WO2017029874A1 - 発光装置 - Google Patents
発光装置 Download PDFInfo
- Publication number
- WO2017029874A1 WO2017029874A1 PCT/JP2016/068148 JP2016068148W WO2017029874A1 WO 2017029874 A1 WO2017029874 A1 WO 2017029874A1 JP 2016068148 W JP2016068148 W JP 2016068148W WO 2017029874 A1 WO2017029874 A1 WO 2017029874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical system
- emitting device
- condensing
- laser
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4012—Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0009—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
- G02B19/0014—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0052—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
- G02B19/0057—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0916—Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0927—Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0972—Prisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02212—Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
Definitions
- the present invention relates to a light emitting device having a plurality of laser light sources.
- Patent Document 1 discloses a laser module that collimates divergent light emitted from a plurality of semiconductor laser elements with a collimator lens and collects the parallel light with a condenser lens.
- Patent Document 2 discloses a semiconductor laser device in which light emitted from a plurality of laser diodes is converted into parallel light by a collimator lens, and the parallel light is collected on an optical fiber by a condenser lens.
- CAN lasers in which a laser diode is inserted into a can-shaped metal to form a package, a configuration in which a plurality of laser diodes are inserted is being adopted for higher power.
- the optical axes of a plurality of semiconductor laser elements and laser diodes are arranged in parallel to the optical axis of the condenser lens. Therefore, even if the laser light emitted from these light sources is condensed by the condenser lens, there are a plurality of spots, or even if there is only one spot, the diameter is large and not sufficiently narrowed down. It was difficult to give a desired high intensity light to a small irradiation target.
- the present invention has an object to provide a light emitting device that can condense laser light emitted from a plurality of light sources into a spot having a predetermined diameter or less, thereby increasing the light intensity per unit area.
- a light emitting device of the present invention includes a light source unit having a plurality of laser light sources, a refractive optical system that refracts light incident from each of the plurality of laser light sources, and a light incident from the refractive optical system.
- a condensing optical system that condenses each of the plurality of refracted lights, and the refracting optical system includes a condensing optical system in which traveling directions of a plurality of central rays emitted along respective optical axes of the plurality of laser light sources are It is characterized by being refracted so that it goes away from the optical axis of a condensing optical system, so that it goes to the side.
- the refractive optical system has a plurality of inclined surfaces each having an inclination angle corresponding to each of the plurality of laser light sources.
- the refracted light can be emitted from the refractive optical system to the condensing optical system at a desired angle on an inclined surface corresponding to the arrangement of the plurality of laser light sources with respect to the optical axis of the condensing optical system. It can be focused on a small spot.
- the plurality of inclined surfaces are provided on at least one of the entrance surface and the exit surface of the refractive optical system.
- the refractive optical system is preferably a single optical component having a plurality of inclined surfaces.
- the plurality of inclined surfaces are provided on both the entrance surface and the exit surface of the refractive optical system, and the entrance surface and the exit surface from which light incident from the entrance surface exits are condensed. It is preferable to incline each other so that the distance from each other increases as the distance from the optical axis of the optical system increases.
- the optical axes of the plurality of laser light sources are parallel to the optical axis of the condensing optical system. Therefore, it becomes possible to arrange a plurality of laser light sources with the existing technology.
- the condensing optical system is preferably composed of a single condensing lens. Therefore, since the area
- the laser light emitted from a plurality of light sources can be condensed on a spot having a predetermined diameter or less, thereby increasing the light intensity per unit area.
- FIG. 1 It is a top view which shows the structure of the light-emitting device which concerns on 1st Embodiment of this invention. It is a front view which shows the structure of the light source part of the light-emitting device shown in FIG. It is a perspective view which shows the structure of the prism of the light-emitting device shown in FIG. It is a figure which shows the simulation model about the light-emitting device which concerns on Example 1 of 1st Embodiment. It is a figure which shows the simulation model about the light-emitting device which concerns on a comparative example.
- (A) is a diagram showing the simulation result at the model position P11 shown in FIG. 4
- (B) is a diagram showing the simulation result at the model position P12 shown in FIG.
- FIG. 4 is the model position P13 shown in FIG. It is a figure which shows the simulation result in.
- 5A is a diagram showing a simulation result at the model position P21 shown in FIG. 5
- FIG. 5B is a diagram showing a simulation result at the model position P22 shown in FIG. 5
- FIG. 5C is a model position P23 shown in FIG. It is a figure which shows the simulation result in.
- It is a front view which shows the structure of the light source part of the light-emitting device which concerns on 2nd Embodiment of this invention.
- (A) is a perspective view which shows the structure of the prism of the light-emitting device which concerns on 2nd Embodiment
- (B) is a top view of the prism shown to (A).
- FIG. 1 is a plan view showing a configuration of a light emitting device 10 according to the first embodiment.
- FIG. 2 is a front view illustrating the configuration of the light source unit 20 of the light emitting device 10.
