mother mold can be used as a mother mold for producing a mold having an uneven pattern used for nanoimprinting.
  • the concave / convex pattern of the matrix has a shape corresponding to the shape of the cured photocuring material film, that is, the intensity distribution of the double beam interference evanescent wave.
  • the photocuring material film is exposed with the double beam interference evanescent wave in which the time-averaged intensity distribution includes maximum values (or minimum values) having different values in one period (spatial period).
  • the time-averaged intensity distribution includes maximum values (or minimum values) having different values in one period (spatial period).
  • Such a concavo-convex pattern is referred to as a “three-dimensional pseudorandom pattern” in the present application.
  • the size and shape of the predetermined region where the double-beam interference evanescent wave is generated depend on the size and shape of the light emitting surface of the light source. Therefore, for example, by using a light source having a large light emission area as a light source for a plurality of light beams, a mother die having a large-area uneven pattern can be formed.
  • FIG. 3 shows an embodiment of a manufacturing apparatus used for the manufacturing method of the mother die having the concavo-convex pattern described above.
  • 3 mainly includes a laser light source 110 that emits an initial light beam 300, a prism 130 that is a high refractive index medium, and an initial light beam 300 that is branched into three light beams 330, 370, and 390.
  • a branching optical system 150 to be incident on the CCD camera 170.
  • a photocuring material film 210 is formed on the surface of the prism 130 opposite to the light beam incident side.
  • the three light beams 330, 370, and 390 generated by the branching optical system 150 are incident on the prism 130 and are irradiated on the interface 230 between the prism 130 and the photocurable material film 210.
  • the branching optical system 150 includes polarizing beam splitters 151a and 151b, a beam splitter 153, half-wave plates 155a, 155b and 155c, a polarizing plate 157, mirrors 159a, 159b, 159c, 159d and 159e as optical components.
  • the laser light source 110 emits an initial light beam 300.
  • the initial light beam 300 is linearly polarized light in this embodiment.
  • the emitted initial light beam 300 passes through the half-wave plate 155a, and then is split (branched) into the first transmitted light 310 that is the p-polarized component and the first reflected light 350 that is the s-polarized component in the polarization beam splitter 151a.
  • the vibration direction of the first transmitted light 310 is the vertical direction of the paper surface of FIG. 3, and the vibration direction of the first reflected light 350 is a direction perpendicular to the paper surface of FIG.
  • the first transmitted light 310 passes through the half-wave plate 155b and the polarizing plate 157, and its vibration direction (polarization direction) and intensity are adjusted.
  • the first transmitted light 310 is reflected by the mirror 159a and then enters the polarization beam splitter 151b.
  • the polarization beam splitter 151b the first transmitted light 310 is split into second transmitted light (first light flux) 330 that is a p-polarized component and second reflected light (not shown) that is an s-polarized component.
  • the second transmitted light 330 passes through the half-wave plate 155c and its vibration direction is changed to a direction perpendicular to the paper surface of FIG.
  • the second transmitted light 330 enters the prism 130 through a surface different from the surface on which the photocurable material film 210 of the prism 130 is formed, and is irradiated to the interface 230 between the prism 130 and the photocurable material film 210.
  • the first reflected light 350 generated in the polarization beam splitter 151a is reflected by the mirror 159b and then enters the beam splitter 153.
  • the first reflected light 350 is divided into a third transmitted light 370 (second light beam) and a third reflected light (third light beam) 390.
  • the third transmitted light 370 is reflected by the mirror 159c and the mirror 159e, and then enters the prism 130 through a surface different from the surface on which the photocuring material film 210 of the prism 130 is formed.
  • the interface 230 of the film 210 is irradiated.
  • the vibration direction of the third transmitted light 370 is a direction perpendicular to the paper surface of FIG.
  • the third reflected light 390 is reflected by the mirror 159d and then enters the prism 130 through a surface different from the surface on which the photocuring material film 210 of the prism 130 is formed.
  • the interface 230 is irradiated.
  • the vibration direction of the third reflected light 390 is a direction perpendicular to the paper surface of FIG.
  • the incident angle of the first light beam 330, the second light beam 370, and the third light beam 390 to the interface 230 can be adjusted from the position and orientation of each optical component of the branching optical system 150.
  • the first light beam 330, the second light beam 370, and the third light beam 390 are all applied to a predetermined region of the interface 230 at an incident angle that is equal to or greater than the critical angle. Therefore, the first light beam 330, the second light beam 370, and the third light beam 390 are totally reflected at a predetermined region of the interface 230.
  • the electromagnetic energy oozes out to the photocurable material film 210 side, that is, evanescent light is generated.
  • the evanescent light generated from the first light beam 330, the second light beam 370, and the third light beam 390 interferes to generate an interference wave (three-beam interference evanescent wave). Since the three-beam interference evanescent wave is localized in a region of the wavelength of the light beam near the interface 230, a portion existing in this region of the photo-curing material film 210 is exposed to form an intensity distribution of the three-beam interference evanescent wave. Cured to the corresponding shape.
  • the process of exposure and curing of the photocurable material film 210 by the three-beam interference evanescent wave can be observed by the CCD camera 170 and the imaging lens 171.
  • the photocuring material film 210 is exposed and cured by irradiating the interface 230 with three light beams.
  • the branching optical system 150 two light beams or four or more light beams are generated. It is also possible to expose and cure the photo-curing material film 210.
  • the manufacturing apparatus 100 may further include a control unit (not shown) that controls the laser light source 110, the optical components of the branching optical system 150, the CCD camera 170, and the like.
  • a control unit (not shown) that controls the laser light source 110, the optical components of the branching optical system 150, the CCD camera 170, and the like.
  • FIG. 4 shows another embodiment of a manufacturing apparatus used in a method for manufacturing a mother die having an uneven pattern. 4 mainly includes a laser light source 510 that emits an initial light beam 700, a liquid light guide 530, a relay optical system 550, a filter 560, and a container 590 for filling a photocuring material, A high numerical aperture objective lens 586 and a CCD camera 570 are provided.
  • the laser light source 510 emits an initial light beam 700.
  • the initial light beam 700 may be linearly polarized light.
  • the liquid light guide 530 includes a resin tube and a light guide liquid filled therein.
  • the refractive index of the light guide liquid is higher than the refractive index of the resin tube.
  • the relay optical system 550 includes a plurality of lenses 551a, 551b, and 551c, and a beam splitter 553.
  • the relay optical system 550 is not limited to the configuration illustrated in FIG. 4, and any number and any type of relay optical system 550 may be used as long as the configuration can guide the light 710 from the liquid light guide 530 to the high numerical aperture objective lens 586. You may comprise with an optical element.
  • the filter 560 is provided in the optical path between the liquid light guide 530 and the high numerical aperture objective lens 586.
  • the filter 550 has a plurality of light transmission parts arranged concentrically, and generates a number of light beams according to the number of the plurality of light transmission parts.
  • the filter 560 may be, for example, a hole in a metal plate such as aluminum or stainless steel provided with a light transmission part.
  • an optical substrate such as quartz or BK7 glass may be vapor-deposited with chromium or the like to provide a light transmission part, and in this case, by adjusting the transmittance of the light transmission part, The amount of light can be adjusted.
  • the container 590 includes a side wall 592 and a bottom surface 594.
  • a bottom surface 594 of the container 590 serves as a base material that supports the photocurable material film 210.
  • the bottom surface 594 is made of a high refractive index medium.
  • the high numerical aperture objective lens 586 is disposed outside the bottom surface 594 of the container 590 and is in close contact with the bottom surface 594 of the container 590 via the optical oil 584.
  • the refractive indices of the high numerical aperture objective lens 586, the bottom surface 594 of the container 590 and the optical oil 584 may be equal.
  • the high numerical aperture objective lens 586, the optical oil 584, and the bottom surface 594 of the container 590 are equivalent to configuring one solid immersion lens (solid immersion lens) 580.
  • solid immersion lens is used to refer to a portion that is in contact with the photocurable material film 210 that is an object of exposure, although the optical oil (liquid) 584 is in contact with the high numerical aperture objective lens 586.
  • the initial light beam 700 generated from the laser light source 510 propagates in the liquid light guide 530 through the entrance 530 a of the liquid light guide 530.
  • the light 710 emitted from the emission port 530b of the liquid ride guide 530 passes through the plurality of lenses 551a of the relay optical system 550.
  • a plurality of light beams 730 corresponding to the number and position of the light transmitting portions of the filter are generated.
  • the plurality of light beams 730 pass through the lenses 551 b and 551 c, and then partially reflected by the beam splitter 553 toward the solid immersion lens 580.
  • the plurality of light beams 730 incident on the solid immersion lens 580 are applied to the interface between the solid immersion lens 580 and the photocuring material film 610 (that is, the interface between the bottom surface 594 of the container 590 and the photocuring material film 610).
  • Each of the plurality of light beams 730 is applied to a predetermined region of the interface 630 at an incident angle greater than the critical angle. Therefore, the plurality of light beams 730 are totally reflected at a predetermined region of the interface 630.
  • evanescent light is generated on the photocurable material film 610 side in a predetermined region of the interface 630.
  • the evanescent light generated from the plurality of light beams 730 interferes to generate an interference wave (double light beam interference evanescent wave). Since the double beam interference evanescent wave is localized in the region of the wavelength of the light beam in the vicinity of the interface 630, a portion existing in this region of the photo-curing material film 610 is exposed to the intensity distribution of the double beam interference evanescent wave. Cured to the corresponding shape.
  • the exposure and curing process of the photocuring material film 610 by the double beam interference evanescent wave can be observed by the CCD camera 570, the imaging lens 571, and the mirror 573.
  • the manufacturing apparatus 500 may further include a control unit (not shown) that controls the laser light source 510, each optical component of the relay optical system 550, the CCD camera 570, and the like.
  • the configuration of the optical system is simple. Further, the number of light beams can be easily increased or decreased by changing the number of light transmitting portions of the filter 560. Further, the azimuth angle at which the plurality of light beams 730 are incident on a predetermined region of the interface 630 can be controlled by the position of the light transmission portion of the filter 560.
  • a mold for transferring the concavo-convex pattern can be manufactured from the mother die having the concavo-convex pattern manufactured by the above manufacturing method. As will be described later, another member such as an optical substrate can be manufactured by transferring the uneven pattern of the mold.
  • the mold manufactured from the matrix having such a concavo-convex pattern includes a metal mold and a film-like resin mold.
  • the resin constituting the resin mold includes rubber such as natural rubber or synthetic rubber. A method for manufacturing such a mold will be described below.
  • a seed layer serving as a conductive layer for electroforming is formed on a matrix having an uneven pattern by electroless plating, sputtering, vapor deposition, or the like.
  • the seed layer is preferably 10 nm or more in order to make the current density uniform in the subsequent electroforming process and to make the thickness of the metal layer deposited by the subsequent electroforming process constant.
  • seed layer materials include nickel, copper, gold, silver, platinum, titanium, cobalt, tin, zinc, chromium, gold / cobalt alloy, gold / nickel alloy, boron / nickel alloy, solder, copper / nickel / chromium An alloy, a tin-nickel alloy, a nickel-palladium alloy, a nickel-cobalt-phosphorus alloy, or an alloy thereof can be used.
  • a metal layer is deposited on the seed layer by electroforming (electroplating).
  • the thickness of the metal layer can be, for example, 10 to 30000 ⁇ m in total including the thickness of the seed layer. Any of the above metal species that can be used as a seed layer can be used as a material for the metal layer deposited by electroforming.
  • the formed metal layer desirably has an appropriate hardness and thickness from the viewpoint of ease of processing such as pressing, peeling and cleaning of the resin layer for forming a subsequent mold.
  • the metal layer including the seed layer obtained as described above is peeled off from the matrix having the concavo-convex pattern to obtain a metal substrate.
  • the peeling method may be physically peeled off, and the material for forming the concave / convex pattern of the matrix is removed by dissolving it using an organic solvent that dissolves them, for example, toluene, tetrahydrofuran (THF), chloroform or the like. Also good.
  • the metal substrate is peeled from the mother die, the remaining material components can be removed by washing.
  • a cleaning method wet cleaning using a surfactant or the like, or dry cleaning using ultraviolet rays or plasma can be used. Further, for example, remaining material components may be adhered and removed using an adhesive or an adhesive.
  • the metal substrate (metal mold) having the pattern transferred from the mother die thus obtained can be used as a mold for transferring the concavo-convex pattern.
  • a film-like resin mold can be produced by transferring the concavo-convex structure (pattern) of the metal substrate to a film-like support substrate using the obtained metal substrate. For example, after the curable resin is applied to the support substrate, the resin layer is cured while pressing the uneven structure of the metal substrate against the resin layer.
  • a substrate for example, a substrate made of an inorganic material such as glass or silicon, silicone resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA) ), Polystyrene (PS), polyimide (PI), polyarylate and other resin substrates, and substrates made of metal materials such as nickel, copper, and aluminum.
  • the thickness of the support substrate can be in the range of 1 to 500 ⁇ m.
  • the curable resin a resin such as photo-curing and thermosetting, moisture-curing type, chemical-curing type (two-component mixing) can be used. Specifically, for example, epoxy type, acrylic type, methacrylic type, vinyl ether type, oxetane type, urethane type, melamine type, urea type, polyester type, polyolefin type, phenol type, cross-linkable liquid crystal type, fluorine type, silicone type And various resins such as polyamide-based monomers, oligomers, and polymers.
  • the thickness of the curable resin is preferably in the range of 0.5 to 500 ⁇ m.
  • the thickness is less than the lower limit, the height of the irregularities formed on the surface of the cured resin layer tends to be insufficient, and if the thickness exceeds the upper limit, the influence of the volume change of the resin that occurs during curing increases and the irregular shape is well formed. It may not be possible.
  • the method for applying the curable resin examples include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and sputtering.
  • Various coating methods such as a method can be employed.
  • the conditions for curing the curable resin vary depending on the type of resin used.
  • the curing temperature is in the range of room temperature to 250 ° C.
  • the curing time is in the range of 0.5 minutes to 3 hours.
  • a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used.
  • the irradiation amount is preferably in the range of 20 mJ / cm 2 to 10 J / cm 2 .
  • the metal substrate is removed from the cured resin layer after curing.
  • the method for removing the metal substrate is not limited to the mechanical peeling method, and a known method can be adopted.
  • a film-like resin mold having a cured resin layer in which unevenness is formed on a support substrate that can be obtained in this way can be used as a mold for transferring an uneven pattern.
  • the concavo-convex pattern of the metal substrate can be obtained.
  • a transferred rubber mold can be produced.
  • the obtained rubber mold can be used as a mold for transferring an uneven pattern.
  • Natural rubber and synthetic rubber can be used as the rubber-based resin material, and silicone rubber or a mixture or copolymer of silicone rubber and other materials is particularly preferable.
  • silicone rubber examples include polyorganosiloxane, cross-linked polyorganosiloxane, polyorganosiloxane / polycarbonate copolymer, polyorganosiloxane / polyphenylene copolymer, polyorganosiloxane / polystyrene copolymer, polytrimethylsilylpropyne, poly 4-methylpentene or the like is used.
  • Silicone rubber is cheaper than other resin materials, has excellent heat resistance, high thermal conductivity, elasticity, and is not easily deformed even under high temperature conditions. Is suitable. Furthermore, since the silicone rubber-based material has high gas and water vapor permeability, the solvent and water vapor of the transfer material can be easily transmitted.
  • a silicone rubber-based material is preferable.
  • the surface free energy of the rubber material is preferably 25 mN / m or less.
  • the rubber mold can be, for example, 50 to 1000 mm long, 50 to 3000 mm wide, and 1 to 50 mm thick. Moreover, you may perform a mold release process on the uneven
  • corrugated pattern can be manufactured by the nanoimprint method using the mold for uneven
  • An optical substrate is taken as an example of such a member, and the manufacturing method thereof will be described below.
  • the optical substrate manufacturing method mainly includes a solution preparation step for preparing a precursor solution of an inorganic material, a coating step for applying the prepared precursor solution to the substrate, a mold having a concavo-convex pattern on a coating film (precursor) By transferring the concavo-convex pattern to the coating film by curing the coating film while being pressed against the film), a pressing process for pressing the mold for transferring the concavo-convex pattern, a pre-baking process for pre-baking the coating film pressed against the mold, It has the peeling process which peels a mold from a coating film, and the hardening process which carries out the main curing of the coating film.
  • An optical substrate manufactured by such a manufacturing method includes a concavo-convex structure layer onto which a concavo-convex pattern of a mold is transferred.
  • a precursor solution of the inorganic material is prepared.
  • inorganic materials include Si-based materials such as silica, SiN, and SiON, Ti-based materials such as TiO 2 , ITO (indium tin oxide) -based materials, ZnO, ZnS, ZrO 2 , and Al 2 O. 3 , inorganic materials such as BaTiO 3 and SrTiO 2 .
  • polysilazane may be used as a precursor of the inorganic material.
  • Polysilazane is oxidized and ceramicized (silica modification) by heating or irradiation with energy rays such as excimer to form silica, SiN or SiON.
  • “Polysilazane” is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, N—H, etc., and ceramics such as both intermediate solid solutions SiO X N Y. It is a precursor inorganic polymer. A compound that is converted to ceramics at a relatively low temperature and is modified to silica or the like as represented by the following general formula (1) described in JP-A-8-112879 is more preferable.
  • R1, R2, and R3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane also referred to as PHPS
  • R 1, R 2 and R 3 are hydrogen atoms, and the hydrogen part bonded to Si is partially an alkyl group or the like.
  • Substituted organopolysilazanes are particularly preferred.
  • silicon alkoxide-added polysilazane obtained by reacting polysilazane with silicon alkoxide for example, JP-A No. 5-23827
  • glycidol-added polysilazane obtained by reacting glycidol for example, JP-A-6-122852
  • an alcohol-added polysilazane obtained by reacting an alcohol for example, JP-A-6-240208
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate for example, JP-A-6-299118
  • an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex for example, JP-A-6-306329
  • metal fine particles Pressurized polysilazane (e.g., JP-A-7-196986) and the
  • hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used.
  • an amine or metal catalyst may be added.
  • curing of the coating film may be promoted by heating in the curing step described later, or the precursor solution is cured by irradiation of energy rays such as excimer to form an inorganic material. May be.
  • the precursor solution of the inorganic material prepared as described above is applied on the substrate.
  • the substrate is not particularly limited, and a known transparent substrate can be appropriately used.
  • a substrate made of a transparent inorganic material such as glass; polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, etc.), acrylic resin (polymethyl methacrylate, etc.), polycarbonate, polyvinyl chloride, styrene resin ( For example, an ABS resin or the like), a cellulose resin (such as triacetyl cellulose), a polyimide resin (such as a polyimide resin or a polyimide amide resin), or a substrate made of a resin such as a cycloolefin polymer can be used.
  • any coating method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method can be used.
  • the bar coating method, the die coating method and the spin coating method are preferable because the precursor solution can be uniformly applied and the application can be completed quickly before the precursor film is cured.
  • the substrate After applying the precursor solution, the substrate may be held in the air or under reduced pressure in order to evaporate the solvent in the coating film (precursor film). If this holding time is short, the viscosity of the coating film becomes too low to transfer the uneven pattern to the coating film, and if the holding time is too long, the polymerization reaction of the precursor proceeds and the viscosity of the coating film becomes too high. The uneven pattern cannot be transferred to the film. Further, after the precursor solution is applied, the coating film is cured as the solvent evaporates, and the physical properties such as the viscosity of the coating film change in a short time. In view of the stability of the uneven pattern formation, it is desirable that the drying time range in which pattern transfer can be satisfactorily wide is desirable.
  • the solvent in the coating film (precursor film) evaporates just by holding the substrate as it is, it is not always necessary to perform an aggressive drying operation such as heating or blowing, and the substrate on which the coating film is formed is left as it is. It may be left for a certain period of time or may be transported for a predetermined time in order to perform a subsequent process.
  • a concavo-convex pattern is formed on the coating film using a mold for concavo-convex pattern transfer.
  • the mold the above-described film-shaped mold or metal mold can be used, but it is desirable to use a flexible or flexible film-shaped mold.
  • the mold may be pressed against the precursor film using a pressing roll. In the roll process using a pressure roll, the time for contact between the mold and the coating film is short compared to the press type, so that pattern breakage due to differences in the thermal expansion coefficients of the mold, the substrate, and the stage on which the substrate is installed is prevented.
  • the substrate may be heated while pressing the mold.
  • a film-like mold 140 is fed between the pressing roll 122 and the substrate 40 conveyed immediately below the pressing roll 122.
  • the uneven pattern of the film mold 140 can be transferred to the coating film 64 on the substrate 40.
  • the film mold 140 and the substrate 40 are transported synchronously, and the surface of the coating film 64 on the substrate 40 is covered with the film mold 140. To do. At this time, the film mold 140 and the substrate 40 are brought into close contact with each other by rotating while pressing the pressing roll 122 against the back surface of the film mold 140 (the surface opposite to the surface on which the concavo-convex pattern is formed). In order to feed the long film-shaped mold 140 toward the pressing roll 122, it is convenient to use the film-shaped mold 140 as it is from the film roll around which the long film-shaped mold 140 is wound.
  • the precursor film After pressing the mold against the precursor film, the precursor film may be calcined.
  • pre-baking the precursor is converted into an inorganic material, the coating film is cured, the concavo-convex pattern is solidified, and is less likely to collapse during peeling.
  • pre-baking it is preferably heated in the atmosphere at a temperature of room temperature to 300 ° C. Note that the preliminary firing is not necessarily performed.
  • ultraviolet rays such as excimer UV light are used.
  • the coating film may be cured by irradiation with energy rays.
  • the mold After pressing the mold or pre-baking the precursor film, the mold is peeled off from the coating film (precursor film or inorganic material film formed by converting the precursor film).
  • a known peeling method can be employed as a mold peeling method.
  • the uneven structure layer may be fully cured.
  • the concavo-convex structure layer can be fully cured by the main baking.
  • a precursor that is converted to silica by the sol-gel method is used, a hydroxyl group and the like contained in silica (amorphous silica) constituting the concavo-convex structure layer is detached by the main calcination, and the concavo-convex structure layer becomes stronger.
  • the main baking is preferably performed at a temperature of 200 to 1200 ° C. for about 5 minutes to 6 hours.
  • the concavo-convex structure layer when the concavo-convex structure layer is made of silica, it becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time. Note that the curing step is not necessarily performed. In addition, when a material that generates an acid or an alkali by irradiating the precursor solution with light such as ultraviolet rays, energy represented by ultraviolet rays such as excimer UV light is used instead of firing the concavo-convex structure layer. By irradiating the line, the concavo-convex structure layer can be fully cured.
  • the optical substrate 400 (see FIG. 6) in which the uneven structure layer 60 is formed on the substrate 40 can be manufactured.
  • the inorganic material to be applied in the coating step in place of the precursor of the silica, TiO 2, ZnO, ZnS, ZrO 2, Al 2 O 3, BaTiO 3, SrTiO 2, precursors such as ITO
  • the body may be used.
  • the concavo-convex structure layer may be formed by using a dispersion of fine particles of an inorganic material, a liquid phase deposition (LPD), or the like.
  • LPD liquid phase deposition
  • the concavo-convex structure layer made of an inorganic material is formed.
  • the concavo-convex structure layer may be made of a curable resin in addition to the above-described inorganic material.
  • a curable resin for example, a resin such as photo-curing and thermosetting, moisture-curing type, and chemical-curing type (two-component mixing) can be used. Specifically, epoxy, acrylic, methacrylic, vinyl ether, oxetane, urethane, melamine, urea, polyester, polyolefin, phenol, cross-linkable liquid crystal, fluorine, silicone, polyamide And various resins such as monomers, oligomers and polymers.
  • the concavo-convex structure layer using a curable resin for example, after applying the curable resin to the substrate, by curing the coating film while pressing the mold for transferring the concavo-convex pattern to the applied curable resin layer, The concave / convex pattern of the mold can be transferred to the curable resin layer.
  • the curable resin may be applied after being diluted with an organic solvent.
  • an organic solvent used in this case a solvent capable of dissolving the uncured resin can be selected and used.
  • the curable resin can be selected from known solvents such as alcohol solvents such as methanol, ethanol and isopropyl alcohol (IPA), and ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone (MIBK).
  • solvents such as alcohol solvents such as methanol, ethanol and isopropyl alcohol (IPA), and ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone (MIBK).
  • solvents such as alcohol solvents such as methanol, ethanol and isopropyl alcohol (IPA)
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone (MIBK).
  • MIBK isobutyl ketone
  • the method for applying the curable resin include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating
  • the conditions for curing the curable resin vary depending on the type of resin used.
  • the curing temperature is in the range of room temperature to 250 ° C.
  • the curing time is in the range of 0.5 minutes to 3 hours.
  • a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used.
  • the irradiation amount is preferably in the range of 20 mJ / cm 2 to 10 J / cm 2 .
  • a silane coupling agent as a material of an uneven structure layer.
  • adhesion between the uneven structure layer and a layer such as an electrode formed thereon can be improved. Resistance in a cleaning process and a high-temperature treatment process in an element manufacturing process is improved.
  • the type of the silane coupling agent used in the concavo-convex structure layer is not particularly limited.
  • RSiX 3 R is selected from a vinyl group, a glycidoxy group, an acrylic group, a methacryl group, an amino group, and a mercapto group.
  • An organic functional group containing at least one selected from the above, and X is a halogen element or an alkoxyl group).
  • methods for applying the silane coupling agent include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and sputtering. Various coating methods such as a method can be employed. Thereafter, a cured film can be obtained by drying under appropriate conditions according to each material. For example, heat drying may be performed at 100 to 150 ° C. for 15 to 90 minutes.
  • the material of the concavo-convex structure layer may be an inorganic material or a curable resin material containing an ultraviolet absorbing material.
  • the ultraviolet absorbing material has an action of suppressing deterioration of the film by absorbing ultraviolet rays and converting light energy into a harmless form such as heat.
  • As the ultraviolet absorber conventionally known ones can be used. For example, a benzotriazole-based absorbent, a triazine-based absorbent, a salicylic acid derivative-based absorbent, a benzophenone-based absorbent, or the like can be used.
  • a coating film (precursor film) is formed on a substrate and a mold is pressed against the coating film to manufacture a concavo-convex structure layer.
  • a precursor is formed on the concavo-convex pattern of the mold.
  • An uneven structure layer can also be formed on a substrate by forming a body film, bonding the precursor film to the substrate, and peeling the mold.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • An uneven structure layer made of can be formed.
  • the concavo-convex structure layer formed on the mold using the dry process can be bonded to the substrate by the following method, for example.
  • the substrate and the mold are overlapped so that the adhesive layer on the substrate adheres to the uneven structure layer on the mold, and the adhesive is cured. Thereby, a board
  • Next, the mold is peeled from the uneven structure layer. Thereby, an optical substrate having a concavo-convex structure layer formed on the substrate can be formed.
  • the surface of the concavo-convex structure layer (the surface of the coating layer when a coating layer is formed) may be subjected to a hydrophobic treatment.
  • a known method may be used for the hydrophobizing treatment.
  • the surface is silica, it can be hydrophobized with dimethyldichlorosilane, trimethylalkoxysilane, or the like, or trimethylsilyl such as hexamethyldisilazane.
  • a method of hydrophobizing with an agent and silicone oil may be used, or a surface treatment method of metal oxide powder using supercritical carbon dioxide may be used.
  • various functional layers may be provided on the surface of the concavo-convex structure layer.
  • the functional layer include an optical functional layer such as an antireflection layer, a polarizing layer, a color filter, and an ultraviolet absorption layer, a mechanical functional layer such as a hard coat layer and a stress relaxation layer, an antistatic layer, and a conductive layer.
  • optical functional layer such as an antireflection layer, a polarizing layer, a color filter, and an ultraviolet absorption layer
  • a mechanical functional layer such as a hard coat layer and a stress relaxation layer
  • an antistatic layer such as a hard coat layer and a stress relaxation layer
  • a conductive layer examples thereof include an electric functional layer, an antifogging layer, an antifouling layer, and a printing layer.
  • an optical substrate can be manufactured in the same manner as the above manufacturing method even if a hard mold such as a metal mold or a quartz mold is used. can do.
  • a hard mold it is preferable to use a flexible substrate such as a film substrate as the substrate.
  • members having various functions such as insulation, conductivity, anti-fogging, heat insulation, antifouling, dielectric, hydrophilic, and water repellent can be produced by the same method.
  • the intensity distribution of the double beam interference evanescent wave was calculated by simulation.
  • the interface between the high-refractive index medium and the photo-curing material film is the xy plane, and the photo-curing material film side is the positive direction of the z-axis and high refraction
  • the xyz axis was determined with the rate medium side as the negative direction of the z axis.
  • Example 1 As shown in FIG. 7, when the first light beam 330 is irradiated onto the xy plane with an incident angle of ⁇ 1 and an angle (azimuth angle) around the z-axis from the positive x-axis direction of ⁇ 1 , the first light beam 330 is irradiated.
  • An electric field wave (electric field vector) E 1 of 330 is expressed by the following equation (2).
  • T 1 (amplitude in consideration of polarization), k 1 (wave vector), and r (position vector) in equation (2) are expressed by the following equations (3), (4), and (5), respectively.
  • c is the speed of light
  • is the wavelength
  • ⁇ 1 is the initial phase
  • a 1 is the electric field amplitude
  • n 1 is high
  • the refractive index of the refractive index medium, n 2 represents the refractive index of the photocuring material.
  • the electric field wave E 3 of the second electric field waves E 2 and the third light flux 370 of the light beam 390 is represented.
  • the intensity I of the three-beam interference evanescent wave is calculated from the following formula (6), and the time average ⁇ I> t of the intensity I can be obtained by the following formula (7).
  • the critical angle is about 50 °, so that each of the light beams 330, 370, and 390 satisfies the total reflection condition. ing.
  • FIGS. 8A and 8B show the time average of the intensity distribution of the obtained three-beam interference evanescent wave.
  • the light intensity is plotted in a two-dimensional plane as height information
  • (E) are oblique perspective views
  • FIGS. 8 (b), (d), and (f) are upward perspective views.
  • the time average of the intensity distribution of the three-beam interference evanescent wave has a distribution in which mountains having the same intensity are densely arranged.
  • the time average of the intensity distribution of the obtained three-beam interference evanescent wave is shown in FIGS.
  • the time average of the intensity distribution of the three-beam interference evanescent wave has a distribution in which the wave shape is cut obliquely on the ridge where the antinodes of standing waves are connected.
  • the time average of the intensity distribution of the obtained three-beam interference evanescent wave is shown in FIGS.
  • the amplitude of the standing wave was continuously changed, and the beat was generated.
  • the time average of the intensity distribution of the three-beam interference evanescent wave according to the present embodiment includes maximal values having different values in one spatial period.
  • a three-beam interference evanescent wave having various intensity distributions can be generated by changing the incident direction of each beam. Also, by changing the incident direction of each light beam, a three-beam interference evanescent wave having a time average of intensity distribution that includes a maximum value or a minimum value having different values in one cycle as in the third embodiment is generated. It is also possible to make it.
  • Examples 1 to 3 the simulation result in the case of using three light beams has been described.
  • two light beams may be irradiated to a predetermined region at the interface between the high refractive index medium and the photocuring material film. It is possible to form an intensity distribution having a shape extending in one direction.
  • the three-beam evanescent wave may have a more complicated intensity distribution as described above.
  • four or more light beams may be used, and the double light beam interference evanescent wave in that case can have an even more complicated intensity distribution.
  • the photocuring material film can be cured into a shape corresponding to the intensity distribution of the double beam interference evanescent wave.
  • This cured photo-curing material film can be used as a matrix of a mold used in the nanoimprint method, and the uneven pattern of the matrix is related to the shape of the cured photo-curing material film, that is, the intensity distribution of the double beam interference evanescent wave. Have a corresponding shape.
  • the height is mutually increased in one period.
  • a matrix having a concavo-convex pattern including different convex portions or concave portions, that is, a three-dimensional pseudo-random pattern, can be formed.
  • corrugated pattern of this invention is not limited to the said embodiment, In the range of the technical idea described in the claim Can be modified as appropriate.
  • the manufacturing apparatus of the mother mold having the uneven pattern according to the present invention is not limited to the configuration of the above embodiment, and the arrangement of various components may be different from the arrangement shown in the drawings of the present application.
  • the configuration may be such that the incident angle, azimuth angle, amplitude, relative phase, polarization state, and the like of a plurality of light beams to be irradiated can be controlled.
  • the matrix having the concavo-convex pattern obtained by the production method of the present invention is, for example, an organic substrate for various devices such as organic EL lighting, liquid crystal display elements, solar cells, microlens arrays, nanoprism arrays, optical waveguides, etc.
  • Organic EL lighting liquid crystal display elements
  • solar cells microlens arrays, nanoprism arrays, optical waveguides, etc.
  • a light reflecting member a light scattering member, an insulating member, an electrode pattern member, a conductive member, an antifogging member, a heat insulating member, an antifouling member, an optical waveguide member, a dielectric member, a non-reflective member, a low reflection member, a polarization functional member, It can also be used for the production of members having various functions, such as light diffractive members, hydrophilic members, and water repellent members.

