WO2017028746A1 - 无线通信系统中的装置和方法 - Google Patents

无线通信系统中的装置和方法 Download PDF

Info

Publication number
WO2017028746A1
WO2017028746A1 PCT/CN2016/094856 CN2016094856W WO2017028746A1 WO 2017028746 A1 WO2017028746 A1 WO 2017028746A1 CN 2016094856 W CN2016094856 W CN 2016094856W WO 2017028746 A1 WO2017028746 A1 WO 2017028746A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
power signal
signal portion
power
allocation
Prior art date
Application number
PCT/CN2016/094856
Other languages
English (en)
French (fr)
Inventor
陈晋辉
郭欣
孙晨
Original Assignee
索尼公司
陈晋辉
郭欣
孙晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 陈晋辉, 郭欣, 孙晨 filed Critical 索尼公司
Priority to US15/743,312 priority Critical patent/US10177880B2/en
Priority to JP2018507691A priority patent/JP6927195B2/ja
Priority to KR1020187006849A priority patent/KR102623277B1/ko
Priority to EP16836610.2A priority patent/EP3337071B1/en
Publication of WO2017028746A1 publication Critical patent/WO2017028746A1/zh
Priority to US16/190,169 priority patent/US10615919B2/en
Priority to US16/798,441 priority patent/US10944513B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to an interference signal in multiple transmissions in a wireless communication system that solves Multi-User Superposition Transmission (MUST) to effectively improve data reception rate. And a device and method in a wireless communication system that superimposes the throughput of the transmission.
  • MUST Multi-User Superposition Transmission
  • the base station superimposes the data streams of different users after allocating different transmission powers according to the user channel, and the user equipment end uses, for example, a serial interference cancellation mechanism to eliminate the interference from other user equipments. Interference, extracting its own target data stream from the received superimposed data stream. If the target data stream fails to be extracted, the user equipment notifies the base station that the base station will simply retransmit the data stream. If the retransmission is still a superimposed transmission, there will still be interference from other users in the retransmitted data stream.
  • the interference signal power may also be enhanced, thereby causing extraction by retransmission.
  • the likelihood of a target data stream is reduced.
  • an apparatus in a wireless communication system comprising: a transmitting unit configured to transmit using a superposition coding synthesis to a plurality of user equipments including at least a first user equipment and a second user equipment a first allocation signal, the first allocation signal comprising at least a first power signal portion for the first user equipment and a second power signal portion for the second user equipment; the receiving unit configured to receive the first user equipment and At least one feedback retransmission request in the second user equipment; and a processing unit configured to process the first power signal portion and the second power signal portion with a predetermined processing coefficient to obtain a second allocation in response to the retransmission request a signal, wherein the transmitting unit is further configured to send a second allocation signal to the first user equipment and the second user equipment, and the first user equipment and the second user equipment combine the first allocation signal and the second allocation signal to respectively Data for the first user device and data for the second user device are obtained.
  • one of the first power signal portion and the second power signal portion is attenuated or cancelled in the combined first and second distribution signals.
  • the processing unit is further configured to adjust a transmit power of at least one of the first power signal portion and the second power signal portion to obtain a second distribution signal.
  • the transmitting unit is further configured to send a merge indication indicating how to perform the merge operation to the first user equipment and the second user equipment, respectively, to be merged by the first user equipment and the second user equipment according to the merge Instructing to merge the first distribution signal and the second distribution signal.
  • the merge indication is included in higher layer signaling or physical layer signaling.
  • the merging indication is to perform a merging operation to enhance the higher power signal portion of the first power signal portion and the second power signal portion.
  • the merging indication is to perform a merging operation to enhance respective power signal portions of the first power signal portion and the second power signal portion for the first user equipment and the second user equipment, respectively.
  • the predetermined processing coefficient is determined based on a Hadamard matrix of.
  • an apparatus in a wireless communication system comprising: a receiving unit configured to receive a first allocation signal from a base station, wherein the first allocation signal is synthesized using superposition coding And including at least a first power signal portion for the first user equipment and a second power signal portion for the second user equipment; the processing unit configured to derive data for the first user equipment based on the first allocation signal; and transmitting a unit configured to send a retransmission request to the base station if the processing unit does not obtain data for the first user equipment according to the first allocation signal, wherein the receiving unit is further configured to receive the second allocation signal from the base station, The second allocation signal is obtained by the base station processing the first power signal portion and the second power signal portion with a predetermined processing coefficient in response to a retransmission request of at least one of the first user equipment and the second user equipment, and Wherein the processing unit is further configured to pair the first distribution signal and the second distribution signal They are combined to obtain the data for the first user device
  • an apparatus in a wireless communication system comprising: a receiving unit configured to receive a first allocation signal, the first allocation signal comprising at least a first user equipment and a second user a first power signal portion and a second power signal portion transmitted by the device on the same first wireless transmission resource; the processing unit configured to obtain data from the first user equipment and the second user equipment according to the first allocation signal; And a sending unit configured to send to the first user equipment and the second user equipment if the processing unit fails to obtain data from at least one of the first user equipment and the second user equipment according to the first allocation signal a retransmission request, wherein the receiving unit is further configured to receive a second allocation signal, the second allocation signal including at least a first user equipment and a second user equipment transmitting on the same second wireless transmission resource in response to the retransmission request a third power signal portion and a fourth power signal portion, a third power signal portion and a fourth power signal portion Obtained by processing the first power signal portion and the second power signal
  • an apparatus in a wireless communication system comprising: a transmitting unit configured to transmit a wireless transmission of a second power signal portion with a second user equipment at a first transmit power a first power signal portion is transmitted to the base station on the first wireless transmission resource having the same resource; the receiving unit is configured to receive a retransmission request from the base station; and the processing unit is configured Processing the first power signal portion with a predetermined processing coefficient to obtain a third power signal portion in response to the retransmission request, wherein the transmitting unit is further configured to transmit the fourth power with the second user equipment at the third transmit power Transmitting, on the second wireless transmission resource with the same radio transmission resource of the signal part, a third power signal part to the base station, where the fourth power signal part is that the second user equipment processes the second power signal part with a predetermined processing coefficient in response to the retransmission request And got it.
  • a method in a wireless communication system comprising: a transmitting step of transmitting a usage overlay code to a plurality of user equipments including at least a first user equipment and a second user equipment a first distribution signal, the first distribution signal comprising at least a first power signal portion for the first user equipment and a second power signal portion for the second user equipment; and a receiving step for receiving the first user equipment and the At least one feedback retransmission request in the two user equipments; and processing steps for processing the first power signal portion and the second power signal portion with a predetermined processing coefficient to obtain a second allocation signal in response to the retransmission request,
  • the second allocation signal is further sent to the first user equipment and the second user equipment, and the first user equipment and the second user equipment combine the first allocation signal and the second allocation signal to obtain respectively Data of the first user device and data for the second user device.
  • a method in a wireless communication system comprising: a receiving step of receiving a first allocation signal from a base station, wherein the first allocation signal is synthesized using superposition coding And comprising at least a first power signal portion for the first user equipment and a second power signal portion for the second user equipment; processing steps for obtaining data for the first user equipment based on the first allocation signal; and transmitting step And configured to send a retransmission request to the base station if the data for the first user equipment is not obtained according to the first allocation signal, where the second allocation signal from the base station is further received in the receiving step, where the second allocation signal is a base station Obtained in response to a retransmission request of at least one of the first user equipment and the second user equipment, processing the first power signal portion and the second power signal portion with a predetermined processing coefficient, and wherein, in the processing step Merging the first distribution signal and the second distribution signal to obtain a first user equipment It is.
  • a method in a wireless communication system comprising: a receiving step of receiving a first allocation signal, the first allocation signal comprising at least a first user equipment and a second user equipment a first power signal portion and a second power signal portion transmitted on the same first wireless transmission resource; and processing steps for obtaining respectively from the first user according to the first allocation signal Data of the device and the second user equipment; and a transmitting step of, to the first user equipment and, if the data from at least one of the first user equipment and the second user equipment is not successfully obtained according to the first allocation signal
  • the second user equipment sends a retransmission request, where the second allocation signal is further received in the receiving step, the second allocation signal includes at least the first user equipment and the second user equipment are in the same second radio transmission resource in response to the retransmission request
  • the third power signal portion and the fourth power signal portion transmitted, the third power signal portion and the fourth power signal portion are obtained by processing the first power signal portion and the second power signal portion with predetermined processing coefficient
  • a method in a wireless communication system comprising: a transmitting step of transmitting, at a first transmit power, a wireless transmission resource of a second power signal portion with a second user equipment Transmitting, by the first wireless transmission resource, a first power signal portion to the base station; receiving a step of receiving a retransmission request from the base station; and processing step of, in response to the retransmission request, the first power signal with a predetermined processing coefficient Partially processing to obtain a third power signal portion, wherein, in the transmitting step, transmitting to the base station on the second wireless transmission resource that is the same as the wireless transmission resource of the fourth user signal portion transmitted by the second user equipment The third power signal portion, the fourth power signal portion, is obtained by the second user equipment processing the second power signal portion with a predetermined processing coefficient in response to the retransmission request.
  • an electronic device can include a transceiver and one or more processors, the one or more processors can be configured to perform the wireless communication described above in accordance with the present disclosure The method in the system or the function of the corresponding unit.
  • the data reception rate and the throughput of the multi-stream superimposed transmission can be improved.
  • FIG. 1 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to another embodiment of the present disclosure
  • FIG. 3 is a flowchart showing an example of a signaling interaction procedure for downlink transmission of an embodiment of the present disclosure
  • FIG. 4 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to still another embodiment of the present disclosure
  • FIG. 5 is a block diagram showing a functional configuration example of a device in a wireless communication system according to still another embodiment of the present disclosure
  • FIG. 6 is a flowchart illustrating an example of a signaling interaction procedure for uplink transmission, according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart illustrating a process example of a method in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart illustrating a process example of a method in a wireless communication system according to another embodiment of the present disclosure.
  • FIG. 9 is a flowchart illustrating a process example of a method in a wireless communication system according to still another embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating a process example of a method in a wireless communication system according to still another embodiment of the present disclosure.
  • FIG. 11 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in an embodiment of the present disclosure
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an evolved base station (eNB) to which the technology of the present disclosure may be applied;
  • eNB evolved base station
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure.
  • the transmitter can use the same transmission resource to communicate with multiple receivers.
  • the current downlink multi-user overlay transmission can support the base station to simultaneously send multiple data streams to more than one user equipment without using different time, frequency or multi-antenna technologies for distinguishing.
  • the radio transmitter Tx communicates with the first receiver Rx1 via the first physical communication link L1 and the radio transmitter Tx communicates with the receiver Rx2 via the second communication link L2.
  • the radio conditions are weaker for the first receiver/link (eg, the location is farther from the transmitting end) and stronger for the second receiver/link (eg, the location is closer to the transmitting end) (this may be the case) It is temporary because radio conditions are constantly changing, especially for mobile stations.
  • the signal to interference and noise ratio SINR and carrier interference C/I ratio of the first receiver is lower (or much lower) than the corresponding SINR and C/I ratio of the second transmitter.
  • the transmitters Tx of the relative radio conditions of the two receivers can proportionally allocate their power budget between the two receivers for a particular time slot and a particular carrier frequency, such that it is intended for the second receiver Rx2 (compared to The second data block of the receiver under strong radio conditions transmits the first data block intended for the first receiver Rx1 (the receiver under weaker radio conditions) with higher power than the second data block.
  • the transmitter Tx may use sufficient power for the intended first receiver Rx1 A block of data to allow the first receiver Rx1 to decode the block.
  • the transmitter Tx may then use less power for the second data block intended for the second receiver Rx2, but still sufficient for the second receiver Rx2 to be used to cancel or reduce the transmission caused by the first data block.
  • the interference cancellation of the interference is to decode the second data block.
  • the transmitter Tx then transmits the two data blocks on the same carrier frequency and at the same time. Therefore, the two data blocks can be considered to "collide". Since the first data block is transmitted with a power allocation higher than the second data block, the second data block is only presented to the first receiver Rx1 as noise or interference increase. If the power offset between the transmissions of the two data blocks is sufficiently high, the SINR degradation at the first receiver Rx1 may be small and even insignificant.
  • the first receiver Rx1 should be able to decode the first data block.
  • the second receiver Rx2 should also be able to decode the first data block because the second receiver Rx2 receives the first data block with an SINR better than the first receiver Rx1 due to the stronger radio conditions of the second receiver Rx2 To.
  • the second receiver Rx2 can process it as interference and use known interference cancellation techniques from the overall signal received during the period in which the two data blocks were received. Eliminate this interference.
  • the residual signal represents a second block of data combined with noise and interference originating from other sources. If the second data block is transmitted with sufficient power (but at a lower power than the first data block) with respect to the transmission rate of the second data block and the radio condition of the second receiver Rx2, the second receiver Rx2 should be able to decode the second data block Two data blocks.
  • this method can be extended to three or more receivers.
  • the maximum power allocation can be used to transmit to the receiver in the weakest radio condition
  • the minimum power allocation can be used to transmit to the receiver in the strongest radio condition
  • the intermediate power can be allocated For use Receiver in intermediate radio conditions.
  • the receiver in the strongest radio condition can then decode the data block intended for the receiver in the weakest radio condition, remove the decoded block from the received signal, and decode the receiver intended for use in the intermediate radio condition.
  • the data block, the second decoded block is eliminated, and finally the data block intended for itself is decoded (this decoding/cancellation process may be referred to as progressive interference cancellation).
  • a receiver in an intermediate radio condition can also decode a block of data intended for a receiver in the weakest radio condition, remove it from the received signal, and then decode the block of data intended for itself.
  • a receiver in the weakest radio condition may be able to directly decode a block of data intended for it because this block of data is transmitted at the highest power level. It will be appreciated that those skilled in the art will be able to extend the progressive interference cancellation technique to four or more receivers without additional experimentation or further inventive work.
  • the receiver may be a mobile station, such as a user equipment, and the transmitter may be a base transceiver station, such as an eNB, such as a data packet, a transport block.
  • retransmission problems such as hybrid automatic repeat request (HARQ) are required when applying them to an actual communication system.
  • HARQ hybrid automatic repeat request
  • the receiver can send a corresponding retransmission request to the transmitter.
  • the superimposed data block (the data block that cannot be decoded in the initial transmission) is simply retransmitted as the above-described superimposition coding technique, it is transmitted by the data block relative to other receivers during the retransmission process.
  • the resulting interference is also enhanced, so even if the transmitter performs signal retransmission, the receiver (even if it is tracked and merged with the previously transmitted data block) may still be unable to decode the corresponding data block.
  • the technique according to the present disclosure is made to solve signal retransmission in superimposed coded transmission, and embodiments of the present disclosure will be specifically described below.
  • the receiver may be a base transceiver station, such as an eNB
  • the multiple transmitters may be mobile stations, such as user equipment.
  • FIG. 1 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to an embodiment of the present disclosure.
  • the device may for example be included in the base station or may be located on the base station side.
  • the apparatus 100 may include a transmitting unit 102, a receiving unit 104, and a processing unit 106. Functional configuration examples of the respective units will be described in detail below.
  • the sending unit 102 can be configured to include at least a first user device and a second user device
  • the user equipments transmit a first allocation signal synthesized using superposition coding, the first allocation signal comprising at least a first power signal portion for the first user equipment and a second power signal portion for the second user equipment.
  • the base station sends a signal synthesized by using the superposition coding to the two user equipments of the first user equipment and the second user equipment as an example, but it should be understood that the base station can simultaneously provide three or more user equipments.
  • the signal synthesized using the superposition coding is transmitted, and the technique of the present disclosure also applies to this case.
  • the first power signal portion herein refers to a signal portion carrying a first user equipment target data block transmitted to the first user equipment, for example, the first power
  • the second power signal portion refers to, for example, the second power to the second.
  • the first power may be greater than the second power or may be less than the second power according to the radio conditions of the first user equipment and the second user equipment.
  • the receiving unit 104 can be configured to receive a retransmission request from at least one of the first user equipment and the second user equipment. In case at least one of the first user equipment and the second user equipment does not decode the respective data according to the first allocation signal, at least one of the first user equipment and the second user equipment may send a retransmission request to the base station , request a signal retransmission.
  • Processing unit 106 can be configured to process the first power signal portion and the second power signal portion with a predetermined processing coefficient to obtain a second distribution signal in response to the retransmission request.
  • the sending unit 102 may be further configured to send a second allocation signal to the first user equipment and the second user equipment to combine the first allocation signal and the second allocation signal by the first user equipment and the second user equipment to Data for the first user device and data for the second user device are obtained separately.
  • the base station is described herein to simultaneously transmit a retransmission signal to both the first user equipment and the second user equipment in the retransmission, the present invention also intends to provide that the base station only re-applies to the user equipment that issues the retransmission request.
  • An example of sending its signal For convenience of description, the case where the base station transmits a retransmission signal to all devices after receiving the retransmission request is described as an example, and the base station only transmits the signal to the user equipment that issues the retransmission request.
  • a special case of the case where the power signal portion of the user equipment that does not transmit the retransmission request is 0 in the retransmission signal is not described separately here.
  • the example of the present invention performs specific processing at the time of retransmission but still uses the same transmission resource to retransmit the first and second user equipments by using the superposition coding, thereby greatly improving resource utilization efficiency and ensuring a certain degree of weight.
  • the success rate of transmission, this performance gain will become more apparent in the case of more user equipment participating in the overlay transmission.
  • one of the first power signal portion and the second power signal portion is attenuated or cancelled in the combined first and second distribution signals.
  • the apparatus 100 adjusts the signal portion for the first user equipment and the signal portion for the second user equipment on the same transmission resource before performing the retransmission of the superposition coding.
  • the interaction relationship for example, if the signal portion for the first user equipment and the signal portion for the second user equipment are transmitted on the same transmission resource in the previous transmission in the last transmission, then in this retransmission, the device 100, after the signal part of the first user equipment is subtracted from the signal part for the second user equipment, and transmitted on the same retransmission resource, then the received signal is merged on the receiving user equipment end. That is, the signal portion for other user equipment that can be implemented as interference is weakened.
  • the predetermined processing coefficient may be determined based on a Hadamard matrix.
  • the predetermined processing coefficient may be referred to as a "layer time code matrix", the horizontal dimension of the matrix represents the maximum number of retransmissions, and the vertical dimension represents the number of data streams (corresponding to user equipment),
  • the layer time code matrix can be expressed, for example, as follows:
  • the wireless channel in which the first user equipment is located is weak (eg, located far away), the wireless channel in which the second user equipment is located is strong (eg, relatively close).
  • the Hadamard matrix A used by the base station with a layer time code matrix of 2 ⁇ (R + 1) (wherein R +1 represents the maximum number of transmissions) can be obtained by repeating a 2 ⁇ 2 Walsh matrix.
  • the first row of the matrix includes predetermined coefficients for the first user equipment for each number of retransmissions
  • the second row of the matrix includes predetermined coefficients for the second user equipment for each retransmission number. It is assumed that the downlink channels between the base station and the first and second user equipments are h F,0 and h N,0 respectively when the initial transmission is performed.
  • the power allocated by the base station to the data block transmissions of the two user equipments according to the attenuation of h F,0 and h N,0 is p F,0 and p N,0 ,p F,0 >p N,0 .
  • n F, 0 is additive noise when the first user equipment first receives.
  • n N,0 is the additive noise when the first user equipment first receives.
  • the first user equipment will receive the second power signal portion after receiving x 0 Considered as part of the noise, demodulate and self-check y F,0 according to h F,0 and p F (eg, by cyclic redundancy check CRC).
  • the second user equipment After receiving the x 0 , the second user equipment first demodulates and self-tests according to h N,0 and p F to y N,0 to obtain b F , and then recovers the interference signal according to b F Then remove the interference signal in y N,0 use Demodulation and self-test are performed according to h N,0 and p N,0 .
  • the base station If the first and second user equipment self-test data blocks are received correctly, the base station is notified to transmit the corresponding next data block, for example, the first and second user equipments respectively send a 1-bit acknowledgement (ACK) to the base station through the respective uplink channels. )information. After transmitting the data block, the base station waits for the user equipment to confirm the data block of the transmission, and performs the next data block transmission after receiving the confirmation.
  • ACK 1-bit acknowledgement