- FIG. 3 is a perspective view illustrating a configuration of the prism 40 of the light emitting device 10.
- XYZ coordinates are shown as reference coordinates.
- the X1-X2 direction is a direction along the optical axis 30c of the condenser lens 30, and the YZ plane is a plane orthogonal to the X1-X2 direction.
- the light emitting device 10 includes a light source unit 20, a condensing lens 30 as a condensing optical system, and a prism 40 as a refractive optical system.
- the light source unit 20 two laser diodes 22 and 23 as laser light sources are joined to the stem 21.
- the stem 21 further includes a semiconductor chip (not shown) for driving the laser diodes 22 and 23 and a lead frame (not shown) for supporting the semiconductor chip, and a plurality of pieces connected to the lead frame.
- the terminal 24 extends outside through the stem 21 in the X2 direction.
- a hollow metal cap 25 is fixed to the stem 21 so as to cover the lead frame, the semiconductor chip, and the laser diodes 22 and 23. Resin is filled in the cap 25, thereby fixing the positions of the laser diodes 22 and 23.
- emission surfaces 22e and 23e are arranged on the surface of the cap 25 (tip surface in the X1 direction).
- the laser diodes 22 and 23 are arranged so that the respective optical axes 22 c and 23 c are parallel to the optical axis 30 c of the condenser lens 30.
- the condensing lens 30 as the condensing optical system is a biconvex positive lens.
- the condensing optical system is not limited to the biconvex positive lens as shown in FIG. 1, and may be a lens having any other shape as long as it has a positive refractive power.
- the optical system is not limited to a single lens, and may be an optical system having a light collecting performance by combining a plurality of lenses.
- the prism 40 has two refracting portions 44 and 45 arranged vertically in the Y1-Y2 direction.
- the refracting portions 44 and 45 have a shape that is symmetric with respect to the XZ plane.
- glass or plastic is used, and two refracting portions 44 and 45 are integrally formed.
- the first refracting portion 44 on the Y1 direction side has a trapezoidal shape that is symmetric when viewed from the Z1-Z2 direction, and includes two side surfaces 44c corresponding to the upper and lower bases of the trapezoid, respectively.
- Reference numerals 44d denote planes parallel to each other and extend in the XZ plane.
- the entrance surface 44a and the exit surface 44b, which correspond to the remaining two sides of the trapezoid, are planes having an inclination angle such that the distance from each other increases as the distance from the optical axis 30c of the condenser lens 30 increases. They are arranged in order from the light source unit 20 side in the X2 direction.
- an apex angle ⁇ is formed at the intersecting position when viewed from the Z1-Z2 direction (FIG. 1).
- the entrance surface 44a is inclined in the X2 direction with respect to the plane S1 parallel to the YZ plane
- the exit surface 44b is in the X1 direction with respect to the plane S2 parallel to the YZ plane. It is inclined, and each inclination angle is ⁇ .
- This inclination angle ⁇ is set according to the arrangement of the laser diode 22 with respect to the optical axis 30c of the condensing lens 30, the refractive index of the first refracting portion 44, the refractive power of the condensing lens 30, and the like in this embodiment.
- the angle ⁇ is 1 ⁇ 2.
- the second refracting portion 45 on the Y2 direction side of the prism 40 has a trapezoidal shape that is symmetric when viewed from the Z1-Z2 direction, and the two side surfaces 45c and 45d corresponding to the upper and lower bases of the trapezoid are respectively
- the planes are parallel to each other and extend in the XZ plane.
- the incident surface 45a and the exit surface 45b, which correspond to the remaining two sides of the trapezoid, are planes having an inclination angle such that the distance from each other increases as the distance from the optical axis 30c of the condenser lens 30 increases. They are arranged in order from the light source unit 20 side in the X2 direction.
- an apex angle ⁇ is formed at the intersecting position when viewed from the Z1-Z2 direction (FIG. 1). That is, the apex angle formed by the incident surface 45a and the exit surface 45b is the same as the apex angle formed by the incident surface 44a and the exit surface 44b.
- the incident surface 45a is inclined in the X2 direction with respect to the plane S1
- the exit surface 45b is inclined in the X1 direction with respect to the plane S2.
- the angle is ⁇ .
- inclination angles are set corresponding to the arrangement of the laser diode 23 with respect to the optical axis 30c of the condenser lens 30, the refractive index of the second refracting unit 45, the refractive power of the condenser lens 30, and the like. It is the same as the inclination angle of the entrance surface 44a and the exit surface 44b of the first refracting section 44.
- the prism 40 has a side surface 44d of the first refracting portion 44 and a side surface 45c of the second refracting portion 45 as a common surface, and this common surface is an XZ including the optical axis 30c of the condenser lens 30 as shown in FIG. Arranged in a plane. Thereby, the 1st refractive part 44 and the 2nd refractive part 45 are arrange
- the central ray 22a of the emitted light from the laser diode 22 is incident on the incident surface 44a in parallel with the optical axis 30c, and the central ray 23a of the emitted light from the laser diode 23 is also on the optical axis 30c.