Abstract

A method for manufacturing a matrix having an uneven pattern includes the steps of: supplying a photocuring material onto a high-refractive-index medium 130 and forming a photocuring material film 210; and radiating a plurality of luminous fluxes 330, 370, 390 at mutually different incidence directions and an incidence angle equal to or greater than a critical angle from the high-refractive-index medium 130 to a predetermined region of an interface 230 of the photocuring material film 210 with the high-refractive-index medium 130, and, through use of a multi-beam interference evanescent wave thereby generated, curing the photocuring material film 210 in the vicinity of the predetermined region. Provided is a novel method for manufacturing a matrix for forming an uneven pattern in a mold used for nanoimprinting.

Description

母型の製造方法Manufacturing method of mother mold
 本発明は、ナノインプリント用モールドの母型の製造方法に関する。 The present invention relates to a method for producing a matrix of a nanoimprint mold.
 半導体集積回路のような微細な凹凸パターンを形成する方法として、リソグラフィ法以外に、ナノインプリント法が知られている。ナノインプリント法は、樹脂をモールド(型)と基板で挟み込むことで、モールドから基板上にナノメートルオーダーのパターンを転写することができる技術であり、使用材料によって、熱ナノインプリント法、光ナノインプリント法などが検討されている。このうち、光ナノインプリント法は、i)硬化性樹脂層の塗布、ii)硬化性樹脂層へのモールドの押圧、iii)硬化性樹脂層の光硬化及びiv)硬化性樹脂層からのモールドの剥離の四工程からなり、このような単純なプロセスでナノサイズの加工を実現できる点で優れている。特に、光照射により硬化する光硬化性樹脂を用いるためパターン転写工程にかかる時間が短く、高スループットが期待できる。このため、半導体デバイスのみならず、有機EL素子やLEDなどの光学部材、撥水、反射防止、防曇などの種々の機能を有する部材、MEMS、バイオチップなど多くの分野で実用化が期待されている。 As a method for forming a fine uneven pattern such as a semiconductor integrated circuit, a nanoimprint method is known in addition to the lithography method. The nanoimprint method is a technology that allows a nanometer order pattern to be transferred from the mold onto the substrate by sandwiching the resin between the mold and the substrate. Depending on the materials used, the thermal nanoimprint method, the optical nanoimprint method, etc. It is being considered. Among these, the photo-nanoimprint method includes i) application of a curable resin layer, ii) pressing of a mold onto the curable resin layer, iii) photocuring of the curable resin layer, and iv) peeling of the mold from the curable resin layer. It is excellent in that nano-sized processing can be realized by such a simple process. In particular, since a photocurable resin that is cured by light irradiation is used, the time required for the pattern transfer process is short, and high throughput can be expected. Therefore, it is expected to be put to practical use not only in semiconductor devices but also in many fields such as optical members such as organic EL elements and LEDs, members having various functions such as water repellency, antireflection and antifogging, MEMS and biochips. ing.
 ナノインプリントに用いるモールドの凹凸パターンを形成するための母型パターンの作製方法として、フォトリソグラフィ法、切削加工法、電子線直接描画法、粒子線ビーム加工法、操作プローブ加工法等が挙げられる。さらに、本出願の共同出願人の一方は、特許文献1においてブロック共重合体の加熱による自己組織化(ミクロ相分離)を利用する方法を、特許文献2においてブロック共重合体の溶媒雰囲気下における自己組織化を利用する方法を、特許文献3においてにポリマー膜上の蒸着膜を加熱・冷却することによりポリマー表面の皺による凹凸を形成する方法をそれぞれ開示している。 Examples of a method for producing a master pattern for forming an uneven pattern of a mold used for nanoimprint include a photolithography method, a cutting method, an electron beam direct drawing method, a particle beam processing method, and an operation probe processing method. Further, one of the co-applicants of the present application described in Patent Document 1 a method using self-organization (microphase separation) by heating of a block copolymer, and in Patent Document 2 in a solvent atmosphere of the block copolymer. Patent Document 3 discloses a method using self-organization, and discloses a method for forming irregularities due to wrinkles on a polymer surface by heating and cooling a deposited film on the polymer film.
 また、本出願の共同出願人の他方は、特許文献4において、エバネッセント光を用いて複雑な三次元的形状の部材を作製する方法及び装置を開示している。 In addition, the other of the co-applicants of the present application discloses a method and apparatus for producing a member having a complicated three-dimensional shape using evanescent light in Patent Document 4.
WO2012/096368WO2012 / 096368 WO2013/161454WO2013 / 161454 WO2011/007878WO2011 / 007878 特開2005-238650号JP 2005-238650 A
 本発明の目的は、ナノインプリントに用いるモールドの凹凸パターンを形成するための母型の新規な製造方法を提供することにある。 An object of the present invention is to provide a novel manufacturing method of a mother die for forming an uneven pattern of a mold used for nanoimprinting.
 本発明の第1の態様に従えば、高屈折率媒質上に光硬化材料を供給して光硬化材料膜を形成することと、
 前記高屈折率媒質と前記光硬化材料膜の界面における所定領域に、前記高屈折率媒質側から複数の光束を、互いに異なる入射方向で且つ臨界角以上の入射角度で照射し、それにより発生した複光束干渉エバネッセント波により前記所定領域近傍の前記光硬化材料膜を硬化させることとを含む凹凸パターンを有する母型の製造方法が提供される。
According to the first aspect of the present invention, a photocurable material is supplied onto the high refractive index medium to form a photocurable material film;
A predetermined region at the interface between the high refractive index medium and the photocuring material film is irradiated with a plurality of light beams from the high refractive index medium side in different incident directions and incident angles greater than a critical angle. There is provided a method for manufacturing a mother die having a concavo-convex pattern including curing the photocurable material film in the vicinity of the predetermined region by a double beam interference evanescent wave.
 前記凹凸パターンを有する母型の製造方法は、さらに、前記光硬化材料膜の未硬化の部分を除去することを含んでよい。 The manufacturing method of the mother die having the concavo-convex pattern may further include removing an uncured portion of the photocuring material film.
 前記凹凸パターンを有する母型の製造方法において、前記複数の光束が3つの光束であってよい。 In the method of manufacturing a master having the uneven pattern, the plurality of light beams may be three light beams.
 前記凹凸パターンを有する母型の製造方法において、前記複光束干渉エバネッセント波の強度分布の時間平均が、一空間周期中に互いに値の異なる極大値又は極小値を含んでよい。 In the manufacturing method of the master having the uneven pattern, the time average of the intensity distribution of the double beam interference evanescent wave may include a maximum value or a minimum value having different values in one spatial period.
 前記凹凸パターンを有する母型の製造方法において、前記凹凸パターンが、一周期中に互いに高さの異なる凸部又は凹部を含んでよい。 In the manufacturing method of the mother die having the concavo-convex pattern, the concavo-convex pattern may include convex portions or concave portions having different heights in one cycle.
 前記凹凸パターンを有する母型の製造方法において、同心円状に配列された複数の光透過部を有するフィルタを用いて、前記複数の光束を発生させてよい。前記フィルタにより、前記複数の光束の光量、及び/又は前記複数の光束が前記所定領域へ入射する方位角を制御してもよい。 In the manufacturing method of the mother die having the concavo-convex pattern, the plurality of light fluxes may be generated using a filter having a plurality of light transmission portions arranged concentrically. The light quantity of the plurality of light beams and / or the azimuth angle at which the plurality of light beams enter the predetermined region may be controlled by the filter.
 本発明の第2の態様に従えば、第1の態様の凹凸パターンを有する母型の製造方法により製造された前記母型の前記凹凸パターン上に電鋳により金属層を積層することと、
 前記金属層から前記凹凸パターンを有する母型を剥離することを含むモールドの製造方法が提供される。
According to the second aspect of the present invention, laminating a metal layer by electroforming on the concavo-convex pattern of the mother die produced by the method of producing a mother die having the concavo-convex pattern of the first aspect;
A method for producing a mold is provided, which includes peeling a mother die having the concavo-convex pattern from the metal layer.
 本発明の第3の態様に従えば、第2の態様のモールドの製造方法により得られたモールドの凹凸パターンを転写することを含む凹凸パターンを有する部材の製造方法が提供される。 According to the third aspect of the present invention, there is provided a method for producing a member having a concavo-convex pattern including transferring the concavo-convex pattern of the mold obtained by the mold production method of the second aspect.
 本発明の凹凸パターンを有する母型の製造方法では、複数の光束のエバネッセント光を干渉させて生成した複光束干渉エバネッセント波により光硬化材料膜を硬化させるため、入射させる光束(光波)の入射角度や方向等を変えることによって複雑な凹凸パターンを形成することができる。本発明の凹凸パターンを有する母型の製造方法により得られる母型は、有機EL素子や太陽電池のなどの各種デバイスに用いられる部材や撥水、反射防止、防曇などの種々の機能を有する部材等の製造にきわめて有効である。 In the method for manufacturing a master having an uneven pattern according to the present invention, the photocuring material film is cured by a double beam interference evanescent wave generated by interfering with the evanescent light of a plurality of light beams, and therefore the incident angle of the incident light beam (light wave) A complicated uneven pattern can be formed by changing the direction or the like. The mother die obtained by the method for producing a mother die having an uneven pattern according to the present invention has various functions such as members used in various devices such as organic EL elements and solar cells, water repellency, antireflection, and antifogging. It is extremely effective for manufacturing members.
図1は、凹凸パターンを有する母型の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a mother die having a concavo-convex pattern. 図2は、エバネッセント光の生成原理を概念的に示す図である。FIG. 2 is a diagram conceptually illustrating the principle of generation of evanescent light. 図3は、凹凸パターンを有する母型の製造装置の一実施形態を概念的に示す図である。FIG. 3 is a diagram conceptually illustrating an embodiment of a manufacturing apparatus for a mother die having a concavo-convex pattern. 図4は、凹凸パターンを有する母型の製造装置の別の実施形態を概念的に示す図である。FIG. 4 is a diagram conceptually showing another embodiment of a manufacturing apparatus for a mother die having a concavo-convex pattern. 図5は、光学基板の製造方法における、押圧工程及び剥離工程の様子の一例を示す概念図である。FIG. 5 is a conceptual diagram illustrating an example of a pressing process and a peeling process in the method for manufacturing an optical substrate. 図6は、母型を用いて製造された光学基板を備える発光素子の断面構造を概念的に示す図である。FIG. 6 is a diagram conceptually showing a cross-sectional structure of a light-emitting element including an optical substrate manufactured using a mother die. 図7は、実施例1~3のシミュレーションにおける3つの光束の照射方向を概念的に示す図である。FIG. 7 is a diagram conceptually showing the irradiation directions of three light beams in the simulations of the first to third embodiments. 図8(a)、(b)は、実施例1で求めた三光束干渉エバネッセント波の強度分布の時間平均を示し、図8(c)、(d)は、実施例2で求めた三光束干渉エバネッセント波の強度分布の時間平均を示し、図8(e)、(f)は、実施例3で求めた三光束干渉エバネッセント波の強度分布の時間平均を示す。8A and 8B show the time average of the intensity distribution of the three-beam interference evanescent wave obtained in Example 1, and FIGS. 8C and 8D show the three-beams obtained in Example 2. FIG. The time average of the intensity distribution of the interference evanescent wave is shown. FIGS. 8E and 8F show the time average of the intensity distribution of the three-beam interference evanescent wave obtained in Example 3. FIG.
 以下、本発明の凹凸パターンを有する母型の製造方法、それにより得られる凹凸パターンを有する母型を用いたモールドの製造方法、そのモールドを用いて光学基板を製造する方法、及びその光学基板を用いて製造される発光素子の実施形態について、図面を参照しながら説明する。 Hereinafter, a method for producing a mother die having a concavo-convex pattern according to the present invention, a method for producing a mold using a mother die having a concavo-convex pattern obtained thereby, a method for producing an optical substrate using the mold, and the optical substrate An embodiment of a light emitting device manufactured using the same will be described with reference to the drawings.
[凹凸パターンを有する母型の製造方法]
 凹凸パターンを有する母型の製造方法の実施形態について説明する。凹凸パターンを有する母型の製造方法は、図1に示すように、主に、高屈折率媒質上に光硬化材料を供給して光硬化材料膜を形成する工程S1と、高屈折率媒質と光硬化材料膜の界面の所定領域に複数の光束(光波)を照射する工程S2とを有する。
[Manufacturing method of matrix having uneven pattern]
An embodiment of a method for manufacturing a mother die having an uneven pattern will be described. As shown in FIG. 1, the manufacturing method of the mother mold having the concavo-convex pattern mainly includes a step S1 of supplying a photocurable material on a high refractive index medium to form a photocurable material film, and a high refractive index medium. And a step S2 of irradiating a predetermined region on the interface of the photocurable material film with a plurality of light beams (light waves).
<光硬化材料膜形成工程>
 まず、高屈折率媒質上に光硬化材料を供給して光硬化材料膜(低屈折率媒質)を形成する(図1の工程S1)。光硬化材料は光により硬化する材料であり、例えばJSR社製KC1162、KC104等を用いることができる。高屈折率媒質は、光硬化材料の屈折率よりも大きい屈折率を有する。高屈折率媒質として、例えばOhara社製S-LAH79、Schott社製SF6、N-SF66、サファイア等からなるプリズム、固体浸レンズ等を使用することができる。高屈折率媒質上に光硬化材料を供給する方法としては、任意の方法を用いてよく、例えば、バーコート法、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、インクジェット法などの任意の塗布方法を使用することができる。
<Photocuring material film formation process>
First, a photocurable material is supplied onto a high refractive index medium to form a photocurable material film (low refractive index medium) (step S1 in FIG. 1). The photocuring material is a material that is cured by light, and for example, KC1162, KC104, etc. manufactured by JSR Corporation can be used. The high refractive index medium has a refractive index greater than that of the photocuring material. As the high refractive index medium, for example, S-LAH79 manufactured by Ohara, SF6 manufactured by Schott, N-SF66, a prism made of sapphire, a solid immersion lens, or the like can be used. As a method for supplying the photocurable material onto the high refractive index medium, any method may be used. For example, any method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method may be used. The coating method can be used.
<光束照射工程>
 次に、高屈折率媒質と光硬化材料膜の界面における所定領域に、高屈折率媒質側から複数の光束を、互いに異なる入射方向で且つ臨界角以上の入射角度で照射する(図1の工程S2)。なお、本願において、複数の光束の入射方向が異なるとは、複数の光束においてそれらの入射角及び方位角の少なくとも一方が異なることを意味する。ここで、方位角とは、光束の進行方向(光線ベクトル)を高屈折率媒質と光硬化材料膜の界面に投影したときの、投影された光束の進行方向の該界面の法線まわりの角度を意味する(例えば、図7の角度φ1)。
<Light beam irradiation process>
Next, a predetermined region at the interface between the high refractive index medium and the photocuring material film is irradiated with a plurality of light beams from the high refractive index medium side at different incident directions and incident angles greater than the critical angle (step of FIG. 1). S2). In the present application, the different incident directions of a plurality of light beams means that at least one of the incident angles and azimuth angles of the plurality of light beams is different. Here, the azimuth angle is the angle around the normal of the interface in the traveling direction of the projected light beam when the traveling direction (ray vector) of the light beam is projected onto the interface between the high refractive index medium and the photocuring material film. (For example, angle φ1 in FIG. 7).
 高屈折率媒質と光硬化材料膜の界面に、高屈折率媒質側から臨界角以上の入射角度で光束を照射すると、エバネッセント光が生じる。図2にエバネッセント光の生成原理を示す概念図を示す。図2に示すように、高屈折率媒質10側から高屈折率媒質10と光硬化材料膜30の界面50に臨界角以上の入射角θで光束70を照射すると、光束70は高屈折率媒質10と光硬化材料膜30の界面50で全反射する。このとき、界面50において電場振幅が存在するため、電磁気的エネルギーの染み出しが生じる。この染み出したエネルギーがエバネッセント光90である。エバネッセント光90は、界面50に対して垂直な方向に指数関数的に減少し、光束70の波長程度の領域に局在する。 Evanescent light is generated when a light beam is irradiated on the interface between the high refractive index medium and the photocurable material film at an incident angle greater than the critical angle from the high refractive index medium side. FIG. 2 is a conceptual diagram showing the principle of generation of evanescent light. As shown in FIG. 2, when the light beam 70 is irradiated from the high refractive index medium 10 side to the interface 50 between the high refractive index medium 10 and the photocuring material film 30 at an incident angle θ that is equal to or greater than the critical angle, the light beam 70 is The light is totally reflected at the interface 50 between the film 10 and the photocurable material film 30. At this time, since there is an electric field amplitude at the interface 50, the leakage of electromagnetic energy occurs. This leaked energy is the evanescent light 90. The evanescent light 90 decreases exponentially in a direction perpendicular to the interface 50 and is localized in a region of about the wavelength of the light beam 70.
 界面50におけるエバネッセント光90の電場Eは、マクスウェル方程式とスネルの法則を用いて下記式(1)のように記述される。ただし、θは光束70の入射角、Aは電場Eの振幅、ωは角振動数、tは時間、λは波長、kは波数、nは高屈折率媒質の屈折率、nは光硬化材料の屈折率を表し、界面50と直交する軸をz軸、界面50と光線面(入射面)の交わる軸をx軸としている。 The electric field E of the evanescent light 90 at the interface 50 is described by the following formula (1) using the Maxwell equation and Snell's law. Where θ is the incident angle of the luminous flux 70, A is the amplitude of the electric field E, ω is the angular frequency, t is the time, λ is the wavelength, k is the wave number, n 1 is the refractive index of the high refractive index medium, and n 2 is the light. The refractive index of the curable material is represented, and the axis orthogonal to the interface 50 is the z axis, and the axis where the interface 50 and the light plane (incident surface) intersect is the x axis.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本実施形態の製造方法においては、複数の光束を高屈折率媒質と光硬化材料膜の界面における所定領域に照射する。複数の光束の光源としてはArイオンレーザ、He-Cdレーザ等を用いることができる。複数の光束は等しい波長を有してよい。複数の光束の波長は光硬化材料を硬化することのできる波長であれば特に限定されない。 In the manufacturing method of the present embodiment, a plurality of light beams are irradiated to a predetermined region at the interface between the high refractive index medium and the photocuring material film. An Ar ion laser, a He—Cd laser, or the like can be used as a light source for a plurality of light beams. The plurality of light beams may have the same wavelength. The wavelengths of the plurality of light beams are not particularly limited as long as the light curing material can be cured.
 複数の光束を、高屈折率媒質と光硬化材料膜の界面の所定領域に臨界角以上の入射角度で照射することによって、所定領域において複数の光束のエバネッセント光が発生する。これらのエバネッセント光が干渉することにより干渉波(複光束(多光束)干渉エバネッセント波)が生じる。後述する実施例で示すように、照射する複数の光束の入射角、方位角、振幅、相対位相、偏光状態の条件を制御することにより、複光束干渉エバネッセント波の波形を制御し、所望の波形の複光束干渉エバネッセント波を生じさせることができる。すなわち、高屈折率媒質と光硬化材料膜の界面の近傍において所望の強度分布を有する複光束干渉エバネッセント波を発生させることができる。例えば、後述する実施例3で示されるように、時間平均した強度分布(強度分布の時間平均)が一周期(空間的周期)の中に互いに値の異なる極大値(又は極小値)を含むような複光束干渉エバネッセント波を発生させることができる。 By irradiating a predetermined region of the interface between the high refractive index medium and the photocuring material film with an incident angle greater than the critical angle, a plurality of light beams of evanescent light are generated in the predetermined region. Interference between these evanescent lights generates interference waves (double-beam (multi-beam) interference evanescent waves). As shown in the examples described later, by controlling the conditions of the incident angle, azimuth angle, amplitude, relative phase, and polarization state of a plurality of light beams to be irradiated, the waveform of the double light beam interference evanescent wave is controlled to obtain a desired waveform. The double beam interference evanescent wave can be generated. That is, it is possible to generate a double beam interference evanescent wave having a desired intensity distribution in the vicinity of the interface between the high refractive index medium and the photocuring material film. For example, as shown in Example 3 described later, the time-averaged intensity distribution (time average of the intensity distribution) includes local maximum values (or local minimum values) having different values in one period (spatial period). A simple double beam interference evanescent wave can be generated.