  • the base station may be notified to perform data block retransmission, for example, the first and/or the second user equipment pass the respective uplink channel.
  • One bit of non-acknowledgement (NACK) information is transmitted to the base station as a retransmission request.
  • the base station After receiving the retransmission request, the base station optionally re-distributes the powers of the data blocks of the two user equipments according to the attenuation of the downlink channels h F,1 and h N,1 as p F,1 and p N respectively.
  • the device 100 may, for example, generate a complete layer time code matrix in advance, and associate each row with the data stream of each user equipment, and each column corresponds to each retransmission number, under the corresponding number of retransmissions.
  • the predetermined coefficients contained in the corresponding columns are taken out therefrom to conveniently process the data streams of the respective user equipments.
  • the apparatus 100 may also process only the current number of retransmissions and the user equipment involved in the retransmission to generate corresponding coefficients in real time.
  • the signal received by the first user equipment for the first retransmission (second transmission) can be characterized as:
  • h F,1 is the channel when the first user equipment retransmits for the first time
  • n F,1 is the additive noise when the first user equipment retransmits for the first time
  • h N,1 is the channel when the second user equipment retransmits for the first time
  • n N,1 is the additive noise when the second user equipment retransmits for the first time
  • the time interval between the retransmission and the last transmission is very small, and the channel conditions of the base station to the first and second user equipments can be ignored, and the transmission power used for the two transmissions remains unchanged.
  • the first user equipment is based on two
  • the y F,0 and y F,1 received in the secondary downlink data transmission are forward merged, and the forward combined signals are:
  • the signal portion with respect to the second user equipment is eliminated, and the signal portion with respect to the first user equipment is enhanced, so that the first user equipment can decode its target data block.
  • the second user equipment performs negative merge on y N,0 and y N,1 respectively received in the two downlink data transmissions, and the signals after the negative merge are:
  • y N y N,0 -y N,1
  • the signal portion with respect to the first user equipment is eliminated, and the signal portion with respect to the second user equipment is enhanced, so that the second user equipment can decode its target data block.
  • the first user equipment performs y F,0 and y F,1 respectively received based on the two downlink data transmissions as follows:
  • the forward merge, the signal after the forward merge is:
  • y F,0 and y F,1 are multiplied by specific parameters before being merged in the forward direction. These specific parameters help to use mathematical means to enhance d F in the case of channel and power changes. Decrease d N . It can be understood that those skilled in the art can also design other specific parameters according to the idea of the present invention to pre-process the y F,0 and y F,1 before the combination to achieve the same purpose, for example, removing the part of the above formula about power, The invention is not mentioned in this example. Then, the first user equipment demodulates and self-tests the yF to obtain the target data stream bF.
  • the second user equipment first performs negative merge based on y N,0 and y N,1 , and the signal after the negative merge is
  • d N is enhanced and the interference power of d F is weakened.
  • the second user equipment y 'N demodulate the self-test, attempts to obtain the target data stream b N.
  • the second user equipment may also perform forward combining based on y N,0 and y N,1 , and the forward combined signal is
  • the second user equipment demodulates and self-tests y" N to obtain b F , and then removes the interference signal in y ' N Demodulation and self-test of d N are performed to obtain b N .
  • the second user equipment also can do first combined to give the positive y "N and b N obtained according to the above-described decoding method, in the case of not re-do successfully decoded combined to give a negative y 'N b N further decoding.
  • the base station not only notifies the allocated power of the first user equipment DF but also the allocated power of the second user equipment signal portion d N .
  • the first user equipment performs an enhanced merge of d F based on y F,0 and y F,1 to eliminate d N interference,
  • d F is enhanced and the interference of d N is eliminated.
  • the first user equipment then demodulates and self-tests y F to obtain a target data stream b F .
  • the second user equipment first performs a negative merge based on y N,0 and y N,1 to eliminate d F interference and enhance d N :
  • d N is enhanced, and the interference power of d F is eliminated.
  • the second user equipment y 'N demodulate the self-test, attempts to obtain the target data stream b N.
  • the forward combining is performed based on y N,0 and y N,1 to eliminate d N interference and enhance d F , and the forward combined signal is:
  • d F is enhanced, and the interference of d N is eliminated.
  • the second user equipment performs negative merge based on y N, 0 and y N, 1 , and the signal after the negative merge is
  • the second user equipment demodulates and self-tests y" N to obtain b F , and then removes the interference signal in y '" N Demodulation and self-test of d N are performed.
  • the first and second user equipments know the transmit powers p F and p N , for example, the base station indicates the transmit power p F to the first and second user equipments via control signaling.
  • the user equipment may estimate the channels h F and h N according to, for example, a cell-specific reference signal (CRS), a channel state indication-reference signal (CSI-RS), thereby solving corresponding data b F or b N .
  • CRS cell-specific reference signal
  • CSI-RS channel state indication-reference signal
  • the base station can only send the data block for the first user equipment according to the predetermined coefficient next time (for example, P will be N, 1 is set to 0), the first user equipment may attempt to re-send the retransmission alone, according to the corresponding layer time code [A (0, 0), A (0, 1)]
  • the signals received twice before and after are forward merged. Since the signal portion of the first user equipment is enhanced in the combined signal, the possibility that the first user equipment decodes its data is greatly improved.
  • the base station can also simultaneously transmit data blocks for the first user equipment and the second user equipment as in the above manner, and eliminate the interference signal portion by the above combining manner.
  • the base station can only send the data block for the second user equipment according to the predetermined coefficient for the next time, the second user.
  • the device may perform negative merge on the signals received twice before and after according to the layer time code [A(1,0), A(1,1)] corresponding to the retransmission failure of the retransmission. Since the signal portion of the second user equipment is enhanced in the combined signal, the likelihood that the second user equipment decodes its data is greatly improved.
  • the base station can also simultaneously transmit data blocks for the first user equipment and the second user equipment as in the above manner, and eliminate the interference signal portion by the above combining manner.
  • the base station may simultaneously transmit the data blocks for the first user equipment and the second user equipment in the same manner as described above, and adopt the foregoing combining manner. To eliminate the interference signal part.
  • the user equipment may have a plurality of combined decoding schemes.
  • the second user equipment in the previous paragraph can also perform forward combining on the signals received twice before and after to eliminate d N , and back up the target data d N after decoding d F first, or combine these in a specific order.
  • the decoding scheme is executed step by step, and will not be enumerated here for the sake of brevity.
  • the above retransmission process can be repeated to the maximum limit of user data retransmission. If the demodulation still fails, the transmission is declared to be aborted and the transmission is abandoned.
  • the limitation of the number of data retransmissions can be configured by the base station, for example, by the base station, and is indicated by signaling to each user equipment.
  • the present invention can apply the maxHARQ-Tx maximum retransmission times configured by Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • the matrix elements of the layer time code matrix determined based on the Hadamard matrix are 1 or -1, the elements herein may also be other elements than 1 or -1. As long as it can be realized in the combined signal, one of the first power signal portion and the second power signal portion is weakened or cancelled.
  • the addition or subtraction of the forward or negative merge operation is performed at the first user device and the second user device, respectively, but it is also possible to The device performs an addition or subtraction of the forward or negative merge operation, so that the data corresponding to the first power signal portion or the second power signal portion can be decoded first, and then the data corresponding to the other power signal portion is derived accordingly. .
  • the processing unit 106 may be further configured to adjust the transmit power of at least one of the first power signal portion and the second power signal portion to obtain a second distribution signal.
  • the processing unit 106 may be heavy Transmitting further increases the transmit power of the first power signal portion and correspondingly reduces the transmit power of the second power signal portion, such that the first user equipment and the second user equipment can be based on the first distribution signal and the second distribution signal
  • the combined signal first decodes the data corresponding to the first power signal portion, and then derives the data corresponding to the second power signal portion by nonlinear interference cancellation such as serial interference cancellation.
  • the transmitting unit 102 may be further configured to send a merge indication to the first user equipment and the second user equipment indicating how to perform the merge operation, respectively, to be first by the first user equipment and the second user equipment according to the merge indication
  • the distribution signal and the second distribution signal are combined.
  • the sending unit 102 may notify the user equipment by including the merge indication in high layer signaling (eg, RRC signaling, MAC layer signaling, etc.), and the merge indication may include the layer time code described above.
  • the predetermined processing coefficient adopted by the first user equipment and the second user equipment for the current transmission base station may be notified by physical layer signaling (for example, downlink control information DCI) or the like. Add or subtract merge operations, etc.
  • the merge indication is included in the physical layer signaling
  • the signaling can be transmitted through a Physical Downlink Control Channel (PDCCH), and in this case has better time variation.
  • PDCCH Physical Downlink Control Channel
  • the base station side and the user equipment side For example, the knowledge of the layer time code matrix is shared in advance, and the first row in the code matrix of the layer corresponds to the retransmission processing coefficient of the remote user equipment, and the second row corresponds to the retransmission of the closer user equipment.
  • the processing coefficient in this example, the memory of the user equipment pre-stores the layer time code matrix, and the user equipment can determine whether it is farther or closer, for example according to the transmission power of the two user equipments indicated by the base station respectively.
  • the user equipment (larger power, smaller power) is used to read the corresponding predetermined coefficients in the layer time code matrix for the merge operation.
  • the merging indication may be to perform a merging operation to enhance the higher power signal portion of the first power signal portion and the second power signal portion. That is, as described above, for the first power signal portion described above And the second power signal portion If the first power signal portion is greater than the second power signal portion, the merge indication may be to the first allocation signal at the first user equipment and the second user equipment And second distribution signal Performing an addition and combining operation to enhance the first power signal portion, so that the data corresponding to the first power signal portion can be decoded first at the first user equipment and the second user equipment, and then pushed out by, for example, serial interference cancellation. The data corresponding to the second power signal portion.
  • the merge indication may be to first allocate signals at the first user equipment and the second user equipment.
  • second distribution signal Performing a subtraction combining operation to enhance the second power signal portion, so that the data corresponding to the second power signal portion can be decoded first at the first user equipment and the second user equipment, and then pushed out by, for example, serial interference cancellation.
  • the data corresponding to the first power signal portion may be to first allocate signals at the first user equipment and the second user equipment.
  • the merge indication may be a performing merge operation to enhance the power signal portions of the first power signal portion and the second power signal portion for the first user equipment and the second user equipment, respectively. That is, the base station may instruct the first user equipment and the second user equipment to perform respective combining operations, respectively, to enhance the power signal portion corresponding to the respective target data block.
  • the merge indication may be optional. That is, the base station may not send a merge indication to the user equipment, and the user equipment may perform a default merge operation according to the general situation (for example, adding and combining operations) If the corresponding data cannot be decoded according to the default merge operation, the subtraction merge operation can be performed again. In other words, the user equipment can also decide for itself how to perform the merge operation. In this way, signaling overhead can be reduced.
  • FIG. 2 is a block diagram showing a functional configuration example of a device on the user device side in a wireless communication system according to another embodiment of the present disclosure.
  • the device may be located in the user equipment or may be located on the user equipment side.
  • the apparatus 200 may include a receiving unit 202, a processing unit 204, and a transmitting unit 206. Functional configuration examples of the respective units will be described in detail below.
  • the receiving unit 202 can be configured to receive a first allocation signal from the base station, wherein the first allocation signal is synthesized using superposition coding and includes at least a first power signal portion for the first user equipment and a second user equipment unit Two power signal parts.
  • Processing unit 204 can be configured to derive data for the first user device based on the first allocation signal. Specifically, for example, the processing unit 204 may obtain data for the first user equipment from the first distribution signal by de-interference reception, demodulation, self-test, and the like.
  • the processing unit 204 may not correctly decode the corresponding data according to the first allocation signal.
  • the transmitting unit 206 can be configured to send a retransmission request to the base station if the processing unit 204 does not obtain data for the first user equipment according to the first allocation signal, so that the base station can send the first user equipment The second distribution signal.
  • the receiving unit 202 can be further configured to receive a second allocation signal from the base station, the second allocation signal being a retransmission request by the base station in response to at least one of the first user equipment and the second user equipment, with a predetermined processing coefficient pair
  • the first power signal portion and the second power signal portion are processed to obtain.
  • For the specific process of obtaining the second distribution signal refer to the description of the corresponding position above, which is not repeated here.
  • the processing unit 204 may be further configured to combine the first distribution signal and the second distribution signal to attenuate or cancel one of the first power signal portion and the second power signal portion of the combined signal, thereby Obtain data for the first user device.
  • the processing unit 204 may directly decode the data corresponding to the first power signal portion by performing a merging operation to attenuate or eliminate the second power signal portion, or may also decode the first one by performing a merging operation.
  • a higher power signal portion e.g., a second power signal portion
  • indirectly obtaining data corresponding to the first power signal portion by nonlinear interference cancellation such as serial interference cancellation based on the result of the combining.
  • the processing unit 204 may be further configured to combine the first distribution signal and the second distribution signal to enhance the higher power signal portion of the first power signal portion and the second power signal portion to decode the comparison first After the data corresponding to the high power signal portion, the data corresponding to the lower power signal portion is derived by nonlinear interference cancellation such as serial interference cancellation.
  • nonlinear interference cancellation such as serial interference cancellation.
  • processing unit 204 may be further configured to combine the first allocation signal and the second allocation signal to enhance the first power signal portion for the first user equipment.
  • similar processing can be performed on the second user equipment side. That is, the processing unit 204 of the user equipment can decide for itself how to perform the merging operation to enhance the power signal portion corresponding to the target data block of the user equipment, so that the desired target data can be directly obtained.
  • the receiving unit 206 may further receive a merge indication from the base station, such that the processing unit 204 may further apply the first allocation signal and the first according to the merge indication.
  • the second allocation signal performs a corresponding merge operation (eg, addition or subtraction merge).
  • the merge indication may be included, for example, in higher layer signaling (eg, RRC signaling, MAC layer signaling, etc.) or physical layer signaling (eg, DCI).
  • the merge indication may not necessarily be different for each user equipment, respectively, but the merge indication may also be to perform a merge operation to enhance higher power in the first power signal portion and the second power signal portion. The signal portion or the portion of the power signal corresponding to the target data block of each user equipment is enhanced.
  • the processing unit 204 may be further configured to estimate the channel state (here h0) based on the CRS or CSI-RS from the base station, and based on the transmit power and channel state To solve the corresponding data.
  • FIG. 3 is a flowchart illustrating an example of a signaling interaction procedure for downlink transmission, according to an embodiment of the present disclosure.
  • step S31 the base station first defines a layer time code matrix according to the number of data streams and the maximum number of retransmissions. Then, in step S32, the base station indicates to the user equipment its corresponding data stream sequence number. Next, in step S33, the base station determines the layer time code parameter used for the transmission of the data block according to the retransmission sequence number and the data stream sequence number, and uses the parameter to weight the modulated data block. For the initial transmission, the retransmission sequence number can be defined as 0. Then, in step S34, the base station calculates the transmission power of each data block, performs power adjustment on the weighted data block, and superimposes the power-adjusted data block in step S35.
  • step S36 the base station transmits the superimposed signal to the user equipment.
  • the user equipment After receiving the superimposed signal, the user equipment performs demodulation and de-interference sequencing on the received data block in step S37, performs serial interference cancellation demodulation, and performs CRC self-test on the demodulated data in step S38. .
  • step S39 when there is more than one retransmission, for the data block that is not correctly demodulated, the user equipment performs linear combination based on the principle that the received power is positively superimposed according to the layer time code corresponding thereto, and performs The crosstalk interference cancels the demodulation and self-test, and transmits the self-test result to the base station in step S310.
  • step S311 if the base station determines that the data block needs to be retransmitted, the base station increments the corresponding retransmission sequence number, and repeatedly performs steps S33 to S310 to retransmit the data block; otherwise, the base station resets the retransmission sequence number to 0, and repeats the steps. S33 to S310, and send a new data block.
  • the above signaling interaction process is merely an example and not a limitation. According to the above description with reference to FIG. 1 and FIG. 2, the above signaling interaction process may be modified. For example, the process of performing transmission power adjustment on the data block in step S34 is optional, so this step can be omitted.
  • the step of transmitting a merge indication by the base station to the user equipment may also be added, so that the user equipment does not always perform the forward merge operation and demodulates the signal by nonlinear interference cancellation as in step S39, but may according to the merge indication A corresponding forward or negative merge operation is performed to cancel or attenuate the interfering signal portion, thereby demodulating the corresponding data signal.
  • the pre-processing coefficients are defined here in the form of a layer time code matrix
  • the base station side may not pre-define the layer time code matrix, but process the retransmission signal according to the actual reception condition.
  • the base station side may not pre-define the layer time code matrix, but process the retransmission signal according to the actual reception condition.
  • the device may be located in the base station or may be located on the base station side.
  • the apparatus 400 may include a receiving unit 402, a processing unit 404, and a transmitting unit 406. Functional configuration examples of the respective units will be described in detail below.
  • the receiving unit 402 can be configured to receive a first allocation signal, the first allocation signal including at least a first power signal portion and a second power signal transmitted by the first user equipment and the second user equipment on the same first wireless transmission resource section. Specifically, the first user equipment and the second user equipment send respective signals to the base station on the same time-frequency resource, so that the first allocation signal received at the base station end is equivalent to the superposition of signals from the two user equipments. .
  • Processing unit 404 can be configured to derive data from the first user device and data from the second user device, respectively, based on the first distribution signal.
  • the processing unit 404 may not be able to correctly resolve data from the first user equipment and the second user equipment based solely on the first allocation signal. Accordingly, the transmitting unit 406 can be configured to, when the processing unit 404 does not successfully obtain data from at least one of the first user device and the second user device according to the first allocation signal, to the first user device and the second user The device sends a retransmission request.
  • the base station may not send a retransmission request to the user equipment, so that the power signal portion from the user equipment is 0 in the retransmission.
  • the possibility of successfully demodulating data from another user equipment is also small, so it is usually required to simultaneously transmit to both user equipments.
  • the request is retransmitted, but the case where a retransmission request is sent only to one of the user devices is not excluded.
  • the base station sends a retransmission request to both user equipments as an example, but the case where the retransmission request is not sent to one of the user equipments is equivalent to the power from the user equipment in the retransmission.
  • the signal portion is a special case of 0, which will not be described separately here.
  • the receiving unit 402 can further receive the second allocation signal, the second allocation signal can include at least the first user equipment and the second user equipment in the same second wireless transmission in response to the retransmission request
  • the third power signal portion and the fourth power signal portion transmitted on the resource, the third power signal portion and the fourth power signal portion are obtained by processing the first power signal portion and the second power signal portion with predetermined processing coefficients.
  • the corresponding third power signal portion or fourth power signal portion may be zero.
  • Processing unit 404 can then combine the first allocation signal and the second allocation signal to obtain data from the first user device and the second user device, respectively.
  • the first power signal portion and the third power signal portion cancel or weaken each other, or the second power signal portion and the fourth power signal portion cancel or weaken each other .
  • the downlink transmission is basically the same, and will not be described here.
  • processing unit 404 can further perform nonlinear interference cancellation based on the combined results.
  • data from one of the first user equipment and the second user equipment is solved by the merging operation as described above, data from another user equipment can be derived by, for example, serial interference cancellation.
  • the respective transmit powers of the first power signal portion, the second power signal portion, the third power signal portion, and the fourth power signal portion are respectively determined by the processing unit 404 of the base station according to the current radio condition, and are transmitted by the transmitting unit 406 to The first user equipment and the second user equipment send a power indication to notify the first user equipment and the second user equipment of the determined transmission power, so that the first user equipment and the second user equipment may send the first A power signal portion, a second power signal portion, a third power signal portion, and a fourth power signal portion.
  • the transmit power may also be predetermined without the need for the base station to determine, such that the user equipment may utilize the predetermined transmit power to transmit its data to the base station.
  • the processing unit 404 can be further configured to determine the first wireless transmission resource and the second wireless transmission resource
  • the transmitting unit 406 can be further configured to send the resource indication to the first user equipment and the second user equipment to The first wireless transmission resource and the second wireless transmission resource are indicated.
  • the first user equipment and the second user equipment may also transmit respective data on predetermined wireless transmission resources without determining by the base station.
  • processing unit 404 can be further configured to determine a predetermined processing coefficient and send a single The element 406 can transmit the determined predetermined processing coefficient to the first user equipment and the second user equipment, such that the first user equipment and the second user equipment respectively perform the first power signal portion and the second power signal portion with predetermined processing coefficients. Processing to obtain a third power signal portion and a fourth power signal portion.
  • the predetermined processing coefficient may also be predetermined, without determining the base station.