- the light enters the incident surface 45a in parallel.
- the central ray 22a is refracted in the first refracting portion 44 according to the setting of the refractive index of the first refracting portion 44 and the inclination angle ⁇ of the incident surface 44a and the emitting surface 44b, and is emitted from the emitting surface 44b.
- the refracted light 42a emitted from the emission surface 44b travels away from the optical axis 30c of the condenser lens 30 toward the condenser lens 30 side.
- the central ray 23a is refracted in the second refracting portion 45 according to the refractive index of the second refracting portion 45 and the inclination angle ⁇ of the incident surface 45a and the emitting surface 45b and is emitted from the emitting surface 45b.
- the refracted light 43a emitted from the emission surface 45b travels away from the optical axis 30c of the condenser lens 30 toward the condenser lens 30 side. Accordingly, the refracted light 42a and the refracted light 43a travel away from each other toward the condenser lens 30 side.
- the refracted lights 42a and 43a emitted from the prism 40 are emitted from the condenser lens 30 as focused lights 32a and 33a, respectively.
- the focused light beams 32a and 33a overlap each other at the light condensing position PC to form a minute spot, and then form an image at the image forming position PI. Therefore, since a spot with a small diameter where the light intensity is increased due to the overlap of the two light beams is formed at the condensing position PC, the light intensity per unit area can be increased and the power can be increased at this position. It becomes.
- the light intensity of the spot formed at the condensing position PC is about twice that of the laser light emitted from each of the laser diodes 22 and 23.
- the condensing position PC is located behind the condensing lens 30 at the rear focal position PF, that is, at a position advanced in the X1 direction from the focal point on the image side.
- the light beam overlaps behind the rear focal position PF to form a spot. It will never be done. In this case, a part of the two light beams may overlap before the rear focal position PF, but the light beam at this position is not spot-like and the part where the light beams overlap. Since there is a portion that is not so, the light intensity per unit area is uneven, and the maximum value of the light intensity per unit area is about 1 to 1.5 times that when a single laser beam is used.
- FIG. 4 is a diagram illustrating a simulation model for the light emitting device according to Example 1 of the first embodiment
- FIG. 5 is a diagram illustrating a simulation model for the light emitting device according to the comparative example.
- 4 and 5 show a lens L corresponding to the condenser lens 30 in FIG. 1 and an optical path through which light emitted from two laser diodes travels from the left side to the right side.
- a prism D corresponding to the prism 40 of FIG. 1 is shown.
- 6A, 6B, and 6C are diagrams respectively showing simulation results at positions P11, P12, and P13 of the model of the first embodiment shown in FIG. FIGS.
- FIG. 7A, 7B, and 7C are diagrams respectively showing simulation results at positions P21, P22, and P23 of the model of the comparative example shown in FIG.
- the position P11 in FIG. 4 and the position P21 in FIG. 5 correspond to the rear focal position PF in FIG. 1
- the position P12 in FIG. 4 and the position P22 in FIG. 5 correspond to the condensing position PC in FIG.
- the position P13 in FIG. 4 and the position P23 in FIG. 5 correspond to the imaging position PI in FIG.
- Example 1 shown in FIG. 4 light B11 and B12 are emitted from two laser diodes under the following conditions.
- the light B21 and B22 are emitted from the two laser diodes, and the simulation is performed under the same conditions as in Example 1 except that the prism D is not provided.
- the output of the laser diode is 1 W (watt) in both Example 1 and the Comparative Example.
- Example 1 Each distance shown below is a distance in a direction along the axis Lc of the lens L, and an on-axis distance is a distance on the optical axis Lc.
- Example 1 As shown in FIG. 6B, a single spot is formed at the condensing position P12, the spot diameter is 0.15 mm, and the maximum value of light intensity per unit area (hereinafter referred to as Emax). Was 40000 W / cm 2 .
- Emax the maximum value of light intensity per unit area
- the Emax of the two light beams at the rear focal position P11 shown in FIG. 6A was 1700 W / cm 2 .
- FIG. 7B a single spot was not formed at the condensing position P22, and Emax of the two light beams at the condensing position P22 was 8000 W / cm 2 . .
- the Emax of the light beam at the rear focal position P21 shown in FIG. 7A was 1800 W / cm 2 .
- both the incident surface and the exit surface of the first refracting portion 44 and the second refracting portion 45 of the prism 40 are inclined surfaces, but a plurality of exits from the first refracting portion 44 and the second refracting portion 45 are used.
- Only one of the entrance surface and the exit surface may be an inclined surface as long as the distance of the incident light increases toward the condenser lens 30 side.
- the distance from each other increases as the plurality of exit lights from the first refracting unit 44 and the second refracting unit 45 move toward the condenser lens 30 side.
