WO2016068171A1 - Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film - Google Patents

Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film Download PDF

Info

Publication number
WO2016068171A1
WO2016068171A1 PCT/JP2015/080344 JP2015080344W WO2016068171A1 WO 2016068171 A1 WO2016068171 A1 WO 2016068171A1 JP 2015080344 W JP2015080344 W JP 2015080344W WO 2016068171 A1 WO2016068171 A1 WO 2016068171A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
filler
filled
film body
recesses
Prior art date
Application number
PCT/JP2015/080344
Other languages
French (fr)
Japanese (ja)
Inventor
穣 村本
正尚 菊池
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015209377A external-priority patent/JP6756098B2/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN202010025666.8A priority Critical patent/CN111168984B/en
Priority to CN201580055666.XA priority patent/CN106794622B/en
Priority to US15/523,212 priority patent/US10065380B2/en
Priority to KR1020177004495A priority patent/KR101929692B1/en
Publication of WO2016068171A1 publication Critical patent/WO2016068171A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00596Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles

Definitions

  • the present invention relates to a filler-filled film, a sheet-fed film, a laminated film, a bonded body, and a method for producing a filler-filled film.
  • embossed films have been developed and used.
  • a film having a recess having a diameter of 1 ⁇ m or more and having an array pattern of the recess having a periodicity along the length direction of the embossed film is known. That is, in such an embossed film, the same arrangement pattern is repeatedly formed in the length direction of the embossed film.
  • Such an embossed film is used as a filler-filled film, for example.
  • the filler-filled film is obtained by filling a concave portion of an embossed film with a filler.
  • stamper master is obtained by forming a reverse shape (that is, a plurality of convex portions) of the arrangement pattern on the surface (transfer surface) of a flat substrate. Then, the embossed film is produced by sequentially transferring the transfer surface shape of the stamper master to the film to be transferred.
  • the method of producing an embossed film using a stamper master has a problem that it is very difficult to accurately position the stamper master with respect to the transfer film. For this reason, in the embossed film produced by this method, there was a problem that a defect of a concave portion (position shift, deficiency, distortion, etc.) was likely to occur. There may be a case where the defective concave portion is not filled with the filler. Moreover, the defect of a recessed part tends to become large, so that a filler filling film becomes long. For this reason, the problem that the filling rate of a filler varies in the length direction of a filler filling film may arise.
  • Patent Document 1 discloses a method for producing a moth-eye film by roll-to-roll.
  • a cylindrical master having a reversal shape of a moth-eye film formed on the peripheral surface is prepared.
  • the moth-eye film is produced by transferring the peripheral surface shape of the master to the film.
  • the uneven diameter is very small (less than 1 ⁇ m)
  • the above problem cannot be solved at all.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel and improved filler-filled film, single-wafer film, and laminated film in which the filler filling rate is more stable. It is providing the manufacturing method of a bonding body and a filler filling film.
  • a film body a plurality of recesses formed on the surface of the film body, and a filler filled in each of the recesses, the opening of the recesses is provided.
  • the diameter of the surface is at least larger than the visible light wavelength
  • the arrangement pattern of the recesses has a periodicity along the length direction of the film body
  • the filling rate of the filler at one end of the film body and the other of the film body
  • a filler-filled film is provided in which the difference from the filler filling rate in this portion is less than 0.5%.
  • the film body may be a long film.
  • the filling rate of the filler may have periodicity along the length direction of the film body.
  • all the recesses may have substantially the same shape.
  • the number of fillers filled per unit area of the film body may be 50,000,000 pieces / cm 2 or less.
  • the filler may be integrated with the film body in the recess.
  • a coating layer formed on at least a part of the surface of the film body may be provided.
  • the coating layer may be formed on at least a part of the surface of the concave portion, the surface of the convex portion between the concave portions, and the exposed surface of the filler.
  • the coating layer may contain an inorganic material.
  • the film body may be formed of a curable resin or a plastic resin.
  • a single wafer film produced by cutting the filler-filled film into a plurality of sheets.
  • an adhesive layer formed on the back surface of the film body may be provided.
  • a bonded body comprising the above film and a substrate on which the above film is bonded.
  • a step of preparing a cylindrical or columnar master having a plurality of convex portions formed on the peripheral surface, and a long master film while being conveyed by roll-to-roll The step of producing a film body by transferring the peripheral surface shape of the film to a film to be transferred, and the step of filling a plurality of recesses formed on the surface of the film body with a filler, the diameter of the opening surface of the recesses Of the filler-filled film, wherein the difference between the filler filling rate at one end of the film body and the filler filling rate at the other part of the film body is less than 0.5%.
  • a manufacturing method is provided.
  • the difference between the filler filling rate at one end of the film body and the filler filling rate at the other part of the film body is less than 0.5%. Therefore, the filling rate of the filler becomes more stable.
  • the filling rate of the filler is more stable.
  • the filler-filled film 1 includes a film body 2, a plurality of recesses 3 formed on the surface of the film body 2, and a filler 4 filled in each of the recesses 3.
  • the film body 2 is a film in which a plurality of recesses 3 are formed.
  • the material constituting the film body 2 is not particularly limited.
  • the film body 2 may be formed of any curable resin or plastic resin.
  • the curable resin include a photocurable resin and a thermosetting resin.
  • the plastic resin include thermoplastic resins (more specifically, crystalline resins that melt by heat). Therefore, the film body 2 may be formed of at least one or more of a photocurable resin, a thermosetting resin, and a thermoplastic resin, for example.
  • the film body 2 includes a sheet-like transferred substrate film 161 and a cured resin layer 162a formed on the transferred substrate film 161.
  • the cured resin layer 162a is a layer obtained by curing a photocurable resin or a thermosetting resin.
  • the concave portion 3 is formed on the surface of the cured resin layer 162a.
  • the film body 2 may be formed in a state where the curable resin and the resin constituting the transfer base film are mixed.
  • the thickness of the film body 2 is not particularly limited. The thickness of the film body 2 may be adjusted depending on the presence / absence of the above-described transfer target substrate film 161. For example, the thickness of the film body 2 may be 10 to 300 ⁇ m when the film body 2 has the transferred substrate film 161. In this case, the thickness of the cured resin layer 162a may be 1 to 50 ⁇ m, and the thickness of the transferred substrate film 161 may be 9 to 250 ⁇ m. On the other hand, when the film body 2 does not have the transfer base film 161, the thickness of the film body 2 may be 8 to 200 ⁇ m.
  • the width of the film body 2 is not particularly limited.
  • the width of the film body 2 may be 0.05 to 300 cm.
  • the length of the film body 2 is not particularly limited.
  • the lower limit of the length of the film body 2 may be any of 5 m, 10 m, 30 m, 50 m, 100 m, 200 m, 300 m, and 500 m.
  • a plurality of recesses 3 are formed on the surface of the film body 2.
  • the diameter of the opening surface of the recess 3 is at least larger than the visible light wavelength.
  • the diameter of the opening surface of the recess 3 is, for example, the diameter of the smallest circle that includes the opening surface of the recess 3 (for example, the circumscribed circle of the opening surface of the recess 3).
  • the diameter of the opening surface of the recess 3 is preferably 0.8 to 500 ⁇ m, more preferably 1.0 to 300 ⁇ m, and even more preferably larger than 1.6 ⁇ m and smaller than 300 ⁇ m. preferable.
  • the lower limit is preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more, and even more preferably larger than 1.6 ⁇ m.
  • the upper limit is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably less than 300 ⁇ m.
  • the shape of the opening surface of the recess 3 is not particularly limited and may be any shape.
  • the shape of the opening surface of the recess 3 may be a circle, an ellipse, a polygon, or the like.
  • the diameter of the opening surface may be the longest one of the lengths of one side constituting the polygon.
  • the opening surface of the recess 3 may have a shape having a curve in part. Further, the area of the opening surface does not have to be constant as long as the above-described conditions of the opening surface are satisfied.
  • the opening surface having the smallest area may be regarded as a point, and the opening surface having an area larger than that may be classified as a line or a surface depending on the shape.
  • the linear opening surface is formed by connecting the recesses 3 having the opening surface with the minimum area in a linear manner (that is, in a one-dimensional direction).
  • the planar opening surface is formed by connecting concave portions 3 having an opening surface with a minimum area in a planar shape (that is, in a two-dimensional direction). Therefore, the linear and planar recesses 3 can be regarded as an aggregate of the recesses 3 having an opening surface with a minimum area.
  • the shape of the line or surface is not particularly limited.
  • the aggregate of the recesses 3 may be a combination of a surface and a line.
  • the aggregate of the recesses 3 is measured as one recess 3.
  • corrugated shape shown in FIG. 1 may be reversed. That is, the concave portion 3 may be a convex portion, and the convex portion 3b (see FIG. 2) between the concave portions 3 may be a concave portion.
  • the depth d of the recess 3 is not particularly limited.
  • the depth d may be 0.08 to 30 ⁇ m.
  • the depth d is preferably 0.08 to 15 ⁇ m.
  • the aspect ratio of the recess 3 is about 0.1 to 10. Also good.
  • the aspect ratio is a value obtained by dividing the diameter of the opening surface by the depth d.
  • the depth of the recess 3 exceeds 30 ⁇ m or the aspect ratio of the recess 3 exceeds 10, it is not preferable because the formation of the recess 3 becomes difficult. Moreover, when the depth of the recessed part 3 is less than 0.08 ⁇ m, or the aspect ratio of the recessed part 3 is less than 0.1, filling of the filler 4 may be difficult.
  • the recess 3 may penetrate the cured resin layer 162a. However, it is preferable that the recess 3 does not penetrate the film body 2 regardless of whether or not the film body 2 has the substrate film 161 to be transferred.
  • each recess 3 is substantially the same throughout the film body 2.
  • the cross-sectional shape of the recessed part 3 or the shape of an opening surface is substantially the same, since the grasping state of the recessed part 3 in the filler filling film 1 becomes easier, it is preferable.
  • the arrangement pattern of the recesses 3 has a periodicity along the length direction P of the film body 2.
  • the arrangement pattern of the recesses 3 is an arrangement pattern in which the unit arrangement pattern M is repeated in the length direction of the film body 2.
  • the unit array pattern M is composed of two rows of recesses 3 arranged in a direction perpendicular to the length direction P.
  • the recesses 3 in each row are arranged at equal intervals.
  • column is arrange
  • the hexagonal lattice arrangement pattern is an example of a pattern in which the concave portions 3 are arranged in a close-packed manner.
  • the arrangement pattern is not limited to this example.
  • the array pattern may be a square lattice array pattern.
  • the unit array pattern is composed of a single row of recesses 3 arranged in a direction perpendicular to the length direction P.
  • the recesses 3 in the row are arranged at equal intervals.
  • Other arrangement patterns include lattice shapes such as an orthorhombic lattice and a parallel lattice. Further, it may be arbitrarily drawn (stipulated).
  • the width MW of the unit arrangement pattern M matches the width of the film body 2.
  • the length ML of the unit array pattern M is not particularly limited.
  • the length ML matches the circumference of the master 110.
  • the arrangement pattern of the convex portions 113 has periodicity along the circumferential direction of the master 110, that is, when the unit arrangement pattern of the convex portions 113 is repeated in the circumferential direction of the master 110, the length ML is set to the convex 113. To the length of the unit array pattern (the length in the circumferential direction of the master 110).
  • the length ML of the unit array pattern M is the minimum when the unit array pattern M is composed of one row of the recesses 3. That is, in this case, the length ML is about the diameter of the recess 3. On the other hand, the maximum is obtained when the arrangement pattern of the protrusions 113 has no periodicity. In this case, the length ML matches the circumferential length of the master 110. Therefore, the range of the length ML of the unit array pattern M is very wide.
  • the diameter of the master 110 is not particularly limited, but is, for example, 50 to 300 mm.
  • the arrangement pattern of the recesses 3 may have periodicity with respect to a direction perpendicular to the length direction of the film body 2 (width direction of the film body 2). That is, the same arrangement pattern may be repeated along the width direction of the film body 2.
  • the periodicity along the length direction P of the film body 2 and the periodicity in the direction orthogonal thereto may be the same or different. This is because when the filler-filled film 1 is made into a single sheet, substantially the same single-sheet film can be obtained.
  • the surface density of the recesses 3, that is, the number of the recesses 3 formed per unit area of the film body 2 is not particularly limited.
  • the number may be 50,000,000 pieces / cm 2 or less.
  • the contact area between the master 110 and the film body 2 increases when the recesses 3 are formed, and the master 110 and the film body 2 are separated from each other. This is not preferable because the moldability is lowered and the concave portion 3 is hardly formed.
  • the lower limit value of the surface density of the recesses 3 is not particularly limited, but may be, for example, 100 pieces / cm 2 or more.
  • the surface density of the recess 3 matches the surface density of the filler 4, that is, the number of fillers 4 filled per unit area of the film body 2.
  • the distance between the recesses 3 is not particularly limited.
  • the lower limit value of the distance between the recesses 3 may be 0.5 ⁇ m. More specifically, the lower limit value of the distance between the recesses 3 is preferably 5/8 or more, more preferably 1/2 or more, of the minimum diameter of the filler 4.
  • the upper limit of the distance between the recesses 3 is not particularly limited, but may be about 1000 ⁇ m.
  • the distance between the recesses 3 may be the distance between the center points of the opening surfaces.
  • deletion of the recessed part 3 may arise continuously in the length direction P, even in such a case, there are very few continuous defect
  • the defect of the concave portion 3 means that the concave portion 3 was not formed (in other words, the shape of the convex portion 113 (see FIG. 10) was not transferred to the film body 2).
  • deletion continuous in the length direction P means the defect
  • the number of defects continuous in the length direction P is 10 or less, preferably 5 or less.
  • FIGS. 13 and 14 are SEM photographs of the film body 2.
  • 13A and 14A are SEM images obtained by observing the surface of the film body 2
  • FIGS. 13B and 14B are SEMs obtained by observing a cross section obtained by cutting the transcript shown in FIGS. 13A and 14A along the line XX. It is an image.
  • 13A and 14A is the length direction P in FIG. 1, and the left-right direction is the width direction of the film body 2.
  • the shape of the opening surface is circular, and the arrangement pattern of the recesses 3 is a hexagonal lattice arrangement pattern.
  • the shape of the opening surface is a square, and the arrangement pattern of the recesses 3 is a square lattice arrangement pattern.
  • the filler 4 is filled in the recess 3. Filling refers to a state in which a majority of the filler is embedded in the recess 3. Note that one recess 4 is preferably filled with one filler 4. However, the aggregate of the recesses 3 may be filled with a plurality of fillers 4.
  • the material (composition) constituting the filler 4 is not particularly limited and may be appropriately selected depending on the use of the filler-filled film 1.
  • the filler 4 is an inorganic material, an organic material, an inorganic material having a multilayer structure, or a mixture of an inorganic material (inorganic material) and an organic material (organic material) (for example, a fine solid material made of an organic material coated with an inorganic material). Etc. can be used.
  • the filler 4 may be a pigment, a dye, a crystalline inorganic substance, or the like.
  • the filler 4 may be a material obtained by crushing a crystalline organic material or an inorganic material.
  • the same filler 4 may be filled in all the recessed parts 3, and a different kind of filler 4 may be filled.
  • the shape of the filler 4 is not particularly limited.
  • the filler 4 may have an isotropic shape, for example, a spherical shape.
  • the specific gravity of the filler is not particularly limited, but may be 0.8 to 23, for example.
  • the maximum length of the filler is not more than the minimum length of the opening surface of the recess 3.
  • the filler may be provided with various physical properties and functionality.
  • the filler 4 may be integrated with the film body 2 in the recess 3.
  • the integration with the film body 2 may be performed by, for example, filling the recess 3 with the filler 4 in a state where only a part of the recess 3 is cured, and then completely curing the recess 3.
  • an uncured curable resin may be applied or dispersed on the surface of the filler-filled film 1 to cure the curable resin.
  • the filling rate of the filler 4 (hereinafter also referred to as “filler filling rate”) is very stable. That is, the difference between the filler filling rate at one end F of the film body 2 and the filler filling rate at the other part of the film body 2 is less than 0.5%, preferably 0.3% or less, more preferably 0. .1% or less.
  • one end F is an end on the side where the concave portion 3 is first formed by the master 110 described later, that is, a transfer start point.
  • the other end R is an end on the side where the concave portion 3 is finally formed by the master 110, that is, an end point of transfer.
  • the direction from one end F toward the other end F is defined as the positive direction of the length direction P.
  • the filler filling rate in each part (point) of the film main body 2 is calculated as follows, for example.
  • a unit array pattern M including a focused portion is extracted, and a predetermined number m (m is an arbitrary integer greater than or equal to 0) units arranged on the positive side of the length direction P with respect to the unit array pattern M.
  • An arrangement pattern M is extracted.
  • the extracted unit array pattern M is set as a measurement target region.
  • the filler filling rate is measured by dividing the sum of the measured values of each representative region by the sum of the ideal number of fillers 4 present in each representative region.
  • the ideal number of fillers 4 present in the representative region is the number of fillers 4 that should be present in the representative region. That is, this is the number of fillers 4 measured when it is assumed that there are no defects in the recesses 3 in the representative region and that all the recesses 3 in the representative region are filled with the filler 4 without excess or deficiency.
  • the filler filling rate may be less than 100 (%) for some reason. Causes of this include misalignment of the concave portion 3 (the concave portion 3 is formed at a position different from the position where it should originally be formed), defects and distortion of the concave portion 3 (being a shape different from the original shape), etc. Is mentioned.
  • the filler 4 may not be filled in the recess 3.
  • the defect of the recess 3 occurs, there is no recess 3 to be filled with the filler 4. Accordingly, in any case, the filler filling rate decreases.
  • two recesses 3 a are missing in the unit array pattern M at the point X. Further, one recess 3a is missing in the unit array pattern M at the other end R.
  • the distribution of filler filling rate can have various modes.
  • the filler filling rate may have periodicity along the length direction P.
  • the filler filling rate in each portion may have a distribution that undulates along the length direction P.
  • the horizontal axis of FIG. 3 indicates the distance from the starting point of the film body 2 to each part on the film body 2 (that is, the distance in the length direction), and the vertical axis indicates the filler filling rate.
  • the graph L1 shows the correspondence between the distance in the length direction of the filler-filled film 1 according to this embodiment and the filler filling rate.
  • the graph L2 shows the correspondence between the distance in the length direction of the conventional filler-filled film (that is, produced using the stamper master) and the filler filling rate.
  • the filler filling rate has a distribution that undulates along the length direction.
  • the filler-filled film 1 according to this embodiment has a small variation in the filler filling rate
  • the conventional filler-filled film has a very large variation in the filler filling rate.
  • the variation of the filler filling rate increases as the film body becomes longer.
  • variation in a filler filling rate can be suppressed. That is, in this embodiment, the difference between the filler filling rate at each portion and the filler filling rate at one end F is suppressed to less than 0.5%.
  • a filler-filled film 1a shown in FIG. 4 is obtained by adding a coating layer 5 to the filler-filled film 1 described above.
  • the covering layer 5 covers the surface of the film body 2, that is, the surface (wall surface and bottom surface) of the recess 3 and the surface (tip surface) of the protrusion 3 b between the recesses 3.
  • the covering layer 5 may cover only one of the surface of the concave portion 3 and the surface of the convex portion 3b.
  • the filler 4 is filled in the concave portion 3 covered with the coating layer 5.
  • the material (composition) constituting the coating layer 5 is not particularly limited, and may be an organic material or an inorganic material.
  • the material which comprises the coating layer 5 should just be selected suitably according to the use of the filler filling film 1a, it is preferable to comprise with the material different from the film main body 2.
  • the coating layer 5 may be an inorganic layer.
  • the coating layer 5 is formed, for example, by vapor-depositing the material constituting the coating layer 5 on the film body 2.
  • the layer thickness of the covering layer 5 is not particularly limited, but is preferably substantially uniform on the surface of the film body 2 regardless of the shape of the recess 3.
  • the part formed in the surface of the recessed part 3 is formed in the surface of the recessed part 3 in the ratio of 30 volume% or less of the hollow part of the recessed part 3.
  • the vapor deposition method is not particularly limited.
  • the coating layer 5 may be formed only on a part of the recess 3 (that is, inclined) by performing oblique deposition. In this case, since the wall surface of the recessed part 3 can be inclined, it becomes easy to fill the recessed part 3 with the filler 4.
  • the coating layer 5 may be formed by applying or spraying an organic material. Also at this time, the opening surface and the spraying direction may be inclined.
  • a filler-filled film 1b shown in FIG. 5 is obtained by further forming a coating layer 6 on the surface of the filler-filled film 1a shown in FIG.
  • the coating layer 6 covers a portion of the coating layer 5 that covers the convex portion 3 b and an exposed surface of the filler 4.
  • the exposed surface of the filler 4 means a surface exposed to the outside through the opening surface of the recess 3.
  • the material constituting the coating layer 6 is not particularly limited, and may be an organic material or an inorganic material.
  • the material which comprises the coating layer 6 should just be suitably selected according to the use of the filler filling film 1b.
  • the covering layer 6 may be made of the same inorganic material as the covering layer 5 or may be made of a different inorganic material.