  • the foregoing power indication, resource indication, and predetermined processing coefficients may be included in an uplink grant signaling (UL grant) sent by the base station through the PDCCH.
  • UL grant uplink grant signaling
  • FIG. 5 is a block diagram showing a functional configuration example of an apparatus in a wireless communication system according to still another embodiment of the present disclosure.
  • the device can be located in the user device or on the user device side.
  • the apparatus 500 may include a transmitting unit 502, a receiving unit 504, and a processing unit 506. Functional configuration examples of the respective units will be described in detail below.
  • the transmitting unit 502 can be configured to transmit, at the first transmit power, a first power signal portion to the base station on a first wireless transmission resource that is the same as the wireless transmission resource of the second user equipment that transmits the second power signal portion, where the second user equipment
  • the second power signal portion can be transmitted at the second transmit power.
  • the signal received at the base station is equivalent to a composite signal in which the first power signal portion and the second power signal portion are superimposed.
  • Receiving unit 504 can be configured to receive a retransmission request from a base station.
  • the base station side does not successfully obtain data from at least one of the first user equipment and the second user equipment according to the above superimposed composite signal, the base station may send a retransmission request to the first user equipment and the second user equipment.
  • Processing unit 506 can be configured to process the first power signal portion with a predetermined processing coefficient to obtain a third power signal portion in response to the retransmission request.
  • the second user equipment can also process the second power signal portion with a predetermined processing coefficient to obtain a fourth power signal portion in response to the retransmission request.
  • the sending unit 504 may be further configured to send, at the third transmit power, a third power signal part to the base station on the second wireless transmission resource that is the same as the wireless transmission resource of the fourth user equipment part to send the fourth power signal part, thereby the base station may
  • the interference signal portion from other user equipment is eliminated by combining the two transmitted signals. That is, after combining at the base station, the first power signal portion and the third power signal portion are weakened or canceled each other, or the second power signal portion and the fourth power signal portion are weakened or canceled each other.
  • the power of the user equipment for transmitting the data signal, the wireless transmission resource for transmitting the data signal, and the predetermined processing coefficient for processing the retransmission signal may be determined by the base station, and the first transmission power and the third
  • the transmit power may be included in a power indication from the base station
  • the first radio transmission resource and the second radio transmission resource may be included in a resource indication from the base station
  • the power indication, the resource indication, and the predetermined processing coefficient may all be included at the base station In the uplink grant signaling of the PDCCH transmission.
  • FIG. 6 is a flowchart illustrating an example of a signaling interaction procedure for uplink transmission, according to an embodiment of the present disclosure.
  • step S61 the base station pre-defines a layer time code matrix. Then, in step S62, the base station indicates to the user equipment the data stream sequence number corresponding thereto. In step S63, the base station calculates the transmission power of each user equipment to transmit its data block, and instructs the user equipment to its corresponding transmission power in step S64. In step S65, the user equipment determines the layer time code parameter used for the data block transmission according to the retransmission sequence number and the data stream sequence number, and weights the modulated data block using the layer time code parameter. For the initial transmission, the retransmission sequence number can be 0.
  • step S66 the user equipment performs power adjustment on the weighted data block according to the transmission power indication from the base station, and transmits the data block to the base station in step S67.
  • step S68 the base station performs demodulation and de-interference sequencing on the received data block, performs serial interference cancellation demodulation, and performs self-test on the demodulated data in step S69.
  • step S610 when there is more than one retransmission, for the data block that is not correctly demodulated, the base station may perform linear combination according to the corresponding layer time code parameter and the principle of positive superposition based on the received power, and Perform serial interference cancellation demodulation.
  • step S611 if the base station determines that the data block needs to be retransmitted, the base station increments the corresponding retransmission sequence number, and repeatedly performs steps S63 to S610, the user equipment retransmits the data block; otherwise, the base station resets the retransmission sequence number to 0. Steps S63 to S610 are repeatedly performed, and the user equipment transmits a new data block.
  • the above signaling interaction process is merely an example and not a limitation, and a person skilled in the art may modify the signaling interaction process according to the principles of the present disclosure.
  • the processing in step S63 is optional, and the transmission power used by the user equipment for data block transmission may also be predetermined.
  • a forward or negative merge operation may be performed according to actual needs to reduce the calculation load.
  • those skilled in the art can of course think of other variants of the above-mentioned signaling interaction process according to the principles of the present disclosure, which are not enumerated here, and such modifications are considered to fall within the scope of the present disclosure.
  • embodiments of the present disclosure also provide methods in a wireless communication system.
  • An example of the procedure of the method in the wireless communication system according to an embodiment of the present disclosure will be described in detail below with reference to FIGS. 7 through 10, respectively.
  • FIG. 7 is a flowchart illustrating a process example of a method in a wireless communication system, according to an embodiment of the present disclosure. This method can be performed on the base station side.
  • the method according to this embodiment may include transmitting step S702, receiving step S704, and processing step S706.
  • the processing in each step will be described in detail below.
  • the first allocation signal synthesized using the superposition coding may be transmitted to the plurality of user equipments including at least the first user equipment and the second user equipment, where the first allocation signal includes at least the first user equipment a first power signal portion and a second power signal portion for the second user equipment.
  • the transmission power of the first power signal portion may be greater or smaller than the transmission power of the second power signal portion.
  • At least one of the first user equipment and the second user equipment fails to obtain respective data according to the first allocation signal, at least one of the first user equipment and the second user equipment sends a retransmission request to the base station, Send the signal again with the request.
  • receiving step S704 it can receive from A retransmission request fed back by at least one of the first user equipment and the second user equipment.
  • the first power signal portion and the second power signal portion may be processed with a predetermined processing coefficient to obtain a second distribution signal in response to the retransmission request.
  • the predetermined processing coefficient may be determined based on a Hadamard matrix, that is, the predetermined processing coefficient may be the above-mentioned "layer time code matrix".
  • the second allocation signal may be further sent to the first user equipment and the second user equipment in the transmitting step S702, so that the first user equipment and the second user equipment may The received first distribution signal and second distribution signal respectively obtain respective data.
  • one of the first power signal portion and the second power signal portion is attenuated or eliminated, so that the data can be greatly reduced when demodulating from another The interference of one user equipment, so that the possibility of successfully demodulating the corresponding data is greatly improved.
  • FIG. 8 is a flowchart illustrating a process example of a method in a wireless communication system according to another embodiment of the present disclosure. This method can be performed on the user equipment side.
  • the method according to this embodiment may include receiving step S802, processing step S804, and transmitting step S806.
  • the processing in each step will be described in detail below.
  • a first allocation signal from a base station may be received, the first allocation signal being synthesized using superposition coding and comprising at least a first power signal portion for the first user equipment and a second for the second user equipment Power signal section.
  • process step S804 data for the first user equipment may be obtained according to the first allocation signal.
  • a retransmission request may be transmitted to the base station without obtaining data for the first user equipment according to the first allocation signal.
  • the base station may resend the data for the user equipment only to the user equipment that sends the retransmission request, or may resend the superimposed code to the two user equipments at the same time. Synthesize the signal.
  • the second allocation signal from the base station is further received, where the second allocation signal is a retransmission request sent by the base station in response to at least one of the first user equipment and the second user equipment, with a predetermined processing coefficient pair A power signal portion and a second power signal portion are processed to obtain. It should be understood that in the case where the base station retransmits data only to the user equipment that issued the retransmission request, the portion of the second allocation signal related to another user equipment may be regarded as zero.
  • the first allocation signal and the second allocation signal may be combined to obtain data for the first user equipment. Likewise, similar processing can be performed on the second user equipment side to obtain data for the second user equipment.
  • the method described above with reference to FIG. 7 and FIG. 8 is a method performed on the base station side and the user equipment side, respectively, in the case of downlink transmission, and a method performed on the base station side and the user equipment side in the case of uplink transmission, respectively, will be described below.
  • FIG. 9 is a flowchart illustrating a process example of a method in a wireless communication system according to still another embodiment of the present disclosure. This method can be performed on the base station side.
  • the method according to this embodiment may include receiving step S902, processing step S904, and transmitting step S906.
  • the processing in each step will be described in detail below.
  • a first allocation signal may be received, where the first allocation signal includes at least a first power signal portion and a second power signal transmitted by the first user equipment and the second user equipment on the same first radio transmission resource. section. Since the first user equipment and the second user equipment transmit respective data to the base station on the same time-frequency resource, the signal received at the base station is equivalent to superimposing and encoding the data from the two user equipments. data.
  • process step S904 data from the first user equipment and the second user equipment may be obtained according to the first allocation signal.
  • the transmitting step S906 if the data from at least one of the first user equipment and the second user equipment is not successfully obtained according to the first allocation signal, retransmission is sent to the first user equipment and the second user equipment. request.
  • the base station sends a retransmission request to both user equipments, and the base station can only treat the retransmission request to the user equipment that has not demodulated its data.
  • a special case of the case where the retransmission data of the device is 0.
  • the first user equipment and the second user equipment may again transmit their data to the base station on the same time-frequency resource.
  • a second allocation signal is further received, the second allocation signal comprising at least a third power signal portion of the first user equipment and the second user equipment transmitting on the same second wireless transmission resource in response to the retransmission request
  • the fourth power signal portion, the third power signal portion and the fourth power signal portion are obtained by processing the first power signal portion and the second power signal portion with predetermined processing coefficients.
  • the predetermined processing coefficient may be predetermined, or may be notified to the user equipment after the base station determines.
  • the first allocation signal and the second allocation signal may be combined to obtain data from the first user equipment and the second user equipment, respectively.
  • FIG. 10 is a flowchart illustrating a process example of a method in a wireless communication system according to still another embodiment of the present disclosure. This method can be performed on the user equipment side.
  • the method according to this embodiment may include transmitting step S1002, receiving step S1004, and processing step S1006.
  • the processing in each step will be described in detail below.
  • the first power signal portion may be transmitted to the base station on the first radio transmission resource that is the same as the radio transmission resource of the second user signal portion transmitted by the second user equipment with the first transmission power. That is, the first user equipment and the second user equipment transmit respective data to the base station on the same time-frequency resource.
  • a retransmission request from the base station can be received.
  • the first power signal portion may be processed with a predetermined processing coefficient in response to the retransmission request to obtain a third power signal portion.
  • the second power signal portion may also be processed with a predetermined processing coefficient in response to the retransmission request to obtain a fourth power signal portion.
  • the third power signal portion may be transmitted to the base station on the second radio transmission resource that is the same as the radio transmission resource of the fourth user signal portion transmitted by the second user equipment with the third transmission power. That is, the first user equipment and the second user equipment are on the same time-frequency resource.
  • the secondary base station transmits respective third power signal portions and fourth power signal portions, such that the base station can eliminate or attenuate interference from other user equipment by combining the signals transmitted multiple times to successfully demodulate the corresponding User data.
  • the transmit power used by each user equipment for transmitting signals, the wireless transmission resources used, and the predetermined processing coefficients used may be determined at the base station end and notified to the user equipment by the base station, for example, via uplink grant signaling.
  • successful demodulation can be enabled by processing the retransmission signal in the superimposed transmission to attenuate or eliminate interference due to transmission with respect to other user equipments.
  • the possibility of corresponding data is greatly improved, and at the same time, the throughput of the overlay transmission method can be improved.
  • an electronic device which can include a transceiver and one or more processors, the one or more processors can be configured to perform the implementations described above in accordance with the present disclosure The method in the wireless communication system or the function of the corresponding unit.
  • machine-executable instructions in the storage medium and the program product according to the embodiments of the present disclosure may also be configured to perform the method corresponding to the apparatus embodiment described above, and thus the content not described in detail herein may refer to the previous corresponding The description of the location will not be repeated here.
  • a storage medium for carrying the above-described program product including machine-executable instructions is also included in the disclosure of the present invention.
  • the storage medium includes but is not limited to a floppy disk, an optical disk, a magneto-optical disk, and a storage Cards, memory sticks, and more.
  • the series of processes and devices described above can also be implemented in software and/or firmware.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1100 shown in FIG. 11, which is installed with various programs.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1100 shown in FIG. 11, which is installed with various programs.
  • FIG. 11 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in an embodiment of the present disclosure.
  • a central processing unit (CPU) 1101 executes various processes in accordance with a program stored in a read only memory (ROM) 1102 or a program loaded from a storage portion 1108 to a random access memory (RAM) 1103.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1101 executes various processes and the like is also stored as needed.
  • the CPU 1101, the ROM 1102, and the RAM 1103 are connected to each other via a bus 1104.
  • Input/output interface 1105 is also coupled to bus 1104.
  • the following components are connected to the input/output interface 1105: an input portion 1106 including a keyboard, a mouse, etc.; an output portion 1107 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage portion 1108 , including a hard disk or the like; and a communication portion 1109 including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1109 performs communication processing via a network such as the Internet.
  • the drive 1110 is also connected to the input/output interface 1105 as needed.
  • a removable medium 1111 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1110 as needed, so that a computer program read therefrom is installed into the storage portion 1108 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the detachable medium 1111.
  • such a storage medium is not limited to the removable medium 1111 shown in FIG. 11 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the detachable medium 1111 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1102, a hard disk included in the storage portion 1108, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1200 includes one or more antennas 1210 and base station devices 1220.
  • the base station device 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • Each of the antennas 1210 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1220 to transmit and receive wireless signals.
  • the eNB 1200 can include multiple antennas 1210.
  • multiple antennas 1210 can be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 12 illustrates an example in which the eNB 1200 includes multiple antennas 1210, the eNB 1200 may also include a single antenna 1210.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1223, and a wireless communication interface 1225.
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1220. For example, controller 1221 generates data packets based on data in signals processed by wireless communication interface 1225 and communicates the generated packets via network interface 1223. The controller 1221 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1221 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1222 includes a RAM and a ROM, and stores programs executed by the controller 1221 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1223 is a communication interface for connecting base station device 1220 to core network 1224. Controller 1221 can communicate with a core network node or another eNB via network interface 1223. In this case, the eNB 1200 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1223 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1223 is a wireless communication interface, network interface 1223 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1225.
  • Wireless communication interface 1225 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE- Advanced) and providing a wireless connection to a terminal located in a cell of eNB 1200 via antenna 1210.
  • Wireless communication interface 1225 may typically include, for example, baseband (BB) processor 1226 and RF circuitry 1227.
  • the BB processor 1226 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1226 may have some or all of the above described logic functions.
  • the BB processor 1226 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 1226 to change.
  • the module can be a card or blade that is inserted into the slot of the base station device 1220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1210.
  • the wireless communication interface 1225 can include a plurality of BB processors 1226.
  • multiple BB processors 1226 can be compatible with multiple frequency bands used by eNB 1200.
  • the wireless communication interface 1225 can include a plurality of RF circuits 1227.
  • multiple RF circuits 1227 can be compatible with multiple antenna elements.
  • FIG. 12 illustrates an example in which the wireless communication interface 1225 includes a plurality of BB processors 1226 and a plurality of RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 1330 includes one or more antennas 1340, base station devices 1350, and RRHs 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via an RF cable.
  • the base station device 1350 and the RRH 1360 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1360 to transmit and receive wireless signals.
  • the eNB 1330 can include multiple antennas 1340.
  • multiple antennas 1340 can be compatible with multiple frequency bands used by eNB 1330.
  • FIG. 13 illustrates an example in which the eNB 1330 includes multiple antennas 1340, the eNB 1330 may also include a single antenna 1340.
  • the base station device 1350 includes a controller 1351, a memory 1352, a network interface 1353, a wireless communication interface 1355, and a connection interface 1357. Controller 1351, memory 1352 and network interface 1353 The controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG. 12 are the same.
  • the wireless communication interface 1355 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to terminals located in sectors corresponding to the RRH 1360 via the RRH 1360 and the antenna 1340.
  • Wireless communication interface 1355 can typically include, for example, BB processor 1356.
  • the BB processor 1356 is identical to the BB processor 1226 described with reference to FIG. 12 except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 can include a plurality of BB processors 1356.
  • multiple BB processors 1356 can be compatible with multiple frequency bands used by eNB 1330.
  • FIG. 13 illustrates an example in which the wireless communication interface 1355 includes a plurality of BB processors 1356, the wireless communication interface 1355 may also include a single BB processor 1356.
  • connection interface 1357 is an interface for connecting the base station device 1350 (wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module for connecting the base station device 1350 (wireless communication interface 1355) to the communication in the above-described high speed line of the RRH 1360.
  • the RRH 1360 includes a connection interface 1361 and a wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (wireless communication interface 1363) to the base station device 1350.
  • the connection interface 1361 may also be a communication module for communication in the above high speed line.
  • Wireless communication interface 1363 transmits and receives wireless signals via antenna 1340.
  • Wireless communication interface 1363 can generally include, for example, RF circuitry 1364.
  • the RF circuit 1364 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1340.
  • the wireless communication interface 1363 can include a plurality of RF circuits 1364.
  • multiple RF circuits 1364 can support multiple antenna elements.
  • FIG. 13 illustrates an example in which the wireless communication interface 1363 includes a plurality of RF circuits 1364, the wireless communication interface 1363 may also include a single RF circuit 1364.
  • the transmitting unit and the receiving unit described by using FIGS. 1 and 4 can be implemented by the wireless communication interface 1225 and the wireless communication interface 1355 and/or the wireless communication interface 1363.
  • At least a part of the functions of the processing unit in the apparatus at the base station end in the above wireless communication system can also be implemented by the controller 1221 and the controller 1351.
  • FIG. 14 is a diagram showing a schematic configuration of a smartphone 1400 to which the technology of the present disclosure can be applied.
  • the smart phone 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, an imaging device 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, a wireless communication interface 1412, and one or more An antenna switch 1415, one or more antennas 1416, a bus 1417, a battery 1418, and an auxiliary controller 1419.
  • the processor 1401 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smart phone 1400.
  • the memory 1402 includes a RAM and a ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1404 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1400.
  • USB universal serial bus
  • the image pickup device 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1407 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1408 converts the sound input to the smartphone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from a user.
  • the display device 1410 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400.
  • the speaker 1411 converts the audio signal output from the smartphone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1412 may generally include, for example, BB processor 1413 and RF circuitry 1414.
  • the BB processor 1413 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1416.
  • the wireless communication interface 1412 can be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 can include a plurality of BB processors 1413 and a plurality of RF circuits 1414.
  • FIG. 14 illustrates an example in which the wireless communication interface 1412 includes a plurality of BB processors 1413 and a plurality of RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • the wireless communication interface 1412 can support another type of Wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1412 can include a BB processor 1413 and RF circuitry 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 between a plurality of circuits included in the wireless communication interface 1412, such as circuits for different wireless communication schemes.
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1412 to transmit and receive wireless signals.
  • smart phone 1400 can include multiple antennas 1416.
  • FIG. 14 illustrates an example in which smart phone 1400 includes multiple antennas 1416, smart phone 1400 may also include a single antenna 1416.
  • smart phone 1400 can include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 can be omitted from the configuration of the smartphone 1400.
  • the bus 1417 stores the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the imaging device 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 with each other. connection.
  • Battery 1418 provides power to various blocks of smart phone 1400 shown in FIG. 14 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 1419 operates the minimum required function of the smartphone 1400, for example, in a sleep mode.
  • the transmitting unit and the receiving unit described by using FIGS. 2 and 5 can be implemented by the wireless communication interface 1412. At least a portion of the functionality of the processing unit in the device at the user equipment side described above may also be implemented by the processor 1401 or the auxiliary controller 1419.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