- the inclination angle may be made different between the entrance surface and the exit surface as long as it can be made to increase.
- the inclined surface may be an aspherical surface or a hemispherical curved surface instead of a flat surface, or only the incident region from the laser diodes 22 and 23 and the emission region from the prism 40 may be configured by a desired inclined surface or curved surface. Good.
- the light emitted from each laser diode is converted into the prism 40 according to the distance from the optical axis 30c of the condenser lens 30 in the Y1-Y2 direction.
- the angle of inclination of the inclined surface of the region incident on the light is made different so that the emitted light from the condensing lens 30 is condensed as a spot at the condensing position PC.
- laser diodes are arranged in series in directions other than the Y1-Y2 directions.
- the single prism 40 is used as the refractive optical system.
- the other configuration is adopted.
- it may be divided into an optical member into which the light emitted from the laser diode 22 is incident and an optical member into which the light emitted from the laser diode 23 is incident.
- the two laser diodes 22 and 23 are arranged so that the optical axes are parallel to each other. However, if a desired spot can be formed by the focused light emitted from the condensing lens 30, the laser can be used.
- the optical axes of the diodes 22 and 23 may be inclined by a certain angle with respect to the optical axis 30c of the condenser lens 30.
- the light emitting device has the following effects. (1) Since the light emitted from the laser diodes 22 and 23 is refracted using the prism 40, a plurality of convergent lights emitted from the condenser lens 30 can be overlapped and condensed into a small spot. Light with high light intensity can be obtained. (2) Since the first refracting portion 44 and the second refracting portion 45 have a symmetrical shape with respect to the XZ plane, the spots formed by the overlapping of the focused lights 32a and 33a emitted from the condenser lens 30 are smaller and more Since it approaches a circle, the light intensity can be further increased.
- the laser diodes 22 and 23, the condensing lens 30, and the like as in the light emitting device of the first embodiment
- the prism 40 as a refractive optical system between them
- a configuration in which the emitting directions of a plurality of laser diodes are inclined with respect to the optical axis 30c of the condenser lens 30 without using the refractive optical system is also conceivable.
- the light emitting device of the first embodiment uses the prism 40, the laser diodes 22 and 23 need only be arranged in parallel with each other. It can be focused at a precise position as a small spot.
- FIG. 8 is a front view illustrating the configuration of the light source unit 120 of the light emitting device according to the second embodiment.
- FIG. 9A is a perspective view showing the configuration of the prism 140 of the light emitting device according to the second embodiment
- FIG. 9B is a plan view of the prism 140 shown in FIG. In FIG. 9B, the central rays 123a and 125a and the refracted lights 143a and 145a are not shown.
- the second embodiment four laser diodes 122, 123, and 124 as laser light sources are placed so that the optical axis is placed on a circle 120c centered on the optical axis 30c of the condenser lens 30. , 125 are arranged, and these laser diodes are bonded to the stem 21.
- the optical axes of the laser diodes 122, 123, 124, and 125 are parallel to the optical axis 30c of the condenser lens 30 as in the first embodiment.
- a laser diode 122 is disposed on the Y1 direction side, a laser diode 123 is disposed on the Z1 direction side, a laser diode 124 is disposed on the Y2 direction side, and a laser diode 125 is disposed on the Z2 direction side with respect to the optical axis 30c.
- a prism 140 shown in FIGS. 9A and 9B is used as the refractive optical system in place of the prism 40 of the first embodiment.
- the prism 140 has an overall rectangular shape when viewed from the X1-X2 direction, and corresponds to the four laser diodes 122, 123, 124, and 125, respectively.
- Four refraction parts 142, 143, 144, and 145 are provided.
- the refraction part 142 is located on the Y1 direction side
- the refraction part 143 is located on the Z1 direction side
- the refraction part 144 is located on the Y2 direction side
- the refraction part 145 is located on the Z2 direction side, etc.
- the four refracting portions 142, 143, 144, and 145 are integrally formed using, for example, glass or plastic.
- the refracting parts 142, 143, 144, and 145 are arranged so that the light incident from the laser diodes 122, 123, 124, and 125 is incident on the X1-X2 direction from the light source part 120 side, and the incident light is refracted. And an exit surface that emits light.
- the entrance surface and the exit surface in the same refracting portion are planes having an inclination angle such that the distance from each other increases as the distance from the optical axis 30c of the condenser lens 30 increases. For example, as shown in FIG.
- the refracting portion 142 is provided with an incident surface 142b and an exit surface 142c
- the refracting portion 144 is provided with an entrance surface 144b and an exit surface 144c.
- the incident surface 142b is inclined to the X2 direction side with respect to the plane S3 parallel to the YZ plane
- the exit surface 142c is inclined to the X1 direction side with respect to the plane S4 parallel to the YZ plane.
- Each inclination angle is ⁇ .
- the incident surface 144b is inclined in the X2 direction side with respect to the plane S3, and the exit surface 144c is inclined in the X1 direction side with respect to the plane S4. ⁇ .