  • the covering layer 6 is formed by the same method as the covering layer 5.
  • a filler-filled film 1c shown in FIG. 6 is obtained by forming a coating layer 7 on the surface of the filler-filled film 1.
  • the covering layer 7 covers the surface of the convex portion 3 b and the exposed surface of the filler 4.
  • the material (composition) constituting the coating layer 7 is not particularly limited, and may be an organic material or an inorganic material.
  • the material which comprises the coating layer 7 should just be suitably selected according to the use of the filler filling film 1c.
  • the coating layer 7 may be an inorganic layer.
  • the covering layer 7 is formed by the same method as the covering layer 5.
  • a filler-filled film 1d shown in FIG. 7 is obtained by forming an adhesive layer 8 on the back surface of the film body 2 (the surface opposite to the surface on which the recesses 3 are formed).
  • the filler-filled film 1d may be bonded to another object (for example, another filler-filled film according to the present embodiment, an arbitrary base material, or the like) via the adhesive layer 8.
  • the adhesive layer 8 may be formed on the filler-filled films 1a to 1c shown in FIGS.
  • each filler-filled film 1 is a laminate film 20 in which two filler-filled films 1 are bonded together with an adhesive layer 8 interposed therebetween.
  • the number of laminated layers is two, but the number of laminated layers is not limited to this.
  • the arrangement pattern of the recessed part 3 of each filler filling film 1 may be the same, or may differ.
  • the arrangement pattern of the recesses 3 of each filler-filled film 1 may be similar to each other.
  • Each filler-filled film 1 may be filled with the same filler 4, or a different filler 4 may be filled for each filler-filled film 1.
  • the laminated film 20 may be produced by laminating the filler-filled film 1d shown in FIG.
  • the laminated film 20 may be produced by repeating the process of applying the adhesive layer 8 on the surface of the filler-filled film 1 and attaching another filler-filled film 1 thereon.
  • the filler-filled films 1a to 1c shown in FIGS. 4 to 6 may be laminated.
  • the type of the base material 31 is not particularly limited.
  • the base material 31 may be a planar member (for example, a film or a plate), or may be a three-dimensional member (for example, various housings). Further, the filler-filled films 1a to 1d, the laminated film 20, and a sheet film described later may be bonded to the base material 31.
  • the filler-filled film 1 described above may be a single wafer film by being cut into a plurality of sheets.
  • the filler filling rate can be stabilized over the entire region, so that a plurality of homogeneous sheet films can be produced.
  • the film which concerns on each modification mentioned above may also be made into a single wafer film.
  • each film is not particularly limited, but may be used in, for example, printed electronics and its application fields (related fields). Moreover, you may use not only the above-mentioned field
  • the film body 2 can be manufactured by a roll-to-roll type transfer device.
  • the structure of the transfer apparatus 100 which is an example of a transfer apparatus is demonstrated.
  • the film main body 2 is produced using a photocurable resin.
  • the transfer device 100 includes a master 110, a base material supply roll 151, a winding roll 152, guide rolls 153 and 154, a nip roll 155, a peeling roll 156, a coating device 157, and a light source 158.
  • the master 110 is a cylindrical or columnar member, and a plurality of convex portions 113 are formed on the peripheral surface of the master 110. These convex portions 113 have the inverted shape of the concave portion 3 described above. That is, in the transfer apparatus 100, the film main body 2 is produced by transferring the arrangement pattern of the convex portions 113 formed on the peripheral surface of the master 110 to the transferred film 2a.
  • the material constituting the master 110 and the size (diameter, etc.) of the master 110 are not particularly limited.
  • the master 110 may be made of quartz glass (SiO 2 ) such as fused silica glass or synthetic quartz glass, stainless steel, or the like.
  • the diameter (outer diameter) of the master 110 may be 50 to 300 mm.
  • the thickness may be 2 to 50 mm.
  • the method of forming the convex 113 on the peripheral surface of the master 110 is not particularly limited.
  • the convex part 113 may be produced by mechanically cutting the peripheral surface of the master 110 or may be produced by etching.
  • the outline of the process for producing the master 110 by etching is as follows. That is, the peripheral surface of a cylindrical or columnar substrate is covered with a resist layer. Next, a portion of the resist layer where the convex portion 113 is not formed (a portion that becomes a concave portion) is irradiated with laser light to form a latent image on the resist layer. A configuration example of an exposure apparatus that irradiates the substrate with laser light will be described later. Next, the latent image portion is removed by developing the resist layer.
  • the substrate is etched using the resist layer as a mask.
  • the convex part 113 is formed.
  • a marking indicating a position on the peripheral surface of the master 110 may be provided on the peripheral surface of the master 110.
  • the transfer progress can be confirmed by transferring such a marking to the transfer film 2a.
  • a part of the protrusion 113 formed on the master 110 may be intentionally shifted.
  • the concave portion 3 serves as a marking.
  • the positional deviation of the convex part 113 is set within a range that does not affect the quality of the film body 2.
  • FIG. 12 shows an example of the master 110.
  • a plurality of convex portions 113 are formed on the peripheral surface of the master 110.
  • the arrangement pattern of the convex portions 113 is an inverted shape of the arrangement pattern of the concave portions 3 shown in FIG. That is, the arrangement pattern of the convex portions 113 is a hexagonal lattice arrangement pattern, and has periodicity in both the axial direction A and the circumferential direction B of the master 110.
  • the base material supply roll 151 is a roll in which a long substrate film 161 to be transferred is wound in a roll shape
  • the winding roll 152 is a roll that winds up the film body 2.
  • the guide rolls 153 and 154 are rolls that transport the transfer base film 161.
  • the nip roll 155 is a roll for bringing the transfer substrate film 161 on which the uncured resin layer 162 is laminated, that is, the transfer film 2 a into close contact with the master 110.
  • the peeling roll 156 is a roll for peeling the transfer base film 161 on which the cured resin layer 162 a is laminated, that is, the film body 2 from the master 110.
  • the coating device 157 includes coating means such as a coater, and applies an uncured photocurable resin composition to the transfer base film 161 to form an uncured resin layer 162.
  • the coating device 157 may be, for example, a gravure coater, a wire bar coater, or a die coater.
  • the light source 158 is a light source that emits light having a wavelength capable of curing the photocurable resin composition, and may be, for example, an ultraviolet lamp.
  • the photo-curable resin composition is a resin that is hardened due to a decrease in fluidity when irradiated with light having a predetermined wavelength.
  • the photocurable resin composition may be an ultraviolet curable resin such as an acrylic resin.
  • the photocurable resin composition may contain an initiator, a filler, a functional additive, a solvent, an inorganic material, a pigment, an antistatic agent, a sensitizing dye, or the like, if necessary.
  • the transferred substrate film 161 is continuously sent from the substrate supply roll 151 through the guide roll 153.
  • An uncured photocurable resin composition is applied to the transferred substrate film 161 by the coating device 157, and the uncured resin layer 162 is laminated on the substrate film 161 to be transferred. Thereby, the to-be-transferred film 2a is produced.
  • the transferred film 2 a is brought into close contact with the master 110 by the nip roll 155.
  • the light source 158 cures the uncured resin layer 162 by irradiating light to the uncured resin layer 162 that is in close contact with the master 110.
  • the arrangement pattern of the convex portions 113 formed on the outer peripheral surface of the master 110 is transferred to the uncured resin layer 162. That is, the cured resin layer 162a in which the recess 3 is formed is formed.
  • the light source 158 may irradiate the recess 3 with light obliquely. In this case, only a part of the recess 3 is cured.
  • the transfer base film 161 on which the cured resin layer 162 a is laminated, that is, the film body 2 is peeled from the master 110 by the peeling roll 156.
  • the film body 2 is wound up by the winding roll 152 through the guide roll 154.
  • the transfer film 2a is conveyed by roll-to-roll, while the peripheral surface shape of the master 110 is transferred to the transfer film 2a. Thereby, the film main body 2 is produced.
  • the coating device 157 and the light source 158 are unnecessary.
  • the substrate film 161 to be transferred is a thermoplastic resin film, and a heating device is disposed upstream of the master 110. The transferred substrate film 161 is heated and softened by this heating device, and then the transferred substrate film 161 is pressed against the master 110. As a result, the arrangement pattern of the convex portions 113 formed on the peripheral surface of the master 110 is transferred to the substrate film 161 to be transferred.
  • the transferred substrate film 161 may be a film made of a resin other than a thermoplastic resin, and the transferred substrate film 161 and the thermoplastic resin film may be laminated. In this case, the laminated film is pressed by the master 110 after being heated by the heating device.
  • the transfer device 100 can continuously manufacture the transfer product, that is, the film body 2 to which the arrangement pattern of the convex portions 113 formed on the master 110 is transferred. Moreover, the film main body 2 produced using the transfer device 100 can suppress the occurrence of defects in the recesses 3 and, in turn, can suppress variations in the filler filling rate.
  • the exposure apparatus 200 is an apparatus that forms the master 110.
  • the exposure apparatus 200 includes a laser light source 221, a first mirror 223, a photodiode (Photodiode: PD) 224, a deflection optical system 225, a control mechanism 237, a second mirror 231, a moving optical table 232, and a spindle.
  • a motor 235 and a turntable 236 are provided.
  • the substrate 110a is placed on the turntable 236 and can rotate.
  • the laser light source 221 is a light source that emits laser light 220, and is, for example, a solid-state laser or a semiconductor laser.
  • the wavelength of the laser light 220 emitted from the laser light source 221 is not particularly limited, but may be, for example, a wavelength in a blue light band of 400 nm to 500 nm.
  • the spot diameter of the laser beam 220 (the diameter of the spot irradiated on the resist layer) may be smaller than the diameter of the opening surface of the recess 3, and may be about 200 nm, for example.
  • the laser light 220 emitted from the laser light source 221 is controlled by the control mechanism 237.
  • the laser light 220 emitted from the laser light source 221 travels straight as a parallel beam, is reflected by the first mirror 223, and is guided to the deflection optical system 225.
  • the first mirror 223 is composed of a polarization beam splitter, and has a function of reflecting one of the polarization components and transmitting the other of the polarization components.
  • the polarization component transmitted through the first mirror 223 is received by the photodiode 224 and subjected to photoelectric conversion. Further, the light reception signal photoelectrically converted by the photodiode 224 is input to the laser light source 221, and the laser light source 221 performs phase modulation of the laser light 220 based on the input light reception signal.
  • the deflection optical system 225 includes a condenser lens 226, an electro-optic deflector (EOD) 227, and a collimator lens 228.
  • EOD electro-optic deflector
  • the laser light 220 is condensed on the electro-optic deflection element 227 by the condenser lens 226.
  • the electro-optic deflection element 227 is an element that can control the irradiation position of the laser light 220.
  • the exposure apparatus 200 can also change the irradiation position of the laser beam 220 guided onto the moving optical table 232 by the electro-optic deflection element 227.
  • the laser beam 220 is converted into a parallel beam again by the collimator lens 228.
  • the laser light 220 emitted from the deflection optical system 225 is reflected by the second mirror 231 and guided horizontally and parallel onto the moving optical table 232.
  • the moving optical table 232 includes a beam expander (BEX) 233 and an objective lens 234.
  • the laser light 220 guided to the moving optical table 232 is shaped into a desired beam shape by the beam expander 233 and then irradiated to the resist layer of the substrate 110 a through the objective lens 234. Further, the moving optical table 232 moves by one feed pitch in the arrow R direction (feed pitch direction) every time the substrate 110a rotates once.
  • a base material 110 a is installed on the turntable 236.
  • the spindle motor 235 rotates the base 110a by rotating the turntable 236.
  • the control mechanism 237 includes a formatter 240 and a driver 230, and controls the irradiation of the laser light 220.
  • the formatter 240 generates a modulation signal that controls the irradiation of the laser light 220, and the driver 230 controls the laser light source 221 based on the modulation signal generated by the formatter 240. Thereby, irradiation of the laser beam 220 to the base material 110a is controlled.
  • the formatter 240 generates a control signal for irradiating the master 110 with the laser light 220 based on an input image on which an arbitrary pattern to be drawn on the master 110 is drawn. Specifically, first, the formatter 240 acquires an input image on which an arbitrary pattern to be drawn on the master 110 is drawn. The input image is an image corresponding to a developed view of the outer peripheral surface of the master disk 110 that is cut out in the axial direction and extended to one plane. Next, the formatter 240 divides the input image into small areas of a predetermined size (for example, in a grid pattern), and determines whether or not a drawing pattern is included in each of the small areas.
  • a predetermined size for example, in a grid pattern
  • the formatter 240 generates a control signal for controlling to irradiate the laser light 220 to each small area determined to include a drawing pattern. Further, the driver 230 controls the output of the laser light source 221 based on the control signal generated by the formatter 240. Thereby, irradiation of the laser beam 220 onto the master 110 is controlled.
  • the manufacturing method of the filler filling film 1 is demonstrated.
  • the master 110 described above is prepared.
  • the shape of the peripheral surface of the master 110 is transferred to the film 2a to be transferred.
  • the film main body 2 is produced.
  • the filler 4 is filled into the plurality of recesses 3 formed on the surface of the film body 2.
  • the method of filling the recess 3 with the filler 4 is not particularly limited.
  • the filler 4 is dispersed on the surface of the film body 2.
  • the surface of the film body 2 is wiped with a cloth or the like. Thereby, the filler 4 can be filled into the recess 3 formed on the surface of the film body 2.
  • the recess 3 may be completely cured after the filler 4 is filled in the recess 3.
  • the filler 4 is integrated with the film body 2 in the recess 3.
  • the filler 4 filled in the filler-filled film 1 may be transferred to another film or the like. Further, such transfer films may be sequentially laminated. Moreover, you may laminate
  • the film body 2 was produced using the transfer device 100.
  • the master 110 was produced by the following process. Specifically, a DLC (Diamond Like Carbon) film having a thickness of 800 nm is formed on the outer peripheral surface of the base 110a made of cylindrical quartz glass having a thickness of 4.5 mm by CVD (Chemical Vapor Deposition) using a hydrocarbon-based gas. A film was formed as an intermediate layer. Next, a tungsten oxide film was formed on the intermediate layer with a film thickness of 55 nm by a sputtering method to form a resist layer.
  • a DLC Diamond Like Carbon
  • CVD Chemical Vapor Deposition
  • thermal lithography using laser light was performed by the exposure apparatus 100 to form a latent image on the resist layer.
  • a blue semiconductor laser that emits laser light having a wavelength of 405 nm was used as the laser light source of the exposure apparatus 100.
  • the exposure pattern an array pattern in which circles having a diameter of 7 ⁇ m were arranged in a hexagonal lattice at a pitch of 10 ⁇ m (distance between the centers of the circles) was used.
  • the exposure apparatus 100 is configured to apply a portion other than the circle having the diameter of 7 ⁇ m so that the circle having the diameter of 7 ⁇ m becomes a convex portion on the master (that is, the circle having the diameter of 7 ⁇ m becomes the concave portion 3 in the transferred film body 2). And exposed.
  • the base material 110a on which the resist layer was exposed was developed using a 2.38 mass% aqueous solution of TMAH (tetramethylammonium hydroxide) to dissolve the exposed portion of the resist.
  • TMAH tetramethylammonium hydroxide
  • the intermediate layer was etched by reactive ion etching with O 2 gas using the developed resist layer as a mask.
  • the substrate 110a was etched by reactive ion etching with a CF-based gas using the resist layer and the intermediate layer as a mask. Etching of the base material 110a was performed until the height of the convex portion 113 became 7 ⁇ m so that the aspect ratio of the concave portion 3 in the film body 2 was 1.
  • a photocurable resin composition containing 100 parts by mass of an acrylate resin (M208, Toagosei) and 2 parts by mass of a photopolymerization initiator (IRGCUR184, BASF) in a base film (thickness 50 ⁇ m) made of 50 cm wide PET.
  • the product was applied at a film thickness of 30 ⁇ m.
  • the transfer device 100 the master was pressed against the base film, and the concavo-convex structure was transferred to the base film having a strength of 1000 m. Light irradiation was performed at 1000 mJ with a high-pressure mercury lamp.
  • a film body 2 was produced in which circular recesses having a diameter of 7 ⁇ m and a depth of 7 ⁇ m (aspect ratio 1) were arranged in a hexagonal lattice pattern with a distance between the centers of the recesses of 10 ⁇ m.
  • the concave portions 3 to be counted are the concave portions 3 that are not connected to each other (the convex portions 3b exist between the concave portions 3). That is, in this embodiment, the recessed portions 3 connected to each other are determined to be defective. Such a defect may be caused by a displacement of the recess 3 or the like.
  • Eposta MA1006 manufactured by Nippon Shokubai Co., Ltd. was prepared, and this resin filler was classified so as to have an average diameter of 5 ⁇ m.
  • the diameter of the resin filler is a diameter when each particle of the resin filler is regarded as a sphere, that is, a sphere equivalent diameter.
  • the average diameter is an arithmetic average value of the diameters of the resin fillers.
  • Classification was performed using an image type particle size distribution analyzer FPIA3000 (manufactured by Sysmex Corporation, Malvern).
  • the resin filler after classification was used as the filler 4.
  • Filling the filler 4 was performed by the method described above. That is, the filler 4 was dispersed on the surface of the film body 2. Subsequently, the filler 4 was filled in the concave portion 3 by wiping the filler 4 with a cloth. Thereby, the filler filling film 1 was produced.
  • the filler 4 to be counted was a filler 4 that is completely filled in the recess 3. Even when the recesses 3 are connected to each other, when the filler 4 is completely filled in the recesses 3, the filler 4 is also counted.
  • the counting target was the same in the measurement of the filler filling rate described later. When two recesses 3 are connected, the recess 3 can be filled with a maximum of two fillers 4.
  • a point 1 m from the leading edge (the edge that is first introduced into the master 110) in the length direction P of the filler-filled film 1 is one end F (starting point), and a point 1000 m from the leading edge is the other end.
  • the filler filling rate at each point of 1 m, 250 m, 500 m, 750 m, and 1000 m from the tip edge was calculated as part R (end point).
  • a unit array pattern M including each point is extracted, and a unit array existing within a range of 10 cm (20% of the film width) on the positive side in the length direction P with respect to the unit array pattern M. Pattern M was extracted. These unit array patterns M were used as measurement target areas.
  • a representative region of 200 ⁇ m * 200 ⁇ m was set for about 25 cm 2 in the measurement target region, and the number of fillers 4 in each representative region was measured by optical microscope observation. And the filler filling rate was measured by dividing the sum total of the measured value of each representative area
  • the filler filling rate at each point is shown in Table 1 below. As shown in Table 1, when the length of the filler-filled film 1 is 1000 m, the filler filling rate of 1 m from the leading edge is almost the same as the filler filling rate at each point of 250 m, 500 m, 750 m, and 1000 m. It was. Therefore, a stable (ie, highly reproducible) filler filling rate was obtained at points of 0.1%, 25%, 50%, 75%, and 100% with respect to the entire length of the filler-filled film 1. Become.
  • the filler filling rate was measured in the same manner at a point about 100 m from the tip edge, a value almost the same as Table 1 was obtained.
  • the difference between the filler filling rate at one end F of the film body 2 and the filler filling rate at the other part of the film body 2 is 0.1% or less.
  • the filler-filled film 1 has the recesses 3 arranged in a hexagonal lattice pattern, that is, in the most dense arrangement pattern. That is, the filler-filled film 1 is filled with the fillers 4 in the densest arrangement pattern.
  • the filler filling rate very stable (namely, very reproducible) in the length direction of the filler filling film 1 is obtained. Accordingly, the filler 4 can be expected to have the same effect as long as it is in a range in which the recesses 3 can be provided, regardless of the arrangement pattern.
  • a SUS plate having a size of 10 cm * 10 cm was mechanically cut to obtain a stamper master on which convex portions having the same arrangement pattern as in the example were formed. Further, a fluorine-based mold release agent (Die Free GA70500 manufactured by Daikin Industries, Ltd.) was sprayed on the surface (uneven surface) on which the convex portions of the stamper master were formed. Then, a film body was manufactured by performing the same process except that the master 110 of the transfer device 100 was replaced with a stamper master.
  • a fluorine-based mold release agent Die Free GA70500 manufactured by Daikin Industries, Ltd.
  • the filler filling rate is more stable.
  • the film body 2 may be a long film.
  • the filler filling rate becomes less stable as the film body 2 becomes longer, so that the effect of the present embodiment is more likely to appear.
  • the filler filling rate may have periodicity along the length direction of the film body 2. Even in this case, the filler filling rate is stable.
  • all the recesses 3 may have substantially the same shape. In this case, the filler filling rate can be further stabilized.
  • the number of fillers filled per unit area of the film body 2 may be 50,000,000 pieces / cm 2 or less. Even in this case, the filler filling rate is stable.
  • the filler 4 may be integrated with the film body 2 in the recess 3. In this case, wasteful removal of the filler 4 is suppressed, so that the filler filling rate is more stable.
  • the coating layers 5, 6, and 7 formed in at least one part among the surfaces of the film main body 2.
  • the use of the filler-filled film 1 is expanded by forming the coating layers 5, 6, and 7 according to the use of the filler-filled film 1.
  • the coating layer may be formed on at least a part of the surface of the concave portion, the surface of the convex portion between the concave portions, and the exposed surface of the filler. Even in this case, the filler filling rate is stable.
  • the coating layer may contain an inorganic material. Even in this case, the filler filling rate is stable.
  • the film body may be formed of a curable resin or a plastic resin. Even in this case, the filler filling rate is stable.
  • the filler-filled film 1 may be a single wafer film. In this case, the quality of the sheet film is stabilized.
  • a laminated film in which a plurality of films are laminated may be formed. In this case, the quality of the laminated film is stabilized.
  • an adhesive layer formed on the back surface of the film body may be provided. Thereby, the filler filling film 1 can be easily bonded to the other base material 31 or the like.
  • FIG. the function of the bonded body 30 can be stabilized. This is because the filler filling rate of the filler-filled film 1 or the like is stable.