提供了一种无线通信系统中的装置和方法,该装置包括:发送单元,被配置成向至少包括第一和第二用户设备的多个用户设备发送使用叠加编码合成的第一分配信号,该第一分配信号至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分;接收单元,被配置成接收来自第一和第二用户设备中的至少一个反馈的重传请求;以及处理单元,被配置成响应于重传请求,以预定处理系数对第一和第二功率信号部分进行处理以得到第二分配信号,其中,发送单元进一步被配置成向第一和第二用户设备发送第二分配信号,由第一和第二用户设备对第一和第二分配信号进行合并以分别获得针对第一和第二用户设备的数据。

Description

无线通信系统中的装置和方法
本申请要求于2015年8月14日提交中国专利局、申请号为201510501585.X、发明名称为“无线通信系统中的装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,更具体地,涉及一种解决多用户叠加传输(Multi-User Superposition Transmission,MUST)的无线通信系统中的多次传输中的干扰信号以有效地提高数据成功接收率和多流叠加传输的吞吐量的无线通信系统中的装置和方法。
背景技术
在现有采用多用户叠加传输的无线通信系统中,基站在根据用户信道分配不同的发射功率后对不同用户的数据流进行叠加,用户设备端使用例如串行干扰消除机制消除来自其它用户设备的干扰,从接收到的叠加后的数据流中提取自己的目标数据流。如果提取目标数据流失败,用户设备会通知基站,基站会进行数据流简单重发。如果重发时仍然是叠加传输,在重发的数据流中仍然会存在来自其它用户的干扰。这样,在用户设备端如果对再次接收到的数据流与之前接收到的数据流进行简单的叠加加强,虽然接收信号功率增强了,但是干扰信号功率同时也可能被增强,从而导致通过重传提取出目标数据流的可能性降低。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
鉴于以上问题,本公开的目的是提供一种克服了上述现有技术的缺点的无线通信系统中的装置和方法,其能够通过对重传信号进行预定处理来减少来自其它用户的干扰,以提高数据成功接收率和多流叠加传输的吞吐量。
根据本公开的一方面,提供了一种无线通信系统中的装置,该装置包括:发送单元,被配置成向至少包括第一用户设备和第二用户设备的多个用户设备发送使用叠加编码合成的第一分配信号,该第一分配信号至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分;接收单元,被配置成接收来自第一用户设备和第二用户设备中的至少一个反馈的重传请求;以及处理单元,被配置成响应于重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理以得到第二分配信号,其中,发送单元进一步被配置成向第一用户设备和第二用户设备发送第二分配信号,由第一用户设备和第二用户设备对第一分配信号和第二分配信号进行合并以分别获得针对第一用户设备的数据和针对第二用户设备的数据。
根据本公开的优选实施例,在合并后的第一分配信号和第二分配信号中,第一功率信号部分和第二功率信号部分之一被减弱或抵消。
根据本公开的另一优选实施例,处理单元进一步被配置成对第一功率信号部分和第二功率信号部分中的至少一个的发射功率进行调整以得到第二分配信号。
根据本公开的另一优选实施例,发送单元进一步被配置成分别向第一用户设备和第二用户设备发送指示如何执行合并操作的合并指示,以由第一用户设备和第二用户设备根据合并指示对第一分配信号和第二分配信号进行合并。
根据本公开的另一优选实施例,合并指示包含在高层信令或物理层信令中。
根据本公开的另一优选实施例,合并指示为执行合并操作以增强第一功率信号部分和第二功率信号部分中的较高功率信号部分。
根据本公开的另一优选实施例,合并指示为执行合并操作,以分别增强第一功率信号部分和第二功率信号部分中的分别针对第一用户设备和第二用户设备的功率信号部分。
根据本公开的另一优选实施例,预定处理系数是基于哈达玛矩阵来确定 的。
根据本公开的另一方面,还提供了一种无线通信系统中的装置,该装置包括:接收单元,被配置成接收来自基站的第一分配信号,其中,第一分配信号是使用叠加编码合成的并且至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分;处理单元,被配置成根据第一分配信号得到针对第一用户设备的数据;以及发送单元,被配置成在处理单元根据第一分配信号没有得到针对第一用户设备的数据的情况下,向基站发送重传请求,其中,接收单元进一步被配置成接收来自基站的第二分配信号,第二分配信号是基站响应于第一用户设备和第二用户设备中的至少一个反馈的重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的,以及其中,处理单元进一步被配置成对第一分配信号和第二分配信号进行合并,以获得针对第一用户设备的数据。
根据本公开的另一方面,还提供了一种无线通信系统中的装置,该装置包括:接收单元,被配置成接收第一分配信号,第一分配信号至少包括第一用户设备和第二用户设备在相同的第一无线传输资源上传输的第一功率信号部分和第二功率信号部分;处理单元,被配置成根据第一分配信号得到分别来自第一用户设备和第二用户设备的数据;以及发送单元,被配置成在处理单元根据第一分配信号没有成功得到来自第一用户设备和第二用户设备中的至少一个的数据的情况下,向第一用户设备和第二用户设备中发送重传请求,其中,接收单元进一步被配置成接收第二分配信号,第二分配信号至少包括第一用户设备和第二用户设备响应于重传请求在相同的第二无线传输资源上传输的第三功率信号部分和第四功率信号部分,第三功率信号部分和第四功率信号部分是以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的,以及其中,处理单元进一步被配置成对第一分配信号和第二分配信号进行合并以得到分别来自第一用户设备和第二用户设备的数据。
根据本公开的另一方面,还提供了一种无线通信系统中的装置,该装置包括:发送单元,被配置成以第一发射功率在与第二用户设备发送第二功率信号部分的无线传输资源相同的第一无线传输资源上向基站发送第一功率信号部分;接收单元,被配置成接收来自基站的重传请求;以及处理单元,被配置 成响应于重传请求而以预定处理系数对第一功率信号部分进行处理以得到第三功率信号部分,其中,发送单元进一步被配置成以第三发射功率在与第二用户设备发送第四功率信号部分的无线传输资源相同的第二无线传输资源上向基站发送第三功率信号部分,第四功率信号部分是第二用户设备响应于重传请求以预定处理系数对第二功率信号部分进行处理而获得的。
根据本公开的另一方面,还提供了一种无线通信系统中的方法,该方法包括:发送步骤,用于向至少包括第一用户设备和第二用户设备的多个用户设备发送使用叠加编码合成的第一分配信号,第一分配信号至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分;接收步骤,用于接收来自第一用户设备和第二用户设备中的至少一个反馈的重传请求;以及处理步骤,用于响应于重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理以得到第二分配信号,其中,在发送步骤中,还向第一用户设备和第二用户设备发送第二分配信号,由第一用户设备和第二用户设备对第一分配信号和第二分配信号进行合并以分别获得针对第一用户设备的数据和针对第二用户设备的数据。
根据本公开的另一方面,还提供了一种无线通信系统中的方法,该方法包括:接收步骤,用于接收来自基站的第一分配信号,其中,第一分配信号是使用叠加编码合成的并且至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分;处理步骤,用于根据第一分配信号得到针对第一用户设备的数据;以及发送步骤,用于在根据第一分配信号没有得到针对第一用户设备的数据的情况下,向基站发送重传请求,其中,在接收步骤中还接收来自基站的第二分配信号,第二分配信号是基站响应于第一用户设备和第二用户设备中的至少一个反馈的重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的,以及其中,在处理步骤中还对第一分配信号和第二分配信号进行合并,以获得针对第一用户设备的数据。
根据本公开的另一方面,还提供了一种无线通信系统中的方法,该方法包括:接收步骤,用于接收第一分配信号,第一分配信号至少包括第一用户设备和第二用户设备在相同的第一无线传输资源上传输的第一功率信号部分和第二功率信号部分;处理步骤,用于根据第一分配信号得到分别来自第一用户 设备和第二用户设备的数据;以及发送步骤,用于在根据第一分配信号没有成功得到来自第一用户设备和第二用户设备中的至少一个的数据的情况下,向第一用户设备和第二用户设备发送重传请求,其中,在接收步骤中还接收第二分配信号,第二分配信号至少包括第一用户设备和第二用户设备响应于重传请求在相同的第二无线传输资源上传输的第三功率信号部分和第四功率信号部分,第三功率信号部分和第四功率信号部分是以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的,以及其中,在处理步骤中,还对第一分配信号和第二分配信号进行合并以得到分别来自第一用户设备和第二用户设备的数据。
根据本公开的另一方面还提供了一种无线通信系统中的方法,该方法包括:发送步骤,用于以第一发射功率在与第二用户设备发送第二功率信号部分的无线传输资源相同的第一无线传输资源上向基站发送第一功率信号部分;接收步骤,用于接收来自基站的重传请求;以及处理步骤,用于响应于重传请求而以预定处理系数对第一功率信号部分进行处理以得到第三功率信号部分,其中,在发送步骤中还以第三发射功率在与第二用户设备发送第四功率信号部分的无线传输资源相同的第二无线传输资源上向基站发送第三功率信号部分,第四功率信号部分是所述第二用户设备响应于重传请求以预定处理系数对第二功率信号部分进行处理而获得的。
根据本公开的另一方面,还提供了一种电子设备,该电子设备可包括收发机和一个或多个处理器,这一个或多个处理器可被配置成执行上述根据本公开的无线通信系统中的方法或相应单元的功能。
根据本公开的其它方面,还提供了用于实现上述根据本公开的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述根据本公开的方法的计算机程序代码的计算机可读存储介质。
根据本公开的实施例,通过在多流叠加传输中对重传信号进行预定处理以减少来自其它用户设备的传输所引起的干扰,可以提高数据成功接收率和多流叠加传输的吞吐量。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的优选实施例和解释本公开的原理和优点。其中:
图1是示出根据本公开的实施例的无线通信系统中的装置的功能配置示例的框图;
图2是示出根据本公开的另一实施例的无线通信系统中的装置的功能配置示例的框图;
图3是示出本公开的实施例的用于下行传输的信令交互过程的示例的流程图;
图4是示出根据本公开的又一实施例的无线通信系统中的装置的功能配置示例的框图;
图5是示出根据本公开的再一实施例的无线通信系统中的装置的功能配置示例的框图;
图6是示出根据本公开的实施例的用于上行传输的信令交互过程的示例的流程图;
图7是示出根据本公开的实施例的无线通信系统中的方法的过程示例的流程图;
图8是示出根据本公开的另一实施例的无线通信系统中的方法的过程示例的流程图;
图9是示出根据本公开的又一实施例的无线通信系统中的方法的过程示例的流程图;
图10是示出根据本公开的再一实施例的无线通信系统中的方法的过程示例的流程图;
图11是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图12是示出可以应用本公开的技术的演进型基站(eNB)的示意性配置的第一示例的框图;
图13是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;以及
图14是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其它细节。
接下来,将参照图1至图14具体描述本公开的实施例。
在具体描述本公开的实施例之前,将简要介绍有关叠加编码(Superposition Coding)的内容。
通过叠加编码为手段,发射器能够使用相同传输资源来与多个接收器进行通信。例如,当前的下行多用户叠加传输能够支持基站同时向一个以上的用户设备发送多个数据流,而无需利用不同时间、频率或者多天线技术进行区分。作为示例,考虑无线电发射器Tx经由第一物理通信链路L1与第一接收器Rx1通信且无线电发射器Tx经由第二通信链路L2与接收器Rx2通信。假设无线电条件对于第一接收器/链路(例如位置离发射端较远)来说较弱且对于第二接收器/链路(例如位置离发射端较近)来说较强(此情形可能是临时的,因为无线电条件不断变化,尤其是对于移动台来说)。换句话说,对于固定的传 输无线电功率来说,第一接收器的信号干扰噪声比SINR和载波干扰C/I比低于第二发射器的相应SINR和C/I比(或比其低得多)。已知两个接收器的相对无线电条件的发射器Tx可针对特定时隙和特定载波频率在这两个接收器之间按比例分配其功率预算,使得与既定用于第二接收器Rx2(较强无线电条件下的接收器)的第二数据块相比,用较高功率传输既定用于第一接收器Rx1(较弱无线电条件下的接收器)的第一数据块。举例来说,在给定当前无线电条件和由于向第二接收器Rx2传输第二数据块引起的额外干扰的情况下,发射器Tx可将足够功率用于既定用于第一接收器Rx1的第一数据块以允许第一接收器Rx1解码此块。发射器Tx可接着将较少功率用于既定用于第二接收器Rx2的第二数据块,但仍然足以使第二接收器Rx2使用用以消除或减小由第一数据块的传输造成的干扰的干扰消除来解码第二数据块。发射器Tx接着在相同载波频率上且在相同时间处传输这两个数据块。因此,可认为这两个数据块“碰撞”。因为用高于第二数据块的功率分配来传输第一数据块,所以第二数据块仅向第一接收器Rx1呈现为噪声或干扰增加。如果这两个数据块的传输之间的功率偏移足够高,那么第一接收器Rx1处的SINR降级可能较小且甚至无关紧要。因此,如果相对于第一数据块的传输速率、当前无线电条件和由第二数据块的传输造成的额外干扰以足够功率传输第一数据块,那么第一接收器Rx1应当能够解码第一数据块。第二接收器Rx2也应当能够解码第一数据块,因为第二接收器Rx2以优于第一接收器Rx1的SINR接收第一数据块,这是由于第二接收器Rx2的较强无线电条件所致。一旦第二接收器Rx2解码了第一数据块,第二接收器Rx2便可将其处理为干扰,并使用己知干扰消除技术从在接收这两个数据块的时期期间接收到的总体信号中消除该干扰。剩余信号表示与源自其它来源的噪声和干扰组合的第二数据块。如果相对于第二数据块的传输速率和第二接收器Rx2的无线电条件以足够功率(但以低于第一数据块的功率)传输第二数据块,那么第二接收器Rx2应当能够解码第二数据块。
请注意,此方法可扩展到三个或三个以上接收器。举例来说,可将最大功率分配用于向处于最弱无线电条件中的接收器进行传输,可将最小功率分配用于向处于最强无线电条件中的接收器进行传输,且可将中间功率分配用于处 于中间无线电条件中的接收器。处于最强无线电条件中的接收器可接着解码既定用于处于最弱无线电条件中的接收器的数据块,从所接收信号中消除所解码块,解码既定用于处于中间无线电条件中的接收器的数据块,消除第二解码块,并且最后解码既定用于其本身的数据块(此解码/消除过程可称为逐级干扰消除)。处于中间无线电条件中的接收器也可解码既定用于处于最弱无线电条件中的接收器的数据块,将其从所接收信号中消除,且接着解码既定用于其本身的数据块。处于最弱无线电条件中的接收器可能能够直接解码既定用于其的数据块,因为这个数据块以最高功率级进行传输的。应理解,所属领域的技术人员应当能够将逐级干扰消除技术扩展到四个或四个以上接收器而不需要额外试验或进一步创造性劳动。接收器可以是移动台,例如用户设备,并且发射器可以是基站收发台,例如eNB,数据块例如是数据包、传输块(Transport Block)。
随着叠加编码技术的发展,本公开的发明人考虑到将其应用到实际通信系统中时需要涉及到例如混合自动重传请求(HARQ)等重传问题。如果在上述过程中在任一接收器处未解码出相应的数据块,则该接收器可向发射器发送相应的重传请求。然而,如果仅是如上述叠加编码技术一样简单地重发叠加后的数据块(初传中不能被解码的数据块),则由于在重传过程中由相对于其它接收器的数据块传输所导致的干扰也增强,因此即使发射器进行了信号重传,该接收器(即使和之前初传的数据块进行例如跟踪合并)可能仍然无法解码出相应的数据块。根据本公开的技术正是为了解决叠加编码传输中的信号重传而做出的,下面将具体描述本公开的实施例。
应理解,以上以下行传输为例简要介绍了叠加编码技术,但是在上行传输的情况下,即,当多个发射器在相同频率上同时向单个接收器进行传输时,可在单个接收器处执行上述类似过程。在该情况下,接收器可以是基站收发台,例如eNB,并且多个发射器可以是移动台,例如用户设备。
图1是示出根据本公开的实施例的无线通信系统中的装置的功能配置示例的框图。该装置例如可包括在基站中或者可位于基站侧。