 上記のようにして発生した複光束干渉エバネッセント波により、光硬化材料膜の一部が露光される。露光された光硬化材料膜は、複光束干渉エバネッセント波の強度分布に対応する形状に硬化する。そのため、複数の光束の照射条件によって複光束干渉エバネッセント波の強度分布を制御することにより、光硬化材料膜を所望の形状に硬化させることができる。上述の様に、エバネッセント光は高屈折率媒質と光硬化材料膜の界面において光束の波長程度の領域に局在するため、光硬化材料膜のこの領域に存在する部分のみが硬化する。 A part of the photocuring material film is exposed by the double beam interference evanescent wave generated as described above. The exposed photocurable material film is cured into a shape corresponding to the intensity distribution of the double beam interference evanescent wave. Therefore, the photocurable material film can be cured into a desired shape by controlling the intensity distribution of the double beam interference evanescent wave according to the irradiation conditions of a plurality of light beams. As described above, since the evanescent light is localized in the region of the wavelength of the light beam at the interface between the high refractive index medium and the photocuring material film, only the portion existing in this region of the photocuring material film is cured.
 次いで、光硬化材料を溶解する溶媒を用いて、光硬化材料膜の未硬化の部分を溶解し、除去する。それにより、硬化した光硬化材料膜が高屈折率媒質上に形成された凹凸パターンを有する母型が得られる。得られた母型は、ナノインプリントに用いる凹凸パターンを有するモールドを製造するための母型として用いることができる。母型の凹凸パターンは、硬化した光硬化材料膜の形状、すなわち、複光束干渉エバネッセント波の強度分布に対応する形状を有する。ゆえに、複数の光束の照射条件によって複光束干渉エバネッセント波の強度分布を制御することにより、種々の形状の凹凸パターンを有する母型を形成することができる。例えば、上述したような、時間平均した強度分布が一周期(空間的周期)の中に互いに値の異なる極大値(又は極小値)を含むような複光束干渉エバネッセント波で光硬化材料膜を露光することにより、一周期(空間的周期)中に互いに高さの異なる凸部(又は凹部)を含む凹凸パターンを有する母型を形成することができる。このような凹凸パターンを本願において「三次元疑似ランダムパターン」と呼称する。フォトリソグラフィ法等の従来の方法では、三次元疑似ランダムパターンの形成が難しかったが、本実施形態の製造方法のように複光束干渉エバネッセント波を用いることで三次元疑似ランダムパターンの形成が可能となる。 Next, an uncured portion of the photocuring material film is dissolved and removed using a solvent that dissolves the photocuring material. Thereby, a matrix having a concavo-convex pattern in which a cured photocurable material film is formed on a high refractive index medium is obtained. The obtained mother mold can be used as a mother mold for producing a mold having an uneven pattern used for nanoimprinting. The concave / convex pattern of the matrix has a shape corresponding to the shape of the cured photocuring material film, that is, the intensity distribution of the double beam interference evanescent wave. Therefore, by controlling the intensity distribution of the double beam interference evanescent wave according to the irradiation conditions of a plurality of light beams, it is possible to form a matrix having uneven patterns of various shapes. For example, as described above, the photocuring material film is exposed with the double beam interference evanescent wave in which the time-averaged intensity distribution includes maximum values (or minimum values) having different values in one period (spatial period). By doing so, it is possible to form a matrix having a concavo-convex pattern including convex portions (or concave portions) having different heights in one cycle (spatial cycle). Such a concavo-convex pattern is referred to as a “three-dimensional pseudorandom pattern” in the present application. In conventional methods such as photolithography, it is difficult to form a three-dimensional pseudo-random pattern, but it is possible to form a three-dimensional pseudo-random pattern by using a double beam interference evanescent wave as in the manufacturing method of this embodiment. Become.
 なお、複光束干渉エバネッセント波が生じる所定領域の大きさ及び形状は、光源の発光面の大きさ及び形状に依存する。したがって、例えば、複数の光束の光源として発光面積の大きい光源を用いることにより、大面積の凹凸パターンを有する母型を形成することができる。 Note that the size and shape of the predetermined region where the double-beam interference evanescent wave is generated depend on the size and shape of the light emitting surface of the light source. Therefore, for example, by using a light source having a large light emission area as a light source for a plurality of light beams, a mother die having a large-area uneven pattern can be formed.
[凹凸パターンを有する母型の製造装置(第1実施形態)]
 上述した凹凸パターンを有する母型の製造方法に用いる製造装置の一実施形態を図3に示す。図3の製造装置100は、主に、初期光束300を放射するレーザ光源110と、高屈折率媒質であるプリズム130と、初期光束300を3つの光束330、370、390に分岐させてプリズム130に入射させる分岐光学系150と、CCDカメラ170とを備える。プリズム130の光束入射側と反対側の表面には光硬化材料膜210が形成されている。分岐光学系150で生成された3つの光束330、370、390は、プリズム130に入射し、プリズム130と光硬化材料膜210の界面230に照射される。
[Manufacturing apparatus for mother mold having uneven pattern (first embodiment)]
FIG. 3 shows an embodiment of a manufacturing apparatus used for the manufacturing method of the mother die having the concavo-convex pattern described above. 3 mainly includes a laser light source 110 that emits an initial light beam 300, a prism 130 that is a high refractive index medium, and an initial light beam 300 that is branched into three light beams 330, 370, and 390. And a branching optical system 150 to be incident on the CCD camera 170. A photocuring material film 210 is formed on the surface of the prism 130 opposite to the light beam incident side. The three light beams 330, 370, and 390 generated by the branching optical system 150 are incident on the prism 130 and are irradiated on the interface 230 between the prism 130 and the photocurable material film 210.
 分岐光学系150は、光学部品として、偏光ビームスプリッタ151a、151b、ビームスプリッタ153、1/2波長板155a、155b、155c、偏光板157、ミラー159a、159b、159c、159d、159eを備える。 The branching optical system 150 includes polarizing beam splitters 151a and 151b, a beam splitter 153, half- wave plates 155a, 155b and 155c, a polarizing plate 157, mirrors 159a, 159b, 159c, 159d and 159e as optical components.
 レーザ光源110は初期光束300を放射する。初期光束300は、この実施形態では直線偏光である。放射された初期光束300は、1/2波長板155aを通過したあと、偏光ビームスプリッタ151aにおいて、p偏光成分である第1透過光310及びs偏光成分である第1反射光350に分割(分岐)される。第1透過光310の振動方向は図3の紙面の上下方向であり、第1反射光350の振動方向は図3の紙面に垂直な方向である。 The laser light source 110 emits an initial light beam 300. The initial light beam 300 is linearly polarized light in this embodiment. The emitted initial light beam 300 passes through the half-wave plate 155a, and then is split (branched) into the first transmitted light 310 that is the p-polarized component and the first reflected light 350 that is the s-polarized component in the polarization beam splitter 151a. ) The vibration direction of the first transmitted light 310 is the vertical direction of the paper surface of FIG. 3, and the vibration direction of the first reflected light 350 is a direction perpendicular to the paper surface of FIG.
 第1透過光310は1/2波長板155b及び偏光板157を通過して、その振動方向(偏光方向)及び強度が調整される。次いで第1透過光310はミラー159aで反射された後、偏光ビームスプリッタ151bに入射する。偏光ビームスプリッタ151bにおいて、第1透過光310は、p偏光成分である第2透過光(第1の光束)330及びs偏光成分である第2反射光(不図示)に分割される。第2透過光330は1/2波長板155cを通過して、その振動方向が図3の紙面に垂直な方向に変更される。次いで、第2透過光330はプリズム130の光硬化材料膜210が形成された面とは異なる面を通ってプリズム130に入射し、プリズム130と光硬化材料膜210の界面230に照射される。 The first transmitted light 310 passes through the half-wave plate 155b and the polarizing plate 157, and its vibration direction (polarization direction) and intensity are adjusted. Next, the first transmitted light 310 is reflected by the mirror 159a and then enters the polarization beam splitter 151b. In the polarization beam splitter 151b, the first transmitted light 310 is split into second transmitted light (first light flux) 330 that is a p-polarized component and second reflected light (not shown) that is an s-polarized component. The second transmitted light 330 passes through the half-wave plate 155c and its vibration direction is changed to a direction perpendicular to the paper surface of FIG. Next, the second transmitted light 330 enters the prism 130 through a surface different from the surface on which the photocurable material film 210 of the prism 130 is formed, and is irradiated to the interface 230 between the prism 130 and the photocurable material film 210.
 一方、偏光ビームスプリッタ151aにおいて生じた第1反射光350は、ミラー159bで反射された後、ビームスプリッタ153に入射する。ビームスプリッタ153において、第1反射光350は第3透過光370(第2の光束)及び第3反射光(第3の光束)390に分割される。第3透過光370は、ミラー159c及びミラー159eによって反射されたあと、プリズム130の光硬化材料膜210が形成された面とは異なる面を通ってプリズム130に入射し、プリズム130と光硬化材料膜210の界面230に照射される。なお、第3透過光370の振動方向は、図3の紙面に垂直な方向である。第3反射光390は、ミラー159dによって反射されたあと、プリズム130の光硬化材料膜210が形成された面とは異なる面を通ってプリズム130に入射し、プリズム130と光硬化材料膜210の界面230に照射される。なお、第3反射光390の振動方向は、図3の紙面に垂直な方向である。 On the other hand, the first reflected light 350 generated in the polarization beam splitter 151a is reflected by the mirror 159b and then enters the beam splitter 153. In the beam splitter 153, the first reflected light 350 is divided into a third transmitted light 370 (second light beam) and a third reflected light (third light beam) 390. The third transmitted light 370 is reflected by the mirror 159c and the mirror 159e, and then enters the prism 130 through a surface different from the surface on which the photocuring material film 210 of the prism 130 is formed. The interface 230 of the film 210 is irradiated. The vibration direction of the third transmitted light 370 is a direction perpendicular to the paper surface of FIG. The third reflected light 390 is reflected by the mirror 159d and then enters the prism 130 through a surface different from the surface on which the photocuring material film 210 of the prism 130 is formed. The interface 230 is irradiated. The vibration direction of the third reflected light 390 is a direction perpendicular to the paper surface of FIG.
 第1の光束330、第2の光束370及び第3の光束390の界面230への入射角は、分岐光学系150の各光学部品の位置及び向きなどから調整することができる。製造装置100において、第1の光束330、第2の光束370及び第3の光束390はいずれも臨界角以上の入射角で界面230の所定領域に照射される。そのため、第1の光束330、第2の光束370及び第3の光束390は、界面230の所定領域において全反射する。 The incident angle of the first light beam 330, the second light beam 370, and the third light beam 390 to the interface 230 can be adjusted from the position and orientation of each optical component of the branching optical system 150. In the manufacturing apparatus 100, the first light beam 330, the second light beam 370, and the third light beam 390 are all applied to a predetermined region of the interface 230 at an incident angle that is equal to or greater than the critical angle. Therefore, the first light beam 330, the second light beam 370, and the third light beam 390 are totally reflected at a predetermined region of the interface 230.
 このとき、界面230の所定領域において、光硬化材料膜210側に電磁気的エネルギーの染み出し、すなわち、エバネッセント光が生じる。第1の光束330、第2の光束370及び第3の光束390から発生したエバネッセント光は、干渉して干渉波(三光束干渉エバネッセント波)を生じる。三光束干渉エバネッセント波は、界面230の近傍の光束の波長程度の領域に局在するため、光硬化材料膜210のこの領域に存在する部分が露光されて、三光束干渉エバネッセント波の強度分布に対応する形状に硬化する。 At this time, in a predetermined region of the interface 230, the electromagnetic energy oozes out to the photocurable material film 210 side, that is, evanescent light is generated. The evanescent light generated from the first light beam 330, the second light beam 370, and the third light beam 390 interferes to generate an interference wave (three-beam interference evanescent wave). Since the three-beam interference evanescent wave is localized in a region of the wavelength of the light beam near the interface 230, a portion existing in this region of the photo-curing material film 210 is exposed to form an intensity distribution of the three-beam interference evanescent wave. Cured to the corresponding shape.
 三光束干渉エバネッセント波による光硬化材料膜210の、露光及び硬化の過程は、CCDカメラ170及び結像レンズ171により観察することができる。 The process of exposure and curing of the photocurable material film 210 by the three-beam interference evanescent wave can be observed by the CCD camera 170 and the imaging lens 171.
 図3の製造装置100では三光束を界面230に照射して光硬化材料膜210を露光し硬化させるが、分岐光学系150を適切に変更することにより2つの光束又は4以上の光束を界面230に照射して光硬化材料膜210を露光し硬化させることも可能である。 In the manufacturing apparatus 100 of FIG. 3, the photocuring material film 210 is exposed and cured by irradiating the interface 230 with three light beams. However, by appropriately changing the branching optical system 150, two light beams or four or more light beams are generated. It is also possible to expose and cure the photo-curing material film 210.
 製造装置100はさらに、レーザ光源110、分岐光学系150の各光学部品、CCDカメラ170等を制御する制御部(不図示)を有してもよい。 The manufacturing apparatus 100 may further include a control unit (not shown) that controls the laser light source 110, the optical components of the branching optical system 150, the CCD camera 170, and the like.
[凹凸パターンを有する母型の製造装置(第2実施形態)]
 凹凸パターンを有する母型の製造方法に用いる製造装置の別の実施形態を図4に示す。図4の製造装置500は、主に、初期光束700を放射するレーザ光源510と、液体ライトガイド530と、リレー光学系550と、フィルタ560と、光硬化材料を充填するための容器590と、高開口数対物レンズ586と、CCDカメラ570とを備える。
[Manufacturing device for mother mold having uneven pattern (second embodiment)]
FIG. 4 shows another embodiment of a manufacturing apparatus used in a method for manufacturing a mother die having an uneven pattern. 4 mainly includes a laser light source 510 that emits an initial light beam 700, a liquid light guide 530, a relay optical system 550, a filter 560, and a container 590 for filling a photocuring material, A high numerical aperture objective lens 586 and a CCD camera 570 are provided.
 レーザ光源510は初期光束700を放射する。初期光束700は、直線偏光であってよい。 The laser light source 510 emits an initial light beam 700. The initial light beam 700 may be linearly polarized light.
 液体ライトガイド530は、樹脂チューブと、その内部に充填された導光液から構成される。導光液の屈折率は、樹脂チューブの屈折率よりも高い。それにより、液体ライトガイド530内の一端から光を入射させると、当該光は液体ライトガイド530内で全反射を繰り返しながら伝播して他端から出射する。 The liquid light guide 530 includes a resin tube and a light guide liquid filled therein. The refractive index of the light guide liquid is higher than the refractive index of the resin tube. Thus, when light is incident from one end in the liquid light guide 530, the light propagates while repeating total reflection in the liquid light guide 530 and is emitted from the other end.
 リレー光学系550は複数のレンズ551a、551b、551cと、ビームスプリッタ553を有する。リレー光学系550は、図4に示した構成に限定されず、液体ライトガイド530からの光710を高開口数対物レンズ586に導くことができる構成であれば、任意の数、任意の種類の光学素子で構成されてよい。 The relay optical system 550 includes a plurality of lenses 551a, 551b, and 551c, and a beam splitter 553. The relay optical system 550 is not limited to the configuration illustrated in FIG. 4, and any number and any type of relay optical system 550 may be used as long as the configuration can guide the light 710 from the liquid light guide 530 to the high numerical aperture objective lens 586. You may comprise with an optical element.
 フィルタ560は、液体ライトガイド530と高開口数対物レンズ586の間の光路中に設けられる。フィルタ550は、同心円状に配列された複数の光透過部を有し、当該複数の光透過部の数に応じた数の光束を発生させる。フィルタ560は、例えば、アルミ、ステンレス等のメタルプレートに孔をあけて光透過部を設けたものであってよい。または、石英、BK7ガラス等の光学基板上にクロム等をマスク蒸着して光透過部を設けたものであってもよく、この場合、光透過部の透過率を調整することにより、光束毎の光量を調節することができる。 The filter 560 is provided in the optical path between the liquid light guide 530 and the high numerical aperture objective lens 586. The filter 550 has a plurality of light transmission parts arranged concentrically, and generates a number of light beams according to the number of the plurality of light transmission parts. The filter 560 may be, for example, a hole in a metal plate such as aluminum or stainless steel provided with a light transmission part. Alternatively, an optical substrate such as quartz or BK7 glass may be vapor-deposited with chromium or the like to provide a light transmission part, and in this case, by adjusting the transmittance of the light transmission part, The amount of light can be adjusted.
 容器590は側壁592と底面594から構成される。容器590の底面594は、光硬化材料膜210を支持する基材となる。底面594は高屈折率媒質から構成される。 The container 590 includes a side wall 592 and a bottom surface 594. A bottom surface 594 of the container 590 serves as a base material that supports the photocurable material film 210. The bottom surface 594 is made of a high refractive index medium.
 高開口数対物レンズ586は、容器590の底面594の外側に配置され、容器590の底面594と光学オイル584を介して密着している。高開口数対物レンズ586、容器590の底面594及び光学オイル584の屈折率は等しくてよい。この構成において高開口数対物レンズ586、光学オイル584及び容器590の底面594は、1つの固体浸レンズ(固浸レンズ)580を構成することと等価となる。なお、ここで「固体浸レンズ」という語を用いているのは、高開口数対物レンズ586に光学オイル(液体)584が接しているものの露光対象である光硬化材料膜210に接している部分(すなわち容器590の底面594)が固体であることによる。光学オイル584に代えて他の高屈折率流体を用いてもよい。なお、固体浸レンズ580の高開口数対物レンズ586及び光学オイル584に代えて固浸レンズ(超半球レンズ)そのものを用いてもよい。
The high numerical aperture objective lens 586 is disposed outside the bottom surface 594 of the container 590 and is in close contact with the bottom surface 594 of the container 590 via the optical oil 584. The refractive indices of the high numerical aperture objective lens 586, the bottom surface 594 of the container 590 and the optical oil 584 may be equal. In this configuration, the high numerical aperture objective lens 586, the optical oil 584, and the bottom surface 594 of the container 590 are equivalent to configuring one solid immersion lens (solid immersion lens) 580. Here, the term “solid immersion lens” is used to refer to a portion that is in contact with the photocurable material film 210 that is an object of exposure, although the optical oil (liquid) 584 is in contact with the high numerical aperture objective lens 586. This is because the bottom surface 594 of the container 590 is solid. Instead of the optical oil 584, another high refractive index fluid may be used. Instead of the high numerical aperture objective lens 586 and the optical oil 584 of the solid immersion lens 580, a solid immersion lens (super hemispherical lens) itself may be used.