Abstract

[Problem] To provide a filler-filled film, a sheet film, a laminate film, a bonded body, and a method for producing a filler-filled film. [Solution] In order to solve the problem, the present invention provides, according to one aspect of the invention, a filler-filled film that is provided with a film main body, a plurality of recesses formed on the surface of the film main body, and a filler that is filled into the recesses, wherein the diameter of an opening surface in the recesses is at least larger than the wavelength of visible light, the array pattern of the recesses has a periodicity along the length direction of the film main body, and the difference between the filler filling ratio at one end of the film main body and the filler filling ratio at another portion of the film main body is less than 0.5%.

Description

フィラー充填フィルム、枚葉フィルム、積層フィルム、貼合体、及びフィラー充填フィルムの製造方法Filler-filled film, sheet-fed film, laminated film, bonded body, and method for producing filler-filled film
 本発明は、フィラー充填フィルム、枚葉フィルム、積層フィルム、貼合体、及びフィラー充填フィルムの製造方法に関する。 The present invention relates to a filler-filled film, a sheet-fed film, a laminated film, a bonded body, and a method for producing a filler-filled film.
 近年、様々なエンボスフィルムが開発され、使用されている。このようなエンボスフィルムとして、凹部の直径が1μm以上であり、かつ、凹部の配列パターンがエンボスフィルムの長さ方向に沿った周期性を有するものが知られている。すなわち、このようなエンボスフィルムでは、同じ配列パターンがエンボスフィルムの長さ方向に繰り返し形成される。 In recent years, various embossed films have been developed and used. As such an embossed film, a film having a recess having a diameter of 1 μm or more and having an array pattern of the recess having a periodicity along the length direction of the embossed film is known. That is, in such an embossed film, the same arrangement pattern is repeatedly formed in the length direction of the embossed film.
 このようなエンボスフィルムは、例えばフィラー充填フィルムとして使用される。フィラー充填フィルムは、エンボスフィルムの凹部にフィラーを充填したものである。 Such an embossed film is used as a filler-filled film, for example. The filler-filled film is obtained by filling a concave portion of an embossed film with a filler.
 また、このようなエンボスフィルムは、スタンパ原盤を用いて作製される。スタンパ原盤は、平板状の基板の表面(転写面)に上記配列パターンの反転形状(すなわち、複数の凸部)が形成されたものである。そして、スタンパ原盤の転写面形状を被転写フィルムに順次転写していくことで、エンボスフィルムを作製する。 Also, such an embossed film is produced using a stamper master. The stamper master is obtained by forming a reverse shape (that is, a plurality of convex portions) of the arrangement pattern on the surface (transfer surface) of a flat substrate. Then, the embossed film is produced by sequentially transferring the transfer surface shape of the stamper master to the film to be transferred.
特開2009-258751号公報JP 2009-258751 A
 しかし、スタンパ原盤を用いてエンボスフィルムを作製する方法では、被転写フィルムに対するスタンパ原盤の位置決め等を正確に行うことが非常に難しいという問題があった。このため、この方法で作製されたエンボスフィルムでは、凹部の不良(位置ずれ、欠損、歪み等)が発生しやすいという問題があった。不良となった凹部には、フィラーが充填されない場合がありうる。また、凹部の不良は、フィラー充填フィルムが長くなるほど大きくなりやすい。このため、フィラーの充填率がフィラー充填フィルムの長さ方向でばらつくという問題が生じうる。 However, the method of producing an embossed film using a stamper master has a problem that it is very difficult to accurately position the stamper master with respect to the transfer film. For this reason, in the embossed film produced by this method, there was a problem that a defect of a concave portion (position shift, deficiency, distortion, etc.) was likely to occur. There may be a case where the defective concave portion is not filled with the filler. Moreover, the defect of a recessed part tends to become large, so that a filler filling film becomes long. For this reason, the problem that the filling rate of a filler varies in the length direction of a filler filling film may arise.
 なお、特許文献1には、モスアイフィルムをロールツーロールで作製する方法を開示する。この方法では、まず、周面にモスアイフィルムの反転形状が形成された円柱形状の原盤を用意する。そして、原盤の周面形状をフィルムに転写することで、モスアイフィルムを作製する。しかし、このモスアイフィルムでは、凹凸の直径が非常に小さい(1μm未満)ため、上記の問題を何ら解決することができない。 Note that Patent Document 1 discloses a method for producing a moth-eye film by roll-to-roll. In this method, first, a cylindrical master having a reversal shape of a moth-eye film formed on the peripheral surface is prepared. And the moth-eye film is produced by transferring the peripheral surface shape of the master to the film. However, in this moth-eye film, since the uneven diameter is very small (less than 1 μm), the above problem cannot be solved at all.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、フィラーの充填率がより安定した、新規かつ改良されたフィラー充填フィルム、枚葉フィルム、積層フィルム、貼合体、及びフィラー充填フィルムの製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel and improved filler-filled film, single-wafer film, and laminated film in which the filler filling rate is more stable. It is providing the manufacturing method of a bonding body and a filler filling film.
 上記課題を解決するために、本発明のある観点によれば、フィルム本体と、フィルム本体の表面に形成された複数の凹部と、凹部の各々に充填されたフィラーと、を備え、凹部の開口面の直径は少なくとも可視光波長よりも大きく、凹部の配列パターンはフィルム本体の長さ方向に沿った周期性を有し、フィルム本体の一方の端部におけるフィラーの充填率と、フィルム本体の他の部分におけるフィラーの充填率との差は0.5%未満である、フィラー充填フィルムが提供される。 In order to solve the above-described problems, according to one aspect of the present invention, a film body, a plurality of recesses formed on the surface of the film body, and a filler filled in each of the recesses, the opening of the recesses is provided. The diameter of the surface is at least larger than the visible light wavelength, the arrangement pattern of the recesses has a periodicity along the length direction of the film body, the filling rate of the filler at one end of the film body, and the other of the film body A filler-filled film is provided in which the difference from the filler filling rate in this portion is less than 0.5%.
 ここで、フィルム本体は、長尺フィルムであってもよい。 Here, the film body may be a long film.
 また、フィラーの充填率は、フィルム本体の長さ方向に沿った周期性を有していてもよい。 Further, the filling rate of the filler may have periodicity along the length direction of the film body.
 また、全ての凹部は、略同一形状となっていてもよい。 Further, all the recesses may have substantially the same shape.
 また、フィルム本体の単位面積当りに充填されるフィラーの数は、50,000,000個/cm以下であってもよい。 Further, the number of fillers filled per unit area of the film body may be 50,000,000 pieces / cm 2 or less.
 また、フィラーは、凹部内でフィルム本体と一体化されていてもよい。 Further, the filler may be integrated with the film body in the recess.
 また、フィルム本体の表面のうち、少なくとも一部に形成された被覆層を備えていていてもよい。 Further, a coating layer formed on at least a part of the surface of the film body may be provided.
 また、被覆層は、凹部の表面、凹部間の凸部の表面、及びフィラーの露出面のうち、少なくとも一部に形成されていていてもよい。 Further, the coating layer may be formed on at least a part of the surface of the concave portion, the surface of the convex portion between the concave portions, and the exposed surface of the filler.
 また、被覆層は、無機材料を含んでいてもよい。 Moreover, the coating layer may contain an inorganic material.
 また、フィルム本体は、硬化性樹脂または可塑性樹脂で形成されていてもよい。 The film body may be formed of a curable resin or a plastic resin.
 本発明の他の観点によれば、上記フィラー充填フィルムを複数枚にカットすることで作製される、枚葉フィルムが提供される。 According to another aspect of the present invention, there is provided a single wafer film produced by cutting the filler-filled film into a plurality of sheets.
 本発明の他の観点によれば、上記のフィルムが積層された、積層フィルムが提供される。 According to another aspect of the present invention, there is provided a laminated film in which the above films are laminated.
 ここで、フィルム本体の裏面に形成された粘着層を備えていてもよい。 Here, an adhesive layer formed on the back surface of the film body may be provided.
 本発明の他の観点によれば、上記フィルムと、上記フィルムが貼り合わされた基材と、を備える、貼合体が提供される。 According to another aspect of the present invention, there is provided a bonded body comprising the above film and a substrate on which the above film is bonded.
 本発明の他の観点によれば、周面に複数の凸部が形成された円筒または円柱形状の原盤を準備するステップと、長尺な被転写フィルムをロールツーロールで搬送する一方で、原盤の周面形状を被転写フィルムに転写することで、フィルム本体を作製するステップと、フィルム本体の表面に形成された複数の凹部にフィラーを充填するステップと、を含み、凹部の開口面の直径は少なくとも可視光波長よりも大きく、フィルム本体の一方の端部におけるフィラーの充填率と、フィルム本体の他の部分におけるフィラーの充填率との差は0.5%未満である、フィラー充填フィルムの製造方法が提供される。 According to another aspect of the present invention, a step of preparing a cylindrical or columnar master having a plurality of convex portions formed on the peripheral surface, and a long master film while being conveyed by roll-to-roll, The step of producing a film body by transferring the peripheral surface shape of the film to a film to be transferred, and the step of filling a plurality of recesses formed on the surface of the film body with a filler, the diameter of the opening surface of the recesses Of the filler-filled film, wherein the difference between the filler filling rate at one end of the film body and the filler filling rate at the other part of the film body is less than 0.5%. A manufacturing method is provided.
 本発明の上記各観点によるフィラー充填フィルムでは、フィルム本体の一方の端部におけるフィラーの充填率と、フィルム本体の他の部分におけるフィラーの充填率との差は0.5%未満である。したがって、フィラーの充填率がより安定する。 In the filler-filled film according to the above aspects of the present invention, the difference between the filler filling rate at one end of the film body and the filler filling rate at the other part of the film body is less than 0.5%. Therefore, the filling rate of the filler becomes more stable.
 以上説明したように本発明によれば、フィラーの充填率がより安定する。 As described above, according to the present invention, the filling rate of the filler is more stable.
本発明の実施形態に係るフィラー充填フィルムの構成を模式的に示す平面図である。It is a top view which shows typically the structure of the filler filling film which concerns on embodiment of this invention. 同実施形態に係るフィラー充填フィルムの構成を模式的に示す側断面図である。It is a sectional side view which shows typically the structure of the filler filling film which concerns on the same embodiment. フィラー充填フィルムの各部分からフィルム開始点までの距離と各部分のフィラー充填率との対応関係を模式的に示すグラフである。It is a graph which shows typically the correspondence of the distance from each part of a filler filling film to a film starting point, and the filler filling rate of each part. フィラー充填フィルムの変形例を模式的に示す側断面図である。It is a sectional side view which shows the modification of a filler filling film typically. フィラー充填フィルムの変形例を模式的に示す側断面図である。It is a sectional side view which shows the modification of a filler filling film typically. フィラー充填フィルムの変形例を模式的に示す側断面図である。It is a sectional side view which shows the modification of a filler filling film typically. フィラー充填フィルムの変形例を模式的に示す側断面図である。It is a sectional side view which shows the modification of a filler filling film typically. フィラー充填フィルムの変形例を模式的に示す側断面図である。It is a sectional side view which shows the modification of a filler filling film typically. フィラー充填フィルムの変形例を模式的に示す側断面図である。It is a sectional side view which shows the modification of a filler filling film typically. フィルム本体を作製するための転写装置の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the transfer apparatus for producing a film main body. 露光装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of an exposure apparatus. 原盤の構成例を模式的に示す斜視図である。It is a perspective view which shows the example of a structure of a master disk typically. フィルム本体の一例を示すSEM(走査型電子顕微鏡)写真である。It is a SEM (scanning electron microscope) photograph which shows an example of a film main body. フィルム本体の一例を示すSEM写真である。It is a SEM photograph which shows an example of a film main body.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 <1.フィラー充填フィルムの構成>
 まず、図1~図3に基づいて、本実施形態に係るフィラー充填フィルム1の構成について説明する。図1に示すように、フィラー充填フィルム1は、フィルム本体2と、フィルム本体2の表面に形成された複数の凹部3と、凹部3の各々に充填されたフィラー4とを備える。
<1. Configuration of Filler Filled Film>
First, the configuration of the filler-filled film 1 according to this embodiment will be described with reference to FIGS. As shown in FIG. 1, the filler-filled film 1 includes a film body 2, a plurality of recesses 3 formed on the surface of the film body 2, and a filler 4 filled in each of the recesses 3.
 フィルム本体2は、複数の凹部3が形成されるフィルムである。フィルム本体2を構成する材料は特に問われない。例えば、フィルム本体2は、任意の硬化性樹脂または可塑性樹脂で形成されていてもよい。ここで、硬化性樹脂としては、光硬化性樹脂、熱硬化性樹脂が挙げられる。可塑性樹脂としては、熱可塑性樹脂(より詳細には、熱により溶融する結晶性樹脂)等が挙げられる。したがって、フィルム本体2は、例えば光硬化性樹脂、熱硬化性樹脂及び熱可塑性樹脂のうちの少なくとも1種以上で形成されていてもよい。フィルム本体2が光硬化性樹脂または熱硬化性樹脂で形成される場合、フィルム本体2は、シート状の被転写基材フィルム161と被転写基材フィルム161上に形成された硬化樹脂層162aとで構成されてもよい(図10参照)。硬化樹脂層162aは、光硬化性樹脂または熱硬化性樹脂が硬化した層である。硬化樹脂層162aの表面に凹部3が形成される。硬化性樹脂と被転写基材フィルムを構成する樹脂とが混合された状態でフィルム本体2が成膜されてもよい。 The film body 2 is a film in which a plurality of recesses 3 are formed. The material constituting the film body 2 is not particularly limited. For example, the film body 2 may be formed of any curable resin or plastic resin. Here, examples of the curable resin include a photocurable resin and a thermosetting resin. Examples of the plastic resin include thermoplastic resins (more specifically, crystalline resins that melt by heat). Therefore, the film body 2 may be formed of at least one or more of a photocurable resin, a thermosetting resin, and a thermoplastic resin, for example. When the film body 2 is formed of a photocurable resin or a thermosetting resin, the film body 2 includes a sheet-like transferred substrate film 161 and a cured resin layer 162a formed on the transferred substrate film 161. (See FIG. 10). The cured resin layer 162a is a layer obtained by curing a photocurable resin or a thermosetting resin. The concave portion 3 is formed on the surface of the cured resin layer 162a. The film body 2 may be formed in a state where the curable resin and the resin constituting the transfer base film are mixed.
 また、フィルム本体2の厚さも特に問われない。フィルム本体2の厚さは、上述した被転写基材フィルム161の有無によって調整されてもよい。例えば、フィルム本体2の厚さは、フィルム本体2が被転写基材フィルム161を有する場合、10~300μmであってもよい。この場合、硬化樹脂層162aの厚さは1~50μmであってもよく、被転写基材フィルム161の厚さは9~250μmであってもよい。一方、フィルム本体2が被転写基材フィルム161を有しない場合、フィルム本体2の厚さは8~200μmであってもよい。 Also, the thickness of the film body 2 is not particularly limited. The thickness of the film body 2 may be adjusted depending on the presence / absence of the above-described transfer target substrate film 161. For example, the thickness of the film body 2 may be 10 to 300 μm when the film body 2 has the transferred substrate film 161. In this case, the thickness of the cured resin layer 162a may be 1 to 50 μm, and the thickness of the transferred substrate film 161 may be 9 to 250 μm. On the other hand, when the film body 2 does not have the transfer base film 161, the thickness of the film body 2 may be 8 to 200 μm.
 また、フィルム本体2の幅も特に問われない。例えば、フィルム本体2の幅は0.05~300cmであってもよい。フィルム本体2の長さも特に問われない。ただし、フィルム本体2が長尺フィルムとなる場合、後述するフィラー充填率のばらつきが大きくなりやすい。したがって、フィルム本体2が長尺フィルムとなる場合、本実施形態の効果がより顕著に現れる。例えば、フィルム本体2の長さの下限値は、5m、10m、30m、50m、100m、200m、300m、及び500mのいずれかであってもよい。 The width of the film body 2 is not particularly limited. For example, the width of the film body 2 may be 0.05 to 300 cm. The length of the film body 2 is not particularly limited. However, when the film body 2 is a long film, the variation in filler filling rate described later tends to increase. Therefore, when the film body 2 is a long film, the effect of the present embodiment appears more remarkably. For example, the lower limit of the length of the film body 2 may be any of 5 m, 10 m, 30 m, 50 m, 100 m, 200 m, 300 m, and 500 m.
 凹部3は、フィルム本体2の表面に複数形成されている。凹部3の開口面の直径は、少なくとも可視光波長よりも大きい。ここで、凹部3の開口面の直径は、例えば凹部3の開口面を包含する最小の円(例えば凹部3の開口面の外接円)の直径である。凹部3の開口面の直径は、具体的には、0.8~500μmであることが好ましく、1.0~300μmであることがより好ましく、1.6μmより大きく300μm未満であることが更により好ましい。即ち、下限値は0.8μm以上が好ましく、1.0μm以上がより好ましく、1.6μmより大きいことが更により好ましい。上限値は500μm以下が好ましく、300μm以下がより好ましく、300μm未満が更により好ましい。 A plurality of recesses 3 are formed on the surface of the film body 2. The diameter of the opening surface of the recess 3 is at least larger than the visible light wavelength. Here, the diameter of the opening surface of the recess 3 is, for example, the diameter of the smallest circle that includes the opening surface of the recess 3 (for example, the circumscribed circle of the opening surface of the recess 3). Specifically, the diameter of the opening surface of the recess 3 is preferably 0.8 to 500 μm, more preferably 1.0 to 300 μm, and even more preferably larger than 1.6 μm and smaller than 300 μm. preferable. That is, the lower limit is preferably 0.8 μm or more, more preferably 1.0 μm or more, and even more preferably larger than 1.6 μm. The upper limit is preferably 500 μm or less, more preferably 300 μm or less, and even more preferably less than 300 μm.
 凹部3の開口面の形状は特に問われず、任意の形状であってもよい。例えば、凹部3の開口面の形状は、円形、楕円形、および多角形などであってもよい。凹部3の開口面の形状が多角形となる場合、開口面の直径は多角形を構成する1辺の長さのうち、最長のものであってもよい。凹部3の開口面は、曲線を一部に有した形状でもよい。また開口面の面積は上述の開口面の条件を満たせば一定でなくともよい。また、開口面の形状は、最小面積の開口面を点とみなし、それ以上の面積を有する開口面をその形状により線、面として分類してもよい。線状の開口面は、最小面積の開口面を有する凹部3が線状に(すなわち1次元方向に)連結することで形成される。面状の開口面は、最小面積の開口面を有する凹部3が面状に(すなわち2次元方向に)連結することで形成される。したがって、線状、面状の凹部3は、最小面積の開口面を有する凹部3の集合体とみなせる。線や面の形状は特に限定されない。凹部3の集合体は、面と線とが結合したものであってもよい。凹部3の集合体は、1個の凹部3として計測される。また、図1に示す凹凸形状が逆転していてもよい。すなわち、凹部3が凸部となり、凹部3間の凸部3b(図2参照)が凹部となっていてもよい。 The shape of the opening surface of the recess 3 is not particularly limited and may be any shape. For example, the shape of the opening surface of the recess 3 may be a circle, an ellipse, a polygon, or the like. When the shape of the opening surface of the recess 3 is a polygon, the diameter of the opening surface may be the longest one of the lengths of one side constituting the polygon. The opening surface of the recess 3 may have a shape having a curve in part. Further, the area of the opening surface does not have to be constant as long as the above-described conditions of the opening surface are satisfied. In addition, regarding the shape of the opening surface, the opening surface having the smallest area may be regarded as a point, and the opening surface having an area larger than that may be classified as a line or a surface depending on the shape. The linear opening surface is formed by connecting the recesses 3 having the opening surface with the minimum area in a linear manner (that is, in a one-dimensional direction). The planar opening surface is formed by connecting concave portions 3 having an opening surface with a minimum area in a planar shape (that is, in a two-dimensional direction). Therefore, the linear and planar recesses 3 can be regarded as an aggregate of the recesses 3 having an opening surface with a minimum area. The shape of the line or surface is not particularly limited. The aggregate of the recesses 3 may be a combination of a surface and a line. The aggregate of the recesses 3 is measured as one recess 3. Moreover, the uneven | corrugated shape shown in FIG. 1 may be reversed. That is, the concave portion 3 may be a convex portion, and the convex portion 3b (see FIG. 2) between the concave portions 3 may be a concave portion.