- Such a configuration is the same for the refraction portions 143 and 145.
- the light emitted from the laser diodes 122, 123, 124, and 125 (central rays 122a, 123a, 124a, and 125a) is incident on the refraction portions 142, 143, 144, and 145, respectively.
- the light is refracted and emitted to the condenser lens 30 side as refracted light 142a, 143a, 144a, 145a.
- the refracted light travels away from the optical axis 30c of the condensing lens 30 toward the condensing lens 30 side, enters the condensing lens 30, and the condensed light condensed by the condensing lens 30 is The light beams overlap at the condensing position PC to form a minute spot.
- the prism 140 has a rectangular shape when viewed from the X1-X2 direction. However, if the incident area from the laser diodes 122, 123, 124, and 125 and the exit area of the refracted light can be secured, for example, It may be circular. Other operations, effects, and modifications are the same as those in the first embodiment. Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.
- the light-emitting device can obtain a spot light beam having a high light intensity at a condensing position, and thus is useful for optical processing and illumination.
- Light-emitting device 20 Light source part 22a, 23a Center light beam 22c, 23c Optical axis 22e, 23e Output surface 22, 23 Laser diode 30 Condensing lens (condensing optical system) 30c Optical axis 32a, 33a Focused light 40 Prism (refractive optical system) 42a, 43a refracted light 44 first refracting portion 44a incident surface 44b exit surface 45 second refracting portion 45a incident surface 45b exit surface 120 light source portion 122, 123, 124, 125 laser diode 122a, 123a, 124a, 125a central ray 140 prism (Refractive optical system) 142, 143, 144, 145 refracting part 142a, 143a, 144a, 145a refracted light 142b, 144b incident surface 142c, 144c exit surface D prism (refractive optical system) L lens (condensing optical system) L
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
この構成により、集光光学系から出射する複数の集束光を重ねて小さなスポットに集光できるため、単位面積当たりの光強度の大きな光を得ることができる。
これにより、集光光学系の光軸に対する複数のレーザー光源の配置等に対応した傾斜面で所望の角度で、屈折光学系から集光光学系へ屈折光を出射できるため、複数の集束光を小さなスポットに集光させることができる。
これにより、屈折光学系の設計の自由度を高めることができ、また、屈折光学系の製造コストを低減させることが可能となる。
これにより、屈折光学系が占める領域を小さくすることができため、発光装置を小型化することが可能となる。
屈折光学系の入射面及び出射面の両方に傾斜面を設けることにより、各面における屈折の負担を小さく抑えることができ、設計や製造を行いやすい形状とすることができる。
これにより、既存の技術で複数のレーザー光源を配置することが可能となる。
これにより、集光光学系が占める領域を小さくすることができため、発光装置を小型化することが可能となる。
<第1実施形態>
図1は、第1実施形態に係る発光装置10の構成を示す平面図である。図2は発光装置10の光源部20の構成を示す正面図である。図3は、発光装置10のプリズム40の構成を示す斜視図である。各図には、基準座標としてX-Y-Z座標が示されている。X1-X2方向は集光レンズ30の光軸30cに沿った方向であり、Y-Z面はX1-X2方向と直交する面である。
光源部20においては、ステム21に対して、レーザー光源としての2つのレーザーダイオード22、23が接合されている。ステム21には、さらに、レーザーダイオード22、23の駆動のための半導体チップ(不図示)と、この半導体チップを支持するリードフレーム(不図示)とが配置され、リードフレームに接続された複数の端子24がステム21をX2方向へ貫通して外部へ延びている。ステム21には、リードフレーム、半導体チップ、及びレーザーダイオード22、23を覆うように、中空で金属製のキャップ25が固定されている。キャップ25内には樹脂が充填され、これによりレーザーダイオード22、23の位置が固定される。
また、中心光線23aは、第2屈折部45の屈折率、並びに、入射面45a及び出射面45bの傾斜角度αの設定にしたがって第2屈折部45内で屈折して出射面45bから出射される。出射面45bから出射された屈折光43aは、集光レンズ30側へ向かうほど集光レンズ30の光軸30cから遠ざかる方向に進行する。
したがって、屈折光42aと屈折光43aは集光レンズ30側へ向かうほど互いに遠ざかるように進行する。