如图1所示,根据本实施例的装置100可包括发送单元102、接收单元104和处理单元106。下面将分别详细描述各个单元的功能配置示例。
发送单元102可被配置成向至少包括第一用户设备和第二用户设备的多 个用户设备发送使用叠加编码合成的第一分配信号,该第一分配信号至少可包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分。
应指出,为了便于说明,这里以基站向第一用户设备和第二用户设备两个用户设备发送使用叠加编码合成的信号为例,但是应理解,基站可同时向三个或更多个用户设备发送使用叠加编码合成的信号,并且本公开的技术同样适用该情况。这里的第一功率信号部分指的是以例如第一功率向第一用户设备发送的承载第一用户设备目标数据块的信号部分,第二功率信号部分指的是以例如第二功率向第二用户设备发送的承载第二用户设备目标数据块的信号部分。根据上述叠加编码技术可知,根据第一用户设备和第二用户设备的无线电条件,第一功率可大于第二功率或者可小于第二功率。
接收单元104可被配置成接收来自第一用户设备和第二用户设备中的至少一个反馈的重传请求。在第一用户设备和第二用户设备中的至少一个根据第一分配信号未解码出各自相应的数据的情况下,第一用户设备和第二用户设备中的至少一个可向基站发送重传请求,以请求进行信号重传。
处理单元106可被配置成响应于重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理以得到第二分配信号。
然后,发送单元102可进一步被配置成向第一用户设备和第二用户设备发送第二分配信号,以由第一用户设备和第二用户设备对第一分配信号和第二分配信号进行合并以分别获得针对第一用户设备的数据和针对第二用户设备的数据。
应理解,尽管在这里描述了基站在重传中同时向第一用户设备和第二用户设备两者发送重传信号,但是本发明中也意图给出基站仅向发出重传请求的用户设备重新发送其信号的示例。然而,在此为了描述方便,以基站在接收到重传请求后向所有设备均发送重传信号的情况为例进行描述,并且基站仅向发出重传请求的用户设备发送其信号的情况可视为重传信号中对于未发送重传请求的用户设备的功率信号部分为0的情况的特例,在此不再分开一一进行描述。
实际上,由于多用户叠加传输下的用户数据解码之间存在关联性,初传 中如果有一个用户设备无法成功解码,很有可能其他用户设备也将解码失败并发出重传请求,相比于利用不同的传输资源对第一用户设备和第二用户设备分别进行重传的一般做法,本发明的示例在重传时进行特定处理但仍然利用叠加编码使用相同的传输资源同时对第一和第二用户设备进行重传,大大提高了资源的利用效率,并且能够一定程度保证重传的成功率,这种性能增益在更多用户设备参与叠加传输的情况下将愈加明显。
优选地,为了减少相对于其它用户设备的传输所导致的干扰,在合并后的第一分配信号和第二分配信号中,第一功率信号部分和第二功率信号部分之一被减弱或抵消。
为了使得合并后的信号中的相应干扰被减弱或消除,装置100在进行叠加编码的重传之前,调整针对第一用户设备的信号部分与针对第二用户设备的信号部分在相同传输资源上的相互作用关系,例如,如果在上一次传输中针对第一用户设备的信号部分与针对第二用户设备的信号部分以相加的关系在相同传输资源上传输,那么在本次重传中,装置100将针对第一用户设备的信号部分与针对第二用户设备的信号部分进行相减后在相同重传资源上传输,那么,在进行接收的用户设备端,将两次传输的接收信号进行合并即可以实现作为干扰的针对其它用户设备的信号部分被削弱。换言之,对第一功率信号部分和第二功率信号部分中之一在重传中乘以为负1的处理系数,而另一者维持不变或者认为乘以为1的处理系数。优选地,该预定处理系数可基于哈达玛矩阵来确定。具体地,作为示例,该预定处理系数在下文中可称为“层时码矩阵”,该矩阵的水平维度表示最大重传次数,并且垂直维度表示数据流(对应于用户设备)的个数,该层时码矩阵例如可表示为如下:
Figure PCTCN2016094856-appb-000001
在所描述的示例中,假设一个基站需要向第一用户设备与第二用户设备分别传送两个数据块bF与bN,调制后对应的符号串分别为dF与dN。假设第一用户设备所处的无线信道较弱(例如位置较远),第二用户设备所处的无线信道较强(例如位置较近)。基站使用的层时码矩阵为2×(R+1)(其中,R+1表示最大传输次数)的哈达玛矩阵A,可通过重复2×2的沃什矩阵得到。
Figure PCTCN2016094856-appb-000002
其中,该矩阵的第一行包含各个重传次数下用于第一用户设备的预定系数,该矩阵的第二行包含各个重传次数下用于第二用户设备的预定系数。假设初次传输时,这个基站与第一和第二用户设备之间的下行信道分别为hF,0与hN,0。基站根据hF,0与hN,0的衰减情况为两个用户设备的数据块传输分别分配的功率为pF,0与pN,0,pF,0>pN,0。初次传输时,重传次数为0,基站分别使用层时码矩阵第0列中的系数A(0,0)=1与A(1,0)=1对dF与dN进行加权并将加权后结果叠加得到待发送基带信号串x0(即,上述第一分配信号),其中,
Figure PCTCN2016094856-appb-000003
(
Figure PCTCN2016094856-appb-000004
即第一功率信号部分,
Figure PCTCN2016094856-appb-000005
即第二功率信号部分)。
第一用户设备初次接收到的信号可表征为:
Figure PCTCN2016094856-appb-000006
其中,nF,0为第一用户设备初次接收时的加性噪声。
第二用户设备初次接收到的信号可表征为:
Figure PCTCN2016094856-appb-000007
其中nN,0为第一用户设备初次接收时的加性噪声。
第一用户设备在接收到x0后将第二功率信号部分
Figure PCTCN2016094856-appb-000008
视为噪声的一部分,根据hF,0与pF对yF,0进行解调与自检(例如,通过循环冗余校验CRC)。第二用户设备在接收到x0后先根据hN,0与pF对yN,0进行解调与自检得到bF,再根据bF恢复得到干扰信号
Figure PCTCN2016094856-appb-000009
然后在yN,0中去除干扰信号
Figure PCTCN2016094856-appb-000010
使用
Figure PCTCN2016094856-appb-000011
根据hN,0与pN,0进行解调与自检。
如果第一和第二用户设备自检数据块接收正确,则通知基站发送各自对应的下一个数据块,例如第一和第二用户设备分别通过各自的上行信道向基站发送1比特的确认(ACK)信息。基站在发送该次数据块后等待用户设备对该次传输的数据块的确认信息,并在收到确认后才进行下一次数据块传输。
然而,如果第一用户设备和第二用户设备两者之一中自检数据块接收出现错误,则可通知基站进行数据块重发,例如第一和/或第二用户设备通过各自的上行信道向基站发送1比特的不确认(NACK)信息作为重发请求。基站在收到重发请求后,可选地,根据下行信道hF,1与hN,1的衰减情况为两个用户设备的数据块传输重新分别分配的功率为pF,1与pN,1(为了降低系统开销或简化计算复杂度,基站也可以重复使用上一次传输分配的功率,即,pF,1=pF,0,pN,1=pN,0),
Figure PCTCN2016094856-appb-000012
以预定处理系数(即,层时码矩阵第1列中的系数A(0,1)=1与A(1,1)=-1)对重发的dF与dN进行加权并将加权后结果叠加得到待发送基带信号串x1(即,上述第二分配信号),其中,
Figure PCTCN2016094856-appb-000013
应理解,在上述示例中,装置100例如可以预先生成完整的层时码矩阵,并将每一行与各个用户设备的数据流对应,每一列与各个重传次数对应,在相应的重传次数下,从中取出对应列包含的预定系数来便利地对各个用户设备的数据流进行处理。在一个可选的示例中,装置100亦可以仅针对当前的重传次数和涉及重传的用户设备即时生成相应的系数来进行处理。
第一用户设备第一次重传(第二次传输)接收到的信号可表征为:
Figure PCTCN2016094856-appb-000014
其中,hF,1为第一用户设备第一次重传时的信道,nF,1为第一用户设备第一次重传时的加性噪声。
第二用户设备第一次重传时接收到的信号可表征为:
Figure PCTCN2016094856-appb-000015
其中,hN,1为第二用户设备第一次重传时的信道,nN,1为第二用户设备第一次重传时的加性噪声。
在一个示意性的简化例子中,重传与上一次传输的时间间隔非常小,可以忽略基站到第一及第二用户设备的信道情况变化,而两次传输所采用的发射功率亦保持不变(即,hF,1=hF,0,hN,1=hN,0,pF,1=pF,0,pN,1=pN,0),第一用户设备基于两次下行数据传输中分别接收到的yF,0与yF,1进行正向合并,正向合并后的信号为:
yF=yF,0+yF,1
则其中关于第二用户设备的信号部分被消除,而关于第一用户设备的信号部分得到增强,进而第一用户设备能够解码出其目标数据块。
另一方面,第二用户设备基于两次下行数据传输中分别接收到的yN,0与yN,1进行负向合并,负向合并后的信号为:
yN=yN,0-yN,1
则其中关于第一用户设备的信号部分被消除,而关于第二用户设备的信号部分得到增强,进而第二用户设备能够解码出其目标数据块。
作为一种可选实施例,在两次传输中信道情况以及传输功率明显变化的情况下,第一用户设备基于两次下行数据传输中分别接收到的yF,0与yF,1进行如下的正向合并,正向合并后的信号为:
Figure PCTCN2016094856-appb-000016
从yF中可见,yF,0与yF,1分别被乘以了特定参数后才被正向合并,这些特定参数有助于利用数学手段在信道及功率变化的情况下增强dF而减弱dN。可以理解, 本领域技术人员还可以根据本发明的思想设计其他特定参数来预先处理合并前的yF,0与yF,1来达到相同的目的,例如去掉上式其中关于功率的部分,本发明不在此一一例举。然后,第一用户设备对yF进行解调与自检,获得目标数据流bF。
另一方面,类似地,第二用户设备先基于yN,0与yN,1进行负向合并,负向合并后的信号为
Figure PCTCN2016094856-appb-000017
从y'N中可见,dN得到了增强,dF的干扰功率减弱。第二用户设备对y'N进行解调与自检,试图获得目标数据流bN
如果第二用户设备不能获得目标数据流bN,则亦可以基于yN,0与yN,1进行正向合并,正向合并后的信号为
Figure PCTCN2016094856-appb-000018
从y″N中可见,dF得到了增强,dN的干扰功率减弱。第二用户设备对y″N进行解调与自检得到bF,然后在y′N中去除干扰信号
Figure PCTCN2016094856-appb-000019
并对dN进行解调与自检,得到bN。可选地,第二用户设备亦可以先做正向合并得到y″N并按照上述方法解码得到bN,在无法成功解码的情况下再重新做负向合并得到y′N进而解码bN
作为另一种实施例,基站不仅通知第一用户设备dF的分配功率,而且通知其第二用户设备信号部分dN的分配功率。第一用户设备基于yF,0与yF,1进行旨在消除dN干扰的对dF的增强合并,
Figure PCTCN2016094856-appb-000020
从yF中可见,dF得到了增强,dN的干扰被消除。然后第一用户设备对yF进行解调与自检,获得目标数据流bF
同样,第二用户设备先基于yN,0与yN,1进行旨在消除dF干扰而增强dN的负向合并:
Figure PCTCN2016094856-appb-000021
从y'N中可见,dN得到了增强,dF的干扰功率消除。第二用户设备对y'N进行解调与自检,试图获得目标数据流bN
如果第二用户设备不能获得目标数据流bN,则基于yN,0与yN,1进行旨在消除dN干扰而增强dF的正向合并,正向合并后的信号为:
Figure PCTCN2016094856-appb-000022
从y"N中可见,dF得到了增强,dN的干扰被消除。第二用户设备再基于yN,0与yN,1进行负向合并,负向合并后的信号为
Figure PCTCN2016094856-appb-000023
然后第二用户设备对y"N进行解调与自检得到bF,然后在y″′N中去除干扰信号
Figure PCTCN2016094856-appb-000024
并对dN进行解调与自检。
在对数据信号进行解调时,在一个示例中,第一和第二用户设备已知发射功率pF和pN,例如基站通过控制信令向第一和第二用户设备指示发射功率pF和pN,则用户设备可根据例如小区特定参考信号(CRS)、信道状态指示-参考信号(CSI-RS)来估计得到信道hF和hN,从而解出相应的数据bF或bN
另一方面,首次传输后,如果第一用户设备接收错误,第二用户设备接收正确,作为一种实施例,基站下一次可按预定系数只发送针对第一用户设备的数据块(例如将PN,1设置为0),第一用户设备可在尝试对重发单独解调失败的情况下,根据自己所对应的层时码[A(0,0),A(0,1)]对前后两次接收到的信号 进行正向合并,由于在合并后的信号中,第一用户设备的信号部分被增强,因此使得第一用户设备解码得到其数据的可能性大大提高。当然,在该情况下,基站也可如上述方式一样同时发送针对第一用户设备和第二用户设备的数据块,并通过上述合并方式来消除干扰信号部分。
另一方面,首次传输后,如果第二用户设备接收错误,第一用户设备接收正确,作为一种实施例,基站下一次可按预定系数只发送针对第二用户设备的数据块,第二用户设备可在尝试对重发单独解调失败的情况下,根据自己所对应的层时码[A(1,0),A(1,1)]对前后两次接收到的信号进行负向合并,由于在合并后的信号中,第二用户设备的信号部分被增强,因此使得第二用户设备解码得到其数据的可能性大大提高。当然,在该情况下,基站也可如上述方式一样同时发送针对第一用户设备和第二用户设备的数据块,并通过上述合并方式来消除干扰信号部分。换言之,在第一用户设备与第二用户设备中仅有一个接收错误的情况下,基站也可如上述方式一样同时发送针对第一用户设备和第二用户设备的数据块,并通过上述合并方式来消除干扰信号部分。
需注意,在重传中单独重发解调失败的用户设备的数据块的情况下,除了上述的例子,用户设备可以有很多种合并解码方案。例如上一段中的第二用户设备也可以对前后两次接收到的信号进行正向合并从而消除dN,并在先解码出dF后倒推得到目标数据dN,或者按照特定顺序组合这些解码方案以逐级执行,在此为了简洁起见不再逐一例举。
以上重传处理可重复至用户数据重发的最大限制,如果仍然解调失败,则宣布传输失败,放弃传输。数据重发次数的限制例如可以由基站进行高层配置,并通过信令指示给各个用户设备,例如本发明可应用由无线资源控制(RRC,Radio Resource Control)配置的maxHARQ-Tx最大重传次数。
应指出,尽管在以上描述的示例中,基于哈达玛矩阵所确定的层时码矩阵的矩阵元素为1或-1,但是这里面的元素也可以是除1或-1之外的其它元素,只要能够实现在合并后的信号中,第一功率信号部分和第二功率信号部分之一被减弱或抵消即可。
此外,还应指出,在以上描述的示例中,在第一用户设备和第二用户设备处分别执行了相加和相减的正向或负向合并操作,但是也可以在这两个用户 设备处都执行相加或相减的正向或负向合并操作,从而可以先解码出第一功率信号部分或第二功率信号部分对应的数据,然后据此推出另一功率信号部分对应的数据。
也就是说,以上描述的示例计算过程仅为示例而非限制,并且本领域技术人员可根据本公开的原理对上述计算过程进行调整,这样的调整均认为落入本公开的范围内。
此外,应理解,除了上述以预定处理系数对第一功率信号部分和第二功率信号部分进行处理之外或者取代以预定处理系数对第一功率信号部分和第二功率信号部分进行处理,响应于重传请求,处理单元106还可进一步被配置成对第一功率信号部分和第二功率信号部分中的至少一个的发射功率进行调整以得到第二分配信号。
具体地,假设第一功率信号部分的发射功率大于第二功率信号部分的发射功率,在第一用户设备和第二用户设备中的至少一个的信号接收失败的情况下,处理单元106可在重传时进一步增大第一功率信号部分的发射功率,并相应地减小第二功率信号部分的发射功率,这样,第一用户设备和第二用户设备可根据第一分配信号和第二分配信号的合并信号,先解码出第一功率信号部分对应的数据,然后通过例如串行干扰消除的非线性干扰消除来推出第二功率信号部分对应的数据。
优选地,为了使得第一用户设备和第二用户设备分别对上述第一分配信号和第二分配信号执行对应的合并操作(例如,相加操作或相减操作)以能够最大限度地消除干扰并减少计算负荷,发送单元102可进一步被配置成分别向第一用户设备和第二用户设备发送指示如何执行合并操作的合并指示,以由第一用户设备和第二用户设备根据合并指示对第一分配信号和第二分配信号进行合并。优选地,关于该合并指示,发送单元102可以通过将该合并指示包括在高层信令(例如,RRC信令、MAC层信令等)中来通知用户设备,该合并指示可以包括上述层时码矩阵以及/或者相应用户设备对应的行序号。在基站侧即时生成预定处理系数的示例中,还可以通过物理层信令(例如,下行控制信息DCI)等来通知第一用户设备和第二用户设备对于当前传输基站所采用的预定处理系数、相加或相减的合并操作等。在合并指示包括在物理层信令中的 情况下,可以通过物理下行控制信道(PDCCH)来传输该信令,并且在该情况下具有较好的时变性。