 凹部3の深さd(図2参照)は特に問われない。例えば、深さdは、0.08~30μmであってもよい。深さdは、0.08~15μmであることが好ましい。また、凹部3の開口面が矩形(正方形、または長方形)または略円形(真円、楕円、またはこれらに近似できる円)となる場合、凹部3のアスペクト比は0.1~10程度であってもよい。ここで、アスペクト比は、開口面の直径を深さdで除算した値である。 The depth d of the recess 3 (see FIG. 2) is not particularly limited. For example, the depth d may be 0.08 to 30 μm. The depth d is preferably 0.08 to 15 μm. Further, when the opening surface of the recess 3 is rectangular (square or rectangular) or substantially circular (perfect circle, ellipse, or a circle that can approximate them), the aspect ratio of the recess 3 is about 0.1 to 10. Also good. Here, the aspect ratio is a value obtained by dividing the diameter of the opening surface by the depth d.
 凹部3の深さが30μmを超える、または凹部3のアスペクト比が10を超える場合、凹部3の形成が困難になるため好ましくない。また、凹部3の深さが0.08μm未満、または凹部3のアスペクト比が0.1未満の場合、フィラー4の充填が困難になる場合があるため好ましくない。 If the depth of the recess 3 exceeds 30 μm or the aspect ratio of the recess 3 exceeds 10, it is not preferable because the formation of the recess 3 becomes difficult. Moreover, when the depth of the recessed part 3 is less than 0.08 μm, or the aspect ratio of the recessed part 3 is less than 0.1, filling of the filler 4 may be difficult.
 また、フィルム本体2が被転写基材フィルム161を有する場合、凹部3は硬化樹脂層162aを貫通してもよい。ただし、フィルム本体2が被転写基材フィルム161を有しているか否かに関わらず、凹部3はフィルム本体2を貫通していないことが好ましい。 Further, when the film body 2 has the transfer base film 161, the recess 3 may penetrate the cured resin layer 162a. However, it is preferable that the recess 3 does not penetrate the film body 2 regardless of whether or not the film body 2 has the substrate film 161 to be transferred.
 また、各凹部3の形状(開口面形状、断面形状(図2に示す断面形状))は、フィルム本体2全体にわたって、略同一であることが好ましい。凹部3の断面形状または開口面の形状が略同一である場合、フィラー充填フィルム1における凹部3の形成状態の把握がより容易になるため好ましい。 Moreover, it is preferable that the shape (opening surface shape, cross-sectional shape (cross-sectional shape shown in FIG. 2)) of each recess 3 is substantially the same throughout the film body 2. When the cross-sectional shape of the recessed part 3 or the shape of an opening surface is substantially the same, since the grasping state of the recessed part 3 in the filler filling film 1 becomes easier, it is preferable.
 また、凹部3の配列パターンは、フィルム本体2の長さ方向Pに沿った周期性を有する。具体的には、凹部3の配列パターンは、単位配列パターンMがフィルム本体2の長さ方向に繰り返される配列パターンとなっている。図1の例では、単位配列パターンMは、長さ方向Pに垂直な方向に並んだ2列の凹部3で構成される。各列の凹部3は、等間隔で並んでいる。また、各列の凹部3は、他方の列の凹部3同士の間に配置される。そして、単位配列パターンMが長さ方向Pに沿って繰り返されることで、六方格子配列パターンが形成される。六方格子配列パターンは、凹部3を最密に配列するパターンの一例である。もちろん、配列パターンはこの例に限られない。例えば配列パターンは正方格子配列パターンであってもよい。この場合、単位配列パターンは、長さ方向Pに垂直な方向に並んだ1列の凹部3で構成される。列内の凹部3は、等間隔で配置される。また、他の配列パターンとしては、斜方格子、平行体格子などの格子形状が挙げられる。また、任意に描画(点描)されたものでもよい。 Further, the arrangement pattern of the recesses 3 has a periodicity along the length direction P of the film body 2. Specifically, the arrangement pattern of the recesses 3 is an arrangement pattern in which the unit arrangement pattern M is repeated in the length direction of the film body 2. In the example of FIG. 1, the unit array pattern M is composed of two rows of recesses 3 arranged in a direction perpendicular to the length direction P. The recesses 3 in each row are arranged at equal intervals. Moreover, the recessed part 3 of each row | line | column is arrange | positioned between the recessed parts 3 of the other row | line | column. Then, by repeating the unit array pattern M along the length direction P, a hexagonal lattice array pattern is formed. The hexagonal lattice arrangement pattern is an example of a pattern in which the concave portions 3 are arranged in a close-packed manner. Of course, the arrangement pattern is not limited to this example. For example, the array pattern may be a square lattice array pattern. In this case, the unit array pattern is composed of a single row of recesses 3 arranged in a direction perpendicular to the length direction P. The recesses 3 in the row are arranged at equal intervals. Other arrangement patterns include lattice shapes such as an orthorhombic lattice and a parallel lattice. Further, it may be arbitrarily drawn (stipulated).
 また、単位配列パターンMの幅MWはフィルム本体2の幅に一致する。一方、単位配列パターンMの長さMLは特に制限されない。例えば、後述する原盤110(図10参照)の周面に形成される凸部113の配列パターンに周期性がない場合、長さMLは、原盤110の円周の長さに一致する。一方、凸部113の配列パターンが原盤110の周方向に沿った周期性を有する場合、即ち凸部113の単位配列パターンが原盤110の周方向に繰り返される場合、長さMLは、凸部113の単位配列パターンの長さ(原盤110の周方向の長さ)に一致する。単位配列パターンMの長さMLは、単位配列パターンMが1列の凹部3で構成される場合に最小となる。すなわち、この場合、長さMLは凹部3の直径程度となる。一方、凸部113の配列パターンに周期性がない場合に最大となる。この場合、長さMLは原盤110の円周長さに一致する。したがって、単位配列パターンMの長さMLの範囲は非常に広範となる。なお、原盤110の直径は特に制限されないが、例えば50~300mmとなる。 Also, the width MW of the unit arrangement pattern M matches the width of the film body 2. On the other hand, the length ML of the unit array pattern M is not particularly limited. For example, when the arrangement pattern of the protrusions 113 formed on the peripheral surface of the master 110 (see FIG. 10) described later has no periodicity, the length ML matches the circumference of the master 110. On the other hand, when the arrangement pattern of the convex portions 113 has periodicity along the circumferential direction of the master 110, that is, when the unit arrangement pattern of the convex portions 113 is repeated in the circumferential direction of the master 110, the length ML is set to the convex 113. To the length of the unit array pattern (the length in the circumferential direction of the master 110). The length ML of the unit array pattern M is the minimum when the unit array pattern M is composed of one row of the recesses 3. That is, in this case, the length ML is about the diameter of the recess 3. On the other hand, the maximum is obtained when the arrangement pattern of the protrusions 113 has no periodicity. In this case, the length ML matches the circumferential length of the master 110. Therefore, the range of the length ML of the unit array pattern M is very wide. The diameter of the master 110 is not particularly limited, but is, for example, 50 to 300 mm.
 ここで、凹部3の配列パターンは、フィルム本体2の長さ方向と直行する方向(フィルム本体2の幅方向)に対しても周期性を有していてもよい。即ち、フィルム本体2の幅方向に沿って同一の配列パターンが繰り返されてもよい。フィルム本体2の長さ方向Pに沿った周期性と、これと直行する方向の周期性とは同じであっても異なっていてもよい。フィラー充填フィルム1を枚葉化した場合に、略同一の枚葉フィルムを得ることができるためである。 Here, the arrangement pattern of the recesses 3 may have periodicity with respect to a direction perpendicular to the length direction of the film body 2 (width direction of the film body 2). That is, the same arrangement pattern may be repeated along the width direction of the film body 2. The periodicity along the length direction P of the film body 2 and the periodicity in the direction orthogonal thereto may be the same or different. This is because when the filler-filled film 1 is made into a single sheet, substantially the same single-sheet film can be obtained.
 また、凹部3の面密度、すなわちフィルム本体2の単位面積当りに形成される凹部3の個数は特に制限されない。例えば、当該個数は、50,000,000個/cm以下であってもよい。凹部3の面密度が50,000,000個/cmを超える場合、凹部3を形成する際に、原盤110とフィルム本体2との接触面積が増加し、原盤110とフィルム本体2との離型性が低下して凹部3が形成されにくくなるため好ましくない。なお、凹部3の面密度の下限値は、特に限定されないが、例えば、100個/cm以上であってもよい。 Further, the surface density of the recesses 3, that is, the number of the recesses 3 formed per unit area of the film body 2 is not particularly limited. For example, the number may be 50,000,000 pieces / cm 2 or less. When the surface density of the recesses 3 exceeds 50,000,000 pieces / cm 2 , the contact area between the master 110 and the film body 2 increases when the recesses 3 are formed, and the master 110 and the film body 2 are separated from each other. This is not preferable because the moldability is lowered and the concave portion 3 is hardly formed. In addition, the lower limit value of the surface density of the recesses 3 is not particularly limited, but may be, for example, 100 pieces / cm 2 or more.
 なお、1つの凹部3に1つのフィラー4が充填される場合、凹部3の面密度は、フィラー4の面密度、すなわちフィルム本体2の単位面積当りに充填されるフィラー4の個数に一致する。また、凹部3間の距離も特に制限されない。例えば、凹部3間の距離の下限値は0.5μmであってもよい。より詳細には、凹部3間の距離の下限値は、フィラー4の最小直径の5/8以上が好ましく、1/2以上がより好ましい。凹部3間の距離の上限値は特に制限はないが、1000μm程度であってもよい。ここで、凹部3間の距離は、開口面の中心点間距離であってもよい。 When one filler 4 is filled in one recess 3, the surface density of the recess 3 matches the surface density of the filler 4, that is, the number of fillers 4 filled per unit area of the film body 2. Further, the distance between the recesses 3 is not particularly limited. For example, the lower limit value of the distance between the recesses 3 may be 0.5 μm. More specifically, the lower limit value of the distance between the recesses 3 is preferably 5/8 or more, more preferably 1/2 or more, of the minimum diameter of the filler 4. The upper limit of the distance between the recesses 3 is not particularly limited, but may be about 1000 μm. Here, the distance between the recesses 3 may be the distance between the center points of the opening surfaces.
 また、凹部3の欠損は、長さ方向Pに連続して生じる場合もありえるが、そのような場合であっても、連続した欠損は非常に少ない。ここで、凹部3の欠損とは、凹部3が形成されなかったこと(言い換えれば、凸部113(図10参照)の形状がフィルム本体2に転写されなかったこと)を意味する。また、長さ方向Pに連続した欠損とは、長さ方向Pに平行な直線上で連続して発生する欠損を意味する。本実施形態では、長さ方向Pに連続した欠損は、10個以下、好ましくは5個以下となる。 Moreover, although the defect | deletion of the recessed part 3 may arise continuously in the length direction P, even in such a case, there are very few continuous defect | deletions. Here, the defect of the concave portion 3 means that the concave portion 3 was not formed (in other words, the shape of the convex portion 113 (see FIG. 10) was not transferred to the film body 2). Moreover, the defect | deletion continuous in the length direction P means the defect | deletion which generate | occur | produces continuously on the straight line parallel to the length direction P. FIG. In the present embodiment, the number of defects continuous in the length direction P is 10 or less, preferably 5 or less.
 図13及び図14にフィルム本体2の一例を示す。図13及び図14は、いずれもフィルム本体2のSEM写真である。図13Aおよび図14Aは、フィルム本体2の表面を観察したSEM画像であり、図13Bおよび図14Bは、図13Aおよび図14Aに示す転写物をX-XX線にて切断した断面を観察したSEM画像である。図13Aおよび図14Aの上下方向は、図1の長さ方向Pであり、左右方向はフィルム本体2の幅方向である。図13Aでは、開口面の形状が円形となっており、凹部3の配列パターンは六方格子状配列パターンとなっている。また、図14Aでは、開口面の形状が正方形となっており、凹部3の配列パターンは正方格子状配列パターンとなっている。 An example of the film body 2 is shown in FIGS. 13 and 14 are SEM photographs of the film body 2. 13A and 14A are SEM images obtained by observing the surface of the film body 2, and FIGS. 13B and 14B are SEMs obtained by observing a cross section obtained by cutting the transcript shown in FIGS. 13A and 14A along the line XX. It is an image. 13A and 14A is the length direction P in FIG. 1, and the left-right direction is the width direction of the film body 2. In FIG. 13A, the shape of the opening surface is circular, and the arrangement pattern of the recesses 3 is a hexagonal lattice arrangement pattern. Moreover, in FIG. 14A, the shape of the opening surface is a square, and the arrangement pattern of the recesses 3 is a square lattice arrangement pattern.
 フィラー4は、凹部3に充填されるものである。充填とは、フィラーの過半が凹部3に埋入されている状態を指す。なお、1つの凹部3に1つのフィラー4が充填されることが好ましい。ただし、凹部3の集合体には、複数のフィラー4が充填される場合がありうる。フィラー4を構成する材料(組成)は特に問われず、フィラー充填フィルム1の用途に応じて適宜選択されればよい。例えば、フィラー4は、無機物、有機物、無機物が多層構造をとっているもの、無機物(無機材料)と有機物(有機材料)の混在物(例えば、有機物からなる微小固形物を無機物で被覆したもの)などを用いることができる。具体的には、フィラー4は、顔料、染料、結晶性無機物などであってもよい。また、フィラー4は、結晶性の有機材料または無機材料を解砕したものであってもよい。また、全ての凹部3に同じフィラー4を充填してもよく、異なる種類のフィラー4を充填してもよい。例えば、凹部3の開口面の直径が異なる場合、それらに応じた直径のフィラー4を充填してもよい。フィラー4の形状は特に問われない。フィラー4の形状は、等方性を有するもの、例えば球形であってもよい。また、フィラーの比重は特に制限されないが、例えば0.8~23であってもよい。フィラーの大きさは、フィラーの最大長が、凹部3の開口面の最小長以下であることが好ましい。フィラーは種々の物性や機能性が付与されたものであってもよい。 The filler 4 is filled in the recess 3. Filling refers to a state in which a majority of the filler is embedded in the recess 3. Note that one recess 4 is preferably filled with one filler 4. However, the aggregate of the recesses 3 may be filled with a plurality of fillers 4. The material (composition) constituting the filler 4 is not particularly limited and may be appropriately selected depending on the use of the filler-filled film 1. For example, the filler 4 is an inorganic material, an organic material, an inorganic material having a multilayer structure, or a mixture of an inorganic material (inorganic material) and an organic material (organic material) (for example, a fine solid material made of an organic material coated with an inorganic material). Etc. can be used. Specifically, the filler 4 may be a pigment, a dye, a crystalline inorganic substance, or the like. The filler 4 may be a material obtained by crushing a crystalline organic material or an inorganic material. Moreover, the same filler 4 may be filled in all the recessed parts 3, and a different kind of filler 4 may be filled. For example, when the diameter of the opening surface of the recessed part 3 differs, you may fill with the filler 4 of the diameter according to them. The shape of the filler 4 is not particularly limited. The filler 4 may have an isotropic shape, for example, a spherical shape. The specific gravity of the filler is not particularly limited, but may be 0.8 to 23, for example. As for the size of the filler, it is preferable that the maximum length of the filler is not more than the minimum length of the opening surface of the recess 3. The filler may be provided with various physical properties and functionality.
 また、フィラー4は凹部3内でフィルム本体2と一体化されていても良い。フィルム本体2との一体化は、例えば、凹部3の一部だけを硬化させた状態でフィラー4を凹部3に充填し、その後、凹部3を完全に硬化させればよい。また、フィラー4を凹部3に充填させた後、未硬化の硬化性樹脂をフィラー充填フィルム1の表面に塗布または散布し、硬化性樹脂を硬化させてもよい。 Further, the filler 4 may be integrated with the film body 2 in the recess 3. The integration with the film body 2 may be performed by, for example, filling the recess 3 with the filler 4 in a state where only a part of the recess 3 is cured, and then completely curing the recess 3. Alternatively, after filling the concave portion 3 with the filler 4, an uncured curable resin may be applied or dispersed on the surface of the filler-filled film 1 to cure the curable resin.
 本実施形態では、フィラー4の充填率(以下、「フィラー充填率」とも称する)は非常に安定している。すなわち、フィルム本体2の一方の端部Fにおけるフィラー充填率と、フィルム本体2の他の部分におけるフィラー充填率との差は0.5%未満、好ましくは0.3%以下、より好ましくは0.1%以下である。 In this embodiment, the filling rate of the filler 4 (hereinafter also referred to as “filler filling rate”) is very stable. That is, the difference between the filler filling rate at one end F of the film body 2 and the filler filling rate at the other part of the film body 2 is less than 0.5%, preferably 0.3% or less, more preferably 0. .1% or less.
 ここで、一方の端部Fは、後述する原盤110によって最初に凹部3が形成される側の端部、すなわち転写の開始点である。一方、他方の端部Rは、原盤110によって最後に凹部3が形成される側の端部、すなわち転写の終了点である。本実施形態では、一方の端部Fから他方の端部Fに向かう方向を長さ方向Pの正方向とする。そして、フィルム本体2の各部分(地点)におけるフィラー充填率は、例えば以下のように算出される。 Here, one end F is an end on the side where the concave portion 3 is first formed by the master 110 described later, that is, a transfer start point. On the other hand, the other end R is an end on the side where the concave portion 3 is finally formed by the master 110, that is, an end point of transfer. In the present embodiment, the direction from one end F toward the other end F is defined as the positive direction of the length direction P. And the filler filling rate in each part (point) of the film main body 2 is calculated as follows, for example.
 すなわち、着目した部分を含む単位配列パターンMを抽出し、この単位配列パターンMに対して長さ方向Pの正方向側に配置される所定個数m(mは0以上の任意の整数)の単位配列パターンMを抽出する。そして、抽出された単位配列パターンMを計測対象領域とする。 That is, a unit array pattern M including a focused portion is extracted, and a predetermined number m (m is an arbitrary integer greater than or equal to 0) units arranged on the positive side of the length direction P with respect to the unit array pattern M. An arrangement pattern M is extracted. The extracted unit array pattern M is set as a measurement target region.