図4は、第1実施形態の実施例1に係る発光装置についてのシミュレーションモデルを示す図であり、図5は、比較例に係る発光装置についてのシミュレーションモデルを示す図である。図4と図5は、図1の集光レンズ30に対応するレンズLと、2つのレーザーダイオードから出射された光が左側から右側へ進行する光路とを示している。図4においては、図1のプリズム40に対応するプリズムDが示されている。図6(A)、(B)、(C)は、図4に示す実施例1のモデルの位置P11、P12、P13におけるシミュレーション結果をそれぞれ示す図である。図7(A)、(B)、(C)は、図5に示す比較例のモデルの位置P21、P22、P23におけるシミュレーション結果をそれぞれ示す図である。ここで、図4の位置P11と図5の位置P21は、図1における後側焦点位置PFに対応し、図4の位置P12と図5の位置P22は、図1における集光位置PCに対応し、図4の位置P13と図5の位置P23は、図1における結像位置PIに対応する。
以下に示す各距離は、レンズLの軸Lcに沿った方向における距離であり、軸上距離は光軸Lc上における距離である。
<レーザーダイオードの特性>
発光位置:レンズLの光軸LcからY1方向に0.2mm、及び、Y2方向に0.2mm
発光角度:レンズLの光軸Lcに対して0度
発散角:レーザーダイオードの光軸を中心として±10度
材質:BK7(商品名、ホウケイ酸クラウンガラス、屈折率1.517、アッベ数64.2)
入射面及び出射面の傾斜角度α:10度
Z1-Z2方向の厚み(XY平面の中心部):0.9mm
レーザーダイオードの出射面からプリズムDの入射面r21までの距離:0.5mm
焦点距離:1.65mm
前面r1(光源側面)の曲率半径R:2.1
後面r2(像側面)の曲率半径R:1.8
レンズ厚:2.5mm
開口径:直径3.6mm
プリズムDの出射面r22からレンズLの前面r1までの軸上距離:1.4mm
レンズLの後面r2から結像位置P13までの軸上距離:5.0mm
実施例1では、図6(B)に示すように集光位置P12で単一のスポットが形成され、このスポット径が0.15mm、単位面積当たりの光強度の最大値(以下Emaxとする)は40000W/cm2であった。一方、図6(A)に示す後側焦点位置P11における2つの光束のEmaxは1700W/cm2であった。
これに対して、比較例では、図7(B)に示すように集光位置P22では単一のスポットは形成されず、集光位置P22における2つの光束のEmaxは8000W/cm2であった。また、図7(A)に示す後側焦点位置P21における光束のEmaxは1800W/cm2であった。
以上の結果より、レーザーダイオードからの出射光が直接レンズLに入射する比較例と比べて、レーザーダイオードとレンズLとの間にプリズムDを配置した実施例1では、集光位置P12において光束が重なって小さなスポットとなり、かつ、光強度が高くなっている。この光強度は、比較例の後側焦点位置P21における光強度よりも高くなっている。
上記実施形態では、プリズム40の第1屈折部44と第2屈折部45の入射面及び出射面の両方を傾斜面としていたが、第1屈折部44及び第2屈折部45からの複数の出射光が集光レンズ30側へ向かうほど互いの距離を大きくするように進行させることができれば、入射面及び出射面の一方のみを傾斜面としてもよい。また、入射面及び出射面の両方を傾斜面とする場合であっても、第1屈折部44及び第2屈折部45からの複数の出射光が集光レンズ30側へ向かうほど互いの距離を大きくするように進行させることができれば、傾斜角度を入射面と出射面とで異なるようにしてもよい。また、傾斜面は、平面ではなく、非球面や半球面曲面としてもよいし、レーザーダイオード22、23からの入射領域及びプリズム40からの出射領域のみを所望の傾斜面や曲面で構成してもよい。
(1)レーザーダイオード22、23からの出射光をプリズム40を用いてそれぞれ屈折させることによって、集光レンズ30から出射する複数の集束光を重ねて小さなスポットに集光できるため、単位面積当たりの光強度の大きな光を得ることができる。
(2)第1屈折部44と第2屈折部45をXZ平面に関して対称な形状にしたため、集光レンズ30から出射される集束光32a、33aが重なって形成されるスポットが、より小さく、より円形に近づくため、さらに光強度を高めることができる。
つづいて、本発明の第2実施形態について説明する。第2実施形態においては、レーザー光源としてのレーザーダイオードの数を4つとしている。以下の説明において、第1実施形態と同じ部材については同じ参照符号を使用する。
図8は、第2実施形態に係る発光装置の光源部120の構成を示す正面図である。図9(A)は、第2実施形態に係る発光装置のプリズム140の構成を示す斜視図、(B)は(A)に示すプリズム140の平面図である。図9(B)においては、中心光線123a、125a、屈折光143a、145aの図示を省略している。
なお、その他の作用、効果、変形例は第1実施形態と同様である。
本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。
20 光源部
22a、23a 中心光線
22c、23c 光軸
22e、23e 出射面
22、23 レーザーダイオード
30 集光レンズ(集光光学系)
30c 光軸
32a、33a 集束光
40 プリズム(屈折光学系)
42a、43a 屈折光
44 第1屈折部
44a 入射面
44b 出射面
45 第2屈折部
45a 入射面
45b 出射面
120 光源部
122、123、124、125 レーザーダイオード
122a、123a、124a、125a 中心光線
140 プリズム(屈折光学系)
142、143、144、145 屈折部
142a、143a、144a、145a 屈折光
142b、144b 入射面
142c、144c 出射面
D プリズム(屈折光学系)
L レンズ(集光光学系)
Lc 光軸
PF、P11、P21 後側焦点位置
PC、P12、P22 集光位置
PI、P13、P23 結像位置
r1 前面
r21 入射面
r2 後面
r22 出射面
Claims (7)
- 複数のレーザー光源を有する光源部と、
前記複数のレーザー光源のそれぞれから入射した光をそれぞれ屈折させる屈折光学系と、
前記屈折光学系から入射した複数の屈折光をそれぞれ集光させる集光光学系とを備え、
前記屈折光学系は、前記複数のレーザー光源のそれぞれの光軸に沿って出射される複数の中心光線の進行方向が、前記集光光学系側に進むほど前記集光光学系の光軸から遠ざかるように、それぞれ屈折させることを特徴とする発光装置。 - 前記屈折光学系は、前記複数のレーザー光源のそれぞれに対応する傾斜角度を備えた複数の傾斜面を有することを特徴とする請求項1に記載の発光装置。
- 前記複数の傾斜面は、前記屈折光学系の入射面及び出射面の少なくとも一方に設けられていることを特徴とする請求項2に記載の発光装置。
- 前記屈折光学系は、前記複数の傾斜面を有する単一の光学部品であることを特徴とする請求項2又は請求項3に記載の発光装置。
- 前記複数の傾斜面は、前記屈折光学系の入射面及び出射面の両方に設けられており、
前記入射面と、この入射面から入射した光が出射する前記出射面は、前記集光光学系の光軸から遠ざかるほど互いの距離が大きくなるようにそれぞれ傾斜していることを特徴とする請求項4に記載の発光装置。 - 前記複数のレーザー光源の光軸は、前記集光光学系の光軸とそれぞれ平行であることを特徴とする請求項1に記載の発光装置。