关于多用户叠加编码最可能的一种应用场景是仅有一个较远的用户设备和一个较近的用户设备二者共用传输资源,因此,在一个可选的示例中,基站侧和用户设备侧例如预先共有层时码矩阵的知识,在该层时码矩阵中第一行固定对应的是较远的用户设备的重传处理系数,第二行固定对应的是较近的用户设备的重传处理系数,在此示例中用户设备的存储器预先存有该层时码矩阵,并且用户设备可以例如根据基站指示的分别用于两个用户设备的发射功率来确定自己是较远的还是较近的用户设备(较远的功率大,较近的功率小),进而读取层时码矩阵中的相应预定系数以用于合并操作。
优选地,合并指示可以为执行合并操作以增强第一功率信号部分和第二功率信号部分中的较高功率信号部分。即,如上所述,对于上述第一功率信号部分
Figure PCTCN2016094856-appb-000025
和第二功率信号部分
Figure PCTCN2016094856-appb-000026
如果第一功率信号部分大于第二功率信号部分,则合并指示可以为在第一用户设备和第二用户设备处对第一分配信号
Figure PCTCN2016094856-appb-000027
和第二分配信号
Figure PCTCN2016094856-appb-000028
均执行相加合并操作,以增强第一功率信号部分,从而在第一用户设备和第二用户设备处均可以先解码出第一功率信号部分对应的数据,然后通过例如串行干扰消除来推出第二功率信号部分对应的数据。反之,如果第一功率信号部分小于第二功率信号部分,则合并指示可以为在第一用户设备和第二用户设备处对第一分配信号
Figure PCTCN2016094856-appb-000029
和第二分配信号
Figure PCTCN2016094856-appb-000030
均执行相减合并操作,以增强第二功率信号部分,从而在第一用户设备和第二用户设备处均可以先解码出第二功率信号部分对应的数据,然后通过例如串行干扰消除来推出第一功率信号部分对应的数据。
此外,优选地,合并指示可以为执行合并操作,以分别增强第一功率信号部分和第二功率信号部分中的分别针对第一用户设备和第二用户设备的功率信号部分。即,基站可分别指示第一用户设备和第二用户设备执行相应的合并操作,以增强各自的目标数据块所对应的功率信号部分。
应理解,该合并指示可以为可选的。即,基站可不向用户设备发送合并指示,用户设备可自行按照一般情况而执行默认合并操作(例如,相加合并操 作),如果根据该默认合并操作无法解码出相应的数据,则可再次执行相减合并操作。换言之,用户设备也可以自己决定如何进行合并操作。这样,可以减少信令开销。
可以理解,尽管以上给出了对重传信号进行处理以使得合并后的初传信号和重传信号中的第一功率信号部分或第二功率信号部分被减弱或抵消的示例处理过程,但是这些仅是示例而非限制,并且本领域技术人员可根据本公开的原理而对上述过程进行修改。
以上参照图1描述了基站侧的装置的功能配置示例,接下来,将参照图2描述根据本公开的另一实施例的无线通信系统中的用户设备侧的装置的功能配置示例。图2是示出根据本公开的另一实施例的无线通信系统中的用户设备侧的装置的功能配置示例的框图。该装置可位于用户设备中或者可位于用户设备侧。
如图2所示,根据该实施例的装置200可包括接收单元202、处理单元204和发送单元206。下面将分别详细描述各个单元的功能配置示例。
接收单元202可被配置成接收来自基站的第一分配信号,其中,第一分配信号是使用叠加编码合成的并且至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分。
处理单元204可被配置成根据第一分配信号得到针对第一用户设备的数据。具体地,例如,处理单元204可通过去干扰接收、解调与自检等,从第一分配信号中得到针对第一用户设备的数据。
由于干扰等的存在,处理单元204可能根据第一分配信号无法正确地解码出相应数据。在该情况下,发送单元206可被配置成在处理单元204根据第一分配信号没有得到针对第一用户设备的数据的情况下,向基站发送重传请求,从而基站可向第一用户设备发送第二分配信号。
接收单元202可进一步被配置成接收来自基站的第二分配信号,该第二分配信号是基站响应于第一用户设备和第二用户设备中的至少一个反馈的重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的。具体的获得第二分配信号的过程可参见以上相应位置的描述,在此不再重复。
接下来,处理单元204可进一步被配置成对第一分配信号和第二分配信号进行合并,以减弱或消除合并后的信号中的第一功率信号部分和第二功率信号部分之一,从而可以获得针对第一用户设备的数据。
具体地,如上所述,处理单元204可通过执行合并操作以减弱或消除第二功率信号部分来直接解码出第一功率信号部分对应的数据,或者也可通过执行合并操作来首先解码出其中的较高功率信号部分(例如,第二功率信号部分),并根据合并的结果,通过例如串行干扰消除的非线性干扰消除来间接获得第一功率信号部分对应的数据。
优选地,处理单元204可进一步被配置成对第一分配信号和第二分配信号进行合并,以增强第一功率信号部分和第二功率信号部分中的较高功率信号部分,以先解码出较高功率信号部分对应的数据之后,再通过例如串行干扰消除的非线性干扰消除来推出较低功率信号部分对应的数据。
替选地,作为优选示例,处理单元204还可进一步被配置成对第一分配信号和第二分配信号进行合并,以增强针对第一用户设备的第一功率信号部分。同样地,在第二用户设备侧也可执行类似的处理。即,用户设备的处理单元204可自己决定如何进行合并操作,以增强自身用户设备的目标数据块所对应的功率信号部分,从而可以直接地得到期望的目标数据。
优选地,为了使得各个用户设备分别能够执行相应的合并操作以解码出各自的数据,接收单元206可还接收来自基站的合并指示,从而处理单元204可进一步根据合并指示对第一分配信号和第二分配信号执行相应的合并操作(例如,相加合并或相减合并)。该合并指示例如可包含在高层信令(例如,RRC信令、MAC层信令等)或物理层信令(例如,DCI)中。优选地,如上所述,合并指示也可不一定是分别针对各个用户设备而不同的,而是合并指示也可以是执行合并操作以增强第一功率信号部分和第二功率信号部分中的较高功率信号部分或者增强各个用户设备的目标数据块所对应的功率信号部分。
在解码数据信号时,在用户设备已知发射功率的情况下,处理单元204可进一步被配置成根据来自基站的CRS或CSI-RS来估计信道状态(上述h0),并根据发射功率和信道状态来解出相应的数据。
应指出,这里参照图2描述的用户设备端的装置是与以上参照图1描述 的基站端的装置相对应的,在此未详细描述的地方可参见以上相应位置处的描述,在此不再赘述。接下来,将结合以上描述的基站端和用户设备端的装置,对根据本公开的实施例的用于下行传输的信令交互流程进行描述。
图3是示出根据本公开的实施例的用于下行传输的信令交互过程的示例的流程图。
如图3所示,在步骤S31中,基站首先根据数据流个数和最大重传次数而预先定义层时码矩阵。然后,在步骤S32中,基站向用户设备指示其对应的数据流序号。接下来,在步骤S33中,基站根据重发序号与数据流序号确定对此次数据块发送所采用的层时码参数,并且使用该参数对调制后数据块进行加权。对于初次传输,重传序号可定义为0。然后,在步骤S34中,基站计算各数据块的发送功率,并对加权后的数据块做功率调整,并在步骤S35中,对功率调整后的数据块进行叠加。然后,在步骤S36中,基站将叠加后的信号发送给用户设备。用户设备在接收到叠加信号之后,在步骤S37中,对接收到的数据块进行解调与去干扰排序,进行串行干扰消除解调,并在步骤S38中对解调后数据进行CRC自检。在步骤S39中,当存在1次以上的重传时,对于未能正确解调的数据块,用户设备根据其所对应的层时码,基于接收功率正向叠加的原则进行线性合并,并进行串扰干扰消除解调及自检,并在步骤S310中将自检结果发送给基站。最后,在步骤S311中,如果基站判断需要重发数据块,则基站递增相应重发序号,重复执行步骤S33至S310,重发数据块;否则,基站重置重发序号为0,重复执行步骤S33至S310,并发送新的数据块。
应指出,上述信令交互过程仅为示例而非限制,根据以上参照图1和图2的描述,可以对上述信令交互过程进行修改。例如,步骤S34中对数据块进行发送功率调整的处理是可选的,因此可省略该步骤。此外,还可增加基站向用户设备发送合并指示的步骤,从而用户设备并不是如在步骤S39中一样总是执行正向合并操作并通过非线性干扰消除来解调信号,而是可根据合并指示执行相应的正向或负向合并操作,从而消除或减弱干扰信号部分,以此来解调相应的数据信号。又例如,尽管在这里以层时码矩阵的形式来定义预处理系数,但是基站端也可不预先定义该层时码矩阵,而是根据实际的接收状况而对重传信号进行处理。当然,本领域技术人员根据本公开的原理还可以想到其它方式对 上述信令交互过程进行修改,并且这样的修改均应该落入本公开的范围内。
以上参照图1至图3描述了下行传输的情况,但是本公开的技术同样可以适用于上行传输的情况。下面将分别参照图4至图6描述上行传输的情况。
图4是示出根据本公开的又一实施例的无线通信系统中的装置的功能配置示例的框图。该装置可位于基站中或者可位于基站侧。
如图4所示,根据该实施例的装置400可包括接收单元402、处理单元404和发送单元406。下面将分别详细描述各个单元的功能配置示例。
接收单元402可被配置成接收第一分配信号,该第一分配信号至少包括第一用户设备和第二用户设备在相同的第一无线传输资源上传输的第一功率信号部分和第二功率信号部分。具体地,第一用户设备和第二用户设备在相同的时频资源上向基站发送各自的信号,从而在基站端所接收到的第一分配信号相当于是来自这两个用户设备的信号的叠加。
处理单元404可被配置成根据第一分配信号得到分别来自第一用户设备的数据和来自第二用户设备的数据。
由于存在干扰,处理单元404仅根据第一分配信号可能无法正确解出来自第一用户设备和第二用户设备的数据。因此,发送单元406可被配置成在处理单元404根据第一分配信号没有成功得到来自第一用户设备和第二用户设备中的至少一个的数据的情况下,向第一用户设备和第二用户设备发送重传请求。
应理解,对于基站已成功解调出其数据的用户设备,基站可不向该用户设备发送重传请求,从而在重传中来自该用户设备的功率信号部分为0。此外,一般来说,如果不能成功地解调出其中一个用户设备的数据,则成功地解调出来自另一个用户设备的数据的可能性也较小,因此通常需要同时向两个用户设备发送重传请求,但是也并不排除仅向其中一个用户设备发送重传请求的情况。然而,在此为了便于进行描述,以基站向两个用户设备均发送重传请求为例进行描述,但是未向其中一个用户设备发送重传请求的情况相当于重传中来自该用户设备的功率信号部分为0的特例,在此不再分开一一进行描述。
因此,接收单元402可进一步接收第二分配信号,该第二分配信号可至少包括第一用户设备和第二用户设备响应于重传请求在相同的第二无线传输 资源上传输的第三功率信号部分和第四功率信号部分,第三功率信号部分和第四功率信号部分是以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的。在例如基站仅向第一用户设备和第二用户设备之一发送重传请求的情况下,相应的第三功率信号部分或第四功率信号部分可为0。
然后,处理单元404可对第一分配信号和第二分配信号进行合并以得到分别来自第一用户设备和第二用户设备的数据。优选地,在合并后的第一分配信号和第二分配信号中,第一功率信号部分与第三功率信号部分相互抵消或减弱,或者第二功率信号部分与第四功率信号部分相互抵消或减弱。具体的对第一功率信号部分和第二功率信号部分进行处理以得到第三功率信号部分和第四功率部分并通过合并操作来消除相对于彼此的干扰信号部分从而解调数据的处理与以上关于下行传输的情况基本上相同,在此不再赘述。
优选地,如上所述,处理单元404可进一步根据合并的结果而执行非线性干扰消除。具体地,在如上所述通过合并操作解出来自第一用户设备和第二用户设备之一的数据的情况下,可通过例如串行干扰消除来推出来自另一用户设备的数据。
优选地,可由基站的处理单元404根据当前无线电条件而分别确定第一功率信号部分、第二功率信号部分、第三功率信号部分和第四功率信号部分各自的发射功率,并通过发送单元406向第一用户设备和第二用户设备发送功率指示,以将所确定的发射功率通知给第一用户设备和第二用户设备,从而第一用户设备和第二用户设备可利用相应的发射功率发送第一功率信号部分、第二功率信号部分、第三功率信号部分和第四功率信号部分。应理解,该发射功率也可以是预先确定好的而无需基站端来确定,从而用户设备可利用预先确定的发射功率来向基站发送其数据。
此外,优选地,处理单元404可进一步被配置成确定第一无线传输资源和第二无线传输资源,并且发送单元406可进一步被配置成向第一用户设备和第二用户设备发送资源指示,以指示第一无线传输资源和第二无线传输资源。替选地,第一用户设备和第二用户设备也可在预先确定好的无线传输资源上发送各自的数据,而无需基站端来确定。
另外,处理单元404可进一步被配置成确定预定处理系数,并且发送单 元406可将所确定的预定处理系数发送给第一用户设备和第二用户设备,从而第一用户设备和第二用户设备利用预定处理系数分别对第一功率信号部分和第二功率信号部分进行处理以得到第三功率信号部分和第四功率信号部分。当然,该预定处理系数也可以是预先确定好的,而无需基站端进行确定。
优选地,上述功率指示、资源指示和预定处理系数可包括在基站通过PDCCH发送的上行授权信令(UL grant)中。
接下来,将参照图5描述根据本公开的再一实施例的无线通信系统中的装置的功能配置示例。图5是示出根据本公开的再一实施例的无线通信系统中的装置的功能配置示例的框图。该装置可位于用户设备中或位于用户设备侧。
如图5所示,根据该实施例的装置500可包括发送单元502、接收单元504和处理单元506。下面将分别详细描述各个单元的功能配置示例。
发送单元502可被配置成以第一发射功率在与第二用户设备发送第二功率信号部分的无线传输资源相同的第一无线传输资源上向基站发送第一功率信号部分,其中第二用户设备例如可以以第二发射功率来发送第二功率信号部分。这样,在基站端所接收到的信号中,相当于是第一功率信号部分和第二功率信号部分叠加后的合成信号。
接收单元504可被配置成接收来自基站的重传请求。在基站端根据以上叠加后的合成信号未成功得到来自第一用户设备和第二用户设备中的至少一个的数据的情况下,基站可向第一用户设备和第二用户设备发送重传请求。
处理单元506可被配置成响应于重传请求而以预定处理系数对第一功率信号部分进行处理以得到第三功率信号部分。类似地,第二用户设备也可以响应于重传请求而以预定处理系数对第二功率信号部分进行处理以得到第四功率信号部分。
发送单元504可进一步被配置成以第三发射功率在与第二用户设备发送第四功率信号部分的无线传输资源相同的第二无线传输资源上向基站发送第三功率信号部分,由此基站可通过对两次发送的信号进行合并操作来消除来自其它用户设备的干扰信号部分。即,通过在基站端进行合并之后,第一功率信号部分与第三功率信号部分相互减弱或抵消,或者第二功率信号部分与第四功率信号部分相互减弱或抵消。
如上所述,可由基站来确定用户设备用于发送数据信号的功率、用于发送数据信号的无线传输资源以及用于对重传信号进行处理的预定处理系数,并且上述第一发射功率和第三发射功率可包括在来自基站的功率指示中,第一无线传输资源和第二无线传输资源可包括在来自基站的资源指示中,并且这些功率指示、资源指示和预定处理系数均可包括在基站通过PDCCH传输的上行授权信令中。
应理解,除了以上描述的内容之外,这里参照图4和图5描述的上行传输情况的基站端和用户设备端的装置的功能配置示例与以上参照图1和图2描述的下行传输情况的基站端和用户设备端的装置的功能配置示例在很多方面是类似的,例如关于如何对重传信号进行处理以及通过合并操作来消除干扰等,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再赘述。
接下来,将结合以上描述的基站端和用户设备端的装置,对用于上行传输的信令交互流程进行描述。图6是示出根据本公开的实施例的用于上行传输的信令交互过程的示例的流程图。
如图6所示,在步骤S61中,基站预定义层时码矩阵。然后,在步骤S62中,基站向用户设备指示其所对应的数据流序号。在步骤S63中,基站计算各个用户设备发送其数据块的发送功率,并在步骤S64中向用户设备指示其对应的发送功率。在步骤S65中,用户设备根据重发序号与数据流序号确定对此次数据块发送所使用的层时码参数,并且使用该层时码参数对调制后数据块进行加权。对于初次传送,重发序号可为0。然后,在步骤S66中,用户设备根据来自基站的发送功率指示对加权后的数据块进行功率调整,并在步骤S67中向基站发送数据块。在步骤S68中,基站对接收到的数据块进行解调与去干扰排序,进行串行干扰消除解调,并在步骤S69中对解调后数据进行自检。在步骤S610中,当存在1次以上重发时,对于未能正确解调的数据块,基站可依次根据其所对应的层时码参数、基于接收功率正向叠加的原则进行线性合并,并进行串行干扰消除解调。最后,在步骤S611中,如果基站判断需要重发数据块,则基站递增相应重发序号,重复执行步骤S63至S610,用户设备重发数据块;否则,基站将重发序号重置为0,重复执行步骤S63至S610,用户设备发送新的数据块。