 製造装置500において、レーザ光源510から発生した初期光束700は、液体ライトガイド530の入射口530aを通って液体ライトガイド530内を伝播する。液体ライドガイド530の出射口530bから出射した光710はリレー光学系550の複数のレンズ551aを通過する。次いで、光710がフィルタ560を通過することにより、フィルタの光透過部の数及び位置に応じた複数の光束730が生じる。複数の光束730は、レンズ551b、551cを通過した後、ビームスプリッタ553により一部が反射されて固体浸レンズ580に向かう。 In the manufacturing apparatus 500, the initial light beam 700 generated from the laser light source 510 propagates in the liquid light guide 530 through the entrance 530 a of the liquid light guide 530. The light 710 emitted from the emission port 530b of the liquid ride guide 530 passes through the plurality of lenses 551a of the relay optical system 550. Next, when the light 710 passes through the filter 560, a plurality of light beams 730 corresponding to the number and position of the light transmitting portions of the filter are generated. The plurality of light beams 730 pass through the lenses 551 b and 551 c, and then partially reflected by the beam splitter 553 toward the solid immersion lens 580.
 固体浸レンズ580に入射した複数の光束730は、固体浸レンズ580と光硬化材料膜610の界面(すなわち、容器590の底面594と光硬化材料膜610の界面)630に照射される。複数の光束730はいずれも臨界角以上の入射角で界面630の所定領域に照射される。そのため、複数の光束730は、界面630の所定領域において全反射する。 The plurality of light beams 730 incident on the solid immersion lens 580 are applied to the interface between the solid immersion lens 580 and the photocuring material film 610 (that is, the interface between the bottom surface 594 of the container 590 and the photocuring material film 610). Each of the plurality of light beams 730 is applied to a predetermined region of the interface 630 at an incident angle greater than the critical angle. Therefore, the plurality of light beams 730 are totally reflected at a predetermined region of the interface 630.
 このとき、界面630の所定領域において、光硬化材料膜610側にエバネッセント光が生じる。複数の光束730から発生したエバネッセント光は、干渉して干渉波(複光束干渉エバネッセント波)を生じる。複光束干渉エバネッセント波は、界面630の近傍の光束の波長程度の領域に局在するため、光硬化材料膜610のこの領域に存在する部分が露光されて、複光束干渉エバネッセント波の強度分布に対応する形状に硬化する。 At this time, evanescent light is generated on the photocurable material film 610 side in a predetermined region of the interface 630. The evanescent light generated from the plurality of light beams 730 interferes to generate an interference wave (double light beam interference evanescent wave). Since the double beam interference evanescent wave is localized in the region of the wavelength of the light beam in the vicinity of the interface 630, a portion existing in this region of the photo-curing material film 610 is exposed to the intensity distribution of the double beam interference evanescent wave. Cured to the corresponding shape.
 複光束干渉エバネッセント波による光硬化材料膜610の、露光及び硬化の過程は、CCDカメラ570、結像レンズ571及びミラー573により観察することができる。 The exposure and curing process of the photocuring material film 610 by the double beam interference evanescent wave can be observed by the CCD camera 570, the imaging lens 571, and the mirror 573.
 製造装置500はさらに、レーザ光源510、リレー光学系550の各光学部品、CCDカメラ570等を制御する制御部(不図示)を有してもよい。 The manufacturing apparatus 500 may further include a control unit (not shown) that controls the laser light source 510, each optical component of the relay optical system 550, the CCD camera 570, and the like.
 製造装置500ではフィルタ560を用いて複数の光束を作り出すため、光学系の構成がシンプルである。また、フィルタ560の光透過部の数を変えることで光束の数を簡単に増減させることができる。さらに、フィルタ560の光透過部の位置によって複数の光束730が界面630の所定領域へ入射する方位角を制御することもできる。 Since the manufacturing apparatus 500 uses the filter 560 to generate a plurality of light beams, the configuration of the optical system is simple. Further, the number of light beams can be easily increased or decreased by changing the number of light transmitting portions of the filter 560. Further, the azimuth angle at which the plurality of light beams 730 are incident on a predetermined region of the interface 630 can be controlled by the position of the light transmission portion of the filter 560.
[モールドの製造方法]
 上記の製造方法により製造される凹凸パターンを有する母型から、凹凸パターン転写用のモールドを製造することができる。後述するように、このモールドの凹凸パターンを転写することにより、光学基板等の別の部材を製造することができる。このような凹凸パターンを有する母型から製造されるモールドには、金属モールド及びフィルム状の樹脂モールド等が含まれる。樹脂モールドを構成する樹脂には、天然ゴム又は合成ゴムのようなゴムも含まれる。そのようなモールドの製造方法を以下に説明する。
[Mold manufacturing method]
A mold for transferring the concavo-convex pattern can be manufactured from the mother die having the concavo-convex pattern manufactured by the above manufacturing method. As will be described later, another member such as an optical substrate can be manufactured by transferring the uneven pattern of the mold. The mold manufactured from the matrix having such a concavo-convex pattern includes a metal mold and a film-like resin mold. The resin constituting the resin mold includes rubber such as natural rubber or synthetic rubber. A method for manufacturing such a mold will be described below.
 最初に、電鋳処理のための導電層となるシード層を、無電解めっき、スパッタまたは蒸着等により凹凸パターンを有する母型上に形成する。シード層は、後続の電鋳工程における電流密度を均一にして後続の電鋳工程により堆積される金属層の厚みを一定にするために10nm以上が好ましい。シード層の材料として、例えば、ニッケル、銅、金、銀、白金、チタン、コバルト、錫、亜鉛、クロム、金・コバルト合金、金・ニッケル合金、ホウ素・ニッケル合金、はんだ、銅・ニッケル・クロム合金、錫ニッケル合金、ニッケル・パラジウム合金、ニッケル・コバルト・リン合金、またはそれらの合金などを用いることができる。 First, a seed layer serving as a conductive layer for electroforming is formed on a matrix having an uneven pattern by electroless plating, sputtering, vapor deposition, or the like. The seed layer is preferably 10 nm or more in order to make the current density uniform in the subsequent electroforming process and to make the thickness of the metal layer deposited by the subsequent electroforming process constant. Examples of seed layer materials include nickel, copper, gold, silver, platinum, titanium, cobalt, tin, zinc, chromium, gold / cobalt alloy, gold / nickel alloy, boron / nickel alloy, solder, copper / nickel / chromium An alloy, a tin-nickel alloy, a nickel-palladium alloy, a nickel-cobalt-phosphorus alloy, or an alloy thereof can be used.
 次に、シード層上に電鋳(電界めっき)により金属層を堆積させる。金属層の厚みは、例えば、シード層の厚みを含めて全体で10~30000μmの厚さにすることができる。電鋳により堆積させる金属層の材料として、シード層として用いることができる上記金属種のいずれかを用いることができる。形成した金属層は、後続のモールドの形成のための樹脂層の押し付け、剥離及び洗浄などの処理の容易性からすれば、適度な硬度及び厚みを有することが望ましい。 Next, a metal layer is deposited on the seed layer by electroforming (electroplating). The thickness of the metal layer can be, for example, 10 to 30000 μm in total including the thickness of the seed layer. Any of the above metal species that can be used as a seed layer can be used as a material for the metal layer deposited by electroforming. The formed metal layer desirably has an appropriate hardness and thickness from the viewpoint of ease of processing such as pressing, peeling and cleaning of the resin layer for forming a subsequent mold.
 上記のようにして得られたシード層を含む金属層を、凹凸パターンを有する母型から剥離して金属基板を得る。剥離方法は物理的に剥がしても構わないし、母型の凹凸パターンを形成する材料を、それらを溶解する有機溶媒、例えば、トルエン、テトラヒドロフラン(THF)、クロロホルムなどを用いて溶解して除去してもよい。金属基板を母型から剥離するときに、残留している材料成分を洗浄にて除去することができる。洗浄方法としては、界面活性剤などを用いた湿式洗浄や紫外線やプラズマを使用した乾式洗浄を用いることができる。また、例えば、粘着剤や接着剤を用いて残留している材料成分を付着除去するなどしてもよい。こうして得られる、母型からパターンが転写された金属基板(金属モールド)は、凹凸パターン転写用のモールドとして用いられ得る。 The metal layer including the seed layer obtained as described above is peeled off from the matrix having the concavo-convex pattern to obtain a metal substrate. The peeling method may be physically peeled off, and the material for forming the concave / convex pattern of the matrix is removed by dissolving it using an organic solvent that dissolves them, for example, toluene, tetrahydrofuran (THF), chloroform or the like. Also good. When the metal substrate is peeled from the mother die, the remaining material components can be removed by washing. As a cleaning method, wet cleaning using a surfactant or the like, or dry cleaning using ultraviolet rays or plasma can be used. Further, for example, remaining material components may be adhered and removed using an adhesive or an adhesive. The metal substrate (metal mold) having the pattern transferred from the mother die thus obtained can be used as a mold for transferring the concavo-convex pattern.
 さらに、得られた金属基板を用いて、金属基板の凹凸構造(パターン)をフィルム状の支持基板に転写することで、フィルム状の樹脂モールドを作製することができる。例えば、硬化性樹脂を支持基板に塗布した後、金属基板の凹凸構造を樹脂層に押し付けつつ樹脂層を硬化させる。支持基板として、例えば、ガラス、シリコン等の無機材料からなる基板、シリコーン樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリイミド(PI)、ポリアリレート等の樹脂基板、ニッケル、銅、アルミ等の金属材料からなる基板が挙げられる。また、支持基板の厚みは、1~500μmの範囲にし得る。 Furthermore, a film-like resin mold can be produced by transferring the concavo-convex structure (pattern) of the metal substrate to a film-like support substrate using the obtained metal substrate. For example, after the curable resin is applied to the support substrate, the resin layer is cured while pressing the uneven structure of the metal substrate against the resin layer. As a supporting substrate, for example, a substrate made of an inorganic material such as glass or silicon, silicone resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA) ), Polystyrene (PS), polyimide (PI), polyarylate and other resin substrates, and substrates made of metal materials such as nickel, copper, and aluminum. The thickness of the support substrate can be in the range of 1 to 500 μm.
 硬化性樹脂としては、光硬化および熱硬化、湿気硬化型、化学硬化型(二液混合)等の樹脂を用いることができる。具体的には、例えば、エポキシ系、アクリル系、メタクリル系、ビニルエーテル系、オキセタン系、ウレタン系、メラミン系、ウレア系、ポリエステル系、ポリオレフィン系、フェノール系、架橋型液晶系、フッ素系、シリコーン系、ポリアミド系等のモノマー、オリゴマー、ポリマー等の各種樹脂が挙げられる。硬化性樹脂の厚みは0.5~500μmの範囲内であることが好ましい。厚みが前記下限未満では、硬化樹脂層の表面に形成される凹凸の高さが不十分となり易く、前記上限を超えると、硬化時に生じる樹脂の体積変化の影響が大きくなり凹凸形状が良好に形成できなくなる可能性がある。 As the curable resin, a resin such as photo-curing and thermosetting, moisture-curing type, chemical-curing type (two-component mixing) can be used. Specifically, for example, epoxy type, acrylic type, methacrylic type, vinyl ether type, oxetane type, urethane type, melamine type, urea type, polyester type, polyolefin type, phenol type, cross-linkable liquid crystal type, fluorine type, silicone type And various resins such as polyamide-based monomers, oligomers, and polymers. The thickness of the curable resin is preferably in the range of 0.5 to 500 μm. If the thickness is less than the lower limit, the height of the irregularities formed on the surface of the cured resin layer tends to be insufficient, and if the thickness exceeds the upper limit, the influence of the volume change of the resin that occurs during curing increases and the irregular shape is well formed. It may not be possible.
 硬化性樹脂を塗布する方法としては、例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法、カーテンコート法、インクジェット法、スパッタ法等の各種コート方法を採用することができる。さらに、硬化性樹脂を硬化させる条件としては、使用する樹脂の種類により異なるが、例えば、硬化温度が室温~250℃の範囲内であり、硬化時間が0.5分~3時間の範囲内であることが好ましい。また、紫外線や電子線のようなエネルギー線を照射することで硬化させる方法でもよく、その場合には、照射量は20mJ/cm~10J/cmの範囲内であることが好ましい。 Examples of the method for applying the curable resin include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and sputtering. Various coating methods such as a method can be employed. Furthermore, the conditions for curing the curable resin vary depending on the type of resin used. For example, the curing temperature is in the range of room temperature to 250 ° C., and the curing time is in the range of 0.5 minutes to 3 hours. Preferably there is. Further, a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used. In that case, the irradiation amount is preferably in the range of 20 mJ / cm 2 to 10 J / cm 2 .
 次いで、硬化後の硬化樹脂層から金属基板を取り外す。金属基板を取り外す方法としては、機械的な剥離法に限定されず、公知の方法を採用することができる。こうして得ることができる支持基板上に凹凸が形成された硬化樹脂層を有するフィルム状の樹脂モールドは、凹凸パターン転写用のモールドとして用いられ得る。 Next, the metal substrate is removed from the cured resin layer after curing. The method for removing the metal substrate is not limited to the mechanical peeling method, and a known method can be adopted. A film-like resin mold having a cured resin layer in which unevenness is formed on a support substrate that can be obtained in this way can be used as a mold for transferring an uneven pattern.
 また、上述の方法で得られた金属基板の凹凸構造(パターン)上にゴム系の樹脂材料を塗布し、塗布した樹脂材料を硬化させ、金属基板から剥離することにより、金属基板の凹凸パターンが転写されたゴムモールドを作製することができる。得られたゴムモールドは凹凸パターン転写用のモールドとして用いられ得る。ゴム系の樹脂材料として、天然ゴム及び合成ゴムを用いることができ、特に、シリコーンゴム、またはシリコーンゴムと他の材料との混合物もしくは共重合体が好ましい。シリコーンゴムとしては、例えば、ポリオルガノシロキサン、架橋型ポリオルガノシロキサン、ポリオルガノシロキサン/ポリカーボネート共重合体、ポリオルガノシロキサン/ポリフェニレン共重合体、ポリオルガノシロキサン/ポリスチレン共重合体、ポリトリメチルシリルプロピン、ポリ4メチルペンテンなどが用いられる。シリコーンゴムは、他の樹脂材料と比べて安価で、耐熱性に優れ、熱伝導性が高く、弾性があり、高温条件下でも変形しにくいことから、凹凸パターン転写プロセスを高温条件下で行う場合には好適である。さらに、シリコーンゴム系の材料は、ガスや水蒸気透過性が高いため、被転写材の溶媒や水蒸気を容易に透過することができる。そのため、樹脂材料または無機材料の前駆体溶液の膜に凹凸パターンを転写する目的でゴムモールドを用いる場合には、シリコーンゴム系の材料が好適である。また、ゴム系材料の表面自由エネルギーは25mN/m以下が好ましい。これによりゴムモールドの凹凸パターンを基材上の塗膜に転写するときの離形性が良好となり、転写不良を防ぐことができる。ゴムモールドは、例えば、長さ50~1000mm、幅50~3000mm、厚み1~50mmにし得る。また、必要に応じて、ゴムモールドの凹凸パターン面上に離型処理を施してもよい。 In addition, by applying a rubber-based resin material on the concavo-convex structure (pattern) of the metal substrate obtained by the above-described method, curing the applied resin material, and peeling from the metal substrate, the concavo-convex pattern of the metal substrate can be obtained. A transferred rubber mold can be produced. The obtained rubber mold can be used as a mold for transferring an uneven pattern. Natural rubber and synthetic rubber can be used as the rubber-based resin material, and silicone rubber or a mixture or copolymer of silicone rubber and other materials is particularly preferable. Examples of the silicone rubber include polyorganosiloxane, cross-linked polyorganosiloxane, polyorganosiloxane / polycarbonate copolymer, polyorganosiloxane / polyphenylene copolymer, polyorganosiloxane / polystyrene copolymer, polytrimethylsilylpropyne, poly 4-methylpentene or the like is used. Silicone rubber is cheaper than other resin materials, has excellent heat resistance, high thermal conductivity, elasticity, and is not easily deformed even under high temperature conditions. Is suitable. Furthermore, since the silicone rubber-based material has high gas and water vapor permeability, the solvent and water vapor of the transfer material can be easily transmitted. Therefore, when a rubber mold is used for the purpose of transferring a concavo-convex pattern to a film of a resin material or an inorganic material precursor solution, a silicone rubber-based material is preferable. The surface free energy of the rubber material is preferably 25 mN / m or less. Thereby, the releasability when transferring the concave / convex pattern of the rubber mold to the coating film on the substrate becomes good, and transfer defects can be prevented. The rubber mold can be, for example, 50 to 1000 mm long, 50 to 3000 mm wide, and 1 to 50 mm thick. Moreover, you may perform a mold release process on the uneven | corrugated pattern surface of a rubber mold as needed.
[光学基板の製造方法]
 上述の製造方法で製造した凹凸パターン転写用のモールドを用いたナノインプリント法により、凹凸パターンを有する部材を製造することができる。そのような部材として光学基板を例に挙げ、以下にその製造方法を説明する。光学基板の製造方法は、主に、無機材料の前駆体溶液を調製する溶液調製工程、調製した前駆体溶液を基板に塗布する塗布工程、凹凸パターンを有するモールドを基板上の塗膜(前駆体膜)に押し付けながら塗膜を硬化させることにより、塗膜に凹凸パターンを転写する転写工程、凹凸パターン転写用のモールドを押し付ける押圧工程、モールドが押し付けられた塗膜を仮焼成する仮焼成工程、モールドを塗膜から剥離する剥離工程、及び塗膜を本硬化する硬化工程を有する。このような製造方法により製造される光学基板は、モールドの凹凸パターンが転写された凹凸構造層を備える。
[Optical substrate manufacturing method]
The member which has an uneven | corrugated pattern can be manufactured by the nanoimprint method using the mold for uneven | corrugated pattern transfer manufactured with the above-mentioned manufacturing method. An optical substrate is taken as an example of such a member, and the manufacturing method thereof will be described below. The optical substrate manufacturing method mainly includes a solution preparation step for preparing a precursor solution of an inorganic material, a coating step for applying the prepared precursor solution to the substrate, a mold having a concavo-convex pattern on a coating film (precursor) By transferring the concavo-convex pattern to the coating film by curing the coating film while being pressed against the film), a pressing process for pressing the mold for transferring the concavo-convex pattern, a pre-baking process for pre-baking the coating film pressed against the mold, It has the peeling process which peels a mold from a coating film, and the hardening process which carries out the main curing of the coating film. An optical substrate manufactured by such a manufacturing method includes a concavo-convex structure layer onto which a concavo-convex pattern of a mold is transferred.
<溶液調整工程>
 無機材料からなる凹凸構造層を形成する場合、無機材料の前駆体溶液を調製する。無機材料としては、例えば、シリカ、SiN、SiON等のSi系の材料、TiO等のTi系の材料、ITO(インジウム・スズ・オキサイド)系の材料、ZnO、ZnS、ZrO、Al、BaTiO、SrTiO等の無機材料が挙げられる。
<Solution adjustment process>
When forming a concavo-convex structure layer made of an inorganic material, a precursor solution of the inorganic material is prepared. Examples of inorganic materials include Si-based materials such as silica, SiN, and SiON, Ti-based materials such as TiO 2 , ITO (indium tin oxide) -based materials, ZnO, ZnS, ZrO 2 , and Al 2 O. 3 , inorganic materials such as BaTiO 3 and SrTiO 2 .
 また、無機材料の前駆体としてポリシラザンを用いてもよい。ポリシラザンは、加熱またはエキシマなどのエネルギー線を照射することで酸化してセラミックス化(シリカ改質)し、シリカ、SiNまたはSiONを形成する。なお、「ポリシラザン」とは、珪素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。特開平8-112879号公報に記載されている下記の一般式(1)で表されるような比較的低温でセラミックス化してシリカ等に変性する化合物がより好ましい。 Further, polysilazane may be used as a precursor of the inorganic material. Polysilazane is oxidized and ceramicized (silica modification) by heating or irradiation with energy rays such as excimer to form silica, SiN or SiON. “Polysilazane” is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, N—H, etc., and ceramics such as both intermediate solid solutions SiO X N Y. It is a precursor inorganic polymer. A compound that is converted to ceramics at a relatively low temperature and is modified to silica or the like as represented by the following general formula (1) described in JP-A-8-112879 is more preferable.
 一般式(1):
   -Si(R1)(R2)-N(R3)-
 式中、R1、R2、R3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。
General formula (1):
—Si (R1) (R2) —N (R3) —
In the formula, R1, R2, and R3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 上記一般式(1)で表される化合物の中で、R1、R2及びR3のすべてが水素原子であるパーヒドロポリシラザン(PHPSともいう)や、Siと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンが特に好ましい。 Among the compounds represented by the general formula (1), perhydropolysilazane (also referred to as PHPS) in which all of R 1, R 2 and R 3 are hydrogen atoms, and the hydrogen part bonded to Si is partially an alkyl group or the like. Substituted organopolysilazanes are particularly preferred.