- 前記集光光学系は単一の集光レンズからなることを特徴とする請求項1から請求項6のいずれか1項に記載の発光装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017535274A JPWO2017029874A1 (ja) | 2015-08-18 | 2016-06-17 | 発光装置 |
CN201680041997.2A CN107851961A (zh) | 2015-08-18 | 2016-06-17 | 发光装置 |
KR1020187001999A KR20180019724A (ko) | 2015-08-18 | 2016-06-17 | 발광 장치 |
EP16836866.0A EP3340404A4 (en) | 2015-08-18 | 2016-06-17 | Light emitting device |
US15/791,544 US20180045969A1 (en) | 2015-08-18 | 2017-10-24 | Light-emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-161163 | 2015-08-18 | ||
JP2015161163 | 2015-08-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/791,544 Continuation US20180045969A1 (en) | 2015-08-18 | 2017-10-24 | Light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017029874A1 true WO2017029874A1 (ja) | 2017-02-23 |
Family
ID=58051126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068148 WO2017029874A1 (ja) | 2015-08-18 | 2016-06-17 | 発光装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180045969A1 (ja) |
EP (1) | EP3340404A4 (ja) |
JP (1) | JPWO2017029874A1 (ja) |
KR (1) | KR20180019724A (ja) |
CN (1) | CN107851961A (ja) |
WO (1) | WO2017029874A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190018168A1 (en) * | 2017-07-14 | 2019-01-17 | LIMO GmbH | Apparatus for Generating a Line-shaped Intensity Distribution of a Laser Radiation |
KR20190080411A (ko) * | 2017-12-28 | 2019-07-08 | (주) 유남옵틱스 | 라인빔 형성장치 |
WO2020008656A1 (ja) * | 2018-07-04 | 2020-01-09 | ウシオ電機株式会社 | 光源装置、プロジェクタ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11231569B2 (en) * | 2018-06-13 | 2022-01-25 | Panasonic Corporation | Light-emitting device and illumination device |
CN114859640B (zh) * | 2022-05-09 | 2024-07-19 | 无锡视美乐激光显示科技有限公司 | 一种光整形系统、光源装置以及光源装置的设计方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001284730A (ja) * | 2000-03-31 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 集光レーザ装置 |
JP2009054325A (ja) * | 2007-08-23 | 2009-03-12 | Mitsubishi Electric Corp | 照明用光源装置および画像表示装置 |
JP2009103529A (ja) * | 2007-10-22 | 2009-05-14 | Denso Corp | レーザビーム照射装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6556352B2 (en) * | 2000-08-23 | 2003-04-29 | Apollo Instruments Inc. | Optical coupling system |
DE102004058044B4 (de) * | 2004-12-01 | 2014-02-06 | Friedrich-Schiller-Universität Jena | Ortsfrequenzfiltervorrichtung und Verfahren zur Ortsfrequenzfilterung von Laserstrahlen |
US7515346B2 (en) * | 2006-07-18 | 2009-04-07 | Coherent, Inc. | High power and high brightness diode-laser array for material processing applications |
US7639722B1 (en) * | 2007-10-29 | 2009-12-29 | The United States Of America As Represented By The Secretary Of The Air Force | Multifaceted prism to cause the overlap of beams from a stack of diode laser bars |
DE102009010693A1 (de) * | 2009-02-26 | 2010-09-02 | Limo Patentverwaltung Gmbh & Co. Kg | Vorrichtung zur Homogenisierung von Laserstrahlung |
-
2016
- 2016-06-17 KR KR1020187001999A patent/KR20180019724A/ko not_active Application Discontinuation
- 2016-06-17 EP EP16836866.0A patent/EP3340404A4/en not_active Withdrawn
- 2016-06-17 JP JP2017535274A patent/JPWO2017029874A1/ja not_active Withdrawn
- 2016-06-17 WO PCT/JP2016/068148 patent/WO2017029874A1/ja active Application Filing