 そして、計測対象領域内に複数の代表領域を設定し、各代表領域内のフィラー4の個数を光学顕微鏡観察等によって計測する。そして、各代表領域の測定値の総和を各代表領域内に存在するフィラー4の理想個数の総和で除算することで、フィラー充填率を計測する。ここで、代表領域内に存在するフィラー4の理想個数は、代表領域内に存在すべきフィラー4の個数である。すなわち、代表領域内で凹部3の欠損が一切存在せず、かつ、代表領域内の全ての凹部3にフィラー4が過不足無く充填されたと仮定した場合に計測されるフィラー4の個数である。 Then, a plurality of representative areas are set in the measurement target area, and the number of fillers 4 in each representative area is measured by optical microscope observation or the like. Then, the filler filling rate is measured by dividing the sum of the measured values of each representative region by the sum of the ideal number of fillers 4 present in each representative region. Here, the ideal number of fillers 4 present in the representative region is the number of fillers 4 that should be present in the representative region. That is, this is the number of fillers 4 measured when it is assumed that there are no defects in the recesses 3 in the representative region and that all the recesses 3 in the representative region are filled with the filler 4 without excess or deficiency.
 フィラー充填率は、何らかの原因により100(%)を下回る場合がある。この原因としては、凹部3の位置ずれ(本来形成されるべき位置とは異なる位置に凹部3が形成されること)、凹部3の欠損、歪み(本来の形状とは異なる形状となること)等が挙げられる。凹部3の位置ずれ、歪みが生じた場合、フィラー4は凹部3に充填されない可能性がある。凹部3の欠損が発生した場合、フィラー4が充填されるべき凹部3が存在しない。したがって、いずれの場合にもフィラー充填率は減少する。図1では、地点Xにおける単位配列パターンM内で2つの凹部3aが欠損している。また、他の端部Rにおける単位配列パターンM内で1つの凹部3aが欠損している。 The filler filling rate may be less than 100 (%) for some reason. Causes of this include misalignment of the concave portion 3 (the concave portion 3 is formed at a position different from the position where it should originally be formed), defects and distortion of the concave portion 3 (being a shape different from the original shape), etc. Is mentioned. When the position shift or distortion of the recess 3 occurs, the filler 4 may not be filled in the recess 3. When the defect of the recess 3 occurs, there is no recess 3 to be filled with the filler 4. Accordingly, in any case, the filler filling rate decreases. In FIG. 1, two recesses 3 a are missing in the unit array pattern M at the point X. Further, one recess 3a is missing in the unit array pattern M at the other end R.
 フィラー充填率の分布は様々な態様がありうる。例えば、フィラー充填率は、長さ方向Pに沿った周期性を有する場合がある。具体的には、図3のグラフL1が示すように、各部分におけるフィラー充填率は、長さ方向Pに沿って波打った分布になる場合がある。 The distribution of filler filling rate can have various modes. For example, the filler filling rate may have periodicity along the length direction P. Specifically, as illustrated by a graph L1 in FIG. 3, the filler filling rate in each portion may have a distribution that undulates along the length direction P.
 ここで、図3の横軸はフィルム本体2の開始点からフィルム本体2上の各部分までの距離(すなわち、長さ方向距離)を示し、縦軸はフィラー充填率を示す。グラフL1は、本実施形態に係るフィラー充填フィルム1の長さ方向距離とフィラー充填率との対応関係を示す。一方、グラフL2は、従来の(すなわちスタンパ原盤を用いて作製された)フィラー充填フィルムの長さ方向距離とフィラー充填率との対応関係を示す。 Here, the horizontal axis of FIG. 3 indicates the distance from the starting point of the film body 2 to each part on the film body 2 (that is, the distance in the length direction), and the vertical axis indicates the filler filling rate. The graph L1 shows the correspondence between the distance in the length direction of the filler-filled film 1 according to this embodiment and the filler filling rate. On the other hand, the graph L2 shows the correspondence between the distance in the length direction of the conventional filler-filled film (that is, produced using the stamper master) and the filler filling rate.
 グラフL1、L2が示すように、本実施形態に係るフィラー充填フィルム1及び従来のフィラー充填フィルムのいずれにおいても、フィラー充填率は、長さ方向に沿って波打った分布となっている。ただし、本実施形態に係るフィラー充填フィルム1ではフィラー充填率のばらつきが小さいのに対し、従来のフィラー充填フィルムでは、フィラー充填率のばらつきが非常に大きい。そして、従来のフィラー充填フィルムでは、フィルム本体が長くなるほど、フィラー充填率のばらつきが大きくなる。これに対し、本実施形態では、後述する実施例に示す通り、フィルム本体2が長くなってもフィラー充填率のばらつきを抑えることができる。すなわち、本実施形態では、各部分におけるフィラー充填率と一方の端部Fにおけるフィラー充填率との差は0.5%未満に抑えられる。 As shown by the graphs L1 and L2, in both the filler-filled film 1 according to the present embodiment and the conventional filler-filled film, the filler filling rate has a distribution that undulates along the length direction. However, the filler-filled film 1 according to this embodiment has a small variation in the filler filling rate, whereas the conventional filler-filled film has a very large variation in the filler filling rate. And in the conventional filler-filled film, the variation of the filler filling rate increases as the film body becomes longer. On the other hand, in this embodiment, as shown in the Example mentioned later, even if the film main body 2 becomes long, the dispersion | variation in a filler filling rate can be suppressed. That is, in this embodiment, the difference between the filler filling rate at each portion and the filler filling rate at one end F is suppressed to less than 0.5%.
 <2.各種変形例>
 次に、図4~図9に基づいて、フィラー充填フィルム1の各種変形例について説明する。図4に示すフィラー充填フィルム1aは、上述したフィラー充填フィルム1に被覆層5を追加したものである。被覆層5は、フィルム本体2の表面、すなわち、凹部3の表面(壁面及び底面)と、凹部3間の凸部3bの表面(先端面)とを覆う。なお、被覆層5は、凹部3の表面及び凸部3bの表面のうち、いずれか一方のみを覆っても良い。フィラー4は、被覆層5で覆われた凹部3内に充填される。
<2. Various modifications>
Next, various modified examples of the filler-filled film 1 will be described with reference to FIGS. A filler-filled film 1a shown in FIG. 4 is obtained by adding a coating layer 5 to the filler-filled film 1 described above. The covering layer 5 covers the surface of the film body 2, that is, the surface (wall surface and bottom surface) of the recess 3 and the surface (tip surface) of the protrusion 3 b between the recesses 3. The covering layer 5 may cover only one of the surface of the concave portion 3 and the surface of the convex portion 3b. The filler 4 is filled in the concave portion 3 covered with the coating layer 5.
 ここで、被覆層5を構成する材料(組成)は特に制限されず、有機材料であっても、無機材料であってもよい。被覆層5を構成する材料は、フィラー充填フィルム1aの用途に応じて適宜選択されればよいが、フィルム本体2と異なる材料で構成されることが好ましい。例えば、被覆層5は、無機層であってもよい。被覆層5は、例えば被覆層5を構成する材料をフィルム本体2に蒸着することにより形成される。被覆層5の層厚は特に問われないが、凹部3の形状に関わらず、フィルム本体2の表面上で略均一であることが好ましい。また、凹部3の表面に形成される部分は、凹部3の中空部分の30体積%以下の割合で凹部3の表面に形成されることが好ましい。また、蒸着の方法は特に問われない。例えば斜方蒸着を行うことで、凹部3の一部にのみ(即ち、傾斜して)被覆層5を形成してもよい。この場合、凹部3の壁面を傾斜させることができるので、フィラー4を凹部3に充填しやすくなる。被覆層5を有機材料で構成する場合は、有機材料を塗布もしくは散布することで被覆層5を形成してもよい。このときも、開口面と散布される方向が傾斜してもよい。 Here, the material (composition) constituting the coating layer 5 is not particularly limited, and may be an organic material or an inorganic material. Although the material which comprises the coating layer 5 should just be selected suitably according to the use of the filler filling film 1a, it is preferable to comprise with the material different from the film main body 2. FIG. For example, the coating layer 5 may be an inorganic layer. The coating layer 5 is formed, for example, by vapor-depositing the material constituting the coating layer 5 on the film body 2. The layer thickness of the covering layer 5 is not particularly limited, but is preferably substantially uniform on the surface of the film body 2 regardless of the shape of the recess 3. Moreover, it is preferable that the part formed in the surface of the recessed part 3 is formed in the surface of the recessed part 3 in the ratio of 30 volume% or less of the hollow part of the recessed part 3. FIG. Further, the vapor deposition method is not particularly limited. For example, the coating layer 5 may be formed only on a part of the recess 3 (that is, inclined) by performing oblique deposition. In this case, since the wall surface of the recessed part 3 can be inclined, it becomes easy to fill the recessed part 3 with the filler 4. When the coating layer 5 is made of an organic material, the coating layer 5 may be formed by applying or spraying an organic material. Also at this time, the opening surface and the spraying direction may be inclined.
 図5に示すフィラー充填フィルム1bは、図4に示すフィラー充填フィルム1aの表面にさらに被覆層6を形成したものである。被覆層6は、被覆層5のうち、凸部3bを覆う部分と、フィラー4の露出面とを覆う。ここで、フィラー4の露出面は、凹部3の開口面を介して外部に露出される面を意味する。被覆層6を構成する材料も特に制限されず、有機材料であっても、無機材料であってもよい。被覆層6を構成する材料は、フィラー充填フィルム1bの用途に応じて適宜選択されればよい。例えば、被覆層6は、被覆層5と同じ無機材料で構成されていてもよく、異なる無機材料で構成されていてもよい。被覆層6は被覆層5と同様の方法で形成される。 A filler-filled film 1b shown in FIG. 5 is obtained by further forming a coating layer 6 on the surface of the filler-filled film 1a shown in FIG. The coating layer 6 covers a portion of the coating layer 5 that covers the convex portion 3 b and an exposed surface of the filler 4. Here, the exposed surface of the filler 4 means a surface exposed to the outside through the opening surface of the recess 3. The material constituting the coating layer 6 is not particularly limited, and may be an organic material or an inorganic material. The material which comprises the coating layer 6 should just be suitably selected according to the use of the filler filling film 1b. For example, the covering layer 6 may be made of the same inorganic material as the covering layer 5 or may be made of a different inorganic material. The covering layer 6 is formed by the same method as the covering layer 5.
 図6に示すフィラー充填フィルム1cは、フィラー充填フィルム1の表面に被覆層7を形成したものである。被覆層7は、凸部3bの表面と、フィラー4の露出面とを覆う。被覆層7を構成する材料(組成)は特に制限されず、有機材料であっても、無機材料であってもよい。被覆層7を構成する材料は、フィラー充填フィルム1cの用途に応じて適宜選択されればよい。例えば、被覆層7は、無機層であってもよい。被覆層7は被覆層5と同様の方法で形成される。 A filler-filled film 1c shown in FIG. 6 is obtained by forming a coating layer 7 on the surface of the filler-filled film 1. The covering layer 7 covers the surface of the convex portion 3 b and the exposed surface of the filler 4. The material (composition) constituting the coating layer 7 is not particularly limited, and may be an organic material or an inorganic material. The material which comprises the coating layer 7 should just be suitably selected according to the use of the filler filling film 1c. For example, the coating layer 7 may be an inorganic layer. The covering layer 7 is formed by the same method as the covering layer 5.
 図7に示すフィラー充填フィルム1dは、フィルム本体2の裏面(凹部3が形成された面と反対側の面)に粘着層8を形成したものである。このフィラー充填フィルム1dは、粘着層8を介して他の物体(例えば本実施形態に係る他のフィラー充填フィルム、任意の基材等)に張り合わされてもよい。なお、粘着層8は、図4~6に示すフィラー充填フィルム1a~1cに形成されていても良いことはもちろんである。 A filler-filled film 1d shown in FIG. 7 is obtained by forming an adhesive layer 8 on the back surface of the film body 2 (the surface opposite to the surface on which the recesses 3 are formed). The filler-filled film 1d may be bonded to another object (for example, another filler-filled film according to the present embodiment, an arbitrary base material, or the like) via the adhesive layer 8. Needless to say, the adhesive layer 8 may be formed on the filler-filled films 1a to 1c shown in FIGS.
 図8に示す積層フィルム20は、2枚のフィラー充填フィルム1が粘着層8を介して貼り合わされたものである。図8に示す積層フィルム20では、積層枚数は2枚であるが、積層枚数がこれに限られないことはもちろんである。また、各フィラー充填フィルム1の凹部3の配列パターンは同じであっても、異なっていてもよい。例えば、各フィラー充填フィルム1の凹部3の配列パターンは、互いに相似形であってもよい。また、各フィラー充填フィルム1に同じフィラー4を充填してもよいし、フィラー充填フィルム1毎に異なるフィラー4を充填してもよい。 8 is a laminate film 20 in which two filler-filled films 1 are bonded together with an adhesive layer 8 interposed therebetween. In the laminated film 20 shown in FIG. 8, the number of laminated layers is two, but the number of laminated layers is not limited to this. Moreover, the arrangement pattern of the recessed part 3 of each filler filling film 1 may be the same, or may differ. For example, the arrangement pattern of the recesses 3 of each filler-filled film 1 may be similar to each other. Each filler-filled film 1 may be filled with the same filler 4, or a different filler 4 may be filled for each filler-filled film 1.
 積層フィルム20は、図7に示すフィラー充填フィルム1dを積層することで作製されてもよい。また、積層フィルム20は、フィラー充填フィルム1の表面に粘着層8を塗工し、その上に他のフィラー充填フィルム1を貼り付けるという工程を繰り返すことで作製してもよい。なお、図4~6に示すフィラー充填フィルム1a~1cを積層しても良いことはもちろんである。 The laminated film 20 may be produced by laminating the filler-filled film 1d shown in FIG. The laminated film 20 may be produced by repeating the process of applying the adhesive layer 8 on the surface of the filler-filled film 1 and attaching another filler-filled film 1 thereon. Of course, the filler-filled films 1a to 1c shown in FIGS. 4 to 6 may be laminated.
 図9に示す貼合体30は、基材31の表面に粘着層8を介してフィラー充填フィルム1を貼りあわせたものである。基材31の種類は特に制限されない。基材31は、平面状の部材(例えばフィルム、板)であっても良いし、立体状の部材(例えば各種筐体等)であっても良い。また、フィラー充填フィルム1a~1d、積層フィルム20、及び後述する枚葉フィルムが基材31に貼り合わされてもよい。 9 is obtained by bonding the filler-filled film 1 to the surface of the base material 31 with the adhesive layer 8 interposed therebetween. The type of the base material 31 is not particularly limited. The base material 31 may be a planar member (for example, a film or a plate), or may be a three-dimensional member (for example, various housings). Further, the filler-filled films 1a to 1d, the laminated film 20, and a sheet film described later may be bonded to the base material 31.
 <3.枚葉フィルム>
 上述したフィラー充填フィルム1は、複数枚にカットされることで枚葉フィルムとされてもよい。本実施形態に係るフィラー充填フィルム1では、全域でフィラー充填率を安定化させることができるので、同質の枚葉フィルムを複数作製することができる。なお、上述した各変形例に係るフィルムも同様に枚葉フィルムとされてもよい。
<3. Sheet-fed film>
The filler-filled film 1 described above may be a single wafer film by being cut into a plurality of sheets. In the filler-filled film 1 according to the present embodiment, the filler filling rate can be stabilized over the entire region, so that a plurality of homogeneous sheet films can be produced. In addition, the film which concerns on each modification mentioned above may also be made into a single wafer film.
 上記各フィルムの用途は特に制限されないが、例えばプリンテッド・エレクトロニクスやその応用分野(関連分野)等に使用されてもよい。また、上述の分野に限らず、機能性フィルム(デバイス)として使用されてもよい。例えば、バイオセンサや診断デバイスのような医療やバイオ、ヘルスケア、ライフサイエンス等に使用されてもよく、光学素子であってもよい。また、バッテリーやエネルギー関連、車載(自動車)関連に使用してもよい。 The use of each film is not particularly limited, but may be used in, for example, printed electronics and its application fields (related fields). Moreover, you may use not only the above-mentioned field | area but as a functional film (device). For example, it may be used for medical treatment such as a biosensor or a diagnostic device, biotechnology, healthcare, life science, or the like, or may be an optical element. Moreover, you may use for a battery, energy relation, vehicle-mounted (automobile) relation.
 <4.転写装置の構成>
 フィルム本体2は、ロールツーロール方式の転写装置によって製造可能である。以下では、図10を参照して、転写装置の一例である転写装置100の構成について説明する。図10に示す転写装置100では、光硬化性樹脂を用いてフィルム本体2を作製する。
<4. Configuration of transfer device>
The film body 2 can be manufactured by a roll-to-roll type transfer device. Below, with reference to FIG. 10, the structure of the transfer apparatus 100 which is an example of a transfer apparatus is demonstrated. In the transfer apparatus 100 shown in FIG. 10, the film main body 2 is produced using a photocurable resin.
 転写装置100は、原盤110と、基材供給ロール151と、巻取ロール152と、ガイドロール153、154と、ニップロール155と、剥離ロール156と、塗布装置157と、光源158とを備える。 The transfer device 100 includes a master 110, a base material supply roll 151, a winding roll 152, guide rolls 153 and 154, a nip roll 155, a peeling roll 156, a coating device 157, and a light source 158.
 原盤110は円筒または円柱形状の部材であり、原盤110の周面には、複数の凸部113が形成される。これらの凸部113は、上述した凹部3の反転形状となっている。すなわち、転写装置100では、原盤110の周面に形成された凸部113の配列パターンを被転写フィルム2aに転写することで、フィルム本体2を作製する。 The master 110 is a cylindrical or columnar member, and a plurality of convex portions 113 are formed on the peripheral surface of the master 110. These convex portions 113 have the inverted shape of the concave portion 3 described above. That is, in the transfer apparatus 100, the film main body 2 is produced by transferring the arrangement pattern of the convex portions 113 formed on the peripheral surface of the master 110 to the transferred film 2a.
 原盤110を構成する材料、原盤110のサイズ(直径等)は特に問われない。例えば、原盤110は、溶融石英ガラスまたは合成石英ガラスなどの石英ガラス(SiO)、ステンレス鋼等で構成されていてもよい。原盤110の直径(外径)は、50~300mmであってもよい。原盤110が円筒形状となる場合、厚みは2~50mmであってもよい。 The material constituting the master 110 and the size (diameter, etc.) of the master 110 are not particularly limited. For example, the master 110 may be made of quartz glass (SiO 2 ) such as fused silica glass or synthetic quartz glass, stainless steel, or the like. The diameter (outer diameter) of the master 110 may be 50 to 300 mm. When the master 110 has a cylindrical shape, the thickness may be 2 to 50 mm.
 原盤110の周面に凸部113を形成する方法は特に問われない。例えば、凸部113は、原盤110の周面を機械的に切削することで作製されてもよく、エッチングにより作製されてもよい。原盤110をエッチングにより作製する工程の概要は以下のとおりである。すなわち、円筒または円柱形状の基材の周面をレジスト層で覆う。ついで、レジスト層のうち、凸部113が形成されない部分(凹部となる部分)にレーザ光を照射することで、レジスト層に潜像を形成する。なお、レーザ光を基材に照射する露光装置の構成例については後述する。ついで、レジスト層を現像することで、潜像部分を除去する。ついで、レジスト層をマスクとして基材をエッチングする。これにより、凸部113間の部分がエッチングされるので、凸部113が形成される。また、原盤110の周面には、原盤110の周面上の位置を示すマーキングが施されていてもよい。このようなマーキングを被転写フィルム2aに転写することで、転写の進捗を確認することができる。なお、原盤110にマーキングを施す代わりに、原盤110に形成される凸部113の一部を意図的にずらして形成してもよい。この場合、当該凸部113に対応する凹部3の位置もずれるので、その凹部3がマーキングの代わりになる。なお、凸部113の位置ずれはフィルム本体2の品質に影響が出ない範囲内で設定されることが好ましい。 The method of forming the convex 113 on the peripheral surface of the master 110 is not particularly limited. For example, the convex part 113 may be produced by mechanically cutting the peripheral surface of the master 110 or may be produced by etching. The outline of the process for producing the master 110 by etching is as follows. That is, the peripheral surface of a cylindrical or columnar substrate is covered with a resist layer. Next, a portion of the resist layer where the convex portion 113 is not formed (a portion that becomes a concave portion) is irradiated with laser light to form a latent image on the resist layer. A configuration example of an exposure apparatus that irradiates the substrate with laser light will be described later. Next, the latent image portion is removed by developing the resist layer. Next, the substrate is etched using the resist layer as a mask. Thereby, since the part between the convex parts 113 is etched, the convex part 113 is formed. Further, a marking indicating a position on the peripheral surface of the master 110 may be provided on the peripheral surface of the master 110. The transfer progress can be confirmed by transferring such a marking to the transfer film 2a. Instead of marking the master 110, a part of the protrusion 113 formed on the master 110 may be intentionally shifted. In this case, since the position of the concave portion 3 corresponding to the convex portion 113 is also shifted, the concave portion 3 serves as a marking. In addition, it is preferable that the positional deviation of the convex part 113 is set within a range that does not affect the quality of the film body 2.