 低温でセラミック化するポリシラザンの別の例としては、ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報)等を用いることもできる。 As another example of polysilazane to be ceramicized at low temperature, silicon alkoxide-added polysilazane obtained by reacting polysilazane with silicon alkoxide (for example, JP-A No. 5-23827), glycidol-added polysilazane obtained by reacting glycidol ( For example, JP-A-6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (for example, JP-A-6-240208), a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate ( For example, JP-A-6-299118), an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (for example, JP-A-6-306329), and metal fine particles are added. Metal fine particles Pressurized polysilazane (e.g., JP-A-7-196986) and the like can also be used.
 ポリシラザン溶液の溶媒としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。酸化珪素化合物への改質を促進するために、アミンや金属の触媒を添加してもよい。 As the solvent of the polysilazane solution, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used. In order to promote the modification to a silicon oxide compound, an amine or metal catalyst may be added.
 無機材料の前駆体としてポリシラザンを用いる場合、後述する硬化工程において、加熱により塗膜の硬化を促進してもよいし、エキシマなどのエネルギー線の照射により前駆体溶液を硬化させて無機材料を形成してもよい。 When polysilazane is used as a precursor of an inorganic material, curing of the coating film may be promoted by heating in the curing step described later, or the precursor solution is cured by irradiation of energy rays such as excimer to form an inorganic material. May be.
<塗布工程>
 上記のように調製した無機材料の前駆体溶液を基板上に塗布する。基板としては、特に制限されず、公知の透明基板を適宜利用することができる。例えば、ガラス等の透明無機材料からなる基板;ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等)、アクリル系樹脂(ポリメチルメタクリレート等)、ポリカーボネート、ポリ塩化ビニル、スチレン系樹脂(ABS樹脂等)、セルロース系樹脂(トリアセチルセルロース等)、ポリイミド系樹脂(ポリイミド樹脂、ポリイミドアミド樹脂等)、シクロオレフィンポリマー等の樹脂からなる基板;などを利用することができる。
<Application process>
The precursor solution of the inorganic material prepared as described above is applied on the substrate. The substrate is not particularly limited, and a known transparent substrate can be appropriately used. For example, a substrate made of a transparent inorganic material such as glass; polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, etc.), acrylic resin (polymethyl methacrylate, etc.), polycarbonate, polyvinyl chloride, styrene resin ( For example, an ABS resin or the like), a cellulose resin (such as triacetyl cellulose), a polyimide resin (such as a polyimide resin or a polyimide amide resin), or a substrate made of a resin such as a cycloolefin polymer can be used.
 前駆体溶液の塗布方法として、バーコート法、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、インクジェット法などの任意の塗布方法を使用することができるが、比較的大面積の基板に前駆体溶液を均一に塗布可能であること、前駆体膜が硬化する前に素早く塗布を完了させることができることからすれば、バーコート法、ダイコート法及びスピンコート法が好ましい。 As a coating method of the precursor solution, any coating method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method can be used. The bar coating method, the die coating method and the spin coating method are preferable because the precursor solution can be uniformly applied and the application can be completed quickly before the precursor film is cured.
 前駆体溶液の塗布後、塗膜(前駆体膜)中の溶媒を蒸発させるために基板を大気中もしくは減圧下で保持してもよい。この保持時間が短いと塗膜の粘度が低くなりすぎて塗膜への凹凸パターンの転写ができなくなり、保持時間が長すぎると前駆体の重合反応が進み塗膜の粘度が高くなりすぎて塗膜への凹凸パターンの転写ができなくなる。また、前駆体溶液を塗布後、溶媒の蒸発の進行とともに塗膜の硬化が進行し、塗膜の粘度などの物性も短時間で変化する。凹凸パターン形成の安定性の観点から、パターン転写が良好にできる乾燥時間範囲が十分広いことが望ましく、これは乾燥温度(保持温度)、乾燥圧力、前駆体の材料種、前駆体の材料種の混合比、前駆体溶液調製時に使用する溶媒量(前駆体の濃度)等によって調整することができる。なお、基板をそのまま保持するだけでも塗膜(前駆体膜)中の溶媒が蒸発するので、必ずしも加熱や送風などの積極的な乾燥操作を行う必要はなく、塗膜を形成した基板をそのまま所定時間だけ放置したり、後続の工程を行うために所定時間の間に搬送したりするだけでもよい。 After applying the precursor solution, the substrate may be held in the air or under reduced pressure in order to evaporate the solvent in the coating film (precursor film). If this holding time is short, the viscosity of the coating film becomes too low to transfer the uneven pattern to the coating film, and if the holding time is too long, the polymerization reaction of the precursor proceeds and the viscosity of the coating film becomes too high. The uneven pattern cannot be transferred to the film. Further, after the precursor solution is applied, the coating film is cured as the solvent evaporates, and the physical properties such as the viscosity of the coating film change in a short time. In view of the stability of the uneven pattern formation, it is desirable that the drying time range in which pattern transfer can be satisfactorily wide is desirable. This includes the drying temperature (holding temperature), drying pressure, precursor material type, precursor material type. It can be adjusted by the mixing ratio, the amount of solvent used at the time of preparing the precursor solution (precursor concentration), and the like. In addition, since the solvent in the coating film (precursor film) evaporates just by holding the substrate as it is, it is not always necessary to perform an aggressive drying operation such as heating or blowing, and the substrate on which the coating film is formed is left as it is. It may be left for a certain period of time or may be transported for a predetermined time in order to perform a subsequent process.
<転写工程>
 次いで、凹凸パターン転写用のモールドを用いて、塗膜に凹凸パターンを形成する。モールドとして、上述したフィルム状モールドや金属モールドを用いることができるが、柔軟性または可撓性のあるフィルム状モールドを用いることが望ましい。この際、押圧ロールを用いてモールドを前駆体膜に押し付けてもよい。押圧ロールを用いたロールプロセスでは、プレス式と比較して、モールドと塗膜とが接する時間が短いため、モールドや基板及び基板を設置するステージなどの熱膨張係数の差によるパターンくずれを防ぐことができること、前駆体膜中の溶媒の突沸によってパターン中にガスの気泡が発生したり、ガス痕が残ったりすることを防止することができること、基板(塗膜)と線接触するため、転写圧力及び剥離力を小さくでき、大面積化に対応し易いこと、押圧時に気泡をかみ込むことがないことなどの利点を有する。また、モールドを押し付けながら基板を加熱してもよい。押圧ロールを用いてモールドを塗膜(前駆体膜)に押し付ける例として、図5に示すように押圧ロール122とその直下に搬送されている基板40との間にフィルム状モールド140を送り込むことでフィルム状モールド140の凹凸パターンを基板40上の塗膜64に転写することができる。すなわち、フィルム状モールド140を押圧ロール122により塗膜64に押し付ける際に、フィルム状モールド140と基板40を同期して搬送しながら、基板40上の塗膜64の表面をフィルム状モールド140で被覆する。この際、押圧ロール122をフィルム状モールド140の裏面(凹凸パターンが形成された面と反対側の面)に押しつけながら回転させることで、フィルム状モールド140と基板40が進行しながら密着する。なお、長尺のフィルム状モールド140を押圧ロール122に向かって送り込むには、長尺のフィルム状モールド140が巻き付けられたフィルムロールからそのままフィルム状モールド140を繰り出して用いるのが便利である。
<Transfer process>
Subsequently, a concavo-convex pattern is formed on the coating film using a mold for concavo-convex pattern transfer. As the mold, the above-described film-shaped mold or metal mold can be used, but it is desirable to use a flexible or flexible film-shaped mold. At this time, the mold may be pressed against the precursor film using a pressing roll. In the roll process using a pressure roll, the time for contact between the mold and the coating film is short compared to the press type, so that pattern breakage due to differences in the thermal expansion coefficients of the mold, the substrate, and the stage on which the substrate is installed is prevented. Can prevent gas bubbles from being generated in the pattern due to bumping of the solvent in the precursor film, and gas traces can remain, and because of line contact with the substrate (coating film), transfer pressure In addition, the peeling force can be reduced, and it is easy to cope with an increase in area, and there is an advantage that bubbles are not caught during pressing. Further, the substrate may be heated while pressing the mold. As an example of pressing a mold against a coating film (precursor film) using a pressing roll, as shown in FIG. 5, a film-like mold 140 is fed between the pressing roll 122 and the substrate 40 conveyed immediately below the pressing roll 122. The uneven pattern of the film mold 140 can be transferred to the coating film 64 on the substrate 40. That is, when the film mold 140 is pressed against the coating film 64 by the pressing roll 122, the film mold 140 and the substrate 40 are transported synchronously, and the surface of the coating film 64 on the substrate 40 is covered with the film mold 140. To do. At this time, the film mold 140 and the substrate 40 are brought into close contact with each other by rotating while pressing the pressing roll 122 against the back surface of the film mold 140 (the surface opposite to the surface on which the concavo-convex pattern is formed). In order to feed the long film-shaped mold 140 toward the pressing roll 122, it is convenient to use the film-shaped mold 140 as it is from the film roll around which the long film-shaped mold 140 is wound.
 前駆体膜にモールドを押し付けた後、前駆体膜を仮焼成してもよい。仮焼成することにより前駆体が無機材料に転化して塗膜が硬化し、凹凸パターンが固化し、剥離の際に崩れにくくなる。仮焼成を行う場合は、大気中で室温~300℃の温度で加熱することが好ましい。なお、仮焼成は必ずしも行う必要はない。また、前駆体溶液に紫外線などの光を照射することによって酸やアルカリを発生する材料を添加した場合には、前駆体膜を仮焼成する代わりに、例えばエキシマUV光等の紫外線に代表されるエネルギー線を照射することによって塗膜を硬化してもよい。 After pressing the mold against the precursor film, the precursor film may be calcined. By pre-baking, the precursor is converted into an inorganic material, the coating film is cured, the concavo-convex pattern is solidified, and is less likely to collapse during peeling. When pre-baking is performed, it is preferably heated in the atmosphere at a temperature of room temperature to 300 ° C. Note that the preliminary firing is not necessarily performed. In addition, when a material that generates acid or alkali by adding light such as ultraviolet rays to the precursor solution is added, instead of pre-baking the precursor film, for example, ultraviolet rays such as excimer UV light are used. The coating film may be cured by irradiation with energy rays.
 モールドの押圧または前駆体膜の仮焼成の後、塗膜(前駆体膜、または前駆体膜を転化することにより形成された無機材料膜)からモールドを剥離する。モールドの剥離方法として公知の剥離方法を採用することができる。 After pressing the mold or pre-baking the precursor film, the mold is peeled off from the coating film (precursor film or inorganic material film formed by converting the precursor film). A known peeling method can be employed as a mold peeling method.
<硬化工程>
 凹凸が形成された塗膜(凹凸構造層)からモールドを剥離した後、凹凸構造層を本硬化してもよい。本製造方法では、本焼成により凹凸構造層を本硬化させることができる。ゾルゲル法によりシリカに転化する前駆体を用いた場合、凹凸構造層を構成するシリカ(アモルファスシリカ)中に含まれている水酸基などが本焼成によって脱離して、凹凸構造層がより強固となる。本焼成は、200~1200℃の温度で、5分~6時間程度行うのが良い。この時、凹凸構造層がシリカからなる場合、焼成温度、焼成時間に応じて非晶質または結晶質、または非晶質と結晶質の混合状態となる。なお、硬化工程は必ずしも行う必要はない。また、前駆体溶液に紫外線などの光を照射することによって酸やアルカリを発生する材料を添加した場合には、凹凸構造層を焼成する代わりに、例えばエキシマUV光等の紫外線に代表されるエネルギー線を照射することによって、凹凸構造層を本硬化することができる。
<Curing process>
After the mold is peeled from the coating film (uneven structure layer) on which the unevenness is formed, the uneven structure layer may be fully cured. In this manufacturing method, the concavo-convex structure layer can be fully cured by the main baking. When a precursor that is converted to silica by the sol-gel method is used, a hydroxyl group and the like contained in silica (amorphous silica) constituting the concavo-convex structure layer is detached by the main calcination, and the concavo-convex structure layer becomes stronger. The main baking is preferably performed at a temperature of 200 to 1200 ° C. for about 5 minutes to 6 hours. At this time, when the concavo-convex structure layer is made of silica, it becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time. Note that the curing step is not necessarily performed. In addition, when a material that generates an acid or an alkali by irradiating the precursor solution with light such as ultraviolet rays, energy represented by ultraviolet rays such as excimer UV light is used instead of firing the concavo-convex structure layer. By irradiating the line, the concavo-convex structure layer can be fully cured.
 以上のようにして、基板40上に凹凸構造層60が形成された光学基板400(図6参照)を製造することができる。 As described above, the optical substrate 400 (see FIG. 6) in which the uneven structure layer 60 is formed on the substrate 40 can be manufactured.
 なお、上記の塗布工程において塗布する無機材料の前駆体として、上記シリカの前駆体に代えて、TiO、ZnO、ZnS、ZrO、Al、BaTiO、SrTiO、ITO等の前駆体を用いてもよい。 Incidentally, as a precursor of the inorganic material to be applied in the coating step, in place of the precursor of the silica, TiO 2, ZnO, ZnS, ZrO 2, Al 2 O 3, BaTiO 3, SrTiO 2, precursors such as ITO The body may be used.
 またゾルゲル法のほか、無機材料の微粒子の分散液を用いる方法、液相堆積法(LPD:Liquid Phase Deposition)などを用いて凹凸構造層を形成してもよい。 In addition to the sol-gel method, the concavo-convex structure layer may be formed by using a dispersion of fine particles of an inorganic material, a liquid phase deposition (LPD), or the like.
 また、上記実施形態の製造方法では、無機材料からなる凹凸構造層を形成したが、凹凸構造層は、上述の無機材料のほか、硬化性樹脂から構成されてもよい。硬化性樹脂としては、例えば、光硬化および熱硬化、湿気硬化型、化学硬化型(二液混合)等の樹脂を用いることができる。具体的にはエポキシ系、アクリル系、メタクリル系、ビニルエーテル系、オキセタン系、ウレタン系、メラミン系、ウレア系、ポリエステル系、ポリオレフィン系、フェノール系、架橋型液晶系、フッ素系、シリコーン系、ポリアミド系、等のモノマー、オリゴマー、ポリマー等の各種樹脂が挙げられる。 In the manufacturing method of the above embodiment, the concavo-convex structure layer made of an inorganic material is formed. However, the concavo-convex structure layer may be made of a curable resin in addition to the above-described inorganic material. As the curable resin, for example, a resin such as photo-curing and thermosetting, moisture-curing type, and chemical-curing type (two-component mixing) can be used. Specifically, epoxy, acrylic, methacrylic, vinyl ether, oxetane, urethane, melamine, urea, polyester, polyolefin, phenol, cross-linkable liquid crystal, fluorine, silicone, polyamide And various resins such as monomers, oligomers and polymers.
 硬化性樹脂を用いて凹凸構造層を形成する場合、例えば、硬化性樹脂を基板に塗布した後、塗布した硬化性樹脂層に凹凸パターン転写用のモールドを押し付けつつ塗膜を硬化させることによって、硬化性樹脂層にモールドの凹凸パターンを転写することができる。硬化性樹脂は有機溶剤で希釈してから塗布してもよい。この場合に用いる有機溶剤としては硬化前の樹脂を溶解するものを選択して使用することができる。例えばメタノール、エタノール、イソプロピルアルコール(IPA)などのアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)などのケトン系溶剤等の公知のものから選択できる。硬化性樹脂を塗布する方法としては、例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法、カーテンコート法、インクジェット法、スパッタ法等の各種コート方法を採用することができる。凹凸パターン転写用のモールドとしては、例えばフィルム状モールド、金属モールドなど所望のモールドを用いることができる。さらに、硬化性樹脂を硬化させる条件としては、使用する樹脂の種類により異なるが、例えば、硬化温度が室温~250℃の範囲内であり、硬化時間が0.5分~3時間の範囲内であることが好ましい。また、紫外線や電子線のようなエネルギー線を照射することで硬化させる方法でもよく、その場合には、照射量は20mJ/cm~10J/cmの範囲内であることが好ましい。 When forming the concavo-convex structure layer using a curable resin, for example, after applying the curable resin to the substrate, by curing the coating film while pressing the mold for transferring the concavo-convex pattern to the applied curable resin layer, The concave / convex pattern of the mold can be transferred to the curable resin layer. The curable resin may be applied after being diluted with an organic solvent. As the organic solvent used in this case, a solvent capable of dissolving the uncured resin can be selected and used. For example, it can be selected from known solvents such as alcohol solvents such as methanol, ethanol and isopropyl alcohol (IPA), and ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone (MIBK). Examples of the method for applying the curable resin include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and sputtering. Various coating methods such as a method can be employed. As the mold for transferring the concavo-convex pattern, for example, a desired mold such as a film mold or a metal mold can be used. Furthermore, the conditions for curing the curable resin vary depending on the type of resin used. For example, the curing temperature is in the range of room temperature to 250 ° C., and the curing time is in the range of 0.5 minutes to 3 hours. Preferably there is. Further, a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used. In that case, the irradiation amount is preferably in the range of 20 mJ / cm 2 to 10 J / cm 2 .
 また、凹凸構造層の材料としてシランカップリング剤を用いてもよい。それにより、例えば製造された光学基板を用いて有機EL素子を製造する場合に、凹凸構造層とその上に形成される電極などの層との間の密着性を向上させることができ、有機EL素子の製造工程における洗浄工程や高温処理工程での耐性が向上する。凹凸構造層に用いられるシランカップリング剤は、その種類が特に制限されるものではないが、例えばRSiX(Rは、ビニル基、グリシドキシ基、アクリル基、メタクリル基、アミノ基およびメルカプト基から選ばれる少なくとも1種を含む有機官能基であり、Xは、ハロゲン元素またはアルコキシル基である)で示される有機化合物を用いることができる。シランカップリング剤を塗布する方法としては例えば、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法,カーテンコート法、インクジェット法、スパッタ法等の各種コート方法を採用することができる。その後、各材料に応じて適正な条件で乾燥させることにより硬化した膜を得ることができる。例えば、100~150℃で15~90分間加熱乾燥してもよい。 Moreover, you may use a silane coupling agent as a material of an uneven structure layer. Thereby, for example, when an organic EL element is manufactured using the manufactured optical substrate, adhesion between the uneven structure layer and a layer such as an electrode formed thereon can be improved. Resistance in a cleaning process and a high-temperature treatment process in an element manufacturing process is improved. The type of the silane coupling agent used in the concavo-convex structure layer is not particularly limited. For example, RSiX 3 (R is selected from a vinyl group, a glycidoxy group, an acrylic group, a methacryl group, an amino group, and a mercapto group. An organic functional group containing at least one selected from the above, and X is a halogen element or an alkoxyl group). Examples of methods for applying the silane coupling agent include spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, curtain coating, ink jet, and sputtering. Various coating methods such as a method can be employed. Thereafter, a cured film can be obtained by drying under appropriate conditions according to each material. For example, heat drying may be performed at 100 to 150 ° C. for 15 to 90 minutes.
 凹凸構造層の材料は、無機材料または硬化性樹脂材料に紫外線吸収材料を含有させたものであってもよい。紫外線吸収材料は、紫外線を吸収し光エネルギーを熱のような無害な形に変換することにより、膜の劣化を抑制する作用がある。紫外線吸収剤としては、従来から公知のものが使用でき、例えば、ベンゾトリアゾール系吸収剤、トリアジン系吸収剤、サリチル酸誘導体系吸収剤、ベンゾフェノン系吸収剤等を使用できる。 The material of the concavo-convex structure layer may be an inorganic material or a curable resin material containing an ultraviolet absorbing material. The ultraviolet absorbing material has an action of suppressing deterioration of the film by absorbing ultraviolet rays and converting light energy into a harmless form such as heat. As the ultraviolet absorber, conventionally known ones can be used. For example, a benzotriazole-based absorbent, a triazine-based absorbent, a salicylic acid derivative-based absorbent, a benzophenone-based absorbent, or the like can be used.
 また、上記の製造方法では基板上に塗膜(前駆体膜)を形成し、この塗膜にモールドを押圧することによって凹凸構造層を製造したが、それに代えて、モールドの凹凸パターン上に前駆体膜を形成し、この前駆体膜を基板に貼合してモールドを剥離することにより、凹凸構造層を基板上に形成することもできる。この場合、前駆体膜をモールド上に形成する方法として、上述の塗布工程で説明した塗布方法に加え、蒸着、スパッタリング等の物理気相成長(PVD)法、化学気相成長(CVD)法等の公知のドライプロセスを用いた方法も用いることができる。この場合、金属、金属酸化物、金属窒化物、金属酸窒化物、金属硫化物、金属炭化物、金属ハロゲン化物、またこれらの混合物(金属酸窒化物、金属酸化ハロゲン化物、金属窒化炭化物など)等からなる凹凸構造層を形成することができる。 In the manufacturing method described above, a coating film (precursor film) is formed on a substrate and a mold is pressed against the coating film to manufacture a concavo-convex structure layer. Instead, a precursor is formed on the concavo-convex pattern of the mold. An uneven structure layer can also be formed on a substrate by forming a body film, bonding the precursor film to the substrate, and peeling the mold. In this case, as a method of forming the precursor film on the mold, in addition to the coating method described in the above coating step, physical vapor deposition (PVD) method such as vapor deposition and sputtering, chemical vapor deposition (CVD) method, and the like A method using a known dry process can also be used. In this case, metal, metal oxide, metal nitride, metal oxynitride, metal sulfide, metal carbide, metal halide, and mixtures thereof (metal oxynitride, metal oxyhalide, metal nitride carbide, etc.), etc. An uneven structure layer made of can be formed.