- 2016-06-17 CN CN201680041997.2A patent/CN107851961A/zh active Pending
-
2017
- 2017-10-24 US US15/791,544 patent/US20180045969A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001284730A (ja) * | 2000-03-31 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 集光レーザ装置 |
JP2009054325A (ja) * | 2007-08-23 | 2009-03-12 | Mitsubishi Electric Corp | 照明用光源装置および画像表示装置 |
JP2009103529A (ja) * | 2007-10-22 | 2009-05-14 | Denso Corp | レーザビーム照射装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3340404A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190018168A1 (en) * | 2017-07-14 | 2019-01-17 | LIMO GmbH | Apparatus for Generating a Line-shaped Intensity Distribution of a Laser Radiation |
US11105961B2 (en) * | 2017-07-14 | 2021-08-31 | Limo Display Gmbh | Apparatus for generating a line-shaped intensity distribution of a laser radiation |
KR20190080411A (ko) * | 2017-12-28 | 2019-07-08 | (주) 유남옵틱스 | 라인빔 형성장치 |
KR102130645B1 (ko) * | 2017-12-28 | 2020-07-06 | (주)유남옵틱스 | 라인빔 형성장치 |
WO2020008656A1 (ja) * | 2018-07-04 | 2020-01-09 | ウシオ電機株式会社 | 光源装置、プロジェクタ |
JP2020009843A (ja) * | 2018-07-04 | 2020-01-16 | ウシオ電機株式会社 | 光源装置、プロジェクタ |
Also Published As
Publication number | Publication date |
---|---|
EP3340404A1 (en) | 2018-06-27 |
EP3340404A4 (en) | 2018-07-18 |
KR20180019724A (ko) | 2018-02-26 |
CN107851961A (zh) | 2018-03-27 |
US20180045969A1 (en) | 2018-02-15 |
JPWO2017029874A1 (ja) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017029874A1 (ja) | 発光装置 | |
US7110183B2 (en) | Device for the optical beam transformation of a linear arrangement of several light sources | |
US6443594B1 (en) | One-piece lens arrays for collimating and focusing light and led light generators using same | |
KR101616635B1 (ko) | 레이저 합성 광학 장치 | |
JP2017162799A (ja) | 光源のサブマトリックスを備えた光ビーム投影デバイス、当該デバイスを備えた照明およびヘッドライトモジュール | |
US9753268B2 (en) | Reticle unit, optical instrument, and rifle scope | |
JP2012195064A5 (ja) | ||
JP6490432B2 (ja) | 照明装置 | |
JP6222557B2 (ja) | 車両用灯具 | |
JP2012099409A (ja) | 照明用レンズ | |
US8736966B2 (en) | Light source device having laser devices with stem and cap | |
US20170235150A1 (en) | Device for Shaping Laser Radiation | |
US20080084612A1 (en) | Apparatus for generating a homogeneous angular distribution of laser irradiation | |
JP2020535598A (ja) | 区分されたマイクロ入射光学系を有するマイクロ光学系システムを備えた自動車照射装置 | |
US10790423B2 (en) | Light-emitting diode with light redirecting structure | |
JP2011076092A (ja) | レーザビームを形成するための装置 | |
WO2020116084A1 (ja) | 光源ユニット、照明装置、加工装置及び偏向素子 | |
JP6482015B2 (ja) | レーザレーダ装置およびレーザレーダ装置の受光装置 | |
US7035014B2 (en) | Device for collimating light emanating from a laser light source and beam transformer for said arrangement | |
WO2018225438A1 (ja) | レンズ | |
EP3444635A1 (en) | Receiver unit for a laser scanner device, laser scanner device, vehicle and method for capturing light | |
JP2007185707A (ja) | 光溶着用光学ユニットおよび光溶着装置 | |
JP2016119135A (ja) | 発光装置 | |
CN116125736A (zh) | 投影系统及其制造方法 | |
JP5430510B2 (ja) | レーザ加工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16836866 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017535274 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187001999 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016836866 Country of ref document: EP |