应理解,如上所述,与下行传输的状况类似,上述信令交互过程仅为示例而非限制,并且本领域技术人员可根据本公开的原理对该信令交互过程进行修改。例如,步骤S63中的处理是可选的,用户设备用于数据块发送的发送功率也可以是预先确定好的。再者,例如,也无需如步骤S610中一样总是对多次传输的信号进行正向合并操作,而是可以根据实际的需要而执行正向或负向合并操作,以减少计算负荷。当然,本领域技术人员当然还可根据本公开的原理想到上述信令交互过程的其它变型例,在此不再一一列举,并且这样的变型例均应认为落入本公开的范围内。
应理解,尽管以上描述了根据本公开的实施例的无线通信系统中的装置的功能配置示例以及相应的通信设备间的交互过程示例,但是应理解,这仅是示例而非限制,并且本领域技术人员可根据本公开的原理对以上实施例进行修改,例如可对各个实施例中的功能模块进行添加、删除和/或组合等,并且这样的修改均落入本公开的范围内。
与上述装置实施例相对应的,本公开的实施例还提供了无线通信系统中的方法。以下将分别参照图7至图10详细描述根据本公开的实施例的无线通信系统中的方法的过程示例。
图7是示出根据本公开的实施例的无线通信系统中的方法的过程示例的流程图。该方法可在基站侧执行。
如图7所示,根据该实施例的方法可包括发送步骤S702、接收步骤S704和处理步骤S706。下面将分别详细描述各个步骤中的处理。
首先,在发送步骤S702中,可向至少包括第一用户设备和第二用户设备的多个用户设备发送使用叠加编码合成的第一分配信号,该第一分配信号至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分。根据叠加编码的原理可知,基于第一用户设备和第二用户设备的无线电条件,第一功率信号部分的发射功率可大于或小于第二功率信号部分的发射功率。
在第一用户设备和第二用户设备中的至少一个根据第一分配信号没有成功得到各自的数据的情况下,第一用户设备和第二用户设备中的至少一个会向基站发送重传请求,以请求再次传送信号。在接收步骤S704中,可接收来自 第一用户设备和第二用户设备中的至少一个反馈的重传请求。
然后,在处理步骤S706中,可响应于重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理以得到第二分配信号。优选地,该预定处理系数可基于哈达玛矩阵来确定,即,该预定处理系数可以为上述“层时码矩阵”。
在处理步骤S706中进行处理得到第二分配信号之后,可在发送步骤S702中进一步将第二分配信号发送给第一用户设备和第二用户设备,从而第一用户设备和第二用户设备可对所接收到的第一分配信号和第二分配信号以分别获得各自的数据。
根据上述处理,在合并后的第一分配信号和第二分配信号中,第一功率信号部分和第二功率信号部分之一被减弱或消除,因此可以大大减小对数据进行解调时来自另一方用户设备的干扰,从而使得能够成功解调出相应数据的可能性大大提高。
应指出,这里描述的方法是与以上参照图1描述的无线通信系统中的装置的实施例相对应的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再重复。
图8是示出根据本公开的另一实施例的无线通信系统中的方法的过程示例的流程图。该方法可在用户设备侧执行。
如图8所示,根据该实施例的方法可包括接收步骤S802、处理步骤S804和发送步骤S806。下面将分别详细描述各个步骤中的处理。
在接收步骤S802中,可接收来自基站的第一分配信号,该第一分配信号是使用叠加编码合成的并且至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分。
然后,在处理步骤S804中,可根据第一分配信号得到针对第一用户设备的数据。
接下来,在发送步骤S806中,可在根据第一分配信号没有得到针对第一用户设备的数据的情况下,向基站发送重传请求。
基站在接收到重传请求之后,可仅向发出重传请求的用户设备重新发送针对该用户设备的数据,或者也可同时向两个用户设备重新发送叠加编码后的 合成信号。在接收步骤S802中,还接收来自基站的第二分配信号,该第二分配信号是基站响应于第一用户设备和第二用户设备中的至少一个反馈的重传请求,以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的。应理解,在基站仅向发出重传请求的用户设备重新发送数据的情况下,该第二分配信号中的与另一用户设备有关的数据信号部分可视为0。
在接收到第二分配信号之后,在处理步骤S804中,可对第一分配信号和第二分配信号进行合并,以获得针对第一用户设备的数据。同样地,在第二用户设备侧可执行类似的处理,以获得针对第二用户设备的数据。
应指出,这里描述的方法是与以上参照图2描述的无线通信系统中的装置的实施例相对应的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再重复。
以上参照图7和图8描述的方法是在下行传输的情况下分别在基站侧和用户设备侧执行的方法,下面将描述在上行传输的情况下分别在基站侧和用户设备侧执行的方法。
图9是示出根据本公开的又一实施例的无线通信系统中的方法的过程示例的流程图。该方法可在基站侧执行。
如图9所示,根据该实施例的方法可包括接收步骤S902、处理步骤S904和发送步骤S906。下面将分别详细描述各个步骤中的处理。
在接收步骤S902中,可接收第一分配信号,该第一分配信号至少包括第一用户设备和第二用户设备在相同的第一无线传输资源上传输的第一功率信号部分和第二功率信号部分。由于第一用户设备和第二用户设备在相同的时频资源上向基站传送各自的数据,因此在基站端所接收到的信号相当于对来自这两个用户设备的数据进行了叠加编码之后的数据。
接下来,在处理步骤S904中,可根据第一分配信号得到分别来自第一用户设备和第二用户设备的数据。
然后,在发送步骤S906中,在根据第一分配信号没有成功得到来自第一用户设备和第二用户设备中的至少一个的数据的情况下,向第一用户设备和第二用户设备发送重传请求。这里,假设基站向两个用户设备均发送重传请求,对于基站仅向未解调出其数据的用户设备发送重传请求的情况,可将其视为来 自该设备的重传数据为0的情况的特例。
响应于来自基站的重传请求,第一用户设备和第二用户设备会在相同的时频资源上再次向基站发送其数据。在接收步骤S902中,还接收第二分配信号,该第二分配信号至少包括第一用户设备和第二用户设备响应于重传请求在相同的第二无线传输资源上传输的第三功率信号部分和第四功率信号部分,第三功率信号部分和第四功率信号部分是以预定处理系数对第一功率信号部分和第二功率信号部分进行处理而获得的。该预定处理系数可以是预先确定好的,也可以是基站端确定之后通知给用户设备的。在接收到第二分配信号之后,在处理步骤S904中,可对第一分配信号和第二分配信号进行合并,以得到分别来自第一用户设备和第二用户设备的数据。
应指出,这里描述的方法是与以上参照图4描述的无线通信系统中的装置的实施例相对应的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再重复。
图10是示出根据本公开的再一实施例的无线通信系统中的方法的过程示例的流程图。该方法可在用户设备侧执行。
如图10所示,根据该实施例的方法可包括发送步骤S1002、接收步骤S1004和处理步骤S1006。下面将分别详细描述各个步骤中的处理。
在发送步骤S1002中,可以以第一发射功率在与第二用户设备发送第二功率信号部分的无线传输资源相同的第一无线传输资源上向基站发送第一功率信号部分。即,第一用户设备和第二用户设备在相同的时频资源上向基站发送各自的数据。
然后,在接收步骤S1004中,可接收来自基站的重传请求。
接下来,在处理步骤S1006中,可响应于重传请求而以预定处理系数对第一功率信号部分进行处理以得到第三功率信号部分。类似地,在第二用户设备侧,也可响应于重传请求而以预定处理系数对第二功率信号部分进行处理以得到第四功率信号部分。
然后,在发送步骤S1002中,可以以第三发射功率在与第二用户设备发送第四功率信号部分的无线传输资源相同的第二无线传输资源上向基站发送第三功率信号部分。即,第一用户设备和第二用户设备在相同的时频资源上再 次向基站传送各自的第三功率信号部分和第四功率信号部分,这样,基站可通过对多次传输的信号进行合并来消除或减弱来自其它用户设备的干扰,以成功地解调出相应的用户数据。
应理解,各个用户设备用于发送信号的发射功率、所使用的无线传输资源以及所使用的预定处理系数可以在基站端确定,并且由基站通过例如上行授权信令而通知给用户设备。
应指出,这里描述的方法是与以上参照图5描述的无线通信系统中的装置的实施例相对应的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再重复。
应理解,尽管以上描述了根据本公开的实施例的无线通信系统中的方法的过程示例,但是这仅是示例而非限制,并且本领域技术人员可根据本公开的原理对以上实施例进行修改,例如可对各个实施例中的步骤进行添加、删除或者组合等,并且这样的修改均落入本公开的范围内。
此外,还应指出,尽管在附图中和以上描述中以流程图的顺序描述了根据本公开的实施例的无线通信系统中的方法的过程示例,但是根据本公开的方法的执行顺序并不限于此,而是这些处理也可并行地执行或者根据需要来执行。
根据以上描述的无线通信系统中的装置和方法的实施例,通过对叠加传输中的重传信号进行处理以减弱或消除由于相对于其它用户设备的传输所导致的干扰,从而能够使得成功解调出相应数据的可能性大大提高,并同时还能够提高叠加传输方式的吞吐量。
此外,根据本公开的实施例,还提供了一种电子设备,该电子设备可包括收发机和一个或多个处理器,这一个或多个处理器可被配置成执行上述根据本公开的实施例的无线通信系统中的方法或相应单元的功能。
应理解,根据本公开的实施例的存储介质和程序产品中的机器可执行的指令还可以被配置成执行与上述装置实施例相对应的方法,因此在此未详细描述的内容可参考先前相应位置的描述,在此不再重复进行描述。
相应地,用于承载上述包括机器可执行的指令的程序产品的存储介质也包括在本发明的公开中。该存储介质包括但不限于软盘、光盘、磁光盘、存储 卡、存储棒等等。
另外,还应该指出的是,上述系列处理和装置也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图11所示的通用个人计算机1100安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图11是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。
在图11中,中央处理单元(CPU)1101根据只读存储器(ROM)1102中存储的程序或从存储部分1108加载到随机存取存储器(RAM)1103的程序执行各种处理。在RAM 1103中,也根据需要存储当CPU 1101执行各种处理等时所需的数据。
CPU 1101、ROM 1102和RAM 1103经由总线1104彼此连接。输入/输出接口1105也连接到总线1104。
下述部件连接到输入/输出接口1105:输入部分1106,包括键盘、鼠标等;输出部分1107,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1108,包括硬盘等;和通信部分1109,包括网络接口卡比如LAN卡、调制解调器等。通信部分1109经由网络比如因特网执行通信处理。
根据需要,驱动器1110也连接到输入/输出接口1105。可拆卸介质1111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1110上,使得从中读出的计算机程序根据需要被安装到存储部分1108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1111安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图11所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1111。可拆卸介质1111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1102、存储部分1108中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
接下来,将参照图12至图14描述根据本公开的应用示例。
[关于eNB的应用示例]
(第一应用示例)
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1200包括一个或多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图12所示,eNB 1200可以包括多个天线1210。例如,多个天线1210可以与eNB 1200使用的多个频带兼容。虽然图12示出其中eNB 1200包括多个天线1210的示例,但是eNB 1200也可以包括单个天线1210。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1200与核心网节点或其它eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频带相比,网络接口1223可以使用较高频带用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE- 先进),并且经由天线1210来提供到位于eNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。
如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与eNB 1200使用的多个频带兼容。如图12所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
(第二应用示例)
图13是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1330包括一个或多个天线1340、基站设备1350和RRH 1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图13所示,eNB 1330可以包括多个天线1340。例如,多个天线1340可以与eNB 1330使用的多个频带兼容。虽然图13示出其中eNB 1330包括多个天线1340的示例,但是eNB 1330也可以包括单个天线1340。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353 与参照图12描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图12描述的BB处理器1226相同。如图13所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与eNB 1330使用的多个频带兼容。虽然图13示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。如图13所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图13示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
在图12和图13所示的eNB 1200和eNB 1330中,通过使用图1和图4描述的发送单元和接收单元可以由无线通信接口1225以及无线通信接口1355和/或无线通信接口1363实现。上述无线通信系统中的基站端的装置中的处理单元的功能的至少一部分也可以由控制器1221和控制器1351实现。
[关于用户设备的应用示例]
图14是示出可以应用本公开内容的技术的智能电话1400的示意性配置的 示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图14所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图14示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的 无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图14所示,智能电话1400可以包括多个天线1416。虽然图14示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图14所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
在图14所示的智能电话1400中,通过使用图2和图5描述的发送单元和接收单元可以由无线通信接口1412实现。以上描述的用户设备端的装置中的处理单元的功能的至少一部分也可以由处理器1401或辅助控制器1419实现。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。