 ドライプロセスを用いてモールド上に形成した凹凸構造層は、例えば、次のような方法で基板に貼合することができる。まず、基板上に接着剤を塗布する。基板上の接着剤層とモールド上の凹凸構造層が接着するように、基板とモールドを重ね合わせ、接着剤を硬化させる。それにより、基板と凹凸構造層が接着剤を介して接合される。次いでモールドを凹凸構造層から剥離する。それにより、凹凸構造層が基板上に形成された光学基板を形成することができる。 The concavo-convex structure layer formed on the mold using the dry process can be bonded to the substrate by the following method, for example. First, an adhesive is applied on the substrate. The substrate and the mold are overlapped so that the adhesive layer on the substrate adheres to the uneven structure layer on the mold, and the adhesive is cured. Thereby, a board | substrate and an uneven | corrugated structure layer are joined via an adhesive agent. Next, the mold is peeled from the uneven structure layer. Thereby, an optical substrate having a concavo-convex structure layer formed on the substrate can be formed.
 さらに、凹凸構造層の表面(被覆層を形成する場合は被覆層の表面)に疎水化処理を行ってもよい。疎水化処理の方法は知られている方法を用いればよく、例えば、シリカ表面であれば、ジメチルジクロルシラン、トリメチルアルコキシシラン等で疎水化処理することもできるし、ヘキサメチルジシラザンなどのトリメチルシリル化剤とシリコーンオイルで疎水化処理する方法を用いてもよいし、超臨界二酸化炭素を用いた金属酸化物粉末の表面処理方法を用いてもよい。 Furthermore, the surface of the concavo-convex structure layer (the surface of the coating layer when a coating layer is formed) may be subjected to a hydrophobic treatment. A known method may be used for the hydrophobizing treatment. For example, if the surface is silica, it can be hydrophobized with dimethyldichlorosilane, trimethylalkoxysilane, or the like, or trimethylsilyl such as hexamethyldisilazane. A method of hydrophobizing with an agent and silicone oil may be used, or a surface treatment method of metal oxide powder using supercritical carbon dioxide may be used.
 上記被覆層のほかにも、凹凸構造層の表面に種々の機能層を設置してよい。該機能層の例としては、反射防止層、偏光層、カラーフィルター、紫外線吸収層等の光学機能層や、ハードコート層、応力緩和層等の力学的機能層、帯電防止層、導電層などの電気的機能層、防曇層、防汚層、被印刷層などが挙げられる。 In addition to the above coating layer, various functional layers may be provided on the surface of the concavo-convex structure layer. Examples of the functional layer include an optical functional layer such as an antireflection layer, a polarizing layer, a color filter, and an ultraviolet absorption layer, a mechanical functional layer such as a hard coat layer and a stress relaxation layer, an antistatic layer, and a conductive layer. Examples thereof include an electric functional layer, an antifogging layer, an antifouling layer, and a printing layer.
 なお、凹凸パターン転写用のモールドとしてフィルム状モールドを用いて光学基板を製造する方法について説明したが、金属モールド、石英モールド等の硬質なモールドを用いても上記製造方法と同様に光学基板を製造することができる。硬質モールドを用いる場合、基板としてフィルム状基板等の可撓性のある基板を用いることが好ましい。また、同様の方法で、光学基板のほか、絶縁、導電、防曇、断熱、防汚、誘電、親水、撥水等の種々の機能を有する部材を製造することもできる。 In addition, although the method of manufacturing an optical substrate using a film-like mold as a mold for concavo-convex pattern transfer has been described, an optical substrate can be manufactured in the same manner as the above manufacturing method even if a hard mold such as a metal mold or a quartz mold is used. can do. When using a hard mold, it is preferable to use a flexible substrate such as a film substrate as the substrate. In addition to the optical substrate, members having various functions such as insulation, conductivity, anti-fogging, heat insulation, antifouling, dielectric, hydrophilic, and water repellent can be produced by the same method.
 以下の実施例において、複光束干渉エバネッセント波の強度分布をシミュレーションにより計算した。プリズムのような高屈折率媒質上に光硬化材料膜を形成した状態において、高屈折率媒質と光硬化材料膜の界面をxy平面とし、光硬化材料膜側をz軸の正方向、高屈折率媒質側をz軸の負方向としてxyz軸を定めた。図7に概念的に示すように、第1の光束330、第2の光束370、第3の光束390を高屈折率媒質と光硬化材料膜の界面(すなわち、xy平面)に照射したときの、xy平面における三光束干渉エバネッセント波の強度分布の時間平均を計算した。なお、実施例1~3において、各光束330、370、390はs偏光(すなわち、図7中のz方向の振動が0)であるとして計算を行った。 In the following examples, the intensity distribution of the double beam interference evanescent wave was calculated by simulation. In a state where a photo-curing material film is formed on a high-refractive index medium such as a prism, the interface between the high-refractive index medium and the photo-curing material film is the xy plane, and the photo-curing material film side is the positive direction of the z-axis and high refraction The xyz axis was determined with the rate medium side as the negative direction of the z axis. As conceptually shown in FIG. 7, when the first light beam 330, the second light beam 370, and the third light beam 390 are irradiated to the interface (that is, the xy plane) between the high refractive index medium and the photocuring material film. The time average of the intensity distribution of the three-beam interference evanescent wave in the xy plane was calculated. In Examples 1 to 3, the calculation was performed assuming that each of the light beams 330, 370, and 390 is s-polarized light (that is, the vibration in the z direction in FIG. 7 is 0).
 実施例1
 図7に示すように、入射角をθ、x軸の正方向からのz軸周りの角度(方位角)をφとして第1の光束330をxy平面に照射した場合、第1の光束330の電場の波(電場ベクトル)Eは下記式(2)で表される。式(2)中のT(偏光を考慮した振幅)、k(波数ベクトル)及びr(位置ベクトル)は、それぞれ下記式(3)、(4)、(5)で表される。cは光速、λは波長、ωは角周波数(ω=2πc/λ)、εは初期位相、Aは電場振幅、kは真空中の波数(k=2π/λ)、nは高屈折率媒質の屈折率、nは光硬化材料の屈折率を表している。
Example 1
As shown in FIG. 7, when the first light beam 330 is irradiated onto the xy plane with an incident angle of θ 1 and an angle (azimuth angle) around the z-axis from the positive x-axis direction of φ 1 , the first light beam 330 is irradiated. An electric field wave (electric field vector) E 1 of 330 is expressed by the following equation (2). T 1 (amplitude in consideration of polarization), k 1 (wave vector), and r (position vector) in equation (2) are expressed by the following equations (3), (4), and (5), respectively. c is the speed of light, λ is the wavelength, ω is the angular frequency (ω = 2πc / λ), ε 1 is the initial phase, A 1 is the electric field amplitude, k is the wave number in the vacuum (k = 2π / λ), and n 1 is high The refractive index of the refractive index medium, n 2 represents the refractive index of the photocuring material.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 第2の光束370及び第3の光束390の入射角をそれぞれθ、θ、x軸の正方向からのz軸周りの角度をそれぞれφ2、φとすると、上記式(2)~(5)と同様にして、第2の光束370の電場の波E及び第3の光束390の電場の波Eが表される。 When the incident angles of the second light beam 370 and the third light beam 390 are θ 2 and θ 3 , and the angles around the z-axis from the positive direction of the x-axis are φ 2 and φ 3 , respectively , (5) and in the same manner, the electric field wave E 3 of the second electric field waves E 2 and the third light flux 370 of the light beam 390 is represented.
 第1の光束330の電場の波E、第2の光束370の電場の波E、第3の光束390の電場の波Eの合成を、Wolfram Research社の数式処理ソフトMathematica(登録商標)を用いて数学的に計算することにより、第1の光束330、第2の光束370及び第3の光束390により生じるエバネッセント光の干渉波(三光束干渉エバネッセント波)の電場Eを求めることができる。 The first electric field wave E 1 of the light beam 330, the wave E 2 of the electric field of the second beam 370, a combined wave E 3 of the electric field of the third light flux 390, Wolfram Research Inc. formula processing software Mathematica (registered trademark ) To obtain the electric field E of the interference wave of the evanescent light (three-beam interference evanescent wave) generated by the first light beam 330, the second light beam 370, and the third light beam 390. it can.
 さらに、三光束干渉エバネッセント波の強度Iを下記式(6)から算出し、強度Iの時間平均<I>を下記式(7)により求めることができる。なお、τは周期(τ=λ/c)を表している。 Furthermore, the intensity I of the three-beam interference evanescent wave is calculated from the following formula (6), and the time average <I> t of the intensity I can be obtained by the following formula (7). Note that τ represents a period (τ = λ / c).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本実施例において、(θ,θ,θ)=(70°,70°,70°)、(φ,φ,φ)=(30°,150°,270°)とし、xy平面、すなわち、高屈折率媒質と光硬化材料膜の界面(z=0)における三光束干渉エバネッセント波の強度分布の時間平均を求めた。なお、c=3.0×10m/s、λ=488×10-9m、n=1.78、n=1.5とした。高屈折率材料の屈折率が1.78、光硬化材料の屈折率が1.5の場合の臨界角は約50°であるため、各光束330、370、390はいずれも全反射条件を満たしている。 In this example, (θ 1 , θ 2 , θ 3 ) = (70 °, 70 °, 70 °), (φ 1 , φ 2 , φ 3 ) = (30 °, 150 °, 270 °), The time average of the intensity distribution of the three-beam interference evanescent wave at the xy plane, that is, the interface (z = 0) between the high refractive index medium and the photocuring material film was obtained. Note that c = 3.0 × 10 8 m / s, λ = 488 × 10 −9 m, n 1 = 1.78, and n 2 = 1.5. When the refractive index of the high refractive index material is 1.78 and the refractive index of the photocuring material is 1.5, the critical angle is about 50 °, so that each of the light beams 330, 370, and 390 satisfies the total reflection condition. ing.
 得られた三光束干渉エバネッセント波の強度分布の時間平均を図8(a)、(b)に示す。図8(a)、(b)及び後述する図8(c)~(f)において、光の強度は高さ情報として二次元平面内にプロットされており、図8(a)、(c)、(e)は斜方視点図、図8(b)、(d)、(f)は上方視点図である。本実施例において、三光束干渉エバネッセント波の強度分布の時間平均は、強度の等しい山が密に並んだ分布を有していた。 8A and 8B show the time average of the intensity distribution of the obtained three-beam interference evanescent wave. In FIGS. 8A and 8B and FIGS. 8C to 8F described later, the light intensity is plotted in a two-dimensional plane as height information, and FIGS. 8A and 8C. , (E) are oblique perspective views, and FIGS. 8 (b), (d), and (f) are upward perspective views. In this example, the time average of the intensity distribution of the three-beam interference evanescent wave has a distribution in which mountains having the same intensity are densely arranged.
 実施例2
 (θ,θ,θ)=(70°,70°,60°)、(φ,φ,φ)=(0°,180°,330°)とした以外は実施例1と同様にして、三光束干渉エバネッセント波の強度分布の時間平均を求めた。得られた三光束干渉エバネッセント波の強度分布の時間平均を図8(c)、(d)に示す。本実施例において、三光束干渉エバネッセント波の強度分布の時間平均は、定在波の腹が連なった尾根の上に斜めに波形状を刻むような形状の分布を有していた。
Example 2
Example 1 except that (θ 1 , θ 2 , θ 3 ) = (70 °, 70 °, 60 °), (φ 1 , φ 2 , φ 3 ) = (0 °, 180 °, 330 °) Similarly, the time average of the intensity distribution of the three-beam interference evanescent wave was obtained. The time average of the intensity distribution of the obtained three-beam interference evanescent wave is shown in FIGS. In this example, the time average of the intensity distribution of the three-beam interference evanescent wave has a distribution in which the wave shape is cut obliquely on the ridge where the antinodes of standing waves are connected.
 実施例3
 (θ,θ,θ)=(80°,80°,60°)、(φ,φ,φ)=(0°,180°,0°)とした以外は実施例1と同様にして、三光束干渉エバネッセント波の強度分布の時間平均を求めた。得られた三光束干渉エバネッセント波の強度分布の時間平均を図8(e)、(f)に示す。本実施例の三光束干渉エバネッセント波は、定在波の振幅が連続的に変化しており、うなりが発生していた。本実施例の三光束干渉エバネッセント波の強度分布の時間平均は、図8(e)、(f)に示すように、一空間周期中に互いに値の異なる極大値を含んでいた。
Example 3
Example 1 except that (θ 1 , θ 2 , θ 3 ) = (80 °, 80 °, 60 °), (φ 1 , φ 2 , φ 3 ) = (0 °, 180 °, 0 °) Similarly, the time average of the intensity distribution of the three-beam interference evanescent wave was obtained. The time average of the intensity distribution of the obtained three-beam interference evanescent wave is shown in FIGS. In the three-beam interference evanescent wave of this example, the amplitude of the standing wave was continuously changed, and the beat was generated. As shown in FIGS. 8E and 8F, the time average of the intensity distribution of the three-beam interference evanescent wave according to the present embodiment includes maximal values having different values in one spatial period.
 実施例1~3から示されるように、各光束の入射方向を変えることにより、種々の形状の強度分布を有する三光束干渉エバネッセント波を発生させことができる。また、各光束の入射方向を変えることにより、実施例3のように一周期の中に互いに値の異なる極大値又は極小値を含むような強度分布の時間平均を有する三光束干渉エバネッセント波を発生させることも可能である。 As shown in Examples 1 to 3, a three-beam interference evanescent wave having various intensity distributions can be generated by changing the incident direction of each beam. Also, by changing the incident direction of each light beam, a three-beam interference evanescent wave having a time average of intensity distribution that includes a maximum value or a minimum value having different values in one cycle as in the third embodiment is generated. It is also possible to make it.
 実施例1~3では、3光束を用いる場合のシミュレーション結果について説明したが、2光束を高屈折率媒質と光硬化材料膜の界面の所定領域に照射してもよく、その場合、山と谷が一方向に延在する形状の強度分布を形成することができる。このような2光束干渉エバネッセント波と比べて、3光束エバネッセント波は、上述したようにより複雑な強度分布を有し得る。また、4以上の光束を用いてもよく、その場合の複光束干渉エバネッセント波は、さらにより複雑な強度分布を有することができる。また、このような種々の強度分布の複光束干渉エバネッセント波で光硬化材料膜を露光することにより、光硬化材料膜を複光束干渉エバネッセント波の強度分布に対応する形状に硬化することができる。この硬化した光硬化材料膜はナノインプリント法に用いられるモールドの母型として用いることができ、母型の凹凸パターンは、硬化した光硬化材料膜の形状、すなわち、複光束干渉エバネッセント波の強度分布に対応する形状を有する。例えば、実施例3のような、強度分布の時間平均が一周期の中に互いに値の異なる極大値又は極小値を含むような三光束干渉エバネッセント波を用いることで、一周期中に互いに高さの異なる凸部又は凹部を含む凹凸パターン、すなわち三次元疑似ランダムパターンを有する母型を形成することができる。 In Examples 1 to 3, the simulation result in the case of using three light beams has been described. However, two light beams may be irradiated to a predetermined region at the interface between the high refractive index medium and the photocuring material film. It is possible to form an intensity distribution having a shape extending in one direction. Compared to such a two-beam interference evanescent wave, the three-beam evanescent wave may have a more complicated intensity distribution as described above. Further, four or more light beams may be used, and the double light beam interference evanescent wave in that case can have an even more complicated intensity distribution. Further, by exposing the photocuring material film with such a double beam interference evanescent wave having various intensity distributions, the photocuring material film can be cured into a shape corresponding to the intensity distribution of the double beam interference evanescent wave. This cured photo-curing material film can be used as a matrix of a mold used in the nanoimprint method, and the uneven pattern of the matrix is related to the shape of the cured photo-curing material film, that is, the intensity distribution of the double beam interference evanescent wave. Have a corresponding shape. For example, by using a three-beam interference evanescent wave in which the time average of the intensity distribution includes a maximum value or a minimum value having different values in one period as in the third embodiment, the height is mutually increased in one period. A matrix having a concavo-convex pattern including different convex portions or concave portions, that is, a three-dimensional pseudo-random pattern, can be formed.
 以上、本発明の実施形態及び実施例を説明してきたが、本発明の凹凸パターンを有する母型の製造方法は上記実施形態に限定されず、特許請求の範囲に記載した技術的思想の範囲内で適宜改変することができる。また、本発明の凹凸パターンを有する母型の製造装置は上記の実施形態の構成に限定されず、各種部品の配置が本願の図面に示された配置と異なっていてもよい。例えば、照射する複数の光束の入射角、方位角、振幅、相対位相、偏光状態等を制御することができる構成にしてよい。本発明の製造方法で得られる凹凸パターンを有する母型は、例えば、有機EL照明、液晶表示素子、太陽電池などの各種デバイスの光学基板の製造、マイクロレンズアレイ、ナノプリズムアレイ、光導波路などの光学素子の製造、レンズなどの光学部品、LED、太陽電池、反射防止フィルム、半導体チップ、パターンドメディア、データストレージ、電子ペーパー、LSIなどの製造、物品の包装、食品や工業用品および医薬品等の変質を防止するための包装部材の製造、免疫分析チップ、及び細胞培養シートなどのバイオ分野等における用途で好適に用いることができる。また、光反射部材、光散乱部材、絶縁部材、電極パターン部材、導電部材、防曇部材、断熱部材、防汚部材、光導波部材、誘電部材、無反射部材、低反射部材、偏光機能部材、光回折部材、親水部材、撥水部材等の種々の機能を有する部材の製造にも用いることができる。 As mentioned above, although embodiment and the Example of this invention were described, the manufacturing method of the mother mold | die which has an uneven | corrugated pattern of this invention is not limited to the said embodiment, In the range of the technical idea described in the claim Can be modified as appropriate. Moreover, the manufacturing apparatus of the mother mold having the uneven pattern according to the present invention is not limited to the configuration of the above embodiment, and the arrangement of various components may be different from the arrangement shown in the drawings of the present application. For example, the configuration may be such that the incident angle, azimuth angle, amplitude, relative phase, polarization state, and the like of a plurality of light beams to be irradiated can be controlled. The matrix having the concavo-convex pattern obtained by the production method of the present invention is, for example, an organic substrate for various devices such as organic EL lighting, liquid crystal display elements, solar cells, microlens arrays, nanoprism arrays, optical waveguides, etc. Manufacture of optical elements, optical components such as lenses, LEDs, solar cells, antireflection films, semiconductor chips, patterned media, data storage, electronic paper, LSI, etc., packaging of goods, food and industrial products, pharmaceuticals, etc. It can be suitably used for applications in the bio field such as the manufacture of packaging members for preventing alteration, immunoassay chips, and cell culture sheets. Further, a light reflecting member, a light scattering member, an insulating member, an electrode pattern member, a conductive member, an antifogging member, a heat insulating member, an antifouling member, an optical waveguide member, a dielectric member, a non-reflective member, a low reflection member, a polarization functional member, It can also be used for the production of members having various functions, such as light diffractive members, hydrophilic members, and water repellent members.
 10 高屈折率媒質、 30 光硬化材料膜、 40 基板
 50 界面、 60 凹凸構造層、 64 塗膜、 70 光束
 90 エバネッセント光、 92 第1電極、 94 有機層
 98 第2電極、100、500 凹凸パターンを有する母型の製造装置
101 封止部材、103 封止接着剤層、110 レーザ光源
130 高屈折率媒質、140 モールド、150 分岐光学系
200 発光素子、210 光硬化材料膜、230 界面
300 初期光束、330 第1の光束、370 第2の光束
390 第3の光束、400 光学基板
DESCRIPTION OF SYMBOLS 10 High refractive index medium, 30 Photocurable material film, 40 Substrate 50 Interface, 60 Uneven structure layer, 64 Coating film, 70 Light flux 90 Evanescent light, 92 1st electrode, 94 Organic layer 98 2nd electrode, 100, 500 Uneven pattern Manufacturing apparatus for mother mold having 101 101 sealing member, 103 sealing adhesive layer, 110 laser light source 130 high refractive index medium, 140 mold, 150 branch optical system 200 light emitting element, 210 photocurable material film, 230 interface 300 initial light flux , 330 First light flux, 370 Second light flux 390 Third light flux, 400 Optical substrate