 図12に、原盤110の一例を示す。原盤110の周面には、複数の凸部113が形成されている。凸部113の配列パターンは、図1に示す凹部3の配列パターンの反転形状となっている。すなわち、凸部113の配列パターンは六方格子状配列パターンとなっており、原盤110の軸方向A、周方向Bのいずれの方向に対しても周期性を有している。 FIG. 12 shows an example of the master 110. A plurality of convex portions 113 are formed on the peripheral surface of the master 110. The arrangement pattern of the convex portions 113 is an inverted shape of the arrangement pattern of the concave portions 3 shown in FIG. That is, the arrangement pattern of the convex portions 113 is a hexagonal lattice arrangement pattern, and has periodicity in both the axial direction A and the circumferential direction B of the master 110.
 基材供給ロール151は、長尺な被転写基材フィルム161がロール状に巻かれたロールであり、巻取ロール152は、フィルム本体2を巻き取るロールである。また、ガイドロール153、154は、被転写基材フィルム161を搬送するロールである。ニップロール155は、未硬化樹脂層162が積層された被転写基材フィルム161、すなわち被転写フィルム2aを原盤110に密着させるロールである。剥離ロール156は、硬化樹脂層162aが積層された被転写基材フィルム161、すなわちフィルム本体2を原盤110から剥離するロールである。 The base material supply roll 151 is a roll in which a long substrate film 161 to be transferred is wound in a roll shape, and the winding roll 152 is a roll that winds up the film body 2. Further, the guide rolls 153 and 154 are rolls that transport the transfer base film 161. The nip roll 155 is a roll for bringing the transfer substrate film 161 on which the uncured resin layer 162 is laminated, that is, the transfer film 2 a into close contact with the master 110. The peeling roll 156 is a roll for peeling the transfer base film 161 on which the cured resin layer 162 a is laminated, that is, the film body 2 from the master 110.
 塗布装置157は、コーターなどの塗布手段を備え、未硬化の光硬化樹脂組成物を被転写基材フィルム161に塗布し、未硬化樹脂層162を形成する。塗布装置157は、例えば、グラビアコーター、ワイヤーバーコーター、またはダイコーターなどであってもよい。また、光源158は、光硬化樹脂組成物を硬化可能な波長の光を発する光源であり、例えば、紫外線ランプなどであってもよい。 The coating device 157 includes coating means such as a coater, and applies an uncured photocurable resin composition to the transfer base film 161 to form an uncured resin layer 162. The coating device 157 may be, for example, a gravure coater, a wire bar coater, or a die coater. The light source 158 is a light source that emits light having a wavelength capable of curing the photocurable resin composition, and may be, for example, an ultraviolet lamp.
 なお、光硬化性樹脂組成物は、所定の波長の光が照射されることにより流動性が低下し、硬化する樹脂である。具体的には、光硬化性樹脂組成物は、アクリル樹脂などの紫外線硬化樹脂であってもよい。また、光硬化性樹脂組成物は、必要に応じて、開始剤、フィラー、機能性添加剤、溶剤、無機材料、顔料、帯電防止剤、または増感色素などを含んでもよい。 The photo-curable resin composition is a resin that is hardened due to a decrease in fluidity when irradiated with light having a predetermined wavelength. Specifically, the photocurable resin composition may be an ultraviolet curable resin such as an acrylic resin. Moreover, the photocurable resin composition may contain an initiator, a filler, a functional additive, a solvent, an inorganic material, a pigment, an antistatic agent, a sensitizing dye, or the like, if necessary.
 転写装置100では、まず、基材供給ロール151からガイドロール153を介して、被転写基材フィルム161が連続的に送出される。なお、送出の途中で基材供給ロール151を別ロットの基材供給ロール151に変更してもよい。送出された被転写基材フィルム161に対して、塗布装置157により未硬化の光硬化樹脂組成物が塗布され、被転写基材フィルム161に未硬化樹脂層162が積層される。これにより、被転写フィルム2aが作製される。被転写フィルム2aは、ニップロール155により、原盤110と密着させられる。光源158は、原盤110に密着した未硬化樹脂層162に光を照射することで、未硬化樹脂層162を硬化する。これにより、原盤110の外周面に形成された凸部113の配列パターンが未硬化樹脂層162に転写される。すなわち、凹部3が形成された硬化樹脂層162aが形成される。ここで、光源158は、凹部3に対して斜めに光を照射してもよい。この場合、凹部3の一部だけが硬化される。続いて、硬化樹脂層162aが積層された被転写基材フィルム161、すなわちフィルム本体2は、剥離ロール156により原盤110から剥離される。ついで、フィルム本体2は、ガイドロール154を介して、巻取ロール152によって巻き取られる。 In the transfer apparatus 100, first, the transferred substrate film 161 is continuously sent from the substrate supply roll 151 through the guide roll 153. In addition, you may change the base material supply roll 151 into the base material supply roll 151 of another lot in the middle of sending out. An uncured photocurable resin composition is applied to the transferred substrate film 161 by the coating device 157, and the uncured resin layer 162 is laminated on the substrate film 161 to be transferred. Thereby, the to-be-transferred film 2a is produced. The transferred film 2 a is brought into close contact with the master 110 by the nip roll 155. The light source 158 cures the uncured resin layer 162 by irradiating light to the uncured resin layer 162 that is in close contact with the master 110. As a result, the arrangement pattern of the convex portions 113 formed on the outer peripheral surface of the master 110 is transferred to the uncured resin layer 162. That is, the cured resin layer 162a in which the recess 3 is formed is formed. Here, the light source 158 may irradiate the recess 3 with light obliquely. In this case, only a part of the recess 3 is cured. Subsequently, the transfer base film 161 on which the cured resin layer 162 a is laminated, that is, the film body 2 is peeled from the master 110 by the peeling roll 156. Next, the film body 2 is wound up by the winding roll 152 through the guide roll 154.
 このように、転写装置100では、被転写フィルム2aをロールツーロールで搬送する一方で、原盤110の周面形状を被転写フィルム2aに転写する。これにより、フィルム本体2が作製される。 As described above, in the transfer device 100, the transfer film 2a is conveyed by roll-to-roll, while the peripheral surface shape of the master 110 is transferred to the transfer film 2a. Thereby, the film main body 2 is produced.
 なお、フィルム本体2を熱可塑性樹脂で作製する場合、塗布装置157及び光源158は不要となる。また、被転写基材フィルム161を熱可塑性樹脂フィルムとし、原盤110よりも上流側に加熱装置を配置する。この加熱装置によって被転写基材フィルム161を加熱して柔らかくし、その後、被転写基材フィルム161を原盤110に押し付ける。これにより、原盤110の周面に形成された凸部113の配列パターンが被転写基材フィルム161に転写される。なお、被転写基材フィルム161を熱可塑性樹脂以外の樹脂で構成されたフィルムとし、被転写基材フィルム161と熱可塑性樹脂フィルムとを積層してもよい。この場合、積層フィルムは、加熱装置で加熱された後、原盤110に押し付けられる。 In addition, when producing the film main body 2 with a thermoplastic resin, the coating device 157 and the light source 158 are unnecessary. In addition, the substrate film 161 to be transferred is a thermoplastic resin film, and a heating device is disposed upstream of the master 110. The transferred substrate film 161 is heated and softened by this heating device, and then the transferred substrate film 161 is pressed against the master 110. As a result, the arrangement pattern of the convex portions 113 formed on the peripheral surface of the master 110 is transferred to the substrate film 161 to be transferred. The transferred substrate film 161 may be a film made of a resin other than a thermoplastic resin, and the transferred substrate film 161 and the thermoplastic resin film may be laminated. In this case, the laminated film is pressed by the master 110 after being heated by the heating device.
 したがって、転写装置100は、原盤110に形成された凸部113の配列パターンが転写された転写物、すなわちフィルム本体2を連続的に製造することができる。また、転写装置100を用いて作製されたフィルム本体2は、凹部3の不良の発生を抑えることができ、ひいては、フィラー充填率のばらつきを抑えることができる。 Therefore, the transfer device 100 can continuously manufacture the transfer product, that is, the film body 2 to which the arrangement pattern of the convex portions 113 formed on the master 110 is transferred. Moreover, the film main body 2 produced using the transfer device 100 can suppress the occurrence of defects in the recesses 3 and, in turn, can suppress variations in the filler filling rate.
<5.露光装置の構成>
 次に、図11に基づいて、露光装置200の構成について説明する。露光装置200は、原盤110を形成する装置である。露光装置200は、レーザ光源221と、第1ミラー223と、フォトダイオード(Photodiode:PD)224と、偏向光学系225と、制御機構237と、第2ミラー231と、移動光学テーブル232と、スピンドルモータ235と、ターンテーブル236とを備える。また、基材110aは、ターンテーブル236上に載置され、回転することができるようになっている。
<5. Configuration of exposure apparatus>
Next, the configuration of the exposure apparatus 200 will be described based on FIG. The exposure apparatus 200 is an apparatus that forms the master 110. The exposure apparatus 200 includes a laser light source 221, a first mirror 223, a photodiode (Photodiode: PD) 224, a deflection optical system 225, a control mechanism 237, a second mirror 231, a moving optical table 232, and a spindle. A motor 235 and a turntable 236 are provided. The substrate 110a is placed on the turntable 236 and can rotate.
 レーザ光源221は、レーザ光220を発する光源であり、例えば、固体レーザまたは半導体レーザなどである。レーザ光源221が発するレーザ光220の波長は、特に限定されないが、例えば、400nm~500nmの青色光帯域の波長であってもよい。また、レーザ光220のスポット径(レジスト層に照射されるスポットの直径)は、凹部3の開口面の直径より小さければよく、例えば200nm程度であればよい。レーザ光源221から発せられるレーザ光220は制御機構237によって制御される。 The laser light source 221 is a light source that emits laser light 220, and is, for example, a solid-state laser or a semiconductor laser. The wavelength of the laser light 220 emitted from the laser light source 221 is not particularly limited, but may be, for example, a wavelength in a blue light band of 400 nm to 500 nm. Further, the spot diameter of the laser beam 220 (the diameter of the spot irradiated on the resist layer) may be smaller than the diameter of the opening surface of the recess 3, and may be about 200 nm, for example. The laser light 220 emitted from the laser light source 221 is controlled by the control mechanism 237.
 レーザ光源221から出射されたレーザ光220は、平行ビームのまま直進し、第1ミラー223で反射され、偏向光学系225に導かれる。 The laser light 220 emitted from the laser light source 221 travels straight as a parallel beam, is reflected by the first mirror 223, and is guided to the deflection optical system 225.
 第1ミラー223は、偏光ビームスプリッタで構成されており、偏光成分の一方を反射させ、偏光成分の他方を透過させる機能を有する。第1ミラー223を透過した偏光成分は、フォトダイオード224によって受光され、光電変換される。また、フォトダイオード224によって光電変換された受光信号は、レーザ光源221に入力され、レーザ光源221は、入力された受光信号に基づいてレーザ光220の位相変調を行う。 The first mirror 223 is composed of a polarization beam splitter, and has a function of reflecting one of the polarization components and transmitting the other of the polarization components. The polarization component transmitted through the first mirror 223 is received by the photodiode 224 and subjected to photoelectric conversion. Further, the light reception signal photoelectrically converted by the photodiode 224 is input to the laser light source 221, and the laser light source 221 performs phase modulation of the laser light 220 based on the input light reception signal.
 また、偏向光学系225は、集光レンズ226と、電気光学偏向素子(Electro Optic Deflector:EOD)227と、コリメータレンズ228とを備える。 The deflection optical system 225 includes a condenser lens 226, an electro-optic deflector (EOD) 227, and a collimator lens 228.
 偏向光学系225において、レーザ光220は、集光レンズ226によって、電気光学偏向素子227に集光される。電気光学偏向素子227は、レーザ光220の照射位置を制御することが可能な素子である。露光装置200は、電気光学偏向素子227により、移動光学テーブル232上に導かれるレーザ光220の照射位置を変化させることも可能である。レーザ光220は、電気光学偏向素子227によって照射位置を調整された後、コリメータレンズ228によって、再度、平行ビーム化される。偏向光学系225から出射されたレーザ光220は、第2ミラー231によって反射され、移動光学テーブル232上に水平かつ平行に導かれる。 In the deflection optical system 225, the laser light 220 is condensed on the electro-optic deflection element 227 by the condenser lens 226. The electro-optic deflection element 227 is an element that can control the irradiation position of the laser light 220. The exposure apparatus 200 can also change the irradiation position of the laser beam 220 guided onto the moving optical table 232 by the electro-optic deflection element 227. After the irradiation position of the laser beam 220 is adjusted by the electro-optic deflection element 227, the laser beam 220 is converted into a parallel beam again by the collimator lens 228. The laser light 220 emitted from the deflection optical system 225 is reflected by the second mirror 231 and guided horizontally and parallel onto the moving optical table 232.
 移動光学テーブル232は、ビームエキスパンダ(Beam expader:BEX)233と、対物レンズ234とを備える。移動光学テーブル232に導かれたレーザ光220は、ビームエキスパンダ233により所望のビーム形状に整形された後、対物レンズ234を介して、基材110aのレジスト層に照射される。また、移動光学テーブル232は、基材110aが1回転する毎に矢印R方向(送りピッチ方向)に1送りピッチだけ移動する。ターンテーブル236上には、基材110aが設置される。スピンドルモータ235はターンテーブル236を回転させることで、基材110aを回転させる。 The moving optical table 232 includes a beam expander (BEX) 233 and an objective lens 234. The laser light 220 guided to the moving optical table 232 is shaped into a desired beam shape by the beam expander 233 and then irradiated to the resist layer of the substrate 110 a through the objective lens 234. Further, the moving optical table 232 moves by one feed pitch in the arrow R direction (feed pitch direction) every time the substrate 110a rotates once. A base material 110 a is installed on the turntable 236. The spindle motor 235 rotates the base 110a by rotating the turntable 236.
 また、制御機構237は、フォーマッタ240と、ドライバ230とを備え、レーザ光220の照射を制御する。フォーマッタ240は、レーザ光220の照射を制御する変調信号を生成し、ドライバ230は、フォーマッタ240が生成した変調信号に基づいて、レーザ光源221を制御する。これにより、基材110aへのレーザ光220の照射が制御される。 The control mechanism 237 includes a formatter 240 and a driver 230, and controls the irradiation of the laser light 220. The formatter 240 generates a modulation signal that controls the irradiation of the laser light 220, and the driver 230 controls the laser light source 221 based on the modulation signal generated by the formatter 240. Thereby, irradiation of the laser beam 220 to the base material 110a is controlled.
 フォーマッタ240は、原盤110に描画する任意のパターンが描かれた入力画像に基づいて、原盤110にレーザ光220を照射するための制御信号を生成する。具体的には、まず、フォーマッタ240は、原盤110に描画する任意のパターンが描かれた入力画像を取得する。入力画像は、軸方向に原盤110の外周面を切り開いて一平面に伸ばした、原盤110の外周面の展開図に相当する画像である。次に、フォーマッタ240は、入力画像を所定の大きさの小領域に分割し(例えば、格子状に分割し)、小領域の各々に描画パターンが含まれるか否かを判断する。続いて、フォーマッタ240は、描画パターンが含まれると判断した各小領域にレーザ光220を照射するよう制御する制御信号に生成する。さらに、ドライバ230は、フォーマッタ240が生成した制御信号に基づいてレーザ光源221の出力を制御する。これにより、原盤110へのレーザ光220の照射が制御される。 The formatter 240 generates a control signal for irradiating the master 110 with the laser light 220 based on an input image on which an arbitrary pattern to be drawn on the master 110 is drawn. Specifically, first, the formatter 240 acquires an input image on which an arbitrary pattern to be drawn on the master 110 is drawn. The input image is an image corresponding to a developed view of the outer peripheral surface of the master disk 110 that is cut out in the axial direction and extended to one plane. Next, the formatter 240 divides the input image into small areas of a predetermined size (for example, in a grid pattern), and determines whether or not a drawing pattern is included in each of the small areas. Subsequently, the formatter 240 generates a control signal for controlling to irradiate the laser light 220 to each small area determined to include a drawing pattern. Further, the driver 230 controls the output of the laser light source 221 based on the control signal generated by the formatter 240. Thereby, irradiation of the laser beam 220 onto the master 110 is controlled.
 <6.フィラー充填フィルムの製造方法>
 次に、フィラー充填フィルム1の製造方法について説明する。まず、上述した原盤110を準備する。ついで、転写装置100を用いて、被転写フィルム2aに原盤110の周面形状を転写する。これにより、フィルム本体2を作製する。ついで、フィルム本体2の表面に形成された複数の凹部3にフィラー4を充填する。ここで、凹部3にフィラー4を充填する方法は特に問われない。例えば、フィルム本体2の表面にフィラー4を分散させる。ついで、フィルム本体2の表面を布などでワイプする。これにより、フィラー4をフィルム本体2の表面に形成された凹部3に充填することができる。なお、凹部3の一部だけが硬化されている場合、フィラー4を凹部3に充填させた後に凹部3を完全に硬化させても良い。これにより、フィラー4が凹部3内でフィルム本体2と一体化される。なお、フィラー充填フィルム1に充填されたフィラー4を他のフィルム等に転写してもよい。さらに、このような転写フィルムを順次積層してもよい。また、更に他のフィルムで積層してもよい。すなわち、転写及び積層を繰り返すことで、フィラーの一部または全部が他のフィルムの定められた位置に設けられることになる。
<6. Method for producing filler-filled film>
Next, the manufacturing method of the filler filling film 1 is demonstrated. First, the master 110 described above is prepared. Next, using the transfer device 100, the shape of the peripheral surface of the master 110 is transferred to the film 2a to be transferred. Thereby, the film main body 2 is produced. Next, the filler 4 is filled into the plurality of recesses 3 formed on the surface of the film body 2. Here, the method of filling the recess 3 with the filler 4 is not particularly limited. For example, the filler 4 is dispersed on the surface of the film body 2. Next, the surface of the film body 2 is wiped with a cloth or the like. Thereby, the filler 4 can be filled into the recess 3 formed on the surface of the film body 2. When only a part of the recess 3 is cured, the recess 3 may be completely cured after the filler 4 is filled in the recess 3. Thereby, the filler 4 is integrated with the film body 2 in the recess 3. Note that the filler 4 filled in the filler-filled film 1 may be transferred to another film or the like. Further, such transfer films may be sequentially laminated. Moreover, you may laminate | stack with another film. That is, by repeating the transfer and lamination, a part or all of the filler is provided at a predetermined position on the other film.
 (実施例)
 次に、本発明の実施例を説明する。実施例では、転写装置100を用いてフィルム本体2を作製した。原盤110は、以下の工程により作製した。具体的には、4.5mm厚の円筒形状の石英ガラスからなる基材110aの外周面に、炭化水素系ガスを用いたCVD(Chemical Vapor Deposition)によりDLC(Diamond Like Carbon)を膜厚800nmにて成膜し、中間層とした。次に、中間層上にタングステン酸化物をスパッタ法により膜厚55nmにて成膜し、レジスト層とした。
(Example)
Next, examples of the present invention will be described. In the example, the film body 2 was produced using the transfer device 100. The master 110 was produced by the following process. Specifically, a DLC (Diamond Like Carbon) film having a thickness of 800 nm is formed on the outer peripheral surface of the base 110a made of cylindrical quartz glass having a thickness of 4.5 mm by CVD (Chemical Vapor Deposition) using a hydrocarbon-based gas. A film was formed as an intermediate layer. Next, a tungsten oxide film was formed on the intermediate layer with a film thickness of 55 nm by a sputtering method to form a resist layer.