Claims (31)

  1. 一种无线通信系统中的装置,所述装置包括:
    发送单元,被配置成向至少包括第一用户设备和第二用户设备的多个用户设备发送使用叠加编码合成的第一分配信号,所述第一分配信号至少包括针对所述第一用户设备的第一功率信号部分和针对所述第二用户设备的第二功率信号部分;
    接收单元,被配置成接收来自所述第一用户设备和所述第二用户设备中的至少一个反馈的重传请求;以及
    处理单元,被配置成响应于所述重传请求,以预定处理系数对所述第一功率信号部分和所述第二功率信号部分进行处理以得到第二分配信号,
    其中,所述发送单元进一步被配置成向所述第一用户设备和所述第二用户设备发送所述第二分配信号,由所述第一用户设备和所述第二用户设备对所述第一分配信号和所述第二分配信号进行合并以分别获得针对所述第一用户设备的数据和针对所述第二用户设备的数据。
  2. 根据权利要求1所述的装置,其中,在合并后的所述第一分配信号和所述第二分配信号中,所述第一功率信号部分和所述第二功率信号部分之一被减弱或抵消。
  3. 根据权利要求2所述的装置,其中,所述处理单元进一步被配置成对所述第一功率信号部分和所述第二功率信号部分中的至少一个的发射功率进行调整以得到所述第二分配信号。
  4. 根据权利要求1至3中任一项所述的装置,其中,所述发送单元进一步被配置成分别向所述第一用户设备和所述第二用户设备发送指示如何执行合并操作的合并指示,以由所述第一用户设备和所述第二用户设备根据所述合并指示对所述第一分配信号和所述第二分配信号进行合并。
  5. 根据权利要求4所述的装置,其中,所述合并指示包含在高层信令或物理层信令中。
  6. 根据权利要求4所述的装置,其中,所述合并指示为执行合并操作以增强所述第一功率信号部分和所述第二功率信号部分中的较高功率信号部分。
  7. 根据权利要求4所述的装置,其中,所述合并指示为执行合并操作, 以分别增强所述第一功率信号部分和所述第二功率信号部分中的分别针对所述第一用户设备和所述第二用户设备的功率信号部分。
  8. 根据权利要求1所述的装置,其中,所述预定处理系数是基于哈达玛矩阵来确定的。
  9. 一种无线通信系统中的装置,包括:
    接收单元,被配置成接收来自基站的第一分配信号,其中,所述第一分配信号是使用叠加编码合成的并且至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分;
    处理单元,被配置成根据所述第一分配信号得到针对所述第一用户设备的数据;以及
    发送单元,被配置成在所述处理单元根据所述第一分配信号没有得到针对所述第一用户设备的数据的情况下,向所述基站发送重传请求,
    其中,所述接收单元进一步被配置成接收来自所述基站的第二分配信号,所述第二分配信号是所述基站响应于所述第一用户设备和所述第二用户设备中的至少一个反馈的重传请求,以预定处理系数对所述第一功率信号部分和所述第二功率信号部分进行处理而获得的,以及
    其中,所述处理单元进一步被配置成对所述第一分配信号和所述第二分配信号进行合并,以获得针对所述第一用户设备的数据。
  10. 根据权利要求9所述的装置,其中,在合并后的所述第一分配信号和所述第二分配信号中,所述第一功率信号部分和所述第二功率信号部分之一被减弱或抵消。
  11. 根据权利要求9或10所述的装置,其中,所述接收单元还接收来自所述基站的指示如何进行合并操作的合并指示,并且所述处理单元进一步被配置成根据所述合并指示对所述第一分配信号和所述第二分配信号进行合并。
  12. 根据权利要求11所述的装置,其中,所述合并指示包含在高层信令或物理层信令中。
  13. 根据权利要求9或10所述的装置,所述处理单元进一步被配置成对所述第一分配信号和所述第二分配信号进行合并,以增强所述第一功率信号部分和所述第二功率信号部分中的较高功率信号部分。
  14. 根据权利要求9或10所述的装置,其中,所述处理单元进一步被配置成对所述第一分配信号和所述第二分配信号进行合并,以增强针对所述第一用户设备的第一功率信号部分。
  15. 根据权利要求9所述的装置,其中,所述处理单元进一步被配置成根据来自所述基站的小区特定参考信号CRS或信道状态指示-参考信号CSI-RS来估计信道状态,以获得针对所述第一用户设备的数据。
  16. 根据权利要求9所述的装置,其中,所述处理单元进一步被配置成根据所述合并的结果而执行非线性干扰消除。
  17. 一种无线通信系统中的装置,所述装置包括:
    接收单元,被配置成接收第一分配信号,所述第一分配信号至少包括第一用户设备和第二用户设备在相同的第一无线传输资源上传输的第一功率信号部分和第二功率信号部分;
    处理单元,被配置成根据所述第一分配信号得到分别来自所述第一用户设备和所述第二用户设备的数据;以及
    发送单元,被配置成在所述处理单元根据所述第一分配信号没有成功得到来自所述第一用户设备和所述第二用户设备中的至少一个的数据的情况下,向所述第一用户设备和所述第二用户设备发送重传请求,
    其中,所述接收单元进一步被配置成接收第二分配信号,所述第二分配信号至少包括所述第一用户设备和所述第二用户设备响应于所述重传请求在相同的第二无线传输资源上传输的第三功率信号部分和第四功率信号部分,所述第三功率信号部分和所述第四功率信号部分是以预定处理系数对所述第一功率信号部分和所述第二功率信号部分进行处理而获得的,以及
    其中,所述处理单元进一步被配置成对所述第一分配信号和所述第二分配信号进行合并以得到分别来自所述第一用户设备和所述第二用户设备的数据。
  18. 根据权利要求17所述的装置,其中,在合并后的所述第一分配信号和所述第二分配信号中,所述第一功率信号部分与所述第三功率信号部分相互抵消或减弱,或者所述第二功率信号部分与所述第四功率信号部分相互抵消或减弱。
  19. 根据权利要求17所述的装置,其中,所述处理单元进一步被配置成 确定所述第一功率信号部分、所述第二功率信号部分、所述第三功率信号部分和所述第四功率信号部分各自的发射功率,以及
    其中,所述发送单元进一步被配置成向所述第一用户设备和所述第二用户设备发送功率指示,以指示所确定的发射功率。
  20. 根据权利要求19所述的装置,其中,所述处理单元进一步被配置成确定所述第一无线传输资源和所述第二无线传输资源,并且所述发送单元进一步被配置成向所述第一用户设备和所述第二用户设备发送资源指示,以指示所述第一无线传输资源和所述第二无线传输资源。
  21. 根据权利要求20所述的装置,其中,所述处理单元进一步被配置成确定所述预定处理系数,并且所述发送单元进一步被配置成将所述预定处理系数发送到所述第一用户设备和所述第二用户设备。
  22. 根据权利要求21所述的装置,其中,所述功率指示、所述资源指示和所述预定处理系数包括在上行授权信令中。
  23. 根据权利要求17所述的装置,其中,所述处理单元进一步被配置成根据所述合并的结果而执行非线性干扰消除。
  24. 一种无线通信系统中的装置,所述装置包括:
    发送单元,被配置成以第一发射功率在与第二用户设备发送第二功率信号部分的无线传输资源相同的第一无线传输资源上向基站发送第一功率信号部分;
    接收单元,被配置成接收来自所述基站的重传请求;以及
    处理单元,被配置成响应于所述重传请求而以预定处理系数对所述第一功率信号部分进行处理以得到第三功率信号部分,
    其中,所述发送单元进一步被配置成以第三发射功率在与所述第二用户设备发送第四功率信号部分的无线传输资源相同的第二无线传输资源上向所述基站发送所述第三功率信号部分,所述第四功率信号部分是所述第二用户设备响应于所述重传请求以预定处理系数对所述第二功率信号部分进行处理而获得的。
  25. 根据权利要求24所述的装置,其中,所述第一发射功率和所述第三发射功率包括在从所述基站接收的功率指示中。
  26. 根据权利要求25所述的装置,其中,所述第一无线传输资源和所述第二无线传输资源包括在从所述基站接收的资源指示中。
  27. 根据权利要求26所述的装置,其中,所述功率指示、所述资源指示和所述预定处理系数包括在上行授权信令中。
  28. 一种无线通信系统中的方法,所述方法包括:
    发送步骤,用于向至少包括第一用户设备和第二用户设备的多个用户设备发送使用叠加编码合成的第一分配信号,所述第一分配信号至少包括针对所述第一用户设备的第一功率信号部分和针对所述第二用户设备的第二功率信号部分;
    接收步骤,用于接收来自所述第一用户设备和所述第二用户设备中的至少一个反馈的重传请求;以及
    处理步骤,用于响应于所述重传请求,以预定处理系数对所述第一功率信号部分和所述第二功率信号部分进行处理以得到第二分配信号,
    其中,在所述发送步骤中,还向所述第一用户设备和所述第二用户设备发送所述第二分配信号,由所述第一用户设备和所述第二用户设备对所述第一分配信号和所述第二分配信号进行合并以分别获得针对所述第一用户设备的数据和针对所述第二用户设备的数据。
  29. 一种无线通信系统中的方法,所述方法包括:
    接收步骤,用于接收来自基站的第一分配信号,其中,所述第一分配信号是使用叠加编码合成的并且至少包括针对第一用户设备的第一功率信号部分和针对第二用户设备的第二功率信号部分;
    处理步骤,用于根据所述第一分配信号得到针对所述第一用户设备的数据;以及
    发送步骤,用于在根据所述第一分配信号没有得到针对所述第一用户设备的数据的情况下,向所述基站发送重传请求,
    其中,在所述接收步骤中还接收来自所述基站的第二分配信号,所述第二分配信号是所述基站响应于所述第一用户设备和所述第二用户设备中的至少一个反馈的重传请求,以预定处理系数对所述第一功率信号部分和所述第二功率信号部分进行处理而获得的,以及
    其中,在所述处理步骤中还对所述第一分配信号和所述第二分配信号进行合并,以获得针对所述第一用户设备的数据。
  30. 一种无线通信系统中的方法,所述方法包括:
    接收步骤,用于接收第一分配信号,所述第一分配信号至少包括第一用户设备和第二用户设备在相同的第一无线传输资源上传输的第一功率信号部分和第二功率信号部分;
    处理步骤,用于根据所述第一分配信号得到分别来自所述第一用户设备和所述第二用户设备的数据;以及
    发送步骤,用于在根据所述第一分配信号没有成功得到来自所述第一用户设备和所述第二用户设备中的至少一个的数据的情况下,向所述第一用户设备和所述第二用户设备发送重传请求,
    其中,在所述接收步骤中还接收第二分配信号,所述第二分配信号至少包括所述第一用户设备和所述第二用户设备响应于所述重传请求在相同的第二无线传输资源上传输的第三功率信号部分和第四功率信号部分,所述第三功率信号部分和所述第四功率信号部分是以预定处理系数对所述第一功率信号部分和所述第二功率信号部分进行处理而获得的,以及
    其中,在所述处理步骤中,还对所述第一分配信号和所述第二分配信号进行合并以得到分别来自所述第一用户设备和所述第二用户设备的数据。
  31. 一种无线通信系统中的方法,所述方法包括:
    发送步骤,用于以第一发射功率在与第二用户设备发送第二功率信号部分的无线传输资源相同的第一无线传输资源上向基站发送第一功率信号部分;
    接收步骤,用于接收来自所述基站的重传请求;以及
    处理步骤,用于响应于所述重传请求而以预定处理系数对所述第一功率信号部分进行处理以得到第三功率信号部分,
    其中,在所述发送步骤中,还以第三发射功率在与所述第二用户设备发送第四功率信号部分的无线传输资源相同的第二无线传输资源上向所述基站发送所述第三功率信号部分,所述第四功率信号部分是所述第二用户设备响应于所述重传请求以预定处理系数对所述第二功率信号部分进行处理而获得的。
PCT/CN2016/094856 2015-08-14 2016-08-12 无线通信系统中的装置和方法 WO2017028746A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/743,312 US10177880B2 (en) 2015-08-14 2016-08-12 Device and method in wireless communication system
JP2018507691A JP6927195B2 (ja) 2015-08-14 2016-08-12 無線通信システムにおける装置と方法
KR1020187006849A KR102623277B1 (ko) 2015-08-14 2016-08-12 무선 통신 시스템에서의 디바이스 및 방법
EP16836610.2A EP3337071B1 (en) 2015-08-14 2016-08-12 Device and method in wireless communication system
US16/190,169 US10615919B2 (en) 2015-08-14 2018-11-14 Device and method in wireless communication system
US16/798,441 US10944513B2 (en) 2015-08-14 2020-02-24 Device and method in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510501585.XA CN106470094B (zh) 2015-08-14 2015-08-14 无线通信系统中的装置和方法
CN201510501585.X 2015-08-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/743,312 A-371-Of-International US10177880B2 (en) 2015-08-14 2016-08-12 Device and method in wireless communication system
US16/190,169 Continuation US10615919B2 (en) 2015-08-14 2018-11-14 Device and method in wireless communication system

Publications (1)

Publication Number Publication Date
WO2017028746A1 true WO2017028746A1 (zh) 2017-02-23

Family

ID=58050783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094856 WO2017028746A1 (zh) 2015-08-14 2016-08-12 无线通信系统中的装置和方法

Country Status (6)

Country Link
US (3) US10177880B2 (zh)
EP (1) EP3337071B1 (zh)
JP (2) JP6927195B2 (zh)
KR (1) KR102623277B1 (zh)
CN (2) CN106470094B (zh)
WO (1) WO2017028746A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241170A (zh) * 2016-03-29 2017-10-10 株式会社Ntt都科摩 数据处理和传输方法、以及用户终端和基站
WO2018128580A1 (en) * 2017-01-09 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for reliable dynamic indication for semi-persistent csi-rs
US10608862B2 (en) * 2018-03-27 2020-03-31 Sequans Communications S.A. NOMA scheme
US11096089B2 (en) * 2018-08-21 2021-08-17 Mediatek Inc. Data packaging method and communication device
US10993244B2 (en) 2018-10-30 2021-04-27 Sequans Communications S.A. Enhanced NOMA scheme
CN111385779A (zh) * 2018-12-29 2020-07-07 华为终端有限公司 一种数据处理方法、设备及存储介质
US10892847B2 (en) 2019-04-18 2021-01-12 Microsoft Technology Licensing, Llc Blind detection model optimization
US10873392B2 (en) 2019-04-18 2020-12-22 Microsoft Technology Licensing, Llc Throughput increases for optical communications
US10862591B1 (en) 2019-04-18 2020-12-08 Microsoft Technology Licensing, Llc Unequal decision regions for throughput increases for optical communications
US10742325B1 (en) 2019-04-18 2020-08-11 Microsoft Technology Licensing, Llc Power-based encoding of data to be transmitted over an optical communication path
US10742326B1 (en) 2019-04-18 2020-08-11 Microsoft Technology Licensing, Llc Power-based encoding of data to be transmitted over an optical communication path
US10873393B2 (en) * 2019-04-18 2020-12-22 Microsoft Technology Licensing, Llc Receiver training for throughput increases in optical communications
US11018776B2 (en) 2019-04-18 2021-05-25 Microsoft Technology Licensing, Llc Power-based decoding of data received over an optical communication path
US10911152B2 (en) 2019-04-18 2021-02-02 Microsoft Technology Licensing, Llc Power-based decoding of data received over an optical communication path
US10998982B2 (en) 2019-04-18 2021-05-04 Microsoft Technology Licensing, Llc Transmitter for throughput increases for optical communications
US10897315B2 (en) 2019-04-18 2021-01-19 Microsoft Technology Licensing, Llc Power-based decoding of data received over an optical communication path
US10756817B1 (en) 2019-04-18 2020-08-25 Microsoft Technology Licensing, Llc Power switching for systems implementing throughput improvements for optical communications
US10938485B2 (en) 2019-04-18 2021-03-02 Microsoft Technology Licensing, Llc Error control coding with dynamic ranges
US10911155B2 (en) 2019-04-18 2021-02-02 Microsoft Technology Licensing, Llc System for throughput increases for optical communications
US10951342B2 (en) 2019-04-18 2021-03-16 Microsoft Technology Licensing, Llc Throughput increases for optical communications
US11170903B2 (en) 2019-06-12 2021-11-09 Westinghouse Electric Company Llc Method and system to detect and locate the in-core position of fuel bundles with cladding perforations in candu-style nuclear reactors
US10911141B1 (en) 2019-07-30 2021-02-02 Microsoft Technology Licensing, Llc Dynamically selecting a channel model for optical communications
JP2023159896A (ja) * 2020-09-02 2023-11-02 ソニーグループ株式会社 情報処理装置および情報処理方法
CN114826343B (zh) * 2022-04-26 2023-06-27 西华大学 Ai赋能数据置空的叠加信道状态信息反馈方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101843012A (zh) * 2007-11-05 2010-09-22 Lg电子株式会社 在无线通信系统中控制功率的方法
CN101855857A (zh) * 2007-11-01 2010-10-06 上海贝尔股份有限公司 无线通信网络中用于进行自动重传的方法和装置
US20130044593A1 (en) * 2008-08-15 2013-02-21 Ian C. Wong Management of arq detection threshold in communication networks
CN103297178A (zh) * 2012-02-29 2013-09-11 华为技术有限公司 一种信号传输方法、装置及系统
CN104754719A (zh) * 2015-03-21 2015-07-01 西安电子科技大学 多用户功分复用的方法和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718442B2 (ja) * 2003-02-19 2011-07-06 クゥアルコム・インコーポレイテッド マルチユーザ通信システムにおける制御重畳コーディング
CN101433005A (zh) * 2006-04-24 2009-05-13 高通股份有限公司 无线通信系统中的重叠编码
US8085819B2 (en) * 2006-04-24 2011-12-27 Qualcomm Incorporated Superposition coding in a wireless communication system
EP2020158B1 (en) 2006-04-25 2016-11-02 LG Electronics Inc. A method of configuring multiuser packet and a structure thereof in a wireless communication system
KR101269201B1 (ko) * 2006-06-30 2013-05-28 삼성전자주식회사 폐 루프 방식의 다중 안테나 시스템에서 데이터송/수신장치 및 방법
CN101414898A (zh) * 2007-10-19 2009-04-22 华为技术有限公司 接收合并方法、系统及设备
WO2010048748A1 (zh) * 2008-10-31 2010-05-06 上海贝尔阿尔卡特股份有限公司 多跳中继网络中基于重叠编码调制的分布式重传方法
US8861449B2 (en) * 2008-11-21 2014-10-14 Telefonaktiebolaget L M Ericsson (Publ) Transmission method and devices in a communication system with contention-based data transmission
CN102104445A (zh) * 2011-01-14 2011-06-22 南京邮电大学 中继辅助的无线通信系统的下行链路模拟网络编码方法
CN103297176A (zh) 2012-02-24 2013-09-11 株式会社Ntt都科摩 信道状态信息的反馈、处理方法和装置及用户设备及基站
JP6050028B2 (ja) * 2012-05-25 2016-12-21 シャープ株式会社 端末、基地局、通信方法及び集積回路
GB2505696A (en) * 2012-09-07 2014-03-12 Sony Corp Receiving a sleep indication signal at a communications device in the narrow band control channel of a virtual carrier
US9338808B2 (en) * 2012-11-09 2016-05-10 Electronics And Telecommunications Research Institute Method of direct communication by terminal
GB2513904A (en) * 2013-05-10 2014-11-12 Nec Corp Communication system
JP2015050575A (ja) * 2013-08-30 2015-03-16 株式会社Nttドコモ 無線基地局、ユーザ端末及び送信電力制御方法
WO2016054069A1 (en) * 2014-09-29 2016-04-07 The Regents Of The University Of California Methods and apparatus for coding for interference network
WO2016209137A1 (en) * 2015-06-26 2016-12-29 Telefonaktiebolaget Lm Ericsson (Publ) A multiple access method in a massive mimo system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855857A (zh) * 2007-11-01 2010-10-06 上海贝尔股份有限公司 无线通信网络中用于进行自动重传的方法和装置
CN101843012A (zh) * 2007-11-05 2010-09-22 Lg电子株式会社 在无线通信系统中控制功率的方法
US20130044593A1 (en) * 2008-08-15 2013-02-21 Ian C. Wong Management of arq detection threshold in communication networks
CN103297178A (zh) * 2012-02-29 2013-09-11 华为技术有限公司 一种信号传输方法、装置及系统
CN104754719A (zh) * 2015-03-21 2015-07-01 西安电子科技大学 多用户功分复用的方法和装置

Also Published As

Publication number Publication date
KR102623277B1 (ko) 2024-01-11
US10944513B2 (en) 2021-03-09
EP3337071A1 (en) 2018-06-20
CN106470094B (zh) 2021-08-20
JP2018532291A (ja) 2018-11-01
US20190081738A1 (en) 2019-03-14
US10615919B2 (en) 2020-04-07
EP3337071B1 (en) 2021-03-24
CN113645012A (zh) 2021-11-12
KR20180039685A (ko) 2018-04-18
EP3337071A4 (en) 2019-03-20
JP2021185684A (ja) 2021-12-09
JP6927195B2 (ja) 2021-08-25
CN106470094A (zh) 2017-03-01
JP7318685B2 (ja) 2023-08-01
US20180205503A1 (en) 2018-07-19
US20200195384A1 (en) 2020-06-18
US10177880B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2017028746A1 (zh) 无线通信系统中的装置和方法
US11489570B2 (en) Apparatus and method in wireless communication system using multi-user superposition transmission
US9014694B2 (en) Non-orthogonal transmit mode
US11265867B2 (en) Wireless communication system, wireless base station, wireless terminal, and wireless communication method
US12021786B2 (en) Electronic device, wireless communication method, and computer-readable medium
CN111052648A (zh) 电子装置、无线通信方法以及计算机可读介质
US11855741B2 (en) System and method for dual-control signaling for the relay scenarios
WO2023185659A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
US9144067B2 (en) Flexible extension of an information block
JP6473013B2 (ja) 制御装置、制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743312

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018507691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006849

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016836610

Country of ref document: EP