Claims (9)

  1.  高屈折率媒質上に光硬化材料を供給して光硬化材料膜を形成することと、
     前記高屈折率媒質と前記光硬化材料膜の界面における所定領域に、前記高屈折率媒質側から複数の光束を、互いに異なる入射方向で且つ臨界角以上の入射角度で照射し、それにより発生した複光束干渉エバネッセント波により前記所定領域近傍の前記光硬化材料膜を硬化させることとを含む凹凸パターンを有する母型の製造方法。
    Supplying a photocurable material on the high refractive index medium to form a photocurable material film;
    A predetermined region at the interface between the high refractive index medium and the photocuring material film is irradiated with a plurality of light beams from the high refractive index medium side in different incident directions and incident angles greater than a critical angle. A method of manufacturing a mother die having a concavo-convex pattern, comprising: curing the photocurable material film in the vicinity of the predetermined region by a double beam interference evanescent wave.
  2.  さらに、前記光硬化材料膜の未硬化の部分を除去することを含む請求項1に記載の凹凸パターンを有する母型の製造方法。 Furthermore, the manufacturing method of the mother die which has an uneven | corrugated pattern of Claim 1 including removing the uncured part of the said photocuring material film | membrane.
  3.  前記複数の光束が3つの光束である請求項1又は2に記載の凹凸パターンを有する母型の製造方法。 3. The method for manufacturing a mother die having an uneven pattern according to claim 1, wherein the plurality of light beams are three light beams.
  4.  前記複光束干渉エバネッセント波の強度分布の時間平均が、一空間周期中に互いに値の異なる極大値又は極小値を含む請求項1~3のいずれか一項に記載の凹凸パターンを有する母型の製造方法。 The matrix of the matrix having the concavo-convex pattern according to any one of claims 1 to 3, wherein the time average of the intensity distribution of the double beam interference evanescent wave includes a maximum value or a minimum value having different values in one spatial period. Production method.
  5.  前記凹凸パターンが、一周期中に互いに高さの異なる凸部又は凹部を含む請求項1~4のいずれか一項に記載の凹凸パターンを有する母型の製造方法。 The method for producing a mother die having a concavo-convex pattern according to any one of claims 1 to 4, wherein the concavo-convex pattern includes convex portions or concave portions having different heights in one cycle.
  6.  同心円状に配列された複数の光透過部を有するフィルタを用いて、前記複数の光束を発生させる請求項1~5のいずれか一項に記載の凹凸パターンを有する母型の製造方法。 6. The method for manufacturing a mother die having a concavo-convex pattern according to claim 1, wherein the plurality of light fluxes are generated using a filter having a plurality of light transmission portions arranged concentrically.
  7.  前記フィルタにより、前記複数の光束の光量、及び/又は前記複数の光束が前記所定領域へ入射する方位角を制御する請求項6に記載の凹凸パターンを有する母型の製造方法。 The method for manufacturing a mother die having a concavo-convex pattern according to claim 6, wherein the filter controls the light amount of the plurality of light beams and / or the azimuth angle at which the plurality of light beams enter the predetermined region.
  8.  請求項1~7のいずれか一項に記載の凹凸パターンを有する母型の製造方法により製造された前記母型の前記凹凸パターン上に電鋳により金属層を積層することと、
     前記金属層から前記凹凸パターンを有する母型を剥離することを含むモールドの製造方法。
    Laminating a metal layer by electroforming on the concavo-convex pattern of the mother die produced by the method for producing a mother die having the concavo-convex pattern according to any one of claims 1 to 7,
    A method for producing a mold, comprising peeling a mother die having the concavo-convex pattern from the metal layer.
  9.  請求項8に記載のモールドの製造方法により得られたモールドの凹凸パターンを転写することを含む凹凸パターンを有する部材の製造方法。
     