 続いて、露光装置100によってレーザ光による熱リソグラフィを行い、レジスト層に潜像を形成した。なお、露光装置100のレーザ光源には、波長405nmのレーザ光を発する青色半導体レーザを用いた。露光パターンは、直径7μmの円を10μmピッチ(円の中心間距離)にて六方格子に配列した配列パターンを使用した。また、直径7μmの円が原盤上で凸部になるように(すなわち、直径7μmの円が転写後のフィルム本体2では凹部3になるように)、直径7μmの円以外の部分を露光装置100にて露光した。 Subsequently, thermal lithography using laser light was performed by the exposure apparatus 100 to form a latent image on the resist layer. Note that a blue semiconductor laser that emits laser light having a wavelength of 405 nm was used as the laser light source of the exposure apparatus 100. As the exposure pattern, an array pattern in which circles having a diameter of 7 μm were arranged in a hexagonal lattice at a pitch of 10 μm (distance between the centers of the circles) was used. Further, the exposure apparatus 100 is configured to apply a portion other than the circle having the diameter of 7 μm so that the circle having the diameter of 7 μm becomes a convex portion on the master (that is, the circle having the diameter of 7 μm becomes the concave portion 3 in the transferred film body 2). And exposed.
 続いて、レジスト層が露光された基材110aをTMAH(水酸化テトラメチルアンモニウム)の2.38質量%水溶液を用いて現像し、露光した部分のレジストを溶解させた。 Subsequently, the base material 110a on which the resist layer was exposed was developed using a 2.38 mass% aqueous solution of TMAH (tetramethylammonium hydroxide) to dissolve the exposed portion of the resist.
 さらに、現像後のレジスト層をマスクに用いて、Oガスによる反応性イオンエッチングにて中間層をエッチングした。続いて、レジスト層および中間層をマスクに用いて、CF系ガスによる反応性イオンエッチングにて基材110aをエッチングした。なお、基材110aのエッチングは、フィルム本体2における凹部3のアスペクト比が1となるように凸部113の高さが7μmになるまで行った。以上の工程により、外周面に凹凸構造が形成された円筒形状の原盤110を作製した。 Further, the intermediate layer was etched by reactive ion etching with O 2 gas using the developed resist layer as a mask. Subsequently, the substrate 110a was etched by reactive ion etching with a CF-based gas using the resist layer and the intermediate layer as a mask. Etching of the base material 110a was performed until the height of the convex portion 113 became 7 μm so that the aspect ratio of the concave portion 3 in the film body 2 was 1. Through the above steps, a cylindrical master 110 having a concavo-convex structure formed on the outer peripheral surface was produced.
 続いて、50cm幅のPETからなる基材フィルム(厚さ50μm)に、アクリレート樹脂(M208、東亞合成)100質量部、光重合開始剤(IRGCUR184、BASF)2質量部を含有する光硬化樹脂組成物を膜厚30μmにて塗布した。さらに、転写装置100を用いて、原盤を基材フィルムに押圧し、1000m強分の基材フィルムに凹凸構造を転写した。光照射は高圧水銀灯で1000mJで行った。これにより、直径7μm、深さ7μm(アスペクト比1)の円形の凹部が、該凹部の中心間距離10μmにて六方格子状に配列されたフィルム本体2が作製された。 Subsequently, a photocurable resin composition containing 100 parts by mass of an acrylate resin (M208, Toagosei) and 2 parts by mass of a photopolymerization initiator (IRGCUR184, BASF) in a base film (thickness 50 μm) made of 50 cm wide PET. The product was applied at a film thickness of 30 μm. Furthermore, using the transfer device 100, the master was pressed against the base film, and the concavo-convex structure was transferred to the base film having a strength of 1000 m. Light irradiation was performed at 1000 mJ with a high-pressure mercury lamp. As a result, a film body 2 was produced in which circular recesses having a diameter of 7 μm and a depth of 7 μm (aspect ratio 1) were arranged in a hexagonal lattice pattern with a distance between the centers of the recesses of 10 μm.
 また、1mmの代表領域を任意で100箇所抽出し、各代表領域内の凹部の数を光学顕微鏡で計測した。そして、各代表領域で計測された個数の総数を代表領域の総面積で除算することで、凹部3の面密度(フィルム本体2の単位面積当りに形成される凹部3の数)を算出した。この結果、凹部3の面密度は11,500個/mm=1,150,000個/cmとなった。ここで、カウント対象となる凹部3は、互いに連結していない(凹部3間に凸部3bが存在する)凹部3とした。すなわち、本実施例では、互いに連結された凹部3を不良と判定した。このような不良は、凹部3の位置ずれ等によって生じうる。 Further, 100 representative areas of 1 mm 2 were extracted arbitrarily, and the number of recesses in each representative area was measured with an optical microscope. Then, the surface density of the recesses 3 (the number of recesses 3 formed per unit area of the film body 2) was calculated by dividing the total number of the numbers measured in each representative region by the total area of the representative regions. As a result, the surface density of the recesses 3 was 11,500 / mm 2 = 11,50,000 / cm 2 . Here, the concave portions 3 to be counted are the concave portions 3 that are not connected to each other (the convex portions 3b exist between the concave portions 3). That is, in this embodiment, the recessed portions 3 connected to each other are determined to be defective. Such a defect may be caused by a displacement of the recess 3 or the like.
 また、日本触媒社製エポスターMA1006を準備し、この樹脂フィラーを平均直径が5μmとなるように分級した。樹脂フィラーの直径は、樹脂フィラーの各粒子を球とみなしたときの直径、即ち球相当径である。また、平均直径は、樹脂フィラーの直径の算術平均値である。分級は、画像型粒度分布計FPIA3000(シスメックス社、マルバーン社製)を用いて行った。分級後の樹脂フィラーをフィラー4として使用した。フィラー4の充填は、上述した方法で行った。すなわち、フィルム本体2の表面にフィラー4を分散した。ついで、フィラー4を布でワイプすることで、凹部3にフィラー4を充填した。これにより、フィラー充填フィルム1を作製した。 Further, Eposta MA1006 manufactured by Nippon Shokubai Co., Ltd. was prepared, and this resin filler was classified so as to have an average diameter of 5 μm. The diameter of the resin filler is a diameter when each particle of the resin filler is regarded as a sphere, that is, a sphere equivalent diameter. The average diameter is an arithmetic average value of the diameters of the resin fillers. Classification was performed using an image type particle size distribution analyzer FPIA3000 (manufactured by Sysmex Corporation, Malvern). The resin filler after classification was used as the filler 4. Filling the filler 4 was performed by the method described above. That is, the filler 4 was dispersed on the surface of the film body 2. Subsequently, the filler 4 was filled in the concave portion 3 by wiping the filler 4 with a cloth. Thereby, the filler filling film 1 was produced.
 また、1mmの代表領域を任意で100箇所抽出し、各代表領域内のフィラー4の数を光学顕微鏡で計測した。そして、各代表領域で計測された個数の総数を代表領域の総面積で除算することで、フィラー4の面密度(フィルム本体2の単位面積当りに形成される凹部3の数)を算出した。この結果、フィラー4の面密度は11,500個/mm=1,150,000個/cmとなった。なお、カウント対象となるフィラー4は、凹部3に完全に充填されているフィラー4とした。なお、凹部3同士が連結された場合であっても、その凹部3にフィラー4が完全に充填されている場合には、そのフィラー4もカウント対象とした。後述するフィラー充填率の計測でもカウント対象を同様とした。なお、2つの凹部3が連結されている場合、その凹部3には最大2個のフィラー4が充填されうる。 Moreover, 100 representative areas of 1 mm 2 were extracted arbitrarily, and the number of fillers 4 in each representative area was measured with an optical microscope. Then, the surface density of the filler 4 (the number of recesses 3 formed per unit area of the film body 2) was calculated by dividing the total number of the numbers measured in each representative region by the total area of the representative region. As a result, the surface density of the filler 4 was 11,500 pieces / mm 2 = 11,50,000 pieces / cm 2 . The filler 4 to be counted was a filler 4 that is completely filled in the recess 3. Even when the recesses 3 are connected to each other, when the filler 4 is completely filled in the recesses 3, the filler 4 is also counted. The counting target was the same in the measurement of the filler filling rate described later. When two recesses 3 are connected, the recess 3 can be filled with a maximum of two fillers 4.
 そして、フィラー充填フィルム1の長さ方向Pの先端縁(原盤110に最初に投入される縁)から1mの地点を一方の端部F(開始点)、先端縁から1000mの地点を他方の端部R(終了点)とし、先端縁から1m、250m、500m、750m、1000mの各地点におけるフィラー充填率を算出した。 Then, a point 1 m from the leading edge (the edge that is first introduced into the master 110) in the length direction P of the filler-filled film 1 is one end F (starting point), and a point 1000 m from the leading edge is the other end. The filler filling rate at each point of 1 m, 250 m, 500 m, 750 m, and 1000 m from the tip edge was calculated as part R (end point).
 具体的には、各地点を含む単位配列パターンMを抽出し、この単位配列パターンMに対して長さ方向Pの正方向側に10cm(フィルム幅の20%)の範囲内に存在する単位配列パターンMを抽出した。そして、これらの単位配列パターンMを計測対象領域とした。 Specifically, a unit array pattern M including each point is extracted, and a unit array existing within a range of 10 cm (20% of the film width) on the positive side in the length direction P with respect to the unit array pattern M. Pattern M was extracted. These unit array patterns M were used as measurement target areas.
 そして、計測対象領域内に200μm*200μmの代表領域を約25cm分設定し、各代表領域内のフィラー4の個数を光学顕微鏡観察によって計測した。そして、各代表領域の測定値の総和を各代表領域内に存在するフィラー4の理想個数の総和で除算することで、フィラー充填率を計測した。各地点でのフィラー充填率を以下の表1に示す。表1に示すように、フィラー充填フィルム1の長さが1000mとなる場合、先端縁から1mのフィラー充填率と、250m、500m、750m、1000mの各地点でのフィラー充填率とはほとんど変わらなかった。したがって、フィラー充填フィルム1の全長に対して、0.1%、25%、50%、75%、100%の地点で安定した(すなわち、再現性の高い)フィラー充填率が得られたことになる。 Then, a representative region of 200 μm * 200 μm was set for about 25 cm 2 in the measurement target region, and the number of fillers 4 in each representative region was measured by optical microscope observation. And the filler filling rate was measured by dividing the sum total of the measured value of each representative area | region by the sum total of the ideal number of the fillers 4 which exist in each representative area | region. The filler filling rate at each point is shown in Table 1 below. As shown in Table 1, when the length of the filler-filled film 1 is 1000 m, the filler filling rate of 1 m from the leading edge is almost the same as the filler filling rate at each point of 250 m, 500 m, 750 m, and 1000 m. It was. Therefore, a stable (ie, highly reproducible) filler filling rate was obtained at points of 0.1%, 25%, 50%, 75%, and 100% with respect to the entire length of the filler-filled film 1. Become.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、先端縁から100m置きの地点で同様にフィラー充填率を計測したところ、表1とほぼ同様の値が得られた。このように、本実施例では、フィルム本体2の一方の端部Fにおけるフィラー充填率と、フィルム本体2の他の部分におけるフィラー充填率との差は0.1%以下であることが明らかとなった。また、フィラー充填フィルム1には、凹部3が六方格子状、すなわち最も密な配列パターンで配置されている。すなわち、フィラー充填フィルム1には、フィラー4が最も密な配列パターンで充填されている。そして、このような配列パターンであっても、フィラー充填フィルム1の長さ方向において非常に安定した(すなわち、非常に再現性の高い)フィラー充填率が得られている。したがって、フィラー4は凹部3を設けられる範囲であれば、いかなる配列パターンで充填したとしても、同様の効果が期待できる。 In addition, when the filler filling rate was measured in the same manner at a point about 100 m from the tip edge, a value almost the same as Table 1 was obtained. Thus, in this example, it is clear that the difference between the filler filling rate at one end F of the film body 2 and the filler filling rate at the other part of the film body 2 is 0.1% or less. became. In addition, the filler-filled film 1 has the recesses 3 arranged in a hexagonal lattice pattern, that is, in the most dense arrangement pattern. That is, the filler-filled film 1 is filled with the fillers 4 in the densest arrangement pattern. And even if it is such an arrangement | sequence pattern, the filler filling rate very stable (namely, very reproducible) in the length direction of the filler filling film 1 is obtained. Accordingly, the filler 4 can be expected to have the same effect as long as it is in a range in which the recesses 3 can be provided, regardless of the arrangement pattern.
 また、上記代表領域で長さ方向Pに連続した凹部3の欠損を観察したところ、連続した欠損の数が10個以上となる箇所は確認できなかった。 Further, when the defect of the concave portion 3 continuous in the length direction P was observed in the representative region, a location where the number of continuous defects was 10 or more could not be confirmed.
 (比較例)
 10cm*10cmの大きさのSUS板を機械的に切削することで、実施例と同様の配列パターンの凸部が形成されたスタンパ原盤を得た。また、スタンパ原盤の凸部が形成された面(凹凸面)には、フッ素系離型剤(ダイキン工業社製ダイフリーGA70500)をスプレーした。そして、転写装置100の原盤110をスタンパ原盤に置き換えた他は同様の処理を行うことで、フィルム本体を作製した。
(Comparative example)
A SUS plate having a size of 10 cm * 10 cm was mechanically cut to obtain a stamper master on which convex portions having the same arrangement pattern as in the example were formed. Further, a fluorine-based mold release agent (Die Free GA70500 manufactured by Daikin Industries, Ltd.) was sprayed on the surface (uneven surface) on which the convex portions of the stamper master were formed. Then, a film body was manufactured by performing the same process except that the master 110 of the transfer device 100 was replaced with a stamper master.
 フィルム本体の凹部の形状を光学顕微鏡で観察したところ、スタンパを200回繰り返した地点(先端縁から20mの地点)で、凹部の不良(凹部同士の連結)が確認できた。そこで、スタンパを200回強繰り返した時点でスタンパを停止し、フィラーを凹部に充填した。フィラーは実施例と同様とした。そして、先端縁から200mの地点でのフィラー充填率を測定したところ、フィラー充填率は99.5%となった。その後、スタンパの回数が増える毎に凹部の不良の数が増大していった。したがって、スタンパ回数が増える毎にフィラー充填率のばらつきが大きくなり、フィラー充填率が99.5%よりも低い値になると推定される。 When the shape of the concave portion of the film body was observed with an optical microscope, a defective concave portion (connection between the concave portions) could be confirmed at a point where the stamper was repeated 200 times (a point 20 m from the leading edge). Therefore, when the stamper was repeated 200 times, the stamper was stopped and the filler was filled in the recess. The filler was the same as in the example. And when the filler filling rate in a 200-m point from a front-end edge was measured, the filler filling rate became 99.5%. Thereafter, as the number of stampers increased, the number of recess defects increased. Therefore, it is estimated that as the number of stampers increases, the variation of the filler filling rate becomes large, and the filler filling rate becomes a value lower than 99.5%.
 以上の結果により、実施例では、比較例よりもフィラー充填率を高い範囲に維持できることが明らかとなった。 From the above results, it was clarified that the filler filling rate can be maintained in a higher range in the example than in the comparative example.
 以上により、本実施形態によるフィラー充填フィルム1では、フィラー充填率がより安定する。ここで、フィルム本体2は、長尺フィルムであってもよい。従来のフィラー充填フィルムでは、フィルム本体2が長尺になるほどフィラー充填率が安定しなくなるので、本実施形態の効果がより顕著に現れやすい。 As described above, in the filler-filled film 1 according to the present embodiment, the filler filling rate is more stable. Here, the film body 2 may be a long film. In the conventional filler-filled film, the filler filling rate becomes less stable as the film body 2 becomes longer, so that the effect of the present embodiment is more likely to appear.
 また、フィラー充填率は、フィルム本体2の長さ方向に沿った周期性を有していてもよい。この場合であっても、フィラー充填率が安定する。 Further, the filler filling rate may have periodicity along the length direction of the film body 2. Even in this case, the filler filling rate is stable.
 また、全ての凹部3は、略同一形状となっていてもよい。この場合、フィラー充填率がさらに安定しうる。 Further, all the recesses 3 may have substantially the same shape. In this case, the filler filling rate can be further stabilized.
 また、フィルム本体2の単位面積当りに充填されるフィラーの数は、50,000,000個/cm以下であってもよい。この場合であっても、フィラー充填率が安定する。 Further, the number of fillers filled per unit area of the film body 2 may be 50,000,000 pieces / cm 2 or less. Even in this case, the filler filling rate is stable.
 また、フィラー4は、凹部3内でフィルム本体2と一体化されていてもよい。この場合、フィラー4の無駄な抜けが抑えられるので、フィラー充填率がより安定する。 Further, the filler 4 may be integrated with the film body 2 in the recess 3. In this case, wasteful removal of the filler 4 is suppressed, so that the filler filling rate is more stable.
 また、フィルム本体2の表面のうち、少なくとも一部に形成された被覆層5、6、7を備えていていてもよい。この場合であっても、フィラー充填率が安定する。さらに、フィラー充填フィルム1の用途に応じて被覆層5、6、7を形成することで、フィラー充填フィルム1の用途が拡大される。 Moreover, you may provide the coating layers 5, 6, and 7 formed in at least one part among the surfaces of the film main body 2. FIG. Even in this case, the filler filling rate is stable. Furthermore, the use of the filler-filled film 1 is expanded by forming the coating layers 5, 6, and 7 according to the use of the filler-filled film 1.
 また、被覆層は、凹部の表面、凹部間の凸部の表面、及びフィラーの露出面のうち、少なくとも一部に形成されていていてもよい。この場合であっても、フィラー充填率が安定する。 Further, the coating layer may be formed on at least a part of the surface of the concave portion, the surface of the convex portion between the concave portions, and the exposed surface of the filler. Even in this case, the filler filling rate is stable.
 また、被覆層は、無機材料を含んでいてもよい。この場合であっても、フィラー充填率が安定する。 Moreover, the coating layer may contain an inorganic material. Even in this case, the filler filling rate is stable.
 また、フィルム本体は、硬化性樹脂または可塑性樹脂で形成されていてもよい。この場合であっても、フィラー充填率が安定する。 The film body may be formed of a curable resin or a plastic resin. Even in this case, the filler filling rate is stable.
 また、本実施形態では、フィラー充填フィルム1は枚葉フィルムとされてもよい。この場合、枚葉フィルムの品質が安定する。 In the present embodiment, the filler-filled film 1 may be a single wafer film. In this case, the quality of the sheet film is stabilized.
 また、複数のフィルムが積層された積層フィルムが形成されていてもよい。この場合、積層フィルムの品質が安定する。 Also, a laminated film in which a plurality of films are laminated may be formed. In this case, the quality of the laminated film is stabilized.
 また、フィルム本体の裏面に形成された粘着層を備えていていてもよい。これにより、フィラー充填フィルム1を容易に他の基材31等に貼り合わせることができる。 Also, an adhesive layer formed on the back surface of the film body may be provided. Thereby, the filler filling film 1 can be easily bonded to the other base material 31 or the like.
 また、本実施形態では、上記の各フィルムを基材31に貼り合わせることで、貼合体30を作製してもよい。この場合、貼合体30の機能が安定しうる。フィラー充填フィルム1等のフィラー充填率が安定しているからである。 Moreover, in this embodiment, you may produce the bonding body 30 by bonding each said film to the base material 31. FIG. In this case, the function of the bonded body 30 can be stabilized. This is because the filler filling rate of the filler-filled film 1 or the like is stable.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 1、1a~1d   フィラー充填フィルム
 2         フィルム本体
 3         凹部
 4         フィラー
 5、6、7     被覆層
 8         粘着層
 