    The manufacturing method of the member which has an uneven | corrugated pattern including transferring the uneven | corrugated pattern of the mold obtained by the manufacturing method of the mold of Claim 8.
PCT/JP2016/074037 2015-08-19 2016-08-17 Method for manufacturing matrix WO2017030151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017535554A JP6808155B2 (en) 2015-08-19 2016-08-17 Mother mold manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161889 2015-08-19
JP2015-161889 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017030151A1 true WO2017030151A1 (en) 2017-02-23

Family

ID=58052159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074037 WO2017030151A1 (en) 2015-08-19 2016-08-17 Method for manufacturing matrix

Country Status (3)

Country Link
JP (1) JP6808155B2 (en)
TW (1) TW201722671A (en)
WO (1) WO2017030151A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597278A (en) * 2019-02-01 2019-04-09 集美大学 The imprinting apparatus and method for stamping of light function textured film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102475A1 (en) * 2000-12-18 2002-08-01 The University Of Vermont And State Agricultural College Method of curing a photosensitive material using evanescent wave energy
JP2005238650A (en) * 2004-02-26 2005-09-08 Univ Of Tokyo Photo-fabrication method and photo-fabrication apparatus
JP2007112021A (en) * 2005-10-20 2007-05-10 National Univ Corp Shizuoka Univ Method and apparatus for micro-processing of photocuring resin
JP2011526069A (en) * 2008-01-22 2011-09-29 ローイス インコーポレイテッド Large-area nanopattern forming method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102475A1 (en) * 2000-12-18 2002-08-01 The University Of Vermont And State Agricultural College Method of curing a photosensitive material using evanescent wave energy
JP2005238650A (en) * 2004-02-26 2005-09-08 Univ Of Tokyo Photo-fabrication method and photo-fabrication apparatus
JP2007112021A (en) * 2005-10-20 2007-05-10 National Univ Corp Shizuoka Univ Method and apparatus for micro-processing of photocuring resin
JP2011526069A (en) * 2008-01-22 2011-09-29 ローイス インコーポレイテッド Large-area nanopattern forming method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597278A (en) * 2019-02-01 2019-04-09 集美大学 The imprinting apparatus and method for stamping of light function textured film

Also Published As

Publication number Publication date
TW201722671A (en) 2017-07-01
JPWO2017030151A1 (en) 2018-06-14
JP6808155B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
US9823392B2 (en) Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
TW201513422A (en) Method for manufacturing substrate having textured structure
JP5971331B2 (en) Optical system, imaging device, and optical apparatus
US9288891B2 (en) Conductive element and method of manufacturing the same, wiring element, and master copy
JP5802557B2 (en) Energy source for curing in imprint lithography systems
TW201501910A (en) Method of manufacturing member having relief structure, and member having relief structure manufactured thereby
US20120070623A1 (en) Manufacturing method of laminated body, stamper, transfer device, laminated body, molding element, and optical element
JP2006351217A (en) Manufacturing method of backlight unit, backlight unit, electro-optical device, and electronic apparatus
JP2006351215A (en) Manufacturing method of backlight unit, backlight unit, electro-optical device, and electronic apparatus
TWI785482B (en) Metasurface coatings
JP2006351216A (en) Manufacturing method of backlight unit, backlight unit, electro-optical device, and electronic apparatus
KR101067345B1 (en) Method and apparatus for fabricating pattern
WO2017030151A1 (en) Method for manufacturing matrix
JP5895335B2 (en) Laminate, molded element, and optical element
US20220260904A1 (en) Thermal imprinting of nanostructure materials
JP2012061832A (en) Method of manufacturing laminated body, stamper, and transfer device
US10754078B2 (en) Light source, a shaping system using the light source and an article manufacturing method
CN107367784B (en) Optical phase difference member and projector
JP2022060301A (en) Filler-filled film, sheet film, laminate film, bonded body and method for producing filler-filled film
JP6484505B2 (en) Transfer roll for transferring concavo-convex pattern, and film member manufacturing apparatus having the transfer roll
JP2018155795A (en) Optical retardation member, polarization conversion element, template, and manufacturing method of optical retardation member
CN108139525A (en) optical phase difference component and projector
CN117706673B (en) Liquid crystal polarization grating preparation device and preparation method
JP2006351214A (en) Manufacturing method of backlight unit, backlight unit, electro-optical device, and electronic apparatus
WO2016068171A1 (en) Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837140

Country of ref document: EP

Kind code of ref document: A1