 
1, 1a to 1d Filler-filled film 2 Film body 3 Recess 4 Filler 5, 6, 7 Cover layer 8 Adhesive layer

Claims (15)

  1.  フィルム本体と、
     前記フィルム本体の表面に形成された複数の凹部と、
     前記凹部の各々に充填されたフィラーと、を備え、
     前記凹部の開口面の直径は少なくとも可視光波長よりも大きく、
     前記凹部の配列パターンは前記フィルム本体の長さ方向に沿った周期性を有し、
     前記フィルム本体の一方の端部における前記フィラーの充填率と、前記フィルム本体の他の部分における前記フィラーの充填率との差は0.5%未満である、フィラー充填フィルム。
    The film body;
    A plurality of recesses formed on the surface of the film body;
    A filler filled in each of the recesses,
    The diameter of the opening surface of the recess is at least larger than the visible light wavelength,
    The array pattern of the recesses has a periodicity along the length direction of the film body,
    The filler-filled film, wherein a difference between the filling rate of the filler at one end of the film body and the filling rate of the filler at the other part of the film body is less than 0.5%.
  2.  前記フィルム本体は、長尺フィルムである、請求項1記載のフィラー充填フィルム。 The filler-filled film according to claim 1, wherein the film body is a long film.
  3.  前記フィラーの充填率は、前記フィルム本体の長さ方向に沿った周期性を有する、請求項1または2に記載のフィラー充填フィルム。 The filler filling film according to claim 1 or 2, wherein the filling rate of the filler has a periodicity along a length direction of the film body.
  4.  全ての前記凹部は、略同一形状となっている、請求項1~3のいずれか1項に記載のフィラー充填フィルム。 The filler-filled film according to any one of claims 1 to 3, wherein all the concave portions have substantially the same shape.
  5.  前記フィルム本体の単位面積当りに充填されるフィラーの数は、50,000,000個/cm以下である、請求項1~4のいずれか1項に記載のフィラー充填フィルム。 The filler-filled film according to any one of claims 1 to 4, wherein the number of fillers filled per unit area of the film body is 50,000,000 pieces / cm 2 or less.
  6.  前記フィラーは、前記凹部内で前記フィルム本体と一体化されている、請求項1~5のいずれか1項に記載のフィラー充填フィルム。 The filler-filled film according to any one of claims 1 to 5, wherein the filler is integrated with the film body in the recess.
  7.  前記フィルム本体の表面のうち、少なくとも一部に形成された被覆層を備える、請求項1~6のいずれか1項に記載のフィラー充填フィルム。 The filler-filled film according to any one of claims 1 to 6, comprising a coating layer formed on at least a part of the surface of the film body.
  8.  前記被覆層は、前記凹部の表面、前記凹部間の凸部の表面、及び前記フィラーの露出面のうち、少なくとも一部に形成される、請求項7記載のフィラー充填フィルム。 The filler-filled film according to claim 7, wherein the coating layer is formed on at least a part of a surface of the concave portion, a surface of the convex portion between the concave portions, and an exposed surface of the filler.
  9.  前記被覆層は、無機材料を含む、請求項7または8記載のフィラー充填フィルム。 The filler-filled film according to claim 7 or 8, wherein the coating layer contains an inorganic material.
  10.  前記フィルム本体は、硬化性樹脂または可塑性樹脂で形成される、請求項1~9のいずれか1項に記載のフィラー充填フィルム。 The filler-filled film according to any one of claims 1 to 9, wherein the film body is formed of a curable resin or a plastic resin.
  11.  請求項1~10のいずれか1項に記載のフィラー充填フィルムを複数枚にカットすることで作製される、枚葉フィルム。 A single wafer film produced by cutting the filler-filled film according to any one of claims 1 to 10 into a plurality of sheets.
  12.  請求項1~11のいずれか1項に記載のフィルムが積層された、積層フィルム。 A laminated film in which the film according to any one of claims 1 to 11 is laminated.
  13.  前記フィルム本体の裏面に形成された粘着層を備える、請求項1~12のいずれか1項に記載のフィルム。 The film according to any one of claims 1 to 12, further comprising an adhesive layer formed on a back surface of the film body.
  14.  請求項1~13の何れか1項に記載のフィルムと、
     前記フィルムが貼り合わされた基材と、を備える、貼合体。
    A film according to any one of claims 1 to 13,
    A bonded body comprising: a substrate on which the film is bonded.
  15.  周面に複数の凸部が形成された円筒または円柱形状の原盤を準備するステップと、
     長尺な被転写フィルムをロールツーロールで搬送する一方で、前記原盤の周面形状を前記被転写フィルムに転写することで、フィルム本体を作製するステップと、
     前記フィルム本体の表面に形成された複数の凹部にフィラーを充填するステップと、を含み、
     前記凹部の開口面の直径は少なくとも可視光波長よりも大きく、
     前記フィルム本体の一方の端部における前記フィラーの充填率と、前記フィルム本体の他の部分における前記フィラーの充填率との差は0.5%未満である、フィラー充填フィルムの製造方法。
     
    Preparing a cylindrical or columnar master having a plurality of convex portions formed on the peripheral surface;
    While transporting a long transfer film by roll-to-roll, transferring the peripheral surface shape of the master to the transfer film, thereby producing a film body,
    Filling a plurality of recesses formed on the surface of the film body with a filler,
    The diameter of the opening surface of the recess is at least larger than the visible light wavelength,
    The method for producing a filler-filled film, wherein a difference between the filler filling rate at one end of the film body and the filler filling rate at the other part of the film body is less than 0.5%.
PCT/JP2015/080344 2014-10-28 2015-10-28 Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film WO2016068171A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010025666.8A CN111168984B (en) 2014-10-28 2015-10-28 Filler-filled film, sheet-like film, laminated film, bonded body, and method for producing filler-filled film
CN201580055666.XA CN106794622B (en) 2014-10-28 2015-10-28 Filler-filled film, sheet-like film, laminated film, bonded body, and method for producing filler-filled film
US15/523,212 US10065380B2 (en) 2014-10-28 2015-10-28 Filler-filled film, sheet film, stacked film, bonded body, and method for producing filler-filled film
KR1020177004495A KR101929692B1 (en) 2014-10-28 2015-10-28 Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-219784 2014-10-28
JP2014219784 2014-10-28
JP2015-209377 2015-10-23
JP2015209377A JP6756098B2 (en) 2014-10-28 2015-10-23 How to manufacture filler-filled film, sheet-fed film, laminated film, bonded film, and filler-filled film

Publications (1)

Publication Number Publication Date
WO2016068171A1 true WO2016068171A1 (en) 2016-05-06

Family

ID=55857506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080344 WO2016068171A1 (en) 2014-10-28 2015-10-28 Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film

Country Status (2)

Country Link
CN (3) CN114103279A (en)
WO (1) WO2016068171A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040671A (en) * 1973-08-17 1975-04-14
JPH05329437A (en) * 1992-05-27 1993-12-14 Dainippon Printing Co Ltd Production of decorative sheet
JP2000355048A (en) * 1999-06-16 2000-12-26 Dainippon Printing Co Ltd Production of polyolefin decorative material
JP2001239627A (en) * 2000-02-29 2001-09-04 Dainippon Printing Co Ltd Embossed decorative sheet
JP2011107405A (en) * 2009-11-17 2011-06-02 Sekisui Chem Co Ltd Viewing angle control sheet and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802214B2 (en) * 2005-06-13 2014-08-12 Trillion Science, Inc. Non-random array anisotropic conductive film (ACF) and manufacturing processes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040671A (en) * 1973-08-17 1975-04-14
JPH05329437A (en) * 1992-05-27 1993-12-14 Dainippon Printing Co Ltd Production of decorative sheet
JP2000355048A (en) * 1999-06-16 2000-12-26 Dainippon Printing Co Ltd Production of polyolefin decorative material
JP2001239627A (en) * 2000-02-29 2001-09-04 Dainippon Printing Co Ltd Embossed decorative sheet
JP2011107405A (en) * 2009-11-17 2011-06-02 Sekisui Chem Co Ltd Viewing angle control sheet and method of manufacturing the same

Also Published As

Publication number Publication date
CN111168984A (en) 2020-05-19
CN114083860A (en) 2022-02-25
CN114103279A (en) 2022-03-01
CN111168984B (en) 2023-01-17

Similar Documents

Publication Publication Date Title
TWI417181B (en) The manufacturing method of seamless mold
JP2022060302A (en) Embossed film, sheet film, transcript and method for producing embossed film
JP7360064B2 (en) Filler-filled film, sheet film, laminated film, laminate, and method for producing filler-filled film
KR101990722B1 (en) Method of manufacturing disc, disc and optical body
CN106536163B (en) Method for manufacturing master, transfer and copy master
CN111511516B (en) Master disk, transfer material, and method for manufacturing master disk
WO2016068171A1 (en) Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film
CN115298014A (en) Method for manufacturing master, transfer product, and article
WO2016068166A1 (en) Embossed film, sheet film, transfer material, and method for producing embossed film
WO2017086296A1 (en) Optical body, master, and method for manufacturing optical body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855030

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20177004495

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15523212

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15855030

Country of ref document: EP

Kind code of ref document: A1